/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Diff of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 437 by persson, Wed Mar 9 22:02:40 2005 UTC revision 3115 by schoenebeck, Sat Apr 15 20:17:05 2017 UTC
# Line 1  Line 1 
1  /***************************************************************************  /***************************************************************************
2   *                                                                         *   *                                                                         *
3   *   libgig - C++ cross-platform Gigasampler format file loader library    *   *   libgig - C++ cross-platform Gigasampler format file access library    *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003-2005 by Christian Schoenebeck                      *   *   Copyright (C) 2003-2016 by Christian Schoenebeck                      *
6   *                              <cuse@users.sourceforge.net>               *   *                              <cuse@users.sourceforge.net>               *
7   *                                                                         *   *                                                                         *
8   *   This library is free software; you can redistribute it and/or modify  *   *   This library is free software; you can redistribute it and/or modify  *
# Line 23  Line 23 
23    
24  #include "gig.h"  #include "gig.h"
25    
26    #include "helper.h"
27    
28    #include <algorithm>
29    #include <math.h>
30  #include <iostream>  #include <iostream>
31    #include <assert.h>
32    
33    /// libgig's current file format version (for extending the original Giga file
34    /// format with libgig's own custom data / custom features).
35    #define GIG_FILE_EXT_VERSION    2
36    
37    /// Initial size of the sample buffer which is used for decompression of
38    /// compressed sample wave streams - this value should always be bigger than
39    /// the biggest sample piece expected to be read by the sampler engine,
40    /// otherwise the buffer size will be raised at runtime and thus the buffer
41    /// reallocated which is time consuming and unefficient.
42    #define INITIAL_SAMPLE_BUFFER_SIZE              512000 // 512 kB
43    
44    /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
45    #define GIG_EXP_DECODE(x)                       (pow(1.000000008813822, x))
46    #define GIG_EXP_ENCODE(x)                       (log(x) / log(1.000000008813822))
47    #define GIG_PITCH_TRACK_EXTRACT(x)              (!(x & 0x01))
48    #define GIG_PITCH_TRACK_ENCODE(x)               ((x) ? 0x00 : 0x01)
49    #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x)       ((x >> 4) & 0x03)
50    #define GIG_VCF_RESONANCE_CTRL_ENCODE(x)        ((x & 0x03) << 4)
51    #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x)  ((x >> 1) & 0x03)
52    #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x)   ((x >> 3) & 0x03)
53    #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
54    #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x)   ((x & 0x03) << 1)
55    #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x)    ((x & 0x03) << 3)
56    #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x)  ((x & 0x03) << 5)
57    
58  namespace gig { namespace {  namespace gig {
59    
60  // *************** Internal functions for sample decopmression ***************  // *************** Internal functions for sample decompression ***************
61  // *  // *
62    
63    namespace {
64    
65      inline int get12lo(const unsigned char* pSrc)      inline int get12lo(const unsigned char* pSrc)
66      {      {
67          const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;          const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
# Line 53  namespace gig { namespace { Line 85  namespace gig { namespace {
85          return x & 0x800000 ? x - 0x1000000 : x;          return x & 0x800000 ? x - 0x1000000 : x;
86      }      }
87    
88        inline void store24(unsigned char* pDst, int x)
89        {
90            pDst[0] = x;
91            pDst[1] = x >> 8;
92            pDst[2] = x >> 16;
93        }
94    
95      void Decompress16(int compressionmode, const unsigned char* params,      void Decompress16(int compressionmode, const unsigned char* params,
96                        int srcStep, int dstStep,                        int srcStep, int dstStep,
97                        const unsigned char* pSrc, int16_t* pDst,                        const unsigned char* pSrc, int16_t* pDst,
98                        unsigned long currentframeoffset,                        file_offset_t currentframeoffset,
99                        unsigned long copysamples)                        file_offset_t copysamples)
100      {      {
101          switch (compressionmode) {          switch (compressionmode) {
102              case 0: // 16 bit uncompressed              case 0: // 16 bit uncompressed
# Line 92  namespace gig { namespace { Line 131  namespace gig { namespace {
131      }      }
132    
133      void Decompress24(int compressionmode, const unsigned char* params,      void Decompress24(int compressionmode, const unsigned char* params,
134                        int dstStep, const unsigned char* pSrc, int16_t* pDst,                        int dstStep, const unsigned char* pSrc, uint8_t* pDst,
135                        unsigned long currentframeoffset,                        file_offset_t currentframeoffset,
136                        unsigned long copysamples, int truncatedBits)                        file_offset_t copysamples, int truncatedBits)
137      {      {
138          // Note: The 24 bits are truncated to 16 bits for now.          int y, dy, ddy, dddy;
139    
140          // Note: The calculation of the initial value of y is strange  #define GET_PARAMS(params)                      \
141          // and not 100% correct. What should the first two parameters          y    = get24(params);                   \
142          // really be used for? Why are they two? The correct value for          dy   = y - get24((params) + 3);         \
143          // y seems to lie somewhere between the values of the first          ddy  = get24((params) + 6);             \
144          // two parameters.          dddy = get24((params) + 9)
         //  
         // Strange thing #2: The formula in SKIP_ONE gives values for  
         // y that are twice as high as they should be. That's why  
         // COPY_ONE shifts an extra step, and also why y is  
         // initialized with a sum instead of a mean value.  
   
         int y, dy, ddy;  
   
         const int shift = 8 - truncatedBits;  
         const int shift1 = shift + 1;  
   
 #define GET_PARAMS(params)                              \  
         y = (get24(params) + get24((params) + 3));      \  
         dy  = get24((params) + 6);                      \  
         ddy = get24((params) + 9)  
145    
146  #define SKIP_ONE(x)                             \  #define SKIP_ONE(x)                             \
147          ddy -= (x);                             \          dddy -= (x);                            \
148          dy -= ddy;                              \          ddy  -= dddy;                           \
149          y -= dy          dy   =  -dy - ddy;                      \
150            y    += dy
151    
152  #define COPY_ONE(x)                             \  #define COPY_ONE(x)                             \
153          SKIP_ONE(x);                            \          SKIP_ONE(x);                            \
154          *pDst = y >> shift1;                    \          store24(pDst, y << truncatedBits);      \
155          pDst += dstStep          pDst += dstStep
156    
157          switch (compressionmode) {          switch (compressionmode) {
158              case 2: // 24 bit uncompressed              case 2: // 24 bit uncompressed
159                  pSrc += currentframeoffset * 3;                  pSrc += currentframeoffset * 3;
160                  while (copysamples) {                  while (copysamples) {
161                      *pDst = get24(pSrc) >> shift;                      store24(pDst, get24(pSrc) << truncatedBits);
162                      pDst += dstStep;                      pDst += dstStep;
163                      pSrc += 3;                      pSrc += 3;
164                      copysamples--;                      copysamples--;
# Line 203  namespace gig { namespace { Line 228  namespace gig { namespace {
228  }  }
229    
230    
231    
232    // *************** Internal CRC-32 (Cyclic Redundancy Check) functions  ***************
233    // *
234    
235        static uint32_t* __initCRCTable() {
236            static uint32_t res[256];
237    
238            for (int i = 0 ; i < 256 ; i++) {
239                uint32_t c = i;
240                for (int j = 0 ; j < 8 ; j++) {
241                    c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
242                }
243                res[i] = c;
244            }
245            return res;
246        }
247    
248        static const uint32_t* __CRCTable = __initCRCTable();
249    
250        /**
251         * Initialize a CRC variable.
252         *
253         * @param crc - variable to be initialized
254         */
255        inline static void __resetCRC(uint32_t& crc) {
256            crc = 0xffffffff;
257        }
258    
259        /**
260         * Used to calculate checksums of the sample data in a gig file. The
261         * checksums are stored in the 3crc chunk of the gig file and
262         * automatically updated when a sample is written with Sample::Write().
263         *
264         * One should call __resetCRC() to initialize the CRC variable to be
265         * used before calling this function the first time.
266         *
267         * After initializing the CRC variable one can call this function
268         * arbitrary times, i.e. to split the overall CRC calculation into
269         * steps.
270         *
271         * Once the whole data was processed by __calculateCRC(), one should
272         * call __finalizeCRC() to get the final CRC result.
273         *
274         * @param buf     - pointer to data the CRC shall be calculated of
275         * @param bufSize - size of the data to be processed
276         * @param crc     - variable the CRC sum shall be stored to
277         */
278        static void __calculateCRC(unsigned char* buf, size_t bufSize, uint32_t& crc) {
279            for (size_t i = 0 ; i < bufSize ; i++) {
280                crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
281            }
282        }
283    
284        /**
285         * Returns the final CRC result.
286         *
287         * @param crc - variable previously passed to __calculateCRC()
288         */
289        inline static void __finalizeCRC(uint32_t& crc) {
290            crc ^= 0xffffffff;
291        }
292    
293    
294    
295    // *************** Other Internal functions  ***************
296    // *
297    
298        static split_type_t __resolveSplitType(dimension_t dimension) {
299            return (
300                dimension == dimension_layer ||
301                dimension == dimension_samplechannel ||
302                dimension == dimension_releasetrigger ||
303                dimension == dimension_keyboard ||
304                dimension == dimension_roundrobin ||
305                dimension == dimension_random ||
306                dimension == dimension_smartmidi ||
307                dimension == dimension_roundrobinkeyboard
308            ) ? split_type_bit : split_type_normal;
309        }
310    
311        static int __resolveZoneSize(dimension_def_t& dimension_definition) {
312            return (dimension_definition.split_type == split_type_normal)
313            ? int(128.0 / dimension_definition.zones) : 0;
314        }
315    
316    
317    
318  // *************** Sample ***************  // *************** Sample ***************
319  // *  // *
320    
321      unsigned int Sample::Instances = 0;      size_t       Sample::Instances = 0;
322      buffer_t     Sample::InternalDecompressionBuffer;      buffer_t     Sample::InternalDecompressionBuffer;
323    
324      Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {      /** @brief Constructor.
325         *
326         * Load an existing sample or create a new one. A 'wave' list chunk must
327         * be given to this constructor. In case the given 'wave' list chunk
328         * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
329         * format and sample data will be loaded from there, otherwise default
330         * values will be used and those chunks will be created when
331         * File::Save() will be called later on.
332         *
333         * @param pFile          - pointer to gig::File where this sample is
334         *                         located (or will be located)
335         * @param waveList       - pointer to 'wave' list chunk which is (or
336         *                         will be) associated with this sample
337         * @param WavePoolOffset - offset of this sample data from wave pool
338         *                         ('wvpl') list chunk
339         * @param fileNo         - number of an extension file where this sample
340         *                         is located, 0 otherwise
341         * @param index          - wave pool index of sample (may be -1 on new sample)
342         */
343        Sample::Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo, int index)
344            : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset)
345        {
346            static const DLS::Info::string_length_t fixedStringLengths[] = {
347                { CHUNK_ID_INAM, 64 },
348                { 0, 0 }
349            };
350            pInfo->SetFixedStringLengths(fixedStringLengths);
351          Instances++;          Instances++;
352            FileNo = fileNo;
353    
354          RIFF::Chunk* _3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);          __resetCRC(crc);
355          if (!_3gix) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");          // if this is not a new sample, try to get the sample's already existing
356          SampleGroup = _3gix->ReadInt16();          // CRC32 checksum from disk, this checksum will reflect the sample's CRC32
357            // checksum of the time when the sample was consciously modified by the
358          RIFF::Chunk* smpl = waveList->GetSubChunk(CHUNK_ID_SMPL);          // user for the last time (by calling Sample::Write() that is).
359          if (!smpl) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");          if (index >= 0) { // not a new file ...
360          Manufacturer      = smpl->ReadInt32();              try {
361          Product           = smpl->ReadInt32();                  uint32_t crc = pFile->GetSampleChecksumByIndex(index);
362          SamplePeriod      = smpl->ReadInt32();                  this->crc = crc;
363          MIDIUnityNote     = smpl->ReadInt32();              } catch (...) {}
364          FineTune          = smpl->ReadInt32();          }
365          smpl->Read(&SMPTEFormat, 1, 4);  
366          SMPTEOffset       = smpl->ReadInt32();          pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
367          Loops             = smpl->ReadInt32();          if (pCk3gix) {
368          smpl->ReadInt32(); // manufByt              uint16_t iSampleGroup = pCk3gix->ReadInt16();
369          LoopID            = smpl->ReadInt32();              pGroup = pFile->GetGroup(iSampleGroup);
370          smpl->Read(&LoopType, 1, 4);          } else { // '3gix' chunk missing
371          LoopStart         = smpl->ReadInt32();              // by default assigned to that mandatory "Default Group"
372          LoopEnd           = smpl->ReadInt32();              pGroup = pFile->GetGroup(0);
373          LoopFraction      = smpl->ReadInt32();          }
374          LoopPlayCount     = smpl->ReadInt32();  
375            pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
376            if (pCkSmpl) {
377                Manufacturer  = pCkSmpl->ReadInt32();
378                Product       = pCkSmpl->ReadInt32();
379                SamplePeriod  = pCkSmpl->ReadInt32();
380                MIDIUnityNote = pCkSmpl->ReadInt32();
381                FineTune      = pCkSmpl->ReadInt32();
382                pCkSmpl->Read(&SMPTEFormat, 1, 4);
383                SMPTEOffset   = pCkSmpl->ReadInt32();
384                Loops         = pCkSmpl->ReadInt32();
385                pCkSmpl->ReadInt32(); // manufByt
386                LoopID        = pCkSmpl->ReadInt32();
387                pCkSmpl->Read(&LoopType, 1, 4);
388                LoopStart     = pCkSmpl->ReadInt32();
389                LoopEnd       = pCkSmpl->ReadInt32();
390                LoopFraction  = pCkSmpl->ReadInt32();
391                LoopPlayCount = pCkSmpl->ReadInt32();
392            } else { // 'smpl' chunk missing
393                // use default values
394                Manufacturer  = 0;
395                Product       = 0;
396                SamplePeriod  = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
397                MIDIUnityNote = 60;
398                FineTune      = 0;
399                SMPTEFormat   = smpte_format_no_offset;
400                SMPTEOffset   = 0;
401                Loops         = 0;
402                LoopID        = 0;
403                LoopType      = loop_type_normal;
404                LoopStart     = 0;
405                LoopEnd       = 0;
406                LoopFraction  = 0;
407                LoopPlayCount = 0;
408            }
409    
410          FrameTable                 = NULL;          FrameTable                 = NULL;
411          SamplePos                  = 0;          SamplePos                  = 0;
# Line 263  namespace gig { namespace { Line 436  namespace gig { namespace {
436          }          }
437          FrameOffset = 0; // just for streaming compressed samples          FrameOffset = 0; // just for streaming compressed samples
438    
439          LoopSize = LoopEnd - LoopStart;          LoopSize = LoopEnd - LoopStart + 1;
440        }
441    
442        /**
443         * Make a (semi) deep copy of the Sample object given by @a orig (without
444         * the actual waveform data) and assign it to this object.
445         *
446         * Discussion: copying .gig samples is a bit tricky. It requires three
447         * steps:
448         * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
449         *    its new sample waveform data size.
450         * 2. Saving the file (done by File::Save()) so that it gains correct size
451         *    and layout for writing the actual wave form data directly to disc
452         *    in next step.
453         * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
454         *
455         * @param orig - original Sample object to be copied from
456         */
457        void Sample::CopyAssignMeta(const Sample* orig) {
458            // handle base classes
459            DLS::Sample::CopyAssignCore(orig);
460            
461            // handle actual own attributes of this class
462            Manufacturer = orig->Manufacturer;
463            Product = orig->Product;
464            SamplePeriod = orig->SamplePeriod;
465            MIDIUnityNote = orig->MIDIUnityNote;
466            FineTune = orig->FineTune;
467            SMPTEFormat = orig->SMPTEFormat;
468            SMPTEOffset = orig->SMPTEOffset;
469            Loops = orig->Loops;
470            LoopID = orig->LoopID;
471            LoopType = orig->LoopType;
472            LoopStart = orig->LoopStart;
473            LoopEnd = orig->LoopEnd;
474            LoopSize = orig->LoopSize;
475            LoopFraction = orig->LoopFraction;
476            LoopPlayCount = orig->LoopPlayCount;
477            
478            // schedule resizing this sample to the given sample's size
479            Resize(orig->GetSize());
480        }
481    
482        /**
483         * Should be called after CopyAssignMeta() and File::Save() sequence.
484         * Read more about it in the discussion of CopyAssignMeta(). This method
485         * copies the actual waveform data by disk streaming.
486         *
487         * @e CAUTION: this method is currently not thread safe! During this
488         * operation the sample must not be used for other purposes by other
489         * threads!
490         *
491         * @param orig - original Sample object to be copied from
492         */
493        void Sample::CopyAssignWave(const Sample* orig) {
494            const int iReadAtOnce = 32*1024;
495            char* buf = new char[iReadAtOnce * orig->FrameSize];
496            Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
497            file_offset_t restorePos = pOrig->GetPos();
498            pOrig->SetPos(0);
499            SetPos(0);
500            for (file_offset_t n = pOrig->Read(buf, iReadAtOnce); n;
501                               n = pOrig->Read(buf, iReadAtOnce))
502            {
503                Write(buf, n);
504            }
505            pOrig->SetPos(restorePos);
506            delete [] buf;
507        }
508    
509        /**
510         * Apply sample and its settings to the respective RIFF chunks. You have
511         * to call File::Save() to make changes persistent.
512         *
513         * Usually there is absolutely no need to call this method explicitly.
514         * It will be called automatically when File::Save() was called.
515         *
516         * @param pProgress - callback function for progress notification
517         * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
518         *                        was provided yet
519         * @throws gig::Exception if there is any invalid sample setting
520         */
521        void Sample::UpdateChunks(progress_t* pProgress) {
522            // first update base class's chunks
523            DLS::Sample::UpdateChunks(pProgress);
524    
525            // make sure 'smpl' chunk exists
526            pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
527            if (!pCkSmpl) {
528                pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
529                memset(pCkSmpl->LoadChunkData(), 0, 60);
530            }
531            // update 'smpl' chunk
532            uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
533            SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
534            store32(&pData[0], Manufacturer);
535            store32(&pData[4], Product);
536            store32(&pData[8], SamplePeriod);
537            store32(&pData[12], MIDIUnityNote);
538            store32(&pData[16], FineTune);
539            store32(&pData[20], SMPTEFormat);
540            store32(&pData[24], SMPTEOffset);
541            store32(&pData[28], Loops);
542    
543            // we skip 'manufByt' for now (4 bytes)
544    
545            store32(&pData[36], LoopID);
546            store32(&pData[40], LoopType);
547            store32(&pData[44], LoopStart);
548            store32(&pData[48], LoopEnd);
549            store32(&pData[52], LoopFraction);
550            store32(&pData[56], LoopPlayCount);
551    
552            // make sure '3gix' chunk exists
553            pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
554            if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
555            // determine appropriate sample group index (to be stored in chunk)
556            uint16_t iSampleGroup = 0; // 0 refers to default sample group
557            File* pFile = static_cast<File*>(pParent);
558            if (pFile->pGroups) {
559                std::list<Group*>::iterator iter = pFile->pGroups->begin();
560                std::list<Group*>::iterator end  = pFile->pGroups->end();
561                for (int i = 0; iter != end; i++, iter++) {
562                    if (*iter == pGroup) {
563                        iSampleGroup = i;
564                        break; // found
565                    }
566                }
567            }
568            // update '3gix' chunk
569            pData = (uint8_t*) pCk3gix->LoadChunkData();
570            store16(&pData[0], iSampleGroup);
571    
572            // if the library user toggled the "Compressed" attribute from true to
573            // false, then the EWAV chunk associated with compressed samples needs
574            // to be deleted
575            RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
576            if (ewav && !Compressed) {
577                pWaveList->DeleteSubChunk(ewav);
578            }
579      }      }
580    
581      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
582      void Sample::ScanCompressedSample() {      void Sample::ScanCompressedSample() {
583          //TODO: we have to add some more scans here (e.g. determine compression rate)          //TODO: we have to add some more scans here (e.g. determine compression rate)
584          this->SamplesTotal = 0;          this->SamplesTotal = 0;
585          std::list<unsigned long> frameOffsets;          std::list<file_offset_t> frameOffsets;
586    
587          SamplesPerFrame = BitDepth == 24 ? 256 : 2048;          SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
588          WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag          WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
# Line 286  namespace gig { namespace { Line 598  namespace gig { namespace {
598                  const int mode_l = pCkData->ReadUint8();                  const int mode_l = pCkData->ReadUint8();
599                  const int mode_r = pCkData->ReadUint8();                  const int mode_r = pCkData->ReadUint8();
600                  if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");                  if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
601                  const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];                  const file_offset_t frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
602    
603                  if (pCkData->RemainingBytes() <= frameSize) {                  if (pCkData->RemainingBytes() <= frameSize) {
604                      SamplesInLastFrame =                      SamplesInLastFrame =
# Line 305  namespace gig { namespace { Line 617  namespace gig { namespace {
617    
618                  const int mode = pCkData->ReadUint8();                  const int mode = pCkData->ReadUint8();
619                  if (mode > 5) throw gig::Exception("Unknown compression mode");                  if (mode > 5) throw gig::Exception("Unknown compression mode");
620                  const unsigned long frameSize = bytesPerFrame[mode];                  const file_offset_t frameSize = bytesPerFrame[mode];
621    
622                  if (pCkData->RemainingBytes() <= frameSize) {                  if (pCkData->RemainingBytes() <= frameSize) {
623                      SamplesInLastFrame =                      SamplesInLastFrame =
# Line 321  namespace gig { namespace { Line 633  namespace gig { namespace {
633    
634          // Build the frames table (which is used for fast resolving of a frame's chunk offset)          // Build the frames table (which is used for fast resolving of a frame's chunk offset)
635          if (FrameTable) delete[] FrameTable;          if (FrameTable) delete[] FrameTable;
636          FrameTable = new unsigned long[frameOffsets.size()];          FrameTable = new file_offset_t[frameOffsets.size()];
637          std::list<unsigned long>::iterator end  = frameOffsets.end();          std::list<file_offset_t>::iterator end  = frameOffsets.end();
638          std::list<unsigned long>::iterator iter = frameOffsets.begin();          std::list<file_offset_t>::iterator iter = frameOffsets.begin();
639          for (int i = 0; iter != end; i++, iter++) {          for (int i = 0; iter != end; i++, iter++) {
640              FrameTable[i] = *iter;              FrameTable[i] = *iter;
641          }          }
# Line 364  namespace gig { namespace { Line 676  namespace gig { namespace {
676       *                      the cached sample data in bytes       *                      the cached sample data in bytes
677       * @see                 ReleaseSampleData(), Read(), SetPos()       * @see                 ReleaseSampleData(), Read(), SetPos()
678       */       */
679      buffer_t Sample::LoadSampleData(unsigned long SampleCount) {      buffer_t Sample::LoadSampleData(file_offset_t SampleCount) {
680          return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples          return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
681      }      }
682    
# Line 423  namespace gig { namespace { Line 735  namespace gig { namespace {
735       *                           size of the cached sample data in bytes       *                           size of the cached sample data in bytes
736       * @see                      ReleaseSampleData(), Read(), SetPos()       * @see                      ReleaseSampleData(), Read(), SetPos()
737       */       */
738      buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {      buffer_t Sample::LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount) {
739          if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;          if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
740          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
741          unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;          file_offset_t allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
742            SetPos(0); // reset read position to begin of sample
743          RAMCache.pStart            = new int8_t[allocationsize];          RAMCache.pStart            = new int8_t[allocationsize];
744          RAMCache.Size              = Read(RAMCache.pStart, SampleCount) * this->FrameSize;          RAMCache.Size              = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
745          RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;          RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
# Line 464  namespace gig { namespace { Line 777  namespace gig { namespace {
777          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
778          RAMCache.pStart = NULL;          RAMCache.pStart = NULL;
779          RAMCache.Size   = 0;          RAMCache.Size   = 0;
780            RAMCache.NullExtensionSize = 0;
781        }
782    
783        /** @brief Resize sample.
784         *
785         * Resizes the sample's wave form data, that is the actual size of
786         * sample wave data possible to be written for this sample. This call
787         * will return immediately and just schedule the resize operation. You
788         * should call File::Save() to actually perform the resize operation(s)
789         * "physically" to the file. As this can take a while on large files, it
790         * is recommended to call Resize() first on all samples which have to be
791         * resized and finally to call File::Save() to perform all those resize
792         * operations in one rush.
793         *
794         * The actual size (in bytes) is dependant to the current FrameSize
795         * value. You may want to set FrameSize before calling Resize().
796         *
797         * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
798         * enlarged samples before calling File::Save() as this might exceed the
799         * current sample's boundary!
800         *
801         * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
802         * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
803         * other formats will fail!
804         *
805         * @param NewSize - new sample wave data size in sample points (must be
806         *                  greater than zero)
807         * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
808         * @throws DLS::Exception if \a NewSize is less than 1 or unrealistic large
809         * @throws gig::Exception if existing sample is compressed
810         * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
811         *      DLS::Sample::FormatTag, File::Save()
812         */
813        void Sample::Resize(file_offset_t NewSize) {
814            if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
815            DLS::Sample::Resize(NewSize);
816      }      }
817    
818      /**      /**
# Line 487  namespace gig { namespace { Line 836  namespace gig { namespace {
836       * @returns            the new sample position       * @returns            the new sample position
837       * @see                Read()       * @see                Read()
838       */       */
839      unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {      file_offset_t Sample::SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence) {
840          if (Compressed) {          if (Compressed) {
841              switch (Whence) {              switch (Whence) {
842                  case RIFF::stream_curpos:                  case RIFF::stream_curpos:
# Line 505  namespace gig { namespace { Line 854  namespace gig { namespace {
854              }              }
855              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
856    
857              unsigned long frame = this->SamplePos / 2048; // to which frame to jump              file_offset_t frame = this->SamplePos / 2048; // to which frame to jump
858              this->FrameOffset   = this->SamplePos % 2048; // offset (in sample points) within that frame              this->FrameOffset   = this->SamplePos % 2048; // offset (in sample points) within that frame
859              pCkData->SetPos(FrameTable[frame]);           // set chunk pointer to the start of sought frame              pCkData->SetPos(FrameTable[frame]);           // set chunk pointer to the start of sought frame
860              return this->SamplePos;              return this->SamplePos;
861          }          }
862          else { // not compressed          else { // not compressed
863              unsigned long orderedBytes = SampleCount * this->FrameSize;              file_offset_t orderedBytes = SampleCount * this->FrameSize;
864              unsigned long result = pCkData->SetPos(orderedBytes, Whence);              file_offset_t result = pCkData->SetPos(orderedBytes, Whence);
865              return (result == orderedBytes) ? SampleCount              return (result == orderedBytes) ? SampleCount
866                                              : result / this->FrameSize;                                              : result / this->FrameSize;
867          }          }
# Line 521  namespace gig { namespace { Line 870  namespace gig { namespace {
870      /**      /**
871       * Returns the current position in the sample (in sample points).       * Returns the current position in the sample (in sample points).
872       */       */
873      unsigned long Sample::GetPos() {      file_offset_t Sample::GetPos() const {
874          if (Compressed) return SamplePos;          if (Compressed) return SamplePos;
875          else            return pCkData->GetPos() / FrameSize;          else            return pCkData->GetPos() / FrameSize;
876      }      }
# Line 555  namespace gig { namespace { Line 904  namespace gig { namespace {
904       * @param SampleCount      number of sample points to read       * @param SampleCount      number of sample points to read
905       * @param pPlaybackState   will be used to store and reload the playback       * @param pPlaybackState   will be used to store and reload the playback
906       *                         state for the next ReadAndLoop() call       *                         state for the next ReadAndLoop() call
907         * @param pDimRgn          dimension region with looping information
908       * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression       * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
909       * @returns                number of successfully read sample points       * @returns                number of successfully read sample points
910       * @see                    CreateDecompressionBuffer()       * @see                    CreateDecompressionBuffer()
911       */       */
912      unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState, buffer_t* pExternalDecompressionBuffer) {      file_offset_t Sample::ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState,
913          unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;                                        DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
914            file_offset_t samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
915          uint8_t* pDst = (uint8_t*) pBuffer;          uint8_t* pDst = (uint8_t*) pBuffer;
916    
917          SetPos(pPlaybackState->position); // recover position from the last time          SetPos(pPlaybackState->position); // recover position from the last time
918    
919          if (this->Loops && GetPos() <= this->LoopEnd) { // honor looping if there are loop points defined          if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
920    
921              switch (this->LoopType) {              const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
922                const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
923    
924                  case loop_type_bidirectional: { //TODO: not tested yet!              if (GetPos() <= loopEnd) {
925                      do {                  switch (loop.LoopType) {
                         // if not endless loop check if max. number of loop cycles have been passed  
                         if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;  
   
                         if (!pPlaybackState->reverse) { // forward playback  
                             do {  
                                 samplestoloopend  = this->LoopEnd - GetPos();  
                                 readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);  
                                 samplestoread    -= readsamples;  
                                 totalreadsamples += readsamples;  
                                 if (readsamples == samplestoloopend) {  
                                     pPlaybackState->reverse = true;  
                                     break;  
                                 }  
                             } while (samplestoread && readsamples);  
                         }  
                         else { // backward playback  
926    
927                              // as we can only read forward from disk, we have to                      case loop_type_bidirectional: { //TODO: not tested yet!
928                              // determine the end position within the loop first,                          do {
929                              // read forward from that 'end' and finally after                              // if not endless loop check if max. number of loop cycles have been passed
930                              // reading, swap all sample frames so it reflects                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
931                              // backward playback  
932                                if (!pPlaybackState->reverse) { // forward playback
933                              unsigned long swapareastart       = totalreadsamples;                                  do {
934                              unsigned long loopoffset          = GetPos() - this->LoopStart;                                      samplestoloopend  = loopEnd - GetPos();
935                              unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);                                      readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
936                              unsigned long reverseplaybackend  = GetPos() - samplestoreadinloop;                                      samplestoread    -= readsamples;
937                                        totalreadsamples += readsamples;
938                              SetPos(reverseplaybackend);                                      if (readsamples == samplestoloopend) {
939                                            pPlaybackState->reverse = true;
940                              // read samples for backward playback                                          break;
941                              do {                                      }
942                                  readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);                                  } while (samplestoread && readsamples);
943                                  samplestoreadinloop -= readsamples;                              }
944                                  samplestoread       -= readsamples;                              else { // backward playback
                                 totalreadsamples    += readsamples;  
                             } while (samplestoreadinloop && readsamples);  
945    
946                              SetPos(reverseplaybackend); // pretend we really read backwards                                  // as we can only read forward from disk, we have to
947                                    // determine the end position within the loop first,
948                                    // read forward from that 'end' and finally after
949                                    // reading, swap all sample frames so it reflects
950                                    // backward playback
951    
952                                    file_offset_t swapareastart       = totalreadsamples;
953                                    file_offset_t loopoffset          = GetPos() - loop.LoopStart;
954                                    file_offset_t samplestoreadinloop = Min(samplestoread, loopoffset);
955                                    file_offset_t reverseplaybackend  = GetPos() - samplestoreadinloop;
956    
957                                    SetPos(reverseplaybackend);
958    
959                                    // read samples for backward playback
960                                    do {
961                                        readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
962                                        samplestoreadinloop -= readsamples;
963                                        samplestoread       -= readsamples;
964                                        totalreadsamples    += readsamples;
965                                    } while (samplestoreadinloop && readsamples);
966    
967                                    SetPos(reverseplaybackend); // pretend we really read backwards
968    
969                                    if (reverseplaybackend == loop.LoopStart) {
970                                        pPlaybackState->loop_cycles_left--;
971                                        pPlaybackState->reverse = false;
972                                    }
973    
974                              if (reverseplaybackend == this->LoopStart) {                                  // reverse the sample frames for backward playback
975                                  pPlaybackState->loop_cycles_left--;                                  if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
976                                  pPlaybackState->reverse = false;                                      SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
977                              }                              }
978                            } while (samplestoread && readsamples);
979                            break;
980                        }
981    
982                              // reverse the sample frames for backward playback                      case loop_type_backward: { // TODO: not tested yet!
983                              SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);                          // forward playback (not entered the loop yet)
984                          }                          if (!pPlaybackState->reverse) do {
985                      } while (samplestoread && readsamples);                              samplestoloopend  = loopEnd - GetPos();
986                      break;                              readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
987                  }                              samplestoread    -= readsamples;
988                                totalreadsamples += readsamples;
989                  case loop_type_backward: { // TODO: not tested yet!                              if (readsamples == samplestoloopend) {
990                      // forward playback (not entered the loop yet)                                  pPlaybackState->reverse = true;
991                      if (!pPlaybackState->reverse) do {                                  break;
992                          samplestoloopend  = this->LoopEnd - GetPos();                              }
993                          readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);                          } while (samplestoread && readsamples);
                         samplestoread    -= readsamples;  
                         totalreadsamples += readsamples;  
                         if (readsamples == samplestoloopend) {  
                             pPlaybackState->reverse = true;  
                             break;  
                         }  
                     } while (samplestoread && readsamples);  
994    
995                      if (!samplestoread) break;                          if (!samplestoread) break;
996    
997                      // as we can only read forward from disk, we have to                          // as we can only read forward from disk, we have to
998                      // determine the end position within the loop first,                          // determine the end position within the loop first,
999                      // read forward from that 'end' and finally after                          // read forward from that 'end' and finally after
1000                      // reading, swap all sample frames so it reflects                          // reading, swap all sample frames so it reflects
1001                      // backward playback                          // backward playback
1002    
1003                      unsigned long swapareastart       = totalreadsamples;                          file_offset_t swapareastart       = totalreadsamples;
1004                      unsigned long loopoffset          = GetPos() - this->LoopStart;                          file_offset_t loopoffset          = GetPos() - loop.LoopStart;
1005                      unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * LoopSize - loopoffset)                          file_offset_t samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1006                                                                                : samplestoread;                                                                                    : samplestoread;
1007                      unsigned long reverseplaybackend  = this->LoopStart + Abs((loopoffset - samplestoreadinloop) % this->LoopSize);                          file_offset_t reverseplaybackend  = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1008    
1009                      SetPos(reverseplaybackend);                          SetPos(reverseplaybackend);
1010    
1011                      // read samples for backward playback                          // read samples for backward playback
1012                      do {                          do {
1013                          // if not endless loop check if max. number of loop cycles have been passed                              // if not endless loop check if max. number of loop cycles have been passed
1014                          if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1015                          samplestoloopend     = this->LoopEnd - GetPos();                              samplestoloopend     = loopEnd - GetPos();
1016                          readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);                              readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1017                          samplestoreadinloop -= readsamples;                              samplestoreadinloop -= readsamples;
1018                          samplestoread       -= readsamples;                              samplestoread       -= readsamples;
1019                          totalreadsamples    += readsamples;                              totalreadsamples    += readsamples;
1020                          if (readsamples == samplestoloopend) {                              if (readsamples == samplestoloopend) {
1021                              pPlaybackState->loop_cycles_left--;                                  pPlaybackState->loop_cycles_left--;
1022                              SetPos(this->LoopStart);                                  SetPos(loop.LoopStart);
1023                          }                              }
1024                      } while (samplestoreadinloop && readsamples);                          } while (samplestoreadinloop && readsamples);
1025    
1026                      SetPos(reverseplaybackend); // pretend we really read backwards                          SetPos(reverseplaybackend); // pretend we really read backwards
1027    
1028                      // reverse the sample frames for backward playback                          // reverse the sample frames for backward playback
1029                      SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);                          SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1030                      break;                          break;
1031                  }                      }
1032    
1033                  default: case loop_type_normal: {                      default: case loop_type_normal: {
1034                      do {                          do {
1035                          // if not endless loop check if max. number of loop cycles have been passed                              // if not endless loop check if max. number of loop cycles have been passed
1036                          if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1037                          samplestoloopend  = this->LoopEnd - GetPos();                              samplestoloopend  = loopEnd - GetPos();
1038                          readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);                              readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1039                          samplestoread    -= readsamples;                              samplestoread    -= readsamples;
1040                          totalreadsamples += readsamples;                              totalreadsamples += readsamples;
1041                          if (readsamples == samplestoloopend) {                              if (readsamples == samplestoloopend) {
1042                              pPlaybackState->loop_cycles_left--;                                  pPlaybackState->loop_cycles_left--;
1043                              SetPos(this->LoopStart);                                  SetPos(loop.LoopStart);
1044                          }                              }
1045                      } while (samplestoread && readsamples);                          } while (samplestoread && readsamples);
1046                      break;                          break;
1047                        }
1048                  }                  }
1049              }              }
1050          }          }
# Line 717  namespace gig { namespace { Line 1074  namespace gig { namespace {
1074       * have to use an external decompression buffer for <b>EACH</b>       * have to use an external decompression buffer for <b>EACH</b>
1075       * streaming thread to avoid race conditions and crashes!       * streaming thread to avoid race conditions and crashes!
1076       *       *
1077         * For 16 bit samples, the data in the buffer will be int16_t
1078         * (using native endianness). For 24 bit, the buffer will
1079         * contain three bytes per sample, little-endian.
1080         *
1081       * @param pBuffer      destination buffer       * @param pBuffer      destination buffer
1082       * @param SampleCount  number of sample points to read       * @param SampleCount  number of sample points to read
1083       * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression       * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
1084       * @returns            number of successfully read sample points       * @returns            number of successfully read sample points
1085       * @see                SetPos(), CreateDecompressionBuffer()       * @see                SetPos(), CreateDecompressionBuffer()
1086       */       */
1087      unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {      file_offset_t Sample::Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer) {
1088          if (SampleCount == 0) return 0;          if (SampleCount == 0) return 0;
1089          if (!Compressed) {          if (!Compressed) {
1090              if (BitDepth == 24) {              if (BitDepth == 24) {
1091                  // 24 bit sample. For now just truncate to 16 bit.                  return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
                 unsigned char* pSrc = (unsigned char*) ((pExternalDecompressionBuffer) ? pExternalDecompressionBuffer->pStart : this->InternalDecompressionBuffer.pStart);  
                 int16_t* pDst = static_cast<int16_t*>(pBuffer);  
                 if (Channels == 2) { // Stereo  
                     unsigned long readBytes = pCkData->Read(pSrc, SampleCount * 6, 1);  
                     pSrc++;  
                     for (unsigned long i = readBytes ; i > 0 ; i -= 3) {  
                         *pDst++ = get16(pSrc);  
                         pSrc += 3;  
                     }  
                     return (pDst - static_cast<int16_t*>(pBuffer)) >> 1;  
                 }  
                 else { // Mono  
                     unsigned long readBytes = pCkData->Read(pSrc, SampleCount * 3, 1);  
                     pSrc++;  
                     for (unsigned long i = readBytes ; i > 0 ; i -= 3) {  
                         *pDst++ = get16(pSrc);  
                         pSrc += 3;  
                     }  
                     return pDst - static_cast<int16_t*>(pBuffer);  
                 }  
1092              }              }
1093              else { // 16 bit              else { // 16 bit
1094                  // (pCkData->Read does endian correction)                  // (pCkData->Read does endian correction)
# Line 758  namespace gig { namespace { Line 1099  namespace gig { namespace {
1099          else {          else {
1100              if (this->SamplePos >= this->SamplesTotal) return 0;              if (this->SamplePos >= this->SamplesTotal) return 0;
1101              //TODO: efficiency: maybe we should test for an average compression rate              //TODO: efficiency: maybe we should test for an average compression rate
1102              unsigned long assumedsize      = GuessSize(SampleCount),              file_offset_t assumedsize      = GuessSize(SampleCount),
1103                            remainingbytes   = 0,           // remaining bytes in the local buffer                            remainingbytes   = 0,           // remaining bytes in the local buffer
1104                            remainingsamples = SampleCount,                            remainingsamples = SampleCount,
1105                            copysamples, skipsamples,                            copysamples, skipsamples,
# Line 777  namespace gig { namespace { Line 1118  namespace gig { namespace {
1118    
1119              unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;              unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1120              int16_t* pDst = static_cast<int16_t*>(pBuffer);              int16_t* pDst = static_cast<int16_t*>(pBuffer);
1121                uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1122              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1123    
1124              while (remainingsamples && remainingbytes) {              while (remainingsamples && remainingbytes) {
1125                  unsigned long framesamples = SamplesPerFrame;                  file_offset_t framesamples = SamplesPerFrame;
1126                  unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;                  file_offset_t framebytes, rightChannelOffset = 0, nextFrameOffset;
1127    
1128                  int mode_l = *pSrc++, mode_r = 0;                  int mode_l = *pSrc++, mode_r = 0;
1129    
# Line 858  namespace gig { namespace { Line 1200  namespace gig { namespace {
1200                              const unsigned char* const param_r = pSrc;                              const unsigned char* const param_r = pSrc;
1201                              if (mode_r != 2) pSrc += 12;                              if (mode_r != 2) pSrc += 12;
1202    
1203                              Decompress24(mode_l, param_l, 2, pSrc, pDst,                              Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1204                                           skipsamples, copysamples, TruncatedBits);                                           skipsamples, copysamples, TruncatedBits);
1205                              Decompress24(mode_r, param_r, 2, pSrc + rightChannelOffset, pDst + 1,                              Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1206                                           skipsamples, copysamples, TruncatedBits);                                           skipsamples, copysamples, TruncatedBits);
1207                              pDst += copysamples << 1;                              pDst24 += copysamples * 6;
1208                          }                          }
1209                          else { // Mono                          else { // Mono
1210                              Decompress24(mode_l, param_l, 1, pSrc, pDst,                              Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1211                                           skipsamples, copysamples, TruncatedBits);                                           skipsamples, copysamples, TruncatedBits);
1212                              pDst += copysamples;                              pDst24 += copysamples * 3;
1213                          }                          }
1214                      }                      }
1215                      else { // 16 bit                      else { // 16 bit
# Line 909  namespace gig { namespace { Line 1251  namespace gig { namespace {
1251          }          }
1252      }      }
1253    
1254        /** @brief Write sample wave data.
1255         *
1256         * Writes \a SampleCount number of sample points from the buffer pointed
1257         * by \a pBuffer and increments the position within the sample. Use this
1258         * method to directly write the sample data to disk, i.e. if you don't
1259         * want or cannot load the whole sample data into RAM.
1260         *
1261         * You have to Resize() the sample to the desired size and call
1262         * File::Save() <b>before</b> using Write().
1263         *
1264         * Note: there is currently no support for writing compressed samples.
1265         *
1266         * For 16 bit samples, the data in the source buffer should be
1267         * int16_t (using native endianness). For 24 bit, the buffer
1268         * should contain three bytes per sample, little-endian.
1269         *
1270         * @param pBuffer     - source buffer
1271         * @param SampleCount - number of sample points to write
1272         * @throws DLS::Exception if current sample size is too small
1273         * @throws gig::Exception if sample is compressed
1274         * @see DLS::LoadSampleData()
1275         */
1276        file_offset_t Sample::Write(void* pBuffer, file_offset_t SampleCount) {
1277            if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1278    
1279            // if this is the first write in this sample, reset the
1280            // checksum calculator
1281            if (pCkData->GetPos() == 0) {
1282                __resetCRC(crc);
1283            }
1284            if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1285            file_offset_t res;
1286            if (BitDepth == 24) {
1287                res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1288            } else { // 16 bit
1289                res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1290                                    : pCkData->Write(pBuffer, SampleCount, 2);
1291            }
1292            __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1293    
1294            // if this is the last write, update the checksum chunk in the
1295            // file
1296            if (pCkData->GetPos() == pCkData->GetSize()) {
1297                __finalizeCRC(crc);
1298                File* pFile = static_cast<File*>(GetParent());
1299                pFile->SetSampleChecksum(this, crc);
1300            }
1301            return res;
1302        }
1303    
1304      /**      /**
1305       * Allocates a decompression buffer for streaming (compressed) samples       * Allocates a decompression buffer for streaming (compressed) samples
1306       * with Sample::Read(). If you are using more than one streaming thread       * with Sample::Read(). If you are using more than one streaming thread
# Line 925  namespace gig { namespace { Line 1317  namespace gig { namespace {
1317       * @returns allocated decompression buffer       * @returns allocated decompression buffer
1318       * @see DestroyDecompressionBuffer()       * @see DestroyDecompressionBuffer()
1319       */       */
1320      buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {      buffer_t Sample::CreateDecompressionBuffer(file_offset_t MaxReadSize) {
1321          buffer_t result;          buffer_t result;
1322          const double worstCaseHeaderOverhead =          const double worstCaseHeaderOverhead =
1323                  (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;                  (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1324          result.Size              = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);          result.Size              = (file_offset_t) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1325          result.pStart            = new int8_t[result.Size];          result.pStart            = new int8_t[result.Size];
1326          result.NullExtensionSize = 0;          result.NullExtensionSize = 0;
1327          return result;          return result;
# Line 951  namespace gig { namespace { Line 1343  namespace gig { namespace {
1343          }          }
1344      }      }
1345    
1346        /**
1347         * Returns pointer to the Group this Sample belongs to. In the .gig
1348         * format a sample always belongs to one group. If it wasn't explicitly
1349         * assigned to a certain group, it will be automatically assigned to a
1350         * default group.
1351         *
1352         * @returns Sample's Group (never NULL)
1353         */
1354        Group* Sample::GetGroup() const {
1355            return pGroup;
1356        }
1357    
1358        /**
1359         * Returns the CRC-32 checksum of the sample's raw wave form data at the
1360         * time when this sample's wave form data was modified for the last time
1361         * by calling Write(). This checksum only covers the raw wave form data,
1362         * not any meta informations like i.e. bit depth or loop points. Since
1363         * this method just returns the checksum stored for this sample i.e. when
1364         * the gig file was loaded, this method returns immediately. So it does no
1365         * recalcuation of the checksum with the currently available sample wave
1366         * form data.
1367         *
1368         * @see VerifyWaveData()
1369         */
1370        uint32_t Sample::GetWaveDataCRC32Checksum() {
1371            return crc;
1372        }
1373    
1374        /**
1375         * Checks the integrity of this sample's raw audio wave data. Whenever a
1376         * Sample's raw wave data is intentionally modified (i.e. by calling
1377         * Write() and supplying the new raw audio wave form data) a CRC32 checksum
1378         * is calculated and stored/updated for this sample, along to the sample's
1379         * meta informations.
1380         *
1381         * Now by calling this method the current raw audio wave data is checked
1382         * against the already stored CRC32 check sum in order to check whether the
1383         * sample data had been damaged unintentionally for some reason. Since by
1384         * calling this method always the entire raw audio wave data has to be
1385         * read, verifying all samples this way may take a long time accordingly.
1386         * And that's also the reason why the sample integrity is not checked by
1387         * default whenever a gig file is loaded. So this method must be called
1388         * explicitly to fulfill this task.
1389         *
1390         * @param pActually - (optional) if provided, will be set to the actually
1391         *                    calculated checksum of the current raw wave form data,
1392         *                    you can get the expected checksum instead by calling
1393         *                    GetWaveDataCRC32Checksum()
1394         * @returns true if sample is OK or false if the sample is damaged
1395         * @throws Exception if no checksum had been stored to disk for this
1396         *         sample yet, or on I/O issues
1397         * @see GetWaveDataCRC32Checksum()
1398         */
1399        bool Sample::VerifyWaveData(uint32_t* pActually) {
1400            //File* pFile = static_cast<File*>(GetParent());
1401            uint32_t crc = CalculateWaveDataChecksum();
1402            if (pActually) *pActually = crc;
1403            return crc == this->crc;
1404        }
1405    
1406        uint32_t Sample::CalculateWaveDataChecksum() {
1407            const size_t sz = 20*1024; // 20kB buffer size
1408            std::vector<uint8_t> buffer(sz);
1409            buffer.resize(sz);
1410    
1411            const size_t n = sz / FrameSize;
1412            SetPos(0);
1413            uint32_t crc = 0;
1414            __resetCRC(crc);
1415            while (true) {
1416                file_offset_t nRead = Read(&buffer[0], n);
1417                if (nRead <= 0) break;
1418                __calculateCRC(&buffer[0], nRead * FrameSize, crc);
1419            }
1420            __finalizeCRC(crc);
1421            return crc;
1422        }
1423    
1424      Sample::~Sample() {      Sample::~Sample() {
1425          Instances--;          Instances--;
1426          if (!Instances && InternalDecompressionBuffer.Size) {          if (!Instances && InternalDecompressionBuffer.Size) {
# Line 967  namespace gig { namespace { Line 1437  namespace gig { namespace {
1437  // *************** DimensionRegion ***************  // *************** DimensionRegion ***************
1438  // *  // *
1439    
1440      uint                               DimensionRegion::Instances       = 0;      size_t                             DimensionRegion::Instances       = 0;
1441      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1442    
1443      DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {      DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1444          Instances++;          Instances++;
1445    
1446          memcpy(&Crossfade, &SamplerOptions, 4);          pSample = NULL;
1447            pRegion = pParent;
1448    
1449            if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1450            else memset(&Crossfade, 0, 4);
1451    
1452          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1453    
1454          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1455          _3ewa->ReadInt32(); // unknown, always 0x0000008C ?          if (_3ewa) { // if '3ewa' chunk exists
1456          LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              _3ewa->ReadInt32(); // unknown, always == chunk size ?
1457          EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1458          _3ewa->ReadInt16(); // unknown              EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1459          LFO1InternalDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1460          _3ewa->ReadInt16(); // unknown              LFO1InternalDepth = _3ewa->ReadUint16();
1461          LFO3InternalDepth = _3ewa->ReadInt16();              _3ewa->ReadInt16(); // unknown
1462          _3ewa->ReadInt16(); // unknown              LFO3InternalDepth = _3ewa->ReadInt16();
1463          LFO1ControlDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1464          _3ewa->ReadInt16(); // unknown              LFO1ControlDepth = _3ewa->ReadUint16();
1465          LFO3ControlDepth = _3ewa->ReadInt16();              _3ewa->ReadInt16(); // unknown
1466          EG1Attack           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO3ControlDepth = _3ewa->ReadInt16();
1467          EG1Decay1           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG1Attack           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1468          _3ewa->ReadInt16(); // unknown              EG1Decay1           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1469          EG1Sustain          = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1470          EG1Release          = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG1Sustain          = _3ewa->ReadUint16();
1471          EG1Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));              EG1Release          = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1472          uint8_t eg1ctrloptions        = _3ewa->ReadUint8();              EG1Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1473          EG1ControllerInvert           = eg1ctrloptions & 0x01;              uint8_t eg1ctrloptions        = _3ewa->ReadUint8();
1474          EG1ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerInvert           = eg1ctrloptions & 0x01;
1475          EG1ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1476          EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1477          EG2Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));              EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1478          uint8_t eg2ctrloptions        = _3ewa->ReadUint8();              EG2Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1479          EG2ControllerInvert           = eg2ctrloptions & 0x01;              uint8_t eg2ctrloptions        = _3ewa->ReadUint8();
1480          EG2ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerInvert           = eg2ctrloptions & 0x01;
1481          EG2ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1482          EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1483          LFO1Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1484          EG2Attack        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO1Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1485          EG2Decay1        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2Attack        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1486          _3ewa->ReadInt16(); // unknown              EG2Decay1        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1487          EG2Sustain       = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1488          EG2Release       = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2Sustain       = _3ewa->ReadUint16();
1489          _3ewa->ReadInt16(); // unknown              EG2Release       = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1490          LFO2ControlDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1491          LFO2Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO2ControlDepth = _3ewa->ReadUint16();
1492          _3ewa->ReadInt16(); // unknown              LFO2Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1493          LFO2InternalDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1494          int32_t eg1decay2 = _3ewa->ReadInt32();              LFO2InternalDepth = _3ewa->ReadUint16();
1495          EG1Decay2          = (double) GIG_EXP_DECODE(eg1decay2);              int32_t eg1decay2 = _3ewa->ReadInt32();
1496          EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);              EG1Decay2          = (double) GIG_EXP_DECODE(eg1decay2);
1497          _3ewa->ReadInt16(); // unknown              EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1498          EG1PreAttack      = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1499          int32_t eg2decay2 = _3ewa->ReadInt32();              EG1PreAttack      = _3ewa->ReadUint16();
1500          EG2Decay2         = (double) GIG_EXP_DECODE(eg2decay2);              int32_t eg2decay2 = _3ewa->ReadInt32();
1501          EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);              EG2Decay2         = (double) GIG_EXP_DECODE(eg2decay2);
1502          _3ewa->ReadInt16(); // unknown              EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1503          EG2PreAttack      = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1504          uint8_t velocityresponse = _3ewa->ReadUint8();              EG2PreAttack      = _3ewa->ReadUint16();
1505          if (velocityresponse < 5) {              uint8_t velocityresponse = _3ewa->ReadUint8();
1506              VelocityResponseCurve = curve_type_nonlinear;              if (velocityresponse < 5) {
1507              VelocityResponseDepth = velocityresponse;                  VelocityResponseCurve = curve_type_nonlinear;
1508          }                  VelocityResponseDepth = velocityresponse;
1509          else if (velocityresponse < 10) {              } else if (velocityresponse < 10) {
1510              VelocityResponseCurve = curve_type_linear;                  VelocityResponseCurve = curve_type_linear;
1511              VelocityResponseDepth = velocityresponse - 5;                  VelocityResponseDepth = velocityresponse - 5;
1512          }              } else if (velocityresponse < 15) {
1513          else if (velocityresponse < 15) {                  VelocityResponseCurve = curve_type_special;
1514              VelocityResponseCurve = curve_type_special;                  VelocityResponseDepth = velocityresponse - 10;
1515              VelocityResponseDepth = velocityresponse - 10;              } else {
1516                    VelocityResponseCurve = curve_type_unknown;
1517                    VelocityResponseDepth = 0;
1518                }
1519                uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1520                if (releasevelocityresponse < 5) {
1521                    ReleaseVelocityResponseCurve = curve_type_nonlinear;
1522                    ReleaseVelocityResponseDepth = releasevelocityresponse;
1523                } else if (releasevelocityresponse < 10) {
1524                    ReleaseVelocityResponseCurve = curve_type_linear;
1525                    ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1526                } else if (releasevelocityresponse < 15) {
1527                    ReleaseVelocityResponseCurve = curve_type_special;
1528                    ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1529                } else {
1530                    ReleaseVelocityResponseCurve = curve_type_unknown;
1531                    ReleaseVelocityResponseDepth = 0;
1532                }
1533                VelocityResponseCurveScaling = _3ewa->ReadUint8();
1534                AttenuationControllerThreshold = _3ewa->ReadInt8();
1535                _3ewa->ReadInt32(); // unknown
1536                SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1537                _3ewa->ReadInt16(); // unknown
1538                uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1539                PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1540                if      (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1541                else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1542                else                                       DimensionBypass = dim_bypass_ctrl_none;
1543                uint8_t pan = _3ewa->ReadUint8();
1544                Pan         = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1545                SelfMask = _3ewa->ReadInt8() & 0x01;
1546                _3ewa->ReadInt8(); // unknown
1547                uint8_t lfo3ctrl = _3ewa->ReadUint8();
1548                LFO3Controller           = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1549                LFO3Sync                 = lfo3ctrl & 0x20; // bit 5
1550                InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1551                AttenuationController  = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1552                uint8_t lfo2ctrl       = _3ewa->ReadUint8();
1553                LFO2Controller         = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1554                LFO2FlipPhase          = lfo2ctrl & 0x80; // bit 7
1555                LFO2Sync               = lfo2ctrl & 0x20; // bit 5
1556                bool extResonanceCtrl  = lfo2ctrl & 0x40; // bit 6
1557                uint8_t lfo1ctrl       = _3ewa->ReadUint8();
1558                LFO1Controller         = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1559                LFO1FlipPhase          = lfo1ctrl & 0x80; // bit 7
1560                LFO1Sync               = lfo1ctrl & 0x40; // bit 6
1561                VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1562                                                            : vcf_res_ctrl_none;
1563                uint16_t eg3depth = _3ewa->ReadUint16();
1564                EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1565                                            : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1566                _3ewa->ReadInt16(); // unknown
1567                ChannelOffset = _3ewa->ReadUint8() / 4;
1568                uint8_t regoptions = _3ewa->ReadUint8();
1569                MSDecode           = regoptions & 0x01; // bit 0
1570                SustainDefeat      = regoptions & 0x02; // bit 1
1571                _3ewa->ReadInt16(); // unknown
1572                VelocityUpperLimit = _3ewa->ReadInt8();
1573                _3ewa->ReadInt8(); // unknown
1574                _3ewa->ReadInt16(); // unknown
1575                ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1576                _3ewa->ReadInt8(); // unknown
1577                _3ewa->ReadInt8(); // unknown
1578                EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1579                uint8_t vcfcutoff = _3ewa->ReadUint8();
1580                VCFEnabled = vcfcutoff & 0x80; // bit 7
1581                VCFCutoff  = vcfcutoff & 0x7f; // lower 7 bits
1582                VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1583                uint8_t vcfvelscale = _3ewa->ReadUint8();
1584                VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1585                VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1586                _3ewa->ReadInt8(); // unknown
1587                uint8_t vcfresonance = _3ewa->ReadUint8();
1588                VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1589                VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1590                uint8_t vcfbreakpoint         = _3ewa->ReadUint8();
1591                VCFKeyboardTracking           = vcfbreakpoint & 0x80; // bit 7
1592                VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1593                uint8_t vcfvelocity = _3ewa->ReadUint8();
1594                VCFVelocityDynamicRange = vcfvelocity % 5;
1595                VCFVelocityCurve        = static_cast<curve_type_t>(vcfvelocity / 5);
1596                VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1597                if (VCFType == vcf_type_lowpass) {
1598                    if (lfo3ctrl & 0x40) // bit 6
1599                        VCFType = vcf_type_lowpassturbo;
1600                }
1601                if (_3ewa->RemainingBytes() >= 8) {
1602                    _3ewa->Read(DimensionUpperLimits, 1, 8);
1603                } else {
1604                    memset(DimensionUpperLimits, 0, 8);
1605                }
1606            } else { // '3ewa' chunk does not exist yet
1607                // use default values
1608                LFO3Frequency                   = 1.0;
1609                EG3Attack                       = 0.0;
1610                LFO1InternalDepth               = 0;
1611                LFO3InternalDepth               = 0;
1612                LFO1ControlDepth                = 0;
1613                LFO3ControlDepth                = 0;
1614                EG1Attack                       = 0.0;
1615                EG1Decay1                       = 0.005;
1616                EG1Sustain                      = 1000;
1617                EG1Release                      = 0.3;
1618                EG1Controller.type              = eg1_ctrl_t::type_none;
1619                EG1Controller.controller_number = 0;
1620                EG1ControllerInvert             = false;
1621                EG1ControllerAttackInfluence    = 0;
1622                EG1ControllerDecayInfluence     = 0;
1623                EG1ControllerReleaseInfluence   = 0;
1624                EG2Controller.type              = eg2_ctrl_t::type_none;
1625                EG2Controller.controller_number = 0;
1626                EG2ControllerInvert             = false;
1627                EG2ControllerAttackInfluence    = 0;
1628                EG2ControllerDecayInfluence     = 0;
1629                EG2ControllerReleaseInfluence   = 0;
1630                LFO1Frequency                   = 1.0;
1631                EG2Attack                       = 0.0;
1632                EG2Decay1                       = 0.005;
1633                EG2Sustain                      = 1000;
1634                EG2Release                      = 60;
1635                LFO2ControlDepth                = 0;
1636                LFO2Frequency                   = 1.0;
1637                LFO2InternalDepth               = 0;
1638                EG1Decay2                       = 0.0;
1639                EG1InfiniteSustain              = true;
1640                EG1PreAttack                    = 0;
1641                EG2Decay2                       = 0.0;
1642                EG2InfiniteSustain              = true;
1643                EG2PreAttack                    = 0;
1644                VelocityResponseCurve           = curve_type_nonlinear;
1645                VelocityResponseDepth           = 3;
1646                ReleaseVelocityResponseCurve    = curve_type_nonlinear;
1647                ReleaseVelocityResponseDepth    = 3;
1648                VelocityResponseCurveScaling    = 32;
1649                AttenuationControllerThreshold  = 0;
1650                SampleStartOffset               = 0;
1651                PitchTrack                      = true;
1652                DimensionBypass                 = dim_bypass_ctrl_none;
1653                Pan                             = 0;
1654                SelfMask                        = true;
1655                LFO3Controller                  = lfo3_ctrl_modwheel;
1656                LFO3Sync                        = false;
1657                InvertAttenuationController     = false;
1658                AttenuationController.type      = attenuation_ctrl_t::type_none;
1659                AttenuationController.controller_number = 0;
1660                LFO2Controller                  = lfo2_ctrl_internal;
1661                LFO2FlipPhase                   = false;
1662                LFO2Sync                        = false;
1663                LFO1Controller                  = lfo1_ctrl_internal;
1664                LFO1FlipPhase                   = false;
1665                LFO1Sync                        = false;
1666                VCFResonanceController          = vcf_res_ctrl_none;
1667                EG3Depth                        = 0;
1668                ChannelOffset                   = 0;
1669                MSDecode                        = false;
1670                SustainDefeat                   = false;
1671                VelocityUpperLimit              = 0;
1672                ReleaseTriggerDecay             = 0;
1673                EG1Hold                         = false;
1674                VCFEnabled                      = false;
1675                VCFCutoff                       = 0;
1676                VCFCutoffController             = vcf_cutoff_ctrl_none;
1677                VCFCutoffControllerInvert       = false;
1678                VCFVelocityScale                = 0;
1679                VCFResonance                    = 0;
1680                VCFResonanceDynamic             = false;
1681                VCFKeyboardTracking             = false;
1682                VCFKeyboardTrackingBreakpoint   = 0;
1683                VCFVelocityDynamicRange         = 0x04;
1684                VCFVelocityCurve                = curve_type_linear;
1685                VCFType                         = vcf_type_lowpass;
1686                memset(DimensionUpperLimits, 127, 8);
1687            }
1688    
1689            pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1690                                                         VelocityResponseDepth,
1691                                                         VelocityResponseCurveScaling);
1692    
1693            pVelocityReleaseTable = GetReleaseVelocityTable(
1694                                        ReleaseVelocityResponseCurve,
1695                                        ReleaseVelocityResponseDepth
1696                                    );
1697    
1698            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1699                                                          VCFVelocityDynamicRange,
1700                                                          VCFVelocityScale,
1701                                                          VCFCutoffController);
1702    
1703            SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1704            VelocityTable = 0;
1705        }
1706    
1707        /*
1708         * Constructs a DimensionRegion by copying all parameters from
1709         * another DimensionRegion
1710         */
1711        DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1712            Instances++;
1713            //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1714            *this = src; // default memberwise shallow copy of all parameters
1715            pParentList = _3ewl; // restore the chunk pointer
1716    
1717            // deep copy of owned structures
1718            if (src.VelocityTable) {
1719                VelocityTable = new uint8_t[128];
1720                for (int k = 0 ; k < 128 ; k++)
1721                    VelocityTable[k] = src.VelocityTable[k];
1722            }
1723            if (src.pSampleLoops) {
1724                pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1725                for (int k = 0 ; k < src.SampleLoops ; k++)
1726                    pSampleLoops[k] = src.pSampleLoops[k];
1727          }          }
1728          else {      }
1729              VelocityResponseCurve = curve_type_unknown;      
1730              VelocityResponseDepth = 0;      /**
1731         * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1732         * and assign it to this object.
1733         *
1734         * Note that all sample pointers referenced by @a orig are simply copied as
1735         * memory address. Thus the respective samples are shared, not duplicated!
1736         *
1737         * @param orig - original DimensionRegion object to be copied from
1738         */
1739        void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1740            CopyAssign(orig, NULL);
1741        }
1742    
1743        /**
1744         * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1745         * and assign it to this object.
1746         *
1747         * @param orig - original DimensionRegion object to be copied from
1748         * @param mSamples - crosslink map between the foreign file's samples and
1749         *                   this file's samples
1750         */
1751        void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1752            // delete all allocated data first
1753            if (VelocityTable) delete [] VelocityTable;
1754            if (pSampleLoops) delete [] pSampleLoops;
1755            
1756            // backup parent list pointer
1757            RIFF::List* p = pParentList;
1758            
1759            gig::Sample* pOriginalSample = pSample;
1760            gig::Region* pOriginalRegion = pRegion;
1761            
1762            //NOTE: copy code copied from assignment constructor above, see comment there as well
1763            
1764            *this = *orig; // default memberwise shallow copy of all parameters
1765            
1766            // restore members that shall not be altered
1767            pParentList = p; // restore the chunk pointer
1768            pRegion = pOriginalRegion;
1769            
1770            // only take the raw sample reference reference if the
1771            // two DimensionRegion objects are part of the same file
1772            if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1773                pSample = pOriginalSample;
1774            }
1775            
1776            if (mSamples && mSamples->count(orig->pSample)) {
1777                pSample = mSamples->find(orig->pSample)->second;
1778            }
1779    
1780            // deep copy of owned structures
1781            if (orig->VelocityTable) {
1782                VelocityTable = new uint8_t[128];
1783                for (int k = 0 ; k < 128 ; k++)
1784                    VelocityTable[k] = orig->VelocityTable[k];
1785            }
1786            if (orig->pSampleLoops) {
1787                pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1788                for (int k = 0 ; k < orig->SampleLoops ; k++)
1789                    pSampleLoops[k] = orig->pSampleLoops[k];
1790          }          }
1791          uint8_t releasevelocityresponse = _3ewa->ReadUint8();      }
1792          if (releasevelocityresponse < 5) {  
1793              ReleaseVelocityResponseCurve = curve_type_nonlinear;      /**
1794              ReleaseVelocityResponseDepth = releasevelocityresponse;       * Updates the respective member variable and updates @c SampleAttenuation
1795          }       * which depends on this value.
1796          else if (releasevelocityresponse < 10) {       */
1797              ReleaseVelocityResponseCurve = curve_type_linear;      void DimensionRegion::SetGain(int32_t gain) {
1798              ReleaseVelocityResponseDepth = releasevelocityresponse - 5;          DLS::Sampler::SetGain(gain);
1799          }          SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1800          else if (releasevelocityresponse < 15) {      }
1801              ReleaseVelocityResponseCurve = curve_type_special;  
1802              ReleaseVelocityResponseDepth = releasevelocityresponse - 10;      /**
1803         * Apply dimension region settings to the respective RIFF chunks. You
1804         * have to call File::Save() to make changes persistent.
1805         *
1806         * Usually there is absolutely no need to call this method explicitly.
1807         * It will be called automatically when File::Save() was called.
1808         *
1809         * @param pProgress - callback function for progress notification
1810         */
1811        void DimensionRegion::UpdateChunks(progress_t* pProgress) {
1812            // first update base class's chunk
1813            DLS::Sampler::UpdateChunks(pProgress);
1814    
1815            RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1816            uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1817            pData[12] = Crossfade.in_start;
1818            pData[13] = Crossfade.in_end;
1819            pData[14] = Crossfade.out_start;
1820            pData[15] = Crossfade.out_end;
1821    
1822            // make sure '3ewa' chunk exists
1823            RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1824            if (!_3ewa) {
1825                File* pFile = (File*) GetParent()->GetParent()->GetParent();
1826                bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1827                _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1828          }          }
1829          else {          pData = (uint8_t*) _3ewa->LoadChunkData();
1830              ReleaseVelocityResponseCurve = curve_type_unknown;  
1831              ReleaseVelocityResponseDepth = 0;          // update '3ewa' chunk with DimensionRegion's current settings
1832    
1833            const uint32_t chunksize = (uint32_t) _3ewa->GetNewSize();
1834            store32(&pData[0], chunksize); // unknown, always chunk size?
1835    
1836            const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1837            store32(&pData[4], lfo3freq);
1838    
1839            const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1840            store32(&pData[8], eg3attack);
1841    
1842            // next 2 bytes unknown
1843    
1844            store16(&pData[14], LFO1InternalDepth);
1845    
1846            // next 2 bytes unknown
1847    
1848            store16(&pData[18], LFO3InternalDepth);
1849    
1850            // next 2 bytes unknown
1851    
1852            store16(&pData[22], LFO1ControlDepth);
1853    
1854            // next 2 bytes unknown
1855    
1856            store16(&pData[26], LFO3ControlDepth);
1857    
1858            const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1859            store32(&pData[28], eg1attack);
1860    
1861            const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1862            store32(&pData[32], eg1decay1);
1863    
1864            // next 2 bytes unknown
1865    
1866            store16(&pData[38], EG1Sustain);
1867    
1868            const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1869            store32(&pData[40], eg1release);
1870    
1871            const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1872            pData[44] = eg1ctl;
1873    
1874            const uint8_t eg1ctrloptions =
1875                (EG1ControllerInvert ? 0x01 : 0x00) |
1876                GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1877                GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1878                GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1879            pData[45] = eg1ctrloptions;
1880    
1881            const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1882            pData[46] = eg2ctl;
1883    
1884            const uint8_t eg2ctrloptions =
1885                (EG2ControllerInvert ? 0x01 : 0x00) |
1886                GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1887                GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1888                GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1889            pData[47] = eg2ctrloptions;
1890    
1891            const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1892            store32(&pData[48], lfo1freq);
1893    
1894            const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1895            store32(&pData[52], eg2attack);
1896    
1897            const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1898            store32(&pData[56], eg2decay1);
1899    
1900            // next 2 bytes unknown
1901    
1902            store16(&pData[62], EG2Sustain);
1903    
1904            const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1905            store32(&pData[64], eg2release);
1906    
1907            // next 2 bytes unknown
1908    
1909            store16(&pData[70], LFO2ControlDepth);
1910    
1911            const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1912            store32(&pData[72], lfo2freq);
1913    
1914            // next 2 bytes unknown
1915    
1916            store16(&pData[78], LFO2InternalDepth);
1917    
1918            const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1919            store32(&pData[80], eg1decay2);
1920    
1921            // next 2 bytes unknown
1922    
1923            store16(&pData[86], EG1PreAttack);
1924    
1925            const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1926            store32(&pData[88], eg2decay2);
1927    
1928            // next 2 bytes unknown
1929    
1930            store16(&pData[94], EG2PreAttack);
1931    
1932            {
1933                if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1934                uint8_t velocityresponse = VelocityResponseDepth;
1935                switch (VelocityResponseCurve) {
1936                    case curve_type_nonlinear:
1937                        break;
1938                    case curve_type_linear:
1939                        velocityresponse += 5;
1940                        break;
1941                    case curve_type_special:
1942                        velocityresponse += 10;
1943                        break;
1944                    case curve_type_unknown:
1945                    default:
1946                        throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1947                }
1948                pData[96] = velocityresponse;
1949            }
1950    
1951            {
1952                if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1953                uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1954                switch (ReleaseVelocityResponseCurve) {
1955                    case curve_type_nonlinear:
1956                        break;
1957                    case curve_type_linear:
1958                        releasevelocityresponse += 5;
1959                        break;
1960                    case curve_type_special:
1961                        releasevelocityresponse += 10;
1962                        break;
1963                    case curve_type_unknown:
1964                    default:
1965                        throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1966                }
1967                pData[97] = releasevelocityresponse;
1968            }
1969    
1970            pData[98] = VelocityResponseCurveScaling;
1971    
1972            pData[99] = AttenuationControllerThreshold;
1973    
1974            // next 4 bytes unknown
1975    
1976            store16(&pData[104], SampleStartOffset);
1977    
1978            // next 2 bytes unknown
1979    
1980            {
1981                uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1982                switch (DimensionBypass) {
1983                    case dim_bypass_ctrl_94:
1984                        pitchTrackDimensionBypass |= 0x10;
1985                        break;
1986                    case dim_bypass_ctrl_95:
1987                        pitchTrackDimensionBypass |= 0x20;
1988                        break;
1989                    case dim_bypass_ctrl_none:
1990                        //FIXME: should we set anything here?
1991                        break;
1992                    default:
1993                        throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1994                }
1995                pData[108] = pitchTrackDimensionBypass;
1996            }
1997    
1998            const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1999            pData[109] = pan;
2000    
2001            const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
2002            pData[110] = selfmask;
2003    
2004            // next byte unknown
2005    
2006            {
2007                uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
2008                if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
2009                if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
2010                if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
2011                pData[112] = lfo3ctrl;
2012            }
2013    
2014            const uint8_t attenctl = EncodeLeverageController(AttenuationController);
2015            pData[113] = attenctl;
2016    
2017            {
2018                uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
2019                if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
2020                if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5
2021                if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
2022                pData[114] = lfo2ctrl;
2023            }
2024    
2025            {
2026                uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
2027                if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
2028                if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6
2029                if (VCFResonanceController != vcf_res_ctrl_none)
2030                    lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
2031                pData[115] = lfo1ctrl;
2032            }
2033    
2034            const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
2035                                                      : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
2036            store16(&pData[116], eg3depth);
2037    
2038            // next 2 bytes unknown
2039    
2040            const uint8_t channeloffset = ChannelOffset * 4;
2041            pData[120] = channeloffset;
2042    
2043            {
2044                uint8_t regoptions = 0;
2045                if (MSDecode)      regoptions |= 0x01; // bit 0
2046                if (SustainDefeat) regoptions |= 0x02; // bit 1
2047                pData[121] = regoptions;
2048          }          }
2049          VelocityResponseCurveScaling = _3ewa->ReadUint8();  
2050          AttenuationControllerThreshold = _3ewa->ReadInt8();          // next 2 bytes unknown
2051          _3ewa->ReadInt32(); // unknown  
2052          SampleStartOffset = (uint16_t) _3ewa->ReadInt16();          pData[124] = VelocityUpperLimit;
2053          _3ewa->ReadInt16(); // unknown  
2054          uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();          // next 3 bytes unknown
2055          PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);  
2056          if      (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;          pData[128] = ReleaseTriggerDecay;
2057          else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;  
2058          else                                       DimensionBypass = dim_bypass_ctrl_none;          // next 2 bytes unknown
2059          uint8_t pan = _3ewa->ReadUint8();  
2060          Pan         = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit          const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2061          SelfMask = _3ewa->ReadInt8() & 0x01;          pData[131] = eg1hold;
2062          _3ewa->ReadInt8(); // unknown  
2063          uint8_t lfo3ctrl = _3ewa->ReadUint8();          const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) |  /* bit 7 */
2064          LFO3Controller           = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits                                    (VCFCutoff & 0x7f);   /* lower 7 bits */
2065          LFO3Sync                 = lfo3ctrl & 0x20; // bit 5          pData[132] = vcfcutoff;
2066          InvertAttenuationController = lfo3ctrl & 0x80; // bit 7  
2067          AttenuationController  = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));          pData[133] = VCFCutoffController;
2068          uint8_t lfo2ctrl       = _3ewa->ReadUint8();  
2069          LFO2Controller         = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits          const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2070          LFO2FlipPhase          = lfo2ctrl & 0x80; // bit 7                                      (VCFVelocityScale & 0x7f); /* lower 7 bits */
2071          LFO2Sync               = lfo2ctrl & 0x20; // bit 5          pData[134] = vcfvelscale;
2072          bool extResonanceCtrl  = lfo2ctrl & 0x40; // bit 6  
2073          uint8_t lfo1ctrl       = _3ewa->ReadUint8();          // next byte unknown
2074          LFO1Controller         = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits  
2075          LFO1FlipPhase          = lfo1ctrl & 0x80; // bit 7          const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2076          LFO1Sync               = lfo1ctrl & 0x40; // bit 6                                       (VCFResonance & 0x7f); /* lower 7 bits */
2077          VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))          pData[136] = vcfresonance;
2078                                                      : vcf_res_ctrl_none;  
2079          uint16_t eg3depth = _3ewa->ReadUint16();          const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2080          EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */                                        (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2081                                        : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */          pData[137] = vcfbreakpoint;
2082          _3ewa->ReadInt16(); // unknown  
2083          ChannelOffset = _3ewa->ReadUint8() / 4;          const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2084          uint8_t regoptions = _3ewa->ReadUint8();                                      VCFVelocityCurve * 5;
2085          MSDecode           = regoptions & 0x01; // bit 0          pData[138] = vcfvelocity;
2086          SustainDefeat      = regoptions & 0x02; // bit 1  
2087          _3ewa->ReadInt16(); // unknown          const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2088          VelocityUpperLimit = _3ewa->ReadInt8();          pData[139] = vcftype;
2089          _3ewa->ReadInt8(); // unknown  
2090          _3ewa->ReadInt16(); // unknown          if (chunksize >= 148) {
2091          ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay              memcpy(&pData[140], DimensionUpperLimits, 8);
         _3ewa->ReadInt8(); // unknown  
         _3ewa->ReadInt8(); // unknown  
         EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7  
         uint8_t vcfcutoff = _3ewa->ReadUint8();  
         VCFEnabled = vcfcutoff & 0x80; // bit 7  
         VCFCutoff  = vcfcutoff & 0x7f; // lower 7 bits  
         VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());  
         VCFVelocityScale = _3ewa->ReadUint8();  
         _3ewa->ReadInt8(); // unknown  
         uint8_t vcfresonance = _3ewa->ReadUint8();  
         VCFResonance = vcfresonance & 0x7f; // lower 7 bits  
         VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7  
         uint8_t vcfbreakpoint         = _3ewa->ReadUint8();  
         VCFKeyboardTracking           = vcfbreakpoint & 0x80; // bit 7  
         VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits  
         uint8_t vcfvelocity = _3ewa->ReadUint8();  
         VCFVelocityDynamicRange = vcfvelocity % 5;  
         VCFVelocityCurve        = static_cast<curve_type_t>(vcfvelocity / 5);  
         VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());  
         if (VCFType == vcf_type_lowpass) {  
             if (lfo3ctrl & 0x40) // bit 6  
                 VCFType = vcf_type_lowpassturbo;  
2092          }          }
2093        }
2094    
2095        double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2096            curve_type_t curveType = releaseVelocityResponseCurve;
2097            uint8_t depth = releaseVelocityResponseDepth;
2098            // this models a strange behaviour or bug in GSt: two of the
2099            // velocity response curves for release time are not used even
2100            // if specified, instead another curve is chosen.
2101            if ((curveType == curve_type_nonlinear && depth == 0) ||
2102                (curveType == curve_type_special   && depth == 4)) {
2103                curveType = curve_type_nonlinear;
2104                depth = 3;
2105            }
2106            return GetVelocityTable(curveType, depth, 0);
2107        }
2108    
2109          // get the corresponding velocity->volume table from the table map or create & calculate that table if it doesn't exist yet      double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2110          uint32_t tableKey = (VelocityResponseCurve<<16) | (VelocityResponseDepth<<8) | VelocityResponseCurveScaling;                                                      uint8_t vcfVelocityDynamicRange,
2111                                                        uint8_t vcfVelocityScale,
2112                                                        vcf_cutoff_ctrl_t vcfCutoffController)
2113        {
2114            curve_type_t curveType = vcfVelocityCurve;
2115            uint8_t depth = vcfVelocityDynamicRange;
2116            // even stranger GSt: two of the velocity response curves for
2117            // filter cutoff are not used, instead another special curve
2118            // is chosen. This curve is not used anywhere else.
2119            if ((curveType == curve_type_nonlinear && depth == 0) ||
2120                (curveType == curve_type_special   && depth == 4)) {
2121                curveType = curve_type_special;
2122                depth = 5;
2123            }
2124            return GetVelocityTable(curveType, depth,
2125                                    (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2126                                        ? vcfVelocityScale : 0);
2127        }
2128    
2129        // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2130        double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2131        {
2132            double* table;
2133            uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2134          if (pVelocityTables->count(tableKey)) { // if key exists          if (pVelocityTables->count(tableKey)) { // if key exists
2135              pVelocityAttenuationTable = (*pVelocityTables)[tableKey];              table = (*pVelocityTables)[tableKey];
2136          }          }
2137          else {          else {
2138              pVelocityAttenuationTable =              table = CreateVelocityTable(curveType, depth, scaling);
2139                  CreateVelocityTable(VelocityResponseCurve,              (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
                                     VelocityResponseDepth,  
                                     VelocityResponseCurveScaling);  
             (*pVelocityTables)[tableKey] = pVelocityAttenuationTable; // put the new table into the tables map  
2140          }          }
2141            return table;
2142        }
2143    
2144          SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));      Region* DimensionRegion::GetParent() const {
2145            return pRegion;
2146      }      }
2147    
2148    // show error if some _lev_ctrl_* enum entry is not listed in the following function
2149    // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2150    // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2151    //#pragma GCC diagnostic push
2152    //#pragma GCC diagnostic error "-Wswitch"
2153    
2154      leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {      leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2155          leverage_ctrl_t decodedcontroller;          leverage_ctrl_t decodedcontroller;
2156          switch (EncodedController) {          switch (EncodedController) {
# Line 1254  namespace gig { namespace { Line 2262  namespace gig { namespace {
2262                  decodedcontroller.controller_number = 95;                  decodedcontroller.controller_number = 95;
2263                  break;                  break;
2264    
2265                // format extension (these controllers are so far only supported by
2266                // LinuxSampler & gigedit) they will *NOT* work with
2267                // Gigasampler/GigaStudio !
2268                case _lev_ctrl_CC3_EXT:
2269                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2270                    decodedcontroller.controller_number = 3;
2271                    break;
2272                case _lev_ctrl_CC6_EXT:
2273                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2274                    decodedcontroller.controller_number = 6;
2275                    break;
2276                case _lev_ctrl_CC7_EXT:
2277                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2278                    decodedcontroller.controller_number = 7;
2279                    break;
2280                case _lev_ctrl_CC8_EXT:
2281                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2282                    decodedcontroller.controller_number = 8;
2283                    break;
2284                case _lev_ctrl_CC9_EXT:
2285                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2286                    decodedcontroller.controller_number = 9;
2287                    break;
2288                case _lev_ctrl_CC10_EXT:
2289                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2290                    decodedcontroller.controller_number = 10;
2291                    break;
2292                case _lev_ctrl_CC11_EXT:
2293                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2294                    decodedcontroller.controller_number = 11;
2295                    break;
2296                case _lev_ctrl_CC14_EXT:
2297                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2298                    decodedcontroller.controller_number = 14;
2299                    break;
2300                case _lev_ctrl_CC15_EXT:
2301                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2302                    decodedcontroller.controller_number = 15;
2303                    break;
2304                case _lev_ctrl_CC20_EXT:
2305                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2306                    decodedcontroller.controller_number = 20;
2307                    break;
2308                case _lev_ctrl_CC21_EXT:
2309                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2310                    decodedcontroller.controller_number = 21;
2311                    break;
2312                case _lev_ctrl_CC22_EXT:
2313                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2314                    decodedcontroller.controller_number = 22;
2315                    break;
2316                case _lev_ctrl_CC23_EXT:
2317                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2318                    decodedcontroller.controller_number = 23;
2319                    break;
2320                case _lev_ctrl_CC24_EXT:
2321                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2322                    decodedcontroller.controller_number = 24;
2323                    break;
2324                case _lev_ctrl_CC25_EXT:
2325                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2326                    decodedcontroller.controller_number = 25;
2327                    break;
2328                case _lev_ctrl_CC26_EXT:
2329                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2330                    decodedcontroller.controller_number = 26;
2331                    break;
2332                case _lev_ctrl_CC27_EXT:
2333                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2334                    decodedcontroller.controller_number = 27;
2335                    break;
2336                case _lev_ctrl_CC28_EXT:
2337                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2338                    decodedcontroller.controller_number = 28;
2339                    break;
2340                case _lev_ctrl_CC29_EXT:
2341                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2342                    decodedcontroller.controller_number = 29;
2343                    break;
2344                case _lev_ctrl_CC30_EXT:
2345                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2346                    decodedcontroller.controller_number = 30;
2347                    break;
2348                case _lev_ctrl_CC31_EXT:
2349                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2350                    decodedcontroller.controller_number = 31;
2351                    break;
2352                case _lev_ctrl_CC68_EXT:
2353                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2354                    decodedcontroller.controller_number = 68;
2355                    break;
2356                case _lev_ctrl_CC69_EXT:
2357                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2358                    decodedcontroller.controller_number = 69;
2359                    break;
2360                case _lev_ctrl_CC70_EXT:
2361                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2362                    decodedcontroller.controller_number = 70;
2363                    break;
2364                case _lev_ctrl_CC71_EXT:
2365                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2366                    decodedcontroller.controller_number = 71;
2367                    break;
2368                case _lev_ctrl_CC72_EXT:
2369                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2370                    decodedcontroller.controller_number = 72;
2371                    break;
2372                case _lev_ctrl_CC73_EXT:
2373                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2374                    decodedcontroller.controller_number = 73;
2375                    break;
2376                case _lev_ctrl_CC74_EXT:
2377                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2378                    decodedcontroller.controller_number = 74;
2379                    break;
2380                case _lev_ctrl_CC75_EXT:
2381                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2382                    decodedcontroller.controller_number = 75;
2383                    break;
2384                case _lev_ctrl_CC76_EXT:
2385                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2386                    decodedcontroller.controller_number = 76;
2387                    break;
2388                case _lev_ctrl_CC77_EXT:
2389                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2390                    decodedcontroller.controller_number = 77;
2391                    break;
2392                case _lev_ctrl_CC78_EXT:
2393                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2394                    decodedcontroller.controller_number = 78;
2395                    break;
2396                case _lev_ctrl_CC79_EXT:
2397                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2398                    decodedcontroller.controller_number = 79;
2399                    break;
2400                case _lev_ctrl_CC84_EXT:
2401                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2402                    decodedcontroller.controller_number = 84;
2403                    break;
2404                case _lev_ctrl_CC85_EXT:
2405                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2406                    decodedcontroller.controller_number = 85;
2407                    break;
2408                case _lev_ctrl_CC86_EXT:
2409                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2410                    decodedcontroller.controller_number = 86;
2411                    break;
2412                case _lev_ctrl_CC87_EXT:
2413                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2414                    decodedcontroller.controller_number = 87;
2415                    break;
2416                case _lev_ctrl_CC89_EXT:
2417                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2418                    decodedcontroller.controller_number = 89;
2419                    break;
2420                case _lev_ctrl_CC90_EXT:
2421                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2422                    decodedcontroller.controller_number = 90;
2423                    break;
2424                case _lev_ctrl_CC96_EXT:
2425                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2426                    decodedcontroller.controller_number = 96;
2427                    break;
2428                case _lev_ctrl_CC97_EXT:
2429                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2430                    decodedcontroller.controller_number = 97;
2431                    break;
2432                case _lev_ctrl_CC102_EXT:
2433                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2434                    decodedcontroller.controller_number = 102;
2435                    break;
2436                case _lev_ctrl_CC103_EXT:
2437                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2438                    decodedcontroller.controller_number = 103;
2439                    break;
2440                case _lev_ctrl_CC104_EXT:
2441                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2442                    decodedcontroller.controller_number = 104;
2443                    break;
2444                case _lev_ctrl_CC105_EXT:
2445                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2446                    decodedcontroller.controller_number = 105;
2447                    break;
2448                case _lev_ctrl_CC106_EXT:
2449                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2450                    decodedcontroller.controller_number = 106;
2451                    break;
2452                case _lev_ctrl_CC107_EXT:
2453                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2454                    decodedcontroller.controller_number = 107;
2455                    break;
2456                case _lev_ctrl_CC108_EXT:
2457                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2458                    decodedcontroller.controller_number = 108;
2459                    break;
2460                case _lev_ctrl_CC109_EXT:
2461                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2462                    decodedcontroller.controller_number = 109;
2463                    break;
2464                case _lev_ctrl_CC110_EXT:
2465                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2466                    decodedcontroller.controller_number = 110;
2467                    break;
2468                case _lev_ctrl_CC111_EXT:
2469                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2470                    decodedcontroller.controller_number = 111;
2471                    break;
2472                case _lev_ctrl_CC112_EXT:
2473                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2474                    decodedcontroller.controller_number = 112;
2475                    break;
2476                case _lev_ctrl_CC113_EXT:
2477                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2478                    decodedcontroller.controller_number = 113;
2479                    break;
2480                case _lev_ctrl_CC114_EXT:
2481                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2482                    decodedcontroller.controller_number = 114;
2483                    break;
2484                case _lev_ctrl_CC115_EXT:
2485                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2486                    decodedcontroller.controller_number = 115;
2487                    break;
2488                case _lev_ctrl_CC116_EXT:
2489                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2490                    decodedcontroller.controller_number = 116;
2491                    break;
2492                case _lev_ctrl_CC117_EXT:
2493                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2494                    decodedcontroller.controller_number = 117;
2495                    break;
2496                case _lev_ctrl_CC118_EXT:
2497                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2498                    decodedcontroller.controller_number = 118;
2499                    break;
2500                case _lev_ctrl_CC119_EXT:
2501                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2502                    decodedcontroller.controller_number = 119;
2503                    break;
2504    
2505              // unknown controller type              // unknown controller type
2506              default:              default:
2507                  throw gig::Exception("Unknown leverage controller type.");                  throw gig::Exception("Unknown leverage controller type.");
2508          }          }
2509          return decodedcontroller;          return decodedcontroller;
2510      }      }
2511        
2512    // see above (diagnostic push not supported prior GCC 4.6)
2513    //#pragma GCC diagnostic pop
2514    
2515        DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2516            _lev_ctrl_t encodedcontroller;
2517            switch (DecodedController.type) {
2518                // special controller
2519                case leverage_ctrl_t::type_none:
2520                    encodedcontroller = _lev_ctrl_none;
2521                    break;
2522                case leverage_ctrl_t::type_velocity:
2523                    encodedcontroller = _lev_ctrl_velocity;
2524                    break;
2525                case leverage_ctrl_t::type_channelaftertouch:
2526                    encodedcontroller = _lev_ctrl_channelaftertouch;
2527                    break;
2528    
2529                // ordinary MIDI control change controller
2530                case leverage_ctrl_t::type_controlchange:
2531                    switch (DecodedController.controller_number) {
2532                        case 1:
2533                            encodedcontroller = _lev_ctrl_modwheel;
2534                            break;
2535                        case 2:
2536                            encodedcontroller = _lev_ctrl_breath;
2537                            break;
2538                        case 4:
2539                            encodedcontroller = _lev_ctrl_foot;
2540                            break;
2541                        case 12:
2542                            encodedcontroller = _lev_ctrl_effect1;
2543                            break;
2544                        case 13:
2545                            encodedcontroller = _lev_ctrl_effect2;
2546                            break;
2547                        case 16:
2548                            encodedcontroller = _lev_ctrl_genpurpose1;
2549                            break;
2550                        case 17:
2551                            encodedcontroller = _lev_ctrl_genpurpose2;
2552                            break;
2553                        case 18:
2554                            encodedcontroller = _lev_ctrl_genpurpose3;
2555                            break;
2556                        case 19:
2557                            encodedcontroller = _lev_ctrl_genpurpose4;
2558                            break;
2559                        case 5:
2560                            encodedcontroller = _lev_ctrl_portamentotime;
2561                            break;
2562                        case 64:
2563                            encodedcontroller = _lev_ctrl_sustainpedal;
2564                            break;
2565                        case 65:
2566                            encodedcontroller = _lev_ctrl_portamento;
2567                            break;
2568                        case 66:
2569                            encodedcontroller = _lev_ctrl_sostenutopedal;
2570                            break;
2571                        case 67:
2572                            encodedcontroller = _lev_ctrl_softpedal;
2573                            break;
2574                        case 80:
2575                            encodedcontroller = _lev_ctrl_genpurpose5;
2576                            break;
2577                        case 81:
2578                            encodedcontroller = _lev_ctrl_genpurpose6;
2579                            break;
2580                        case 82:
2581                            encodedcontroller = _lev_ctrl_genpurpose7;
2582                            break;
2583                        case 83:
2584                            encodedcontroller = _lev_ctrl_genpurpose8;
2585                            break;
2586                        case 91:
2587                            encodedcontroller = _lev_ctrl_effect1depth;
2588                            break;
2589                        case 92:
2590                            encodedcontroller = _lev_ctrl_effect2depth;
2591                            break;
2592                        case 93:
2593                            encodedcontroller = _lev_ctrl_effect3depth;
2594                            break;
2595                        case 94:
2596                            encodedcontroller = _lev_ctrl_effect4depth;
2597                            break;
2598                        case 95:
2599                            encodedcontroller = _lev_ctrl_effect5depth;
2600                            break;
2601    
2602                        // format extension (these controllers are so far only
2603                        // supported by LinuxSampler & gigedit) they will *NOT*
2604                        // work with Gigasampler/GigaStudio !
2605                        case 3:
2606                            encodedcontroller = _lev_ctrl_CC3_EXT;
2607                            break;
2608                        case 6:
2609                            encodedcontroller = _lev_ctrl_CC6_EXT;
2610                            break;
2611                        case 7:
2612                            encodedcontroller = _lev_ctrl_CC7_EXT;
2613                            break;
2614                        case 8:
2615                            encodedcontroller = _lev_ctrl_CC8_EXT;
2616                            break;
2617                        case 9:
2618                            encodedcontroller = _lev_ctrl_CC9_EXT;
2619                            break;
2620                        case 10:
2621                            encodedcontroller = _lev_ctrl_CC10_EXT;
2622                            break;
2623                        case 11:
2624                            encodedcontroller = _lev_ctrl_CC11_EXT;
2625                            break;
2626                        case 14:
2627                            encodedcontroller = _lev_ctrl_CC14_EXT;
2628                            break;
2629                        case 15:
2630                            encodedcontroller = _lev_ctrl_CC15_EXT;
2631                            break;
2632                        case 20:
2633                            encodedcontroller = _lev_ctrl_CC20_EXT;
2634                            break;
2635                        case 21:
2636                            encodedcontroller = _lev_ctrl_CC21_EXT;
2637                            break;
2638                        case 22:
2639                            encodedcontroller = _lev_ctrl_CC22_EXT;
2640                            break;
2641                        case 23:
2642                            encodedcontroller = _lev_ctrl_CC23_EXT;
2643                            break;
2644                        case 24:
2645                            encodedcontroller = _lev_ctrl_CC24_EXT;
2646                            break;
2647                        case 25:
2648                            encodedcontroller = _lev_ctrl_CC25_EXT;
2649                            break;
2650                        case 26:
2651                            encodedcontroller = _lev_ctrl_CC26_EXT;
2652                            break;
2653                        case 27:
2654                            encodedcontroller = _lev_ctrl_CC27_EXT;
2655                            break;
2656                        case 28:
2657                            encodedcontroller = _lev_ctrl_CC28_EXT;
2658                            break;
2659                        case 29:
2660                            encodedcontroller = _lev_ctrl_CC29_EXT;
2661                            break;
2662                        case 30:
2663                            encodedcontroller = _lev_ctrl_CC30_EXT;
2664                            break;
2665                        case 31:
2666                            encodedcontroller = _lev_ctrl_CC31_EXT;
2667                            break;
2668                        case 68:
2669                            encodedcontroller = _lev_ctrl_CC68_EXT;
2670                            break;
2671                        case 69:
2672                            encodedcontroller = _lev_ctrl_CC69_EXT;
2673                            break;
2674                        case 70:
2675                            encodedcontroller = _lev_ctrl_CC70_EXT;
2676                            break;
2677                        case 71:
2678                            encodedcontroller = _lev_ctrl_CC71_EXT;
2679                            break;
2680                        case 72:
2681                            encodedcontroller = _lev_ctrl_CC72_EXT;
2682                            break;
2683                        case 73:
2684                            encodedcontroller = _lev_ctrl_CC73_EXT;
2685                            break;
2686                        case 74:
2687                            encodedcontroller = _lev_ctrl_CC74_EXT;
2688                            break;
2689                        case 75:
2690                            encodedcontroller = _lev_ctrl_CC75_EXT;
2691                            break;
2692                        case 76:
2693                            encodedcontroller = _lev_ctrl_CC76_EXT;
2694                            break;
2695                        case 77:
2696                            encodedcontroller = _lev_ctrl_CC77_EXT;
2697                            break;
2698                        case 78:
2699                            encodedcontroller = _lev_ctrl_CC78_EXT;
2700                            break;
2701                        case 79:
2702                            encodedcontroller = _lev_ctrl_CC79_EXT;
2703                            break;
2704                        case 84:
2705                            encodedcontroller = _lev_ctrl_CC84_EXT;
2706                            break;
2707                        case 85:
2708                            encodedcontroller = _lev_ctrl_CC85_EXT;
2709                            break;
2710                        case 86:
2711                            encodedcontroller = _lev_ctrl_CC86_EXT;
2712                            break;
2713                        case 87:
2714                            encodedcontroller = _lev_ctrl_CC87_EXT;
2715                            break;
2716                        case 89:
2717                            encodedcontroller = _lev_ctrl_CC89_EXT;
2718                            break;
2719                        case 90:
2720                            encodedcontroller = _lev_ctrl_CC90_EXT;
2721                            break;
2722                        case 96:
2723                            encodedcontroller = _lev_ctrl_CC96_EXT;
2724                            break;
2725                        case 97:
2726                            encodedcontroller = _lev_ctrl_CC97_EXT;
2727                            break;
2728                        case 102:
2729                            encodedcontroller = _lev_ctrl_CC102_EXT;
2730                            break;
2731                        case 103:
2732                            encodedcontroller = _lev_ctrl_CC103_EXT;
2733                            break;
2734                        case 104:
2735                            encodedcontroller = _lev_ctrl_CC104_EXT;
2736                            break;
2737                        case 105:
2738                            encodedcontroller = _lev_ctrl_CC105_EXT;
2739                            break;
2740                        case 106:
2741                            encodedcontroller = _lev_ctrl_CC106_EXT;
2742                            break;
2743                        case 107:
2744                            encodedcontroller = _lev_ctrl_CC107_EXT;
2745                            break;
2746                        case 108:
2747                            encodedcontroller = _lev_ctrl_CC108_EXT;
2748                            break;
2749                        case 109:
2750                            encodedcontroller = _lev_ctrl_CC109_EXT;
2751                            break;
2752                        case 110:
2753                            encodedcontroller = _lev_ctrl_CC110_EXT;
2754                            break;
2755                        case 111:
2756                            encodedcontroller = _lev_ctrl_CC111_EXT;
2757                            break;
2758                        case 112:
2759                            encodedcontroller = _lev_ctrl_CC112_EXT;
2760                            break;
2761                        case 113:
2762                            encodedcontroller = _lev_ctrl_CC113_EXT;
2763                            break;
2764                        case 114:
2765                            encodedcontroller = _lev_ctrl_CC114_EXT;
2766                            break;
2767                        case 115:
2768                            encodedcontroller = _lev_ctrl_CC115_EXT;
2769                            break;
2770                        case 116:
2771                            encodedcontroller = _lev_ctrl_CC116_EXT;
2772                            break;
2773                        case 117:
2774                            encodedcontroller = _lev_ctrl_CC117_EXT;
2775                            break;
2776                        case 118:
2777                            encodedcontroller = _lev_ctrl_CC118_EXT;
2778                            break;
2779                        case 119:
2780                            encodedcontroller = _lev_ctrl_CC119_EXT;
2781                            break;
2782    
2783                        default:
2784                            throw gig::Exception("leverage controller number is not supported by the gig format");
2785                    }
2786                    break;
2787                default:
2788                    throw gig::Exception("Unknown leverage controller type.");
2789            }
2790            return encodedcontroller;
2791        }
2792    
2793      DimensionRegion::~DimensionRegion() {      DimensionRegion::~DimensionRegion() {
2794          Instances--;          Instances--;
# Line 1274  namespace gig { namespace { Line 2803  namespace gig { namespace {
2803              delete pVelocityTables;              delete pVelocityTables;
2804              pVelocityTables = NULL;              pVelocityTables = NULL;
2805          }          }
2806            if (VelocityTable) delete[] VelocityTable;
2807      }      }
2808    
2809      /**      /**
# Line 1291  namespace gig { namespace { Line 2821  namespace gig { namespace {
2821          return pVelocityAttenuationTable[MIDIKeyVelocity];          return pVelocityAttenuationTable[MIDIKeyVelocity];
2822      }      }
2823    
2824        double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2825            return pVelocityReleaseTable[MIDIKeyVelocity];
2826        }
2827    
2828        double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2829            return pVelocityCutoffTable[MIDIKeyVelocity];
2830        }
2831    
2832        /**
2833         * Updates the respective member variable and the lookup table / cache
2834         * that depends on this value.
2835         */
2836        void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
2837            pVelocityAttenuationTable =
2838                GetVelocityTable(
2839                    curve, VelocityResponseDepth, VelocityResponseCurveScaling
2840                );
2841            VelocityResponseCurve = curve;
2842        }
2843    
2844        /**
2845         * Updates the respective member variable and the lookup table / cache
2846         * that depends on this value.
2847         */
2848        void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
2849            pVelocityAttenuationTable =
2850                GetVelocityTable(
2851                    VelocityResponseCurve, depth, VelocityResponseCurveScaling
2852                );
2853            VelocityResponseDepth = depth;
2854        }
2855    
2856        /**
2857         * Updates the respective member variable and the lookup table / cache
2858         * that depends on this value.
2859         */
2860        void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
2861            pVelocityAttenuationTable =
2862                GetVelocityTable(
2863                    VelocityResponseCurve, VelocityResponseDepth, scaling
2864                );
2865            VelocityResponseCurveScaling = scaling;
2866        }
2867    
2868        /**
2869         * Updates the respective member variable and the lookup table / cache
2870         * that depends on this value.
2871         */
2872        void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
2873            pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
2874            ReleaseVelocityResponseCurve = curve;
2875        }
2876    
2877        /**
2878         * Updates the respective member variable and the lookup table / cache
2879         * that depends on this value.
2880         */
2881        void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
2882            pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
2883            ReleaseVelocityResponseDepth = depth;
2884        }
2885    
2886        /**
2887         * Updates the respective member variable and the lookup table / cache
2888         * that depends on this value.
2889         */
2890        void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
2891            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
2892            VCFCutoffController = controller;
2893        }
2894    
2895        /**
2896         * Updates the respective member variable and the lookup table / cache
2897         * that depends on this value.
2898         */
2899        void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
2900            pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
2901            VCFVelocityCurve = curve;
2902        }
2903    
2904        /**
2905         * Updates the respective member variable and the lookup table / cache
2906         * that depends on this value.
2907         */
2908        void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
2909            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
2910            VCFVelocityDynamicRange = range;
2911        }
2912    
2913        /**
2914         * Updates the respective member variable and the lookup table / cache
2915         * that depends on this value.
2916         */
2917        void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
2918            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
2919            VCFVelocityScale = scaling;
2920        }
2921    
2922      double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {      double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2923    
2924          // line-segment approximations of the 15 velocity curves          // line-segment approximations of the 15 velocity curves
# Line 1324  namespace gig { namespace { Line 2952  namespace gig { namespace {
2952          const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,          const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2953                               127, 127 };                               127, 127 };
2954    
2955            // this is only used by the VCF velocity curve
2956            const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2957                                 91, 127, 127, 127 };
2958    
2959          const int* const curves[] = { non0, non1, non2, non3, non4,          const int* const curves[] = { non0, non1, non2, non3, non4,
2960                                        lin0, lin1, lin2, lin3, lin4,                                        lin0, lin1, lin2, lin3, lin4,
2961                                        spe0, spe1, spe2, spe3, spe4 };                                        spe0, spe1, spe2, spe3, spe4, spe5 };
2962    
2963          double* const table = new double[128];          double* const table = new double[128];
2964    
# Line 1370  namespace gig { namespace { Line 3002  namespace gig { namespace {
3002    
3003          // Actual Loading          // Actual Loading
3004    
3005            if (!file->GetAutoLoad()) return;
3006    
3007          LoadDimensionRegions(rgnList);          LoadDimensionRegions(rgnList);
3008    
3009          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
# Line 1378  namespace gig { namespace { Line 3012  namespace gig { namespace {
3012              for (int i = 0; i < dimensionBits; i++) {              for (int i = 0; i < dimensionBits; i++) {
3013                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
3014                  uint8_t     bits      = _3lnk->ReadUint8();                  uint8_t     bits      = _3lnk->ReadUint8();
3015                    _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
3016                    _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
3017                    uint8_t     zones     = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
3018                  if (dimension == dimension_none) { // inactive dimension                  if (dimension == dimension_none) { // inactive dimension
3019                      pDimensionDefinitions[i].dimension  = dimension_none;                      pDimensionDefinitions[i].dimension  = dimension_none;
3020                      pDimensionDefinitions[i].bits       = 0;                      pDimensionDefinitions[i].bits       = 0;
3021                      pDimensionDefinitions[i].zones      = 0;                      pDimensionDefinitions[i].zones      = 0;
3022                      pDimensionDefinitions[i].split_type = split_type_bit;                      pDimensionDefinitions[i].split_type = split_type_bit;
                     pDimensionDefinitions[i].ranges     = NULL;  
3023                      pDimensionDefinitions[i].zone_size  = 0;                      pDimensionDefinitions[i].zone_size  = 0;
3024                  }                  }
3025                  else { // active dimension                  else { // active dimension
3026                      pDimensionDefinitions[i].dimension = dimension;                      pDimensionDefinitions[i].dimension = dimension;
3027                      pDimensionDefinitions[i].bits      = bits;                      pDimensionDefinitions[i].bits      = bits;
3028                      pDimensionDefinitions[i].zones     = 0x01 << bits; // = pow(2,bits)                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)
3029                      pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||                      pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
3030                                                             dimension == dimension_samplechannel ||                      pDimensionDefinitions[i].zone_size  = __resolveZoneSize(pDimensionDefinitions[i]);
                                                            dimension == dimension_releasetrigger ||  
                                                            dimension == dimension_roundrobin ||  
                                                            dimension == dimension_random) ? split_type_bit  
                                                                                           : split_type_normal;  
                     pDimensionDefinitions[i].ranges = NULL; // it's not possible to check velocity dimensions for custom defined ranges at this point  
                     pDimensionDefinitions[i].zone_size  =  
                         (pDimensionDefinitions[i].split_type == split_type_normal) ? 128 / pDimensionDefinitions[i].zones  
                                                                                    : 0;  
3031                      Dimensions++;                      Dimensions++;
3032    
3033                      // if this is a layer dimension, remember the amount of layers                      // if this is a layer dimension, remember the amount of layers
3034                      if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;                      if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
3035                  }                  }
3036                  _3lnk->SetPos(6, RIFF::stream_curpos); // jump forward to next dimension definition                  _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
3037              }              }
3038                for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
3039    
3040              // check velocity dimension (if there is one) for custom defined zone ranges              // if there's a velocity dimension and custom velocity zone splits are used,
3041              for (uint i = 0; i < Dimensions; i++) {              // update the VelocityTables in the dimension regions
3042                  dimension_def_t* pDimDef = pDimensionDefinitions + i;              UpdateVelocityTable();
                 if (pDimDef->dimension == dimension_velocity) {  
                     if (pDimensionRegions[0]->VelocityUpperLimit == 0) {  
                         // no custom defined ranges  
                         pDimDef->split_type = split_type_normal;  
                         pDimDef->ranges     = NULL;  
                     }  
                     else { // custom defined ranges  
                         pDimDef->split_type = split_type_customvelocity;  
                         pDimDef->ranges     = new range_t[pDimDef->zones];  
                         uint8_t bits[8] = { 0 };  
                         int previousUpperLimit = -1;  
                         for (int velocityZone = 0; velocityZone < pDimDef->zones; velocityZone++) {  
                             bits[i] = velocityZone;  
                             DimensionRegion* pDimRegion = GetDimensionRegionByBit(bits);  
   
                             pDimDef->ranges[velocityZone].low  = previousUpperLimit + 1;  
                             pDimDef->ranges[velocityZone].high = pDimRegion->VelocityUpperLimit;  
                             previousUpperLimit = pDimDef->ranges[velocityZone].high;  
                             // fill velocity table  
                             for (int i = pDimDef->ranges[velocityZone].low; i <= pDimDef->ranges[velocityZone].high; i++) {  
                                 VelocityTable[i] = velocityZone;  
                             }  
                         }  
                     }  
                 }  
             }  
3043    
3044              // jump to start of the wave pool indices (if not already there)              // jump to start of the wave pool indices (if not already there)
             File* file = (File*) GetParent()->GetParent();  
3045              if (file->pVersion && file->pVersion->major == 3)              if (file->pVersion && file->pVersion->major == 3)
3046                  _3lnk->SetPos(68); // version 3 has a different 3lnk structure                  _3lnk->SetPos(68); // version 3 has a different 3lnk structure
3047              else              else
3048                  _3lnk->SetPos(44);                  _3lnk->SetPos(44);
3049    
3050              // load sample references              // load sample references (if auto loading is enabled)
3051              for (uint i = 0; i < DimensionRegions; i++) {              if (file->GetAutoLoad()) {
3052                  uint32_t wavepoolindex = _3lnk->ReadUint32();                  for (uint i = 0; i < DimensionRegions; i++) {
3053                  pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);                      uint32_t wavepoolindex = _3lnk->ReadUint32();
3054                        if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
3055                    }
3056                    GetSample(); // load global region sample reference
3057                }
3058            } else {
3059                DimensionRegions = 0;
3060                for (int i = 0 ; i < 8 ; i++) {
3061                    pDimensionDefinitions[i].dimension  = dimension_none;
3062                    pDimensionDefinitions[i].bits       = 0;
3063                    pDimensionDefinitions[i].zones      = 0;
3064              }              }
3065          }          }
3066          else throw gig::Exception("Mandatory <3lnk> chunk not found.");  
3067            // make sure there is at least one dimension region
3068            if (!DimensionRegions) {
3069                RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
3070                if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
3071                RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
3072                pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
3073                DimensionRegions = 1;
3074            }
3075        }
3076    
3077        /**
3078         * Apply Region settings and all its DimensionRegions to the respective
3079         * RIFF chunks. You have to call File::Save() to make changes persistent.
3080         *
3081         * Usually there is absolutely no need to call this method explicitly.
3082         * It will be called automatically when File::Save() was called.
3083         *
3084         * @param pProgress - callback function for progress notification
3085         * @throws gig::Exception if samples cannot be dereferenced
3086         */
3087        void Region::UpdateChunks(progress_t* pProgress) {
3088            // in the gig format we don't care about the Region's sample reference
3089            // but we still have to provide some existing one to not corrupt the
3090            // file, so to avoid the latter we simply always assign the sample of
3091            // the first dimension region of this region
3092            pSample = pDimensionRegions[0]->pSample;
3093    
3094            // first update base class's chunks
3095            DLS::Region::UpdateChunks(pProgress);
3096    
3097            // update dimension region's chunks
3098            for (int i = 0; i < DimensionRegions; i++) {
3099                pDimensionRegions[i]->UpdateChunks(pProgress);
3100            }
3101    
3102            File* pFile = (File*) GetParent()->GetParent();
3103            bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
3104            const int iMaxDimensions =  version3 ? 8 : 5;
3105            const int iMaxDimensionRegions = version3 ? 256 : 32;
3106    
3107            // make sure '3lnk' chunk exists
3108            RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3109            if (!_3lnk) {
3110                const int _3lnkChunkSize = version3 ? 1092 : 172;
3111                _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3112                memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3113    
3114                // move 3prg to last position
3115                pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), (RIFF::Chunk*)NULL);
3116            }
3117    
3118            // update dimension definitions in '3lnk' chunk
3119            uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3120            store32(&pData[0], DimensionRegions);
3121            int shift = 0;
3122            for (int i = 0; i < iMaxDimensions; i++) {
3123                pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3124                pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3125                pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3126                pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3127                pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3128                // next 3 bytes unknown, always zero?
3129    
3130                shift += pDimensionDefinitions[i].bits;
3131            }
3132    
3133            // update wave pool table in '3lnk' chunk
3134            const int iWavePoolOffset = version3 ? 68 : 44;
3135            for (uint i = 0; i < iMaxDimensionRegions; i++) {
3136                int iWaveIndex = -1;
3137                if (i < DimensionRegions) {
3138                    if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
3139                    File::SampleList::iterator iter = pFile->pSamples->begin();
3140                    File::SampleList::iterator end  = pFile->pSamples->end();
3141                    for (int index = 0; iter != end; ++iter, ++index) {
3142                        if (*iter == pDimensionRegions[i]->pSample) {
3143                            iWaveIndex = index;
3144                            break;
3145                        }
3146                    }
3147                }
3148                store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3149            }
3150      }      }
3151    
3152      void Region::LoadDimensionRegions(RIFF::List* rgn) {      void Region::LoadDimensionRegions(RIFF::List* rgn) {
# Line 1461  namespace gig { namespace { Line 3156  namespace gig { namespace {
3156              RIFF::List* _3ewl = _3prg->GetFirstSubList();              RIFF::List* _3ewl = _3prg->GetFirstSubList();
3157              while (_3ewl) {              while (_3ewl) {
3158                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3159                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3160                      dimensionRegionNr++;                      dimensionRegionNr++;
3161                  }                  }
3162                  _3ewl = _3prg->GetNextSubList();                  _3ewl = _3prg->GetNextSubList();
# Line 1470  namespace gig { namespace { Line 3165  namespace gig { namespace {
3165          }          }
3166      }      }
3167    
3168      Region::~Region() {      void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3169          for (uint i = 0; i < Dimensions; i++) {          // update KeyRange struct and make sure regions are in correct order
3170              if (pDimensionDefinitions[i].ranges) delete[] pDimensionDefinitions[i].ranges;          DLS::Region::SetKeyRange(Low, High);
3171            // update Region key table for fast lookup
3172            ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3173        }
3174    
3175        void Region::UpdateVelocityTable() {
3176            // get velocity dimension's index
3177            int veldim = -1;
3178            for (int i = 0 ; i < Dimensions ; i++) {
3179                if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
3180                    veldim = i;
3181                    break;
3182                }
3183            }
3184            if (veldim == -1) return;
3185    
3186            int step = 1;
3187            for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3188            int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
3189    
3190            // loop through all dimension regions for all dimensions except the velocity dimension
3191            int dim[8] = { 0 };
3192            for (int i = 0 ; i < DimensionRegions ; i++) {
3193                const int end = i + step * pDimensionDefinitions[veldim].zones;
3194    
3195                // create a velocity table for all cases where the velocity zone is zero
3196                if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3197                    pDimensionRegions[i]->VelocityUpperLimit) {
3198                    // create the velocity table
3199                    uint8_t* table = pDimensionRegions[i]->VelocityTable;
3200                    if (!table) {
3201                        table = new uint8_t[128];
3202                        pDimensionRegions[i]->VelocityTable = table;
3203                    }
3204                    int tableidx = 0;
3205                    int velocityZone = 0;
3206                    if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
3207                        for (int k = i ; k < end ; k += step) {
3208                            DimensionRegion *d = pDimensionRegions[k];
3209                            for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
3210                            velocityZone++;
3211                        }
3212                    } else { // gig2
3213                        for (int k = i ; k < end ; k += step) {
3214                            DimensionRegion *d = pDimensionRegions[k];
3215                            for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
3216                            velocityZone++;
3217                        }
3218                    }
3219                } else {
3220                    if (pDimensionRegions[i]->VelocityTable) {
3221                        delete[] pDimensionRegions[i]->VelocityTable;
3222                        pDimensionRegions[i]->VelocityTable = 0;
3223                    }
3224                }
3225    
3226                // jump to the next case where the velocity zone is zero
3227                int j;
3228                int shift = 0;
3229                for (j = 0 ; j < Dimensions ; j++) {
3230                    if (j == veldim) i += skipveldim; // skip velocity dimension
3231                    else {
3232                        dim[j]++;
3233                        if (dim[j] < pDimensionDefinitions[j].zones) break;
3234                        else {
3235                            // skip unused dimension regions
3236                            dim[j] = 0;
3237                            i += ((1 << pDimensionDefinitions[j].bits) -
3238                                  pDimensionDefinitions[j].zones) << shift;
3239                        }
3240                    }
3241                    shift += pDimensionDefinitions[j].bits;
3242                }
3243                if (j == Dimensions) break;
3244            }
3245        }
3246    
3247        /** @brief Einstein would have dreamed of it - create a new dimension.
3248         *
3249         * Creates a new dimension with the dimension definition given by
3250         * \a pDimDef. The appropriate amount of DimensionRegions will be created.
3251         * There is a hard limit of dimensions and total amount of "bits" all
3252         * dimensions can have. This limit is dependant to what gig file format
3253         * version this file refers to. The gig v2 (and lower) format has a
3254         * dimension limit and total amount of bits limit of 5, whereas the gig v3
3255         * format has a limit of 8.
3256         *
3257         * @param pDimDef - defintion of the new dimension
3258         * @throws gig::Exception if dimension of the same type exists already
3259         * @throws gig::Exception if amount of dimensions or total amount of
3260         *                        dimension bits limit is violated
3261         */
3262        void Region::AddDimension(dimension_def_t* pDimDef) {
3263            // some initial sanity checks of the given dimension definition
3264            if (pDimDef->zones < 2)
3265                throw gig::Exception("Could not add new dimension, amount of requested zones must always be at least two");
3266            if (pDimDef->bits < 1)
3267                throw gig::Exception("Could not add new dimension, amount of requested requested zone bits must always be at least one");
3268            if (pDimDef->dimension == dimension_samplechannel) {
3269                if (pDimDef->zones != 2)
3270                    throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zones must always be 2 for this dimension type");
3271                if (pDimDef->bits != 1)
3272                    throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zone bits must always be 1 for this dimension type");
3273            }
3274    
3275            // check if max. amount of dimensions reached
3276            File* file = (File*) GetParent()->GetParent();
3277            const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
3278            if (Dimensions >= iMaxDimensions)
3279                throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
3280            // check if max. amount of dimension bits reached
3281            int iCurrentBits = 0;
3282            for (int i = 0; i < Dimensions; i++)
3283                iCurrentBits += pDimensionDefinitions[i].bits;
3284            if (iCurrentBits >= iMaxDimensions)
3285                throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
3286            const int iNewBits = iCurrentBits + pDimDef->bits;
3287            if (iNewBits > iMaxDimensions)
3288                throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
3289            // check if there's already a dimensions of the same type
3290            for (int i = 0; i < Dimensions; i++)
3291                if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3292                    throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3293    
3294            // pos is where the new dimension should be placed, normally
3295            // last in list, except for the samplechannel dimension which
3296            // has to be first in list
3297            int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3298            int bitpos = 0;
3299            for (int i = 0 ; i < pos ; i++)
3300                bitpos += pDimensionDefinitions[i].bits;
3301    
3302            // make room for the new dimension
3303            for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3304            for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3305                for (int j = Dimensions ; j > pos ; j--) {
3306                    pDimensionRegions[i]->DimensionUpperLimits[j] =
3307                        pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3308                }
3309            }
3310    
3311            // assign definition of new dimension
3312            pDimensionDefinitions[pos] = *pDimDef;
3313    
3314            // auto correct certain dimension definition fields (where possible)
3315            pDimensionDefinitions[pos].split_type  =
3316                __resolveSplitType(pDimensionDefinitions[pos].dimension);
3317            pDimensionDefinitions[pos].zone_size =
3318                __resolveZoneSize(pDimensionDefinitions[pos]);
3319    
3320            // create new dimension region(s) for this new dimension, and make
3321            // sure that the dimension regions are placed correctly in both the
3322            // RIFF list and the pDimensionRegions array
3323            RIFF::Chunk* moveTo = NULL;
3324            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3325            for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3326                for (int k = 0 ; k < (1 << bitpos) ; k++) {
3327                    pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3328                }
3329                for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3330                    for (int k = 0 ; k < (1 << bitpos) ; k++) {
3331                        RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3332                        if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3333                        // create a new dimension region and copy all parameter values from
3334                        // an existing dimension region
3335                        pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3336                            new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3337    
3338                        DimensionRegions++;
3339                    }
3340                }
3341                moveTo = pDimensionRegions[i]->pParentList;
3342            }
3343    
3344            // initialize the upper limits for this dimension
3345            int mask = (1 << bitpos) - 1;
3346            for (int z = 0 ; z < pDimDef->zones ; z++) {
3347                uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3348                for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3349                    pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3350                                      (z << bitpos) |
3351                                      (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3352                }
3353            }
3354    
3355            Dimensions++;
3356    
3357            // if this is a layer dimension, update 'Layers' attribute
3358            if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
3359    
3360            UpdateVelocityTable();
3361        }
3362    
3363        /** @brief Delete an existing dimension.
3364         *
3365         * Deletes the dimension given by \a pDimDef and deletes all respective
3366         * dimension regions, that is all dimension regions where the dimension's
3367         * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
3368         * for example this would delete all dimension regions for the case(s)
3369         * where the sustain pedal is pressed down.
3370         *
3371         * @param pDimDef - dimension to delete
3372         * @throws gig::Exception if given dimension cannot be found
3373         */
3374        void Region::DeleteDimension(dimension_def_t* pDimDef) {
3375            // get dimension's index
3376            int iDimensionNr = -1;
3377            for (int i = 0; i < Dimensions; i++) {
3378                if (&pDimensionDefinitions[i] == pDimDef) {
3379                    iDimensionNr = i;
3380                    break;
3381                }
3382            }
3383            if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
3384    
3385            // get amount of bits below the dimension to delete
3386            int iLowerBits = 0;
3387            for (int i = 0; i < iDimensionNr; i++)
3388                iLowerBits += pDimensionDefinitions[i].bits;
3389    
3390            // get amount ot bits above the dimension to delete
3391            int iUpperBits = 0;
3392            for (int i = iDimensionNr + 1; i < Dimensions; i++)
3393                iUpperBits += pDimensionDefinitions[i].bits;
3394    
3395            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3396    
3397            // delete dimension regions which belong to the given dimension
3398            // (that is where the dimension's bit > 0)
3399            for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
3400                for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
3401                    for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
3402                        int iToDelete = iUpperBit    << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3403                                        iObsoleteBit << iLowerBits |
3404                                        iLowerBit;
3405    
3406                        _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3407                        delete pDimensionRegions[iToDelete];
3408                        pDimensionRegions[iToDelete] = NULL;
3409                        DimensionRegions--;
3410                    }
3411                }
3412            }
3413    
3414            // defrag pDimensionRegions array
3415            // (that is remove the NULL spaces within the pDimensionRegions array)
3416            for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
3417                if (!pDimensionRegions[iTo]) {
3418                    if (iFrom <= iTo) iFrom = iTo + 1;
3419                    while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
3420                    if (iFrom < 256 && pDimensionRegions[iFrom]) {
3421                        pDimensionRegions[iTo]   = pDimensionRegions[iFrom];
3422                        pDimensionRegions[iFrom] = NULL;
3423                    }
3424                }
3425            }
3426    
3427            // remove the this dimension from the upper limits arrays
3428            for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3429                DimensionRegion* d = pDimensionRegions[j];
3430                for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3431                    d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3432                }
3433                d->DimensionUpperLimits[Dimensions - 1] = 127;
3434            }
3435    
3436            // 'remove' dimension definition
3437            for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3438                pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
3439            }
3440            pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
3441            pDimensionDefinitions[Dimensions - 1].bits      = 0;
3442            pDimensionDefinitions[Dimensions - 1].zones     = 0;
3443    
3444            Dimensions--;
3445    
3446            // if this was a layer dimension, update 'Layers' attribute
3447            if (pDimDef->dimension == dimension_layer) Layers = 1;
3448        }
3449    
3450        /** @brief Delete one split zone of a dimension (decrement zone amount).
3451         *
3452         * Instead of deleting an entire dimensions, this method will only delete
3453         * one particular split zone given by @a zone of the Region's dimension
3454         * given by @a type. So this method will simply decrement the amount of
3455         * zones by one of the dimension in question. To be able to do that, the
3456         * respective dimension must exist on this Region and it must have at least
3457         * 3 zones. All DimensionRegion objects associated with the zone will be
3458         * deleted.
3459         *
3460         * @param type - identifies the dimension where a zone shall be deleted
3461         * @param zone - index of the dimension split zone that shall be deleted
3462         * @throws gig::Exception if requested zone could not be deleted
3463         */
3464        void Region::DeleteDimensionZone(dimension_t type, int zone) {
3465            dimension_def_t* oldDef = GetDimensionDefinition(type);
3466            if (!oldDef)
3467                throw gig::Exception("Could not delete dimension zone, no such dimension of given type");
3468            if (oldDef->zones <= 2)
3469                throw gig::Exception("Could not delete dimension zone, because it would end up with only one zone.");
3470            if (zone < 0 || zone >= oldDef->zones)
3471                throw gig::Exception("Could not delete dimension zone, requested zone index out of bounds.");
3472    
3473            const int newZoneSize = oldDef->zones - 1;
3474    
3475            // create a temporary Region which just acts as a temporary copy
3476            // container and will be deleted at the end of this function and will
3477            // also not be visible through the API during this process
3478            gig::Region* tempRgn = NULL;
3479            {
3480                // adding these temporary chunks is probably not even necessary
3481                Instrument* instr = static_cast<Instrument*>(GetParent());
3482                RIFF::List* pCkInstrument = instr->pCkInstrument;
3483                RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3484                if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3485                RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3486                tempRgn = new Region(instr, rgn);
3487            }
3488    
3489            // copy this region's dimensions (with already the dimension split size
3490            // requested by the arguments of this method call) to the temporary
3491            // region, and don't use Region::CopyAssign() here for this task, since
3492            // it would also alter fast lookup helper variables here and there
3493            dimension_def_t newDef;
3494            for (int i = 0; i < Dimensions; ++i) {
3495                dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3496                // is this the dimension requested by the method arguments? ...
3497                if (def.dimension == type) { // ... if yes, decrement zone amount by one
3498                    def.zones = newZoneSize;
3499                    if ((1 << (def.bits - 1)) == def.zones) def.bits--;
3500                    newDef = def;
3501                }
3502                tempRgn->AddDimension(&def);
3503            }
3504    
3505            // find the dimension index in the tempRegion which is the dimension
3506            // type passed to this method (paranoidly expecting different order)
3507            int tempReducedDimensionIndex = -1;
3508            for (int d = 0; d < tempRgn->Dimensions; ++d) {
3509                if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3510                    tempReducedDimensionIndex = d;
3511                    break;
3512                }
3513            }
3514    
3515            // copy dimension regions from this region to the temporary region
3516            for (int iDst = 0; iDst < 256; ++iDst) {
3517                DimensionRegion* dstDimRgn = tempRgn->pDimensionRegions[iDst];
3518                if (!dstDimRgn) continue;
3519                std::map<dimension_t,int> dimCase;
3520                bool isValidZone = true;
3521                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3522                    const int dstBits = tempRgn->pDimensionDefinitions[d].bits;
3523                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3524                        (iDst >> baseBits) & ((1 << dstBits) - 1);
3525                    baseBits += dstBits;
3526                    // there are also DimensionRegion objects of unused zones, skip them
3527                    if (dimCase[tempRgn->pDimensionDefinitions[d].dimension] >= tempRgn->pDimensionDefinitions[d].zones) {
3528                        isValidZone = false;
3529                        break;
3530                    }
3531                }
3532                if (!isValidZone) continue;
3533                // a bit paranoid: cope with the chance that the dimensions would
3534                // have different order in source and destination regions
3535                const bool isLastZone = (dimCase[type] == newZoneSize - 1);
3536                if (dimCase[type] >= zone) dimCase[type]++;
3537                DimensionRegion* srcDimRgn = GetDimensionRegionByBit(dimCase);
3538                dstDimRgn->CopyAssign(srcDimRgn);
3539                // if this is the upper most zone of the dimension passed to this
3540                // method, then correct (raise) its upper limit to 127
3541                if (newDef.split_type == split_type_normal && isLastZone)
3542                    dstDimRgn->DimensionUpperLimits[tempReducedDimensionIndex] = 127;
3543            }
3544    
3545            // now tempRegion's dimensions and DimensionRegions basically reflect
3546            // what we wanted to get for this actual Region here, so we now just
3547            // delete and recreate the dimension in question with the new amount
3548            // zones and then copy back from tempRegion      
3549            DeleteDimension(oldDef);
3550            AddDimension(&newDef);
3551            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3552                DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3553                if (!srcDimRgn) continue;
3554                std::map<dimension_t,int> dimCase;
3555                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3556                    const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3557                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3558                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3559                    baseBits += srcBits;
3560                }
3561                // a bit paranoid: cope with the chance that the dimensions would
3562                // have different order in source and destination regions
3563                DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3564                if (!dstDimRgn) continue;
3565                dstDimRgn->CopyAssign(srcDimRgn);
3566            }
3567    
3568            // delete temporary region
3569            delete tempRgn;
3570    
3571            UpdateVelocityTable();
3572        }
3573    
3574        /** @brief Divide split zone of a dimension in two (increment zone amount).
3575         *
3576         * This will increment the amount of zones for the dimension (given by
3577         * @a type) by one. It will do so by dividing the zone (given by @a zone)
3578         * in the middle of its zone range in two. So the two zones resulting from
3579         * the zone being splitted, will be an equivalent copy regarding all their
3580         * articulation informations and sample reference. The two zones will only
3581         * differ in their zone's upper limit
3582         * (DimensionRegion::DimensionUpperLimits).
3583         *
3584         * @param type - identifies the dimension where a zone shall be splitted
3585         * @param zone - index of the dimension split zone that shall be splitted
3586         * @throws gig::Exception if requested zone could not be splitted
3587         */
3588        void Region::SplitDimensionZone(dimension_t type, int zone) {
3589            dimension_def_t* oldDef = GetDimensionDefinition(type);
3590            if (!oldDef)
3591                throw gig::Exception("Could not split dimension zone, no such dimension of given type");
3592            if (zone < 0 || zone >= oldDef->zones)
3593                throw gig::Exception("Could not split dimension zone, requested zone index out of bounds.");
3594    
3595            const int newZoneSize = oldDef->zones + 1;
3596    
3597            // create a temporary Region which just acts as a temporary copy
3598            // container and will be deleted at the end of this function and will
3599            // also not be visible through the API during this process
3600            gig::Region* tempRgn = NULL;
3601            {
3602                // adding these temporary chunks is probably not even necessary
3603                Instrument* instr = static_cast<Instrument*>(GetParent());
3604                RIFF::List* pCkInstrument = instr->pCkInstrument;
3605                RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3606                if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3607                RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3608                tempRgn = new Region(instr, rgn);
3609            }
3610    
3611            // copy this region's dimensions (with already the dimension split size
3612            // requested by the arguments of this method call) to the temporary
3613            // region, and don't use Region::CopyAssign() here for this task, since
3614            // it would also alter fast lookup helper variables here and there
3615            dimension_def_t newDef;
3616            for (int i = 0; i < Dimensions; ++i) {
3617                dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3618                // is this the dimension requested by the method arguments? ...
3619                if (def.dimension == type) { // ... if yes, increment zone amount by one
3620                    def.zones = newZoneSize;
3621                    if ((1 << oldDef->bits) < newZoneSize) def.bits++;
3622                    newDef = def;
3623                }
3624                tempRgn->AddDimension(&def);
3625            }
3626    
3627            // find the dimension index in the tempRegion which is the dimension
3628            // type passed to this method (paranoidly expecting different order)
3629            int tempIncreasedDimensionIndex = -1;
3630            for (int d = 0; d < tempRgn->Dimensions; ++d) {
3631                if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3632                    tempIncreasedDimensionIndex = d;
3633                    break;
3634                }
3635            }
3636    
3637            // copy dimension regions from this region to the temporary region
3638            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3639                DimensionRegion* srcDimRgn = pDimensionRegions[iSrc];
3640                if (!srcDimRgn) continue;
3641                std::map<dimension_t,int> dimCase;
3642                bool isValidZone = true;
3643                for (int d = 0, baseBits = 0; d < Dimensions; ++d) {
3644                    const int srcBits = pDimensionDefinitions[d].bits;
3645                    dimCase[pDimensionDefinitions[d].dimension] =
3646                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3647                    // there are also DimensionRegion objects for unused zones, skip them
3648                    if (dimCase[pDimensionDefinitions[d].dimension] >= pDimensionDefinitions[d].zones) {
3649                        isValidZone = false;
3650                        break;
3651                    }
3652                    baseBits += srcBits;
3653                }
3654                if (!isValidZone) continue;
3655                // a bit paranoid: cope with the chance that the dimensions would
3656                // have different order in source and destination regions            
3657                if (dimCase[type] > zone) dimCase[type]++;
3658                DimensionRegion* dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3659                dstDimRgn->CopyAssign(srcDimRgn);
3660                // if this is the requested zone to be splitted, then also copy
3661                // the source DimensionRegion to the newly created target zone
3662                // and set the old zones upper limit lower
3663                if (dimCase[type] == zone) {
3664                    // lower old zones upper limit
3665                    if (newDef.split_type == split_type_normal) {
3666                        const int high =
3667                            dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex];
3668                        int low = 0;
3669                        if (zone > 0) {
3670                            std::map<dimension_t,int> lowerCase = dimCase;
3671                            lowerCase[type]--;
3672                            DimensionRegion* dstDimRgnLow = tempRgn->GetDimensionRegionByBit(lowerCase);
3673                            low = dstDimRgnLow->DimensionUpperLimits[tempIncreasedDimensionIndex];
3674                        }
3675                        dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex] = low + (high - low) / 2;
3676                    }
3677                    // fill the newly created zone of the divided zone as well
3678                    dimCase[type]++;
3679                    dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3680                    dstDimRgn->CopyAssign(srcDimRgn);
3681                }
3682            }
3683    
3684            // now tempRegion's dimensions and DimensionRegions basically reflect
3685            // what we wanted to get for this actual Region here, so we now just
3686            // delete and recreate the dimension in question with the new amount
3687            // zones and then copy back from tempRegion      
3688            DeleteDimension(oldDef);
3689            AddDimension(&newDef);
3690            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3691                DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3692                if (!srcDimRgn) continue;
3693                std::map<dimension_t,int> dimCase;
3694                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3695                    const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3696                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3697                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3698                    baseBits += srcBits;
3699                }
3700                // a bit paranoid: cope with the chance that the dimensions would
3701                // have different order in source and destination regions
3702                DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3703                if (!dstDimRgn) continue;
3704                dstDimRgn->CopyAssign(srcDimRgn);
3705            }
3706    
3707            // delete temporary region
3708            delete tempRgn;
3709    
3710            UpdateVelocityTable();
3711        }
3712    
3713        /** @brief Change type of an existing dimension.
3714         *
3715         * Alters the dimension type of a dimension already existing on this
3716         * region. If there is currently no dimension on this Region with type
3717         * @a oldType, then this call with throw an Exception. Likewise there are
3718         * cases where the requested dimension type cannot be performed. For example
3719         * if the new dimension type shall be gig::dimension_samplechannel, and the
3720         * current dimension has more than 2 zones. In such cases an Exception is
3721         * thrown as well.
3722         *
3723         * @param oldType - identifies the existing dimension to be changed
3724         * @param newType - to which dimension type it should be changed to
3725         * @throws gig::Exception if requested change cannot be performed
3726         */
3727        void Region::SetDimensionType(dimension_t oldType, dimension_t newType) {
3728            if (oldType == newType) return;
3729            dimension_def_t* def = GetDimensionDefinition(oldType);
3730            if (!def)
3731                throw gig::Exception("No dimension with provided old dimension type exists on this region");
3732            if (newType == dimension_samplechannel && def->zones != 2)
3733                throw gig::Exception("Cannot change to dimension type 'sample channel', because existing dimension does not have 2 zones");
3734            if (GetDimensionDefinition(newType))
3735                throw gig::Exception("There is already a dimension with requested new dimension type on this region");
3736            def->dimension  = newType;
3737            def->split_type = __resolveSplitType(newType);
3738        }
3739    
3740        DimensionRegion* Region::GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase) {
3741            uint8_t bits[8] = {};
3742            for (std::map<dimension_t,int>::const_iterator it = DimCase.begin();
3743                 it != DimCase.end(); ++it)
3744            {
3745                for (int d = 0; d < Dimensions; ++d) {
3746                    if (pDimensionDefinitions[d].dimension == it->first) {
3747                        bits[d] = it->second;
3748                        goto nextDimCaseSlice;
3749                    }
3750                }
3751                assert(false); // do crash ... too harsh maybe ? ignore it instead ?
3752                nextDimCaseSlice:
3753                ; // noop
3754          }          }
3755            return GetDimensionRegionByBit(bits);
3756        }
3757    
3758        /**
3759         * Searches in the current Region for a dimension of the given dimension
3760         * type and returns the precise configuration of that dimension in this
3761         * Region.
3762         *
3763         * @param type - dimension type of the sought dimension
3764         * @returns dimension definition or NULL if there is no dimension with
3765         *          sought type in this Region.
3766         */
3767        dimension_def_t* Region::GetDimensionDefinition(dimension_t type) {
3768            for (int i = 0; i < Dimensions; ++i)
3769                if (pDimensionDefinitions[i].dimension == type)
3770                    return &pDimensionDefinitions[i];
3771            return NULL;
3772        }
3773    
3774        Region::~Region() {
3775          for (int i = 0; i < 256; i++) {          for (int i = 0; i < 256; i++) {
3776              if (pDimensionRegions[i]) delete pDimensionRegions[i];              if (pDimensionRegions[i]) delete pDimensionRegions[i];
3777          }          }
# Line 1498  namespace gig { namespace { Line 3796  namespace gig { namespace {
3796       * @see             Dimensions       * @see             Dimensions
3797       */       */
3798      DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {      DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
3799          uint8_t bits[8] = { 0 };          uint8_t bits;
3800            int veldim = -1;
3801            int velbitpos = 0;
3802            int bitpos = 0;
3803            int dimregidx = 0;
3804          for (uint i = 0; i < Dimensions; i++) {          for (uint i = 0; i < Dimensions; i++) {
3805              bits[i] = DimValues[i];              if (pDimensionDefinitions[i].dimension == dimension_velocity) {
3806              switch (pDimensionDefinitions[i].split_type) {                  // the velocity dimension must be handled after the other dimensions
3807                  case split_type_normal:                  veldim = i;
3808                      bits[i] /= pDimensionDefinitions[i].zone_size;                  velbitpos = bitpos;
3809                      break;              } else {
3810                  case split_type_customvelocity:                  switch (pDimensionDefinitions[i].split_type) {
3811                      bits[i] = VelocityTable[bits[i]];                      case split_type_normal:
3812                      break;                          if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
3813                  case split_type_bit: // the value is already the sought dimension bit number                              // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
3814                      const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;                              for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
3815                      bits[i] = bits[i] & limiter_mask; // just make sure the value don't uses more bits than allowed                                  if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
3816                      break;                              }
3817                            } else {
3818                                // gig2: evenly sized zones
3819                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
3820                            }
3821                            break;
3822                        case split_type_bit: // the value is already the sought dimension bit number
3823                            const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
3824                            bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
3825                            break;
3826                    }
3827                    dimregidx |= bits << bitpos;
3828              }              }
3829                bitpos += pDimensionDefinitions[i].bits;
3830          }          }
3831          return GetDimensionRegionByBit(bits);          DimensionRegion* dimreg = pDimensionRegions[dimregidx & 255];
3832            if (!dimreg) return NULL;
3833            if (veldim != -1) {
3834                // (dimreg is now the dimension region for the lowest velocity)
3835                if (dimreg->VelocityTable) // custom defined zone ranges
3836                    bits = dimreg->VelocityTable[DimValues[veldim] & 127];
3837                else // normal split type
3838                    bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
3839    
3840                const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
3841                dimregidx |= (bits & limiter_mask) << velbitpos;
3842                dimreg = pDimensionRegions[dimregidx & 255];
3843            }
3844            return dimreg;
3845        }
3846    
3847        int Region::GetDimensionRegionIndexByValue(const uint DimValues[8]) {
3848            uint8_t bits;
3849            int veldim = -1;
3850            int velbitpos = 0;
3851            int bitpos = 0;
3852            int dimregidx = 0;
3853            for (uint i = 0; i < Dimensions; i++) {
3854                if (pDimensionDefinitions[i].dimension == dimension_velocity) {
3855                    // the velocity dimension must be handled after the other dimensions
3856                    veldim = i;
3857                    velbitpos = bitpos;
3858                } else {
3859                    switch (pDimensionDefinitions[i].split_type) {
3860                        case split_type_normal:
3861                            if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
3862                                // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
3863                                for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
3864                                    if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
3865                                }
3866                            } else {
3867                                // gig2: evenly sized zones
3868                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
3869                            }
3870                            break;
3871                        case split_type_bit: // the value is already the sought dimension bit number
3872                            const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
3873                            bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
3874                            break;
3875                    }
3876                    dimregidx |= bits << bitpos;
3877                }
3878                bitpos += pDimensionDefinitions[i].bits;
3879            }
3880            dimregidx &= 255;
3881            DimensionRegion* dimreg = pDimensionRegions[dimregidx];
3882            if (!dimreg) return -1;
3883            if (veldim != -1) {
3884                // (dimreg is now the dimension region for the lowest velocity)
3885                if (dimreg->VelocityTable) // custom defined zone ranges
3886                    bits = dimreg->VelocityTable[DimValues[veldim] & 127];
3887                else // normal split type
3888                    bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
3889    
3890                const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
3891                dimregidx |= (bits & limiter_mask) << velbitpos;
3892                dimregidx &= 255;
3893            }
3894            return dimregidx;
3895      }      }
3896    
3897      /**      /**
# Line 1551  namespace gig { namespace { Line 3928  namespace gig { namespace {
3928          else         return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));          else         return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
3929      }      }
3930    
3931      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex) {      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
3932          if ((int32_t)WavePoolTableIndex == -1) return NULL;          if ((int32_t)WavePoolTableIndex == -1) return NULL;
3933          File* file = (File*) GetParent()->GetParent();          File* file = (File*) GetParent()->GetParent();
3934          unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];          if (!file->pWavePoolTable) return NULL;
3935          Sample* sample = file->GetFirstSample();          // for new files or files >= 2 GB use 64 bit wave pool offsets
3936          while (sample) {          if (file->pRIFF->IsNew() || (file->pRIFF->GetCurrentFileSize() >> 31)) {
3937              if (sample->ulWavePoolOffset == soughtoffset) return static_cast<gig::Sample*>(pSample = sample);              // use 64 bit wave pool offsets (treating this as large file)
3938              sample = file->GetNextSample();              uint64_t soughtoffset =
3939                    uint64_t(file->pWavePoolTable[WavePoolTableIndex]) |
3940                    uint64_t(file->pWavePoolTableHi[WavePoolTableIndex]) << 32;
3941                Sample* sample = file->GetFirstSample(pProgress);
3942                while (sample) {
3943                    if (sample->ullWavePoolOffset == soughtoffset)
3944                        return static_cast<gig::Sample*>(sample);
3945                    sample = file->GetNextSample();
3946                }
3947            } else {
3948                // use extension files and 32 bit wave pool offsets
3949                file_offset_t soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
3950                file_offset_t soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
3951                Sample* sample = file->GetFirstSample(pProgress);
3952                while (sample) {
3953                    if (sample->ullWavePoolOffset == soughtoffset &&
3954                        sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
3955                    sample = file->GetNextSample();
3956                }
3957          }          }
3958          return NULL;          return NULL;
3959      }      }
3960        
3961        /**
3962         * Make a (semi) deep copy of the Region object given by @a orig
3963         * and assign it to this object.
3964         *
3965         * Note that all sample pointers referenced by @a orig are simply copied as
3966         * memory address. Thus the respective samples are shared, not duplicated!
3967         *
3968         * @param orig - original Region object to be copied from
3969         */
3970        void Region::CopyAssign(const Region* orig) {
3971            CopyAssign(orig, NULL);
3972        }
3973        
3974        /**
3975         * Make a (semi) deep copy of the Region object given by @a orig and
3976         * assign it to this object
3977         *
3978         * @param mSamples - crosslink map between the foreign file's samples and
3979         *                   this file's samples
3980         */
3981        void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
3982            // handle base classes
3983            DLS::Region::CopyAssign(orig);
3984            
3985            if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
3986                pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
3987            }
3988            
3989            // handle own member variables
3990            for (int i = Dimensions - 1; i >= 0; --i) {
3991                DeleteDimension(&pDimensionDefinitions[i]);
3992            }
3993            Layers = 0; // just to be sure
3994            for (int i = 0; i < orig->Dimensions; i++) {
3995                // we need to copy the dim definition here, to avoid the compiler
3996                // complaining about const-ness issue
3997                dimension_def_t def = orig->pDimensionDefinitions[i];
3998                AddDimension(&def);
3999            }
4000            for (int i = 0; i < 256; i++) {
4001                if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
4002                    pDimensionRegions[i]->CopyAssign(
4003                        orig->pDimensionRegions[i],
4004                        mSamples
4005                    );
4006                }
4007            }
4008            Layers = orig->Layers;
4009        }
4010    
4011    
4012    // *************** MidiRule ***************
4013    // *
4014    
4015        MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
4016            _3ewg->SetPos(36);
4017            Triggers = _3ewg->ReadUint8();
4018            _3ewg->SetPos(40);
4019            ControllerNumber = _3ewg->ReadUint8();
4020            _3ewg->SetPos(46);
4021            for (int i = 0 ; i < Triggers ; i++) {
4022                pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
4023                pTriggers[i].Descending = _3ewg->ReadUint8();
4024                pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
4025                pTriggers[i].Key = _3ewg->ReadUint8();
4026                pTriggers[i].NoteOff = _3ewg->ReadUint8();
4027                pTriggers[i].Velocity = _3ewg->ReadUint8();
4028                pTriggers[i].OverridePedal = _3ewg->ReadUint8();
4029                _3ewg->ReadUint8();
4030            }
4031        }
4032    
4033        MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
4034            ControllerNumber(0),
4035            Triggers(0) {
4036        }
4037    
4038        void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
4039            pData[32] = 4;
4040            pData[33] = 16;
4041            pData[36] = Triggers;
4042            pData[40] = ControllerNumber;
4043            for (int i = 0 ; i < Triggers ; i++) {
4044                pData[46 + i * 8] = pTriggers[i].TriggerPoint;
4045                pData[47 + i * 8] = pTriggers[i].Descending;
4046                pData[48 + i * 8] = pTriggers[i].VelSensitivity;
4047                pData[49 + i * 8] = pTriggers[i].Key;
4048                pData[50 + i * 8] = pTriggers[i].NoteOff;
4049                pData[51 + i * 8] = pTriggers[i].Velocity;
4050                pData[52 + i * 8] = pTriggers[i].OverridePedal;
4051            }
4052        }
4053    
4054        MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
4055            _3ewg->SetPos(36);
4056            LegatoSamples = _3ewg->ReadUint8(); // always 12
4057            _3ewg->SetPos(40);
4058            BypassUseController = _3ewg->ReadUint8();
4059            BypassKey = _3ewg->ReadUint8();
4060            BypassController = _3ewg->ReadUint8();
4061            ThresholdTime = _3ewg->ReadUint16();
4062            _3ewg->ReadInt16();
4063            ReleaseTime = _3ewg->ReadUint16();
4064            _3ewg->ReadInt16();
4065            KeyRange.low = _3ewg->ReadUint8();
4066            KeyRange.high = _3ewg->ReadUint8();
4067            _3ewg->SetPos(64);
4068            ReleaseTriggerKey = _3ewg->ReadUint8();
4069            AltSustain1Key = _3ewg->ReadUint8();
4070            AltSustain2Key = _3ewg->ReadUint8();
4071        }
4072    
4073        MidiRuleLegato::MidiRuleLegato() :
4074            LegatoSamples(12),
4075            BypassUseController(false),
4076            BypassKey(0),
4077            BypassController(1),
4078            ThresholdTime(20),
4079            ReleaseTime(20),
4080            ReleaseTriggerKey(0),
4081            AltSustain1Key(0),
4082            AltSustain2Key(0)
4083        {
4084            KeyRange.low = KeyRange.high = 0;
4085        }
4086    
4087        void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
4088            pData[32] = 0;
4089            pData[33] = 16;
4090            pData[36] = LegatoSamples;
4091            pData[40] = BypassUseController;
4092            pData[41] = BypassKey;
4093            pData[42] = BypassController;
4094            store16(&pData[43], ThresholdTime);
4095            store16(&pData[47], ReleaseTime);
4096            pData[51] = KeyRange.low;
4097            pData[52] = KeyRange.high;
4098            pData[64] = ReleaseTriggerKey;
4099            pData[65] = AltSustain1Key;
4100            pData[66] = AltSustain2Key;
4101        }
4102    
4103        MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
4104            _3ewg->SetPos(36);
4105            Articulations = _3ewg->ReadUint8();
4106            int flags = _3ewg->ReadUint8();
4107            Polyphonic = flags & 8;
4108            Chained = flags & 4;
4109            Selector = (flags & 2) ? selector_controller :
4110                (flags & 1) ? selector_key_switch : selector_none;
4111            Patterns = _3ewg->ReadUint8();
4112            _3ewg->ReadUint8(); // chosen row
4113            _3ewg->ReadUint8(); // unknown
4114            _3ewg->ReadUint8(); // unknown
4115            _3ewg->ReadUint8(); // unknown
4116            KeySwitchRange.low = _3ewg->ReadUint8();
4117            KeySwitchRange.high = _3ewg->ReadUint8();
4118            Controller = _3ewg->ReadUint8();
4119            PlayRange.low = _3ewg->ReadUint8();
4120            PlayRange.high = _3ewg->ReadUint8();
4121    
4122            int n = std::min(int(Articulations), 32);
4123            for (int i = 0 ; i < n ; i++) {
4124                _3ewg->ReadString(pArticulations[i], 32);
4125            }
4126            _3ewg->SetPos(1072);
4127            n = std::min(int(Patterns), 32);
4128            for (int i = 0 ; i < n ; i++) {
4129                _3ewg->ReadString(pPatterns[i].Name, 16);
4130                pPatterns[i].Size = _3ewg->ReadUint8();
4131                _3ewg->Read(&pPatterns[i][0], 1, 32);
4132            }
4133        }
4134    
4135        MidiRuleAlternator::MidiRuleAlternator() :
4136            Articulations(0),
4137            Patterns(0),
4138            Selector(selector_none),
4139            Controller(0),
4140            Polyphonic(false),
4141            Chained(false)
4142        {
4143            PlayRange.low = PlayRange.high = 0;
4144            KeySwitchRange.low = KeySwitchRange.high = 0;
4145        }
4146    
4147        void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
4148            pData[32] = 3;
4149            pData[33] = 16;
4150            pData[36] = Articulations;
4151            pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
4152                (Selector == selector_controller ? 2 :
4153                 (Selector == selector_key_switch ? 1 : 0));
4154            pData[38] = Patterns;
4155    
4156            pData[43] = KeySwitchRange.low;
4157            pData[44] = KeySwitchRange.high;
4158            pData[45] = Controller;
4159            pData[46] = PlayRange.low;
4160            pData[47] = PlayRange.high;
4161    
4162            char* str = reinterpret_cast<char*>(pData);
4163            int pos = 48;
4164            int n = std::min(int(Articulations), 32);
4165            for (int i = 0 ; i < n ; i++, pos += 32) {
4166                strncpy(&str[pos], pArticulations[i].c_str(), 32);
4167            }
4168    
4169            pos = 1072;
4170            n = std::min(int(Patterns), 32);
4171            for (int i = 0 ; i < n ; i++, pos += 49) {
4172                strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
4173                pData[pos + 16] = pPatterns[i].Size;
4174                memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
4175            }
4176        }
4177    
4178    // *************** Script ***************
4179    // *
4180    
4181        Script::Script(ScriptGroup* group, RIFF::Chunk* ckScri) {
4182            pGroup = group;
4183            pChunk = ckScri;
4184            if (ckScri) { // object is loaded from file ...
4185                // read header
4186                uint32_t headerSize = ckScri->ReadUint32();
4187                Compression = (Compression_t) ckScri->ReadUint32();
4188                Encoding    = (Encoding_t) ckScri->ReadUint32();
4189                Language    = (Language_t) ckScri->ReadUint32();
4190                Bypass      = (Language_t) ckScri->ReadUint32() & 1;
4191                crc         = ckScri->ReadUint32();
4192                uint32_t nameSize = ckScri->ReadUint32();
4193                Name.resize(nameSize, ' ');
4194                for (int i = 0; i < nameSize; ++i)
4195                    Name[i] = ckScri->ReadUint8();
4196                // to handle potential future extensions of the header
4197                ckScri->SetPos(sizeof(int32_t) + headerSize);
4198                // read actual script data
4199                uint32_t scriptSize = uint32_t(ckScri->GetSize() - ckScri->GetPos());
4200                data.resize(scriptSize);
4201                for (int i = 0; i < scriptSize; ++i)
4202                    data[i] = ckScri->ReadUint8();
4203            } else { // this is a new script object, so just initialize it as such ...
4204                Compression = COMPRESSION_NONE;
4205                Encoding = ENCODING_ASCII;
4206                Language = LANGUAGE_NKSP;
4207                Bypass   = false;
4208                crc      = 0;
4209                Name     = "Unnamed Script";
4210            }
4211        }
4212    
4213        Script::~Script() {
4214        }
4215    
4216        /**
4217         * Returns the current script (i.e. as source code) in text format.
4218         */
4219        String Script::GetScriptAsText() {
4220            String s;
4221            s.resize(data.size(), ' ');
4222            memcpy(&s[0], &data[0], data.size());
4223            return s;
4224        }
4225    
4226        /**
4227         * Replaces the current script with the new script source code text given
4228         * by @a text.
4229         *
4230         * @param text - new script source code
4231         */
4232        void Script::SetScriptAsText(const String& text) {
4233            data.resize(text.size());
4234            memcpy(&data[0], &text[0], text.size());
4235        }
4236    
4237        /**
4238         * Apply this script to the respective RIFF chunks. You have to call
4239         * File::Save() to make changes persistent.
4240         *
4241         * Usually there is absolutely no need to call this method explicitly.
4242         * It will be called automatically when File::Save() was called.
4243         *
4244         * @param pProgress - callback function for progress notification
4245         */
4246        void Script::UpdateChunks(progress_t* pProgress) {
4247            // recalculate CRC32 check sum
4248            __resetCRC(crc);
4249            __calculateCRC(&data[0], data.size(), crc);
4250            __finalizeCRC(crc);
4251            // make sure chunk exists and has the required size
4252            const file_offset_t chunkSize = (file_offset_t) 7*sizeof(int32_t) + Name.size() + data.size();
4253            if (!pChunk) pChunk = pGroup->pList->AddSubChunk(CHUNK_ID_SCRI, chunkSize);
4254            else pChunk->Resize(chunkSize);
4255            // fill the chunk data to be written to disk
4256            uint8_t* pData = (uint8_t*) pChunk->LoadChunkData();
4257            int pos = 0;
4258            store32(&pData[pos], uint32_t(6*sizeof(int32_t) + Name.size())); // total header size
4259            pos += sizeof(int32_t);
4260            store32(&pData[pos], Compression);
4261            pos += sizeof(int32_t);
4262            store32(&pData[pos], Encoding);
4263            pos += sizeof(int32_t);
4264            store32(&pData[pos], Language);
4265            pos += sizeof(int32_t);
4266            store32(&pData[pos], Bypass ? 1 : 0);
4267            pos += sizeof(int32_t);
4268            store32(&pData[pos], crc);
4269            pos += sizeof(int32_t);
4270            store32(&pData[pos], (uint32_t) Name.size());
4271            pos += sizeof(int32_t);
4272            for (int i = 0; i < Name.size(); ++i, ++pos)
4273                pData[pos] = Name[i];
4274            for (int i = 0; i < data.size(); ++i, ++pos)
4275                pData[pos] = data[i];
4276        }
4277    
4278        /**
4279         * Move this script from its current ScriptGroup to another ScriptGroup
4280         * given by @a pGroup.
4281         *
4282         * @param pGroup - script's new group
4283         */
4284        void Script::SetGroup(ScriptGroup* pGroup) {
4285            if (this->pGroup == pGroup) return;
4286            if (pChunk)
4287                pChunk->GetParent()->MoveSubChunk(pChunk, pGroup->pList);
4288            this->pGroup = pGroup;
4289        }
4290    
4291        /**
4292         * Returns the script group this script currently belongs to. Each script
4293         * is a member of exactly one ScriptGroup.
4294         *
4295         * @returns current script group
4296         */
4297        ScriptGroup* Script::GetGroup() const {
4298            return pGroup;
4299        }
4300    
4301        void Script::RemoveAllScriptReferences() {
4302            File* pFile = pGroup->pFile;
4303            for (int i = 0; pFile->GetInstrument(i); ++i) {
4304                Instrument* instr = pFile->GetInstrument(i);
4305                instr->RemoveScript(this);
4306            }
4307        }
4308    
4309    // *************** ScriptGroup ***************
4310    // *
4311    
4312        ScriptGroup::ScriptGroup(File* file, RIFF::List* lstRTIS) {
4313            pFile = file;
4314            pList = lstRTIS;
4315            pScripts = NULL;
4316            if (lstRTIS) {
4317                RIFF::Chunk* ckName = lstRTIS->GetSubChunk(CHUNK_ID_LSNM);
4318                ::LoadString(ckName, Name);
4319            } else {
4320                Name = "Default Group";
4321            }
4322        }
4323    
4324        ScriptGroup::~ScriptGroup() {
4325            if (pScripts) {
4326                std::list<Script*>::iterator iter = pScripts->begin();
4327                std::list<Script*>::iterator end  = pScripts->end();
4328                while (iter != end) {
4329                    delete *iter;
4330                    ++iter;
4331                }
4332                delete pScripts;
4333            }
4334        }
4335    
4336        /**
4337         * Apply this script group to the respective RIFF chunks. You have to call
4338         * File::Save() to make changes persistent.
4339         *
4340         * Usually there is absolutely no need to call this method explicitly.
4341         * It will be called automatically when File::Save() was called.
4342         *
4343         * @param pProgress - callback function for progress notification
4344         */
4345        void ScriptGroup::UpdateChunks(progress_t* pProgress) {
4346            if (pScripts) {
4347                if (!pList)
4348                    pList = pFile->pRIFF->GetSubList(LIST_TYPE_3LS)->AddSubList(LIST_TYPE_RTIS);
4349    
4350                // now store the name of this group as <LSNM> chunk as subchunk of the <RTIS> list chunk
4351                ::SaveString(CHUNK_ID_LSNM, NULL, pList, Name, String("Unnamed Group"), true, 64);
4352    
4353                for (std::list<Script*>::iterator it = pScripts->begin();
4354                     it != pScripts->end(); ++it)
4355                {
4356                    (*it)->UpdateChunks(pProgress);
4357                }
4358            }
4359        }
4360    
4361        /** @brief Get instrument script.
4362         *
4363         * Returns the real-time instrument script with the given index.
4364         *
4365         * @param index - number of the sought script (0..n)
4366         * @returns sought script or NULL if there's no such script
4367         */
4368        Script* ScriptGroup::GetScript(uint index) {
4369            if (!pScripts) LoadScripts();
4370            std::list<Script*>::iterator it = pScripts->begin();
4371            for (uint i = 0; it != pScripts->end(); ++i, ++it)
4372                if (i == index) return *it;
4373            return NULL;
4374        }
4375    
4376        /** @brief Add new instrument script.
4377         *
4378         * Adds a new real-time instrument script to the file. The script is not
4379         * actually used / executed unless it is referenced by an instrument to be
4380         * used. This is similar to samples, which you can add to a file, without
4381         * an instrument necessarily actually using it.
4382         *
4383         * You have to call Save() to make this persistent to the file.
4384         *
4385         * @return new empty script object
4386         */
4387        Script* ScriptGroup::AddScript() {
4388            if (!pScripts) LoadScripts();
4389            Script* pScript = new Script(this, NULL);
4390            pScripts->push_back(pScript);
4391            return pScript;
4392        }
4393    
4394        /** @brief Delete an instrument script.
4395         *
4396         * This will delete the given real-time instrument script. References of
4397         * instruments that are using that script will be removed accordingly.
4398         *
4399         * You have to call Save() to make this persistent to the file.
4400         *
4401         * @param pScript - script to delete
4402         * @throws gig::Exception if given script could not be found
4403         */
4404        void ScriptGroup::DeleteScript(Script* pScript) {
4405            if (!pScripts) LoadScripts();
4406            std::list<Script*>::iterator iter =
4407                find(pScripts->begin(), pScripts->end(), pScript);
4408            if (iter == pScripts->end())
4409                throw gig::Exception("Could not delete script, could not find given script");
4410            pScripts->erase(iter);
4411            pScript->RemoveAllScriptReferences();
4412            if (pScript->pChunk)
4413                pScript->pChunk->GetParent()->DeleteSubChunk(pScript->pChunk);
4414            delete pScript;
4415        }
4416    
4417        void ScriptGroup::LoadScripts() {
4418            if (pScripts) return;
4419            pScripts = new std::list<Script*>;
4420            if (!pList) return;
4421    
4422            for (RIFF::Chunk* ck = pList->GetFirstSubChunk(); ck;
4423                 ck = pList->GetNextSubChunk())
4424            {
4425                if (ck->GetChunkID() == CHUNK_ID_SCRI) {
4426                    pScripts->push_back(new Script(this, ck));
4427                }
4428            }
4429        }
4430    
4431  // *************** Instrument ***************  // *************** Instrument ***************
4432  // *  // *
4433    
4434      Instrument::Instrument(File* pFile, RIFF::List* insList) : DLS::Instrument((DLS::File*)pFile, insList) {      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
4435            static const DLS::Info::string_length_t fixedStringLengths[] = {
4436                { CHUNK_ID_INAM, 64 },
4437                { CHUNK_ID_ISFT, 12 },
4438                { 0, 0 }
4439            };
4440            pInfo->SetFixedStringLengths(fixedStringLengths);
4441    
4442          // Initialization          // Initialization
4443          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4444          RegionIndex = -1;          EffectSend = 0;
4445            Attenuation = 0;
4446            FineTune = 0;
4447            PitchbendRange = 2;
4448            PianoReleaseMode = false;
4449            DimensionKeyRange.low = 0;
4450            DimensionKeyRange.high = 0;
4451            pMidiRules = new MidiRule*[3];
4452            pMidiRules[0] = NULL;
4453            pScriptRefs = NULL;
4454    
4455          // Loading          // Loading
4456          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
# Line 1586  namespace gig { namespace { Line 4465  namespace gig { namespace {
4465                  PianoReleaseMode       = dimkeystart & 0x01;                  PianoReleaseMode       = dimkeystart & 0x01;
4466                  DimensionKeyRange.low  = dimkeystart >> 1;                  DimensionKeyRange.low  = dimkeystart >> 1;
4467                  DimensionKeyRange.high = _3ewg->ReadUint8();                  DimensionKeyRange.high = _3ewg->ReadUint8();
4468    
4469                    if (_3ewg->GetSize() > 32) {
4470                        // read MIDI rules
4471                        int i = 0;
4472                        _3ewg->SetPos(32);
4473                        uint8_t id1 = _3ewg->ReadUint8();
4474                        uint8_t id2 = _3ewg->ReadUint8();
4475    
4476                        if (id2 == 16) {
4477                            if (id1 == 4) {
4478                                pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
4479                            } else if (id1 == 0) {
4480                                pMidiRules[i++] = new MidiRuleLegato(_3ewg);
4481                            } else if (id1 == 3) {
4482                                pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
4483                            } else {
4484                                pMidiRules[i++] = new MidiRuleUnknown;
4485                            }
4486                        }
4487                        else if (id1 != 0 || id2 != 0) {
4488                            pMidiRules[i++] = new MidiRuleUnknown;
4489                        }
4490                        //TODO: all the other types of rules
4491    
4492                        pMidiRules[i] = NULL;
4493                    }
4494                }
4495            }
4496    
4497            if (pFile->GetAutoLoad()) {
4498                if (!pRegions) pRegions = new RegionList;
4499                RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
4500                if (lrgn) {
4501                    RIFF::List* rgn = lrgn->GetFirstSubList();
4502                    while (rgn) {
4503                        if (rgn->GetListType() == LIST_TYPE_RGN) {
4504                            __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
4505                            pRegions->push_back(new Region(this, rgn));
4506                        }
4507                        rgn = lrgn->GetNextSubList();
4508                    }
4509                    // Creating Region Key Table for fast lookup
4510                    UpdateRegionKeyTable();
4511                }
4512            }
4513    
4514            // own gig format extensions
4515            RIFF::List* lst3LS = insList->GetSubList(LIST_TYPE_3LS);
4516            if (lst3LS) {
4517                RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4518                if (ckSCSL) {
4519                    int headerSize = ckSCSL->ReadUint32();
4520                    int slotCount  = ckSCSL->ReadUint32();
4521                    if (slotCount) {
4522                        int slotSize  = ckSCSL->ReadUint32();
4523                        ckSCSL->SetPos(headerSize); // in case of future header extensions
4524                        int unknownSpace = slotSize - 2*sizeof(uint32_t); // in case of future slot extensions
4525                        for (int i = 0; i < slotCount; ++i) {
4526                            _ScriptPooolEntry e;
4527                            e.fileOffset = ckSCSL->ReadUint32();
4528                            e.bypass     = ckSCSL->ReadUint32() & 1;
4529                            if (unknownSpace) ckSCSL->SetPos(unknownSpace, RIFF::stream_curpos); // in case of future extensions
4530                            scriptPoolFileOffsets.push_back(e);
4531                        }
4532                    }
4533              }              }
             else throw gig::Exception("Mandatory <3ewg> chunk not found.");  
4534          }          }
         else throw gig::Exception("Mandatory <lart> list chunk not found.");  
4535    
4536          RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);          __notify_progress(pProgress, 1.0f); // notify done
4537          if (!lrgn) throw gig::Exception("Mandatory chunks in <ins > chunk not found.");      }
4538          pRegions = new Region*[Regions];  
4539          for (uint i = 0; i < Regions; i++) pRegions[i] = NULL;      void Instrument::UpdateRegionKeyTable() {
4540          RIFF::List* rgn = lrgn->GetFirstSubList();          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4541          unsigned int iRegion = 0;          RegionList::iterator iter = pRegions->begin();
4542          while (rgn) {          RegionList::iterator end  = pRegions->end();
4543              if (rgn->GetListType() == LIST_TYPE_RGN) {          for (; iter != end; ++iter) {
4544                  pRegions[iRegion] = new Region(this, rgn);              gig::Region* pRegion = static_cast<gig::Region*>(*iter);
4545                  iRegion++;              for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
4546              }                  RegionKeyTable[iKey] = pRegion;
             rgn = lrgn->GetNextSubList();  
         }  
   
         // Creating Region Key Table for fast lookup  
         for (uint iReg = 0; iReg < Regions; iReg++) {  
             for (int iKey = pRegions[iReg]->KeyRange.low; iKey <= pRegions[iReg]->KeyRange.high; iKey++) {  
                 RegionKeyTable[iKey] = pRegions[iReg];  
4547              }              }
4548          }          }
4549      }      }
4550    
4551      Instrument::~Instrument() {      Instrument::~Instrument() {
4552          for (uint i = 0; i < Regions; i++) {          for (int i = 0 ; pMidiRules[i] ; i++) {
4553              if (pRegions) {              delete pMidiRules[i];
4554                  if (pRegions[i]) delete (pRegions[i]);          }
4555            delete[] pMidiRules;
4556            if (pScriptRefs) delete pScriptRefs;
4557        }
4558    
4559        /**
4560         * Apply Instrument with all its Regions to the respective RIFF chunks.
4561         * You have to call File::Save() to make changes persistent.
4562         *
4563         * Usually there is absolutely no need to call this method explicitly.
4564         * It will be called automatically when File::Save() was called.
4565         *
4566         * @param pProgress - callback function for progress notification
4567         * @throws gig::Exception if samples cannot be dereferenced
4568         */
4569        void Instrument::UpdateChunks(progress_t* pProgress) {
4570            // first update base classes' chunks
4571            DLS::Instrument::UpdateChunks(pProgress);
4572    
4573            // update Regions' chunks
4574            {
4575                RegionList::iterator iter = pRegions->begin();
4576                RegionList::iterator end  = pRegions->end();
4577                for (; iter != end; ++iter)
4578                    (*iter)->UpdateChunks(pProgress);
4579            }
4580    
4581            // make sure 'lart' RIFF list chunk exists
4582            RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
4583            if (!lart)  lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
4584            // make sure '3ewg' RIFF chunk exists
4585            RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4586            if (!_3ewg)  {
4587                File* pFile = (File*) GetParent();
4588    
4589                // 3ewg is bigger in gig3, as it includes the iMIDI rules
4590                int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
4591                _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
4592                memset(_3ewg->LoadChunkData(), 0, size);
4593            }
4594            // update '3ewg' RIFF chunk
4595            uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
4596            store16(&pData[0], EffectSend);
4597            store32(&pData[2], Attenuation);
4598            store16(&pData[6], FineTune);
4599            store16(&pData[8], PitchbendRange);
4600            const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
4601                                        DimensionKeyRange.low << 1;
4602            pData[10] = dimkeystart;
4603            pData[11] = DimensionKeyRange.high;
4604    
4605            if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
4606                pData[32] = 0;
4607                pData[33] = 0;
4608            } else {
4609                for (int i = 0 ; pMidiRules[i] ; i++) {
4610                    pMidiRules[i]->UpdateChunks(pData);
4611              }              }
4612          }          }
4613          if (pRegions) delete[] pRegions;  
4614            // own gig format extensions
4615           if (ScriptSlotCount()) {
4616               // make sure we have converted the original loaded script file
4617               // offsets into valid Script object pointers
4618               LoadScripts();
4619    
4620               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4621               if (!lst3LS) lst3LS = pCkInstrument->AddSubList(LIST_TYPE_3LS);
4622               const int slotCount = (int) pScriptRefs->size();
4623               const int headerSize = 3 * sizeof(uint32_t);
4624               const int slotSize  = 2 * sizeof(uint32_t);
4625               const int totalChunkSize = headerSize + slotCount * slotSize;
4626               RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4627               if (!ckSCSL) ckSCSL = lst3LS->AddSubChunk(CHUNK_ID_SCSL, totalChunkSize);
4628               else ckSCSL->Resize(totalChunkSize);
4629               uint8_t* pData = (uint8_t*) ckSCSL->LoadChunkData();
4630               int pos = 0;
4631               store32(&pData[pos], headerSize);
4632               pos += sizeof(uint32_t);
4633               store32(&pData[pos], slotCount);
4634               pos += sizeof(uint32_t);
4635               store32(&pData[pos], slotSize);
4636               pos += sizeof(uint32_t);
4637               for (int i = 0; i < slotCount; ++i) {
4638                   // arbitrary value, the actual file offset will be updated in
4639                   // UpdateScriptFileOffsets() after the file has been resized
4640                   int bogusFileOffset = 0;
4641                   store32(&pData[pos], bogusFileOffset);
4642                   pos += sizeof(uint32_t);
4643                   store32(&pData[pos], (*pScriptRefs)[i].bypass ? 1 : 0);
4644                   pos += sizeof(uint32_t);
4645               }
4646           } else {
4647               // no script slots, so get rid of any LS custom RIFF chunks (if any)
4648               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4649               if (lst3LS) pCkInstrument->DeleteSubChunk(lst3LS);
4650           }
4651        }
4652    
4653        void Instrument::UpdateScriptFileOffsets() {
4654           // own gig format extensions
4655           if (pScriptRefs && pScriptRefs->size() > 0) {
4656               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4657               RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4658               const int slotCount = (int) pScriptRefs->size();
4659               const int headerSize = 3 * sizeof(uint32_t);
4660               ckSCSL->SetPos(headerSize);
4661               for (int i = 0; i < slotCount; ++i) {
4662                   uint32_t fileOffset = uint32_t(
4663                        (*pScriptRefs)[i].script->pChunk->GetFilePos() -
4664                        (*pScriptRefs)[i].script->pChunk->GetPos() -
4665                        CHUNK_HEADER_SIZE(ckSCSL->GetFile()->GetFileOffsetSize())
4666                   );
4667                   ckSCSL->WriteUint32(&fileOffset);
4668                   // jump over flags entry (containing the bypass flag)
4669                   ckSCSL->SetPos(sizeof(uint32_t), RIFF::stream_curpos);
4670               }
4671           }        
4672      }      }
4673    
4674      /**      /**
# Line 1630  namespace gig { namespace { Line 4679  namespace gig { namespace {
4679       *             there is no Region defined for the given \a Key       *             there is no Region defined for the given \a Key
4680       */       */
4681      Region* Instrument::GetRegion(unsigned int Key) {      Region* Instrument::GetRegion(unsigned int Key) {
4682          if (!pRegions || Key > 127) return NULL;          if (!pRegions || pRegions->empty() || Key > 127) return NULL;
4683          return RegionKeyTable[Key];          return RegionKeyTable[Key];
4684    
4685          /*for (int i = 0; i < Regions; i++) {          /*for (int i = 0; i < Regions; i++) {
4686              if (Key <= pRegions[i]->KeyRange.high &&              if (Key <= pRegions[i]->KeyRange.high &&
4687                  Key >= pRegions[i]->KeyRange.low) return pRegions[i];                  Key >= pRegions[i]->KeyRange.low) return pRegions[i];
# Line 1647  namespace gig { namespace { Line 4697  namespace gig { namespace {
4697       * @see      GetNextRegion()       * @see      GetNextRegion()
4698       */       */
4699      Region* Instrument::GetFirstRegion() {      Region* Instrument::GetFirstRegion() {
4700          if (!Regions) return NULL;          if (!pRegions) return NULL;
4701          RegionIndex = 1;          RegionsIterator = pRegions->begin();
4702          return pRegions[0];          return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4703      }      }
4704    
4705      /**      /**
# Line 1661  namespace gig { namespace { Line 4711  namespace gig { namespace {
4711       * @see      GetFirstRegion()       * @see      GetFirstRegion()
4712       */       */
4713      Region* Instrument::GetNextRegion() {      Region* Instrument::GetNextRegion() {
4714          if (RegionIndex < 0 || uint32_t(RegionIndex) >= Regions) return NULL;          if (!pRegions) return NULL;
4715          return pRegions[RegionIndex++];          RegionsIterator++;
4716            return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4717        }
4718    
4719        Region* Instrument::AddRegion() {
4720            // create new Region object (and its RIFF chunks)
4721            RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
4722            if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
4723            RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
4724            Region* pNewRegion = new Region(this, rgn);
4725            pRegions->push_back(pNewRegion);
4726            Regions = (uint32_t) pRegions->size();
4727            // update Region key table for fast lookup
4728            UpdateRegionKeyTable();
4729            // done
4730            return pNewRegion;
4731        }
4732    
4733        void Instrument::DeleteRegion(Region* pRegion) {
4734            if (!pRegions) return;
4735            DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
4736            // update Region key table for fast lookup
4737            UpdateRegionKeyTable();
4738        }
4739    
4740        /**
4741         * Move this instrument at the position before @arg dst.
4742         *
4743         * This method can be used to reorder the sequence of instruments in a
4744         * .gig file. This might be helpful especially on large .gig files which
4745         * contain a large number of instruments within the same .gig file. So
4746         * grouping such instruments to similar ones, can help to keep track of them
4747         * when working with such complex .gig files.
4748         *
4749         * When calling this method, this instrument will be removed from in its
4750         * current position in the instruments list and moved to the requested
4751         * target position provided by @param dst. You may also pass NULL as
4752         * argument to this method, in that case this intrument will be moved to the
4753         * very end of the .gig file's instrument list.
4754         *
4755         * You have to call Save() to make the order change persistent to the .gig
4756         * file.
4757         *
4758         * Currently this method is limited to moving the instrument within the same
4759         * .gig file. Trying to move it to another .gig file by calling this method
4760         * will throw an exception.
4761         *
4762         * @param dst - destination instrument at which this instrument will be
4763         *              moved to, or pass NULL for moving to end of list
4764         * @throw gig::Exception if this instrument and target instrument are not
4765         *                       part of the same file
4766         */
4767        void Instrument::MoveTo(Instrument* dst) {
4768            if (dst && GetParent() != dst->GetParent())
4769                throw Exception(
4770                    "gig::Instrument::MoveTo() can only be used for moving within "
4771                    "the same gig file."
4772                );
4773    
4774            File* pFile = (File*) GetParent();
4775    
4776            // move this instrument within the instrument list
4777            {
4778                File::InstrumentList& list = *pFile->pInstruments;
4779    
4780                File::InstrumentList::iterator itFrom =
4781                    std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(this));
4782    
4783                File::InstrumentList::iterator itTo =
4784                    std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(dst));
4785    
4786                list.splice(itTo, list, itFrom);
4787            }
4788    
4789            // move the instrument's actual list RIFF chunk appropriately
4790            RIFF::List* lstCkInstruments = pFile->pRIFF->GetSubList(LIST_TYPE_LINS);
4791            lstCkInstruments->MoveSubChunk(
4792                this->pCkInstrument,
4793                (RIFF::Chunk*) ((dst) ? dst->pCkInstrument : NULL)
4794            );
4795        }
4796    
4797        /**
4798         * Returns a MIDI rule of the instrument.
4799         *
4800         * The list of MIDI rules, at least in gig v3, always contains at
4801         * most two rules. The second rule can only be the DEF filter
4802         * (which currently isn't supported by libgig).
4803         *
4804         * @param i - MIDI rule number
4805         * @returns   pointer address to MIDI rule number i or NULL if there is none
4806         */
4807        MidiRule* Instrument::GetMidiRule(int i) {
4808            return pMidiRules[i];
4809        }
4810    
4811        /**
4812         * Adds the "controller trigger" MIDI rule to the instrument.
4813         *
4814         * @returns the new MIDI rule
4815         */
4816        MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
4817            delete pMidiRules[0];
4818            MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
4819            pMidiRules[0] = r;
4820            pMidiRules[1] = 0;
4821            return r;
4822        }
4823    
4824        /**
4825         * Adds the legato MIDI rule to the instrument.
4826         *
4827         * @returns the new MIDI rule
4828         */
4829        MidiRuleLegato* Instrument::AddMidiRuleLegato() {
4830            delete pMidiRules[0];
4831            MidiRuleLegato* r = new MidiRuleLegato;
4832            pMidiRules[0] = r;
4833            pMidiRules[1] = 0;
4834            return r;
4835        }
4836    
4837        /**
4838         * Adds the alternator MIDI rule to the instrument.
4839         *
4840         * @returns the new MIDI rule
4841         */
4842        MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
4843            delete pMidiRules[0];
4844            MidiRuleAlternator* r = new MidiRuleAlternator;
4845            pMidiRules[0] = r;
4846            pMidiRules[1] = 0;
4847            return r;
4848        }
4849    
4850        /**
4851         * Deletes a MIDI rule from the instrument.
4852         *
4853         * @param i - MIDI rule number
4854         */
4855        void Instrument::DeleteMidiRule(int i) {
4856            delete pMidiRules[i];
4857            pMidiRules[i] = 0;
4858        }
4859    
4860        void Instrument::LoadScripts() {
4861            if (pScriptRefs) return;
4862            pScriptRefs = new std::vector<_ScriptPooolRef>;
4863            if (scriptPoolFileOffsets.empty()) return;
4864            File* pFile = (File*) GetParent();
4865            for (uint k = 0; k < scriptPoolFileOffsets.size(); ++k) {
4866                uint32_t soughtOffset = scriptPoolFileOffsets[k].fileOffset;
4867                for (uint i = 0; pFile->GetScriptGroup(i); ++i) {
4868                    ScriptGroup* group = pFile->GetScriptGroup(i);
4869                    for (uint s = 0; group->GetScript(s); ++s) {
4870                        Script* script = group->GetScript(s);
4871                        if (script->pChunk) {
4872                            uint32_t offset = uint32_t(
4873                                script->pChunk->GetFilePos() -
4874                                script->pChunk->GetPos() -
4875                                CHUNK_HEADER_SIZE(script->pChunk->GetFile()->GetFileOffsetSize())
4876                            );
4877                            if (offset == soughtOffset)
4878                            {
4879                                _ScriptPooolRef ref;
4880                                ref.script = script;
4881                                ref.bypass = scriptPoolFileOffsets[k].bypass;
4882                                pScriptRefs->push_back(ref);
4883                                break;
4884                            }
4885                        }
4886                    }
4887                }
4888            }
4889            // we don't need that anymore
4890            scriptPoolFileOffsets.clear();
4891        }
4892    
4893        /** @brief Get instrument script (gig format extension).
4894         *
4895         * Returns the real-time instrument script of instrument script slot
4896         * @a index.
4897         *
4898         * @note This is an own format extension which did not exist i.e. in the
4899         * GigaStudio 4 software. It will currently only work with LinuxSampler and
4900         * gigedit.
4901         *
4902         * @param index - instrument script slot index
4903         * @returns script or NULL if index is out of bounds
4904         */
4905        Script* Instrument::GetScriptOfSlot(uint index) {
4906            LoadScripts();
4907            if (index >= pScriptRefs->size()) return NULL;
4908            return pScriptRefs->at(index).script;
4909        }
4910    
4911        /** @brief Add new instrument script slot (gig format extension).
4912         *
4913         * Add the given real-time instrument script reference to this instrument,
4914         * which shall be executed by the sampler for for this instrument. The
4915         * script will be added to the end of the script list of this instrument.
4916         * The positions of the scripts in the Instrument's Script list are
4917         * relevant, because they define in which order they shall be executed by
4918         * the sampler. For this reason it is also legal to add the same script
4919         * twice to an instrument, for example you might have a script called
4920         * "MyFilter" which performs an event filter task, and you might have
4921         * another script called "MyNoteTrigger" which triggers new notes, then you
4922         * might for example have the following list of scripts on the instrument:
4923         *
4924         * 1. Script "MyFilter"
4925         * 2. Script "MyNoteTrigger"
4926         * 3. Script "MyFilter"
4927         *
4928         * Which would make sense, because the 2nd script launched new events, which
4929         * you might need to filter as well.
4930         *
4931         * There are two ways to disable / "bypass" scripts. You can either disable
4932         * a script locally for the respective script slot on an instrument (i.e. by
4933         * passing @c false to the 2nd argument of this method, or by calling
4934         * SetScriptBypassed()). Or you can disable a script globally for all slots
4935         * and all instruments by setting Script::Bypass.
4936         *
4937         * @note This is an own format extension which did not exist i.e. in the
4938         * GigaStudio 4 software. It will currently only work with LinuxSampler and
4939         * gigedit.
4940         *
4941         * @param pScript - script that shall be executed for this instrument
4942         * @param bypass  - if enabled, the sampler shall skip executing this
4943         *                  script (in the respective list position)
4944         * @see SetScriptBypassed()
4945         */
4946        void Instrument::AddScriptSlot(Script* pScript, bool bypass) {
4947            LoadScripts();
4948            _ScriptPooolRef ref = { pScript, bypass };
4949            pScriptRefs->push_back(ref);
4950        }
4951    
4952        /** @brief Flip two script slots with each other (gig format extension).
4953         *
4954         * Swaps the position of the two given scripts in the Instrument's Script
4955         * list. The positions of the scripts in the Instrument's Script list are
4956         * relevant, because they define in which order they shall be executed by
4957         * the sampler.
4958         *
4959         * @note This is an own format extension which did not exist i.e. in the
4960         * GigaStudio 4 software. It will currently only work with LinuxSampler and
4961         * gigedit.
4962         *
4963         * @param index1 - index of the first script slot to swap
4964         * @param index2 - index of the second script slot to swap
4965         */
4966        void Instrument::SwapScriptSlots(uint index1, uint index2) {
4967            LoadScripts();
4968            if (index1 >= pScriptRefs->size() || index2 >= pScriptRefs->size())
4969                return;
4970            _ScriptPooolRef tmp = (*pScriptRefs)[index1];
4971            (*pScriptRefs)[index1] = (*pScriptRefs)[index2];
4972            (*pScriptRefs)[index2] = tmp;
4973        }
4974    
4975        /** @brief Remove script slot.
4976         *
4977         * Removes the script slot with the given slot index.
4978         *
4979         * @param index - index of script slot to remove
4980         */
4981        void Instrument::RemoveScriptSlot(uint index) {
4982            LoadScripts();
4983            if (index >= pScriptRefs->size()) return;
4984            pScriptRefs->erase( pScriptRefs->begin() + index );
4985        }
4986    
4987        /** @brief Remove reference to given Script (gig format extension).
4988         *
4989         * This will remove all script slots on the instrument which are referencing
4990         * the given script.
4991         *
4992         * @note This is an own format extension which did not exist i.e. in the
4993         * GigaStudio 4 software. It will currently only work with LinuxSampler and
4994         * gigedit.
4995         *
4996         * @param pScript - script reference to remove from this instrument
4997         * @see RemoveScriptSlot()
4998         */
4999        void Instrument::RemoveScript(Script* pScript) {
5000            LoadScripts();
5001            for (ssize_t i = pScriptRefs->size() - 1; i >= 0; --i) {
5002                if ((*pScriptRefs)[i].script == pScript) {
5003                    pScriptRefs->erase( pScriptRefs->begin() + i );
5004                }
5005            }
5006        }
5007    
5008        /** @brief Instrument's amount of script slots.
5009         *
5010         * This method returns the amount of script slots this instrument currently
5011         * uses.
5012         *
5013         * A script slot is a reference of a real-time instrument script to be
5014         * executed by the sampler. The scripts will be executed by the sampler in
5015         * sequence of the slots. One (same) script may be referenced multiple
5016         * times in different slots.
5017         *
5018         * @note This is an own format extension which did not exist i.e. in the
5019         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5020         * gigedit.
5021         */
5022        uint Instrument::ScriptSlotCount() const {
5023            return uint(pScriptRefs ? pScriptRefs->size() : scriptPoolFileOffsets.size());
5024        }
5025    
5026        /** @brief Whether script execution shall be skipped.
5027         *
5028         * Defines locally for the Script reference slot in the Instrument's Script
5029         * list, whether the script shall be skipped by the sampler regarding
5030         * execution.
5031         *
5032         * It is also possible to ignore exeuction of the script globally, for all
5033         * slots and for all instruments by setting Script::Bypass.
5034         *
5035         * @note This is an own format extension which did not exist i.e. in the
5036         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5037         * gigedit.
5038         *
5039         * @param index - index of the script slot on this instrument
5040         * @see Script::Bypass
5041         */
5042        bool Instrument::IsScriptSlotBypassed(uint index) {
5043            if (index >= ScriptSlotCount()) return false;
5044            return pScriptRefs ? pScriptRefs->at(index).bypass
5045                               : scriptPoolFileOffsets.at(index).bypass;
5046            
5047        }
5048    
5049        /** @brief Defines whether execution shall be skipped.
5050         *
5051         * You can call this method to define locally whether or whether not the
5052         * given script slot shall be executed by the sampler.
5053         *
5054         * @note This is an own format extension which did not exist i.e. in the
5055         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5056         * gigedit.
5057         *
5058         * @param index - script slot index on this instrument
5059         * @param bBypass - if true, the script slot will be skipped by the sampler
5060         * @see Script::Bypass
5061         */
5062        void Instrument::SetScriptSlotBypassed(uint index, bool bBypass) {
5063            if (index >= ScriptSlotCount()) return;
5064            if (pScriptRefs)
5065                pScriptRefs->at(index).bypass = bBypass;
5066            else
5067                scriptPoolFileOffsets.at(index).bypass = bBypass;
5068        }
5069    
5070        /**
5071         * Make a (semi) deep copy of the Instrument object given by @a orig
5072         * and assign it to this object.
5073         *
5074         * Note that all sample pointers referenced by @a orig are simply copied as
5075         * memory address. Thus the respective samples are shared, not duplicated!
5076         *
5077         * @param orig - original Instrument object to be copied from
5078         */
5079        void Instrument::CopyAssign(const Instrument* orig) {
5080            CopyAssign(orig, NULL);
5081        }
5082            
5083        /**
5084         * Make a (semi) deep copy of the Instrument object given by @a orig
5085         * and assign it to this object.
5086         *
5087         * @param orig - original Instrument object to be copied from
5088         * @param mSamples - crosslink map between the foreign file's samples and
5089         *                   this file's samples
5090         */
5091        void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
5092            // handle base class
5093            // (without copying DLS region stuff)
5094            DLS::Instrument::CopyAssignCore(orig);
5095            
5096            // handle own member variables
5097            Attenuation = orig->Attenuation;
5098            EffectSend = orig->EffectSend;
5099            FineTune = orig->FineTune;
5100            PitchbendRange = orig->PitchbendRange;
5101            PianoReleaseMode = orig->PianoReleaseMode;
5102            DimensionKeyRange = orig->DimensionKeyRange;
5103            scriptPoolFileOffsets = orig->scriptPoolFileOffsets;
5104            pScriptRefs = orig->pScriptRefs;
5105            
5106            // free old midi rules
5107            for (int i = 0 ; pMidiRules[i] ; i++) {
5108                delete pMidiRules[i];
5109            }
5110            //TODO: MIDI rule copying
5111            pMidiRules[0] = NULL;
5112            
5113            // delete all old regions
5114            while (Regions) DeleteRegion(GetFirstRegion());
5115            // create new regions and copy them from original
5116            {
5117                RegionList::const_iterator it = orig->pRegions->begin();
5118                for (int i = 0; i < orig->Regions; ++i, ++it) {
5119                    Region* dstRgn = AddRegion();
5120                    //NOTE: Region does semi-deep copy !
5121                    dstRgn->CopyAssign(
5122                        static_cast<gig::Region*>(*it),
5123                        mSamples
5124                    );
5125                }
5126            }
5127    
5128            UpdateRegionKeyTable();
5129        }
5130    
5131    
5132    // *************** Group ***************
5133    // *
5134    
5135        /** @brief Constructor.
5136         *
5137         * @param file   - pointer to the gig::File object
5138         * @param ck3gnm - pointer to 3gnm chunk associated with this group or
5139         *                 NULL if this is a new Group
5140         */
5141        Group::Group(File* file, RIFF::Chunk* ck3gnm) {
5142            pFile      = file;
5143            pNameChunk = ck3gnm;
5144            ::LoadString(pNameChunk, Name);
5145        }
5146    
5147        Group::~Group() {
5148            // remove the chunk associated with this group (if any)
5149            if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
5150        }
5151    
5152        /** @brief Update chunks with current group settings.
5153         *
5154         * Apply current Group field values to the respective chunks. You have
5155         * to call File::Save() to make changes persistent.
5156         *
5157         * Usually there is absolutely no need to call this method explicitly.
5158         * It will be called automatically when File::Save() was called.
5159         *
5160         * @param pProgress - callback function for progress notification
5161         */
5162        void Group::UpdateChunks(progress_t* pProgress) {
5163            // make sure <3gri> and <3gnl> list chunks exist
5164            RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
5165            if (!_3gri) {
5166                _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
5167                pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
5168            }
5169            RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
5170            if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
5171    
5172            if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
5173                // v3 has a fixed list of 128 strings, find a free one
5174                for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
5175                    if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
5176                        pNameChunk = ck;
5177                        break;
5178                    }
5179                }
5180            }
5181    
5182            // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
5183            ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
5184        }
5185    
5186        /**
5187         * Returns the first Sample of this Group. You have to call this method
5188         * once before you use GetNextSample().
5189         *
5190         * <b>Notice:</b> this method might block for a long time, in case the
5191         * samples of this .gig file were not scanned yet
5192         *
5193         * @returns  pointer address to first Sample or NULL if there is none
5194         *           applied to this Group
5195         * @see      GetNextSample()
5196         */
5197        Sample* Group::GetFirstSample() {
5198            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5199            for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
5200                if (pSample->GetGroup() == this) return pSample;
5201            }
5202            return NULL;
5203        }
5204    
5205        /**
5206         * Returns the next Sample of the Group. You have to call
5207         * GetFirstSample() once before you can use this method. By calling this
5208         * method multiple times it iterates through the Samples assigned to
5209         * this Group.
5210         *
5211         * @returns  pointer address to the next Sample of this Group or NULL if
5212         *           end reached
5213         * @see      GetFirstSample()
5214         */
5215        Sample* Group::GetNextSample() {
5216            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5217            for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
5218                if (pSample->GetGroup() == this) return pSample;
5219            }
5220            return NULL;
5221        }
5222    
5223        /**
5224         * Move Sample given by \a pSample from another Group to this Group.
5225         */
5226        void Group::AddSample(Sample* pSample) {
5227            pSample->pGroup = this;
5228        }
5229    
5230        /**
5231         * Move all members of this group to another group (preferably the 1st
5232         * one except this). This method is called explicitly by
5233         * File::DeleteGroup() thus when a Group was deleted. This code was
5234         * intentionally not placed in the destructor!
5235         */
5236        void Group::MoveAll() {
5237            // get "that" other group first
5238            Group* pOtherGroup = NULL;
5239            for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
5240                if (pOtherGroup != this) break;
5241            }
5242            if (!pOtherGroup) throw Exception(
5243                "Could not move samples to another group, since there is no "
5244                "other Group. This is a bug, report it!"
5245            );
5246            // now move all samples of this group to the other group
5247            for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
5248                pOtherGroup->AddSample(pSample);
5249            }
5250      }      }
5251    
5252    
# Line 1670  namespace gig { namespace { Line 5254  namespace gig { namespace {
5254  // *************** File ***************  // *************** File ***************
5255  // *  // *
5256    
5257        /// Reflects Gigasampler file format version 2.0 (1998-06-28).
5258        const DLS::version_t File::VERSION_2 = {
5259            0, 2, 19980628 & 0xffff, 19980628 >> 16
5260        };
5261    
5262        /// Reflects Gigasampler file format version 3.0 (2003-03-31).
5263        const DLS::version_t File::VERSION_3 = {
5264            0, 3, 20030331 & 0xffff, 20030331 >> 16
5265        };
5266    
5267        static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
5268            { CHUNK_ID_IARL, 256 },
5269            { CHUNK_ID_IART, 128 },
5270            { CHUNK_ID_ICMS, 128 },
5271            { CHUNK_ID_ICMT, 1024 },
5272            { CHUNK_ID_ICOP, 128 },
5273            { CHUNK_ID_ICRD, 128 },
5274            { CHUNK_ID_IENG, 128 },
5275            { CHUNK_ID_IGNR, 128 },
5276            { CHUNK_ID_IKEY, 128 },
5277            { CHUNK_ID_IMED, 128 },
5278            { CHUNK_ID_INAM, 128 },
5279            { CHUNK_ID_IPRD, 128 },
5280            { CHUNK_ID_ISBJ, 128 },
5281            { CHUNK_ID_ISFT, 128 },
5282            { CHUNK_ID_ISRC, 128 },
5283            { CHUNK_ID_ISRF, 128 },
5284            { CHUNK_ID_ITCH, 128 },
5285            { 0, 0 }
5286        };
5287    
5288        File::File() : DLS::File() {
5289            bAutoLoad = true;
5290            *pVersion = VERSION_3;
5291            pGroups = NULL;
5292            pScriptGroups = NULL;
5293            pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5294            pInfo->ArchivalLocation = String(256, ' ');
5295    
5296            // add some mandatory chunks to get the file chunks in right
5297            // order (INFO chunk will be moved to first position later)
5298            pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
5299            pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
5300            pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
5301    
5302            GenerateDLSID();
5303        }
5304    
5305      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
5306          pSamples     = NULL;          bAutoLoad = true;
5307          pInstruments = NULL;          pGroups = NULL;
5308            pScriptGroups = NULL;
5309            pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5310      }      }
5311    
5312      File::~File() {      File::~File() {
5313          // free samples          if (pGroups) {
5314          if (pSamples) {              std::list<Group*>::iterator iter = pGroups->begin();
5315              SamplesIterator = pSamples->begin();              std::list<Group*>::iterator end  = pGroups->end();
5316              while (SamplesIterator != pSamples->end() ) {              while (iter != end) {
5317                  delete (*SamplesIterator);                  delete *iter;
5318                  SamplesIterator++;                  ++iter;
5319              }              }
5320              pSamples->clear();              delete pGroups;
             delete pSamples;  
   
5321          }          }
5322          // free instruments          if (pScriptGroups) {
5323          if (pInstruments) {              std::list<ScriptGroup*>::iterator iter = pScriptGroups->begin();
5324              InstrumentsIterator = pInstruments->begin();              std::list<ScriptGroup*>::iterator end  = pScriptGroups->end();
5325              while (InstrumentsIterator != pInstruments->end() ) {              while (iter != end) {
5326                  delete (*InstrumentsIterator);                  delete *iter;
5327                  InstrumentsIterator++;                  ++iter;
5328              }              }
5329              pInstruments->clear();              delete pScriptGroups;
             delete pInstruments;  
5330          }          }
5331      }      }
5332    
5333      Sample* File::GetFirstSample() {      Sample* File::GetFirstSample(progress_t* pProgress) {
5334          if (!pSamples) LoadSamples();          if (!pSamples) LoadSamples(pProgress);
5335          if (!pSamples) return NULL;          if (!pSamples) return NULL;
5336          SamplesIterator = pSamples->begin();          SamplesIterator = pSamples->begin();
5337          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
# Line 1711  namespace gig { namespace { Line 5342  namespace gig { namespace {
5342          SamplesIterator++;          SamplesIterator++;
5343          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5344      }      }
5345        
5346        /**
5347         * Returns Sample object of @a index.
5348         *
5349         * @returns sample object or NULL if index is out of bounds
5350         */
5351        Sample* File::GetSample(uint index) {
5352            if (!pSamples) LoadSamples();
5353            if (!pSamples) return NULL;
5354            DLS::File::SampleList::iterator it = pSamples->begin();
5355            for (int i = 0; i < index; ++i) {
5356                ++it;
5357                if (it == pSamples->end()) return NULL;
5358            }
5359            if (it == pSamples->end()) return NULL;
5360            return static_cast<gig::Sample*>( *it );
5361        }
5362    
5363      void File::LoadSamples() {      /** @brief Add a new sample.
5364          RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);       *
5365          if (wvpl) {       * This will create a new Sample object for the gig file. You have to
5366              unsigned long wvplFileOffset = wvpl->GetFilePos();       * call Save() to make this persistent to the file.
5367              RIFF::List* wave = wvpl->GetFirstSubList();       *
5368              while (wave) {       * @returns pointer to new Sample object
5369                  if (wave->GetListType() == LIST_TYPE_WAVE) {       */
5370                      if (!pSamples) pSamples = new SampleList;      Sample* File::AddSample() {
5371                      unsigned long waveFileOffset = wave->GetFilePos();         if (!pSamples) LoadSamples();
5372                      pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset));         __ensureMandatoryChunksExist();
5373           RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
5374           // create new Sample object and its respective 'wave' list chunk
5375           RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
5376           Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
5377    
5378           // add mandatory chunks to get the chunks in right order
5379           wave->AddSubChunk(CHUNK_ID_FMT, 16);
5380           wave->AddSubList(LIST_TYPE_INFO);
5381    
5382           pSamples->push_back(pSample);
5383           return pSample;
5384        }
5385    
5386        /** @brief Delete a sample.
5387         *
5388         * This will delete the given Sample object from the gig file. Any
5389         * references to this sample from Regions and DimensionRegions will be
5390         * removed. You have to call Save() to make this persistent to the file.
5391         *
5392         * @param pSample - sample to delete
5393         * @throws gig::Exception if given sample could not be found
5394         */
5395        void File::DeleteSample(Sample* pSample) {
5396            if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
5397            SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
5398            if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
5399            if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
5400            pSamples->erase(iter);
5401            delete pSample;
5402    
5403            SampleList::iterator tmp = SamplesIterator;
5404            // remove all references to the sample
5405            for (Instrument* instrument = GetFirstInstrument() ; instrument ;
5406                 instrument = GetNextInstrument()) {
5407                for (Region* region = instrument->GetFirstRegion() ; region ;
5408                     region = instrument->GetNextRegion()) {
5409    
5410                    if (region->GetSample() == pSample) region->SetSample(NULL);
5411    
5412                    for (int i = 0 ; i < region->DimensionRegions ; i++) {
5413                        gig::DimensionRegion *d = region->pDimensionRegions[i];
5414                        if (d->pSample == pSample) d->pSample = NULL;
5415                  }                  }
                 wave = wvpl->GetNextSubList();  
5416              }              }
5417          }          }
5418          else throw gig::Exception("Mandatory <wvpl> chunk not found.");          SamplesIterator = tmp; // restore iterator
5419        }
5420    
5421        void File::LoadSamples() {
5422            LoadSamples(NULL);
5423        }
5424    
5425        void File::LoadSamples(progress_t* pProgress) {
5426            // Groups must be loaded before samples, because samples will try
5427            // to resolve the group they belong to
5428            if (!pGroups) LoadGroups();
5429    
5430            if (!pSamples) pSamples = new SampleList;
5431    
5432            RIFF::File* file = pRIFF;
5433    
5434            // just for progress calculation
5435            int iSampleIndex  = 0;
5436            int iTotalSamples = WavePoolCount;
5437    
5438            // check if samples should be loaded from extension files
5439            // (only for old gig files < 2 GB)
5440            int lastFileNo = 0;
5441            if (!file->IsNew() && !(file->GetCurrentFileSize() >> 31)) {
5442                for (int i = 0 ; i < WavePoolCount ; i++) {
5443                    if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
5444                }
5445            }
5446            String name(pRIFF->GetFileName());
5447            int nameLen = (int) name.length();
5448            char suffix[6];
5449            if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
5450    
5451            for (int fileNo = 0 ; ; ) {
5452                RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
5453                if (wvpl) {
5454                    file_offset_t wvplFileOffset = wvpl->GetFilePos();
5455                    RIFF::List* wave = wvpl->GetFirstSubList();
5456                    while (wave) {
5457                        if (wave->GetListType() == LIST_TYPE_WAVE) {
5458                            // notify current progress
5459                            const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
5460                            __notify_progress(pProgress, subprogress);
5461    
5462                            file_offset_t waveFileOffset = wave->GetFilePos();
5463                            pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo, iSampleIndex));
5464    
5465                            iSampleIndex++;
5466                        }
5467                        wave = wvpl->GetNextSubList();
5468                    }
5469    
5470                    if (fileNo == lastFileNo) break;
5471    
5472                    // open extension file (*.gx01, *.gx02, ...)
5473                    fileNo++;
5474                    sprintf(suffix, ".gx%02d", fileNo);
5475                    name.replace(nameLen, 5, suffix);
5476                    file = new RIFF::File(name);
5477                    ExtensionFiles.push_back(file);
5478                } else break;
5479            }
5480    
5481            __notify_progress(pProgress, 1.0); // notify done
5482      }      }
5483    
5484      Instrument* File::GetFirstInstrument() {      Instrument* File::GetFirstInstrument() {
5485          if (!pInstruments) LoadInstruments();          if (!pInstruments) LoadInstruments();
5486          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
5487          InstrumentsIterator = pInstruments->begin();          InstrumentsIterator = pInstruments->begin();
5488          return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;          return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5489      }      }
5490    
5491      Instrument* File::GetNextInstrument() {      Instrument* File::GetNextInstrument() {
5492          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
5493          InstrumentsIterator++;          InstrumentsIterator++;
5494          return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;          return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5495      }      }
5496    
5497      /**      /**
5498       * Returns the instrument with the given index.       * Returns the instrument with the given index.
5499       *       *
5500         * @param index     - number of the sought instrument (0..n)
5501         * @param pProgress - optional: callback function for progress notification
5502       * @returns  sought instrument or NULL if there's no such instrument       * @returns  sought instrument or NULL if there's no such instrument
5503       */       */
5504      Instrument* File::GetInstrument(uint index) {      Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
5505          if (!pInstruments) LoadInstruments();          if (!pInstruments) {
5506                // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
5507    
5508                // sample loading subtask
5509                progress_t subprogress;
5510                __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
5511                __notify_progress(&subprogress, 0.0f);
5512                if (GetAutoLoad())
5513                    GetFirstSample(&subprogress); // now force all samples to be loaded
5514                __notify_progress(&subprogress, 1.0f);
5515    
5516                // instrument loading subtask
5517                if (pProgress && pProgress->callback) {
5518                    subprogress.__range_min = subprogress.__range_max;
5519                    subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
5520                }
5521                __notify_progress(&subprogress, 0.0f);
5522                LoadInstruments(&subprogress);
5523                __notify_progress(&subprogress, 1.0f);
5524            }
5525          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
5526          InstrumentsIterator = pInstruments->begin();          InstrumentsIterator = pInstruments->begin();
5527          for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {          for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
5528              if (i == index) return *InstrumentsIterator;              if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
5529              InstrumentsIterator++;              InstrumentsIterator++;
5530          }          }
5531          return NULL;          return NULL;
5532      }      }
5533    
5534        /** @brief Add a new instrument definition.
5535         *
5536         * This will create a new Instrument object for the gig file. You have
5537         * to call Save() to make this persistent to the file.
5538         *
5539         * @returns pointer to new Instrument object
5540         */
5541        Instrument* File::AddInstrument() {
5542           if (!pInstruments) LoadInstruments();
5543           __ensureMandatoryChunksExist();
5544           RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5545           RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
5546    
5547           // add mandatory chunks to get the chunks in right order
5548           lstInstr->AddSubList(LIST_TYPE_INFO);
5549           lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
5550    
5551           Instrument* pInstrument = new Instrument(this, lstInstr);
5552           pInstrument->GenerateDLSID();
5553    
5554           lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
5555    
5556           // this string is needed for the gig to be loadable in GSt:
5557           pInstrument->pInfo->Software = "Endless Wave";
5558    
5559           pInstruments->push_back(pInstrument);
5560           return pInstrument;
5561        }
5562        
5563        /** @brief Add a duplicate of an existing instrument.
5564         *
5565         * Duplicates the instrument definition given by @a orig and adds it
5566         * to this file. This allows in an instrument editor application to
5567         * easily create variations of an instrument, which will be stored in
5568         * the same .gig file, sharing i.e. the same samples.
5569         *
5570         * Note that all sample pointers referenced by @a orig are simply copied as
5571         * memory address. Thus the respective samples are shared, not duplicated!
5572         *
5573         * You have to call Save() to make this persistent to the file.
5574         *
5575         * @param orig - original instrument to be copied
5576         * @returns duplicated copy of the given instrument
5577         */
5578        Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
5579            Instrument* instr = AddInstrument();
5580            instr->CopyAssign(orig);
5581            return instr;
5582        }
5583        
5584        /** @brief Add content of another existing file.
5585         *
5586         * Duplicates the samples, groups and instruments of the original file
5587         * given by @a pFile and adds them to @c this File. In case @c this File is
5588         * a new one that you haven't saved before, then you have to call
5589         * SetFileName() before calling AddContentOf(), because this method will
5590         * automatically save this file during operation, which is required for
5591         * writing the sample waveform data by disk streaming.
5592         *
5593         * @param pFile - original file whose's content shall be copied from
5594         */
5595        void File::AddContentOf(File* pFile) {
5596            static int iCallCount = -1;
5597            iCallCount++;
5598            std::map<Group*,Group*> mGroups;
5599            std::map<Sample*,Sample*> mSamples;
5600            
5601            // clone sample groups
5602            for (int i = 0; pFile->GetGroup(i); ++i) {
5603                Group* g = AddGroup();
5604                g->Name =
5605                    "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
5606                mGroups[pFile->GetGroup(i)] = g;
5607            }
5608            
5609            // clone samples (not waveform data here yet)
5610            for (int i = 0; pFile->GetSample(i); ++i) {
5611                Sample* s = AddSample();
5612                s->CopyAssignMeta(pFile->GetSample(i));
5613                mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
5614                mSamples[pFile->GetSample(i)] = s;
5615            }
5616            
5617            //BUG: For some reason this method only works with this additional
5618            //     Save() call in between here.
5619            //
5620            // Important: The correct one of the 2 Save() methods has to be called
5621            // here, depending on whether the file is completely new or has been
5622            // saved to disk already, otherwise it will result in data corruption.
5623            if (pRIFF->IsNew())
5624                Save(GetFileName());
5625            else
5626                Save();
5627            
5628            // clone instruments
5629            // (passing the crosslink table here for the cloned samples)
5630            for (int i = 0; pFile->GetInstrument(i); ++i) {
5631                Instrument* instr = AddInstrument();
5632                instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
5633            }
5634            
5635            // Mandatory: file needs to be saved to disk at this point, so this
5636            // file has the correct size and data layout for writing the samples'
5637            // waveform data to disk.
5638            Save();
5639            
5640            // clone samples' waveform data
5641            // (using direct read & write disk streaming)
5642            for (int i = 0; pFile->GetSample(i); ++i) {
5643                mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
5644            }
5645        }
5646    
5647        /** @brief Delete an instrument.
5648         *
5649         * This will delete the given Instrument object from the gig file. You
5650         * have to call Save() to make this persistent to the file.
5651         *
5652         * @param pInstrument - instrument to delete
5653         * @throws gig::Exception if given instrument could not be found
5654         */
5655        void File::DeleteInstrument(Instrument* pInstrument) {
5656            if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
5657            InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
5658            if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
5659            pInstruments->erase(iter);
5660            delete pInstrument;
5661        }
5662    
5663      void File::LoadInstruments() {      void File::LoadInstruments() {
5664            LoadInstruments(NULL);
5665        }
5666    
5667        void File::LoadInstruments(progress_t* pProgress) {
5668            if (!pInstruments) pInstruments = new InstrumentList;
5669          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5670          if (lstInstruments) {          if (lstInstruments) {
5671                int iInstrumentIndex = 0;
5672              RIFF::List* lstInstr = lstInstruments->GetFirstSubList();              RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
5673              while (lstInstr) {              while (lstInstr) {
5674                  if (lstInstr->GetListType() == LIST_TYPE_INS) {                  if (lstInstr->GetListType() == LIST_TYPE_INS) {
5675                      if (!pInstruments) pInstruments = new InstrumentList;                      // notify current progress
5676                      pInstruments->push_back(new Instrument(this, lstInstr));                      const float localProgress = (float) iInstrumentIndex / (float) Instruments;
5677                        __notify_progress(pProgress, localProgress);
5678    
5679                        // divide local progress into subprogress for loading current Instrument
5680                        progress_t subprogress;
5681                        __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
5682    
5683                        pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
5684    
5685                        iInstrumentIndex++;
5686                  }                  }
5687                  lstInstr = lstInstruments->GetNextSubList();                  lstInstr = lstInstruments->GetNextSubList();
5688              }              }
5689                __notify_progress(pProgress, 1.0); // notify done
5690          }          }
5691          else throw gig::Exception("Mandatory <lins> list chunk not found.");      }
5692    
5693        /// Updates the 3crc chunk with the checksum of a sample. The
5694        /// update is done directly to disk, as this method is called
5695        /// after File::Save()
5696        void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
5697            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5698            if (!_3crc) return;
5699    
5700            // get the index of the sample
5701            int iWaveIndex = GetWaveTableIndexOf(pSample);
5702            if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
5703    
5704            // write the CRC-32 checksum to disk
5705            _3crc->SetPos(iWaveIndex * 8);
5706            uint32_t one = 1;
5707            _3crc->WriteUint32(&one); // always 1
5708            _3crc->WriteUint32(&crc);
5709        }
5710    
5711        uint32_t File::GetSampleChecksum(Sample* pSample) {
5712            // get the index of the sample
5713            int iWaveIndex = GetWaveTableIndexOf(pSample);
5714            if (iWaveIndex < 0) throw gig::Exception("Could not retrieve reference crc of sample, could not resolve sample's wave table index");
5715    
5716            return GetSampleChecksumByIndex(iWaveIndex);
5717        }
5718    
5719        uint32_t File::GetSampleChecksumByIndex(int index) {
5720            if (index < 0) throw gig::Exception("Could not retrieve reference crc of sample, invalid wave pool index of sample");
5721    
5722            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5723            if (!_3crc) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
5724            uint8_t* pData = (uint8_t*) _3crc->LoadChunkData();
5725            if (!pData) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
5726    
5727            // read the CRC-32 checksum directly from disk
5728            size_t pos = index * 8;
5729            if (pos + 8 > _3crc->GetNewSize())
5730                throw gig::Exception("Could not retrieve reference crc of sample, could not seek to required position in crc chunk");
5731    
5732            uint32_t one = load32(&pData[pos]); // always 1
5733            if (one != 1)
5734                throw gig::Exception("Could not retrieve reference crc of sample, because reference checksum table is damaged");
5735    
5736            return load32(&pData[pos+4]);
5737        }
5738    
5739        int File::GetWaveTableIndexOf(gig::Sample* pSample) {
5740            if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
5741            File::SampleList::iterator iter = pSamples->begin();
5742            File::SampleList::iterator end  = pSamples->end();
5743            for (int index = 0; iter != end; ++iter, ++index)
5744                if (*iter == pSample)
5745                    return index;
5746            return -1;
5747        }
5748    
5749        /**
5750         * Checks whether the file's "3CRC" chunk was damaged. This chunk contains
5751         * the CRC32 check sums of all samples' raw wave data.
5752         *
5753         * @return true if 3CRC chunk is OK, or false if 3CRC chunk is damaged
5754         */
5755        bool File::VerifySampleChecksumTable() {
5756            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5757            if (!_3crc) return false;
5758            if (_3crc->GetNewSize() <= 0) return false;
5759            if (_3crc->GetNewSize() % 8) return false;
5760            if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
5761            if (_3crc->GetNewSize() != pSamples->size() * 8) return false;
5762    
5763            const file_offset_t n = _3crc->GetNewSize() / 8;
5764    
5765            uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
5766            if (!pData) return false;
5767    
5768            for (file_offset_t i = 0; i < n; ++i) {
5769                uint32_t one = pData[i*2];
5770                if (one != 1) return false;
5771            }
5772    
5773            return true;
5774        }
5775    
5776        /**
5777         * Recalculates CRC32 checksums for all samples and rebuilds this gig
5778         * file's checksum table with those new checksums. This might usually
5779         * just be necessary if the checksum table was damaged.
5780         *
5781         * @e IMPORTANT: The current implementation of this method only works
5782         * with files that have not been modified since it was loaded, because
5783         * it expects that no externally caused file structure changes are
5784         * required!
5785         *
5786         * Due to the expectation above, this method is currently protected
5787         * and actually only used by the command line tool "gigdump" yet.
5788         *
5789         * @returns true if Save() is required to be called after this call,
5790         *          false if no further action is required
5791         */
5792        bool File::RebuildSampleChecksumTable() {
5793            // make sure sample chunks were scanned
5794            if (!pSamples) GetFirstSample();
5795    
5796            bool bRequiresSave = false;
5797    
5798            // make sure "3CRC" chunk exists with required size
5799            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5800            if (!_3crc) {
5801                _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
5802                // the order of einf and 3crc is not the same in v2 and v3
5803                RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
5804                if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
5805                bRequiresSave = true;
5806            } else if (_3crc->GetNewSize() != pSamples->size() * 8) {
5807                _3crc->Resize(pSamples->size() * 8);
5808                bRequiresSave = true;
5809            }
5810    
5811            if (bRequiresSave) { // refill CRC table for all samples in RAM ...
5812                uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
5813                {
5814                    File::SampleList::iterator iter = pSamples->begin();
5815                    File::SampleList::iterator end  = pSamples->end();
5816                    for (; iter != end; ++iter) {
5817                        gig::Sample* pSample = (gig::Sample*) *iter;
5818                        int index = GetWaveTableIndexOf(pSample);
5819                        if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
5820                        pData[index*2]   = 1; // always 1
5821                        pData[index*2+1] = pSample->CalculateWaveDataChecksum();
5822                    }
5823                }
5824            } else { // no file structure changes necessary, so directly write to disk and we are done ...
5825                // make sure file is in write mode
5826                pRIFF->SetMode(RIFF::stream_mode_read_write);
5827                {
5828                    File::SampleList::iterator iter = pSamples->begin();
5829                    File::SampleList::iterator end  = pSamples->end();
5830                    for (; iter != end; ++iter) {
5831                        gig::Sample* pSample = (gig::Sample*) *iter;
5832                        int index = GetWaveTableIndexOf(pSample);
5833                        if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
5834                        pSample->crc  = pSample->CalculateWaveDataChecksum();
5835                        SetSampleChecksum(pSample, pSample->crc);
5836                    }
5837                }
5838            }
5839    
5840            return bRequiresSave;
5841        }
5842    
5843        Group* File::GetFirstGroup() {
5844            if (!pGroups) LoadGroups();
5845            // there must always be at least one group
5846            GroupsIterator = pGroups->begin();
5847            return *GroupsIterator;
5848        }
5849    
5850        Group* File::GetNextGroup() {
5851            if (!pGroups) return NULL;
5852            ++GroupsIterator;
5853            return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
5854        }
5855    
5856        /**
5857         * Returns the group with the given index.
5858         *
5859         * @param index - number of the sought group (0..n)
5860         * @returns sought group or NULL if there's no such group
5861         */
5862        Group* File::GetGroup(uint index) {
5863            if (!pGroups) LoadGroups();
5864            GroupsIterator = pGroups->begin();
5865            for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
5866                if (i == index) return *GroupsIterator;
5867                ++GroupsIterator;
5868            }
5869            return NULL;
5870        }
5871    
5872        /**
5873         * Returns the group with the given group name.
5874         *
5875         * Note: group names don't have to be unique in the gig format! So there
5876         * can be multiple groups with the same name. This method will simply
5877         * return the first group found with the given name.
5878         *
5879         * @param name - name of the sought group
5880         * @returns sought group or NULL if there's no group with that name
5881         */
5882        Group* File::GetGroup(String name) {
5883            if (!pGroups) LoadGroups();
5884            GroupsIterator = pGroups->begin();
5885            for (uint i = 0; GroupsIterator != pGroups->end(); ++GroupsIterator, ++i)
5886                if ((*GroupsIterator)->Name == name) return *GroupsIterator;
5887            return NULL;
5888        }
5889    
5890        Group* File::AddGroup() {
5891            if (!pGroups) LoadGroups();
5892            // there must always be at least one group
5893            __ensureMandatoryChunksExist();
5894            Group* pGroup = new Group(this, NULL);
5895            pGroups->push_back(pGroup);
5896            return pGroup;
5897        }
5898    
5899        /** @brief Delete a group and its samples.
5900         *
5901         * This will delete the given Group object and all the samples that
5902         * belong to this group from the gig file. You have to call Save() to
5903         * make this persistent to the file.
5904         *
5905         * @param pGroup - group to delete
5906         * @throws gig::Exception if given group could not be found
5907         */
5908        void File::DeleteGroup(Group* pGroup) {
5909            if (!pGroups) LoadGroups();
5910            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
5911            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
5912            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
5913            // delete all members of this group
5914            for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
5915                DeleteSample(pSample);
5916            }
5917            // now delete this group object
5918            pGroups->erase(iter);
5919            delete pGroup;
5920        }
5921    
5922        /** @brief Delete a group.
5923         *
5924         * This will delete the given Group object from the gig file. All the
5925         * samples that belong to this group will not be deleted, but instead
5926         * be moved to another group. You have to call Save() to make this
5927         * persistent to the file.
5928         *
5929         * @param pGroup - group to delete
5930         * @throws gig::Exception if given group could not be found
5931         */
5932        void File::DeleteGroupOnly(Group* pGroup) {
5933            if (!pGroups) LoadGroups();
5934            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
5935            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
5936            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
5937            // move all members of this group to another group
5938            pGroup->MoveAll();
5939            pGroups->erase(iter);
5940            delete pGroup;
5941        }
5942    
5943        void File::LoadGroups() {
5944            if (!pGroups) pGroups = new std::list<Group*>;
5945            // try to read defined groups from file
5946            RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
5947            if (lst3gri) {
5948                RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
5949                if (lst3gnl) {
5950                    RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
5951                    while (ck) {
5952                        if (ck->GetChunkID() == CHUNK_ID_3GNM) {
5953                            if (pVersion && pVersion->major == 3 &&
5954                                strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
5955    
5956                            pGroups->push_back(new Group(this, ck));
5957                        }
5958                        ck = lst3gnl->GetNextSubChunk();
5959                    }
5960                }
5961            }
5962            // if there were no group(s), create at least the mandatory default group
5963            if (!pGroups->size()) {
5964                Group* pGroup = new Group(this, NULL);
5965                pGroup->Name = "Default Group";
5966                pGroups->push_back(pGroup);
5967            }
5968        }
5969    
5970        /** @brief Get instrument script group (by index).
5971         *
5972         * Returns the real-time instrument script group with the given index.
5973         *
5974         * @param index - number of the sought group (0..n)
5975         * @returns sought script group or NULL if there's no such group
5976         */
5977        ScriptGroup* File::GetScriptGroup(uint index) {
5978            if (!pScriptGroups) LoadScriptGroups();
5979            std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
5980            for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
5981                if (i == index) return *it;
5982            return NULL;
5983        }
5984    
5985        /** @brief Get instrument script group (by name).
5986         *
5987         * Returns the first real-time instrument script group found with the given
5988         * group name. Note that group names may not necessarily be unique.
5989         *
5990         * @param name - name of the sought script group
5991         * @returns sought script group or NULL if there's no such group
5992         */
5993        ScriptGroup* File::GetScriptGroup(const String& name) {
5994            if (!pScriptGroups) LoadScriptGroups();
5995            std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
5996            for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
5997                if ((*it)->Name == name) return *it;
5998            return NULL;
5999        }
6000    
6001        /** @brief Add new instrument script group.
6002         *
6003         * Adds a new, empty real-time instrument script group to the file.
6004         *
6005         * You have to call Save() to make this persistent to the file.
6006         *
6007         * @return new empty script group
6008         */
6009        ScriptGroup* File::AddScriptGroup() {
6010            if (!pScriptGroups) LoadScriptGroups();
6011            ScriptGroup* pScriptGroup = new ScriptGroup(this, NULL);
6012            pScriptGroups->push_back(pScriptGroup);
6013            return pScriptGroup;
6014        }
6015    
6016        /** @brief Delete an instrument script group.
6017         *
6018         * This will delete the given real-time instrument script group and all its
6019         * instrument scripts it contains. References inside instruments that are
6020         * using the deleted scripts will be removed from the respective instruments
6021         * accordingly.
6022         *
6023         * You have to call Save() to make this persistent to the file.
6024         *
6025         * @param pScriptGroup - script group to delete
6026         * @throws gig::Exception if given script group could not be found
6027         */
6028        void File::DeleteScriptGroup(ScriptGroup* pScriptGroup) {
6029            if (!pScriptGroups) LoadScriptGroups();
6030            std::list<ScriptGroup*>::iterator iter =
6031                find(pScriptGroups->begin(), pScriptGroups->end(), pScriptGroup);
6032            if (iter == pScriptGroups->end())
6033                throw gig::Exception("Could not delete script group, could not find given script group");
6034            pScriptGroups->erase(iter);
6035            for (int i = 0; pScriptGroup->GetScript(i); ++i)
6036                pScriptGroup->DeleteScript(pScriptGroup->GetScript(i));
6037            if (pScriptGroup->pList)
6038                pScriptGroup->pList->GetParent()->DeleteSubChunk(pScriptGroup->pList);
6039            delete pScriptGroup;
6040        }
6041    
6042        void File::LoadScriptGroups() {
6043            if (pScriptGroups) return;
6044            pScriptGroups = new std::list<ScriptGroup*>;
6045            RIFF::List* lstLS = pRIFF->GetSubList(LIST_TYPE_3LS);
6046            if (lstLS) {
6047                for (RIFF::List* lst = lstLS->GetFirstSubList(); lst;
6048                     lst = lstLS->GetNextSubList())
6049                {
6050                    if (lst->GetListType() == LIST_TYPE_RTIS) {
6051                        pScriptGroups->push_back(new ScriptGroup(this, lst));
6052                    }
6053                }
6054            }
6055        }
6056    
6057        /**
6058         * Apply all the gig file's current instruments, samples, groups and settings
6059         * to the respective RIFF chunks. You have to call Save() to make changes
6060         * persistent.
6061         *
6062         * Usually there is absolutely no need to call this method explicitly.
6063         * It will be called automatically when File::Save() was called.
6064         *
6065         * @param pProgress - callback function for progress notification
6066         * @throws Exception - on errors
6067         */
6068        void File::UpdateChunks(progress_t* pProgress) {
6069            bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
6070    
6071            // update own gig format extension chunks
6072            // (not part of the GigaStudio 4 format)
6073            RIFF::List* lst3LS = pRIFF->GetSubList(LIST_TYPE_3LS);
6074            if (!lst3LS) {
6075                lst3LS = pRIFF->AddSubList(LIST_TYPE_3LS);
6076            }
6077            // Make sure <3LS > chunk is placed before <ptbl> chunk. The precise
6078            // location of <3LS > is irrelevant, however it should be located
6079            // before  the actual wave data
6080            RIFF::Chunk* ckPTBL = pRIFF->GetSubChunk(CHUNK_ID_PTBL);
6081            pRIFF->MoveSubChunk(lst3LS, ckPTBL);
6082    
6083            // This must be performed before writing the chunks for instruments,
6084            // because the instruments' script slots will write the file offsets
6085            // of the respective instrument script chunk as reference.
6086            if (pScriptGroups) {
6087                // Update instrument script (group) chunks.
6088                for (std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6089                     it != pScriptGroups->end(); ++it)
6090                {
6091                    (*it)->UpdateChunks(pProgress);
6092                }
6093            }
6094    
6095            // in case no libgig custom format data was added, then remove the
6096            // custom "3LS " chunk again
6097            if (!lst3LS->CountSubChunks()) {
6098                pRIFF->DeleteSubChunk(lst3LS);
6099                lst3LS = NULL;
6100            }
6101    
6102            // first update base class's chunks
6103            DLS::File::UpdateChunks(pProgress);
6104    
6105            if (newFile) {
6106                // INFO was added by Resource::UpdateChunks - make sure it
6107                // is placed first in file
6108                RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
6109                RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
6110                if (first != info) {
6111                    pRIFF->MoveSubChunk(info, first);
6112                }
6113            }
6114    
6115            // update group's chunks
6116            if (pGroups) {
6117                // make sure '3gri' and '3gnl' list chunks exist
6118                // (before updating the Group chunks)
6119                RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6120                if (!_3gri) {
6121                    _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
6122                    pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
6123                }
6124                RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
6125                if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
6126    
6127                // v3: make sure the file has 128 3gnm chunks
6128                // (before updating the Group chunks)
6129                if (pVersion && pVersion->major == 3) {
6130                    RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
6131                    for (int i = 0 ; i < 128 ; i++) {
6132                        if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
6133                        if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
6134                    }
6135                }
6136    
6137                std::list<Group*>::iterator iter = pGroups->begin();
6138                std::list<Group*>::iterator end  = pGroups->end();
6139                for (; iter != end; ++iter) {
6140                    (*iter)->UpdateChunks(pProgress);
6141                }
6142            }
6143    
6144            // update einf chunk
6145    
6146            // The einf chunk contains statistics about the gig file, such
6147            // as the number of regions and samples used by each
6148            // instrument. It is divided in equally sized parts, where the
6149            // first part contains information about the whole gig file,
6150            // and the rest of the parts map to each instrument in the
6151            // file.
6152            //
6153            // At the end of each part there is a bit map of each sample
6154            // in the file, where a set bit means that the sample is used
6155            // by the file/instrument.
6156            //
6157            // Note that there are several fields with unknown use. These
6158            // are set to zero.
6159    
6160            int sublen = int(pSamples->size() / 8 + 49);
6161            int einfSize = (Instruments + 1) * sublen;
6162    
6163            RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6164            if (einf) {
6165                if (einf->GetSize() != einfSize) {
6166                    einf->Resize(einfSize);
6167                    memset(einf->LoadChunkData(), 0, einfSize);
6168                }
6169            } else if (newFile) {
6170                einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
6171            }
6172            if (einf) {
6173                uint8_t* pData = (uint8_t*) einf->LoadChunkData();
6174    
6175                std::map<gig::Sample*,int> sampleMap;
6176                int sampleIdx = 0;
6177                for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
6178                    sampleMap[pSample] = sampleIdx++;
6179                }
6180    
6181                int totnbusedsamples = 0;
6182                int totnbusedchannels = 0;
6183                int totnbregions = 0;
6184                int totnbdimregions = 0;
6185                int totnbloops = 0;
6186                int instrumentIdx = 0;
6187    
6188                memset(&pData[48], 0, sublen - 48);
6189    
6190                for (Instrument* instrument = GetFirstInstrument() ; instrument ;
6191                     instrument = GetNextInstrument()) {
6192                    int nbusedsamples = 0;
6193                    int nbusedchannels = 0;
6194                    int nbdimregions = 0;
6195                    int nbloops = 0;
6196    
6197                    memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
6198    
6199                    for (Region* region = instrument->GetFirstRegion() ; region ;
6200                         region = instrument->GetNextRegion()) {
6201                        for (int i = 0 ; i < region->DimensionRegions ; i++) {
6202                            gig::DimensionRegion *d = region->pDimensionRegions[i];
6203                            if (d->pSample) {
6204                                int sampleIdx = sampleMap[d->pSample];
6205                                int byte = 48 + sampleIdx / 8;
6206                                int bit = 1 << (sampleIdx & 7);
6207                                if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
6208                                    pData[(instrumentIdx + 1) * sublen + byte] |= bit;
6209                                    nbusedsamples++;
6210                                    nbusedchannels += d->pSample->Channels;
6211    
6212                                    if ((pData[byte] & bit) == 0) {
6213                                        pData[byte] |= bit;
6214                                        totnbusedsamples++;
6215                                        totnbusedchannels += d->pSample->Channels;
6216                                    }
6217                                }
6218                            }
6219                            if (d->SampleLoops) nbloops++;
6220                        }
6221                        nbdimregions += region->DimensionRegions;
6222                    }
6223                    // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6224                    // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
6225                    store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
6226                    store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
6227                    store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
6228                    store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
6229                    store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
6230                    store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
6231                    // next 8 bytes unknown
6232                    store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
6233                    store32(&pData[(instrumentIdx + 1) * sublen + 40], (uint32_t) pSamples->size());
6234                    // next 4 bytes unknown
6235    
6236                    totnbregions += instrument->Regions;
6237                    totnbdimregions += nbdimregions;
6238                    totnbloops += nbloops;
6239                    instrumentIdx++;
6240                }
6241                // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6242                // store32(&pData[0], sublen);
6243                store32(&pData[4], totnbusedchannels);
6244                store32(&pData[8], totnbusedsamples);
6245                store32(&pData[12], Instruments);
6246                store32(&pData[16], totnbregions);
6247                store32(&pData[20], totnbdimregions);
6248                store32(&pData[24], totnbloops);
6249                // next 8 bytes unknown
6250                // next 4 bytes unknown, not always 0
6251                store32(&pData[40], (uint32_t) pSamples->size());
6252                // next 4 bytes unknown
6253            }
6254    
6255            // update 3crc chunk
6256    
6257            // The 3crc chunk contains CRC-32 checksums for the
6258            // samples. When saving a gig file to disk, we first update the 3CRC
6259            // chunk here (in RAM) with the old crc values which we read from the
6260            // 3CRC chunk when we opened the file (available with gig::Sample::crc
6261            // member variable). This step is required, because samples might have
6262            // been deleted by the user since the file was opened, which in turn
6263            // changes the order of the (i.e. old) checksums within the 3crc chunk.
6264            // If a sample was conciously modified by the user (that is if
6265            // Sample::Write() was called later on) then Sample::Write() will just
6266            // update the respective individual checksum(s) directly on disk and
6267            // leaves all other sample checksums untouched.
6268    
6269            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6270            if (_3crc) {
6271                _3crc->Resize(pSamples->size() * 8);
6272            } else /*if (newFile)*/ {
6273                _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6274                // the order of einf and 3crc is not the same in v2 and v3
6275                if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
6276            }
6277            { // must be performed in RAM here ...
6278                uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6279                if (pData) {
6280                    File::SampleList::iterator iter = pSamples->begin();
6281                    File::SampleList::iterator end  = pSamples->end();
6282                    for (int index = 0; iter != end; ++iter, ++index) {
6283                        gig::Sample* pSample = (gig::Sample*) *iter;
6284                        pData[index*2]   = 1; // always 1
6285                        pData[index*2+1] = pSample->crc;
6286                    }
6287                }
6288            }
6289        }
6290        
6291        void File::UpdateFileOffsets() {
6292            DLS::File::UpdateFileOffsets();
6293    
6294            for (Instrument* instrument = GetFirstInstrument(); instrument;
6295                 instrument = GetNextInstrument())
6296            {
6297                instrument->UpdateScriptFileOffsets();
6298            }
6299        }
6300    
6301        /**
6302         * Enable / disable automatic loading. By default this properyt is
6303         * enabled and all informations are loaded automatically. However
6304         * loading all Regions, DimensionRegions and especially samples might
6305         * take a long time for large .gig files, and sometimes one might only
6306         * be interested in retrieving very superficial informations like the
6307         * amount of instruments and their names. In this case one might disable
6308         * automatic loading to avoid very slow response times.
6309         *
6310         * @e CAUTION: by disabling this property many pointers (i.e. sample
6311         * references) and informations will have invalid or even undefined
6312         * data! This feature is currently only intended for retrieving very
6313         * superficial informations in a very fast way. Don't use it to retrieve
6314         * details like synthesis informations or even to modify .gig files!
6315         */
6316        void File::SetAutoLoad(bool b) {
6317            bAutoLoad = b;
6318        }
6319    
6320        /**
6321         * Returns whether automatic loading is enabled.
6322         * @see SetAutoLoad()
6323         */
6324        bool File::GetAutoLoad() {
6325            return bAutoLoad;
6326      }      }
6327    
6328    
# Line 1785  namespace gig { namespace { Line 6337  namespace gig { namespace {
6337          std::cout << "gig::Exception: " << Message << std::endl;          std::cout << "gig::Exception: " << Message << std::endl;
6338      }      }
6339    
6340    
6341    // *************** functions ***************
6342    // *
6343    
6344        /**
6345         * Returns the name of this C++ library. This is usually "libgig" of
6346         * course. This call is equivalent to RIFF::libraryName() and
6347         * DLS::libraryName().
6348         */
6349        String libraryName() {
6350            return PACKAGE;
6351        }
6352    
6353        /**
6354         * Returns version of this C++ library. This call is equivalent to
6355         * RIFF::libraryVersion() and DLS::libraryVersion().
6356         */
6357        String libraryVersion() {
6358            return VERSION;
6359        }
6360    
6361  } // namespace gig  } // namespace gig

Legend:
Removed from v.437  
changed lines
  Added in v.3115

  ViewVC Help
Powered by ViewVC