/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Diff of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 437 by persson, Wed Mar 9 22:02:40 2005 UTC revision 3478 by schoenebeck, Thu Feb 21 20:10:08 2019 UTC
# Line 1  Line 1 
1  /***************************************************************************  /***************************************************************************
2   *                                                                         *   *                                                                         *
3   *   libgig - C++ cross-platform Gigasampler format file loader library    *   *   libgig - C++ cross-platform Gigasampler format file access library    *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003-2005 by Christian Schoenebeck                      *   *   Copyright (C) 2003-2019 by Christian Schoenebeck                      *
6   *                              <cuse@users.sourceforge.net>               *   *                              <cuse@users.sourceforge.net>               *
7   *                                                                         *   *                                                                         *
8   *   This library is free software; you can redistribute it and/or modify  *   *   This library is free software; you can redistribute it and/or modify  *
# Line 23  Line 23 
23    
24  #include "gig.h"  #include "gig.h"
25    
26    #include "helper.h"
27    #include "Serialization.h"
28    
29    #include <algorithm>
30    #include <math.h>
31  #include <iostream>  #include <iostream>
32    #include <assert.h>
33    
34    /// libgig's current file format version (for extending the original Giga file
35    /// format with libgig's own custom data / custom features).
36    #define GIG_FILE_EXT_VERSION    2
37    
38    /// Initial size of the sample buffer which is used for decompression of
39    /// compressed sample wave streams - this value should always be bigger than
40    /// the biggest sample piece expected to be read by the sampler engine,
41    /// otherwise the buffer size will be raised at runtime and thus the buffer
42    /// reallocated which is time consuming and unefficient.
43    #define INITIAL_SAMPLE_BUFFER_SIZE              512000 // 512 kB
44    
45    /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
46    #define GIG_EXP_DECODE(x)                       (pow(1.000000008813822, x))
47    #define GIG_EXP_ENCODE(x)                       (log(x) / log(1.000000008813822))
48    #define GIG_PITCH_TRACK_EXTRACT(x)              (!(x & 0x01))
49    #define GIG_PITCH_TRACK_ENCODE(x)               ((x) ? 0x00 : 0x01)
50    #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x)       ((x >> 4) & 0x03)
51    #define GIG_VCF_RESONANCE_CTRL_ENCODE(x)        ((x & 0x03) << 4)
52    #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x)  ((x >> 1) & 0x03)
53    #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x)   ((x >> 3) & 0x03)
54    #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
55    #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x)   ((x & 0x03) << 1)
56    #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x)    ((x & 0x03) << 3)
57    #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x)  ((x & 0x03) << 5)
58    
59    #define SRLZ(member) \
60        archive->serializeMember(*this, member, #member);
61    
62  namespace gig { namespace {  namespace gig {
63    
64  // *************** Internal functions for sample decopmression ***************  // *************** Internal functions for sample decompression ***************
65  // *  // *
66    
67    namespace {
68    
69      inline int get12lo(const unsigned char* pSrc)      inline int get12lo(const unsigned char* pSrc)
70      {      {
71          const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;          const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
# Line 53  namespace gig { namespace { Line 89  namespace gig { namespace {
89          return x & 0x800000 ? x - 0x1000000 : x;          return x & 0x800000 ? x - 0x1000000 : x;
90      }      }
91    
92        inline void store24(unsigned char* pDst, int x)
93        {
94            pDst[0] = x;
95            pDst[1] = x >> 8;
96            pDst[2] = x >> 16;
97        }
98    
99      void Decompress16(int compressionmode, const unsigned char* params,      void Decompress16(int compressionmode, const unsigned char* params,
100                        int srcStep, int dstStep,                        int srcStep, int dstStep,
101                        const unsigned char* pSrc, int16_t* pDst,                        const unsigned char* pSrc, int16_t* pDst,
102                        unsigned long currentframeoffset,                        file_offset_t currentframeoffset,
103                        unsigned long copysamples)                        file_offset_t copysamples)
104      {      {
105          switch (compressionmode) {          switch (compressionmode) {
106              case 0: // 16 bit uncompressed              case 0: // 16 bit uncompressed
# Line 92  namespace gig { namespace { Line 135  namespace gig { namespace {
135      }      }
136    
137      void Decompress24(int compressionmode, const unsigned char* params,      void Decompress24(int compressionmode, const unsigned char* params,
138                        int dstStep, const unsigned char* pSrc, int16_t* pDst,                        int dstStep, const unsigned char* pSrc, uint8_t* pDst,
139                        unsigned long currentframeoffset,                        file_offset_t currentframeoffset,
140                        unsigned long copysamples, int truncatedBits)                        file_offset_t copysamples, int truncatedBits)
141      {      {
142          // Note: The 24 bits are truncated to 16 bits for now.          int y, dy, ddy, dddy;
143    
144          // Note: The calculation of the initial value of y is strange  #define GET_PARAMS(params)                      \
145          // and not 100% correct. What should the first two parameters          y    = get24(params);                   \
146          // really be used for? Why are they two? The correct value for          dy   = y - get24((params) + 3);         \
147          // y seems to lie somewhere between the values of the first          ddy  = get24((params) + 6);             \
148          // two parameters.          dddy = get24((params) + 9)
         //  
         // Strange thing #2: The formula in SKIP_ONE gives values for  
         // y that are twice as high as they should be. That's why  
         // COPY_ONE shifts an extra step, and also why y is  
         // initialized with a sum instead of a mean value.  
   
         int y, dy, ddy;  
   
         const int shift = 8 - truncatedBits;  
         const int shift1 = shift + 1;  
   
 #define GET_PARAMS(params)                              \  
         y = (get24(params) + get24((params) + 3));      \  
         dy  = get24((params) + 6);                      \  
         ddy = get24((params) + 9)  
149    
150  #define SKIP_ONE(x)                             \  #define SKIP_ONE(x)                             \
151          ddy -= (x);                             \          dddy -= (x);                            \
152          dy -= ddy;                              \          ddy  -= dddy;                           \
153          y -= dy          dy   =  -dy - ddy;                      \
154            y    += dy
155    
156  #define COPY_ONE(x)                             \  #define COPY_ONE(x)                             \
157          SKIP_ONE(x);                            \          SKIP_ONE(x);                            \
158          *pDst = y >> shift1;                    \          store24(pDst, y << truncatedBits);      \
159          pDst += dstStep          pDst += dstStep
160    
161          switch (compressionmode) {          switch (compressionmode) {
162              case 2: // 24 bit uncompressed              case 2: // 24 bit uncompressed
163                  pSrc += currentframeoffset * 3;                  pSrc += currentframeoffset * 3;
164                  while (copysamples) {                  while (copysamples) {
165                      *pDst = get24(pSrc) >> shift;                      store24(pDst, get24(pSrc) << truncatedBits);
166                      pDst += dstStep;                      pDst += dstStep;
167                      pSrc += 3;                      pSrc += 3;
168                      copysamples--;                      copysamples--;
# Line 203  namespace gig { namespace { Line 232  namespace gig { namespace {
232  }  }
233    
234    
235    
236    // *************** Internal CRC-32 (Cyclic Redundancy Check) functions  ***************
237    // *
238    
239        static uint32_t* __initCRCTable() {
240            static uint32_t res[256];
241    
242            for (int i = 0 ; i < 256 ; i++) {
243                uint32_t c = i;
244                for (int j = 0 ; j < 8 ; j++) {
245                    c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
246                }
247                res[i] = c;
248            }
249            return res;
250        }
251    
252        static const uint32_t* __CRCTable = __initCRCTable();
253    
254        /**
255         * Initialize a CRC variable.
256         *
257         * @param crc - variable to be initialized
258         */
259        inline static void __resetCRC(uint32_t& crc) {
260            crc = 0xffffffff;
261        }
262    
263        /**
264         * Used to calculate checksums of the sample data in a gig file. The
265         * checksums are stored in the 3crc chunk of the gig file and
266         * automatically updated when a sample is written with Sample::Write().
267         *
268         * One should call __resetCRC() to initialize the CRC variable to be
269         * used before calling this function the first time.
270         *
271         * After initializing the CRC variable one can call this function
272         * arbitrary times, i.e. to split the overall CRC calculation into
273         * steps.
274         *
275         * Once the whole data was processed by __calculateCRC(), one should
276         * call __finalizeCRC() to get the final CRC result.
277         *
278         * @param buf     - pointer to data the CRC shall be calculated of
279         * @param bufSize - size of the data to be processed
280         * @param crc     - variable the CRC sum shall be stored to
281         */
282        static void __calculateCRC(unsigned char* buf, size_t bufSize, uint32_t& crc) {
283            for (size_t i = 0 ; i < bufSize ; i++) {
284                crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
285            }
286        }
287    
288        /**
289         * Returns the final CRC result.
290         *
291         * @param crc - variable previously passed to __calculateCRC()
292         */
293        inline static void __finalizeCRC(uint32_t& crc) {
294            crc ^= 0xffffffff;
295        }
296    
297    
298    
299    // *************** Other Internal functions  ***************
300    // *
301    
302        static split_type_t __resolveSplitType(dimension_t dimension) {
303            return (
304                dimension == dimension_layer ||
305                dimension == dimension_samplechannel ||
306                dimension == dimension_releasetrigger ||
307                dimension == dimension_keyboard ||
308                dimension == dimension_roundrobin ||
309                dimension == dimension_random ||
310                dimension == dimension_smartmidi ||
311                dimension == dimension_roundrobinkeyboard
312            ) ? split_type_bit : split_type_normal;
313        }
314    
315        static int __resolveZoneSize(dimension_def_t& dimension_definition) {
316            return (dimension_definition.split_type == split_type_normal)
317            ? int(128.0 / dimension_definition.zones) : 0;
318        }
319    
320    
321    
322    // *************** leverage_ctrl_t ***************
323    // *
324    
325        void leverage_ctrl_t::serialize(Serialization::Archive* archive) {
326            SRLZ(type);
327            SRLZ(controller_number);
328        }
329    
330    
331    
332    // *************** crossfade_t ***************
333    // *
334    
335        void crossfade_t::serialize(Serialization::Archive* archive) {
336            SRLZ(in_start);
337            SRLZ(in_end);
338            SRLZ(out_start);
339            SRLZ(out_end);
340        }
341    
342    
343    
344    // *************** eg_opt_t ***************
345    // *
346    
347        eg_opt_t::eg_opt_t() {
348            AttackCancel     = true;
349            AttackHoldCancel = true;
350            Decay1Cancel     = true;
351            Decay2Cancel     = true;
352            ReleaseCancel    = true;
353        }
354    
355        void eg_opt_t::serialize(Serialization::Archive* archive) {
356            SRLZ(AttackCancel);
357            SRLZ(AttackHoldCancel);
358            SRLZ(Decay1Cancel);
359            SRLZ(Decay2Cancel);
360            SRLZ(ReleaseCancel);
361        }
362    
363    
364    
365  // *************** Sample ***************  // *************** Sample ***************
366  // *  // *
367    
368      unsigned int Sample::Instances = 0;      size_t       Sample::Instances = 0;
369      buffer_t     Sample::InternalDecompressionBuffer;      buffer_t     Sample::InternalDecompressionBuffer;
370    
371      Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {      /** @brief Constructor.
372         *
373         * Load an existing sample or create a new one. A 'wave' list chunk must
374         * be given to this constructor. In case the given 'wave' list chunk
375         * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
376         * format and sample data will be loaded from there, otherwise default
377         * values will be used and those chunks will be created when
378         * File::Save() will be called later on.
379         *
380         * @param pFile          - pointer to gig::File where this sample is
381         *                         located (or will be located)
382         * @param waveList       - pointer to 'wave' list chunk which is (or
383         *                         will be) associated with this sample
384         * @param WavePoolOffset - offset of this sample data from wave pool
385         *                         ('wvpl') list chunk
386         * @param fileNo         - number of an extension file where this sample
387         *                         is located, 0 otherwise
388         * @param index          - wave pool index of sample (may be -1 on new sample)
389         */
390        Sample::Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo, int index)
391            : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset)
392        {
393            static const DLS::Info::string_length_t fixedStringLengths[] = {
394                { CHUNK_ID_INAM, 64 },
395                { 0, 0 }
396            };
397            pInfo->SetFixedStringLengths(fixedStringLengths);
398          Instances++;          Instances++;
399            FileNo = fileNo;
400    
401          RIFF::Chunk* _3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);          __resetCRC(crc);
402          if (!_3gix) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");          // if this is not a new sample, try to get the sample's already existing
403          SampleGroup = _3gix->ReadInt16();          // CRC32 checksum from disk, this checksum will reflect the sample's CRC32
404            // checksum of the time when the sample was consciously modified by the
405          RIFF::Chunk* smpl = waveList->GetSubChunk(CHUNK_ID_SMPL);          // user for the last time (by calling Sample::Write() that is).
406          if (!smpl) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");          if (index >= 0) { // not a new file ...
407          Manufacturer      = smpl->ReadInt32();              try {
408          Product           = smpl->ReadInt32();                  uint32_t crc = pFile->GetSampleChecksumByIndex(index);
409          SamplePeriod      = smpl->ReadInt32();                  this->crc = crc;
410          MIDIUnityNote     = smpl->ReadInt32();              } catch (...) {}
411          FineTune          = smpl->ReadInt32();          }
412          smpl->Read(&SMPTEFormat, 1, 4);  
413          SMPTEOffset       = smpl->ReadInt32();          pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
414          Loops             = smpl->ReadInt32();          if (pCk3gix) {
415          smpl->ReadInt32(); // manufByt              pCk3gix->SetPos(0);
416          LoopID            = smpl->ReadInt32();  
417          smpl->Read(&LoopType, 1, 4);              uint16_t iSampleGroup = pCk3gix->ReadInt16();
418          LoopStart         = smpl->ReadInt32();              pGroup = pFile->GetGroup(iSampleGroup);
419          LoopEnd           = smpl->ReadInt32();          } else { // '3gix' chunk missing
420          LoopFraction      = smpl->ReadInt32();              // by default assigned to that mandatory "Default Group"
421          LoopPlayCount     = smpl->ReadInt32();              pGroup = pFile->GetGroup(0);
422            }
423    
424            pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
425            if (pCkSmpl) {
426                pCkSmpl->SetPos(0);
427    
428                Manufacturer  = pCkSmpl->ReadInt32();
429                Product       = pCkSmpl->ReadInt32();
430                SamplePeriod  = pCkSmpl->ReadInt32();
431                MIDIUnityNote = pCkSmpl->ReadInt32();
432                FineTune      = pCkSmpl->ReadInt32();
433                pCkSmpl->Read(&SMPTEFormat, 1, 4);
434                SMPTEOffset   = pCkSmpl->ReadInt32();
435                Loops         = pCkSmpl->ReadInt32();
436                pCkSmpl->ReadInt32(); // manufByt
437                LoopID        = pCkSmpl->ReadInt32();
438                pCkSmpl->Read(&LoopType, 1, 4);
439                LoopStart     = pCkSmpl->ReadInt32();
440                LoopEnd       = pCkSmpl->ReadInt32();
441                LoopFraction  = pCkSmpl->ReadInt32();
442                LoopPlayCount = pCkSmpl->ReadInt32();
443            } else { // 'smpl' chunk missing
444                // use default values
445                Manufacturer  = 0;
446                Product       = 0;
447                SamplePeriod  = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
448                MIDIUnityNote = 60;
449                FineTune      = 0;
450                SMPTEFormat   = smpte_format_no_offset;
451                SMPTEOffset   = 0;
452                Loops         = 0;
453                LoopID        = 0;
454                LoopType      = loop_type_normal;
455                LoopStart     = 0;
456                LoopEnd       = 0;
457                LoopFraction  = 0;
458                LoopPlayCount = 0;
459            }
460    
461          FrameTable                 = NULL;          FrameTable                 = NULL;
462          SamplePos                  = 0;          SamplePos                  = 0;
# Line 247  namespace gig { namespace { Line 471  namespace gig { namespace {
471          Dithered          = false;          Dithered          = false;
472          TruncatedBits     = 0;          TruncatedBits     = 0;
473          if (Compressed) {          if (Compressed) {
474                ewav->SetPos(0);
475    
476              uint32_t version = ewav->ReadInt32();              uint32_t version = ewav->ReadInt32();
477              if (version == 3 && BitDepth == 24) {              if (version > 2 && BitDepth == 24) {
478                  Dithered = ewav->ReadInt32();                  Dithered = ewav->ReadInt32();
479                  ewav->SetPos(Channels == 2 ? 84 : 64);                  ewav->SetPos(Channels == 2 ? 84 : 64);
480                  TruncatedBits = ewav->ReadInt32();                  TruncatedBits = ewav->ReadInt32();
# Line 263  namespace gig { namespace { Line 489  namespace gig { namespace {
489          }          }
490          FrameOffset = 0; // just for streaming compressed samples          FrameOffset = 0; // just for streaming compressed samples
491    
492          LoopSize = LoopEnd - LoopStart;          LoopSize = LoopEnd - LoopStart + 1;
493        }
494    
495        /**
496         * Make a (semi) deep copy of the Sample object given by @a orig (without
497         * the actual waveform data) and assign it to this object.
498         *
499         * Discussion: copying .gig samples is a bit tricky. It requires three
500         * steps:
501         * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
502         *    its new sample waveform data size.
503         * 2. Saving the file (done by File::Save()) so that it gains correct size
504         *    and layout for writing the actual wave form data directly to disc
505         *    in next step.
506         * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
507         *
508         * @param orig - original Sample object to be copied from
509         */
510        void Sample::CopyAssignMeta(const Sample* orig) {
511            // handle base classes
512            DLS::Sample::CopyAssignCore(orig);
513            
514            // handle actual own attributes of this class
515            Manufacturer = orig->Manufacturer;
516            Product = orig->Product;
517            SamplePeriod = orig->SamplePeriod;
518            MIDIUnityNote = orig->MIDIUnityNote;
519            FineTune = orig->FineTune;
520            SMPTEFormat = orig->SMPTEFormat;
521            SMPTEOffset = orig->SMPTEOffset;
522            Loops = orig->Loops;
523            LoopID = orig->LoopID;
524            LoopType = orig->LoopType;
525            LoopStart = orig->LoopStart;
526            LoopEnd = orig->LoopEnd;
527            LoopSize = orig->LoopSize;
528            LoopFraction = orig->LoopFraction;
529            LoopPlayCount = orig->LoopPlayCount;
530            
531            // schedule resizing this sample to the given sample's size
532            Resize(orig->GetSize());
533        }
534    
535        /**
536         * Should be called after CopyAssignMeta() and File::Save() sequence.
537         * Read more about it in the discussion of CopyAssignMeta(). This method
538         * copies the actual waveform data by disk streaming.
539         *
540         * @e CAUTION: this method is currently not thread safe! During this
541         * operation the sample must not be used for other purposes by other
542         * threads!
543         *
544         * @param orig - original Sample object to be copied from
545         */
546        void Sample::CopyAssignWave(const Sample* orig) {
547            const int iReadAtOnce = 32*1024;
548            char* buf = new char[iReadAtOnce * orig->FrameSize];
549            Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
550            file_offset_t restorePos = pOrig->GetPos();
551            pOrig->SetPos(0);
552            SetPos(0);
553            for (file_offset_t n = pOrig->Read(buf, iReadAtOnce); n;
554                               n = pOrig->Read(buf, iReadAtOnce))
555            {
556                Write(buf, n);
557            }
558            pOrig->SetPos(restorePos);
559            delete [] buf;
560        }
561    
562        /**
563         * Apply sample and its settings to the respective RIFF chunks. You have
564         * to call File::Save() to make changes persistent.
565         *
566         * Usually there is absolutely no need to call this method explicitly.
567         * It will be called automatically when File::Save() was called.
568         *
569         * @param pProgress - callback function for progress notification
570         * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
571         *                        was provided yet
572         * @throws gig::Exception if there is any invalid sample setting
573         */
574        void Sample::UpdateChunks(progress_t* pProgress) {
575            // first update base class's chunks
576            DLS::Sample::UpdateChunks(pProgress);
577    
578            // make sure 'smpl' chunk exists
579            pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
580            if (!pCkSmpl) {
581                pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
582                memset(pCkSmpl->LoadChunkData(), 0, 60);
583            }
584            // update 'smpl' chunk
585            uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
586            SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
587            store32(&pData[0], Manufacturer);
588            store32(&pData[4], Product);
589            store32(&pData[8], SamplePeriod);
590            store32(&pData[12], MIDIUnityNote);
591            store32(&pData[16], FineTune);
592            store32(&pData[20], SMPTEFormat);
593            store32(&pData[24], SMPTEOffset);
594            store32(&pData[28], Loops);
595    
596            // we skip 'manufByt' for now (4 bytes)
597    
598            store32(&pData[36], LoopID);
599            store32(&pData[40], LoopType);
600            store32(&pData[44], LoopStart);
601            store32(&pData[48], LoopEnd);
602            store32(&pData[52], LoopFraction);
603            store32(&pData[56], LoopPlayCount);
604    
605            // make sure '3gix' chunk exists
606            pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
607            if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
608            // determine appropriate sample group index (to be stored in chunk)
609            uint16_t iSampleGroup = 0; // 0 refers to default sample group
610            File* pFile = static_cast<File*>(pParent);
611            if (pFile->pGroups) {
612                std::list<Group*>::iterator iter = pFile->pGroups->begin();
613                std::list<Group*>::iterator end  = pFile->pGroups->end();
614                for (int i = 0; iter != end; i++, iter++) {
615                    if (*iter == pGroup) {
616                        iSampleGroup = i;
617                        break; // found
618                    }
619                }
620            }
621            // update '3gix' chunk
622            pData = (uint8_t*) pCk3gix->LoadChunkData();
623            store16(&pData[0], iSampleGroup);
624    
625            // if the library user toggled the "Compressed" attribute from true to
626            // false, then the EWAV chunk associated with compressed samples needs
627            // to be deleted
628            RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
629            if (ewav && !Compressed) {
630                pWaveList->DeleteSubChunk(ewav);
631            }
632      }      }
633    
634      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
635      void Sample::ScanCompressedSample() {      void Sample::ScanCompressedSample() {
636          //TODO: we have to add some more scans here (e.g. determine compression rate)          //TODO: we have to add some more scans here (e.g. determine compression rate)
637          this->SamplesTotal = 0;          this->SamplesTotal = 0;
638          std::list<unsigned long> frameOffsets;          std::list<file_offset_t> frameOffsets;
639    
640          SamplesPerFrame = BitDepth == 24 ? 256 : 2048;          SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
641          WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag          WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
# Line 286  namespace gig { namespace { Line 651  namespace gig { namespace {
651                  const int mode_l = pCkData->ReadUint8();                  const int mode_l = pCkData->ReadUint8();
652                  const int mode_r = pCkData->ReadUint8();                  const int mode_r = pCkData->ReadUint8();
653                  if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");                  if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
654                  const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];                  const file_offset_t frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
655    
656                  if (pCkData->RemainingBytes() <= frameSize) {                  if (pCkData->RemainingBytes() <= frameSize) {
657                      SamplesInLastFrame =                      SamplesInLastFrame =
# Line 305  namespace gig { namespace { Line 670  namespace gig { namespace {
670    
671                  const int mode = pCkData->ReadUint8();                  const int mode = pCkData->ReadUint8();
672                  if (mode > 5) throw gig::Exception("Unknown compression mode");                  if (mode > 5) throw gig::Exception("Unknown compression mode");
673                  const unsigned long frameSize = bytesPerFrame[mode];                  const file_offset_t frameSize = bytesPerFrame[mode];
674    
675                  if (pCkData->RemainingBytes() <= frameSize) {                  if (pCkData->RemainingBytes() <= frameSize) {
676                      SamplesInLastFrame =                      SamplesInLastFrame =
# Line 321  namespace gig { namespace { Line 686  namespace gig { namespace {
686    
687          // Build the frames table (which is used for fast resolving of a frame's chunk offset)          // Build the frames table (which is used for fast resolving of a frame's chunk offset)
688          if (FrameTable) delete[] FrameTable;          if (FrameTable) delete[] FrameTable;
689          FrameTable = new unsigned long[frameOffsets.size()];          FrameTable = new file_offset_t[frameOffsets.size()];
690          std::list<unsigned long>::iterator end  = frameOffsets.end();          std::list<file_offset_t>::iterator end  = frameOffsets.end();
691          std::list<unsigned long>::iterator iter = frameOffsets.begin();          std::list<file_offset_t>::iterator iter = frameOffsets.begin();
692          for (int i = 0; iter != end; i++, iter++) {          for (int i = 0; iter != end; i++, iter++) {
693              FrameTable[i] = *iter;              FrameTable[i] = *iter;
694          }          }
# Line 364  namespace gig { namespace { Line 729  namespace gig { namespace {
729       *                      the cached sample data in bytes       *                      the cached sample data in bytes
730       * @see                 ReleaseSampleData(), Read(), SetPos()       * @see                 ReleaseSampleData(), Read(), SetPos()
731       */       */
732      buffer_t Sample::LoadSampleData(unsigned long SampleCount) {      buffer_t Sample::LoadSampleData(file_offset_t SampleCount) {
733          return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples          return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
734      }      }
735    
# Line 423  namespace gig { namespace { Line 788  namespace gig { namespace {
788       *                           size of the cached sample data in bytes       *                           size of the cached sample data in bytes
789       * @see                      ReleaseSampleData(), Read(), SetPos()       * @see                      ReleaseSampleData(), Read(), SetPos()
790       */       */
791      buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {      buffer_t Sample::LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount) {
792          if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;          if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
793          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
794          unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;          file_offset_t allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
795            SetPos(0); // reset read position to begin of sample
796          RAMCache.pStart            = new int8_t[allocationsize];          RAMCache.pStart            = new int8_t[allocationsize];
797          RAMCache.Size              = Read(RAMCache.pStart, SampleCount) * this->FrameSize;          RAMCache.Size              = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
798          RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;          RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
# Line 464  namespace gig { namespace { Line 830  namespace gig { namespace {
830          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
831          RAMCache.pStart = NULL;          RAMCache.pStart = NULL;
832          RAMCache.Size   = 0;          RAMCache.Size   = 0;
833            RAMCache.NullExtensionSize = 0;
834        }
835    
836        /** @brief Resize sample.
837         *
838         * Resizes the sample's wave form data, that is the actual size of
839         * sample wave data possible to be written for this sample. This call
840         * will return immediately and just schedule the resize operation. You
841         * should call File::Save() to actually perform the resize operation(s)
842         * "physically" to the file. As this can take a while on large files, it
843         * is recommended to call Resize() first on all samples which have to be
844         * resized and finally to call File::Save() to perform all those resize
845         * operations in one rush.
846         *
847         * The actual size (in bytes) is dependant to the current FrameSize
848         * value. You may want to set FrameSize before calling Resize().
849         *
850         * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
851         * enlarged samples before calling File::Save() as this might exceed the
852         * current sample's boundary!
853         *
854         * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
855         * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
856         * other formats will fail!
857         *
858         * @param NewSize - new sample wave data size in sample points (must be
859         *                  greater than zero)
860         * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
861         * @throws DLS::Exception if \a NewSize is less than 1 or unrealistic large
862         * @throws gig::Exception if existing sample is compressed
863         * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
864         *      DLS::Sample::FormatTag, File::Save()
865         */
866        void Sample::Resize(file_offset_t NewSize) {
867            if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
868            DLS::Sample::Resize(NewSize);
869      }      }
870    
871      /**      /**
# Line 487  namespace gig { namespace { Line 889  namespace gig { namespace {
889       * @returns            the new sample position       * @returns            the new sample position
890       * @see                Read()       * @see                Read()
891       */       */
892      unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {      file_offset_t Sample::SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence) {
893          if (Compressed) {          if (Compressed) {
894              switch (Whence) {              switch (Whence) {
895                  case RIFF::stream_curpos:                  case RIFF::stream_curpos:
# Line 505  namespace gig { namespace { Line 907  namespace gig { namespace {
907              }              }
908              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
909    
910              unsigned long frame = this->SamplePos / 2048; // to which frame to jump              file_offset_t frame = this->SamplePos / 2048; // to which frame to jump
911              this->FrameOffset   = this->SamplePos % 2048; // offset (in sample points) within that frame              this->FrameOffset   = this->SamplePos % 2048; // offset (in sample points) within that frame
912              pCkData->SetPos(FrameTable[frame]);           // set chunk pointer to the start of sought frame              pCkData->SetPos(FrameTable[frame]);           // set chunk pointer to the start of sought frame
913              return this->SamplePos;              return this->SamplePos;
914          }          }
915          else { // not compressed          else { // not compressed
916              unsigned long orderedBytes = SampleCount * this->FrameSize;              file_offset_t orderedBytes = SampleCount * this->FrameSize;
917              unsigned long result = pCkData->SetPos(orderedBytes, Whence);              file_offset_t result = pCkData->SetPos(orderedBytes, Whence);
918              return (result == orderedBytes) ? SampleCount              return (result == orderedBytes) ? SampleCount
919                                              : result / this->FrameSize;                                              : result / this->FrameSize;
920          }          }
# Line 521  namespace gig { namespace { Line 923  namespace gig { namespace {
923      /**      /**
924       * Returns the current position in the sample (in sample points).       * Returns the current position in the sample (in sample points).
925       */       */
926      unsigned long Sample::GetPos() {      file_offset_t Sample::GetPos() const {
927          if (Compressed) return SamplePos;          if (Compressed) return SamplePos;
928          else            return pCkData->GetPos() / FrameSize;          else            return pCkData->GetPos() / FrameSize;
929      }      }
# Line 555  namespace gig { namespace { Line 957  namespace gig { namespace {
957       * @param SampleCount      number of sample points to read       * @param SampleCount      number of sample points to read
958       * @param pPlaybackState   will be used to store and reload the playback       * @param pPlaybackState   will be used to store and reload the playback
959       *                         state for the next ReadAndLoop() call       *                         state for the next ReadAndLoop() call
960         * @param pDimRgn          dimension region with looping information
961       * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression       * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
962       * @returns                number of successfully read sample points       * @returns                number of successfully read sample points
963       * @see                    CreateDecompressionBuffer()       * @see                    CreateDecompressionBuffer()
964       */       */
965      unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState, buffer_t* pExternalDecompressionBuffer) {      file_offset_t Sample::ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState,
966          unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;                                        DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
967            file_offset_t samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
968          uint8_t* pDst = (uint8_t*) pBuffer;          uint8_t* pDst = (uint8_t*) pBuffer;
969    
970          SetPos(pPlaybackState->position); // recover position from the last time          SetPos(pPlaybackState->position); // recover position from the last time
971    
972          if (this->Loops && GetPos() <= this->LoopEnd) { // honor looping if there are loop points defined          if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
973    
974              switch (this->LoopType) {              const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
975                const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
976    
977                  case loop_type_bidirectional: { //TODO: not tested yet!              if (GetPos() <= loopEnd) {
978                      do {                  switch (loop.LoopType) {
                         // if not endless loop check if max. number of loop cycles have been passed  
                         if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;  
   
                         if (!pPlaybackState->reverse) { // forward playback  
                             do {  
                                 samplestoloopend  = this->LoopEnd - GetPos();  
                                 readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);  
                                 samplestoread    -= readsamples;  
                                 totalreadsamples += readsamples;  
                                 if (readsamples == samplestoloopend) {  
                                     pPlaybackState->reverse = true;  
                                     break;  
                                 }  
                             } while (samplestoread && readsamples);  
                         }  
                         else { // backward playback  
979    
980                              // as we can only read forward from disk, we have to                      case loop_type_bidirectional: { //TODO: not tested yet!
981                              // determine the end position within the loop first,                          do {
982                              // read forward from that 'end' and finally after                              // if not endless loop check if max. number of loop cycles have been passed
983                              // reading, swap all sample frames so it reflects                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
984                              // backward playback  
985                                if (!pPlaybackState->reverse) { // forward playback
986                              unsigned long swapareastart       = totalreadsamples;                                  do {
987                              unsigned long loopoffset          = GetPos() - this->LoopStart;                                      samplestoloopend  = loopEnd - GetPos();
988                              unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);                                      readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
989                              unsigned long reverseplaybackend  = GetPos() - samplestoreadinloop;                                      samplestoread    -= readsamples;
990                                        totalreadsamples += readsamples;
991                              SetPos(reverseplaybackend);                                      if (readsamples == samplestoloopend) {
992                                            pPlaybackState->reverse = true;
993                              // read samples for backward playback                                          break;
994                              do {                                      }
995                                  readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);                                  } while (samplestoread && readsamples);
996                                  samplestoreadinloop -= readsamples;                              }
997                                  samplestoread       -= readsamples;                              else { // backward playback
                                 totalreadsamples    += readsamples;  
                             } while (samplestoreadinloop && readsamples);  
998    
999                              SetPos(reverseplaybackend); // pretend we really read backwards                                  // as we can only read forward from disk, we have to
1000                                    // determine the end position within the loop first,
1001                                    // read forward from that 'end' and finally after
1002                                    // reading, swap all sample frames so it reflects
1003                                    // backward playback
1004    
1005                                    file_offset_t swapareastart       = totalreadsamples;
1006                                    file_offset_t loopoffset          = GetPos() - loop.LoopStart;
1007                                    file_offset_t samplestoreadinloop = Min(samplestoread, loopoffset);
1008                                    file_offset_t reverseplaybackend  = GetPos() - samplestoreadinloop;
1009    
1010                                    SetPos(reverseplaybackend);
1011    
1012                                    // read samples for backward playback
1013                                    do {
1014                                        readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
1015                                        samplestoreadinloop -= readsamples;
1016                                        samplestoread       -= readsamples;
1017                                        totalreadsamples    += readsamples;
1018                                    } while (samplestoreadinloop && readsamples);
1019    
1020                                    SetPos(reverseplaybackend); // pretend we really read backwards
1021    
1022                                    if (reverseplaybackend == loop.LoopStart) {
1023                                        pPlaybackState->loop_cycles_left--;
1024                                        pPlaybackState->reverse = false;
1025                                    }
1026    
1027                              if (reverseplaybackend == this->LoopStart) {                                  // reverse the sample frames for backward playback
1028                                  pPlaybackState->loop_cycles_left--;                                  if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
1029                                  pPlaybackState->reverse = false;                                      SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1030                              }                              }
1031                            } while (samplestoread && readsamples);
1032                            break;
1033                        }
1034    
1035                              // reverse the sample frames for backward playback                      case loop_type_backward: { // TODO: not tested yet!
1036                              SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);                          // forward playback (not entered the loop yet)
1037                          }                          if (!pPlaybackState->reverse) do {
1038                      } while (samplestoread && readsamples);                              samplestoloopend  = loopEnd - GetPos();
1039                      break;                              readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1040                  }                              samplestoread    -= readsamples;
1041                                totalreadsamples += readsamples;
1042                  case loop_type_backward: { // TODO: not tested yet!                              if (readsamples == samplestoloopend) {
1043                      // forward playback (not entered the loop yet)                                  pPlaybackState->reverse = true;
1044                      if (!pPlaybackState->reverse) do {                                  break;
1045                          samplestoloopend  = this->LoopEnd - GetPos();                              }
1046                          readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);                          } while (samplestoread && readsamples);
                         samplestoread    -= readsamples;  
                         totalreadsamples += readsamples;  
                         if (readsamples == samplestoloopend) {  
                             pPlaybackState->reverse = true;  
                             break;  
                         }  
                     } while (samplestoread && readsamples);  
1047    
1048                      if (!samplestoread) break;                          if (!samplestoread) break;
1049    
1050                      // as we can only read forward from disk, we have to                          // as we can only read forward from disk, we have to
1051                      // determine the end position within the loop first,                          // determine the end position within the loop first,
1052                      // read forward from that 'end' and finally after                          // read forward from that 'end' and finally after
1053                      // reading, swap all sample frames so it reflects                          // reading, swap all sample frames so it reflects
1054                      // backward playback                          // backward playback
1055    
1056                      unsigned long swapareastart       = totalreadsamples;                          file_offset_t swapareastart       = totalreadsamples;
1057                      unsigned long loopoffset          = GetPos() - this->LoopStart;                          file_offset_t loopoffset          = GetPos() - loop.LoopStart;
1058                      unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * LoopSize - loopoffset)                          file_offset_t samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1059                                                                                : samplestoread;                                                                                    : samplestoread;
1060                      unsigned long reverseplaybackend  = this->LoopStart + Abs((loopoffset - samplestoreadinloop) % this->LoopSize);                          file_offset_t reverseplaybackend  = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1061    
1062                      SetPos(reverseplaybackend);                          SetPos(reverseplaybackend);
1063    
1064                      // read samples for backward playback                          // read samples for backward playback
1065                      do {                          do {
1066                          // if not endless loop check if max. number of loop cycles have been passed                              // if not endless loop check if max. number of loop cycles have been passed
1067                          if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1068                          samplestoloopend     = this->LoopEnd - GetPos();                              samplestoloopend     = loopEnd - GetPos();
1069                          readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);                              readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1070                          samplestoreadinloop -= readsamples;                              samplestoreadinloop -= readsamples;
1071                          samplestoread       -= readsamples;                              samplestoread       -= readsamples;
1072                          totalreadsamples    += readsamples;                              totalreadsamples    += readsamples;
1073                          if (readsamples == samplestoloopend) {                              if (readsamples == samplestoloopend) {
1074                              pPlaybackState->loop_cycles_left--;                                  pPlaybackState->loop_cycles_left--;
1075                              SetPos(this->LoopStart);                                  SetPos(loop.LoopStart);
1076                          }                              }
1077                      } while (samplestoreadinloop && readsamples);                          } while (samplestoreadinloop && readsamples);
1078    
1079                      SetPos(reverseplaybackend); // pretend we really read backwards                          SetPos(reverseplaybackend); // pretend we really read backwards
1080    
1081                      // reverse the sample frames for backward playback                          // reverse the sample frames for backward playback
1082                      SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);                          SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1083                      break;                          break;
1084                  }                      }
1085    
1086                  default: case loop_type_normal: {                      default: case loop_type_normal: {
1087                      do {                          do {
1088                          // if not endless loop check if max. number of loop cycles have been passed                              // if not endless loop check if max. number of loop cycles have been passed
1089                          if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1090                          samplestoloopend  = this->LoopEnd - GetPos();                              samplestoloopend  = loopEnd - GetPos();
1091                          readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);                              readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1092                          samplestoread    -= readsamples;                              samplestoread    -= readsamples;
1093                          totalreadsamples += readsamples;                              totalreadsamples += readsamples;
1094                          if (readsamples == samplestoloopend) {                              if (readsamples == samplestoloopend) {
1095                              pPlaybackState->loop_cycles_left--;                                  pPlaybackState->loop_cycles_left--;
1096                              SetPos(this->LoopStart);                                  SetPos(loop.LoopStart);
1097                          }                              }
1098                      } while (samplestoread && readsamples);                          } while (samplestoread && readsamples);
1099                      break;                          break;
1100                        }
1101                  }                  }
1102              }              }
1103          }          }
# Line 717  namespace gig { namespace { Line 1127  namespace gig { namespace {
1127       * have to use an external decompression buffer for <b>EACH</b>       * have to use an external decompression buffer for <b>EACH</b>
1128       * streaming thread to avoid race conditions and crashes!       * streaming thread to avoid race conditions and crashes!
1129       *       *
1130         * For 16 bit samples, the data in the buffer will be int16_t
1131         * (using native endianness). For 24 bit, the buffer will
1132         * contain three bytes per sample, little-endian.
1133         *
1134       * @param pBuffer      destination buffer       * @param pBuffer      destination buffer
1135       * @param SampleCount  number of sample points to read       * @param SampleCount  number of sample points to read
1136       * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression       * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
1137       * @returns            number of successfully read sample points       * @returns            number of successfully read sample points
1138       * @see                SetPos(), CreateDecompressionBuffer()       * @see                SetPos(), CreateDecompressionBuffer()
1139       */       */
1140      unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {      file_offset_t Sample::Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer) {
1141          if (SampleCount == 0) return 0;          if (SampleCount == 0) return 0;
1142          if (!Compressed) {          if (!Compressed) {
1143              if (BitDepth == 24) {              if (BitDepth == 24) {
1144                  // 24 bit sample. For now just truncate to 16 bit.                  return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
                 unsigned char* pSrc = (unsigned char*) ((pExternalDecompressionBuffer) ? pExternalDecompressionBuffer->pStart : this->InternalDecompressionBuffer.pStart);  
                 int16_t* pDst = static_cast<int16_t*>(pBuffer);  
                 if (Channels == 2) { // Stereo  
                     unsigned long readBytes = pCkData->Read(pSrc, SampleCount * 6, 1);  
                     pSrc++;  
                     for (unsigned long i = readBytes ; i > 0 ; i -= 3) {  
                         *pDst++ = get16(pSrc);  
                         pSrc += 3;  
                     }  
                     return (pDst - static_cast<int16_t*>(pBuffer)) >> 1;  
                 }  
                 else { // Mono  
                     unsigned long readBytes = pCkData->Read(pSrc, SampleCount * 3, 1);  
                     pSrc++;  
                     for (unsigned long i = readBytes ; i > 0 ; i -= 3) {  
                         *pDst++ = get16(pSrc);  
                         pSrc += 3;  
                     }  
                     return pDst - static_cast<int16_t*>(pBuffer);  
                 }  
1145              }              }
1146              else { // 16 bit              else { // 16 bit
1147                  // (pCkData->Read does endian correction)                  // (pCkData->Read does endian correction)
# Line 758  namespace gig { namespace { Line 1152  namespace gig { namespace {
1152          else {          else {
1153              if (this->SamplePos >= this->SamplesTotal) return 0;              if (this->SamplePos >= this->SamplesTotal) return 0;
1154              //TODO: efficiency: maybe we should test for an average compression rate              //TODO: efficiency: maybe we should test for an average compression rate
1155              unsigned long assumedsize      = GuessSize(SampleCount),              file_offset_t assumedsize      = GuessSize(SampleCount),
1156                            remainingbytes   = 0,           // remaining bytes in the local buffer                            remainingbytes   = 0,           // remaining bytes in the local buffer
1157                            remainingsamples = SampleCount,                            remainingsamples = SampleCount,
1158                            copysamples, skipsamples,                            copysamples, skipsamples,
# Line 777  namespace gig { namespace { Line 1171  namespace gig { namespace {
1171    
1172              unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;              unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1173              int16_t* pDst = static_cast<int16_t*>(pBuffer);              int16_t* pDst = static_cast<int16_t*>(pBuffer);
1174                uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1175              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1176    
1177              while (remainingsamples && remainingbytes) {              while (remainingsamples && remainingbytes) {
1178                  unsigned long framesamples = SamplesPerFrame;                  file_offset_t framesamples = SamplesPerFrame;
1179                  unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;                  file_offset_t framebytes, rightChannelOffset = 0, nextFrameOffset;
1180    
1181                  int mode_l = *pSrc++, mode_r = 0;                  int mode_l = *pSrc++, mode_r = 0;
1182    
# Line 858  namespace gig { namespace { Line 1253  namespace gig { namespace {
1253                              const unsigned char* const param_r = pSrc;                              const unsigned char* const param_r = pSrc;
1254                              if (mode_r != 2) pSrc += 12;                              if (mode_r != 2) pSrc += 12;
1255    
1256                              Decompress24(mode_l, param_l, 2, pSrc, pDst,                              Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1257                                           skipsamples, copysamples, TruncatedBits);                                           skipsamples, copysamples, TruncatedBits);
1258                              Decompress24(mode_r, param_r, 2, pSrc + rightChannelOffset, pDst + 1,                              Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1259                                           skipsamples, copysamples, TruncatedBits);                                           skipsamples, copysamples, TruncatedBits);
1260                              pDst += copysamples << 1;                              pDst24 += copysamples * 6;
1261                          }                          }
1262                          else { // Mono                          else { // Mono
1263                              Decompress24(mode_l, param_l, 1, pSrc, pDst,                              Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1264                                           skipsamples, copysamples, TruncatedBits);                                           skipsamples, copysamples, TruncatedBits);
1265                              pDst += copysamples;                              pDst24 += copysamples * 3;
1266                          }                          }
1267                      }                      }
1268                      else { // 16 bit                      else { // 16 bit
# Line 909  namespace gig { namespace { Line 1304  namespace gig { namespace {
1304          }          }
1305      }      }
1306    
1307        /** @brief Write sample wave data.
1308         *
1309         * Writes \a SampleCount number of sample points from the buffer pointed
1310         * by \a pBuffer and increments the position within the sample. Use this
1311         * method to directly write the sample data to disk, i.e. if you don't
1312         * want or cannot load the whole sample data into RAM.
1313         *
1314         * You have to Resize() the sample to the desired size and call
1315         * File::Save() <b>before</b> using Write().
1316         *
1317         * Note: there is currently no support for writing compressed samples.
1318         *
1319         * For 16 bit samples, the data in the source buffer should be
1320         * int16_t (using native endianness). For 24 bit, the buffer
1321         * should contain three bytes per sample, little-endian.
1322         *
1323         * @param pBuffer     - source buffer
1324         * @param SampleCount - number of sample points to write
1325         * @throws DLS::Exception if current sample size is too small
1326         * @throws gig::Exception if sample is compressed
1327         * @see DLS::LoadSampleData()
1328         */
1329        file_offset_t Sample::Write(void* pBuffer, file_offset_t SampleCount) {
1330            if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1331    
1332            // if this is the first write in this sample, reset the
1333            // checksum calculator
1334            if (pCkData->GetPos() == 0) {
1335                __resetCRC(crc);
1336            }
1337            if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1338            file_offset_t res;
1339            if (BitDepth == 24) {
1340                res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1341            } else { // 16 bit
1342                res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1343                                    : pCkData->Write(pBuffer, SampleCount, 2);
1344            }
1345            __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1346    
1347            // if this is the last write, update the checksum chunk in the
1348            // file
1349            if (pCkData->GetPos() == pCkData->GetSize()) {
1350                __finalizeCRC(crc);
1351                File* pFile = static_cast<File*>(GetParent());
1352                pFile->SetSampleChecksum(this, crc);
1353            }
1354            return res;
1355        }
1356    
1357      /**      /**
1358       * Allocates a decompression buffer for streaming (compressed) samples       * Allocates a decompression buffer for streaming (compressed) samples
1359       * with Sample::Read(). If you are using more than one streaming thread       * with Sample::Read(). If you are using more than one streaming thread
# Line 925  namespace gig { namespace { Line 1370  namespace gig { namespace {
1370       * @returns allocated decompression buffer       * @returns allocated decompression buffer
1371       * @see DestroyDecompressionBuffer()       * @see DestroyDecompressionBuffer()
1372       */       */
1373      buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {      buffer_t Sample::CreateDecompressionBuffer(file_offset_t MaxReadSize) {
1374          buffer_t result;          buffer_t result;
1375          const double worstCaseHeaderOverhead =          const double worstCaseHeaderOverhead =
1376                  (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;                  (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1377          result.Size              = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);          result.Size              = (file_offset_t) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1378          result.pStart            = new int8_t[result.Size];          result.pStart            = new int8_t[result.Size];
1379          result.NullExtensionSize = 0;          result.NullExtensionSize = 0;
1380          return result;          return result;
# Line 951  namespace gig { namespace { Line 1396  namespace gig { namespace {
1396          }          }
1397      }      }
1398    
1399        /**
1400         * Returns pointer to the Group this Sample belongs to. In the .gig
1401         * format a sample always belongs to one group. If it wasn't explicitly
1402         * assigned to a certain group, it will be automatically assigned to a
1403         * default group.
1404         *
1405         * @returns Sample's Group (never NULL)
1406         */
1407        Group* Sample::GetGroup() const {
1408            return pGroup;
1409        }
1410    
1411        /**
1412         * Returns the CRC-32 checksum of the sample's raw wave form data at the
1413         * time when this sample's wave form data was modified for the last time
1414         * by calling Write(). This checksum only covers the raw wave form data,
1415         * not any meta informations like i.e. bit depth or loop points. Since
1416         * this method just returns the checksum stored for this sample i.e. when
1417         * the gig file was loaded, this method returns immediately. So it does no
1418         * recalcuation of the checksum with the currently available sample wave
1419         * form data.
1420         *
1421         * @see VerifyWaveData()
1422         */
1423        uint32_t Sample::GetWaveDataCRC32Checksum() {
1424            return crc;
1425        }
1426    
1427        /**
1428         * Checks the integrity of this sample's raw audio wave data. Whenever a
1429         * Sample's raw wave data is intentionally modified (i.e. by calling
1430         * Write() and supplying the new raw audio wave form data) a CRC32 checksum
1431         * is calculated and stored/updated for this sample, along to the sample's
1432         * meta informations.
1433         *
1434         * Now by calling this method the current raw audio wave data is checked
1435         * against the already stored CRC32 check sum in order to check whether the
1436         * sample data had been damaged unintentionally for some reason. Since by
1437         * calling this method always the entire raw audio wave data has to be
1438         * read, verifying all samples this way may take a long time accordingly.
1439         * And that's also the reason why the sample integrity is not checked by
1440         * default whenever a gig file is loaded. So this method must be called
1441         * explicitly to fulfill this task.
1442         *
1443         * @param pActually - (optional) if provided, will be set to the actually
1444         *                    calculated checksum of the current raw wave form data,
1445         *                    you can get the expected checksum instead by calling
1446         *                    GetWaveDataCRC32Checksum()
1447         * @returns true if sample is OK or false if the sample is damaged
1448         * @throws Exception if no checksum had been stored to disk for this
1449         *         sample yet, or on I/O issues
1450         * @see GetWaveDataCRC32Checksum()
1451         */
1452        bool Sample::VerifyWaveData(uint32_t* pActually) {
1453            //File* pFile = static_cast<File*>(GetParent());
1454            uint32_t crc = CalculateWaveDataChecksum();
1455            if (pActually) *pActually = crc;
1456            return crc == this->crc;
1457        }
1458    
1459        uint32_t Sample::CalculateWaveDataChecksum() {
1460            const size_t sz = 20*1024; // 20kB buffer size
1461            std::vector<uint8_t> buffer(sz);
1462            buffer.resize(sz);
1463    
1464            const size_t n = sz / FrameSize;
1465            SetPos(0);
1466            uint32_t crc = 0;
1467            __resetCRC(crc);
1468            while (true) {
1469                file_offset_t nRead = Read(&buffer[0], n);
1470                if (nRead <= 0) break;
1471                __calculateCRC(&buffer[0], nRead * FrameSize, crc);
1472            }
1473            __finalizeCRC(crc);
1474            return crc;
1475        }
1476    
1477      Sample::~Sample() {      Sample::~Sample() {
1478          Instances--;          Instances--;
1479          if (!Instances && InternalDecompressionBuffer.Size) {          if (!Instances && InternalDecompressionBuffer.Size) {
# Line 967  namespace gig { namespace { Line 1490  namespace gig { namespace {
1490  // *************** DimensionRegion ***************  // *************** DimensionRegion ***************
1491  // *  // *
1492    
1493      uint                               DimensionRegion::Instances       = 0;      size_t                             DimensionRegion::Instances       = 0;
1494      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1495    
1496      DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {      DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1497          Instances++;          Instances++;
1498    
1499          memcpy(&Crossfade, &SamplerOptions, 4);          pSample = NULL;
1500            pRegion = pParent;
1501    
1502            if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1503            else memset(&Crossfade, 0, 4);
1504    
1505          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1506    
1507          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1508          _3ewa->ReadInt32(); // unknown, always 0x0000008C ?          if (_3ewa) { // if '3ewa' chunk exists
1509          LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              _3ewa->SetPos(0);
1510          EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());  
1511          _3ewa->ReadInt16(); // unknown              _3ewa->ReadInt32(); // unknown, always == chunk size ?
1512          LFO1InternalDepth = _3ewa->ReadUint16();              LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1513          _3ewa->ReadInt16(); // unknown              EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1514          LFO3InternalDepth = _3ewa->ReadInt16();              _3ewa->ReadInt16(); // unknown
1515          _3ewa->ReadInt16(); // unknown              LFO1InternalDepth = _3ewa->ReadUint16();
1516          LFO1ControlDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1517          _3ewa->ReadInt16(); // unknown              LFO3InternalDepth = _3ewa->ReadInt16();
1518          LFO3ControlDepth = _3ewa->ReadInt16();              _3ewa->ReadInt16(); // unknown
1519          EG1Attack           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO1ControlDepth = _3ewa->ReadUint16();
1520          EG1Decay1           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              _3ewa->ReadInt16(); // unknown
1521          _3ewa->ReadInt16(); // unknown              LFO3ControlDepth = _3ewa->ReadInt16();
1522          EG1Sustain          = _3ewa->ReadUint16();              EG1Attack           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1523          EG1Release          = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG1Decay1           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1524          EG1Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));              _3ewa->ReadInt16(); // unknown
1525          uint8_t eg1ctrloptions        = _3ewa->ReadUint8();              EG1Sustain          = _3ewa->ReadUint16();
1526          EG1ControllerInvert           = eg1ctrloptions & 0x01;              EG1Release          = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1527          EG1ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1528          EG1ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);              uint8_t eg1ctrloptions        = _3ewa->ReadUint8();
1529          EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerInvert           = eg1ctrloptions & 0x01;
1530          EG2Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));              EG1ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1531          uint8_t eg2ctrloptions        = _3ewa->ReadUint8();              EG1ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1532          EG2ControllerInvert           = eg2ctrloptions & 0x01;              EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1533          EG2ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1534          EG2ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);              uint8_t eg2ctrloptions        = _3ewa->ReadUint8();
1535          EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerInvert           = eg2ctrloptions & 0x01;
1536          LFO1Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1537          EG2Attack        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1538          EG2Decay1        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1539          _3ewa->ReadInt16(); // unknown              LFO1Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1540          EG2Sustain       = _3ewa->ReadUint16();              EG2Attack        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1541          EG2Release       = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2Decay1        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1542          _3ewa->ReadInt16(); // unknown              _3ewa->ReadInt16(); // unknown
1543          LFO2ControlDepth = _3ewa->ReadUint16();              EG2Sustain       = _3ewa->ReadUint16();
1544          LFO2Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2Release       = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1545          _3ewa->ReadInt16(); // unknown              _3ewa->ReadInt16(); // unknown
1546          LFO2InternalDepth = _3ewa->ReadUint16();              LFO2ControlDepth = _3ewa->ReadUint16();
1547          int32_t eg1decay2 = _3ewa->ReadInt32();              LFO2Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1548          EG1Decay2          = (double) GIG_EXP_DECODE(eg1decay2);              _3ewa->ReadInt16(); // unknown
1549          EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);              LFO2InternalDepth = _3ewa->ReadUint16();
1550          _3ewa->ReadInt16(); // unknown              int32_t eg1decay2 = _3ewa->ReadInt32();
1551          EG1PreAttack      = _3ewa->ReadUint16();              EG1Decay2          = (double) GIG_EXP_DECODE(eg1decay2);
1552          int32_t eg2decay2 = _3ewa->ReadInt32();              EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1553          EG2Decay2         = (double) GIG_EXP_DECODE(eg2decay2);              _3ewa->ReadInt16(); // unknown
1554          EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);              EG1PreAttack      = _3ewa->ReadUint16();
1555          _3ewa->ReadInt16(); // unknown              int32_t eg2decay2 = _3ewa->ReadInt32();
1556          EG2PreAttack      = _3ewa->ReadUint16();              EG2Decay2         = (double) GIG_EXP_DECODE(eg2decay2);
1557          uint8_t velocityresponse = _3ewa->ReadUint8();              EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1558          if (velocityresponse < 5) {              _3ewa->ReadInt16(); // unknown
1559              VelocityResponseCurve = curve_type_nonlinear;              EG2PreAttack      = _3ewa->ReadUint16();
1560              VelocityResponseDepth = velocityresponse;              uint8_t velocityresponse = _3ewa->ReadUint8();
1561          }              if (velocityresponse < 5) {
1562          else if (velocityresponse < 10) {                  VelocityResponseCurve = curve_type_nonlinear;
1563              VelocityResponseCurve = curve_type_linear;                  VelocityResponseDepth = velocityresponse;
1564              VelocityResponseDepth = velocityresponse - 5;              } else if (velocityresponse < 10) {
1565          }                  VelocityResponseCurve = curve_type_linear;
1566          else if (velocityresponse < 15) {                  VelocityResponseDepth = velocityresponse - 5;
1567              VelocityResponseCurve = curve_type_special;              } else if (velocityresponse < 15) {
1568              VelocityResponseDepth = velocityresponse - 10;                  VelocityResponseCurve = curve_type_special;
1569                    VelocityResponseDepth = velocityresponse - 10;
1570                } else {
1571                    VelocityResponseCurve = curve_type_unknown;
1572                    VelocityResponseDepth = 0;
1573                }
1574                uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1575                if (releasevelocityresponse < 5) {
1576                    ReleaseVelocityResponseCurve = curve_type_nonlinear;
1577                    ReleaseVelocityResponseDepth = releasevelocityresponse;
1578                } else if (releasevelocityresponse < 10) {
1579                    ReleaseVelocityResponseCurve = curve_type_linear;
1580                    ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1581                } else if (releasevelocityresponse < 15) {
1582                    ReleaseVelocityResponseCurve = curve_type_special;
1583                    ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1584                } else {
1585                    ReleaseVelocityResponseCurve = curve_type_unknown;
1586                    ReleaseVelocityResponseDepth = 0;
1587                }
1588                VelocityResponseCurveScaling = _3ewa->ReadUint8();
1589                AttenuationControllerThreshold = _3ewa->ReadInt8();
1590                _3ewa->ReadInt32(); // unknown
1591                SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1592                _3ewa->ReadInt16(); // unknown
1593                uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1594                PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1595                if      (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1596                else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1597                else                                       DimensionBypass = dim_bypass_ctrl_none;
1598                uint8_t pan = _3ewa->ReadUint8();
1599                Pan         = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1600                SelfMask = _3ewa->ReadInt8() & 0x01;
1601                _3ewa->ReadInt8(); // unknown
1602                uint8_t lfo3ctrl = _3ewa->ReadUint8();
1603                LFO3Controller           = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1604                LFO3Sync                 = lfo3ctrl & 0x20; // bit 5
1605                InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1606                AttenuationController  = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1607                uint8_t lfo2ctrl       = _3ewa->ReadUint8();
1608                LFO2Controller         = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1609                LFO2FlipPhase          = lfo2ctrl & 0x80; // bit 7
1610                LFO2Sync               = lfo2ctrl & 0x20; // bit 5
1611                bool extResonanceCtrl  = lfo2ctrl & 0x40; // bit 6
1612                uint8_t lfo1ctrl       = _3ewa->ReadUint8();
1613                LFO1Controller         = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1614                LFO1FlipPhase          = lfo1ctrl & 0x80; // bit 7
1615                LFO1Sync               = lfo1ctrl & 0x40; // bit 6
1616                VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1617                                                            : vcf_res_ctrl_none;
1618                uint16_t eg3depth = _3ewa->ReadUint16();
1619                EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1620                                            : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1621                _3ewa->ReadInt16(); // unknown
1622                ChannelOffset = _3ewa->ReadUint8() / 4;
1623                uint8_t regoptions = _3ewa->ReadUint8();
1624                MSDecode           = regoptions & 0x01; // bit 0
1625                SustainDefeat      = regoptions & 0x02; // bit 1
1626                _3ewa->ReadInt16(); // unknown
1627                VelocityUpperLimit = _3ewa->ReadInt8();
1628                _3ewa->ReadInt8(); // unknown
1629                _3ewa->ReadInt16(); // unknown
1630                ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1631                _3ewa->ReadInt8(); // unknown
1632                _3ewa->ReadInt8(); // unknown
1633                EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1634                uint8_t vcfcutoff = _3ewa->ReadUint8();
1635                VCFEnabled = vcfcutoff & 0x80; // bit 7
1636                VCFCutoff  = vcfcutoff & 0x7f; // lower 7 bits
1637                VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1638                uint8_t vcfvelscale = _3ewa->ReadUint8();
1639                VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1640                VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1641                _3ewa->ReadInt8(); // unknown
1642                uint8_t vcfresonance = _3ewa->ReadUint8();
1643                VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1644                VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1645                uint8_t vcfbreakpoint         = _3ewa->ReadUint8();
1646                VCFKeyboardTracking           = vcfbreakpoint & 0x80; // bit 7
1647                VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1648                uint8_t vcfvelocity = _3ewa->ReadUint8();
1649                VCFVelocityDynamicRange = vcfvelocity % 5;
1650                VCFVelocityCurve        = static_cast<curve_type_t>(vcfvelocity / 5);
1651                VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1652                if (VCFType == vcf_type_lowpass) {
1653                    if (lfo3ctrl & 0x40) // bit 6
1654                        VCFType = vcf_type_lowpassturbo;
1655                }
1656                if (_3ewa->RemainingBytes() >= 8) {
1657                    _3ewa->Read(DimensionUpperLimits, 1, 8);
1658                } else {
1659                    memset(DimensionUpperLimits, 0, 8);
1660                }
1661            } else { // '3ewa' chunk does not exist yet
1662                // use default values
1663                LFO3Frequency                   = 1.0;
1664                EG3Attack                       = 0.0;
1665                LFO1InternalDepth               = 0;
1666                LFO3InternalDepth               = 0;
1667                LFO1ControlDepth                = 0;
1668                LFO3ControlDepth                = 0;
1669                EG1Attack                       = 0.0;
1670                EG1Decay1                       = 0.005;
1671                EG1Sustain                      = 1000;
1672                EG1Release                      = 0.3;
1673                EG1Controller.type              = eg1_ctrl_t::type_none;
1674                EG1Controller.controller_number = 0;
1675                EG1ControllerInvert             = false;
1676                EG1ControllerAttackInfluence    = 0;
1677                EG1ControllerDecayInfluence     = 0;
1678                EG1ControllerReleaseInfluence   = 0;
1679                EG2Controller.type              = eg2_ctrl_t::type_none;
1680                EG2Controller.controller_number = 0;
1681                EG2ControllerInvert             = false;
1682                EG2ControllerAttackInfluence    = 0;
1683                EG2ControllerDecayInfluence     = 0;
1684                EG2ControllerReleaseInfluence   = 0;
1685                LFO1Frequency                   = 1.0;
1686                EG2Attack                       = 0.0;
1687                EG2Decay1                       = 0.005;
1688                EG2Sustain                      = 1000;
1689                EG2Release                      = 60;
1690                LFO2ControlDepth                = 0;
1691                LFO2Frequency                   = 1.0;
1692                LFO2InternalDepth               = 0;
1693                EG1Decay2                       = 0.0;
1694                EG1InfiniteSustain              = true;
1695                EG1PreAttack                    = 0;
1696                EG2Decay2                       = 0.0;
1697                EG2InfiniteSustain              = true;
1698                EG2PreAttack                    = 0;
1699                VelocityResponseCurve           = curve_type_nonlinear;
1700                VelocityResponseDepth           = 3;
1701                ReleaseVelocityResponseCurve    = curve_type_nonlinear;
1702                ReleaseVelocityResponseDepth    = 3;
1703                VelocityResponseCurveScaling    = 32;
1704                AttenuationControllerThreshold  = 0;
1705                SampleStartOffset               = 0;
1706                PitchTrack                      = true;
1707                DimensionBypass                 = dim_bypass_ctrl_none;
1708                Pan                             = 0;
1709                SelfMask                        = true;
1710                LFO3Controller                  = lfo3_ctrl_modwheel;
1711                LFO3Sync                        = false;
1712                InvertAttenuationController     = false;
1713                AttenuationController.type      = attenuation_ctrl_t::type_none;
1714                AttenuationController.controller_number = 0;
1715                LFO2Controller                  = lfo2_ctrl_internal;
1716                LFO2FlipPhase                   = false;
1717                LFO2Sync                        = false;
1718                LFO1Controller                  = lfo1_ctrl_internal;
1719                LFO1FlipPhase                   = false;
1720                LFO1Sync                        = false;
1721                VCFResonanceController          = vcf_res_ctrl_none;
1722                EG3Depth                        = 0;
1723                ChannelOffset                   = 0;
1724                MSDecode                        = false;
1725                SustainDefeat                   = false;
1726                VelocityUpperLimit              = 0;
1727                ReleaseTriggerDecay             = 0;
1728                EG1Hold                         = false;
1729                VCFEnabled                      = false;
1730                VCFCutoff                       = 0;
1731                VCFCutoffController             = vcf_cutoff_ctrl_none;
1732                VCFCutoffControllerInvert       = false;
1733                VCFVelocityScale                = 0;
1734                VCFResonance                    = 0;
1735                VCFResonanceDynamic             = false;
1736                VCFKeyboardTracking             = false;
1737                VCFKeyboardTrackingBreakpoint   = 0;
1738                VCFVelocityDynamicRange         = 0x04;
1739                VCFVelocityCurve                = curve_type_linear;
1740                VCFType                         = vcf_type_lowpass;
1741                memset(DimensionUpperLimits, 127, 8);
1742            }
1743            // chunk for own format extensions, these will *NOT* work with Gigasampler/GigaStudio !
1744            RIFF::Chunk* lsde = _3ewl->GetSubChunk(CHUNK_ID_LSDE);
1745            if (lsde) { // format extension for EG behavior options
1746                lsde->SetPos(0);
1747    
1748                eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
1749                for (int i = 0; i < 2; ++i) { // NOTE: we reserved a 3rd byte for a potential future EG3 option
1750                    unsigned char byte = lsde->ReadUint8();
1751                    pEGOpts[i]->AttackCancel     = byte & 1;
1752                    pEGOpts[i]->AttackHoldCancel = byte & (1 << 1);
1753                    pEGOpts[i]->Decay1Cancel     = byte & (1 << 2);
1754                    pEGOpts[i]->Decay2Cancel     = byte & (1 << 3);
1755                    pEGOpts[i]->ReleaseCancel    = byte & (1 << 4);
1756                }
1757          }          }
1758          else {          // format extension for sustain pedal up effect on release trigger samples
1759              VelocityResponseCurve = curve_type_unknown;          if (lsde && lsde->GetSize() > 3) { // NOTE: we reserved the 3rd byte for a potential future EG3 option
1760              VelocityResponseDepth = 0;              lsde->SetPos(3);
1761                uint8_t byte = lsde->ReadUint8();
1762                SustainReleaseTrigger   = static_cast<sust_rel_trg_t>(byte & 0x03);
1763                NoNoteOffReleaseTrigger = byte >> 7;
1764            } else {
1765                SustainReleaseTrigger   = sust_rel_trg_none;
1766                NoNoteOffReleaseTrigger = false;
1767            }
1768    
1769            pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1770                                                         VelocityResponseDepth,
1771                                                         VelocityResponseCurveScaling);
1772    
1773            pVelocityReleaseTable = GetReleaseVelocityTable(
1774                                        ReleaseVelocityResponseCurve,
1775                                        ReleaseVelocityResponseDepth
1776                                    );
1777    
1778            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1779                                                          VCFVelocityDynamicRange,
1780                                                          VCFVelocityScale,
1781                                                          VCFCutoffController);
1782    
1783            SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1784            VelocityTable = 0;
1785        }
1786    
1787        /*
1788         * Constructs a DimensionRegion by copying all parameters from
1789         * another DimensionRegion
1790         */
1791        DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1792            Instances++;
1793            //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1794            *this = src; // default memberwise shallow copy of all parameters
1795            pParentList = _3ewl; // restore the chunk pointer
1796    
1797            // deep copy of owned structures
1798            if (src.VelocityTable) {
1799                VelocityTable = new uint8_t[128];
1800                for (int k = 0 ; k < 128 ; k++)
1801                    VelocityTable[k] = src.VelocityTable[k];
1802            }
1803            if (src.pSampleLoops) {
1804                pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1805                for (int k = 0 ; k < src.SampleLoops ; k++)
1806                    pSampleLoops[k] = src.pSampleLoops[k];
1807          }          }
1808          uint8_t releasevelocityresponse = _3ewa->ReadUint8();      }
1809          if (releasevelocityresponse < 5) {      
1810              ReleaseVelocityResponseCurve = curve_type_nonlinear;      /**
1811              ReleaseVelocityResponseDepth = releasevelocityresponse;       * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1812          }       * and assign it to this object.
1813          else if (releasevelocityresponse < 10) {       *
1814              ReleaseVelocityResponseCurve = curve_type_linear;       * Note that all sample pointers referenced by @a orig are simply copied as
1815              ReleaseVelocityResponseDepth = releasevelocityresponse - 5;       * memory address. Thus the respective samples are shared, not duplicated!
1816          }       *
1817          else if (releasevelocityresponse < 15) {       * @param orig - original DimensionRegion object to be copied from
1818              ReleaseVelocityResponseCurve = curve_type_special;       */
1819              ReleaseVelocityResponseDepth = releasevelocityresponse - 10;      void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1820            CopyAssign(orig, NULL);
1821        }
1822    
1823        /**
1824         * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1825         * and assign it to this object.
1826         *
1827         * @param orig - original DimensionRegion object to be copied from
1828         * @param mSamples - crosslink map between the foreign file's samples and
1829         *                   this file's samples
1830         */
1831        void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1832            // delete all allocated data first
1833            if (VelocityTable) delete [] VelocityTable;
1834            if (pSampleLoops) delete [] pSampleLoops;
1835            
1836            // backup parent list pointer
1837            RIFF::List* p = pParentList;
1838            
1839            gig::Sample* pOriginalSample = pSample;
1840            gig::Region* pOriginalRegion = pRegion;
1841            
1842            //NOTE: copy code copied from assignment constructor above, see comment there as well
1843            
1844            *this = *orig; // default memberwise shallow copy of all parameters
1845            
1846            // restore members that shall not be altered
1847            pParentList = p; // restore the chunk pointer
1848            pRegion = pOriginalRegion;
1849            
1850            // only take the raw sample reference reference if the
1851            // two DimensionRegion objects are part of the same file
1852            if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1853                pSample = pOriginalSample;
1854            }
1855            
1856            if (mSamples && mSamples->count(orig->pSample)) {
1857                pSample = mSamples->find(orig->pSample)->second;
1858            }
1859    
1860            // deep copy of owned structures
1861            if (orig->VelocityTable) {
1862                VelocityTable = new uint8_t[128];
1863                for (int k = 0 ; k < 128 ; k++)
1864                    VelocityTable[k] = orig->VelocityTable[k];
1865            }
1866            if (orig->pSampleLoops) {
1867                pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1868                for (int k = 0 ; k < orig->SampleLoops ; k++)
1869                    pSampleLoops[k] = orig->pSampleLoops[k];
1870            }
1871        }
1872    
1873        void DimensionRegion::serialize(Serialization::Archive* archive) {
1874            // in case this class will become backward incompatible one day,
1875            // then set a version and minimum version for this class like:
1876            //archive->setVersion(*this, 2);
1877            //archive->setMinVersion(*this, 1);
1878    
1879            SRLZ(VelocityUpperLimit);
1880            SRLZ(EG1PreAttack);
1881            SRLZ(EG1Attack);
1882            SRLZ(EG1Decay1);
1883            SRLZ(EG1Decay2);
1884            SRLZ(EG1InfiniteSustain);
1885            SRLZ(EG1Sustain);
1886            SRLZ(EG1Release);
1887            SRLZ(EG1Hold);
1888            SRLZ(EG1Controller);
1889            SRLZ(EG1ControllerInvert);
1890            SRLZ(EG1ControllerAttackInfluence);
1891            SRLZ(EG1ControllerDecayInfluence);
1892            SRLZ(EG1ControllerReleaseInfluence);
1893            SRLZ(LFO1Frequency);
1894            SRLZ(LFO1InternalDepth);
1895            SRLZ(LFO1ControlDepth);
1896            SRLZ(LFO1Controller);
1897            SRLZ(LFO1FlipPhase);
1898            SRLZ(LFO1Sync);
1899            SRLZ(EG2PreAttack);
1900            SRLZ(EG2Attack);
1901            SRLZ(EG2Decay1);
1902            SRLZ(EG2Decay2);
1903            SRLZ(EG2InfiniteSustain);
1904            SRLZ(EG2Sustain);
1905            SRLZ(EG2Release);
1906            SRLZ(EG2Controller);
1907            SRLZ(EG2ControllerInvert);
1908            SRLZ(EG2ControllerAttackInfluence);
1909            SRLZ(EG2ControllerDecayInfluence);
1910            SRLZ(EG2ControllerReleaseInfluence);
1911            SRLZ(LFO2Frequency);
1912            SRLZ(LFO2InternalDepth);
1913            SRLZ(LFO2ControlDepth);
1914            SRLZ(LFO2Controller);
1915            SRLZ(LFO2FlipPhase);
1916            SRLZ(LFO2Sync);
1917            SRLZ(EG3Attack);
1918            SRLZ(EG3Depth);
1919            SRLZ(LFO3Frequency);
1920            SRLZ(LFO3InternalDepth);
1921            SRLZ(LFO3ControlDepth);
1922            SRLZ(LFO3Controller);
1923            SRLZ(LFO3Sync);
1924            SRLZ(VCFEnabled);
1925            SRLZ(VCFType);
1926            SRLZ(VCFCutoffController);
1927            SRLZ(VCFCutoffControllerInvert);
1928            SRLZ(VCFCutoff);
1929            SRLZ(VCFVelocityCurve);
1930            SRLZ(VCFVelocityScale);
1931            SRLZ(VCFVelocityDynamicRange);
1932            SRLZ(VCFResonance);
1933            SRLZ(VCFResonanceDynamic);
1934            SRLZ(VCFResonanceController);
1935            SRLZ(VCFKeyboardTracking);
1936            SRLZ(VCFKeyboardTrackingBreakpoint);
1937            SRLZ(VelocityResponseCurve);
1938            SRLZ(VelocityResponseDepth);
1939            SRLZ(VelocityResponseCurveScaling);
1940            SRLZ(ReleaseVelocityResponseCurve);
1941            SRLZ(ReleaseVelocityResponseDepth);
1942            SRLZ(ReleaseTriggerDecay);
1943            SRLZ(Crossfade);
1944            SRLZ(PitchTrack);
1945            SRLZ(DimensionBypass);
1946            SRLZ(Pan);
1947            SRLZ(SelfMask);
1948            SRLZ(AttenuationController);
1949            SRLZ(InvertAttenuationController);
1950            SRLZ(AttenuationControllerThreshold);
1951            SRLZ(ChannelOffset);
1952            SRLZ(SustainDefeat);
1953            SRLZ(MSDecode);
1954            //SRLZ(SampleStartOffset);
1955            SRLZ(SampleAttenuation);
1956            SRLZ(EG1Options);
1957            SRLZ(EG2Options);
1958            SRLZ(SustainReleaseTrigger);
1959            SRLZ(NoNoteOffReleaseTrigger);
1960    
1961            // derived attributes from DLS::Sampler
1962            SRLZ(FineTune);
1963            SRLZ(Gain);
1964        }
1965    
1966        /**
1967         * Updates the respective member variable and updates @c SampleAttenuation
1968         * which depends on this value.
1969         */
1970        void DimensionRegion::SetGain(int32_t gain) {
1971            DLS::Sampler::SetGain(gain);
1972            SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1973        }
1974    
1975        /**
1976         * Apply dimension region settings to the respective RIFF chunks. You
1977         * have to call File::Save() to make changes persistent.
1978         *
1979         * Usually there is absolutely no need to call this method explicitly.
1980         * It will be called automatically when File::Save() was called.
1981         *
1982         * @param pProgress - callback function for progress notification
1983         */
1984        void DimensionRegion::UpdateChunks(progress_t* pProgress) {
1985            // first update base class's chunk
1986            DLS::Sampler::UpdateChunks(pProgress);
1987    
1988            RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1989            uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1990            pData[12] = Crossfade.in_start;
1991            pData[13] = Crossfade.in_end;
1992            pData[14] = Crossfade.out_start;
1993            pData[15] = Crossfade.out_end;
1994    
1995            // make sure '3ewa' chunk exists
1996            RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1997            if (!_3ewa) {
1998                File* pFile = (File*) GetParent()->GetParent()->GetParent();
1999                bool versiongt2 = pFile->pVersion && pFile->pVersion->major > 2;
2000                _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, versiongt2 ? 148 : 140);
2001          }          }
2002          else {          pData = (uint8_t*) _3ewa->LoadChunkData();
2003              ReleaseVelocityResponseCurve = curve_type_unknown;  
2004              ReleaseVelocityResponseDepth = 0;          // update '3ewa' chunk with DimensionRegion's current settings
2005    
2006            const uint32_t chunksize = (uint32_t) _3ewa->GetNewSize();
2007            store32(&pData[0], chunksize); // unknown, always chunk size?
2008    
2009            const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
2010            store32(&pData[4], lfo3freq);
2011    
2012            const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
2013            store32(&pData[8], eg3attack);
2014    
2015            // next 2 bytes unknown
2016    
2017            store16(&pData[14], LFO1InternalDepth);
2018    
2019            // next 2 bytes unknown
2020    
2021            store16(&pData[18], LFO3InternalDepth);
2022    
2023            // next 2 bytes unknown
2024    
2025            store16(&pData[22], LFO1ControlDepth);
2026    
2027            // next 2 bytes unknown
2028    
2029            store16(&pData[26], LFO3ControlDepth);
2030    
2031            const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
2032            store32(&pData[28], eg1attack);
2033    
2034            const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
2035            store32(&pData[32], eg1decay1);
2036    
2037            // next 2 bytes unknown
2038    
2039            store16(&pData[38], EG1Sustain);
2040    
2041            const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
2042            store32(&pData[40], eg1release);
2043    
2044            const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
2045            pData[44] = eg1ctl;
2046    
2047            const uint8_t eg1ctrloptions =
2048                (EG1ControllerInvert ? 0x01 : 0x00) |
2049                GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
2050                GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
2051                GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
2052            pData[45] = eg1ctrloptions;
2053    
2054            const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
2055            pData[46] = eg2ctl;
2056    
2057            const uint8_t eg2ctrloptions =
2058                (EG2ControllerInvert ? 0x01 : 0x00) |
2059                GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
2060                GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
2061                GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
2062            pData[47] = eg2ctrloptions;
2063    
2064            const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
2065            store32(&pData[48], lfo1freq);
2066    
2067            const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
2068            store32(&pData[52], eg2attack);
2069    
2070            const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
2071            store32(&pData[56], eg2decay1);
2072    
2073            // next 2 bytes unknown
2074    
2075            store16(&pData[62], EG2Sustain);
2076    
2077            const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
2078            store32(&pData[64], eg2release);
2079    
2080            // next 2 bytes unknown
2081    
2082            store16(&pData[70], LFO2ControlDepth);
2083    
2084            const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
2085            store32(&pData[72], lfo2freq);
2086    
2087            // next 2 bytes unknown
2088    
2089            store16(&pData[78], LFO2InternalDepth);
2090    
2091            const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
2092            store32(&pData[80], eg1decay2);
2093    
2094            // next 2 bytes unknown
2095    
2096            store16(&pData[86], EG1PreAttack);
2097    
2098            const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
2099            store32(&pData[88], eg2decay2);
2100    
2101            // next 2 bytes unknown
2102    
2103            store16(&pData[94], EG2PreAttack);
2104    
2105            {
2106                if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
2107                uint8_t velocityresponse = VelocityResponseDepth;
2108                switch (VelocityResponseCurve) {
2109                    case curve_type_nonlinear:
2110                        break;
2111                    case curve_type_linear:
2112                        velocityresponse += 5;
2113                        break;
2114                    case curve_type_special:
2115                        velocityresponse += 10;
2116                        break;
2117                    case curve_type_unknown:
2118                    default:
2119                        throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
2120                }
2121                pData[96] = velocityresponse;
2122            }
2123    
2124            {
2125                if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
2126                uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
2127                switch (ReleaseVelocityResponseCurve) {
2128                    case curve_type_nonlinear:
2129                        break;
2130                    case curve_type_linear:
2131                        releasevelocityresponse += 5;
2132                        break;
2133                    case curve_type_special:
2134                        releasevelocityresponse += 10;
2135                        break;
2136                    case curve_type_unknown:
2137                    default:
2138                        throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
2139                }
2140                pData[97] = releasevelocityresponse;
2141            }
2142    
2143            pData[98] = VelocityResponseCurveScaling;
2144    
2145            pData[99] = AttenuationControllerThreshold;
2146    
2147            // next 4 bytes unknown
2148    
2149            store16(&pData[104], SampleStartOffset);
2150    
2151            // next 2 bytes unknown
2152    
2153            {
2154                uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
2155                switch (DimensionBypass) {
2156                    case dim_bypass_ctrl_94:
2157                        pitchTrackDimensionBypass |= 0x10;
2158                        break;
2159                    case dim_bypass_ctrl_95:
2160                        pitchTrackDimensionBypass |= 0x20;
2161                        break;
2162                    case dim_bypass_ctrl_none:
2163                        //FIXME: should we set anything here?
2164                        break;
2165                    default:
2166                        throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
2167                }
2168                pData[108] = pitchTrackDimensionBypass;
2169            }
2170    
2171            const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
2172            pData[109] = pan;
2173    
2174            const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
2175            pData[110] = selfmask;
2176    
2177            // next byte unknown
2178    
2179            {
2180                uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
2181                if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
2182                if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
2183                if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
2184                pData[112] = lfo3ctrl;
2185            }
2186    
2187            const uint8_t attenctl = EncodeLeverageController(AttenuationController);
2188            pData[113] = attenctl;
2189    
2190            {
2191                uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
2192                if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
2193                if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5
2194                if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
2195                pData[114] = lfo2ctrl;
2196            }
2197    
2198            {
2199                uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
2200                if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
2201                if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6
2202                if (VCFResonanceController != vcf_res_ctrl_none)
2203                    lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
2204                pData[115] = lfo1ctrl;
2205            }
2206    
2207            const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
2208                                                      : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
2209            store16(&pData[116], eg3depth);
2210    
2211            // next 2 bytes unknown
2212    
2213            const uint8_t channeloffset = ChannelOffset * 4;
2214            pData[120] = channeloffset;
2215    
2216            {
2217                uint8_t regoptions = 0;
2218                if (MSDecode)      regoptions |= 0x01; // bit 0
2219                if (SustainDefeat) regoptions |= 0x02; // bit 1
2220                pData[121] = regoptions;
2221            }
2222    
2223            // next 2 bytes unknown
2224    
2225            pData[124] = VelocityUpperLimit;
2226    
2227            // next 3 bytes unknown
2228    
2229            pData[128] = ReleaseTriggerDecay;
2230    
2231            // next 2 bytes unknown
2232    
2233            const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2234            pData[131] = eg1hold;
2235    
2236            const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) |  /* bit 7 */
2237                                      (VCFCutoff & 0x7f);   /* lower 7 bits */
2238            pData[132] = vcfcutoff;
2239    
2240            pData[133] = VCFCutoffController;
2241    
2242            const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2243                                        (VCFVelocityScale & 0x7f); /* lower 7 bits */
2244            pData[134] = vcfvelscale;
2245    
2246            // next byte unknown
2247    
2248            const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2249                                         (VCFResonance & 0x7f); /* lower 7 bits */
2250            pData[136] = vcfresonance;
2251    
2252            const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2253                                          (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2254            pData[137] = vcfbreakpoint;
2255    
2256            const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2257                                        VCFVelocityCurve * 5;
2258            pData[138] = vcfvelocity;
2259    
2260            const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2261            pData[139] = vcftype;
2262    
2263            if (chunksize >= 148) {
2264                memcpy(&pData[140], DimensionUpperLimits, 8);
2265          }          }
2266          VelocityResponseCurveScaling = _3ewa->ReadUint8();  
2267          AttenuationControllerThreshold = _3ewa->ReadInt8();          // chunk for own format extensions, these will *NOT* work with
2268          _3ewa->ReadInt32(); // unknown          // Gigasampler/GigaStudio !
2269          SampleStartOffset = (uint16_t) _3ewa->ReadInt16();          RIFF::Chunk* lsde = pParentList->GetSubChunk(CHUNK_ID_LSDE);
2270          _3ewa->ReadInt16(); // unknown          const int lsdeSize = 4; // NOTE: we reserved the 3rd byte for a potential future EG3 option
2271          uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();          if (!lsde) {
2272          PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);              // only add this "LSDE" chunk if either EG options or release
2273          if      (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;              // trigger options deviate from their default behaviour
2274          else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;              eg_opt_t defaultOpt;
2275          else                                       DimensionBypass = dim_bypass_ctrl_none;              if (memcmp(&EG1Options, &defaultOpt, sizeof(eg_opt_t)) ||
2276          uint8_t pan = _3ewa->ReadUint8();                  memcmp(&EG2Options, &defaultOpt, sizeof(eg_opt_t)) ||
2277          Pan         = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit                  SustainReleaseTrigger || NoNoteOffReleaseTrigger)
2278          SelfMask = _3ewa->ReadInt8() & 0x01;              {
2279          _3ewa->ReadInt8(); // unknown                  lsde = pParentList->AddSubChunk(CHUNK_ID_LSDE, lsdeSize);
2280          uint8_t lfo3ctrl = _3ewa->ReadUint8();                  // move LSDE chunk to the end of parent list
2281          LFO3Controller           = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits                  pParentList->MoveSubChunk(lsde, (RIFF::Chunk*)NULL);
2282          LFO3Sync                 = lfo3ctrl & 0x20; // bit 5              }
         InvertAttenuationController = lfo3ctrl & 0x80; // bit 7  
         AttenuationController  = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));  
         uint8_t lfo2ctrl       = _3ewa->ReadUint8();  
         LFO2Controller         = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits  
         LFO2FlipPhase          = lfo2ctrl & 0x80; // bit 7  
         LFO2Sync               = lfo2ctrl & 0x20; // bit 5  
         bool extResonanceCtrl  = lfo2ctrl & 0x40; // bit 6  
         uint8_t lfo1ctrl       = _3ewa->ReadUint8();  
         LFO1Controller         = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits  
         LFO1FlipPhase          = lfo1ctrl & 0x80; // bit 7  
         LFO1Sync               = lfo1ctrl & 0x40; // bit 6  
         VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))  
                                                     : vcf_res_ctrl_none;  
         uint16_t eg3depth = _3ewa->ReadUint16();  
         EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */  
                                       : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */  
         _3ewa->ReadInt16(); // unknown  
         ChannelOffset = _3ewa->ReadUint8() / 4;  
         uint8_t regoptions = _3ewa->ReadUint8();  
         MSDecode           = regoptions & 0x01; // bit 0  
         SustainDefeat      = regoptions & 0x02; // bit 1  
         _3ewa->ReadInt16(); // unknown  
         VelocityUpperLimit = _3ewa->ReadInt8();  
         _3ewa->ReadInt8(); // unknown  
         _3ewa->ReadInt16(); // unknown  
         ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay  
         _3ewa->ReadInt8(); // unknown  
         _3ewa->ReadInt8(); // unknown  
         EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7  
         uint8_t vcfcutoff = _3ewa->ReadUint8();  
         VCFEnabled = vcfcutoff & 0x80; // bit 7  
         VCFCutoff  = vcfcutoff & 0x7f; // lower 7 bits  
         VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());  
         VCFVelocityScale = _3ewa->ReadUint8();  
         _3ewa->ReadInt8(); // unknown  
         uint8_t vcfresonance = _3ewa->ReadUint8();  
         VCFResonance = vcfresonance & 0x7f; // lower 7 bits  
         VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7  
         uint8_t vcfbreakpoint         = _3ewa->ReadUint8();  
         VCFKeyboardTracking           = vcfbreakpoint & 0x80; // bit 7  
         VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits  
         uint8_t vcfvelocity = _3ewa->ReadUint8();  
         VCFVelocityDynamicRange = vcfvelocity % 5;  
         VCFVelocityCurve        = static_cast<curve_type_t>(vcfvelocity / 5);  
         VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());  
         if (VCFType == vcf_type_lowpass) {  
             if (lfo3ctrl & 0x40) // bit 6  
                 VCFType = vcf_type_lowpassturbo;  
2283          }          }
2284            if (lsde) {
2285                if (lsde->GetNewSize() < lsdeSize)
2286                    lsde->Resize(lsdeSize);
2287                // format extension for EG behavior options
2288                unsigned char* pData = (unsigned char*) lsde->LoadChunkData();
2289                eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
2290                for (int i = 0; i < 2; ++i) { // NOTE: we reserved the 3rd byte for a potential future EG3 option
2291                    pData[i] =
2292                        (pEGOpts[i]->AttackCancel     ? 1 : 0) |
2293                        (pEGOpts[i]->AttackHoldCancel ? (1<<1) : 0) |
2294                        (pEGOpts[i]->Decay1Cancel     ? (1<<2) : 0) |
2295                        (pEGOpts[i]->Decay2Cancel     ? (1<<3) : 0) |
2296                        (pEGOpts[i]->ReleaseCancel    ? (1<<4) : 0);
2297                }
2298                // format extension for release trigger options
2299                pData[3] = static_cast<uint8_t>(SustainReleaseTrigger) | (NoNoteOffReleaseTrigger ? (1<<7) : 0);
2300            }
2301        }
2302    
2303        double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2304            curve_type_t curveType = releaseVelocityResponseCurve;
2305            uint8_t depth = releaseVelocityResponseDepth;
2306            // this models a strange behaviour or bug in GSt: two of the
2307            // velocity response curves for release time are not used even
2308            // if specified, instead another curve is chosen.
2309            if ((curveType == curve_type_nonlinear && depth == 0) ||
2310                (curveType == curve_type_special   && depth == 4)) {
2311                curveType = curve_type_nonlinear;
2312                depth = 3;
2313            }
2314            return GetVelocityTable(curveType, depth, 0);
2315        }
2316    
2317        double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2318                                                        uint8_t vcfVelocityDynamicRange,
2319                                                        uint8_t vcfVelocityScale,
2320                                                        vcf_cutoff_ctrl_t vcfCutoffController)
2321        {
2322            curve_type_t curveType = vcfVelocityCurve;
2323            uint8_t depth = vcfVelocityDynamicRange;
2324            // even stranger GSt: two of the velocity response curves for
2325            // filter cutoff are not used, instead another special curve
2326            // is chosen. This curve is not used anywhere else.
2327            if ((curveType == curve_type_nonlinear && depth == 0) ||
2328                (curveType == curve_type_special   && depth == 4)) {
2329                curveType = curve_type_special;
2330                depth = 5;
2331            }
2332            return GetVelocityTable(curveType, depth,
2333                                    (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2334                                        ? vcfVelocityScale : 0);
2335        }
2336    
2337          // get the corresponding velocity->volume table from the table map or create & calculate that table if it doesn't exist yet      // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2338          uint32_t tableKey = (VelocityResponseCurve<<16) | (VelocityResponseDepth<<8) | VelocityResponseCurveScaling;      double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2339        {
2340            // sanity check input parameters
2341            // (fallback to some default parameters on ill input)
2342            switch (curveType) {
2343                case curve_type_nonlinear:
2344                case curve_type_linear:
2345                    if (depth > 4) {
2346                        printf("Warning: Invalid depth (0x%x) for velocity curve type (0x%x).\n", depth, curveType);
2347                        depth   = 0;
2348                        scaling = 0;
2349                    }
2350                    break;
2351                case curve_type_special:
2352                    if (depth > 5) {
2353                        printf("Warning: Invalid depth (0x%x) for velocity curve type 'special'.\n", depth);
2354                        depth   = 0;
2355                        scaling = 0;
2356                    }
2357                    break;
2358                case curve_type_unknown:
2359                default:
2360                    printf("Warning: Unknown velocity curve type (0x%x).\n", curveType);
2361                    curveType = curve_type_linear;
2362                    depth     = 0;
2363                    scaling   = 0;
2364                    break;
2365            }
2366    
2367            double* table;
2368            uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2369          if (pVelocityTables->count(tableKey)) { // if key exists          if (pVelocityTables->count(tableKey)) { // if key exists
2370              pVelocityAttenuationTable = (*pVelocityTables)[tableKey];              table = (*pVelocityTables)[tableKey];
2371          }          }
2372          else {          else {
2373              pVelocityAttenuationTable =              table = CreateVelocityTable(curveType, depth, scaling);
2374                  CreateVelocityTable(VelocityResponseCurve,              (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
                                     VelocityResponseDepth,  
                                     VelocityResponseCurveScaling);  
             (*pVelocityTables)[tableKey] = pVelocityAttenuationTable; // put the new table into the tables map  
2375          }          }
2376            return table;
2377        }
2378    
2379          SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));      Region* DimensionRegion::GetParent() const {
2380            return pRegion;
2381      }      }
2382    
2383    // show error if some _lev_ctrl_* enum entry is not listed in the following function
2384    // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2385    // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2386    //#pragma GCC diagnostic push
2387    //#pragma GCC diagnostic error "-Wswitch"
2388    
2389      leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {      leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2390          leverage_ctrl_t decodedcontroller;          leverage_ctrl_t decodedcontroller;
2391          switch (EncodedController) {          switch (EncodedController) {
# Line 1254  namespace gig { namespace { Line 2497  namespace gig { namespace {
2497                  decodedcontroller.controller_number = 95;                  decodedcontroller.controller_number = 95;
2498                  break;                  break;
2499    
2500                // format extension (these controllers are so far only supported by
2501                // LinuxSampler & gigedit) they will *NOT* work with
2502                // Gigasampler/GigaStudio !
2503                case _lev_ctrl_CC3_EXT:
2504                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2505                    decodedcontroller.controller_number = 3;
2506                    break;
2507                case _lev_ctrl_CC6_EXT:
2508                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2509                    decodedcontroller.controller_number = 6;
2510                    break;
2511                case _lev_ctrl_CC7_EXT:
2512                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2513                    decodedcontroller.controller_number = 7;
2514                    break;
2515                case _lev_ctrl_CC8_EXT:
2516                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2517                    decodedcontroller.controller_number = 8;
2518                    break;
2519                case _lev_ctrl_CC9_EXT:
2520                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2521                    decodedcontroller.controller_number = 9;
2522                    break;
2523                case _lev_ctrl_CC10_EXT:
2524                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2525                    decodedcontroller.controller_number = 10;
2526                    break;
2527                case _lev_ctrl_CC11_EXT:
2528                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2529                    decodedcontroller.controller_number = 11;
2530                    break;
2531                case _lev_ctrl_CC14_EXT:
2532                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2533                    decodedcontroller.controller_number = 14;
2534                    break;
2535                case _lev_ctrl_CC15_EXT:
2536                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2537                    decodedcontroller.controller_number = 15;
2538                    break;
2539                case _lev_ctrl_CC20_EXT:
2540                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2541                    decodedcontroller.controller_number = 20;
2542                    break;
2543                case _lev_ctrl_CC21_EXT:
2544                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2545                    decodedcontroller.controller_number = 21;
2546                    break;
2547                case _lev_ctrl_CC22_EXT:
2548                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2549                    decodedcontroller.controller_number = 22;
2550                    break;
2551                case _lev_ctrl_CC23_EXT:
2552                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2553                    decodedcontroller.controller_number = 23;
2554                    break;
2555                case _lev_ctrl_CC24_EXT:
2556                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2557                    decodedcontroller.controller_number = 24;
2558                    break;
2559                case _lev_ctrl_CC25_EXT:
2560                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2561                    decodedcontroller.controller_number = 25;
2562                    break;
2563                case _lev_ctrl_CC26_EXT:
2564                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2565                    decodedcontroller.controller_number = 26;
2566                    break;
2567                case _lev_ctrl_CC27_EXT:
2568                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2569                    decodedcontroller.controller_number = 27;
2570                    break;
2571                case _lev_ctrl_CC28_EXT:
2572                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2573                    decodedcontroller.controller_number = 28;
2574                    break;
2575                case _lev_ctrl_CC29_EXT:
2576                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2577                    decodedcontroller.controller_number = 29;
2578                    break;
2579                case _lev_ctrl_CC30_EXT:
2580                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2581                    decodedcontroller.controller_number = 30;
2582                    break;
2583                case _lev_ctrl_CC31_EXT:
2584                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2585                    decodedcontroller.controller_number = 31;
2586                    break;
2587                case _lev_ctrl_CC68_EXT:
2588                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2589                    decodedcontroller.controller_number = 68;
2590                    break;
2591                case _lev_ctrl_CC69_EXT:
2592                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2593                    decodedcontroller.controller_number = 69;
2594                    break;
2595                case _lev_ctrl_CC70_EXT:
2596                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2597                    decodedcontroller.controller_number = 70;
2598                    break;
2599                case _lev_ctrl_CC71_EXT:
2600                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2601                    decodedcontroller.controller_number = 71;
2602                    break;
2603                case _lev_ctrl_CC72_EXT:
2604                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2605                    decodedcontroller.controller_number = 72;
2606                    break;
2607                case _lev_ctrl_CC73_EXT:
2608                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2609                    decodedcontroller.controller_number = 73;
2610                    break;
2611                case _lev_ctrl_CC74_EXT:
2612                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2613                    decodedcontroller.controller_number = 74;
2614                    break;
2615                case _lev_ctrl_CC75_EXT:
2616                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2617                    decodedcontroller.controller_number = 75;
2618                    break;
2619                case _lev_ctrl_CC76_EXT:
2620                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2621                    decodedcontroller.controller_number = 76;
2622                    break;
2623                case _lev_ctrl_CC77_EXT:
2624                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2625                    decodedcontroller.controller_number = 77;
2626                    break;
2627                case _lev_ctrl_CC78_EXT:
2628                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2629                    decodedcontroller.controller_number = 78;
2630                    break;
2631                case _lev_ctrl_CC79_EXT:
2632                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2633                    decodedcontroller.controller_number = 79;
2634                    break;
2635                case _lev_ctrl_CC84_EXT:
2636                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2637                    decodedcontroller.controller_number = 84;
2638                    break;
2639                case _lev_ctrl_CC85_EXT:
2640                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2641                    decodedcontroller.controller_number = 85;
2642                    break;
2643                case _lev_ctrl_CC86_EXT:
2644                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2645                    decodedcontroller.controller_number = 86;
2646                    break;
2647                case _lev_ctrl_CC87_EXT:
2648                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2649                    decodedcontroller.controller_number = 87;
2650                    break;
2651                case _lev_ctrl_CC89_EXT:
2652                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2653                    decodedcontroller.controller_number = 89;
2654                    break;
2655                case _lev_ctrl_CC90_EXT:
2656                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2657                    decodedcontroller.controller_number = 90;
2658                    break;
2659                case _lev_ctrl_CC96_EXT:
2660                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2661                    decodedcontroller.controller_number = 96;
2662                    break;
2663                case _lev_ctrl_CC97_EXT:
2664                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2665                    decodedcontroller.controller_number = 97;
2666                    break;
2667                case _lev_ctrl_CC102_EXT:
2668                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2669                    decodedcontroller.controller_number = 102;
2670                    break;
2671                case _lev_ctrl_CC103_EXT:
2672                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2673                    decodedcontroller.controller_number = 103;
2674                    break;
2675                case _lev_ctrl_CC104_EXT:
2676                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2677                    decodedcontroller.controller_number = 104;
2678                    break;
2679                case _lev_ctrl_CC105_EXT:
2680                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2681                    decodedcontroller.controller_number = 105;
2682                    break;
2683                case _lev_ctrl_CC106_EXT:
2684                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2685                    decodedcontroller.controller_number = 106;
2686                    break;
2687                case _lev_ctrl_CC107_EXT:
2688                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2689                    decodedcontroller.controller_number = 107;
2690                    break;
2691                case _lev_ctrl_CC108_EXT:
2692                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2693                    decodedcontroller.controller_number = 108;
2694                    break;
2695                case _lev_ctrl_CC109_EXT:
2696                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2697                    decodedcontroller.controller_number = 109;
2698                    break;
2699                case _lev_ctrl_CC110_EXT:
2700                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2701                    decodedcontroller.controller_number = 110;
2702                    break;
2703                case _lev_ctrl_CC111_EXT:
2704                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2705                    decodedcontroller.controller_number = 111;
2706                    break;
2707                case _lev_ctrl_CC112_EXT:
2708                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2709                    decodedcontroller.controller_number = 112;
2710                    break;
2711                case _lev_ctrl_CC113_EXT:
2712                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2713                    decodedcontroller.controller_number = 113;
2714                    break;
2715                case _lev_ctrl_CC114_EXT:
2716                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2717                    decodedcontroller.controller_number = 114;
2718                    break;
2719                case _lev_ctrl_CC115_EXT:
2720                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2721                    decodedcontroller.controller_number = 115;
2722                    break;
2723                case _lev_ctrl_CC116_EXT:
2724                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2725                    decodedcontroller.controller_number = 116;
2726                    break;
2727                case _lev_ctrl_CC117_EXT:
2728                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2729                    decodedcontroller.controller_number = 117;
2730                    break;
2731                case _lev_ctrl_CC118_EXT:
2732                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2733                    decodedcontroller.controller_number = 118;
2734                    break;
2735                case _lev_ctrl_CC119_EXT:
2736                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2737                    decodedcontroller.controller_number = 119;
2738                    break;
2739    
2740              // unknown controller type              // unknown controller type
2741              default:              default:
2742                  throw gig::Exception("Unknown leverage controller type.");                  decodedcontroller.type = leverage_ctrl_t::type_none;
2743                    decodedcontroller.controller_number = 0;
2744                    printf("Warning: Unknown leverage controller type (0x%x).\n", EncodedController);
2745                    break;
2746          }          }
2747          return decodedcontroller;          return decodedcontroller;
2748      }      }
2749        
2750    // see above (diagnostic push not supported prior GCC 4.6)
2751    //#pragma GCC diagnostic pop
2752    
2753        DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2754            _lev_ctrl_t encodedcontroller;
2755            switch (DecodedController.type) {
2756                // special controller
2757                case leverage_ctrl_t::type_none:
2758                    encodedcontroller = _lev_ctrl_none;
2759                    break;
2760                case leverage_ctrl_t::type_velocity:
2761                    encodedcontroller = _lev_ctrl_velocity;
2762                    break;
2763                case leverage_ctrl_t::type_channelaftertouch:
2764                    encodedcontroller = _lev_ctrl_channelaftertouch;
2765                    break;
2766    
2767                // ordinary MIDI control change controller
2768                case leverage_ctrl_t::type_controlchange:
2769                    switch (DecodedController.controller_number) {
2770                        case 1:
2771                            encodedcontroller = _lev_ctrl_modwheel;
2772                            break;
2773                        case 2:
2774                            encodedcontroller = _lev_ctrl_breath;
2775                            break;
2776                        case 4:
2777                            encodedcontroller = _lev_ctrl_foot;
2778                            break;
2779                        case 12:
2780                            encodedcontroller = _lev_ctrl_effect1;
2781                            break;
2782                        case 13:
2783                            encodedcontroller = _lev_ctrl_effect2;
2784                            break;
2785                        case 16:
2786                            encodedcontroller = _lev_ctrl_genpurpose1;
2787                            break;
2788                        case 17:
2789                            encodedcontroller = _lev_ctrl_genpurpose2;
2790                            break;
2791                        case 18:
2792                            encodedcontroller = _lev_ctrl_genpurpose3;
2793                            break;
2794                        case 19:
2795                            encodedcontroller = _lev_ctrl_genpurpose4;
2796                            break;
2797                        case 5:
2798                            encodedcontroller = _lev_ctrl_portamentotime;
2799                            break;
2800                        case 64:
2801                            encodedcontroller = _lev_ctrl_sustainpedal;
2802                            break;
2803                        case 65:
2804                            encodedcontroller = _lev_ctrl_portamento;
2805                            break;
2806                        case 66:
2807                            encodedcontroller = _lev_ctrl_sostenutopedal;
2808                            break;
2809                        case 67:
2810                            encodedcontroller = _lev_ctrl_softpedal;
2811                            break;
2812                        case 80:
2813                            encodedcontroller = _lev_ctrl_genpurpose5;
2814                            break;
2815                        case 81:
2816                            encodedcontroller = _lev_ctrl_genpurpose6;
2817                            break;
2818                        case 82:
2819                            encodedcontroller = _lev_ctrl_genpurpose7;
2820                            break;
2821                        case 83:
2822                            encodedcontroller = _lev_ctrl_genpurpose8;
2823                            break;
2824                        case 91:
2825                            encodedcontroller = _lev_ctrl_effect1depth;
2826                            break;
2827                        case 92:
2828                            encodedcontroller = _lev_ctrl_effect2depth;
2829                            break;
2830                        case 93:
2831                            encodedcontroller = _lev_ctrl_effect3depth;
2832                            break;
2833                        case 94:
2834                            encodedcontroller = _lev_ctrl_effect4depth;
2835                            break;
2836                        case 95:
2837                            encodedcontroller = _lev_ctrl_effect5depth;
2838                            break;
2839    
2840                        // format extension (these controllers are so far only
2841                        // supported by LinuxSampler & gigedit) they will *NOT*
2842                        // work with Gigasampler/GigaStudio !
2843                        case 3:
2844                            encodedcontroller = _lev_ctrl_CC3_EXT;
2845                            break;
2846                        case 6:
2847                            encodedcontroller = _lev_ctrl_CC6_EXT;
2848                            break;
2849                        case 7:
2850                            encodedcontroller = _lev_ctrl_CC7_EXT;
2851                            break;
2852                        case 8:
2853                            encodedcontroller = _lev_ctrl_CC8_EXT;
2854                            break;
2855                        case 9:
2856                            encodedcontroller = _lev_ctrl_CC9_EXT;
2857                            break;
2858                        case 10:
2859                            encodedcontroller = _lev_ctrl_CC10_EXT;
2860                            break;
2861                        case 11:
2862                            encodedcontroller = _lev_ctrl_CC11_EXT;
2863                            break;
2864                        case 14:
2865                            encodedcontroller = _lev_ctrl_CC14_EXT;
2866                            break;
2867                        case 15:
2868                            encodedcontroller = _lev_ctrl_CC15_EXT;
2869                            break;
2870                        case 20:
2871                            encodedcontroller = _lev_ctrl_CC20_EXT;
2872                            break;
2873                        case 21:
2874                            encodedcontroller = _lev_ctrl_CC21_EXT;
2875                            break;
2876                        case 22:
2877                            encodedcontroller = _lev_ctrl_CC22_EXT;
2878                            break;
2879                        case 23:
2880                            encodedcontroller = _lev_ctrl_CC23_EXT;
2881                            break;
2882                        case 24:
2883                            encodedcontroller = _lev_ctrl_CC24_EXT;
2884                            break;
2885                        case 25:
2886                            encodedcontroller = _lev_ctrl_CC25_EXT;
2887                            break;
2888                        case 26:
2889                            encodedcontroller = _lev_ctrl_CC26_EXT;
2890                            break;
2891                        case 27:
2892                            encodedcontroller = _lev_ctrl_CC27_EXT;
2893                            break;
2894                        case 28:
2895                            encodedcontroller = _lev_ctrl_CC28_EXT;
2896                            break;
2897                        case 29:
2898                            encodedcontroller = _lev_ctrl_CC29_EXT;
2899                            break;
2900                        case 30:
2901                            encodedcontroller = _lev_ctrl_CC30_EXT;
2902                            break;
2903                        case 31:
2904                            encodedcontroller = _lev_ctrl_CC31_EXT;
2905                            break;
2906                        case 68:
2907                            encodedcontroller = _lev_ctrl_CC68_EXT;
2908                            break;
2909                        case 69:
2910                            encodedcontroller = _lev_ctrl_CC69_EXT;
2911                            break;
2912                        case 70:
2913                            encodedcontroller = _lev_ctrl_CC70_EXT;
2914                            break;
2915                        case 71:
2916                            encodedcontroller = _lev_ctrl_CC71_EXT;
2917                            break;
2918                        case 72:
2919                            encodedcontroller = _lev_ctrl_CC72_EXT;
2920                            break;
2921                        case 73:
2922                            encodedcontroller = _lev_ctrl_CC73_EXT;
2923                            break;
2924                        case 74:
2925                            encodedcontroller = _lev_ctrl_CC74_EXT;
2926                            break;
2927                        case 75:
2928                            encodedcontroller = _lev_ctrl_CC75_EXT;
2929                            break;
2930                        case 76:
2931                            encodedcontroller = _lev_ctrl_CC76_EXT;
2932                            break;
2933                        case 77:
2934                            encodedcontroller = _lev_ctrl_CC77_EXT;
2935                            break;
2936                        case 78:
2937                            encodedcontroller = _lev_ctrl_CC78_EXT;
2938                            break;
2939                        case 79:
2940                            encodedcontroller = _lev_ctrl_CC79_EXT;
2941                            break;
2942                        case 84:
2943                            encodedcontroller = _lev_ctrl_CC84_EXT;
2944                            break;
2945                        case 85:
2946                            encodedcontroller = _lev_ctrl_CC85_EXT;
2947                            break;
2948                        case 86:
2949                            encodedcontroller = _lev_ctrl_CC86_EXT;
2950                            break;
2951                        case 87:
2952                            encodedcontroller = _lev_ctrl_CC87_EXT;
2953                            break;
2954                        case 89:
2955                            encodedcontroller = _lev_ctrl_CC89_EXT;
2956                            break;
2957                        case 90:
2958                            encodedcontroller = _lev_ctrl_CC90_EXT;
2959                            break;
2960                        case 96:
2961                            encodedcontroller = _lev_ctrl_CC96_EXT;
2962                            break;
2963                        case 97:
2964                            encodedcontroller = _lev_ctrl_CC97_EXT;
2965                            break;
2966                        case 102:
2967                            encodedcontroller = _lev_ctrl_CC102_EXT;
2968                            break;
2969                        case 103:
2970                            encodedcontroller = _lev_ctrl_CC103_EXT;
2971                            break;
2972                        case 104:
2973                            encodedcontroller = _lev_ctrl_CC104_EXT;
2974                            break;
2975                        case 105:
2976                            encodedcontroller = _lev_ctrl_CC105_EXT;
2977                            break;
2978                        case 106:
2979                            encodedcontroller = _lev_ctrl_CC106_EXT;
2980                            break;
2981                        case 107:
2982                            encodedcontroller = _lev_ctrl_CC107_EXT;
2983                            break;
2984                        case 108:
2985                            encodedcontroller = _lev_ctrl_CC108_EXT;
2986                            break;
2987                        case 109:
2988                            encodedcontroller = _lev_ctrl_CC109_EXT;
2989                            break;
2990                        case 110:
2991                            encodedcontroller = _lev_ctrl_CC110_EXT;
2992                            break;
2993                        case 111:
2994                            encodedcontroller = _lev_ctrl_CC111_EXT;
2995                            break;
2996                        case 112:
2997                            encodedcontroller = _lev_ctrl_CC112_EXT;
2998                            break;
2999                        case 113:
3000                            encodedcontroller = _lev_ctrl_CC113_EXT;
3001                            break;
3002                        case 114:
3003                            encodedcontroller = _lev_ctrl_CC114_EXT;
3004                            break;
3005                        case 115:
3006                            encodedcontroller = _lev_ctrl_CC115_EXT;
3007                            break;
3008                        case 116:
3009                            encodedcontroller = _lev_ctrl_CC116_EXT;
3010                            break;
3011                        case 117:
3012                            encodedcontroller = _lev_ctrl_CC117_EXT;
3013                            break;
3014                        case 118:
3015                            encodedcontroller = _lev_ctrl_CC118_EXT;
3016                            break;
3017                        case 119:
3018                            encodedcontroller = _lev_ctrl_CC119_EXT;
3019                            break;
3020    
3021                        default:
3022                            throw gig::Exception("leverage controller number is not supported by the gig format");
3023                    }
3024                    break;
3025                default:
3026                    throw gig::Exception("Unknown leverage controller type.");
3027            }
3028            return encodedcontroller;
3029        }
3030    
3031      DimensionRegion::~DimensionRegion() {      DimensionRegion::~DimensionRegion() {
3032          Instances--;          Instances--;
# Line 1274  namespace gig { namespace { Line 3041  namespace gig { namespace {
3041              delete pVelocityTables;              delete pVelocityTables;
3042              pVelocityTables = NULL;              pVelocityTables = NULL;
3043          }          }
3044            if (VelocityTable) delete[] VelocityTable;
3045      }      }
3046    
3047      /**      /**
# Line 1291  namespace gig { namespace { Line 3059  namespace gig { namespace {
3059          return pVelocityAttenuationTable[MIDIKeyVelocity];          return pVelocityAttenuationTable[MIDIKeyVelocity];
3060      }      }
3061    
3062        double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
3063            return pVelocityReleaseTable[MIDIKeyVelocity];
3064        }
3065    
3066        double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
3067            return pVelocityCutoffTable[MIDIKeyVelocity];
3068        }
3069    
3070        /**
3071         * Updates the respective member variable and the lookup table / cache
3072         * that depends on this value.
3073         */
3074        void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
3075            pVelocityAttenuationTable =
3076                GetVelocityTable(
3077                    curve, VelocityResponseDepth, VelocityResponseCurveScaling
3078                );
3079            VelocityResponseCurve = curve;
3080        }
3081    
3082        /**
3083         * Updates the respective member variable and the lookup table / cache
3084         * that depends on this value.
3085         */
3086        void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
3087            pVelocityAttenuationTable =
3088                GetVelocityTable(
3089                    VelocityResponseCurve, depth, VelocityResponseCurveScaling
3090                );
3091            VelocityResponseDepth = depth;
3092        }
3093    
3094        /**
3095         * Updates the respective member variable and the lookup table / cache
3096         * that depends on this value.
3097         */
3098        void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
3099            pVelocityAttenuationTable =
3100                GetVelocityTable(
3101                    VelocityResponseCurve, VelocityResponseDepth, scaling
3102                );
3103            VelocityResponseCurveScaling = scaling;
3104        }
3105    
3106        /**
3107         * Updates the respective member variable and the lookup table / cache
3108         * that depends on this value.
3109         */
3110        void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
3111            pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
3112            ReleaseVelocityResponseCurve = curve;
3113        }
3114    
3115        /**
3116         * Updates the respective member variable and the lookup table / cache
3117         * that depends on this value.
3118         */
3119        void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
3120            pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
3121            ReleaseVelocityResponseDepth = depth;
3122        }
3123    
3124        /**
3125         * Updates the respective member variable and the lookup table / cache
3126         * that depends on this value.
3127         */
3128        void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
3129            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
3130            VCFCutoffController = controller;
3131        }
3132    
3133        /**
3134         * Updates the respective member variable and the lookup table / cache
3135         * that depends on this value.
3136         */
3137        void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
3138            pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
3139            VCFVelocityCurve = curve;
3140        }
3141    
3142        /**
3143         * Updates the respective member variable and the lookup table / cache
3144         * that depends on this value.
3145         */
3146        void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
3147            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
3148            VCFVelocityDynamicRange = range;
3149        }
3150    
3151        /**
3152         * Updates the respective member variable and the lookup table / cache
3153         * that depends on this value.
3154         */
3155        void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
3156            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
3157            VCFVelocityScale = scaling;
3158        }
3159    
3160      double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {      double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
3161    
3162          // line-segment approximations of the 15 velocity curves          // line-segment approximations of the 15 velocity curves
# Line 1324  namespace gig { namespace { Line 3190  namespace gig { namespace {
3190          const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,          const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
3191                               127, 127 };                               127, 127 };
3192    
3193            // this is only used by the VCF velocity curve
3194            const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
3195                                 91, 127, 127, 127 };
3196    
3197          const int* const curves[] = { non0, non1, non2, non3, non4,          const int* const curves[] = { non0, non1, non2, non3, non4,
3198                                        lin0, lin1, lin2, lin3, lin4,                                        lin0, lin1, lin2, lin3, lin4,
3199                                        spe0, spe1, spe2, spe3, spe4 };                                        spe0, spe1, spe2, spe3, spe4, spe5 };
3200    
3201          double* const table = new double[128];          double* const table = new double[128];
3202    
# Line 1366  namespace gig { namespace { Line 3236  namespace gig { namespace {
3236          }          }
3237          Layers = 1;          Layers = 1;
3238          File* file = (File*) GetParent()->GetParent();          File* file = (File*) GetParent()->GetParent();
3239          int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;          int dimensionBits = (file->pVersion && file->pVersion->major > 2) ? 8 : 5;
3240    
3241          // Actual Loading          // Actual Loading
3242    
3243            if (!file->GetAutoLoad()) return;
3244    
3245          LoadDimensionRegions(rgnList);          LoadDimensionRegions(rgnList);
3246    
3247          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
3248          if (_3lnk) {          if (_3lnk) {
3249                _3lnk->SetPos(0);
3250    
3251              DimensionRegions = _3lnk->ReadUint32();              DimensionRegions = _3lnk->ReadUint32();
3252              for (int i = 0; i < dimensionBits; i++) {              for (int i = 0; i < dimensionBits; i++) {
3253                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
3254                  uint8_t     bits      = _3lnk->ReadUint8();                  uint8_t     bits      = _3lnk->ReadUint8();
3255                    _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
3256                    _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
3257                    uint8_t     zones     = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
3258                  if (dimension == dimension_none) { // inactive dimension                  if (dimension == dimension_none) { // inactive dimension
3259                      pDimensionDefinitions[i].dimension  = dimension_none;                      pDimensionDefinitions[i].dimension  = dimension_none;
3260                      pDimensionDefinitions[i].bits       = 0;                      pDimensionDefinitions[i].bits       = 0;
3261                      pDimensionDefinitions[i].zones      = 0;                      pDimensionDefinitions[i].zones      = 0;
3262                      pDimensionDefinitions[i].split_type = split_type_bit;                      pDimensionDefinitions[i].split_type = split_type_bit;
                     pDimensionDefinitions[i].ranges     = NULL;  
3263                      pDimensionDefinitions[i].zone_size  = 0;                      pDimensionDefinitions[i].zone_size  = 0;
3264                  }                  }
3265                  else { // active dimension                  else { // active dimension
3266                      pDimensionDefinitions[i].dimension = dimension;                      pDimensionDefinitions[i].dimension = dimension;
3267                      pDimensionDefinitions[i].bits      = bits;                      pDimensionDefinitions[i].bits      = bits;
3268                      pDimensionDefinitions[i].zones     = 0x01 << bits; // = pow(2,bits)                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)
3269                      pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||                      pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
3270                                                             dimension == dimension_samplechannel ||                      pDimensionDefinitions[i].zone_size  = __resolveZoneSize(pDimensionDefinitions[i]);
                                                            dimension == dimension_releasetrigger ||  
                                                            dimension == dimension_roundrobin ||  
                                                            dimension == dimension_random) ? split_type_bit  
                                                                                           : split_type_normal;  
                     pDimensionDefinitions[i].ranges = NULL; // it's not possible to check velocity dimensions for custom defined ranges at this point  
                     pDimensionDefinitions[i].zone_size  =  
                         (pDimensionDefinitions[i].split_type == split_type_normal) ? 128 / pDimensionDefinitions[i].zones  
                                                                                    : 0;  
3271                      Dimensions++;                      Dimensions++;
3272    
3273                      // if this is a layer dimension, remember the amount of layers                      // if this is a layer dimension, remember the amount of layers
3274                      if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;                      if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
3275                  }                  }
3276                  _3lnk->SetPos(6, RIFF::stream_curpos); // jump forward to next dimension definition                  _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
3277              }              }
3278                for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
3279    
3280              // check velocity dimension (if there is one) for custom defined zone ranges              // if there's a velocity dimension and custom velocity zone splits are used,
3281              for (uint i = 0; i < Dimensions; i++) {              // update the VelocityTables in the dimension regions
3282                  dimension_def_t* pDimDef = pDimensionDefinitions + i;              UpdateVelocityTable();
                 if (pDimDef->dimension == dimension_velocity) {  
                     if (pDimensionRegions[0]->VelocityUpperLimit == 0) {  
                         // no custom defined ranges  
                         pDimDef->split_type = split_type_normal;  
                         pDimDef->ranges     = NULL;  
                     }  
                     else { // custom defined ranges  
                         pDimDef->split_type = split_type_customvelocity;  
                         pDimDef->ranges     = new range_t[pDimDef->zones];  
                         uint8_t bits[8] = { 0 };  
                         int previousUpperLimit = -1;  
                         for (int velocityZone = 0; velocityZone < pDimDef->zones; velocityZone++) {  
                             bits[i] = velocityZone;  
                             DimensionRegion* pDimRegion = GetDimensionRegionByBit(bits);  
   
                             pDimDef->ranges[velocityZone].low  = previousUpperLimit + 1;  
                             pDimDef->ranges[velocityZone].high = pDimRegion->VelocityUpperLimit;  
                             previousUpperLimit = pDimDef->ranges[velocityZone].high;  
                             // fill velocity table  
                             for (int i = pDimDef->ranges[velocityZone].low; i <= pDimDef->ranges[velocityZone].high; i++) {  
                                 VelocityTable[i] = velocityZone;  
                             }  
                         }  
                     }  
                 }  
             }  
3283    
3284              // jump to start of the wave pool indices (if not already there)              // jump to start of the wave pool indices (if not already there)
3285              File* file = (File*) GetParent()->GetParent();              if (file->pVersion && file->pVersion->major > 2)
             if (file->pVersion && file->pVersion->major == 3)  
3286                  _3lnk->SetPos(68); // version 3 has a different 3lnk structure                  _3lnk->SetPos(68); // version 3 has a different 3lnk structure
3287              else              else
3288                  _3lnk->SetPos(44);                  _3lnk->SetPos(44);
3289    
3290              // load sample references              // load sample references (if auto loading is enabled)
3291              for (uint i = 0; i < DimensionRegions; i++) {              if (file->GetAutoLoad()) {
3292                  uint32_t wavepoolindex = _3lnk->ReadUint32();                  for (uint i = 0; i < DimensionRegions; i++) {
3293                  pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);                      uint32_t wavepoolindex = _3lnk->ReadUint32();
3294                        if (file->pWavePoolTable && pDimensionRegions[i])
3295                            pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
3296                    }
3297                    GetSample(); // load global region sample reference
3298                }
3299            } else {
3300                DimensionRegions = 0;
3301                for (int i = 0 ; i < 8 ; i++) {
3302                    pDimensionDefinitions[i].dimension  = dimension_none;
3303                    pDimensionDefinitions[i].bits       = 0;
3304                    pDimensionDefinitions[i].zones      = 0;
3305                }
3306            }
3307    
3308            // make sure there is at least one dimension region
3309            if (!DimensionRegions) {
3310                RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
3311                if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
3312                RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
3313                pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
3314                DimensionRegions = 1;
3315            }
3316        }
3317    
3318        /**
3319         * Apply Region settings and all its DimensionRegions to the respective
3320         * RIFF chunks. You have to call File::Save() to make changes persistent.
3321         *
3322         * Usually there is absolutely no need to call this method explicitly.
3323         * It will be called automatically when File::Save() was called.
3324         *
3325         * @param pProgress - callback function for progress notification
3326         * @throws gig::Exception if samples cannot be dereferenced
3327         */
3328        void Region::UpdateChunks(progress_t* pProgress) {
3329            // in the gig format we don't care about the Region's sample reference
3330            // but we still have to provide some existing one to not corrupt the
3331            // file, so to avoid the latter we simply always assign the sample of
3332            // the first dimension region of this region
3333            pSample = pDimensionRegions[0]->pSample;
3334    
3335            // first update base class's chunks
3336            DLS::Region::UpdateChunks(pProgress);
3337    
3338            // update dimension region's chunks
3339            for (int i = 0; i < DimensionRegions; i++) {
3340                pDimensionRegions[i]->UpdateChunks(pProgress);
3341            }
3342    
3343            File* pFile = (File*) GetParent()->GetParent();
3344            bool versiongt2 = pFile->pVersion && pFile->pVersion->major > 2;
3345            const int iMaxDimensions =  versiongt2 ? 8 : 5;
3346            const int iMaxDimensionRegions = versiongt2 ? 256 : 32;
3347    
3348            // make sure '3lnk' chunk exists
3349            RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3350            if (!_3lnk) {
3351                const int _3lnkChunkSize = versiongt2 ? 1092 : 172;
3352                _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3353                memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3354    
3355                // move 3prg to last position
3356                pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), (RIFF::Chunk*)NULL);
3357            }
3358    
3359            // update dimension definitions in '3lnk' chunk
3360            uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3361            store32(&pData[0], DimensionRegions);
3362            int shift = 0;
3363            for (int i = 0; i < iMaxDimensions; i++) {
3364                pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3365                pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3366                pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3367                pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3368                pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3369                // next 3 bytes unknown, always zero?
3370    
3371                shift += pDimensionDefinitions[i].bits;
3372            }
3373    
3374            // update wave pool table in '3lnk' chunk
3375            const int iWavePoolOffset = versiongt2 ? 68 : 44;
3376            for (uint i = 0; i < iMaxDimensionRegions; i++) {
3377                int iWaveIndex = -1;
3378                if (i < DimensionRegions) {
3379                    if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
3380                    File::SampleList::iterator iter = pFile->pSamples->begin();
3381                    File::SampleList::iterator end  = pFile->pSamples->end();
3382                    for (int index = 0; iter != end; ++iter, ++index) {
3383                        if (*iter == pDimensionRegions[i]->pSample) {
3384                            iWaveIndex = index;
3385                            break;
3386                        }
3387                    }
3388              }              }
3389                store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3390          }          }
         else throw gig::Exception("Mandatory <3lnk> chunk not found.");  
3391      }      }
3392    
3393      void Region::LoadDimensionRegions(RIFF::List* rgn) {      void Region::LoadDimensionRegions(RIFF::List* rgn) {
# Line 1461  namespace gig { namespace { Line 3397  namespace gig { namespace {
3397              RIFF::List* _3ewl = _3prg->GetFirstSubList();              RIFF::List* _3ewl = _3prg->GetFirstSubList();
3398              while (_3ewl) {              while (_3ewl) {
3399                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3400                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3401                      dimensionRegionNr++;                      dimensionRegionNr++;
3402                  }                  }
3403                  _3ewl = _3prg->GetNextSubList();                  _3ewl = _3prg->GetNextSubList();
# Line 1470  namespace gig { namespace { Line 3406  namespace gig { namespace {
3406          }          }
3407      }      }
3408    
3409      Region::~Region() {      void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3410          for (uint i = 0; i < Dimensions; i++) {          // update KeyRange struct and make sure regions are in correct order
3411              if (pDimensionDefinitions[i].ranges) delete[] pDimensionDefinitions[i].ranges;          DLS::Region::SetKeyRange(Low, High);
3412            // update Region key table for fast lookup
3413            ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3414        }
3415    
3416        void Region::UpdateVelocityTable() {
3417            // get velocity dimension's index
3418            int veldim = -1;
3419            for (int i = 0 ; i < Dimensions ; i++) {
3420                if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
3421                    veldim = i;
3422                    break;
3423                }
3424            }
3425            if (veldim == -1) return;
3426    
3427            int step = 1;
3428            for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3429            int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
3430    
3431            // loop through all dimension regions for all dimensions except the velocity dimension
3432            int dim[8] = { 0 };
3433            for (int i = 0 ; i < DimensionRegions ; i++) {
3434                const int end = i + step * pDimensionDefinitions[veldim].zones;
3435    
3436                // create a velocity table for all cases where the velocity zone is zero
3437                if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3438                    pDimensionRegions[i]->VelocityUpperLimit) {
3439                    // create the velocity table
3440                    uint8_t* table = pDimensionRegions[i]->VelocityTable;
3441                    if (!table) {
3442                        table = new uint8_t[128];
3443                        pDimensionRegions[i]->VelocityTable = table;
3444                    }
3445                    int tableidx = 0;
3446                    int velocityZone = 0;
3447                    if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
3448                        for (int k = i ; k < end ; k += step) {
3449                            DimensionRegion *d = pDimensionRegions[k];
3450                            for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
3451                            velocityZone++;
3452                        }
3453                    } else { // gig2
3454                        for (int k = i ; k < end ; k += step) {
3455                            DimensionRegion *d = pDimensionRegions[k];
3456                            for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
3457                            velocityZone++;
3458                        }
3459                    }
3460                } else {
3461                    if (pDimensionRegions[i]->VelocityTable) {
3462                        delete[] pDimensionRegions[i]->VelocityTable;
3463                        pDimensionRegions[i]->VelocityTable = 0;
3464                    }
3465                }
3466    
3467                // jump to the next case where the velocity zone is zero
3468                int j;
3469                int shift = 0;
3470                for (j = 0 ; j < Dimensions ; j++) {
3471                    if (j == veldim) i += skipveldim; // skip velocity dimension
3472                    else {
3473                        dim[j]++;
3474                        if (dim[j] < pDimensionDefinitions[j].zones) break;
3475                        else {
3476                            // skip unused dimension regions
3477                            dim[j] = 0;
3478                            i += ((1 << pDimensionDefinitions[j].bits) -
3479                                  pDimensionDefinitions[j].zones) << shift;
3480                        }
3481                    }
3482                    shift += pDimensionDefinitions[j].bits;
3483                }
3484                if (j == Dimensions) break;
3485            }
3486        }
3487    
3488        /** @brief Einstein would have dreamed of it - create a new dimension.
3489         *
3490         * Creates a new dimension with the dimension definition given by
3491         * \a pDimDef. The appropriate amount of DimensionRegions will be created.
3492         * There is a hard limit of dimensions and total amount of "bits" all
3493         * dimensions can have. This limit is dependant to what gig file format
3494         * version this file refers to. The gig v2 (and lower) format has a
3495         * dimension limit and total amount of bits limit of 5, whereas the gig v3
3496         * format has a limit of 8.
3497         *
3498         * @param pDimDef - defintion of the new dimension
3499         * @throws gig::Exception if dimension of the same type exists already
3500         * @throws gig::Exception if amount of dimensions or total amount of
3501         *                        dimension bits limit is violated
3502         */
3503        void Region::AddDimension(dimension_def_t* pDimDef) {
3504            // some initial sanity checks of the given dimension definition
3505            if (pDimDef->zones < 2)
3506                throw gig::Exception("Could not add new dimension, amount of requested zones must always be at least two");
3507            if (pDimDef->bits < 1)
3508                throw gig::Exception("Could not add new dimension, amount of requested requested zone bits must always be at least one");
3509            if (pDimDef->dimension == dimension_samplechannel) {
3510                if (pDimDef->zones != 2)
3511                    throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zones must always be 2 for this dimension type");
3512                if (pDimDef->bits != 1)
3513                    throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zone bits must always be 1 for this dimension type");
3514            }
3515    
3516            // check if max. amount of dimensions reached
3517            File* file = (File*) GetParent()->GetParent();
3518            const int iMaxDimensions = (file->pVersion && file->pVersion->major > 2) ? 8 : 5;
3519            if (Dimensions >= iMaxDimensions)
3520                throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
3521            // check if max. amount of dimension bits reached
3522            int iCurrentBits = 0;
3523            for (int i = 0; i < Dimensions; i++)
3524                iCurrentBits += pDimensionDefinitions[i].bits;
3525            if (iCurrentBits >= iMaxDimensions)
3526                throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
3527            const int iNewBits = iCurrentBits + pDimDef->bits;
3528            if (iNewBits > iMaxDimensions)
3529                throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
3530            // check if there's already a dimensions of the same type
3531            for (int i = 0; i < Dimensions; i++)
3532                if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3533                    throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3534    
3535            // pos is where the new dimension should be placed, normally
3536            // last in list, except for the samplechannel dimension which
3537            // has to be first in list
3538            int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3539            int bitpos = 0;
3540            for (int i = 0 ; i < pos ; i++)
3541                bitpos += pDimensionDefinitions[i].bits;
3542    
3543            // make room for the new dimension
3544            for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3545            for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3546                for (int j = Dimensions ; j > pos ; j--) {
3547                    pDimensionRegions[i]->DimensionUpperLimits[j] =
3548                        pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3549                }
3550            }
3551    
3552            // assign definition of new dimension
3553            pDimensionDefinitions[pos] = *pDimDef;
3554    
3555            // auto correct certain dimension definition fields (where possible)
3556            pDimensionDefinitions[pos].split_type  =
3557                __resolveSplitType(pDimensionDefinitions[pos].dimension);
3558            pDimensionDefinitions[pos].zone_size =
3559                __resolveZoneSize(pDimensionDefinitions[pos]);
3560    
3561            // create new dimension region(s) for this new dimension, and make
3562            // sure that the dimension regions are placed correctly in both the
3563            // RIFF list and the pDimensionRegions array
3564            RIFF::Chunk* moveTo = NULL;
3565            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3566            for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3567                for (int k = 0 ; k < (1 << bitpos) ; k++) {
3568                    pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3569                }
3570                for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3571                    for (int k = 0 ; k < (1 << bitpos) ; k++) {
3572                        RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3573                        if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3574                        // create a new dimension region and copy all parameter values from
3575                        // an existing dimension region
3576                        pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3577                            new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3578    
3579                        DimensionRegions++;
3580                    }
3581                }
3582                moveTo = pDimensionRegions[i]->pParentList;
3583            }
3584    
3585            // initialize the upper limits for this dimension
3586            int mask = (1 << bitpos) - 1;
3587            for (int z = 0 ; z < pDimDef->zones ; z++) {
3588                uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3589                for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3590                    pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3591                                      (z << bitpos) |
3592                                      (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3593                }
3594            }
3595    
3596            Dimensions++;
3597    
3598            // if this is a layer dimension, update 'Layers' attribute
3599            if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
3600    
3601            UpdateVelocityTable();
3602        }
3603    
3604        /** @brief Delete an existing dimension.
3605         *
3606         * Deletes the dimension given by \a pDimDef and deletes all respective
3607         * dimension regions, that is all dimension regions where the dimension's
3608         * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
3609         * for example this would delete all dimension regions for the case(s)
3610         * where the sustain pedal is pressed down.
3611         *
3612         * @param pDimDef - dimension to delete
3613         * @throws gig::Exception if given dimension cannot be found
3614         */
3615        void Region::DeleteDimension(dimension_def_t* pDimDef) {
3616            // get dimension's index
3617            int iDimensionNr = -1;
3618            for (int i = 0; i < Dimensions; i++) {
3619                if (&pDimensionDefinitions[i] == pDimDef) {
3620                    iDimensionNr = i;
3621                    break;
3622                }
3623            }
3624            if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
3625    
3626            // get amount of bits below the dimension to delete
3627            int iLowerBits = 0;
3628            for (int i = 0; i < iDimensionNr; i++)
3629                iLowerBits += pDimensionDefinitions[i].bits;
3630    
3631            // get amount ot bits above the dimension to delete
3632            int iUpperBits = 0;
3633            for (int i = iDimensionNr + 1; i < Dimensions; i++)
3634                iUpperBits += pDimensionDefinitions[i].bits;
3635    
3636            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3637    
3638            // delete dimension regions which belong to the given dimension
3639            // (that is where the dimension's bit > 0)
3640            for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
3641                for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
3642                    for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
3643                        int iToDelete = iUpperBit    << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3644                                        iObsoleteBit << iLowerBits |
3645                                        iLowerBit;
3646    
3647                        _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3648                        delete pDimensionRegions[iToDelete];
3649                        pDimensionRegions[iToDelete] = NULL;
3650                        DimensionRegions--;
3651                    }
3652                }
3653            }
3654    
3655            // defrag pDimensionRegions array
3656            // (that is remove the NULL spaces within the pDimensionRegions array)
3657            for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
3658                if (!pDimensionRegions[iTo]) {
3659                    if (iFrom <= iTo) iFrom = iTo + 1;
3660                    while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
3661                    if (iFrom < 256 && pDimensionRegions[iFrom]) {
3662                        pDimensionRegions[iTo]   = pDimensionRegions[iFrom];
3663                        pDimensionRegions[iFrom] = NULL;
3664                    }
3665                }
3666            }
3667    
3668            // remove the this dimension from the upper limits arrays
3669            for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3670                DimensionRegion* d = pDimensionRegions[j];
3671                for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3672                    d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3673                }
3674                d->DimensionUpperLimits[Dimensions - 1] = 127;
3675            }
3676    
3677            // 'remove' dimension definition
3678            for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3679                pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
3680            }
3681            pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
3682            pDimensionDefinitions[Dimensions - 1].bits      = 0;
3683            pDimensionDefinitions[Dimensions - 1].zones     = 0;
3684    
3685            Dimensions--;
3686    
3687            // if this was a layer dimension, update 'Layers' attribute
3688            if (pDimDef->dimension == dimension_layer) Layers = 1;
3689        }
3690    
3691        /** @brief Delete one split zone of a dimension (decrement zone amount).
3692         *
3693         * Instead of deleting an entire dimensions, this method will only delete
3694         * one particular split zone given by @a zone of the Region's dimension
3695         * given by @a type. So this method will simply decrement the amount of
3696         * zones by one of the dimension in question. To be able to do that, the
3697         * respective dimension must exist on this Region and it must have at least
3698         * 3 zones. All DimensionRegion objects associated with the zone will be
3699         * deleted.
3700         *
3701         * @param type - identifies the dimension where a zone shall be deleted
3702         * @param zone - index of the dimension split zone that shall be deleted
3703         * @throws gig::Exception if requested zone could not be deleted
3704         */
3705        void Region::DeleteDimensionZone(dimension_t type, int zone) {
3706            dimension_def_t* oldDef = GetDimensionDefinition(type);
3707            if (!oldDef)
3708                throw gig::Exception("Could not delete dimension zone, no such dimension of given type");
3709            if (oldDef->zones <= 2)
3710                throw gig::Exception("Could not delete dimension zone, because it would end up with only one zone.");
3711            if (zone < 0 || zone >= oldDef->zones)
3712                throw gig::Exception("Could not delete dimension zone, requested zone index out of bounds.");
3713    
3714            const int newZoneSize = oldDef->zones - 1;
3715    
3716            // create a temporary Region which just acts as a temporary copy
3717            // container and will be deleted at the end of this function and will
3718            // also not be visible through the API during this process
3719            gig::Region* tempRgn = NULL;
3720            {
3721                // adding these temporary chunks is probably not even necessary
3722                Instrument* instr = static_cast<Instrument*>(GetParent());
3723                RIFF::List* pCkInstrument = instr->pCkInstrument;
3724                RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3725                if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3726                RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3727                tempRgn = new Region(instr, rgn);
3728            }
3729    
3730            // copy this region's dimensions (with already the dimension split size
3731            // requested by the arguments of this method call) to the temporary
3732            // region, and don't use Region::CopyAssign() here for this task, since
3733            // it would also alter fast lookup helper variables here and there
3734            dimension_def_t newDef;
3735            for (int i = 0; i < Dimensions; ++i) {
3736                dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3737                // is this the dimension requested by the method arguments? ...
3738                if (def.dimension == type) { // ... if yes, decrement zone amount by one
3739                    def.zones = newZoneSize;
3740                    if ((1 << (def.bits - 1)) == def.zones) def.bits--;
3741                    newDef = def;
3742                }
3743                tempRgn->AddDimension(&def);
3744            }
3745    
3746            // find the dimension index in the tempRegion which is the dimension
3747            // type passed to this method (paranoidly expecting different order)
3748            int tempReducedDimensionIndex = -1;
3749            for (int d = 0; d < tempRgn->Dimensions; ++d) {
3750                if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3751                    tempReducedDimensionIndex = d;
3752                    break;
3753                }
3754            }
3755    
3756            // copy dimension regions from this region to the temporary region
3757            for (int iDst = 0; iDst < 256; ++iDst) {
3758                DimensionRegion* dstDimRgn = tempRgn->pDimensionRegions[iDst];
3759                if (!dstDimRgn) continue;
3760                std::map<dimension_t,int> dimCase;
3761                bool isValidZone = true;
3762                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3763                    const int dstBits = tempRgn->pDimensionDefinitions[d].bits;
3764                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3765                        (iDst >> baseBits) & ((1 << dstBits) - 1);
3766                    baseBits += dstBits;
3767                    // there are also DimensionRegion objects of unused zones, skip them
3768                    if (dimCase[tempRgn->pDimensionDefinitions[d].dimension] >= tempRgn->pDimensionDefinitions[d].zones) {
3769                        isValidZone = false;
3770                        break;
3771                    }
3772                }
3773                if (!isValidZone) continue;
3774                // a bit paranoid: cope with the chance that the dimensions would
3775                // have different order in source and destination regions
3776                const bool isLastZone = (dimCase[type] == newZoneSize - 1);
3777                if (dimCase[type] >= zone) dimCase[type]++;
3778                DimensionRegion* srcDimRgn = GetDimensionRegionByBit(dimCase);
3779                dstDimRgn->CopyAssign(srcDimRgn);
3780                // if this is the upper most zone of the dimension passed to this
3781                // method, then correct (raise) its upper limit to 127
3782                if (newDef.split_type == split_type_normal && isLastZone)
3783                    dstDimRgn->DimensionUpperLimits[tempReducedDimensionIndex] = 127;
3784            }
3785    
3786            // now tempRegion's dimensions and DimensionRegions basically reflect
3787            // what we wanted to get for this actual Region here, so we now just
3788            // delete and recreate the dimension in question with the new amount
3789            // zones and then copy back from tempRegion      
3790            DeleteDimension(oldDef);
3791            AddDimension(&newDef);
3792            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3793                DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3794                if (!srcDimRgn) continue;
3795                std::map<dimension_t,int> dimCase;
3796                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3797                    const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3798                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3799                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3800                    baseBits += srcBits;
3801                }
3802                // a bit paranoid: cope with the chance that the dimensions would
3803                // have different order in source and destination regions
3804                DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3805                if (!dstDimRgn) continue;
3806                dstDimRgn->CopyAssign(srcDimRgn);
3807            }
3808    
3809            // delete temporary region
3810            tempRgn->DeleteChunks();
3811            delete tempRgn;
3812    
3813            UpdateVelocityTable();
3814        }
3815    
3816        /** @brief Divide split zone of a dimension in two (increment zone amount).
3817         *
3818         * This will increment the amount of zones for the dimension (given by
3819         * @a type) by one. It will do so by dividing the zone (given by @a zone)
3820         * in the middle of its zone range in two. So the two zones resulting from
3821         * the zone being splitted, will be an equivalent copy regarding all their
3822         * articulation informations and sample reference. The two zones will only
3823         * differ in their zone's upper limit
3824         * (DimensionRegion::DimensionUpperLimits).
3825         *
3826         * @param type - identifies the dimension where a zone shall be splitted
3827         * @param zone - index of the dimension split zone that shall be splitted
3828         * @throws gig::Exception if requested zone could not be splitted
3829         */
3830        void Region::SplitDimensionZone(dimension_t type, int zone) {
3831            dimension_def_t* oldDef = GetDimensionDefinition(type);
3832            if (!oldDef)
3833                throw gig::Exception("Could not split dimension zone, no such dimension of given type");
3834            if (zone < 0 || zone >= oldDef->zones)
3835                throw gig::Exception("Could not split dimension zone, requested zone index out of bounds.");
3836    
3837            const int newZoneSize = oldDef->zones + 1;
3838    
3839            // create a temporary Region which just acts as a temporary copy
3840            // container and will be deleted at the end of this function and will
3841            // also not be visible through the API during this process
3842            gig::Region* tempRgn = NULL;
3843            {
3844                // adding these temporary chunks is probably not even necessary
3845                Instrument* instr = static_cast<Instrument*>(GetParent());
3846                RIFF::List* pCkInstrument = instr->pCkInstrument;
3847                RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3848                if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3849                RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3850                tempRgn = new Region(instr, rgn);
3851            }
3852    
3853            // copy this region's dimensions (with already the dimension split size
3854            // requested by the arguments of this method call) to the temporary
3855            // region, and don't use Region::CopyAssign() here for this task, since
3856            // it would also alter fast lookup helper variables here and there
3857            dimension_def_t newDef;
3858            for (int i = 0; i < Dimensions; ++i) {
3859                dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3860                // is this the dimension requested by the method arguments? ...
3861                if (def.dimension == type) { // ... if yes, increment zone amount by one
3862                    def.zones = newZoneSize;
3863                    if ((1 << oldDef->bits) < newZoneSize) def.bits++;
3864                    newDef = def;
3865                }
3866                tempRgn->AddDimension(&def);
3867            }
3868    
3869            // find the dimension index in the tempRegion which is the dimension
3870            // type passed to this method (paranoidly expecting different order)
3871            int tempIncreasedDimensionIndex = -1;
3872            for (int d = 0; d < tempRgn->Dimensions; ++d) {
3873                if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3874                    tempIncreasedDimensionIndex = d;
3875                    break;
3876                }
3877            }
3878    
3879            // copy dimension regions from this region to the temporary region
3880            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3881                DimensionRegion* srcDimRgn = pDimensionRegions[iSrc];
3882                if (!srcDimRgn) continue;
3883                std::map<dimension_t,int> dimCase;
3884                bool isValidZone = true;
3885                for (int d = 0, baseBits = 0; d < Dimensions; ++d) {
3886                    const int srcBits = pDimensionDefinitions[d].bits;
3887                    dimCase[pDimensionDefinitions[d].dimension] =
3888                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3889                    // there are also DimensionRegion objects for unused zones, skip them
3890                    if (dimCase[pDimensionDefinitions[d].dimension] >= pDimensionDefinitions[d].zones) {
3891                        isValidZone = false;
3892                        break;
3893                    }
3894                    baseBits += srcBits;
3895                }
3896                if (!isValidZone) continue;
3897                // a bit paranoid: cope with the chance that the dimensions would
3898                // have different order in source and destination regions            
3899                if (dimCase[type] > zone) dimCase[type]++;
3900                DimensionRegion* dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3901                dstDimRgn->CopyAssign(srcDimRgn);
3902                // if this is the requested zone to be splitted, then also copy
3903                // the source DimensionRegion to the newly created target zone
3904                // and set the old zones upper limit lower
3905                if (dimCase[type] == zone) {
3906                    // lower old zones upper limit
3907                    if (newDef.split_type == split_type_normal) {
3908                        const int high =
3909                            dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex];
3910                        int low = 0;
3911                        if (zone > 0) {
3912                            std::map<dimension_t,int> lowerCase = dimCase;
3913                            lowerCase[type]--;
3914                            DimensionRegion* dstDimRgnLow = tempRgn->GetDimensionRegionByBit(lowerCase);
3915                            low = dstDimRgnLow->DimensionUpperLimits[tempIncreasedDimensionIndex];
3916                        }
3917                        dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex] = low + (high - low) / 2;
3918                    }
3919                    // fill the newly created zone of the divided zone as well
3920                    dimCase[type]++;
3921                    dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3922                    dstDimRgn->CopyAssign(srcDimRgn);
3923                }
3924          }          }
3925    
3926            // now tempRegion's dimensions and DimensionRegions basically reflect
3927            // what we wanted to get for this actual Region here, so we now just
3928            // delete and recreate the dimension in question with the new amount
3929            // zones and then copy back from tempRegion      
3930            DeleteDimension(oldDef);
3931            AddDimension(&newDef);
3932            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3933                DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3934                if (!srcDimRgn) continue;
3935                std::map<dimension_t,int> dimCase;
3936                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3937                    const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3938                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3939                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3940                    baseBits += srcBits;
3941                }
3942                // a bit paranoid: cope with the chance that the dimensions would
3943                // have different order in source and destination regions
3944                DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3945                if (!dstDimRgn) continue;
3946                dstDimRgn->CopyAssign(srcDimRgn);
3947            }
3948    
3949            // delete temporary region
3950            tempRgn->DeleteChunks();
3951            delete tempRgn;
3952    
3953            UpdateVelocityTable();
3954        }
3955    
3956        /** @brief Change type of an existing dimension.
3957         *
3958         * Alters the dimension type of a dimension already existing on this
3959         * region. If there is currently no dimension on this Region with type
3960         * @a oldType, then this call with throw an Exception. Likewise there are
3961         * cases where the requested dimension type cannot be performed. For example
3962         * if the new dimension type shall be gig::dimension_samplechannel, and the
3963         * current dimension has more than 2 zones. In such cases an Exception is
3964         * thrown as well.
3965         *
3966         * @param oldType - identifies the existing dimension to be changed
3967         * @param newType - to which dimension type it should be changed to
3968         * @throws gig::Exception if requested change cannot be performed
3969         */
3970        void Region::SetDimensionType(dimension_t oldType, dimension_t newType) {
3971            if (oldType == newType) return;
3972            dimension_def_t* def = GetDimensionDefinition(oldType);
3973            if (!def)
3974                throw gig::Exception("No dimension with provided old dimension type exists on this region");
3975            if (newType == dimension_samplechannel && def->zones != 2)
3976                throw gig::Exception("Cannot change to dimension type 'sample channel', because existing dimension does not have 2 zones");
3977            if (GetDimensionDefinition(newType))
3978                throw gig::Exception("There is already a dimension with requested new dimension type on this region");
3979            def->dimension  = newType;
3980            def->split_type = __resolveSplitType(newType);
3981        }
3982    
3983        DimensionRegion* Region::GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase) {
3984            uint8_t bits[8] = {};
3985            for (std::map<dimension_t,int>::const_iterator it = DimCase.begin();
3986                 it != DimCase.end(); ++it)
3987            {
3988                for (int d = 0; d < Dimensions; ++d) {
3989                    if (pDimensionDefinitions[d].dimension == it->first) {
3990                        bits[d] = it->second;
3991                        goto nextDimCaseSlice;
3992                    }
3993                }
3994                assert(false); // do crash ... too harsh maybe ? ignore it instead ?
3995                nextDimCaseSlice:
3996                ; // noop
3997            }
3998            return GetDimensionRegionByBit(bits);
3999        }
4000    
4001        /**
4002         * Searches in the current Region for a dimension of the given dimension
4003         * type and returns the precise configuration of that dimension in this
4004         * Region.
4005         *
4006         * @param type - dimension type of the sought dimension
4007         * @returns dimension definition or NULL if there is no dimension with
4008         *          sought type in this Region.
4009         */
4010        dimension_def_t* Region::GetDimensionDefinition(dimension_t type) {
4011            for (int i = 0; i < Dimensions; ++i)
4012                if (pDimensionDefinitions[i].dimension == type)
4013                    return &pDimensionDefinitions[i];
4014            return NULL;
4015        }
4016    
4017        Region::~Region() {
4018          for (int i = 0; i < 256; i++) {          for (int i = 0; i < 256; i++) {
4019              if (pDimensionRegions[i]) delete pDimensionRegions[i];              if (pDimensionRegions[i]) delete pDimensionRegions[i];
4020          }          }
# Line 1498  namespace gig { namespace { Line 4039  namespace gig { namespace {
4039       * @see             Dimensions       * @see             Dimensions
4040       */       */
4041      DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {      DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
4042          uint8_t bits[8] = { 0 };          uint8_t bits;
4043            int veldim = -1;
4044            int velbitpos = 0;
4045            int bitpos = 0;
4046            int dimregidx = 0;
4047          for (uint i = 0; i < Dimensions; i++) {          for (uint i = 0; i < Dimensions; i++) {
4048              bits[i] = DimValues[i];              if (pDimensionDefinitions[i].dimension == dimension_velocity) {
4049              switch (pDimensionDefinitions[i].split_type) {                  // the velocity dimension must be handled after the other dimensions
4050                  case split_type_normal:                  veldim = i;
4051                      bits[i] /= pDimensionDefinitions[i].zone_size;                  velbitpos = bitpos;
4052                      break;              } else {
4053                  case split_type_customvelocity:                  switch (pDimensionDefinitions[i].split_type) {
4054                      bits[i] = VelocityTable[bits[i]];                      case split_type_normal:
4055                      break;                          if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
4056                  case split_type_bit: // the value is already the sought dimension bit number                              // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
4057                      const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;                              for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
4058                      bits[i] = bits[i] & limiter_mask; // just make sure the value don't uses more bits than allowed                                  if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
4059                      break;                              }
4060                            } else {
4061                                // gig2: evenly sized zones
4062                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
4063                            }
4064                            break;
4065                        case split_type_bit: // the value is already the sought dimension bit number
4066                            const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
4067                            bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
4068                            break;
4069                    }
4070                    dimregidx |= bits << bitpos;
4071              }              }
4072                bitpos += pDimensionDefinitions[i].bits;
4073          }          }
4074          return GetDimensionRegionByBit(bits);          DimensionRegion* dimreg = pDimensionRegions[dimregidx & 255];
4075            if (!dimreg) return NULL;
4076            if (veldim != -1) {
4077                // (dimreg is now the dimension region for the lowest velocity)
4078                if (dimreg->VelocityTable) // custom defined zone ranges
4079                    bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4080                else // normal split type
4081                    bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4082    
4083                const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4084                dimregidx |= (bits & limiter_mask) << velbitpos;
4085                dimreg = pDimensionRegions[dimregidx & 255];
4086            }
4087            return dimreg;
4088        }
4089    
4090        int Region::GetDimensionRegionIndexByValue(const uint DimValues[8]) {
4091            uint8_t bits;
4092            int veldim = -1;
4093            int velbitpos = 0;
4094            int bitpos = 0;
4095            int dimregidx = 0;
4096            for (uint i = 0; i < Dimensions; i++) {
4097                if (pDimensionDefinitions[i].dimension == dimension_velocity) {
4098                    // the velocity dimension must be handled after the other dimensions
4099                    veldim = i;
4100                    velbitpos = bitpos;
4101                } else {
4102                    switch (pDimensionDefinitions[i].split_type) {
4103                        case split_type_normal:
4104                            if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
4105                                // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
4106                                for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
4107                                    if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
4108                                }
4109                            } else {
4110                                // gig2: evenly sized zones
4111                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
4112                            }
4113                            break;
4114                        case split_type_bit: // the value is already the sought dimension bit number
4115                            const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
4116                            bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
4117                            break;
4118                    }
4119                    dimregidx |= bits << bitpos;
4120                }
4121                bitpos += pDimensionDefinitions[i].bits;
4122            }
4123            dimregidx &= 255;
4124            DimensionRegion* dimreg = pDimensionRegions[dimregidx];
4125            if (!dimreg) return -1;
4126            if (veldim != -1) {
4127                // (dimreg is now the dimension region for the lowest velocity)
4128                if (dimreg->VelocityTable) // custom defined zone ranges
4129                    bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4130                else // normal split type
4131                    bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4132    
4133                const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4134                dimregidx |= (bits & limiter_mask) << velbitpos;
4135                dimregidx &= 255;
4136            }
4137            return dimregidx;
4138      }      }
4139    
4140      /**      /**
# Line 1551  namespace gig { namespace { Line 4171  namespace gig { namespace {
4171          else         return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));          else         return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
4172      }      }
4173    
4174      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex) {      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
4175          if ((int32_t)WavePoolTableIndex == -1) return NULL;          if ((int32_t)WavePoolTableIndex == -1) return NULL;
4176          File* file = (File*) GetParent()->GetParent();          File* file = (File*) GetParent()->GetParent();
4177          unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];          if (!file->pWavePoolTable) return NULL;
4178          Sample* sample = file->GetFirstSample();          if (WavePoolTableIndex + 1 > file->WavePoolCount) return NULL;
4179          while (sample) {          // for new files or files >= 2 GB use 64 bit wave pool offsets
4180              if (sample->ulWavePoolOffset == soughtoffset) return static_cast<gig::Sample*>(pSample = sample);          if (file->pRIFF->IsNew() || (file->pRIFF->GetCurrentFileSize() >> 31)) {
4181              sample = file->GetNextSample();              // use 64 bit wave pool offsets (treating this as large file)
4182                uint64_t soughtoffset =
4183                    uint64_t(file->pWavePoolTable[WavePoolTableIndex]) |
4184                    uint64_t(file->pWavePoolTableHi[WavePoolTableIndex]) << 32;
4185                Sample* sample = file->GetFirstSample(pProgress);
4186                while (sample) {
4187                    if (sample->ullWavePoolOffset == soughtoffset)
4188                        return static_cast<gig::Sample*>(sample);
4189                    sample = file->GetNextSample();
4190                }
4191            } else {
4192                // use extension files and 32 bit wave pool offsets
4193                file_offset_t soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
4194                file_offset_t soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
4195                Sample* sample = file->GetFirstSample(pProgress);
4196                while (sample) {
4197                    if (sample->ullWavePoolOffset == soughtoffset &&
4198                        sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
4199                    sample = file->GetNextSample();
4200                }
4201          }          }
4202          return NULL;          return NULL;
4203      }      }
4204        
4205        /**
4206         * Make a (semi) deep copy of the Region object given by @a orig
4207         * and assign it to this object.
4208         *
4209         * Note that all sample pointers referenced by @a orig are simply copied as
4210         * memory address. Thus the respective samples are shared, not duplicated!
4211         *
4212         * @param orig - original Region object to be copied from
4213         */
4214        void Region::CopyAssign(const Region* orig) {
4215            CopyAssign(orig, NULL);
4216        }
4217        
4218        /**
4219         * Make a (semi) deep copy of the Region object given by @a orig and
4220         * assign it to this object
4221         *
4222         * @param mSamples - crosslink map between the foreign file's samples and
4223         *                   this file's samples
4224         */
4225        void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
4226            // handle base classes
4227            DLS::Region::CopyAssign(orig);
4228            
4229            if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
4230                pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
4231            }
4232            
4233            // handle own member variables
4234            for (int i = Dimensions - 1; i >= 0; --i) {
4235                DeleteDimension(&pDimensionDefinitions[i]);
4236            }
4237            Layers = 0; // just to be sure
4238            for (int i = 0; i < orig->Dimensions; i++) {
4239                // we need to copy the dim definition here, to avoid the compiler
4240                // complaining about const-ness issue
4241                dimension_def_t def = orig->pDimensionDefinitions[i];
4242                AddDimension(&def);
4243            }
4244            for (int i = 0; i < 256; i++) {
4245                if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
4246                    pDimensionRegions[i]->CopyAssign(
4247                        orig->pDimensionRegions[i],
4248                        mSamples
4249                    );
4250                }
4251            }
4252            Layers = orig->Layers;
4253        }
4254    
4255    
4256    // *************** MidiRule ***************
4257    // *
4258    
4259        MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
4260            _3ewg->SetPos(36);
4261            Triggers = _3ewg->ReadUint8();
4262            _3ewg->SetPos(40);
4263            ControllerNumber = _3ewg->ReadUint8();
4264            _3ewg->SetPos(46);
4265            for (int i = 0 ; i < Triggers ; i++) {
4266                pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
4267                pTriggers[i].Descending = _3ewg->ReadUint8();
4268                pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
4269                pTriggers[i].Key = _3ewg->ReadUint8();
4270                pTriggers[i].NoteOff = _3ewg->ReadUint8();
4271                pTriggers[i].Velocity = _3ewg->ReadUint8();
4272                pTriggers[i].OverridePedal = _3ewg->ReadUint8();
4273                _3ewg->ReadUint8();
4274            }
4275        }
4276    
4277        MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
4278            ControllerNumber(0),
4279            Triggers(0) {
4280        }
4281    
4282        void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
4283            pData[32] = 4;
4284            pData[33] = 16;
4285            pData[36] = Triggers;
4286            pData[40] = ControllerNumber;
4287            for (int i = 0 ; i < Triggers ; i++) {
4288                pData[46 + i * 8] = pTriggers[i].TriggerPoint;
4289                pData[47 + i * 8] = pTriggers[i].Descending;
4290                pData[48 + i * 8] = pTriggers[i].VelSensitivity;
4291                pData[49 + i * 8] = pTriggers[i].Key;
4292                pData[50 + i * 8] = pTriggers[i].NoteOff;
4293                pData[51 + i * 8] = pTriggers[i].Velocity;
4294                pData[52 + i * 8] = pTriggers[i].OverridePedal;
4295            }
4296        }
4297    
4298        MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
4299            _3ewg->SetPos(36);
4300            LegatoSamples = _3ewg->ReadUint8(); // always 12
4301            _3ewg->SetPos(40);
4302            BypassUseController = _3ewg->ReadUint8();
4303            BypassKey = _3ewg->ReadUint8();
4304            BypassController = _3ewg->ReadUint8();
4305            ThresholdTime = _3ewg->ReadUint16();
4306            _3ewg->ReadInt16();
4307            ReleaseTime = _3ewg->ReadUint16();
4308            _3ewg->ReadInt16();
4309            KeyRange.low = _3ewg->ReadUint8();
4310            KeyRange.high = _3ewg->ReadUint8();
4311            _3ewg->SetPos(64);
4312            ReleaseTriggerKey = _3ewg->ReadUint8();
4313            AltSustain1Key = _3ewg->ReadUint8();
4314            AltSustain2Key = _3ewg->ReadUint8();
4315        }
4316    
4317        MidiRuleLegato::MidiRuleLegato() :
4318            LegatoSamples(12),
4319            BypassUseController(false),
4320            BypassKey(0),
4321            BypassController(1),
4322            ThresholdTime(20),
4323            ReleaseTime(20),
4324            ReleaseTriggerKey(0),
4325            AltSustain1Key(0),
4326            AltSustain2Key(0)
4327        {
4328            KeyRange.low = KeyRange.high = 0;
4329        }
4330    
4331        void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
4332            pData[32] = 0;
4333            pData[33] = 16;
4334            pData[36] = LegatoSamples;
4335            pData[40] = BypassUseController;
4336            pData[41] = BypassKey;
4337            pData[42] = BypassController;
4338            store16(&pData[43], ThresholdTime);
4339            store16(&pData[47], ReleaseTime);
4340            pData[51] = KeyRange.low;
4341            pData[52] = KeyRange.high;
4342            pData[64] = ReleaseTriggerKey;
4343            pData[65] = AltSustain1Key;
4344            pData[66] = AltSustain2Key;
4345        }
4346    
4347        MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
4348            _3ewg->SetPos(36);
4349            Articulations = _3ewg->ReadUint8();
4350            int flags = _3ewg->ReadUint8();
4351            Polyphonic = flags & 8;
4352            Chained = flags & 4;
4353            Selector = (flags & 2) ? selector_controller :
4354                (flags & 1) ? selector_key_switch : selector_none;
4355            Patterns = _3ewg->ReadUint8();
4356            _3ewg->ReadUint8(); // chosen row
4357            _3ewg->ReadUint8(); // unknown
4358            _3ewg->ReadUint8(); // unknown
4359            _3ewg->ReadUint8(); // unknown
4360            KeySwitchRange.low = _3ewg->ReadUint8();
4361            KeySwitchRange.high = _3ewg->ReadUint8();
4362            Controller = _3ewg->ReadUint8();
4363            PlayRange.low = _3ewg->ReadUint8();
4364            PlayRange.high = _3ewg->ReadUint8();
4365    
4366            int n = std::min(int(Articulations), 32);
4367            for (int i = 0 ; i < n ; i++) {
4368                _3ewg->ReadString(pArticulations[i], 32);
4369            }
4370            _3ewg->SetPos(1072);
4371            n = std::min(int(Patterns), 32);
4372            for (int i = 0 ; i < n ; i++) {
4373                _3ewg->ReadString(pPatterns[i].Name, 16);
4374                pPatterns[i].Size = _3ewg->ReadUint8();
4375                _3ewg->Read(&pPatterns[i][0], 1, 32);
4376            }
4377        }
4378    
4379        MidiRuleAlternator::MidiRuleAlternator() :
4380            Articulations(0),
4381            Patterns(0),
4382            Selector(selector_none),
4383            Controller(0),
4384            Polyphonic(false),
4385            Chained(false)
4386        {
4387            PlayRange.low = PlayRange.high = 0;
4388            KeySwitchRange.low = KeySwitchRange.high = 0;
4389        }
4390    
4391        void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
4392            pData[32] = 3;
4393            pData[33] = 16;
4394            pData[36] = Articulations;
4395            pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
4396                (Selector == selector_controller ? 2 :
4397                 (Selector == selector_key_switch ? 1 : 0));
4398            pData[38] = Patterns;
4399    
4400            pData[43] = KeySwitchRange.low;
4401            pData[44] = KeySwitchRange.high;
4402            pData[45] = Controller;
4403            pData[46] = PlayRange.low;
4404            pData[47] = PlayRange.high;
4405    
4406            char* str = reinterpret_cast<char*>(pData);
4407            int pos = 48;
4408            int n = std::min(int(Articulations), 32);
4409            for (int i = 0 ; i < n ; i++, pos += 32) {
4410                strncpy(&str[pos], pArticulations[i].c_str(), 32);
4411            }
4412    
4413            pos = 1072;
4414            n = std::min(int(Patterns), 32);
4415            for (int i = 0 ; i < n ; i++, pos += 49) {
4416                strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
4417                pData[pos + 16] = pPatterns[i].Size;
4418                memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
4419            }
4420        }
4421    
4422    // *************** Script ***************
4423    // *
4424    
4425        Script::Script(ScriptGroup* group, RIFF::Chunk* ckScri) {
4426            pGroup = group;
4427            pChunk = ckScri;
4428            if (ckScri) { // object is loaded from file ...
4429                ckScri->SetPos(0);
4430    
4431                // read header
4432                uint32_t headerSize = ckScri->ReadUint32();
4433                Compression = (Compression_t) ckScri->ReadUint32();
4434                Encoding    = (Encoding_t) ckScri->ReadUint32();
4435                Language    = (Language_t) ckScri->ReadUint32();
4436                Bypass      = (Language_t) ckScri->ReadUint32() & 1;
4437                crc         = ckScri->ReadUint32();
4438                uint32_t nameSize = ckScri->ReadUint32();
4439                Name.resize(nameSize, ' ');
4440                for (int i = 0; i < nameSize; ++i)
4441                    Name[i] = ckScri->ReadUint8();
4442                // to handle potential future extensions of the header
4443                ckScri->SetPos(sizeof(int32_t) + headerSize);
4444                // read actual script data
4445                uint32_t scriptSize = uint32_t(ckScri->GetSize() - ckScri->GetPos());
4446                data.resize(scriptSize);
4447                for (int i = 0; i < scriptSize; ++i)
4448                    data[i] = ckScri->ReadUint8();
4449            } else { // this is a new script object, so just initialize it as such ...
4450                Compression = COMPRESSION_NONE;
4451                Encoding = ENCODING_ASCII;
4452                Language = LANGUAGE_NKSP;
4453                Bypass   = false;
4454                crc      = 0;
4455                Name     = "Unnamed Script";
4456            }
4457        }
4458    
4459        Script::~Script() {
4460        }
4461    
4462        /**
4463         * Returns the current script (i.e. as source code) in text format.
4464         */
4465        String Script::GetScriptAsText() {
4466            String s;
4467            s.resize(data.size(), ' ');
4468            memcpy(&s[0], &data[0], data.size());
4469            return s;
4470        }
4471    
4472        /**
4473         * Replaces the current script with the new script source code text given
4474         * by @a text.
4475         *
4476         * @param text - new script source code
4477         */
4478        void Script::SetScriptAsText(const String& text) {
4479            data.resize(text.size());
4480            memcpy(&data[0], &text[0], text.size());
4481        }
4482    
4483        /** @brief Remove all RIFF chunks associated with this Script object.
4484         *
4485         * At the moment Script::DeleteChunks() does nothing. It is
4486         * recommended to call this method explicitly though from deriving classes's
4487         * own overridden implementation of this method to avoid potential future
4488         * compatiblity issues.
4489         *
4490         * See DLS::Storage::DeleteChunks() for details.
4491         */
4492        void Script::DeleteChunks() {
4493        }
4494    
4495        /**
4496         * Apply this script to the respective RIFF chunks. You have to call
4497         * File::Save() to make changes persistent.
4498         *
4499         * Usually there is absolutely no need to call this method explicitly.
4500         * It will be called automatically when File::Save() was called.
4501         *
4502         * @param pProgress - callback function for progress notification
4503         */
4504        void Script::UpdateChunks(progress_t* pProgress) {
4505            // recalculate CRC32 check sum
4506            __resetCRC(crc);
4507            __calculateCRC(&data[0], data.size(), crc);
4508            __finalizeCRC(crc);
4509            // make sure chunk exists and has the required size
4510            const file_offset_t chunkSize = (file_offset_t) 7*sizeof(int32_t) + Name.size() + data.size();
4511            if (!pChunk) pChunk = pGroup->pList->AddSubChunk(CHUNK_ID_SCRI, chunkSize);
4512            else pChunk->Resize(chunkSize);
4513            // fill the chunk data to be written to disk
4514            uint8_t* pData = (uint8_t*) pChunk->LoadChunkData();
4515            int pos = 0;
4516            store32(&pData[pos], uint32_t(6*sizeof(int32_t) + Name.size())); // total header size
4517            pos += sizeof(int32_t);
4518            store32(&pData[pos], Compression);
4519            pos += sizeof(int32_t);
4520            store32(&pData[pos], Encoding);
4521            pos += sizeof(int32_t);
4522            store32(&pData[pos], Language);
4523            pos += sizeof(int32_t);
4524            store32(&pData[pos], Bypass ? 1 : 0);
4525            pos += sizeof(int32_t);
4526            store32(&pData[pos], crc);
4527            pos += sizeof(int32_t);
4528            store32(&pData[pos], (uint32_t) Name.size());
4529            pos += sizeof(int32_t);
4530            for (int i = 0; i < Name.size(); ++i, ++pos)
4531                pData[pos] = Name[i];
4532            for (int i = 0; i < data.size(); ++i, ++pos)
4533                pData[pos] = data[i];
4534        }
4535    
4536        /**
4537         * Move this script from its current ScriptGroup to another ScriptGroup
4538         * given by @a pGroup.
4539         *
4540         * @param pGroup - script's new group
4541         */
4542        void Script::SetGroup(ScriptGroup* pGroup) {
4543            if (this->pGroup == pGroup) return;
4544            if (pChunk)
4545                pChunk->GetParent()->MoveSubChunk(pChunk, pGroup->pList);
4546            this->pGroup = pGroup;
4547        }
4548    
4549        /**
4550         * Returns the script group this script currently belongs to. Each script
4551         * is a member of exactly one ScriptGroup.
4552         *
4553         * @returns current script group
4554         */
4555        ScriptGroup* Script::GetGroup() const {
4556            return pGroup;
4557        }
4558    
4559        /**
4560         * Make a (semi) deep copy of the Script object given by @a orig
4561         * and assign it to this object. Note: the ScriptGroup this Script
4562         * object belongs to remains untouched by this call.
4563         *
4564         * @param orig - original Script object to be copied from
4565         */
4566        void Script::CopyAssign(const Script* orig) {
4567            Name        = orig->Name;
4568            Compression = orig->Compression;
4569            Encoding    = orig->Encoding;
4570            Language    = orig->Language;
4571            Bypass      = orig->Bypass;
4572            data        = orig->data;
4573        }
4574    
4575        void Script::RemoveAllScriptReferences() {
4576            File* pFile = pGroup->pFile;
4577            for (int i = 0; pFile->GetInstrument(i); ++i) {
4578                Instrument* instr = pFile->GetInstrument(i);
4579                instr->RemoveScript(this);
4580            }
4581        }
4582    
4583    // *************** ScriptGroup ***************
4584    // *
4585    
4586        ScriptGroup::ScriptGroup(File* file, RIFF::List* lstRTIS) {
4587            pFile = file;
4588            pList = lstRTIS;
4589            pScripts = NULL;
4590            if (lstRTIS) {
4591                RIFF::Chunk* ckName = lstRTIS->GetSubChunk(CHUNK_ID_LSNM);
4592                ::LoadString(ckName, Name);
4593            } else {
4594                Name = "Default Group";
4595            }
4596        }
4597    
4598        ScriptGroup::~ScriptGroup() {
4599            if (pScripts) {
4600                std::list<Script*>::iterator iter = pScripts->begin();
4601                std::list<Script*>::iterator end  = pScripts->end();
4602                while (iter != end) {
4603                    delete *iter;
4604                    ++iter;
4605                }
4606                delete pScripts;
4607            }
4608        }
4609    
4610        /** @brief Remove all RIFF chunks associated with this ScriptGroup object.
4611         *
4612         * At the moment ScriptGroup::DeleteChunks() does nothing. It is
4613         * recommended to call this method explicitly though from deriving classes's
4614         * own overridden implementation of this method to avoid potential future
4615         * compatiblity issues.
4616         *
4617         * See DLS::Storage::DeleteChunks() for details.
4618         */
4619        void ScriptGroup::DeleteChunks() {
4620        }
4621    
4622        /**
4623         * Apply this script group to the respective RIFF chunks. You have to call
4624         * File::Save() to make changes persistent.
4625         *
4626         * Usually there is absolutely no need to call this method explicitly.
4627         * It will be called automatically when File::Save() was called.
4628         *
4629         * @param pProgress - callback function for progress notification
4630         */
4631        void ScriptGroup::UpdateChunks(progress_t* pProgress) {
4632            if (pScripts) {
4633                if (!pList)
4634                    pList = pFile->pRIFF->GetSubList(LIST_TYPE_3LS)->AddSubList(LIST_TYPE_RTIS);
4635    
4636                // now store the name of this group as <LSNM> chunk as subchunk of the <RTIS> list chunk
4637                ::SaveString(CHUNK_ID_LSNM, NULL, pList, Name, String("Unnamed Group"), true, 64);
4638    
4639                for (std::list<Script*>::iterator it = pScripts->begin();
4640                     it != pScripts->end(); ++it)
4641                {
4642                    (*it)->UpdateChunks(pProgress);
4643                }
4644            }
4645        }
4646    
4647        /** @brief Get instrument script.
4648         *
4649         * Returns the real-time instrument script with the given index.
4650         *
4651         * @param index - number of the sought script (0..n)
4652         * @returns sought script or NULL if there's no such script
4653         */
4654        Script* ScriptGroup::GetScript(uint index) {
4655            if (!pScripts) LoadScripts();
4656            std::list<Script*>::iterator it = pScripts->begin();
4657            for (uint i = 0; it != pScripts->end(); ++i, ++it)
4658                if (i == index) return *it;
4659            return NULL;
4660        }
4661    
4662        /** @brief Add new instrument script.
4663         *
4664         * Adds a new real-time instrument script to the file. The script is not
4665         * actually used / executed unless it is referenced by an instrument to be
4666         * used. This is similar to samples, which you can add to a file, without
4667         * an instrument necessarily actually using it.
4668         *
4669         * You have to call Save() to make this persistent to the file.
4670         *
4671         * @return new empty script object
4672         */
4673        Script* ScriptGroup::AddScript() {
4674            if (!pScripts) LoadScripts();
4675            Script* pScript = new Script(this, NULL);
4676            pScripts->push_back(pScript);
4677            return pScript;
4678        }
4679    
4680        /** @brief Delete an instrument script.
4681         *
4682         * This will delete the given real-time instrument script. References of
4683         * instruments that are using that script will be removed accordingly.
4684         *
4685         * You have to call Save() to make this persistent to the file.
4686         *
4687         * @param pScript - script to delete
4688         * @throws gig::Exception if given script could not be found
4689         */
4690        void ScriptGroup::DeleteScript(Script* pScript) {
4691            if (!pScripts) LoadScripts();
4692            std::list<Script*>::iterator iter =
4693                find(pScripts->begin(), pScripts->end(), pScript);
4694            if (iter == pScripts->end())
4695                throw gig::Exception("Could not delete script, could not find given script");
4696            pScripts->erase(iter);
4697            pScript->RemoveAllScriptReferences();
4698            if (pScript->pChunk)
4699                pScript->pChunk->GetParent()->DeleteSubChunk(pScript->pChunk);
4700            delete pScript;
4701        }
4702    
4703        void ScriptGroup::LoadScripts() {
4704            if (pScripts) return;
4705            pScripts = new std::list<Script*>;
4706            if (!pList) return;
4707    
4708            for (RIFF::Chunk* ck = pList->GetFirstSubChunk(); ck;
4709                 ck = pList->GetNextSubChunk())
4710            {
4711                if (ck->GetChunkID() == CHUNK_ID_SCRI) {
4712                    pScripts->push_back(new Script(this, ck));
4713                }
4714            }
4715        }
4716    
4717  // *************** Instrument ***************  // *************** Instrument ***************
4718  // *  // *
4719    
4720      Instrument::Instrument(File* pFile, RIFF::List* insList) : DLS::Instrument((DLS::File*)pFile, insList) {      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
4721            static const DLS::Info::string_length_t fixedStringLengths[] = {
4722                { CHUNK_ID_INAM, 64 },
4723                { CHUNK_ID_ISFT, 12 },
4724                { 0, 0 }
4725            };
4726            pInfo->SetFixedStringLengths(fixedStringLengths);
4727    
4728          // Initialization          // Initialization
4729          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4730          RegionIndex = -1;          EffectSend = 0;
4731            Attenuation = 0;
4732            FineTune = 0;
4733            PitchbendRange = 2;
4734            PianoReleaseMode = false;
4735            DimensionKeyRange.low = 0;
4736            DimensionKeyRange.high = 0;
4737            pMidiRules = new MidiRule*[3];
4738            pMidiRules[0] = NULL;
4739            pScriptRefs = NULL;
4740    
4741          // Loading          // Loading
4742          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
4743          if (lart) {          if (lart) {
4744              RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);              RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4745              if (_3ewg) {              if (_3ewg) {
4746                    _3ewg->SetPos(0);
4747    
4748                  EffectSend             = _3ewg->ReadUint16();                  EffectSend             = _3ewg->ReadUint16();
4749                  Attenuation            = _3ewg->ReadInt32();                  Attenuation            = _3ewg->ReadInt32();
4750                  FineTune               = _3ewg->ReadInt16();                  FineTune               = _3ewg->ReadInt16();
# Line 1586  namespace gig { namespace { Line 4753  namespace gig { namespace {
4753                  PianoReleaseMode       = dimkeystart & 0x01;                  PianoReleaseMode       = dimkeystart & 0x01;
4754                  DimensionKeyRange.low  = dimkeystart >> 1;                  DimensionKeyRange.low  = dimkeystart >> 1;
4755                  DimensionKeyRange.high = _3ewg->ReadUint8();                  DimensionKeyRange.high = _3ewg->ReadUint8();
4756    
4757                    if (_3ewg->GetSize() > 32) {
4758                        // read MIDI rules
4759                        int i = 0;
4760                        _3ewg->SetPos(32);
4761                        uint8_t id1 = _3ewg->ReadUint8();
4762                        uint8_t id2 = _3ewg->ReadUint8();
4763    
4764                        if (id2 == 16) {
4765                            if (id1 == 4) {
4766                                pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
4767                            } else if (id1 == 0) {
4768                                pMidiRules[i++] = new MidiRuleLegato(_3ewg);
4769                            } else if (id1 == 3) {
4770                                pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
4771                            } else {
4772                                pMidiRules[i++] = new MidiRuleUnknown;
4773                            }
4774                        }
4775                        else if (id1 != 0 || id2 != 0) {
4776                            pMidiRules[i++] = new MidiRuleUnknown;
4777                        }
4778                        //TODO: all the other types of rules
4779    
4780                        pMidiRules[i] = NULL;
4781                    }
4782                }
4783            }
4784    
4785            if (pFile->GetAutoLoad()) {
4786                if (!pRegions) pRegions = new RegionList;
4787                RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
4788                if (lrgn) {
4789                    RIFF::List* rgn = lrgn->GetFirstSubList();
4790                    while (rgn) {
4791                        if (rgn->GetListType() == LIST_TYPE_RGN) {
4792                            __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
4793                            pRegions->push_back(new Region(this, rgn));
4794                        }
4795                        rgn = lrgn->GetNextSubList();
4796                    }
4797                    // Creating Region Key Table for fast lookup
4798                    UpdateRegionKeyTable();
4799              }              }
             else throw gig::Exception("Mandatory <3ewg> chunk not found.");  
4800          }          }
         else throw gig::Exception("Mandatory <lart> list chunk not found.");  
4801    
4802          RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);          // own gig format extensions
4803          if (!lrgn) throw gig::Exception("Mandatory chunks in <ins > chunk not found.");          RIFF::List* lst3LS = insList->GetSubList(LIST_TYPE_3LS);
4804          pRegions = new Region*[Regions];          if (lst3LS) {
4805          for (uint i = 0; i < Regions; i++) pRegions[i] = NULL;              RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4806          RIFF::List* rgn = lrgn->GetFirstSubList();              if (ckSCSL) {
4807          unsigned int iRegion = 0;                  ckSCSL->SetPos(0);
4808          while (rgn) {  
4809              if (rgn->GetListType() == LIST_TYPE_RGN) {                  int headerSize = ckSCSL->ReadUint32();
4810                  pRegions[iRegion] = new Region(this, rgn);                  int slotCount  = ckSCSL->ReadUint32();
4811                  iRegion++;                  if (slotCount) {
4812              }                      int slotSize  = ckSCSL->ReadUint32();
4813              rgn = lrgn->GetNextSubList();                      ckSCSL->SetPos(headerSize); // in case of future header extensions
4814          }                      int unknownSpace = slotSize - 2*sizeof(uint32_t); // in case of future slot extensions
4815                        for (int i = 0; i < slotCount; ++i) {
4816          // Creating Region Key Table for fast lookup                          _ScriptPooolEntry e;
4817          for (uint iReg = 0; iReg < Regions; iReg++) {                          e.fileOffset = ckSCSL->ReadUint32();
4818              for (int iKey = pRegions[iReg]->KeyRange.low; iKey <= pRegions[iReg]->KeyRange.high; iKey++) {                          e.bypass     = ckSCSL->ReadUint32() & 1;
4819                  RegionKeyTable[iKey] = pRegions[iReg];                          if (unknownSpace) ckSCSL->SetPos(unknownSpace, RIFF::stream_curpos); // in case of future extensions
4820                            scriptPoolFileOffsets.push_back(e);
4821                        }
4822                    }
4823                }
4824            }
4825    
4826            __notify_progress(pProgress, 1.0f); // notify done
4827        }
4828    
4829        void Instrument::UpdateRegionKeyTable() {
4830            for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4831            RegionList::iterator iter = pRegions->begin();
4832            RegionList::iterator end  = pRegions->end();
4833            for (; iter != end; ++iter) {
4834                gig::Region* pRegion = static_cast<gig::Region*>(*iter);
4835                const int low  = std::max(int(pRegion->KeyRange.low), 0);
4836                const int high = std::min(int(pRegion->KeyRange.high), 127);
4837                for (int iKey = low; iKey <= high; iKey++) {
4838                    RegionKeyTable[iKey] = pRegion;
4839              }              }
4840          }          }
4841      }      }
4842    
4843      Instrument::~Instrument() {      Instrument::~Instrument() {
4844          for (uint i = 0; i < Regions; i++) {          for (int i = 0 ; pMidiRules[i] ; i++) {
4845              if (pRegions) {              delete pMidiRules[i];
4846                  if (pRegions[i]) delete (pRegions[i]);          }
4847            delete[] pMidiRules;
4848            if (pScriptRefs) delete pScriptRefs;
4849        }
4850    
4851        /**
4852         * Apply Instrument with all its Regions to the respective RIFF chunks.
4853         * You have to call File::Save() to make changes persistent.
4854         *
4855         * Usually there is absolutely no need to call this method explicitly.
4856         * It will be called automatically when File::Save() was called.
4857         *
4858         * @param pProgress - callback function for progress notification
4859         * @throws gig::Exception if samples cannot be dereferenced
4860         */
4861        void Instrument::UpdateChunks(progress_t* pProgress) {
4862            // first update base classes' chunks
4863            DLS::Instrument::UpdateChunks(pProgress);
4864    
4865            // update Regions' chunks
4866            {
4867                RegionList::iterator iter = pRegions->begin();
4868                RegionList::iterator end  = pRegions->end();
4869                for (; iter != end; ++iter)
4870                    (*iter)->UpdateChunks(pProgress);
4871            }
4872    
4873            // make sure 'lart' RIFF list chunk exists
4874            RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
4875            if (!lart)  lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
4876            // make sure '3ewg' RIFF chunk exists
4877            RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4878            if (!_3ewg)  {
4879                File* pFile = (File*) GetParent();
4880    
4881                // 3ewg is bigger in gig3, as it includes the iMIDI rules
4882                int size = (pFile->pVersion && pFile->pVersion->major > 2) ? 16416 : 12;
4883                _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
4884                memset(_3ewg->LoadChunkData(), 0, size);
4885            }
4886            // update '3ewg' RIFF chunk
4887            uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
4888            store16(&pData[0], EffectSend);
4889            store32(&pData[2], Attenuation);
4890            store16(&pData[6], FineTune);
4891            store16(&pData[8], PitchbendRange);
4892            const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
4893                                        DimensionKeyRange.low << 1;
4894            pData[10] = dimkeystart;
4895            pData[11] = DimensionKeyRange.high;
4896    
4897            if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
4898                pData[32] = 0;
4899                pData[33] = 0;
4900            } else {
4901                for (int i = 0 ; pMidiRules[i] ; i++) {
4902                    pMidiRules[i]->UpdateChunks(pData);
4903              }              }
4904          }          }
4905          if (pRegions) delete[] pRegions;  
4906            // own gig format extensions
4907           if (ScriptSlotCount()) {
4908               // make sure we have converted the original loaded script file
4909               // offsets into valid Script object pointers
4910               LoadScripts();
4911    
4912               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4913               if (!lst3LS) lst3LS = pCkInstrument->AddSubList(LIST_TYPE_3LS);
4914               const int slotCount = (int) pScriptRefs->size();
4915               const int headerSize = 3 * sizeof(uint32_t);
4916               const int slotSize  = 2 * sizeof(uint32_t);
4917               const int totalChunkSize = headerSize + slotCount * slotSize;
4918               RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4919               if (!ckSCSL) ckSCSL = lst3LS->AddSubChunk(CHUNK_ID_SCSL, totalChunkSize);
4920               else ckSCSL->Resize(totalChunkSize);
4921               uint8_t* pData = (uint8_t*) ckSCSL->LoadChunkData();
4922               int pos = 0;
4923               store32(&pData[pos], headerSize);
4924               pos += sizeof(uint32_t);
4925               store32(&pData[pos], slotCount);
4926               pos += sizeof(uint32_t);
4927               store32(&pData[pos], slotSize);
4928               pos += sizeof(uint32_t);
4929               for (int i = 0; i < slotCount; ++i) {
4930                   // arbitrary value, the actual file offset will be updated in
4931                   // UpdateScriptFileOffsets() after the file has been resized
4932                   int bogusFileOffset = 0;
4933                   store32(&pData[pos], bogusFileOffset);
4934                   pos += sizeof(uint32_t);
4935                   store32(&pData[pos], (*pScriptRefs)[i].bypass ? 1 : 0);
4936                   pos += sizeof(uint32_t);
4937               }
4938           } else {
4939               // no script slots, so get rid of any LS custom RIFF chunks (if any)
4940               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4941               if (lst3LS) pCkInstrument->DeleteSubChunk(lst3LS);
4942           }
4943        }
4944    
4945        void Instrument::UpdateScriptFileOffsets() {
4946           // own gig format extensions
4947           if (pScriptRefs && pScriptRefs->size() > 0) {
4948               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4949               RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4950               const int slotCount = (int) pScriptRefs->size();
4951               const int headerSize = 3 * sizeof(uint32_t);
4952               ckSCSL->SetPos(headerSize);
4953               for (int i = 0; i < slotCount; ++i) {
4954                   uint32_t fileOffset = uint32_t(
4955                        (*pScriptRefs)[i].script->pChunk->GetFilePos() -
4956                        (*pScriptRefs)[i].script->pChunk->GetPos() -
4957                        CHUNK_HEADER_SIZE(ckSCSL->GetFile()->GetFileOffsetSize())
4958                   );
4959                   ckSCSL->WriteUint32(&fileOffset);
4960                   // jump over flags entry (containing the bypass flag)
4961                   ckSCSL->SetPos(sizeof(uint32_t), RIFF::stream_curpos);
4962               }
4963           }        
4964      }      }
4965    
4966      /**      /**
# Line 1630  namespace gig { namespace { Line 4971  namespace gig { namespace {
4971       *             there is no Region defined for the given \a Key       *             there is no Region defined for the given \a Key
4972       */       */
4973      Region* Instrument::GetRegion(unsigned int Key) {      Region* Instrument::GetRegion(unsigned int Key) {
4974          if (!pRegions || Key > 127) return NULL;          if (!pRegions || pRegions->empty() || Key > 127) return NULL;
4975          return RegionKeyTable[Key];          return RegionKeyTable[Key];
4976    
4977          /*for (int i = 0; i < Regions; i++) {          /*for (int i = 0; i < Regions; i++) {
4978              if (Key <= pRegions[i]->KeyRange.high &&              if (Key <= pRegions[i]->KeyRange.high &&
4979                  Key >= pRegions[i]->KeyRange.low) return pRegions[i];                  Key >= pRegions[i]->KeyRange.low) return pRegions[i];
# Line 1647  namespace gig { namespace { Line 4989  namespace gig { namespace {
4989       * @see      GetNextRegion()       * @see      GetNextRegion()
4990       */       */
4991      Region* Instrument::GetFirstRegion() {      Region* Instrument::GetFirstRegion() {
4992          if (!Regions) return NULL;          if (!pRegions) return NULL;
4993          RegionIndex = 1;          RegionsIterator = pRegions->begin();
4994          return pRegions[0];          return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4995      }      }
4996    
4997      /**      /**
# Line 1661  namespace gig { namespace { Line 5003  namespace gig { namespace {
5003       * @see      GetFirstRegion()       * @see      GetFirstRegion()
5004       */       */
5005      Region* Instrument::GetNextRegion() {      Region* Instrument::GetNextRegion() {
5006          if (RegionIndex < 0 || uint32_t(RegionIndex) >= Regions) return NULL;          if (!pRegions) return NULL;
5007          return pRegions[RegionIndex++];          RegionsIterator++;
5008            return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
5009        }
5010    
5011        Region* Instrument::AddRegion() {
5012            // create new Region object (and its RIFF chunks)
5013            RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
5014            if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
5015            RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
5016            Region* pNewRegion = new Region(this, rgn);
5017            pRegions->push_back(pNewRegion);
5018            Regions = (uint32_t) pRegions->size();
5019            // update Region key table for fast lookup
5020            UpdateRegionKeyTable();
5021            // done
5022            return pNewRegion;
5023        }
5024    
5025        void Instrument::DeleteRegion(Region* pRegion) {
5026            if (!pRegions) return;
5027            DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
5028            // update Region key table for fast lookup
5029            UpdateRegionKeyTable();
5030        }
5031    
5032        /**
5033         * Move this instrument at the position before @arg dst.
5034         *
5035         * This method can be used to reorder the sequence of instruments in a
5036         * .gig file. This might be helpful especially on large .gig files which
5037         * contain a large number of instruments within the same .gig file. So
5038         * grouping such instruments to similar ones, can help to keep track of them
5039         * when working with such complex .gig files.
5040         *
5041         * When calling this method, this instrument will be removed from in its
5042         * current position in the instruments list and moved to the requested
5043         * target position provided by @param dst. You may also pass NULL as
5044         * argument to this method, in that case this intrument will be moved to the
5045         * very end of the .gig file's instrument list.
5046         *
5047         * You have to call Save() to make the order change persistent to the .gig
5048         * file.
5049         *
5050         * Currently this method is limited to moving the instrument within the same
5051         * .gig file. Trying to move it to another .gig file by calling this method
5052         * will throw an exception.
5053         *
5054         * @param dst - destination instrument at which this instrument will be
5055         *              moved to, or pass NULL for moving to end of list
5056         * @throw gig::Exception if this instrument and target instrument are not
5057         *                       part of the same file
5058         */
5059        void Instrument::MoveTo(Instrument* dst) {
5060            if (dst && GetParent() != dst->GetParent())
5061                throw Exception(
5062                    "gig::Instrument::MoveTo() can only be used for moving within "
5063                    "the same gig file."
5064                );
5065    
5066            File* pFile = (File*) GetParent();
5067    
5068            // move this instrument within the instrument list
5069            {
5070                File::InstrumentList& list = *pFile->pInstruments;
5071    
5072                File::InstrumentList::iterator itFrom =
5073                    std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(this));
5074    
5075                File::InstrumentList::iterator itTo =
5076                    std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(dst));
5077    
5078                list.splice(itTo, list, itFrom);
5079            }
5080    
5081            // move the instrument's actual list RIFF chunk appropriately
5082            RIFF::List* lstCkInstruments = pFile->pRIFF->GetSubList(LIST_TYPE_LINS);
5083            lstCkInstruments->MoveSubChunk(
5084                this->pCkInstrument,
5085                (RIFF::Chunk*) ((dst) ? dst->pCkInstrument : NULL)
5086            );
5087        }
5088    
5089        /**
5090         * Returns a MIDI rule of the instrument.
5091         *
5092         * The list of MIDI rules, at least in gig v3, always contains at
5093         * most two rules. The second rule can only be the DEF filter
5094         * (which currently isn't supported by libgig).
5095         *
5096         * @param i - MIDI rule number
5097         * @returns   pointer address to MIDI rule number i or NULL if there is none
5098         */
5099        MidiRule* Instrument::GetMidiRule(int i) {
5100            return pMidiRules[i];
5101        }
5102    
5103        /**
5104         * Adds the "controller trigger" MIDI rule to the instrument.
5105         *
5106         * @returns the new MIDI rule
5107         */
5108        MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
5109            delete pMidiRules[0];
5110            MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
5111            pMidiRules[0] = r;
5112            pMidiRules[1] = 0;
5113            return r;
5114        }
5115    
5116        /**
5117         * Adds the legato MIDI rule to the instrument.
5118         *
5119         * @returns the new MIDI rule
5120         */
5121        MidiRuleLegato* Instrument::AddMidiRuleLegato() {
5122            delete pMidiRules[0];
5123            MidiRuleLegato* r = new MidiRuleLegato;
5124            pMidiRules[0] = r;
5125            pMidiRules[1] = 0;
5126            return r;
5127        }
5128    
5129        /**
5130         * Adds the alternator MIDI rule to the instrument.
5131         *
5132         * @returns the new MIDI rule
5133         */
5134        MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
5135            delete pMidiRules[0];
5136            MidiRuleAlternator* r = new MidiRuleAlternator;
5137            pMidiRules[0] = r;
5138            pMidiRules[1] = 0;
5139            return r;
5140        }
5141    
5142        /**
5143         * Deletes a MIDI rule from the instrument.
5144         *
5145         * @param i - MIDI rule number
5146         */
5147        void Instrument::DeleteMidiRule(int i) {
5148            delete pMidiRules[i];
5149            pMidiRules[i] = 0;
5150        }
5151    
5152        void Instrument::LoadScripts() {
5153            if (pScriptRefs) return;
5154            pScriptRefs = new std::vector<_ScriptPooolRef>;
5155            if (scriptPoolFileOffsets.empty()) return;
5156            File* pFile = (File*) GetParent();
5157            for (uint k = 0; k < scriptPoolFileOffsets.size(); ++k) {
5158                uint32_t soughtOffset = scriptPoolFileOffsets[k].fileOffset;
5159                for (uint i = 0; pFile->GetScriptGroup(i); ++i) {
5160                    ScriptGroup* group = pFile->GetScriptGroup(i);
5161                    for (uint s = 0; group->GetScript(s); ++s) {
5162                        Script* script = group->GetScript(s);
5163                        if (script->pChunk) {
5164                            uint32_t offset = uint32_t(
5165                                script->pChunk->GetFilePos() -
5166                                script->pChunk->GetPos() -
5167                                CHUNK_HEADER_SIZE(script->pChunk->GetFile()->GetFileOffsetSize())
5168                            );
5169                            if (offset == soughtOffset)
5170                            {
5171                                _ScriptPooolRef ref;
5172                                ref.script = script;
5173                                ref.bypass = scriptPoolFileOffsets[k].bypass;
5174                                pScriptRefs->push_back(ref);
5175                                break;
5176                            }
5177                        }
5178                    }
5179                }
5180            }
5181            // we don't need that anymore
5182            scriptPoolFileOffsets.clear();
5183        }
5184    
5185        /** @brief Get instrument script (gig format extension).
5186         *
5187         * Returns the real-time instrument script of instrument script slot
5188         * @a index.
5189         *
5190         * @note This is an own format extension which did not exist i.e. in the
5191         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5192         * gigedit.
5193         *
5194         * @param index - instrument script slot index
5195         * @returns script or NULL if index is out of bounds
5196         */
5197        Script* Instrument::GetScriptOfSlot(uint index) {
5198            LoadScripts();
5199            if (index >= pScriptRefs->size()) return NULL;
5200            return pScriptRefs->at(index).script;
5201        }
5202    
5203        /** @brief Add new instrument script slot (gig format extension).
5204         *
5205         * Add the given real-time instrument script reference to this instrument,
5206         * which shall be executed by the sampler for for this instrument. The
5207         * script will be added to the end of the script list of this instrument.
5208         * The positions of the scripts in the Instrument's Script list are
5209         * relevant, because they define in which order they shall be executed by
5210         * the sampler. For this reason it is also legal to add the same script
5211         * twice to an instrument, for example you might have a script called
5212         * "MyFilter" which performs an event filter task, and you might have
5213         * another script called "MyNoteTrigger" which triggers new notes, then you
5214         * might for example have the following list of scripts on the instrument:
5215         *
5216         * 1. Script "MyFilter"
5217         * 2. Script "MyNoteTrigger"
5218         * 3. Script "MyFilter"
5219         *
5220         * Which would make sense, because the 2nd script launched new events, which
5221         * you might need to filter as well.
5222         *
5223         * There are two ways to disable / "bypass" scripts. You can either disable
5224         * a script locally for the respective script slot on an instrument (i.e. by
5225         * passing @c false to the 2nd argument of this method, or by calling
5226         * SetScriptBypassed()). Or you can disable a script globally for all slots
5227         * and all instruments by setting Script::Bypass.
5228         *
5229         * @note This is an own format extension which did not exist i.e. in the
5230         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5231         * gigedit.
5232         *
5233         * @param pScript - script that shall be executed for this instrument
5234         * @param bypass  - if enabled, the sampler shall skip executing this
5235         *                  script (in the respective list position)
5236         * @see SetScriptBypassed()
5237         */
5238        void Instrument::AddScriptSlot(Script* pScript, bool bypass) {
5239            LoadScripts();
5240            _ScriptPooolRef ref = { pScript, bypass };
5241            pScriptRefs->push_back(ref);
5242        }
5243    
5244        /** @brief Flip two script slots with each other (gig format extension).
5245         *
5246         * Swaps the position of the two given scripts in the Instrument's Script
5247         * list. The positions of the scripts in the Instrument's Script list are
5248         * relevant, because they define in which order they shall be executed by
5249         * the sampler.
5250         *
5251         * @note This is an own format extension which did not exist i.e. in the
5252         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5253         * gigedit.
5254         *
5255         * @param index1 - index of the first script slot to swap
5256         * @param index2 - index of the second script slot to swap
5257         */
5258        void Instrument::SwapScriptSlots(uint index1, uint index2) {
5259            LoadScripts();
5260            if (index1 >= pScriptRefs->size() || index2 >= pScriptRefs->size())
5261                return;
5262            _ScriptPooolRef tmp = (*pScriptRefs)[index1];
5263            (*pScriptRefs)[index1] = (*pScriptRefs)[index2];
5264            (*pScriptRefs)[index2] = tmp;
5265        }
5266    
5267        /** @brief Remove script slot.
5268         *
5269         * Removes the script slot with the given slot index.
5270         *
5271         * @param index - index of script slot to remove
5272         */
5273        void Instrument::RemoveScriptSlot(uint index) {
5274            LoadScripts();
5275            if (index >= pScriptRefs->size()) return;
5276            pScriptRefs->erase( pScriptRefs->begin() + index );
5277        }
5278    
5279        /** @brief Remove reference to given Script (gig format extension).
5280         *
5281         * This will remove all script slots on the instrument which are referencing
5282         * the given script.
5283         *
5284         * @note This is an own format extension which did not exist i.e. in the
5285         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5286         * gigedit.
5287         *
5288         * @param pScript - script reference to remove from this instrument
5289         * @see RemoveScriptSlot()
5290         */
5291        void Instrument::RemoveScript(Script* pScript) {
5292            LoadScripts();
5293            for (ssize_t i = pScriptRefs->size() - 1; i >= 0; --i) {
5294                if ((*pScriptRefs)[i].script == pScript) {
5295                    pScriptRefs->erase( pScriptRefs->begin() + i );
5296                }
5297            }
5298        }
5299    
5300        /** @brief Instrument's amount of script slots.
5301         *
5302         * This method returns the amount of script slots this instrument currently
5303         * uses.
5304         *
5305         * A script slot is a reference of a real-time instrument script to be
5306         * executed by the sampler. The scripts will be executed by the sampler in
5307         * sequence of the slots. One (same) script may be referenced multiple
5308         * times in different slots.
5309         *
5310         * @note This is an own format extension which did not exist i.e. in the
5311         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5312         * gigedit.
5313         */
5314        uint Instrument::ScriptSlotCount() const {
5315            return uint(pScriptRefs ? pScriptRefs->size() : scriptPoolFileOffsets.size());
5316        }
5317    
5318        /** @brief Whether script execution shall be skipped.
5319         *
5320         * Defines locally for the Script reference slot in the Instrument's Script
5321         * list, whether the script shall be skipped by the sampler regarding
5322         * execution.
5323         *
5324         * It is also possible to ignore exeuction of the script globally, for all
5325         * slots and for all instruments by setting Script::Bypass.
5326         *
5327         * @note This is an own format extension which did not exist i.e. in the
5328         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5329         * gigedit.
5330         *
5331         * @param index - index of the script slot on this instrument
5332         * @see Script::Bypass
5333         */
5334        bool Instrument::IsScriptSlotBypassed(uint index) {
5335            if (index >= ScriptSlotCount()) return false;
5336            return pScriptRefs ? pScriptRefs->at(index).bypass
5337                               : scriptPoolFileOffsets.at(index).bypass;
5338            
5339        }
5340    
5341        /** @brief Defines whether execution shall be skipped.
5342         *
5343         * You can call this method to define locally whether or whether not the
5344         * given script slot shall be executed by the sampler.
5345         *
5346         * @note This is an own format extension which did not exist i.e. in the
5347         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5348         * gigedit.
5349         *
5350         * @param index - script slot index on this instrument
5351         * @param bBypass - if true, the script slot will be skipped by the sampler
5352         * @see Script::Bypass
5353         */
5354        void Instrument::SetScriptSlotBypassed(uint index, bool bBypass) {
5355            if (index >= ScriptSlotCount()) return;
5356            if (pScriptRefs)
5357                pScriptRefs->at(index).bypass = bBypass;
5358            else
5359                scriptPoolFileOffsets.at(index).bypass = bBypass;
5360        }
5361    
5362        /**
5363         * Make a (semi) deep copy of the Instrument object given by @a orig
5364         * and assign it to this object.
5365         *
5366         * Note that all sample pointers referenced by @a orig are simply copied as
5367         * memory address. Thus the respective samples are shared, not duplicated!
5368         *
5369         * @param orig - original Instrument object to be copied from
5370         */
5371        void Instrument::CopyAssign(const Instrument* orig) {
5372            CopyAssign(orig, NULL);
5373        }
5374            
5375        /**
5376         * Make a (semi) deep copy of the Instrument object given by @a orig
5377         * and assign it to this object.
5378         *
5379         * @param orig - original Instrument object to be copied from
5380         * @param mSamples - crosslink map between the foreign file's samples and
5381         *                   this file's samples
5382         */
5383        void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
5384            // handle base class
5385            // (without copying DLS region stuff)
5386            DLS::Instrument::CopyAssignCore(orig);
5387            
5388            // handle own member variables
5389            Attenuation = orig->Attenuation;
5390            EffectSend = orig->EffectSend;
5391            FineTune = orig->FineTune;
5392            PitchbendRange = orig->PitchbendRange;
5393            PianoReleaseMode = orig->PianoReleaseMode;
5394            DimensionKeyRange = orig->DimensionKeyRange;
5395            scriptPoolFileOffsets = orig->scriptPoolFileOffsets;
5396            pScriptRefs = orig->pScriptRefs;
5397            
5398            // free old midi rules
5399            for (int i = 0 ; pMidiRules[i] ; i++) {
5400                delete pMidiRules[i];
5401            }
5402            //TODO: MIDI rule copying
5403            pMidiRules[0] = NULL;
5404            
5405            // delete all old regions
5406            while (Regions) DeleteRegion(GetFirstRegion());
5407            // create new regions and copy them from original
5408            {
5409                RegionList::const_iterator it = orig->pRegions->begin();
5410                for (int i = 0; i < orig->Regions; ++i, ++it) {
5411                    Region* dstRgn = AddRegion();
5412                    //NOTE: Region does semi-deep copy !
5413                    dstRgn->CopyAssign(
5414                        static_cast<gig::Region*>(*it),
5415                        mSamples
5416                    );
5417                }
5418            }
5419    
5420            UpdateRegionKeyTable();
5421        }
5422    
5423    
5424    // *************** Group ***************
5425    // *
5426    
5427        /** @brief Constructor.
5428         *
5429         * @param file   - pointer to the gig::File object
5430         * @param ck3gnm - pointer to 3gnm chunk associated with this group or
5431         *                 NULL if this is a new Group
5432         */
5433        Group::Group(File* file, RIFF::Chunk* ck3gnm) {
5434            pFile      = file;
5435            pNameChunk = ck3gnm;
5436            ::LoadString(pNameChunk, Name);
5437        }
5438    
5439        /** @brief Destructor.
5440         *
5441         * Currently this destructor implementation does nothing.
5442         */
5443        Group::~Group() {
5444        }
5445    
5446        /** @brief Remove all RIFF chunks associated with this Group object.
5447         *
5448         * See DLS::Storage::DeleteChunks() for details.
5449         */
5450        void Group::DeleteChunks() {
5451            // handle own RIFF chunks
5452            if (pNameChunk) {
5453                pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
5454                pNameChunk = NULL;
5455            }
5456        }
5457    
5458        /** @brief Update chunks with current group settings.
5459         *
5460         * Apply current Group field values to the respective chunks. You have
5461         * to call File::Save() to make changes persistent.
5462         *
5463         * Usually there is absolutely no need to call this method explicitly.
5464         * It will be called automatically when File::Save() was called.
5465         *
5466         * @param pProgress - callback function for progress notification
5467         */
5468        void Group::UpdateChunks(progress_t* pProgress) {
5469            // make sure <3gri> and <3gnl> list chunks exist
5470            RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
5471            if (!_3gri) {
5472                _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
5473                pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
5474            }
5475            RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
5476            if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
5477    
5478            if (!pNameChunk && pFile->pVersion && pFile->pVersion->major > 2) {
5479                // v3 has a fixed list of 128 strings, find a free one
5480                for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
5481                    if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
5482                        pNameChunk = ck;
5483                        break;
5484                    }
5485                }
5486            }
5487    
5488            // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
5489            ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
5490        }
5491    
5492        /**
5493         * Returns the first Sample of this Group. You have to call this method
5494         * once before you use GetNextSample().
5495         *
5496         * <b>Notice:</b> this method might block for a long time, in case the
5497         * samples of this .gig file were not scanned yet
5498         *
5499         * @returns  pointer address to first Sample or NULL if there is none
5500         *           applied to this Group
5501         * @see      GetNextSample()
5502         */
5503        Sample* Group::GetFirstSample() {
5504            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5505            for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
5506                if (pSample->GetGroup() == this) return pSample;
5507            }
5508            return NULL;
5509        }
5510    
5511        /**
5512         * Returns the next Sample of the Group. You have to call
5513         * GetFirstSample() once before you can use this method. By calling this
5514         * method multiple times it iterates through the Samples assigned to
5515         * this Group.
5516         *
5517         * @returns  pointer address to the next Sample of this Group or NULL if
5518         *           end reached
5519         * @see      GetFirstSample()
5520         */
5521        Sample* Group::GetNextSample() {
5522            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5523            for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
5524                if (pSample->GetGroup() == this) return pSample;
5525            }
5526            return NULL;
5527        }
5528    
5529        /**
5530         * Move Sample given by \a pSample from another Group to this Group.
5531         */
5532        void Group::AddSample(Sample* pSample) {
5533            pSample->pGroup = this;
5534        }
5535    
5536        /**
5537         * Move all members of this group to another group (preferably the 1st
5538         * one except this). This method is called explicitly by
5539         * File::DeleteGroup() thus when a Group was deleted. This code was
5540         * intentionally not placed in the destructor!
5541         */
5542        void Group::MoveAll() {
5543            // get "that" other group first
5544            Group* pOtherGroup = NULL;
5545            for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
5546                if (pOtherGroup != this) break;
5547            }
5548            if (!pOtherGroup) throw Exception(
5549                "Could not move samples to another group, since there is no "
5550                "other Group. This is a bug, report it!"
5551            );
5552            // now move all samples of this group to the other group
5553            for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
5554                pOtherGroup->AddSample(pSample);
5555            }
5556      }      }
5557    
5558    
# Line 1670  namespace gig { namespace { Line 5560  namespace gig { namespace {
5560  // *************** File ***************  // *************** File ***************
5561  // *  // *
5562    
5563        /// Reflects Gigasampler file format version 2.0 (1998-06-28).
5564        const DLS::version_t File::VERSION_2 = {
5565            0, 2, 19980628 & 0xffff, 19980628 >> 16
5566        };
5567    
5568        /// Reflects Gigasampler file format version 3.0 (2003-03-31).
5569        const DLS::version_t File::VERSION_3 = {
5570            0, 3, 20030331 & 0xffff, 20030331 >> 16
5571        };
5572    
5573        /// Reflects Gigasampler file format version 4.0 (2007-10-12).
5574        const DLS::version_t File::VERSION_4 = {
5575            0, 4, 20071012 & 0xffff, 20071012 >> 16
5576        };
5577    
5578        static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
5579            { CHUNK_ID_IARL, 256 },
5580            { CHUNK_ID_IART, 128 },
5581            { CHUNK_ID_ICMS, 128 },
5582            { CHUNK_ID_ICMT, 1024 },
5583            { CHUNK_ID_ICOP, 128 },
5584            { CHUNK_ID_ICRD, 128 },
5585            { CHUNK_ID_IENG, 128 },
5586            { CHUNK_ID_IGNR, 128 },
5587            { CHUNK_ID_IKEY, 128 },
5588            { CHUNK_ID_IMED, 128 },
5589            { CHUNK_ID_INAM, 128 },
5590            { CHUNK_ID_IPRD, 128 },
5591            { CHUNK_ID_ISBJ, 128 },
5592            { CHUNK_ID_ISFT, 128 },
5593            { CHUNK_ID_ISRC, 128 },
5594            { CHUNK_ID_ISRF, 128 },
5595            { CHUNK_ID_ITCH, 128 },
5596            { 0, 0 }
5597        };
5598    
5599        File::File() : DLS::File() {
5600            bAutoLoad = true;
5601            *pVersion = VERSION_3;
5602            pGroups = NULL;
5603            pScriptGroups = NULL;
5604            pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5605            pInfo->ArchivalLocation = String(256, ' ');
5606    
5607            // add some mandatory chunks to get the file chunks in right
5608            // order (INFO chunk will be moved to first position later)
5609            pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
5610            pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
5611            pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
5612    
5613            GenerateDLSID();
5614        }
5615    
5616      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
5617          pSamples     = NULL;          bAutoLoad = true;
5618          pInstruments = NULL;          pGroups = NULL;
5619            pScriptGroups = NULL;
5620            pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5621      }      }
5622    
5623      File::~File() {      File::~File() {
5624          // free samples          if (pGroups) {
5625          if (pSamples) {              std::list<Group*>::iterator iter = pGroups->begin();
5626              SamplesIterator = pSamples->begin();              std::list<Group*>::iterator end  = pGroups->end();
5627              while (SamplesIterator != pSamples->end() ) {              while (iter != end) {
5628                  delete (*SamplesIterator);                  delete *iter;
5629                  SamplesIterator++;                  ++iter;
5630              }              }
5631              pSamples->clear();              delete pGroups;
             delete pSamples;  
   
5632          }          }
5633          // free instruments          if (pScriptGroups) {
5634          if (pInstruments) {              std::list<ScriptGroup*>::iterator iter = pScriptGroups->begin();
5635              InstrumentsIterator = pInstruments->begin();              std::list<ScriptGroup*>::iterator end  = pScriptGroups->end();
5636              while (InstrumentsIterator != pInstruments->end() ) {              while (iter != end) {
5637                  delete (*InstrumentsIterator);                  delete *iter;
5638                  InstrumentsIterator++;                  ++iter;
5639              }              }
5640              pInstruments->clear();              delete pScriptGroups;
             delete pInstruments;  
5641          }          }
5642      }      }
5643    
5644      Sample* File::GetFirstSample() {      Sample* File::GetFirstSample(progress_t* pProgress) {
5645          if (!pSamples) LoadSamples();          if (!pSamples) LoadSamples(pProgress);
5646          if (!pSamples) return NULL;          if (!pSamples) return NULL;
5647          SamplesIterator = pSamples->begin();          SamplesIterator = pSamples->begin();
5648          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
# Line 1711  namespace gig { namespace { Line 5653  namespace gig { namespace {
5653          SamplesIterator++;          SamplesIterator++;
5654          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5655      }      }
5656        
5657        /**
5658         * Returns Sample object of @a index.
5659         *
5660         * @returns sample object or NULL if index is out of bounds
5661         */
5662        Sample* File::GetSample(uint index) {
5663            if (!pSamples) LoadSamples();
5664            if (!pSamples) return NULL;
5665            DLS::File::SampleList::iterator it = pSamples->begin();
5666            for (int i = 0; i < index; ++i) {
5667                ++it;
5668                if (it == pSamples->end()) return NULL;
5669            }
5670            if (it == pSamples->end()) return NULL;
5671            return static_cast<gig::Sample*>( *it );
5672        }
5673    
5674        /**
5675         * Returns the total amount of samples of this gig file.
5676         *
5677         * Note that this method might block for a long time in case it is required
5678         * to load the sample info for the first time.
5679         *
5680         * @returns total amount of samples
5681         */
5682        size_t File::CountSamples() {
5683            if (!pSamples) LoadSamples();
5684            if (!pSamples) return 0;
5685            return pSamples->size();
5686        }
5687    
5688        /** @brief Add a new sample.
5689         *
5690         * This will create a new Sample object for the gig file. You have to
5691         * call Save() to make this persistent to the file.
5692         *
5693         * @returns pointer to new Sample object
5694         */
5695        Sample* File::AddSample() {
5696           if (!pSamples) LoadSamples();
5697           __ensureMandatoryChunksExist();
5698           RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
5699           // create new Sample object and its respective 'wave' list chunk
5700           RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
5701           Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
5702    
5703           // add mandatory chunks to get the chunks in right order
5704           wave->AddSubChunk(CHUNK_ID_FMT, 16);
5705           wave->AddSubList(LIST_TYPE_INFO);
5706    
5707           pSamples->push_back(pSample);
5708           return pSample;
5709        }
5710    
5711        /** @brief Delete a sample.
5712         *
5713         * This will delete the given Sample object from the gig file. Any
5714         * references to this sample from Regions and DimensionRegions will be
5715         * removed. You have to call Save() to make this persistent to the file.
5716         *
5717         * @param pSample - sample to delete
5718         * @throws gig::Exception if given sample could not be found
5719         */
5720        void File::DeleteSample(Sample* pSample) {
5721            if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
5722            SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
5723            if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
5724            if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
5725            pSamples->erase(iter);
5726            pSample->DeleteChunks();
5727            delete pSample;
5728    
5729            SampleList::iterator tmp = SamplesIterator;
5730            // remove all references to the sample
5731            for (Instrument* instrument = GetFirstInstrument() ; instrument ;
5732                 instrument = GetNextInstrument()) {
5733                for (Region* region = instrument->GetFirstRegion() ; region ;
5734                     region = instrument->GetNextRegion()) {
5735    
5736                    if (region->GetSample() == pSample) region->SetSample(NULL);
5737    
5738                    for (int i = 0 ; i < region->DimensionRegions ; i++) {
5739                        gig::DimensionRegion *d = region->pDimensionRegions[i];
5740                        if (d->pSample == pSample) d->pSample = NULL;
5741                    }
5742                }
5743            }
5744            SamplesIterator = tmp; // restore iterator
5745        }
5746    
5747      void File::LoadSamples() {      void File::LoadSamples() {
5748          RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);          LoadSamples(NULL);
5749          if (wvpl) {      }
5750              unsigned long wvplFileOffset = wvpl->GetFilePos();  
5751              RIFF::List* wave = wvpl->GetFirstSubList();      void File::LoadSamples(progress_t* pProgress) {
5752              while (wave) {          // Groups must be loaded before samples, because samples will try
5753                  if (wave->GetListType() == LIST_TYPE_WAVE) {          // to resolve the group they belong to
5754                      if (!pSamples) pSamples = new SampleList;          if (!pGroups) LoadGroups();
5755                      unsigned long waveFileOffset = wave->GetFilePos();  
5756                      pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset));          if (!pSamples) pSamples = new SampleList;
5757    
5758            RIFF::File* file = pRIFF;
5759    
5760            // just for progress calculation
5761            int iSampleIndex  = 0;
5762            int iTotalSamples = WavePoolCount;
5763    
5764            // just for assembling path of optional extension files to be read
5765            const std::string folder = parentPath(pRIFF->GetFileName());
5766            const std::string baseName = pathWithoutExtension(pRIFF->GetFileName());
5767    
5768            // the main gig file and the extension files (.gx01, ... , .gx98) may
5769            // contain wave data (wave pool)
5770            std::vector<RIFF::File*> poolFiles;
5771            poolFiles.push_back(pRIFF);
5772    
5773            // get info about all extension files
5774            RIFF::Chunk* ckXfil = pRIFF->GetSubChunk(CHUNK_ID_XFIL);
5775            if (ckXfil) { // there are extension files (.gx01, ... , .gx98) ...
5776                const uint32_t n = ckXfil->ReadInt32();
5777                for (int i = 0; i < n; i++) {
5778                    // read the filename and load the extension file
5779                    std::string name;
5780                    ckXfil->ReadString(name, 128);
5781                    std::string path = concatPath(folder, name);
5782                    RIFF::File* pExtFile = new RIFF::File(path);
5783                    // check that the dlsids match
5784                    RIFF::Chunk* ckDLSID = pExtFile->GetSubChunk(CHUNK_ID_DLID);
5785                    if (ckDLSID) {
5786                        ::DLS::dlsid_t idExpected;
5787                        idExpected.ulData1 = ckXfil->ReadInt32();
5788                        idExpected.usData2 = ckXfil->ReadInt16();
5789                        idExpected.usData3 = ckXfil->ReadInt16();
5790                        ckXfil->Read(idExpected.abData, 8, 1);
5791                        ::DLS::dlsid_t idFound;
5792                        ckDLSID->Read(&idFound.ulData1, 1, 4);
5793                        ckDLSID->Read(&idFound.usData2, 1, 2);
5794                        ckDLSID->Read(&idFound.usData3, 1, 2);
5795                        ckDLSID->Read(idFound.abData, 8, 1);
5796                        if (memcmp(&idExpected, &idFound, 16) != 0)
5797                            throw gig::Exception("dlsid mismatch for extension file: %s", path.c_str());
5798                  }                  }
5799                  wave = wvpl->GetNextSubList();                  poolFiles.push_back(pExtFile);
5800                    ExtensionFiles.push_back(pExtFile);
5801              }              }
5802          }          }
5803          else throw gig::Exception("Mandatory <wvpl> chunk not found.");  
5804            // check if a .gx99 (GigaPulse) file exists
5805            RIFF::Chunk* ckDoxf = pRIFF->GetSubChunk(CHUNK_ID_DOXF);
5806            if (ckDoxf) { // there is a .gx99 (GigaPulse) file ...
5807                std::string path = baseName + ".gx99";
5808                RIFF::File* pExtFile = new RIFF::File(path);
5809    
5810                // skip unused int and filename
5811                ckDoxf->SetPos(132, RIFF::stream_curpos);
5812    
5813                // check that the dlsids match
5814                RIFF::Chunk* ckDLSID = pExtFile->GetSubChunk(CHUNK_ID_DLID);
5815                if (ckDLSID) {
5816                    ::DLS::dlsid_t idExpected;
5817                    idExpected.ulData1 = ckDoxf->ReadInt32();
5818                    idExpected.usData2 = ckDoxf->ReadInt16();
5819                    idExpected.usData3 = ckDoxf->ReadInt16();
5820                    ckDoxf->Read(idExpected.abData, 8, 1);
5821                    ::DLS::dlsid_t idFound;
5822                    ckDLSID->Read(&idFound.ulData1, 1, 4);
5823                    ckDLSID->Read(&idFound.usData2, 1, 2);
5824                    ckDLSID->Read(&idFound.usData3, 1, 2);
5825                    ckDLSID->Read(idFound.abData, 8, 1);
5826                    if (memcmp(&idExpected, &idFound, 16) != 0)
5827                        throw gig::Exception("dlsid mismatch for GigaPulse file: %s", path.c_str());
5828                }
5829                poolFiles.push_back(pExtFile);
5830                ExtensionFiles.push_back(pExtFile);
5831            }
5832    
5833            // load samples from extension files (if required)
5834            for (int i = 0; i < poolFiles.size(); i++) {
5835                RIFF::File* file = poolFiles[i];
5836                RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
5837                if (wvpl) {
5838                    file_offset_t wvplFileOffset = wvpl->GetFilePos() -
5839                                                   wvpl->GetPos(); // should be zero, but just to be sure
5840                    RIFF::List* wave = wvpl->GetFirstSubList();
5841                    while (wave) {
5842                        if (wave->GetListType() == LIST_TYPE_WAVE) {
5843                            // notify current progress
5844                            const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
5845                            __notify_progress(pProgress, subprogress);
5846    
5847                            file_offset_t waveFileOffset = wave->GetFilePos();
5848                            pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, i, iSampleIndex));
5849    
5850                            iSampleIndex++;
5851                        }
5852                        wave = wvpl->GetNextSubList();
5853                    }
5854                }
5855            }
5856    
5857            __notify_progress(pProgress, 1.0); // notify done
5858      }      }
5859    
5860      Instrument* File::GetFirstInstrument() {      Instrument* File::GetFirstInstrument() {
5861          if (!pInstruments) LoadInstruments();          if (!pInstruments) LoadInstruments();
5862          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
5863          InstrumentsIterator = pInstruments->begin();          InstrumentsIterator = pInstruments->begin();
5864          return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;          return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5865      }      }
5866    
5867      Instrument* File::GetNextInstrument() {      Instrument* File::GetNextInstrument() {
5868          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
5869          InstrumentsIterator++;          InstrumentsIterator++;
5870          return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;          return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5871        }
5872    
5873        /**
5874         * Returns the total amount of instruments of this gig file.
5875         *
5876         * Note that this method might block for a long time in case it is required
5877         * to load the instruments info for the first time.
5878         *
5879         * @returns total amount of instruments
5880         */
5881        size_t File::CountInstruments() {
5882            if (!pInstruments) LoadInstruments();
5883            if (!pInstruments) return 0;
5884            return pInstruments->size();
5885      }      }
5886    
5887      /**      /**
5888       * Returns the instrument with the given index.       * Returns the instrument with the given index.
5889       *       *
5890         * @param index     - number of the sought instrument (0..n)
5891         * @param pProgress - optional: callback function for progress notification
5892       * @returns  sought instrument or NULL if there's no such instrument       * @returns  sought instrument or NULL if there's no such instrument
5893       */       */
5894      Instrument* File::GetInstrument(uint index) {      Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
5895          if (!pInstruments) LoadInstruments();          if (!pInstruments) {
5896                // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
5897    
5898                // sample loading subtask
5899                progress_t subprogress;
5900                __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
5901                __notify_progress(&subprogress, 0.0f);
5902                if (GetAutoLoad())
5903                    GetFirstSample(&subprogress); // now force all samples to be loaded
5904                __notify_progress(&subprogress, 1.0f);
5905    
5906                // instrument loading subtask
5907                if (pProgress && pProgress->callback) {
5908                    subprogress.__range_min = subprogress.__range_max;
5909                    subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
5910                }
5911                __notify_progress(&subprogress, 0.0f);
5912                LoadInstruments(&subprogress);
5913                __notify_progress(&subprogress, 1.0f);
5914            }
5915          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
5916          InstrumentsIterator = pInstruments->begin();          InstrumentsIterator = pInstruments->begin();
5917          for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {          for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
5918              if (i == index) return *InstrumentsIterator;              if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
5919              InstrumentsIterator++;              InstrumentsIterator++;
5920          }          }
5921          return NULL;          return NULL;
5922      }      }
5923    
5924        /** @brief Add a new instrument definition.
5925         *
5926         * This will create a new Instrument object for the gig file. You have
5927         * to call Save() to make this persistent to the file.
5928         *
5929         * @returns pointer to new Instrument object
5930         */
5931        Instrument* File::AddInstrument() {
5932           if (!pInstruments) LoadInstruments();
5933           __ensureMandatoryChunksExist();
5934           RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5935           RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
5936    
5937           // add mandatory chunks to get the chunks in right order
5938           lstInstr->AddSubList(LIST_TYPE_INFO);
5939           lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
5940    
5941           Instrument* pInstrument = new Instrument(this, lstInstr);
5942           pInstrument->GenerateDLSID();
5943    
5944           lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
5945    
5946           // this string is needed for the gig to be loadable in GSt:
5947           pInstrument->pInfo->Software = "Endless Wave";
5948    
5949           pInstruments->push_back(pInstrument);
5950           return pInstrument;
5951        }
5952        
5953        /** @brief Add a duplicate of an existing instrument.
5954         *
5955         * Duplicates the instrument definition given by @a orig and adds it
5956         * to this file. This allows in an instrument editor application to
5957         * easily create variations of an instrument, which will be stored in
5958         * the same .gig file, sharing i.e. the same samples.
5959         *
5960         * Note that all sample pointers referenced by @a orig are simply copied as
5961         * memory address. Thus the respective samples are shared, not duplicated!
5962         *
5963         * You have to call Save() to make this persistent to the file.
5964         *
5965         * @param orig - original instrument to be copied
5966         * @returns duplicated copy of the given instrument
5967         */
5968        Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
5969            Instrument* instr = AddInstrument();
5970            instr->CopyAssign(orig);
5971            return instr;
5972        }
5973        
5974        /** @brief Add content of another existing file.
5975         *
5976         * Duplicates the samples, groups and instruments of the original file
5977         * given by @a pFile and adds them to @c this File. In case @c this File is
5978         * a new one that you haven't saved before, then you have to call
5979         * SetFileName() before calling AddContentOf(), because this method will
5980         * automatically save this file during operation, which is required for
5981         * writing the sample waveform data by disk streaming.
5982         *
5983         * @param pFile - original file whose's content shall be copied from
5984         */
5985        void File::AddContentOf(File* pFile) {
5986            static int iCallCount = -1;
5987            iCallCount++;
5988            std::map<Group*,Group*> mGroups;
5989            std::map<Sample*,Sample*> mSamples;
5990            
5991            // clone sample groups
5992            for (int i = 0; pFile->GetGroup(i); ++i) {
5993                Group* g = AddGroup();
5994                g->Name =
5995                    "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
5996                mGroups[pFile->GetGroup(i)] = g;
5997            }
5998            
5999            // clone samples (not waveform data here yet)
6000            for (int i = 0; pFile->GetSample(i); ++i) {
6001                Sample* s = AddSample();
6002                s->CopyAssignMeta(pFile->GetSample(i));
6003                mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
6004                mSamples[pFile->GetSample(i)] = s;
6005            }
6006    
6007            // clone script groups and their scripts
6008            for (int iGroup = 0; pFile->GetScriptGroup(iGroup); ++iGroup) {
6009                ScriptGroup* sg = pFile->GetScriptGroup(iGroup);
6010                ScriptGroup* dg = AddScriptGroup();
6011                dg->Name = "COPY" + ToString(iCallCount) + "_" + sg->Name;
6012                for (int iScript = 0; sg->GetScript(iScript); ++iScript) {
6013                    Script* ss = sg->GetScript(iScript);
6014                    Script* ds = dg->AddScript();
6015                    ds->CopyAssign(ss);
6016                }
6017            }
6018    
6019            //BUG: For some reason this method only works with this additional
6020            //     Save() call in between here.
6021            //
6022            // Important: The correct one of the 2 Save() methods has to be called
6023            // here, depending on whether the file is completely new or has been
6024            // saved to disk already, otherwise it will result in data corruption.
6025            if (pRIFF->IsNew())
6026                Save(GetFileName());
6027            else
6028                Save();
6029            
6030            // clone instruments
6031            // (passing the crosslink table here for the cloned samples)
6032            for (int i = 0; pFile->GetInstrument(i); ++i) {
6033                Instrument* instr = AddInstrument();
6034                instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
6035            }
6036            
6037            // Mandatory: file needs to be saved to disk at this point, so this
6038            // file has the correct size and data layout for writing the samples'
6039            // waveform data to disk.
6040            Save();
6041            
6042            // clone samples' waveform data
6043            // (using direct read & write disk streaming)
6044            for (int i = 0; pFile->GetSample(i); ++i) {
6045                mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
6046            }
6047        }
6048    
6049        /** @brief Delete an instrument.
6050         *
6051         * This will delete the given Instrument object from the gig file. You
6052         * have to call Save() to make this persistent to the file.
6053         *
6054         * @param pInstrument - instrument to delete
6055         * @throws gig::Exception if given instrument could not be found
6056         */
6057        void File::DeleteInstrument(Instrument* pInstrument) {
6058            if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
6059            InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
6060            if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
6061            pInstruments->erase(iter);
6062            pInstrument->DeleteChunks();
6063            delete pInstrument;
6064        }
6065    
6066      void File::LoadInstruments() {      void File::LoadInstruments() {
6067            LoadInstruments(NULL);
6068        }
6069    
6070        void File::LoadInstruments(progress_t* pProgress) {
6071            if (!pInstruments) pInstruments = new InstrumentList;
6072          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
6073          if (lstInstruments) {          if (lstInstruments) {
6074                int iInstrumentIndex = 0;
6075              RIFF::List* lstInstr = lstInstruments->GetFirstSubList();              RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
6076              while (lstInstr) {              while (lstInstr) {
6077                  if (lstInstr->GetListType() == LIST_TYPE_INS) {                  if (lstInstr->GetListType() == LIST_TYPE_INS) {
6078                      if (!pInstruments) pInstruments = new InstrumentList;                      // notify current progress
6079                      pInstruments->push_back(new Instrument(this, lstInstr));                      const float localProgress = (float) iInstrumentIndex / (float) Instruments;
6080                        __notify_progress(pProgress, localProgress);
6081    
6082                        // divide local progress into subprogress for loading current Instrument
6083                        progress_t subprogress;
6084                        __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
6085    
6086                        pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
6087    
6088                        iInstrumentIndex++;
6089                  }                  }
6090                  lstInstr = lstInstruments->GetNextSubList();                  lstInstr = lstInstruments->GetNextSubList();
6091              }              }
6092                __notify_progress(pProgress, 1.0); // notify done
6093            }
6094        }
6095    
6096        /// Updates the 3crc chunk with the checksum of a sample. The
6097        /// update is done directly to disk, as this method is called
6098        /// after File::Save()
6099        void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
6100            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6101            if (!_3crc) return;
6102    
6103            // get the index of the sample
6104            int iWaveIndex = GetWaveTableIndexOf(pSample);
6105            if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
6106    
6107            // write the CRC-32 checksum to disk
6108            _3crc->SetPos(iWaveIndex * 8);
6109            uint32_t one = 1;
6110            _3crc->WriteUint32(&one); // always 1
6111            _3crc->WriteUint32(&crc);
6112        }
6113    
6114        uint32_t File::GetSampleChecksum(Sample* pSample) {
6115            // get the index of the sample
6116            int iWaveIndex = GetWaveTableIndexOf(pSample);
6117            if (iWaveIndex < 0) throw gig::Exception("Could not retrieve reference crc of sample, could not resolve sample's wave table index");
6118    
6119            return GetSampleChecksumByIndex(iWaveIndex);
6120        }
6121    
6122        uint32_t File::GetSampleChecksumByIndex(int index) {
6123            if (index < 0) throw gig::Exception("Could not retrieve reference crc of sample, invalid wave pool index of sample");
6124    
6125            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6126            if (!_3crc) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
6127            uint8_t* pData = (uint8_t*) _3crc->LoadChunkData();
6128            if (!pData) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
6129    
6130            // read the CRC-32 checksum directly from disk
6131            size_t pos = index * 8;
6132            if (pos + 8 > _3crc->GetNewSize())
6133                throw gig::Exception("Could not retrieve reference crc of sample, could not seek to required position in crc chunk");
6134    
6135            uint32_t one = load32(&pData[pos]); // always 1
6136            if (one != 1)
6137                throw gig::Exception("Could not retrieve reference crc of sample, because reference checksum table is damaged");
6138    
6139            return load32(&pData[pos+4]);
6140        }
6141    
6142        int File::GetWaveTableIndexOf(gig::Sample* pSample) {
6143            if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
6144            File::SampleList::iterator iter = pSamples->begin();
6145            File::SampleList::iterator end  = pSamples->end();
6146            for (int index = 0; iter != end; ++iter, ++index)
6147                if (*iter == pSample)
6148                    return index;
6149            return -1;
6150        }
6151    
6152        /**
6153         * Checks whether the file's "3CRC" chunk was damaged. This chunk contains
6154         * the CRC32 check sums of all samples' raw wave data.
6155         *
6156         * @return true if 3CRC chunk is OK, or false if 3CRC chunk is damaged
6157         */
6158        bool File::VerifySampleChecksumTable() {
6159            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6160            if (!_3crc) return false;
6161            if (_3crc->GetNewSize() <= 0) return false;
6162            if (_3crc->GetNewSize() % 8) return false;
6163            if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
6164            if (_3crc->GetNewSize() != pSamples->size() * 8) return false;
6165    
6166            const file_offset_t n = _3crc->GetNewSize() / 8;
6167    
6168            uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6169            if (!pData) return false;
6170    
6171            for (file_offset_t i = 0; i < n; ++i) {
6172                uint32_t one = pData[i*2];
6173                if (one != 1) return false;
6174            }
6175    
6176            return true;
6177        }
6178    
6179        /**
6180         * Recalculates CRC32 checksums for all samples and rebuilds this gig
6181         * file's checksum table with those new checksums. This might usually
6182         * just be necessary if the checksum table was damaged.
6183         *
6184         * @e IMPORTANT: The current implementation of this method only works
6185         * with files that have not been modified since it was loaded, because
6186         * it expects that no externally caused file structure changes are
6187         * required!
6188         *
6189         * Due to the expectation above, this method is currently protected
6190         * and actually only used by the command line tool "gigdump" yet.
6191         *
6192         * @returns true if Save() is required to be called after this call,
6193         *          false if no further action is required
6194         */
6195        bool File::RebuildSampleChecksumTable() {
6196            // make sure sample chunks were scanned
6197            if (!pSamples) GetFirstSample();
6198    
6199            bool bRequiresSave = false;
6200    
6201            // make sure "3CRC" chunk exists with required size
6202            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6203            if (!_3crc) {
6204                _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6205                // the order of einf and 3crc is not the same in v2 and v3
6206                RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6207                if (einf && pVersion && pVersion->major > 2) pRIFF->MoveSubChunk(_3crc, einf);
6208                bRequiresSave = true;
6209            } else if (_3crc->GetNewSize() != pSamples->size() * 8) {
6210                _3crc->Resize(pSamples->size() * 8);
6211                bRequiresSave = true;
6212            }
6213    
6214            if (bRequiresSave) { // refill CRC table for all samples in RAM ...
6215                uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6216                {
6217                    File::SampleList::iterator iter = pSamples->begin();
6218                    File::SampleList::iterator end  = pSamples->end();
6219                    for (; iter != end; ++iter) {
6220                        gig::Sample* pSample = (gig::Sample*) *iter;
6221                        int index = GetWaveTableIndexOf(pSample);
6222                        if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6223                        pData[index*2]   = 1; // always 1
6224                        pData[index*2+1] = pSample->CalculateWaveDataChecksum();
6225                    }
6226                }
6227            } else { // no file structure changes necessary, so directly write to disk and we are done ...
6228                // make sure file is in write mode
6229                pRIFF->SetMode(RIFF::stream_mode_read_write);
6230                {
6231                    File::SampleList::iterator iter = pSamples->begin();
6232                    File::SampleList::iterator end  = pSamples->end();
6233                    for (; iter != end; ++iter) {
6234                        gig::Sample* pSample = (gig::Sample*) *iter;
6235                        int index = GetWaveTableIndexOf(pSample);
6236                        if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6237                        pSample->crc  = pSample->CalculateWaveDataChecksum();
6238                        SetSampleChecksum(pSample, pSample->crc);
6239                    }
6240                }
6241            }
6242    
6243            return bRequiresSave;
6244        }
6245    
6246        Group* File::GetFirstGroup() {
6247            if (!pGroups) LoadGroups();
6248            // there must always be at least one group
6249            GroupsIterator = pGroups->begin();
6250            return *GroupsIterator;
6251        }
6252    
6253        Group* File::GetNextGroup() {
6254            if (!pGroups) return NULL;
6255            ++GroupsIterator;
6256            return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
6257        }
6258    
6259        /**
6260         * Returns the group with the given index.
6261         *
6262         * @param index - number of the sought group (0..n)
6263         * @returns sought group or NULL if there's no such group
6264         */
6265        Group* File::GetGroup(uint index) {
6266            if (!pGroups) LoadGroups();
6267            GroupsIterator = pGroups->begin();
6268            for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
6269                if (i == index) return *GroupsIterator;
6270                ++GroupsIterator;
6271            }
6272            return NULL;
6273        }
6274    
6275        /**
6276         * Returns the group with the given group name.
6277         *
6278         * Note: group names don't have to be unique in the gig format! So there
6279         * can be multiple groups with the same name. This method will simply
6280         * return the first group found with the given name.
6281         *
6282         * @param name - name of the sought group
6283         * @returns sought group or NULL if there's no group with that name
6284         */
6285        Group* File::GetGroup(String name) {
6286            if (!pGroups) LoadGroups();
6287            GroupsIterator = pGroups->begin();
6288            for (uint i = 0; GroupsIterator != pGroups->end(); ++GroupsIterator, ++i)
6289                if ((*GroupsIterator)->Name == name) return *GroupsIterator;
6290            return NULL;
6291        }
6292    
6293        Group* File::AddGroup() {
6294            if (!pGroups) LoadGroups();
6295            // there must always be at least one group
6296            __ensureMandatoryChunksExist();
6297            Group* pGroup = new Group(this, NULL);
6298            pGroups->push_back(pGroup);
6299            return pGroup;
6300        }
6301    
6302        /** @brief Delete a group and its samples.
6303         *
6304         * This will delete the given Group object and all the samples that
6305         * belong to this group from the gig file. You have to call Save() to
6306         * make this persistent to the file.
6307         *
6308         * @param pGroup - group to delete
6309         * @throws gig::Exception if given group could not be found
6310         */
6311        void File::DeleteGroup(Group* pGroup) {
6312            if (!pGroups) LoadGroups();
6313            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6314            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6315            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6316            // delete all members of this group
6317            for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
6318                DeleteSample(pSample);
6319            }
6320            // now delete this group object
6321            pGroups->erase(iter);
6322            pGroup->DeleteChunks();
6323            delete pGroup;
6324        }
6325    
6326        /** @brief Delete a group.
6327         *
6328         * This will delete the given Group object from the gig file. All the
6329         * samples that belong to this group will not be deleted, but instead
6330         * be moved to another group. You have to call Save() to make this
6331         * persistent to the file.
6332         *
6333         * @param pGroup - group to delete
6334         * @throws gig::Exception if given group could not be found
6335         */
6336        void File::DeleteGroupOnly(Group* pGroup) {
6337            if (!pGroups) LoadGroups();
6338            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6339            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6340            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6341            // move all members of this group to another group
6342            pGroup->MoveAll();
6343            pGroups->erase(iter);
6344            pGroup->DeleteChunks();
6345            delete pGroup;
6346        }
6347    
6348        void File::LoadGroups() {
6349            if (!pGroups) pGroups = new std::list<Group*>;
6350            // try to read defined groups from file
6351            RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6352            if (lst3gri) {
6353                RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
6354                if (lst3gnl) {
6355                    RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
6356                    while (ck) {
6357                        if (ck->GetChunkID() == CHUNK_ID_3GNM) {
6358                            if (pVersion && pVersion->major > 2 &&
6359                                strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
6360    
6361                            pGroups->push_back(new Group(this, ck));
6362                        }
6363                        ck = lst3gnl->GetNextSubChunk();
6364                    }
6365                }
6366            }
6367            // if there were no group(s), create at least the mandatory default group
6368            if (!pGroups->size()) {
6369                Group* pGroup = new Group(this, NULL);
6370                pGroup->Name = "Default Group";
6371                pGroups->push_back(pGroup);
6372            }
6373        }
6374    
6375        /** @brief Get instrument script group (by index).
6376         *
6377         * Returns the real-time instrument script group with the given index.
6378         *
6379         * @param index - number of the sought group (0..n)
6380         * @returns sought script group or NULL if there's no such group
6381         */
6382        ScriptGroup* File::GetScriptGroup(uint index) {
6383            if (!pScriptGroups) LoadScriptGroups();
6384            std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6385            for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6386                if (i == index) return *it;
6387            return NULL;
6388        }
6389    
6390        /** @brief Get instrument script group (by name).
6391         *
6392         * Returns the first real-time instrument script group found with the given
6393         * group name. Note that group names may not necessarily be unique.
6394         *
6395         * @param name - name of the sought script group
6396         * @returns sought script group or NULL if there's no such group
6397         */
6398        ScriptGroup* File::GetScriptGroup(const String& name) {
6399            if (!pScriptGroups) LoadScriptGroups();
6400            std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6401            for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6402                if ((*it)->Name == name) return *it;
6403            return NULL;
6404        }
6405    
6406        /** @brief Add new instrument script group.
6407         *
6408         * Adds a new, empty real-time instrument script group to the file.
6409         *
6410         * You have to call Save() to make this persistent to the file.
6411         *
6412         * @return new empty script group
6413         */
6414        ScriptGroup* File::AddScriptGroup() {
6415            if (!pScriptGroups) LoadScriptGroups();
6416            ScriptGroup* pScriptGroup = new ScriptGroup(this, NULL);
6417            pScriptGroups->push_back(pScriptGroup);
6418            return pScriptGroup;
6419        }
6420    
6421        /** @brief Delete an instrument script group.
6422         *
6423         * This will delete the given real-time instrument script group and all its
6424         * instrument scripts it contains. References inside instruments that are
6425         * using the deleted scripts will be removed from the respective instruments
6426         * accordingly.
6427         *
6428         * You have to call Save() to make this persistent to the file.
6429         *
6430         * @param pScriptGroup - script group to delete
6431         * @throws gig::Exception if given script group could not be found
6432         */
6433        void File::DeleteScriptGroup(ScriptGroup* pScriptGroup) {
6434            if (!pScriptGroups) LoadScriptGroups();
6435            std::list<ScriptGroup*>::iterator iter =
6436                find(pScriptGroups->begin(), pScriptGroups->end(), pScriptGroup);
6437            if (iter == pScriptGroups->end())
6438                throw gig::Exception("Could not delete script group, could not find given script group");
6439            pScriptGroups->erase(iter);
6440            for (int i = 0; pScriptGroup->GetScript(i); ++i)
6441                pScriptGroup->DeleteScript(pScriptGroup->GetScript(i));
6442            if (pScriptGroup->pList)
6443                pScriptGroup->pList->GetParent()->DeleteSubChunk(pScriptGroup->pList);
6444            pScriptGroup->DeleteChunks();
6445            delete pScriptGroup;
6446        }
6447    
6448        void File::LoadScriptGroups() {
6449            if (pScriptGroups) return;
6450            pScriptGroups = new std::list<ScriptGroup*>;
6451            RIFF::List* lstLS = pRIFF->GetSubList(LIST_TYPE_3LS);
6452            if (lstLS) {
6453                for (RIFF::List* lst = lstLS->GetFirstSubList(); lst;
6454                     lst = lstLS->GetNextSubList())
6455                {
6456                    if (lst->GetListType() == LIST_TYPE_RTIS) {
6457                        pScriptGroups->push_back(new ScriptGroup(this, lst));
6458                    }
6459                }
6460            }
6461        }
6462    
6463        /**
6464         * Apply all the gig file's current instruments, samples, groups and settings
6465         * to the respective RIFF chunks. You have to call Save() to make changes
6466         * persistent.
6467         *
6468         * Usually there is absolutely no need to call this method explicitly.
6469         * It will be called automatically when File::Save() was called.
6470         *
6471         * @param pProgress - callback function for progress notification
6472         * @throws Exception - on errors
6473         */
6474        void File::UpdateChunks(progress_t* pProgress) {
6475            bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
6476    
6477            // update own gig format extension chunks
6478            // (not part of the GigaStudio 4 format)
6479            RIFF::List* lst3LS = pRIFF->GetSubList(LIST_TYPE_3LS);
6480            if (!lst3LS) {
6481                lst3LS = pRIFF->AddSubList(LIST_TYPE_3LS);
6482            }
6483            // Make sure <3LS > chunk is placed before <ptbl> chunk. The precise
6484            // location of <3LS > is irrelevant, however it should be located
6485            // before  the actual wave data
6486            RIFF::Chunk* ckPTBL = pRIFF->GetSubChunk(CHUNK_ID_PTBL);
6487            pRIFF->MoveSubChunk(lst3LS, ckPTBL);
6488    
6489            // This must be performed before writing the chunks for instruments,
6490            // because the instruments' script slots will write the file offsets
6491            // of the respective instrument script chunk as reference.
6492            if (pScriptGroups) {
6493                // Update instrument script (group) chunks.
6494                for (std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6495                     it != pScriptGroups->end(); ++it)
6496                {
6497                    (*it)->UpdateChunks(pProgress);
6498                }
6499            }
6500    
6501            // in case no libgig custom format data was added, then remove the
6502            // custom "3LS " chunk again
6503            if (!lst3LS->CountSubChunks()) {
6504                pRIFF->DeleteSubChunk(lst3LS);
6505                lst3LS = NULL;
6506            }
6507    
6508            // first update base class's chunks
6509            DLS::File::UpdateChunks(pProgress);
6510    
6511            if (newFile) {
6512                // INFO was added by Resource::UpdateChunks - make sure it
6513                // is placed first in file
6514                RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
6515                RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
6516                if (first != info) {
6517                    pRIFF->MoveSubChunk(info, first);
6518                }
6519            }
6520    
6521            // update group's chunks
6522            if (pGroups) {
6523                // make sure '3gri' and '3gnl' list chunks exist
6524                // (before updating the Group chunks)
6525                RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6526                if (!_3gri) {
6527                    _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
6528                    pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
6529                }
6530                RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
6531                if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
6532    
6533                // v3: make sure the file has 128 3gnm chunks
6534                // (before updating the Group chunks)
6535                if (pVersion && pVersion->major > 2) {
6536                    RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
6537                    for (int i = 0 ; i < 128 ; i++) {
6538                        if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
6539                        if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
6540                    }
6541                }
6542    
6543                std::list<Group*>::iterator iter = pGroups->begin();
6544                std::list<Group*>::iterator end  = pGroups->end();
6545                for (; iter != end; ++iter) {
6546                    (*iter)->UpdateChunks(pProgress);
6547                }
6548            }
6549    
6550            // update einf chunk
6551    
6552            // The einf chunk contains statistics about the gig file, such
6553            // as the number of regions and samples used by each
6554            // instrument. It is divided in equally sized parts, where the
6555            // first part contains information about the whole gig file,
6556            // and the rest of the parts map to each instrument in the
6557            // file.
6558            //
6559            // At the end of each part there is a bit map of each sample
6560            // in the file, where a set bit means that the sample is used
6561            // by the file/instrument.
6562            //
6563            // Note that there are several fields with unknown use. These
6564            // are set to zero.
6565    
6566            int sublen = int(pSamples->size() / 8 + 49);
6567            int einfSize = (Instruments + 1) * sublen;
6568    
6569            RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6570            if (einf) {
6571                if (einf->GetSize() != einfSize) {
6572                    einf->Resize(einfSize);
6573                    memset(einf->LoadChunkData(), 0, einfSize);
6574                }
6575            } else if (newFile) {
6576                einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
6577          }          }
6578          else throw gig::Exception("Mandatory <lins> list chunk not found.");          if (einf) {
6579                uint8_t* pData = (uint8_t*) einf->LoadChunkData();
6580    
6581                std::map<gig::Sample*,int> sampleMap;
6582                int sampleIdx = 0;
6583                for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
6584                    sampleMap[pSample] = sampleIdx++;
6585                }
6586    
6587                int totnbusedsamples = 0;
6588                int totnbusedchannels = 0;
6589                int totnbregions = 0;
6590                int totnbdimregions = 0;
6591                int totnbloops = 0;
6592                int instrumentIdx = 0;
6593    
6594                memset(&pData[48], 0, sublen - 48);
6595    
6596                for (Instrument* instrument = GetFirstInstrument() ; instrument ;
6597                     instrument = GetNextInstrument()) {
6598                    int nbusedsamples = 0;
6599                    int nbusedchannels = 0;
6600                    int nbdimregions = 0;
6601                    int nbloops = 0;
6602    
6603                    memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
6604    
6605                    for (Region* region = instrument->GetFirstRegion() ; region ;
6606                         region = instrument->GetNextRegion()) {
6607                        for (int i = 0 ; i < region->DimensionRegions ; i++) {
6608                            gig::DimensionRegion *d = region->pDimensionRegions[i];
6609                            if (d->pSample) {
6610                                int sampleIdx = sampleMap[d->pSample];
6611                                int byte = 48 + sampleIdx / 8;
6612                                int bit = 1 << (sampleIdx & 7);
6613                                if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
6614                                    pData[(instrumentIdx + 1) * sublen + byte] |= bit;
6615                                    nbusedsamples++;
6616                                    nbusedchannels += d->pSample->Channels;
6617    
6618                                    if ((pData[byte] & bit) == 0) {
6619                                        pData[byte] |= bit;
6620                                        totnbusedsamples++;
6621                                        totnbusedchannels += d->pSample->Channels;
6622                                    }
6623                                }
6624                            }
6625                            if (d->SampleLoops) nbloops++;
6626                        }
6627                        nbdimregions += region->DimensionRegions;
6628                    }
6629                    // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6630                    // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
6631                    store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
6632                    store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
6633                    store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
6634                    store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
6635                    store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
6636                    store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
6637                    // next 8 bytes unknown
6638                    store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
6639                    store32(&pData[(instrumentIdx + 1) * sublen + 40], (uint32_t) pSamples->size());
6640                    // next 4 bytes unknown
6641    
6642                    totnbregions += instrument->Regions;
6643                    totnbdimregions += nbdimregions;
6644                    totnbloops += nbloops;
6645                    instrumentIdx++;
6646                }
6647                // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6648                // store32(&pData[0], sublen);
6649                store32(&pData[4], totnbusedchannels);
6650                store32(&pData[8], totnbusedsamples);
6651                store32(&pData[12], Instruments);
6652                store32(&pData[16], totnbregions);
6653                store32(&pData[20], totnbdimregions);
6654                store32(&pData[24], totnbloops);
6655                // next 8 bytes unknown
6656                // next 4 bytes unknown, not always 0
6657                store32(&pData[40], (uint32_t) pSamples->size());
6658                // next 4 bytes unknown
6659            }
6660    
6661            // update 3crc chunk
6662    
6663            // The 3crc chunk contains CRC-32 checksums for the
6664            // samples. When saving a gig file to disk, we first update the 3CRC
6665            // chunk here (in RAM) with the old crc values which we read from the
6666            // 3CRC chunk when we opened the file (available with gig::Sample::crc
6667            // member variable). This step is required, because samples might have
6668            // been deleted by the user since the file was opened, which in turn
6669            // changes the order of the (i.e. old) checksums within the 3crc chunk.
6670            // If a sample was conciously modified by the user (that is if
6671            // Sample::Write() was called later on) then Sample::Write() will just
6672            // update the respective individual checksum(s) directly on disk and
6673            // leaves all other sample checksums untouched.
6674    
6675            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6676            if (_3crc) {
6677                _3crc->Resize(pSamples->size() * 8);
6678            } else /*if (newFile)*/ {
6679                _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6680                // the order of einf and 3crc is not the same in v2 and v3
6681                if (einf && pVersion && pVersion->major > 2) pRIFF->MoveSubChunk(_3crc, einf);
6682            }
6683            { // must be performed in RAM here ...
6684                uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6685                if (pData) {
6686                    File::SampleList::iterator iter = pSamples->begin();
6687                    File::SampleList::iterator end  = pSamples->end();
6688                    for (int index = 0; iter != end; ++iter, ++index) {
6689                        gig::Sample* pSample = (gig::Sample*) *iter;
6690                        pData[index*2]   = 1; // always 1
6691                        pData[index*2+1] = pSample->crc;
6692                    }
6693                }
6694            }
6695        }
6696        
6697        void File::UpdateFileOffsets() {
6698            DLS::File::UpdateFileOffsets();
6699    
6700            for (Instrument* instrument = GetFirstInstrument(); instrument;
6701                 instrument = GetNextInstrument())
6702            {
6703                instrument->UpdateScriptFileOffsets();
6704            }
6705        }
6706    
6707        /**
6708         * Enable / disable automatic loading. By default this properyt is
6709         * enabled and all informations are loaded automatically. However
6710         * loading all Regions, DimensionRegions and especially samples might
6711         * take a long time for large .gig files, and sometimes one might only
6712         * be interested in retrieving very superficial informations like the
6713         * amount of instruments and their names. In this case one might disable
6714         * automatic loading to avoid very slow response times.
6715         *
6716         * @e CAUTION: by disabling this property many pointers (i.e. sample
6717         * references) and informations will have invalid or even undefined
6718         * data! This feature is currently only intended for retrieving very
6719         * superficial informations in a very fast way. Don't use it to retrieve
6720         * details like synthesis informations or even to modify .gig files!
6721         */
6722        void File::SetAutoLoad(bool b) {
6723            bAutoLoad = b;
6724        }
6725    
6726        /**
6727         * Returns whether automatic loading is enabled.
6728         * @see SetAutoLoad()
6729         */
6730        bool File::GetAutoLoad() {
6731            return bAutoLoad;
6732      }      }
6733    
6734    
# Line 1778  namespace gig { namespace { Line 6736  namespace gig { namespace {
6736  // *************** Exception ***************  // *************** Exception ***************
6737  // *  // *
6738    
6739      Exception::Exception(String Message) : DLS::Exception(Message) {      Exception::Exception() : DLS::Exception() {
6740        }
6741    
6742        Exception::Exception(String format, ...) : DLS::Exception() {
6743            va_list arg;
6744            va_start(arg, format);
6745            Message = assemble(format, arg);
6746            va_end(arg);
6747        }
6748    
6749        Exception::Exception(String format, va_list arg) : DLS::Exception() {
6750            Message = assemble(format, arg);
6751      }      }
6752    
6753      void Exception::PrintMessage() {      void Exception::PrintMessage() {
6754          std::cout << "gig::Exception: " << Message << std::endl;          std::cout << "gig::Exception: " << Message << std::endl;
6755      }      }
6756    
6757    
6758    // *************** functions ***************
6759    // *
6760    
6761        /**
6762         * Returns the name of this C++ library. This is usually "libgig" of
6763         * course. This call is equivalent to RIFF::libraryName() and
6764         * DLS::libraryName().
6765         */
6766        String libraryName() {
6767            return PACKAGE;
6768        }
6769    
6770        /**
6771         * Returns version of this C++ library. This call is equivalent to
6772         * RIFF::libraryVersion() and DLS::libraryVersion().
6773         */
6774        String libraryVersion() {
6775            return VERSION;
6776        }
6777    
6778  } // namespace gig  } // namespace gig

Legend:
Removed from v.437  
changed lines
  Added in v.3478

  ViewVC Help
Powered by ViewVC