/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Diff of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 666 by persson, Sun Jun 19 15:18:59 2005 UTC revision 3475 by schoenebeck, Wed Feb 20 17:06:11 2019 UTC
# Line 1  Line 1 
1  /***************************************************************************  /***************************************************************************
2   *                                                                         *   *                                                                         *
3   *   libgig - C++ cross-platform Gigasampler format file loader library    *   *   libgig - C++ cross-platform Gigasampler format file access library    *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003-2005 by Christian Schoenebeck                      *   *   Copyright (C) 2003-2019 by Christian Schoenebeck                      *
6   *                              <cuse@users.sourceforge.net>               *   *                              <cuse@users.sourceforge.net>               *
7   *                                                                         *   *                                                                         *
8   *   This library is free software; you can redistribute it and/or modify  *   *   This library is free software; you can redistribute it and/or modify  *
# Line 23  Line 23 
23    
24  #include "gig.h"  #include "gig.h"
25    
26  #include <iostream>  #include "helper.h"
27    #include "Serialization.h"
 namespace gig {  
28    
29  // *************** progress_t ***************  #include <algorithm>
30  // *  #include <math.h>
31    #include <iostream>
32    #include <assert.h>
33    
34      progress_t::progress_t() {  /// libgig's current file format version (for extending the original Giga file
35          callback    = NULL;  /// format with libgig's own custom data / custom features).
36          custom      = NULL;  #define GIG_FILE_EXT_VERSION    2
37          __range_min = 0.0f;  
38          __range_max = 1.0f;  /// Initial size of the sample buffer which is used for decompression of
39      }  /// compressed sample wave streams - this value should always be bigger than
40    /// the biggest sample piece expected to be read by the sampler engine,
41    /// otherwise the buffer size will be raised at runtime and thus the buffer
42    /// reallocated which is time consuming and unefficient.
43    #define INITIAL_SAMPLE_BUFFER_SIZE              512000 // 512 kB
44    
45    /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
46    #define GIG_EXP_DECODE(x)                       (pow(1.000000008813822, x))
47    #define GIG_EXP_ENCODE(x)                       (log(x) / log(1.000000008813822))
48    #define GIG_PITCH_TRACK_EXTRACT(x)              (!(x & 0x01))
49    #define GIG_PITCH_TRACK_ENCODE(x)               ((x) ? 0x00 : 0x01)
50    #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x)       ((x >> 4) & 0x03)
51    #define GIG_VCF_RESONANCE_CTRL_ENCODE(x)        ((x & 0x03) << 4)
52    #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x)  ((x >> 1) & 0x03)
53    #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x)   ((x >> 3) & 0x03)
54    #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
55    #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x)   ((x & 0x03) << 1)
56    #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x)    ((x & 0x03) << 3)
57    #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x)  ((x & 0x03) << 5)
58    
59      // private helper function to convert progress of a subprocess into the global progress  #define SRLZ(member) \
60      static void __notify_progress(progress_t* pProgress, float subprogress) {      archive->serializeMember(*this, member, #member);
         if (pProgress && pProgress->callback) {  
             const float totalrange    = pProgress->__range_max - pProgress->__range_min;  
             const float totalprogress = pProgress->__range_min + subprogress * totalrange;  
             pProgress->factor         = totalprogress;  
             pProgress->callback(pProgress); // now actually notify about the progress  
         }  
     }  
   
     // private helper function to divide a progress into subprogresses  
     static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {  
         if (pParentProgress && pParentProgress->callback) {  
             const float totalrange    = pParentProgress->__range_max - pParentProgress->__range_min;  
             pSubProgress->callback    = pParentProgress->callback;  
             pSubProgress->custom      = pParentProgress->custom;  
             pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;  
             pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;  
         }  
     }  
61    
62    namespace gig {
63    
64  // *************** Internal functions for sample decopmression ***************  // *************** Internal functions for sample decompression ***************
65  // *  // *
66    
67  namespace {  namespace {
# Line 87  namespace { Line 89  namespace {
89          return x & 0x800000 ? x - 0x1000000 : x;          return x & 0x800000 ? x - 0x1000000 : x;
90      }      }
91    
92        inline void store24(unsigned char* pDst, int x)
93        {
94            pDst[0] = x;
95            pDst[1] = x >> 8;
96            pDst[2] = x >> 16;
97        }
98    
99      void Decompress16(int compressionmode, const unsigned char* params,      void Decompress16(int compressionmode, const unsigned char* params,
100                        int srcStep, int dstStep,                        int srcStep, int dstStep,
101                        const unsigned char* pSrc, int16_t* pDst,                        const unsigned char* pSrc, int16_t* pDst,
102                        unsigned long currentframeoffset,                        file_offset_t currentframeoffset,
103                        unsigned long copysamples)                        file_offset_t copysamples)
104      {      {
105          switch (compressionmode) {          switch (compressionmode) {
106              case 0: // 16 bit uncompressed              case 0: // 16 bit uncompressed
# Line 126  namespace { Line 135  namespace {
135      }      }
136    
137      void Decompress24(int compressionmode, const unsigned char* params,      void Decompress24(int compressionmode, const unsigned char* params,
138                        int dstStep, const unsigned char* pSrc, int16_t* pDst,                        int dstStep, const unsigned char* pSrc, uint8_t* pDst,
139                        unsigned long currentframeoffset,                        file_offset_t currentframeoffset,
140                        unsigned long copysamples, int truncatedBits)                        file_offset_t copysamples, int truncatedBits)
141      {      {
142          // Note: The 24 bits are truncated to 16 bits for now.          int y, dy, ddy, dddy;
143    
144          // Note: The calculation of the initial value of y is strange  #define GET_PARAMS(params)                      \
145          // and not 100% correct. What should the first two parameters          y    = get24(params);                   \
146          // really be used for? Why are they two? The correct value for          dy   = y - get24((params) + 3);         \
147          // y seems to lie somewhere between the values of the first          ddy  = get24((params) + 6);             \
148          // two parameters.          dddy = get24((params) + 9)
         //  
         // Strange thing #2: The formula in SKIP_ONE gives values for  
         // y that are twice as high as they should be. That's why  
         // COPY_ONE shifts an extra step, and also why y is  
         // initialized with a sum instead of a mean value.  
   
         int y, dy, ddy;  
   
         const int shift = 8 - truncatedBits;  
         const int shift1 = shift + 1;  
   
 #define GET_PARAMS(params)                              \  
         y = (get24(params) + get24((params) + 3));      \  
         dy  = get24((params) + 6);                      \  
         ddy = get24((params) + 9)  
149    
150  #define SKIP_ONE(x)                             \  #define SKIP_ONE(x)                             \
151          ddy -= (x);                             \          dddy -= (x);                            \
152          dy -= ddy;                              \          ddy  -= dddy;                           \
153          y -= dy          dy   =  -dy - ddy;                      \
154            y    += dy
155    
156  #define COPY_ONE(x)                             \  #define COPY_ONE(x)                             \
157          SKIP_ONE(x);                            \          SKIP_ONE(x);                            \
158          *pDst = y >> shift1;                    \          store24(pDst, y << truncatedBits);      \
159          pDst += dstStep          pDst += dstStep
160    
161          switch (compressionmode) {          switch (compressionmode) {
162              case 2: // 24 bit uncompressed              case 2: // 24 bit uncompressed
163                  pSrc += currentframeoffset * 3;                  pSrc += currentframeoffset * 3;
164                  while (copysamples) {                  while (copysamples) {
165                      *pDst = get24(pSrc) >> shift;                      store24(pDst, get24(pSrc) << truncatedBits);
166                      pDst += dstStep;                      pDst += dstStep;
167                      pSrc += 3;                      pSrc += 3;
168                      copysamples--;                      copysamples--;
# Line 237  namespace { Line 232  namespace {
232  }  }
233    
234    
235    
236    // *************** Internal CRC-32 (Cyclic Redundancy Check) functions  ***************
237    // *
238    
239        static uint32_t* __initCRCTable() {
240            static uint32_t res[256];
241    
242            for (int i = 0 ; i < 256 ; i++) {
243                uint32_t c = i;
244                for (int j = 0 ; j < 8 ; j++) {
245                    c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
246                }
247                res[i] = c;
248            }
249            return res;
250        }
251    
252        static const uint32_t* __CRCTable = __initCRCTable();
253    
254        /**
255         * Initialize a CRC variable.
256         *
257         * @param crc - variable to be initialized
258         */
259        inline static void __resetCRC(uint32_t& crc) {
260            crc = 0xffffffff;
261        }
262    
263        /**
264         * Used to calculate checksums of the sample data in a gig file. The
265         * checksums are stored in the 3crc chunk of the gig file and
266         * automatically updated when a sample is written with Sample::Write().
267         *
268         * One should call __resetCRC() to initialize the CRC variable to be
269         * used before calling this function the first time.
270         *
271         * After initializing the CRC variable one can call this function
272         * arbitrary times, i.e. to split the overall CRC calculation into
273         * steps.
274         *
275         * Once the whole data was processed by __calculateCRC(), one should
276         * call __finalizeCRC() to get the final CRC result.
277         *
278         * @param buf     - pointer to data the CRC shall be calculated of
279         * @param bufSize - size of the data to be processed
280         * @param crc     - variable the CRC sum shall be stored to
281         */
282        static void __calculateCRC(unsigned char* buf, size_t bufSize, uint32_t& crc) {
283            for (size_t i = 0 ; i < bufSize ; i++) {
284                crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
285            }
286        }
287    
288        /**
289         * Returns the final CRC result.
290         *
291         * @param crc - variable previously passed to __calculateCRC()
292         */
293        inline static void __finalizeCRC(uint32_t& crc) {
294            crc ^= 0xffffffff;
295        }
296    
297    
298    
299    // *************** Other Internal functions  ***************
300    // *
301    
302        static split_type_t __resolveSplitType(dimension_t dimension) {
303            return (
304                dimension == dimension_layer ||
305                dimension == dimension_samplechannel ||
306                dimension == dimension_releasetrigger ||
307                dimension == dimension_keyboard ||
308                dimension == dimension_roundrobin ||
309                dimension == dimension_random ||
310                dimension == dimension_smartmidi ||
311                dimension == dimension_roundrobinkeyboard
312            ) ? split_type_bit : split_type_normal;
313        }
314    
315        static int __resolveZoneSize(dimension_def_t& dimension_definition) {
316            return (dimension_definition.split_type == split_type_normal)
317            ? int(128.0 / dimension_definition.zones) : 0;
318        }
319    
320    
321    
322    // *************** leverage_ctrl_t ***************
323    // *
324    
325        void leverage_ctrl_t::serialize(Serialization::Archive* archive) {
326            SRLZ(type);
327            SRLZ(controller_number);
328        }
329    
330    
331    
332    // *************** crossfade_t ***************
333    // *
334    
335        void crossfade_t::serialize(Serialization::Archive* archive) {
336            SRLZ(in_start);
337            SRLZ(in_end);
338            SRLZ(out_start);
339            SRLZ(out_end);
340        }
341    
342    
343    
344    // *************** eg_opt_t ***************
345    // *
346    
347        eg_opt_t::eg_opt_t() {
348            AttackCancel     = true;
349            AttackHoldCancel = true;
350            Decay1Cancel     = true;
351            Decay2Cancel     = true;
352            ReleaseCancel    = true;
353        }
354    
355        void eg_opt_t::serialize(Serialization::Archive* archive) {
356            SRLZ(AttackCancel);
357            SRLZ(AttackHoldCancel);
358            SRLZ(Decay1Cancel);
359            SRLZ(Decay2Cancel);
360            SRLZ(ReleaseCancel);
361        }
362    
363    
364    
365  // *************** Sample ***************  // *************** Sample ***************
366  // *  // *
367    
368      unsigned int Sample::Instances = 0;      size_t       Sample::Instances = 0;
369      buffer_t     Sample::InternalDecompressionBuffer;      buffer_t     Sample::InternalDecompressionBuffer;
370    
371      Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {      /** @brief Constructor.
372         *
373         * Load an existing sample or create a new one. A 'wave' list chunk must
374         * be given to this constructor. In case the given 'wave' list chunk
375         * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
376         * format and sample data will be loaded from there, otherwise default
377         * values will be used and those chunks will be created when
378         * File::Save() will be called later on.
379         *
380         * @param pFile          - pointer to gig::File where this sample is
381         *                         located (or will be located)
382         * @param waveList       - pointer to 'wave' list chunk which is (or
383         *                         will be) associated with this sample
384         * @param WavePoolOffset - offset of this sample data from wave pool
385         *                         ('wvpl') list chunk
386         * @param fileNo         - number of an extension file where this sample
387         *                         is located, 0 otherwise
388         * @param index          - wave pool index of sample (may be -1 on new sample)
389         */
390        Sample::Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo, int index)
391            : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset)
392        {
393            static const DLS::Info::string_length_t fixedStringLengths[] = {
394                { CHUNK_ID_INAM, 64 },
395                { 0, 0 }
396            };
397            pInfo->SetFixedStringLengths(fixedStringLengths);
398          Instances++;          Instances++;
399          FileNo = fileNo;          FileNo = fileNo;
400    
401          RIFF::Chunk* _3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);          __resetCRC(crc);
402          if (!_3gix) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");          // if this is not a new sample, try to get the sample's already existing
403          SampleGroup = _3gix->ReadInt16();          // CRC32 checksum from disk, this checksum will reflect the sample's CRC32
404            // checksum of the time when the sample was consciously modified by the
405          RIFF::Chunk* smpl = waveList->GetSubChunk(CHUNK_ID_SMPL);          // user for the last time (by calling Sample::Write() that is).
406          if (!smpl) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");          if (index >= 0) { // not a new file ...
407          Manufacturer      = smpl->ReadInt32();              try {
408          Product           = smpl->ReadInt32();                  uint32_t crc = pFile->GetSampleChecksumByIndex(index);
409          SamplePeriod      = smpl->ReadInt32();                  this->crc = crc;
410          MIDIUnityNote     = smpl->ReadInt32();              } catch (...) {}
411          FineTune          = smpl->ReadInt32();          }
412          smpl->Read(&SMPTEFormat, 1, 4);  
413          SMPTEOffset       = smpl->ReadInt32();          pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
414          Loops             = smpl->ReadInt32();          if (pCk3gix) {
415          smpl->ReadInt32(); // manufByt              uint16_t iSampleGroup = pCk3gix->ReadInt16();
416          LoopID            = smpl->ReadInt32();              pGroup = pFile->GetGroup(iSampleGroup);
417          smpl->Read(&LoopType, 1, 4);          } else { // '3gix' chunk missing
418          LoopStart         = smpl->ReadInt32();              // by default assigned to that mandatory "Default Group"
419          LoopEnd           = smpl->ReadInt32();              pGroup = pFile->GetGroup(0);
420          LoopFraction      = smpl->ReadInt32();          }
421          LoopPlayCount     = smpl->ReadInt32();  
422            pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
423            if (pCkSmpl) {
424                Manufacturer  = pCkSmpl->ReadInt32();
425                Product       = pCkSmpl->ReadInt32();
426                SamplePeriod  = pCkSmpl->ReadInt32();
427                MIDIUnityNote = pCkSmpl->ReadInt32();
428                FineTune      = pCkSmpl->ReadInt32();
429                pCkSmpl->Read(&SMPTEFormat, 1, 4);
430                SMPTEOffset   = pCkSmpl->ReadInt32();
431                Loops         = pCkSmpl->ReadInt32();
432                pCkSmpl->ReadInt32(); // manufByt
433                LoopID        = pCkSmpl->ReadInt32();
434                pCkSmpl->Read(&LoopType, 1, 4);
435                LoopStart     = pCkSmpl->ReadInt32();
436                LoopEnd       = pCkSmpl->ReadInt32();
437                LoopFraction  = pCkSmpl->ReadInt32();
438                LoopPlayCount = pCkSmpl->ReadInt32();
439            } else { // 'smpl' chunk missing
440                // use default values
441                Manufacturer  = 0;
442                Product       = 0;
443                SamplePeriod  = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
444                MIDIUnityNote = 60;
445                FineTune      = 0;
446                SMPTEFormat   = smpte_format_no_offset;
447                SMPTEOffset   = 0;
448                Loops         = 0;
449                LoopID        = 0;
450                LoopType      = loop_type_normal;
451                LoopStart     = 0;
452                LoopEnd       = 0;
453                LoopFraction  = 0;
454                LoopPlayCount = 0;
455            }
456    
457          FrameTable                 = NULL;          FrameTable                 = NULL;
458          SamplePos                  = 0;          SamplePos                  = 0;
# Line 283  namespace { Line 468  namespace {
468          TruncatedBits     = 0;          TruncatedBits     = 0;
469          if (Compressed) {          if (Compressed) {
470              uint32_t version = ewav->ReadInt32();              uint32_t version = ewav->ReadInt32();
471              if (version == 3 && BitDepth == 24) {              if (version > 2 && BitDepth == 24) {
472                  Dithered = ewav->ReadInt32();                  Dithered = ewav->ReadInt32();
473                  ewav->SetPos(Channels == 2 ? 84 : 64);                  ewav->SetPos(Channels == 2 ? 84 : 64);
474                  TruncatedBits = ewav->ReadInt32();                  TruncatedBits = ewav->ReadInt32();
# Line 298  namespace { Line 483  namespace {
483          }          }
484          FrameOffset = 0; // just for streaming compressed samples          FrameOffset = 0; // just for streaming compressed samples
485    
486          LoopSize = LoopEnd - LoopStart;          LoopSize = LoopEnd - LoopStart + 1;
487        }
488    
489        /**
490         * Make a (semi) deep copy of the Sample object given by @a orig (without
491         * the actual waveform data) and assign it to this object.
492         *
493         * Discussion: copying .gig samples is a bit tricky. It requires three
494         * steps:
495         * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
496         *    its new sample waveform data size.
497         * 2. Saving the file (done by File::Save()) so that it gains correct size
498         *    and layout for writing the actual wave form data directly to disc
499         *    in next step.
500         * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
501         *
502         * @param orig - original Sample object to be copied from
503         */
504        void Sample::CopyAssignMeta(const Sample* orig) {
505            // handle base classes
506            DLS::Sample::CopyAssignCore(orig);
507            
508            // handle actual own attributes of this class
509            Manufacturer = orig->Manufacturer;
510            Product = orig->Product;
511            SamplePeriod = orig->SamplePeriod;
512            MIDIUnityNote = orig->MIDIUnityNote;
513            FineTune = orig->FineTune;
514            SMPTEFormat = orig->SMPTEFormat;
515            SMPTEOffset = orig->SMPTEOffset;
516            Loops = orig->Loops;
517            LoopID = orig->LoopID;
518            LoopType = orig->LoopType;
519            LoopStart = orig->LoopStart;
520            LoopEnd = orig->LoopEnd;
521            LoopSize = orig->LoopSize;
522            LoopFraction = orig->LoopFraction;
523            LoopPlayCount = orig->LoopPlayCount;
524            
525            // schedule resizing this sample to the given sample's size
526            Resize(orig->GetSize());
527        }
528    
529        /**
530         * Should be called after CopyAssignMeta() and File::Save() sequence.
531         * Read more about it in the discussion of CopyAssignMeta(). This method
532         * copies the actual waveform data by disk streaming.
533         *
534         * @e CAUTION: this method is currently not thread safe! During this
535         * operation the sample must not be used for other purposes by other
536         * threads!
537         *
538         * @param orig - original Sample object to be copied from
539         */
540        void Sample::CopyAssignWave(const Sample* orig) {
541            const int iReadAtOnce = 32*1024;
542            char* buf = new char[iReadAtOnce * orig->FrameSize];
543            Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
544            file_offset_t restorePos = pOrig->GetPos();
545            pOrig->SetPos(0);
546            SetPos(0);
547            for (file_offset_t n = pOrig->Read(buf, iReadAtOnce); n;
548                               n = pOrig->Read(buf, iReadAtOnce))
549            {
550                Write(buf, n);
551            }
552            pOrig->SetPos(restorePos);
553            delete [] buf;
554        }
555    
556        /**
557         * Apply sample and its settings to the respective RIFF chunks. You have
558         * to call File::Save() to make changes persistent.
559         *
560         * Usually there is absolutely no need to call this method explicitly.
561         * It will be called automatically when File::Save() was called.
562         *
563         * @param pProgress - callback function for progress notification
564         * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
565         *                        was provided yet
566         * @throws gig::Exception if there is any invalid sample setting
567         */
568        void Sample::UpdateChunks(progress_t* pProgress) {
569            // first update base class's chunks
570            DLS::Sample::UpdateChunks(pProgress);
571    
572            // make sure 'smpl' chunk exists
573            pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
574            if (!pCkSmpl) {
575                pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
576                memset(pCkSmpl->LoadChunkData(), 0, 60);
577            }
578            // update 'smpl' chunk
579            uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
580            SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
581            store32(&pData[0], Manufacturer);
582            store32(&pData[4], Product);
583            store32(&pData[8], SamplePeriod);
584            store32(&pData[12], MIDIUnityNote);
585            store32(&pData[16], FineTune);
586            store32(&pData[20], SMPTEFormat);
587            store32(&pData[24], SMPTEOffset);
588            store32(&pData[28], Loops);
589    
590            // we skip 'manufByt' for now (4 bytes)
591    
592            store32(&pData[36], LoopID);
593            store32(&pData[40], LoopType);
594            store32(&pData[44], LoopStart);
595            store32(&pData[48], LoopEnd);
596            store32(&pData[52], LoopFraction);
597            store32(&pData[56], LoopPlayCount);
598    
599            // make sure '3gix' chunk exists
600            pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
601            if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
602            // determine appropriate sample group index (to be stored in chunk)
603            uint16_t iSampleGroup = 0; // 0 refers to default sample group
604            File* pFile = static_cast<File*>(pParent);
605            if (pFile->pGroups) {
606                std::list<Group*>::iterator iter = pFile->pGroups->begin();
607                std::list<Group*>::iterator end  = pFile->pGroups->end();
608                for (int i = 0; iter != end; i++, iter++) {
609                    if (*iter == pGroup) {
610                        iSampleGroup = i;
611                        break; // found
612                    }
613                }
614            }
615            // update '3gix' chunk
616            pData = (uint8_t*) pCk3gix->LoadChunkData();
617            store16(&pData[0], iSampleGroup);
618    
619            // if the library user toggled the "Compressed" attribute from true to
620            // false, then the EWAV chunk associated with compressed samples needs
621            // to be deleted
622            RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
623            if (ewav && !Compressed) {
624                pWaveList->DeleteSubChunk(ewav);
625            }
626      }      }
627    
628      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
629      void Sample::ScanCompressedSample() {      void Sample::ScanCompressedSample() {
630          //TODO: we have to add some more scans here (e.g. determine compression rate)          //TODO: we have to add some more scans here (e.g. determine compression rate)
631          this->SamplesTotal = 0;          this->SamplesTotal = 0;
632          std::list<unsigned long> frameOffsets;          std::list<file_offset_t> frameOffsets;
633    
634          SamplesPerFrame = BitDepth == 24 ? 256 : 2048;          SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
635          WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag          WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
# Line 321  namespace { Line 645  namespace {
645                  const int mode_l = pCkData->ReadUint8();                  const int mode_l = pCkData->ReadUint8();
646                  const int mode_r = pCkData->ReadUint8();                  const int mode_r = pCkData->ReadUint8();
647                  if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");                  if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
648                  const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];                  const file_offset_t frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
649    
650                  if (pCkData->RemainingBytes() <= frameSize) {                  if (pCkData->RemainingBytes() <= frameSize) {
651                      SamplesInLastFrame =                      SamplesInLastFrame =
# Line 340  namespace { Line 664  namespace {
664    
665                  const int mode = pCkData->ReadUint8();                  const int mode = pCkData->ReadUint8();
666                  if (mode > 5) throw gig::Exception("Unknown compression mode");                  if (mode > 5) throw gig::Exception("Unknown compression mode");
667                  const unsigned long frameSize = bytesPerFrame[mode];                  const file_offset_t frameSize = bytesPerFrame[mode];
668    
669                  if (pCkData->RemainingBytes() <= frameSize) {                  if (pCkData->RemainingBytes() <= frameSize) {
670                      SamplesInLastFrame =                      SamplesInLastFrame =
# Line 356  namespace { Line 680  namespace {
680    
681          // Build the frames table (which is used for fast resolving of a frame's chunk offset)          // Build the frames table (which is used for fast resolving of a frame's chunk offset)
682          if (FrameTable) delete[] FrameTable;          if (FrameTable) delete[] FrameTable;
683          FrameTable = new unsigned long[frameOffsets.size()];          FrameTable = new file_offset_t[frameOffsets.size()];
684          std::list<unsigned long>::iterator end  = frameOffsets.end();          std::list<file_offset_t>::iterator end  = frameOffsets.end();
685          std::list<unsigned long>::iterator iter = frameOffsets.begin();          std::list<file_offset_t>::iterator iter = frameOffsets.begin();
686          for (int i = 0; iter != end; i++, iter++) {          for (int i = 0; iter != end; i++, iter++) {
687              FrameTable[i] = *iter;              FrameTable[i] = *iter;
688          }          }
# Line 399  namespace { Line 723  namespace {
723       *                      the cached sample data in bytes       *                      the cached sample data in bytes
724       * @see                 ReleaseSampleData(), Read(), SetPos()       * @see                 ReleaseSampleData(), Read(), SetPos()
725       */       */
726      buffer_t Sample::LoadSampleData(unsigned long SampleCount) {      buffer_t Sample::LoadSampleData(file_offset_t SampleCount) {
727          return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples          return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
728      }      }
729    
# Line 458  namespace { Line 782  namespace {
782       *                           size of the cached sample data in bytes       *                           size of the cached sample data in bytes
783       * @see                      ReleaseSampleData(), Read(), SetPos()       * @see                      ReleaseSampleData(), Read(), SetPos()
784       */       */
785      buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {      buffer_t Sample::LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount) {
786          if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;          if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
787          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
788          unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;          file_offset_t allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
789            SetPos(0); // reset read position to begin of sample
790          RAMCache.pStart            = new int8_t[allocationsize];          RAMCache.pStart            = new int8_t[allocationsize];
791          RAMCache.Size              = Read(RAMCache.pStart, SampleCount) * this->FrameSize;          RAMCache.Size              = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
792          RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;          RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
# Line 499  namespace { Line 824  namespace {
824          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
825          RAMCache.pStart = NULL;          RAMCache.pStart = NULL;
826          RAMCache.Size   = 0;          RAMCache.Size   = 0;
827            RAMCache.NullExtensionSize = 0;
828        }
829    
830        /** @brief Resize sample.
831         *
832         * Resizes the sample's wave form data, that is the actual size of
833         * sample wave data possible to be written for this sample. This call
834         * will return immediately and just schedule the resize operation. You
835         * should call File::Save() to actually perform the resize operation(s)
836         * "physically" to the file. As this can take a while on large files, it
837         * is recommended to call Resize() first on all samples which have to be
838         * resized and finally to call File::Save() to perform all those resize
839         * operations in one rush.
840         *
841         * The actual size (in bytes) is dependant to the current FrameSize
842         * value. You may want to set FrameSize before calling Resize().
843         *
844         * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
845         * enlarged samples before calling File::Save() as this might exceed the
846         * current sample's boundary!
847         *
848         * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
849         * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
850         * other formats will fail!
851         *
852         * @param NewSize - new sample wave data size in sample points (must be
853         *                  greater than zero)
854         * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
855         * @throws DLS::Exception if \a NewSize is less than 1 or unrealistic large
856         * @throws gig::Exception if existing sample is compressed
857         * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
858         *      DLS::Sample::FormatTag, File::Save()
859         */
860        void Sample::Resize(file_offset_t NewSize) {
861            if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
862            DLS::Sample::Resize(NewSize);
863      }      }
864    
865      /**      /**
# Line 522  namespace { Line 883  namespace {
883       * @returns            the new sample position       * @returns            the new sample position
884       * @see                Read()       * @see                Read()
885       */       */
886      unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {      file_offset_t Sample::SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence) {
887          if (Compressed) {          if (Compressed) {
888              switch (Whence) {              switch (Whence) {
889                  case RIFF::stream_curpos:                  case RIFF::stream_curpos:
# Line 540  namespace { Line 901  namespace {
901              }              }
902              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
903    
904              unsigned long frame = this->SamplePos / 2048; // to which frame to jump              file_offset_t frame = this->SamplePos / 2048; // to which frame to jump
905              this->FrameOffset   = this->SamplePos % 2048; // offset (in sample points) within that frame              this->FrameOffset   = this->SamplePos % 2048; // offset (in sample points) within that frame
906              pCkData->SetPos(FrameTable[frame]);           // set chunk pointer to the start of sought frame              pCkData->SetPos(FrameTable[frame]);           // set chunk pointer to the start of sought frame
907              return this->SamplePos;              return this->SamplePos;
908          }          }
909          else { // not compressed          else { // not compressed
910              unsigned long orderedBytes = SampleCount * this->FrameSize;              file_offset_t orderedBytes = SampleCount * this->FrameSize;
911              unsigned long result = pCkData->SetPos(orderedBytes, Whence);              file_offset_t result = pCkData->SetPos(orderedBytes, Whence);
912              return (result == orderedBytes) ? SampleCount              return (result == orderedBytes) ? SampleCount
913                                              : result / this->FrameSize;                                              : result / this->FrameSize;
914          }          }
# Line 556  namespace { Line 917  namespace {
917      /**      /**
918       * Returns the current position in the sample (in sample points).       * Returns the current position in the sample (in sample points).
919       */       */
920      unsigned long Sample::GetPos() {      file_offset_t Sample::GetPos() const {
921          if (Compressed) return SamplePos;          if (Compressed) return SamplePos;
922          else            return pCkData->GetPos() / FrameSize;          else            return pCkData->GetPos() / FrameSize;
923      }      }
# Line 590  namespace { Line 951  namespace {
951       * @param SampleCount      number of sample points to read       * @param SampleCount      number of sample points to read
952       * @param pPlaybackState   will be used to store and reload the playback       * @param pPlaybackState   will be used to store and reload the playback
953       *                         state for the next ReadAndLoop() call       *                         state for the next ReadAndLoop() call
954         * @param pDimRgn          dimension region with looping information
955       * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression       * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
956       * @returns                number of successfully read sample points       * @returns                number of successfully read sample points
957       * @see                    CreateDecompressionBuffer()       * @see                    CreateDecompressionBuffer()
958       */       */
959      unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState, buffer_t* pExternalDecompressionBuffer) {      file_offset_t Sample::ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState,
960          unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;                                        DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
961            file_offset_t samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
962          uint8_t* pDst = (uint8_t*) pBuffer;          uint8_t* pDst = (uint8_t*) pBuffer;
963    
964          SetPos(pPlaybackState->position); // recover position from the last time          SetPos(pPlaybackState->position); // recover position from the last time
965    
966          if (this->Loops && GetPos() <= this->LoopEnd) { // honor looping if there are loop points defined          if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
967    
968              switch (this->LoopType) {              const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
969                const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
970    
971                  case loop_type_bidirectional: { //TODO: not tested yet!              if (GetPos() <= loopEnd) {
972                      do {                  switch (loop.LoopType) {
                         // if not endless loop check if max. number of loop cycles have been passed  
                         if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;  
   
                         if (!pPlaybackState->reverse) { // forward playback  
                             do {  
                                 samplestoloopend  = this->LoopEnd - GetPos();  
                                 readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);  
                                 samplestoread    -= readsamples;  
                                 totalreadsamples += readsamples;  
                                 if (readsamples == samplestoloopend) {  
                                     pPlaybackState->reverse = true;  
                                     break;  
                                 }  
                             } while (samplestoread && readsamples);  
                         }  
                         else { // backward playback  
973    
974                              // as we can only read forward from disk, we have to                      case loop_type_bidirectional: { //TODO: not tested yet!
975                              // determine the end position within the loop first,                          do {
976                              // read forward from that 'end' and finally after                              // if not endless loop check if max. number of loop cycles have been passed
977                              // reading, swap all sample frames so it reflects                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
978                              // backward playback  
979                                if (!pPlaybackState->reverse) { // forward playback
980                              unsigned long swapareastart       = totalreadsamples;                                  do {
981                              unsigned long loopoffset          = GetPos() - this->LoopStart;                                      samplestoloopend  = loopEnd - GetPos();
982                              unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);                                      readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
983                              unsigned long reverseplaybackend  = GetPos() - samplestoreadinloop;                                      samplestoread    -= readsamples;
984                                        totalreadsamples += readsamples;
985                              SetPos(reverseplaybackend);                                      if (readsamples == samplestoloopend) {
986                                            pPlaybackState->reverse = true;
987                              // read samples for backward playback                                          break;
988                              do {                                      }
989                                  readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);                                  } while (samplestoread && readsamples);
990                                  samplestoreadinloop -= readsamples;                              }
991                                  samplestoread       -= readsamples;                              else { // backward playback
                                 totalreadsamples    += readsamples;  
                             } while (samplestoreadinloop && readsamples);  
992    
993                              SetPos(reverseplaybackend); // pretend we really read backwards                                  // as we can only read forward from disk, we have to
994                                    // determine the end position within the loop first,
995                                    // read forward from that 'end' and finally after
996                                    // reading, swap all sample frames so it reflects
997                                    // backward playback
998    
999                                    file_offset_t swapareastart       = totalreadsamples;
1000                                    file_offset_t loopoffset          = GetPos() - loop.LoopStart;
1001                                    file_offset_t samplestoreadinloop = Min(samplestoread, loopoffset);
1002                                    file_offset_t reverseplaybackend  = GetPos() - samplestoreadinloop;
1003    
1004                                    SetPos(reverseplaybackend);
1005    
1006                                    // read samples for backward playback
1007                                    do {
1008                                        readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
1009                                        samplestoreadinloop -= readsamples;
1010                                        samplestoread       -= readsamples;
1011                                        totalreadsamples    += readsamples;
1012                                    } while (samplestoreadinloop && readsamples);
1013    
1014                                    SetPos(reverseplaybackend); // pretend we really read backwards
1015    
1016                                    if (reverseplaybackend == loop.LoopStart) {
1017                                        pPlaybackState->loop_cycles_left--;
1018                                        pPlaybackState->reverse = false;
1019                                    }
1020    
1021                              if (reverseplaybackend == this->LoopStart) {                                  // reverse the sample frames for backward playback
1022                                  pPlaybackState->loop_cycles_left--;                                  if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
1023                                  pPlaybackState->reverse = false;                                      SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1024                              }                              }
1025                            } while (samplestoread && readsamples);
1026                            break;
1027                        }
1028    
1029                              // reverse the sample frames for backward playback                      case loop_type_backward: { // TODO: not tested yet!
1030                              SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);                          // forward playback (not entered the loop yet)
1031                          }                          if (!pPlaybackState->reverse) do {
1032                      } while (samplestoread && readsamples);                              samplestoloopend  = loopEnd - GetPos();
1033                      break;                              readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1034                  }                              samplestoread    -= readsamples;
1035                                totalreadsamples += readsamples;
1036                  case loop_type_backward: { // TODO: not tested yet!                              if (readsamples == samplestoloopend) {
1037                      // forward playback (not entered the loop yet)                                  pPlaybackState->reverse = true;
1038                      if (!pPlaybackState->reverse) do {                                  break;
1039                          samplestoloopend  = this->LoopEnd - GetPos();                              }
1040                          readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);                          } while (samplestoread && readsamples);
                         samplestoread    -= readsamples;  
                         totalreadsamples += readsamples;  
                         if (readsamples == samplestoloopend) {  
                             pPlaybackState->reverse = true;  
                             break;  
                         }  
                     } while (samplestoread && readsamples);  
1041    
1042                      if (!samplestoread) break;                          if (!samplestoread) break;
1043    
1044                      // as we can only read forward from disk, we have to                          // as we can only read forward from disk, we have to
1045                      // determine the end position within the loop first,                          // determine the end position within the loop first,
1046                      // read forward from that 'end' and finally after                          // read forward from that 'end' and finally after
1047                      // reading, swap all sample frames so it reflects                          // reading, swap all sample frames so it reflects
1048                      // backward playback                          // backward playback
1049    
1050                      unsigned long swapareastart       = totalreadsamples;                          file_offset_t swapareastart       = totalreadsamples;
1051                      unsigned long loopoffset          = GetPos() - this->LoopStart;                          file_offset_t loopoffset          = GetPos() - loop.LoopStart;
1052                      unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * LoopSize - loopoffset)                          file_offset_t samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1053                                                                                : samplestoread;                                                                                    : samplestoread;
1054                      unsigned long reverseplaybackend  = this->LoopStart + Abs((loopoffset - samplestoreadinloop) % this->LoopSize);                          file_offset_t reverseplaybackend  = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1055    
1056                      SetPos(reverseplaybackend);                          SetPos(reverseplaybackend);
1057    
1058                      // read samples for backward playback                          // read samples for backward playback
1059                      do {                          do {
1060                          // if not endless loop check if max. number of loop cycles have been passed                              // if not endless loop check if max. number of loop cycles have been passed
1061                          if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1062                          samplestoloopend     = this->LoopEnd - GetPos();                              samplestoloopend     = loopEnd - GetPos();
1063                          readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);                              readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1064                          samplestoreadinloop -= readsamples;                              samplestoreadinloop -= readsamples;
1065                          samplestoread       -= readsamples;                              samplestoread       -= readsamples;
1066                          totalreadsamples    += readsamples;                              totalreadsamples    += readsamples;
1067                          if (readsamples == samplestoloopend) {                              if (readsamples == samplestoloopend) {
1068                              pPlaybackState->loop_cycles_left--;                                  pPlaybackState->loop_cycles_left--;
1069                              SetPos(this->LoopStart);                                  SetPos(loop.LoopStart);
1070                          }                              }
1071                      } while (samplestoreadinloop && readsamples);                          } while (samplestoreadinloop && readsamples);
1072    
1073                      SetPos(reverseplaybackend); // pretend we really read backwards                          SetPos(reverseplaybackend); // pretend we really read backwards
1074    
1075                      // reverse the sample frames for backward playback                          // reverse the sample frames for backward playback
1076                      SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);                          SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1077                      break;                          break;
1078                  }                      }
1079    
1080                  default: case loop_type_normal: {                      default: case loop_type_normal: {
1081                      do {                          do {
1082                          // if not endless loop check if max. number of loop cycles have been passed                              // if not endless loop check if max. number of loop cycles have been passed
1083                          if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1084                          samplestoloopend  = this->LoopEnd - GetPos();                              samplestoloopend  = loopEnd - GetPos();
1085                          readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);                              readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1086                          samplestoread    -= readsamples;                              samplestoread    -= readsamples;
1087                          totalreadsamples += readsamples;                              totalreadsamples += readsamples;
1088                          if (readsamples == samplestoloopend) {                              if (readsamples == samplestoloopend) {
1089                              pPlaybackState->loop_cycles_left--;                                  pPlaybackState->loop_cycles_left--;
1090                              SetPos(this->LoopStart);                                  SetPos(loop.LoopStart);
1091                          }                              }
1092                      } while (samplestoread && readsamples);                          } while (samplestoread && readsamples);
1093                      break;                          break;
1094                        }
1095                  }                  }
1096              }              }
1097          }          }
# Line 752  namespace { Line 1121  namespace {
1121       * have to use an external decompression buffer for <b>EACH</b>       * have to use an external decompression buffer for <b>EACH</b>
1122       * streaming thread to avoid race conditions and crashes!       * streaming thread to avoid race conditions and crashes!
1123       *       *
1124         * For 16 bit samples, the data in the buffer will be int16_t
1125         * (using native endianness). For 24 bit, the buffer will
1126         * contain three bytes per sample, little-endian.
1127         *
1128       * @param pBuffer      destination buffer       * @param pBuffer      destination buffer
1129       * @param SampleCount  number of sample points to read       * @param SampleCount  number of sample points to read
1130       * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression       * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
1131       * @returns            number of successfully read sample points       * @returns            number of successfully read sample points
1132       * @see                SetPos(), CreateDecompressionBuffer()       * @see                SetPos(), CreateDecompressionBuffer()
1133       */       */
1134      unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {      file_offset_t Sample::Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer) {
1135          if (SampleCount == 0) return 0;          if (SampleCount == 0) return 0;
1136          if (!Compressed) {          if (!Compressed) {
1137              if (BitDepth == 24) {              if (BitDepth == 24) {
1138                  // 24 bit sample. For now just truncate to 16 bit.                  return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
                 unsigned char* pSrc = (unsigned char*) ((pExternalDecompressionBuffer) ? pExternalDecompressionBuffer->pStart : this->InternalDecompressionBuffer.pStart);  
                 int16_t* pDst = static_cast<int16_t*>(pBuffer);  
                 if (Channels == 2) { // Stereo  
                     unsigned long readBytes = pCkData->Read(pSrc, SampleCount * 6, 1);  
                     pSrc++;  
                     for (unsigned long i = readBytes ; i > 0 ; i -= 3) {  
                         *pDst++ = get16(pSrc);  
                         pSrc += 3;  
                     }  
                     return (pDst - static_cast<int16_t*>(pBuffer)) >> 1;  
                 }  
                 else { // Mono  
                     unsigned long readBytes = pCkData->Read(pSrc, SampleCount * 3, 1);  
                     pSrc++;  
                     for (unsigned long i = readBytes ; i > 0 ; i -= 3) {  
                         *pDst++ = get16(pSrc);  
                         pSrc += 3;  
                     }  
                     return pDst - static_cast<int16_t*>(pBuffer);  
                 }  
1139              }              }
1140              else { // 16 bit              else { // 16 bit
1141                  // (pCkData->Read does endian correction)                  // (pCkData->Read does endian correction)
# Line 793  namespace { Line 1146  namespace {
1146          else {          else {
1147              if (this->SamplePos >= this->SamplesTotal) return 0;              if (this->SamplePos >= this->SamplesTotal) return 0;
1148              //TODO: efficiency: maybe we should test for an average compression rate              //TODO: efficiency: maybe we should test for an average compression rate
1149              unsigned long assumedsize      = GuessSize(SampleCount),              file_offset_t assumedsize      = GuessSize(SampleCount),
1150                            remainingbytes   = 0,           // remaining bytes in the local buffer                            remainingbytes   = 0,           // remaining bytes in the local buffer
1151                            remainingsamples = SampleCount,                            remainingsamples = SampleCount,
1152                            copysamples, skipsamples,                            copysamples, skipsamples,
# Line 812  namespace { Line 1165  namespace {
1165    
1166              unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;              unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1167              int16_t* pDst = static_cast<int16_t*>(pBuffer);              int16_t* pDst = static_cast<int16_t*>(pBuffer);
1168                uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1169              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1170    
1171              while (remainingsamples && remainingbytes) {              while (remainingsamples && remainingbytes) {
1172                  unsigned long framesamples = SamplesPerFrame;                  file_offset_t framesamples = SamplesPerFrame;
1173                  unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;                  file_offset_t framebytes, rightChannelOffset = 0, nextFrameOffset;
1174    
1175                  int mode_l = *pSrc++, mode_r = 0;                  int mode_l = *pSrc++, mode_r = 0;
1176    
# Line 893  namespace { Line 1247  namespace {
1247                              const unsigned char* const param_r = pSrc;                              const unsigned char* const param_r = pSrc;
1248                              if (mode_r != 2) pSrc += 12;                              if (mode_r != 2) pSrc += 12;
1249    
1250                              Decompress24(mode_l, param_l, 2, pSrc, pDst,                              Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1251                                           skipsamples, copysamples, TruncatedBits);                                           skipsamples, copysamples, TruncatedBits);
1252                              Decompress24(mode_r, param_r, 2, pSrc + rightChannelOffset, pDst + 1,                              Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1253                                           skipsamples, copysamples, TruncatedBits);                                           skipsamples, copysamples, TruncatedBits);
1254                              pDst += copysamples << 1;                              pDst24 += copysamples * 6;
1255                          }                          }
1256                          else { // Mono                          else { // Mono
1257                              Decompress24(mode_l, param_l, 1, pSrc, pDst,                              Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1258                                           skipsamples, copysamples, TruncatedBits);                                           skipsamples, copysamples, TruncatedBits);
1259                              pDst += copysamples;                              pDst24 += copysamples * 3;
1260                          }                          }
1261                      }                      }
1262                      else { // 16 bit                      else { // 16 bit
# Line 944  namespace { Line 1298  namespace {
1298          }          }
1299      }      }
1300    
1301        /** @brief Write sample wave data.
1302         *
1303         * Writes \a SampleCount number of sample points from the buffer pointed
1304         * by \a pBuffer and increments the position within the sample. Use this
1305         * method to directly write the sample data to disk, i.e. if you don't
1306         * want or cannot load the whole sample data into RAM.
1307         *
1308         * You have to Resize() the sample to the desired size and call
1309         * File::Save() <b>before</b> using Write().
1310         *
1311         * Note: there is currently no support for writing compressed samples.
1312         *
1313         * For 16 bit samples, the data in the source buffer should be
1314         * int16_t (using native endianness). For 24 bit, the buffer
1315         * should contain three bytes per sample, little-endian.
1316         *
1317         * @param pBuffer     - source buffer
1318         * @param SampleCount - number of sample points to write
1319         * @throws DLS::Exception if current sample size is too small
1320         * @throws gig::Exception if sample is compressed
1321         * @see DLS::LoadSampleData()
1322         */
1323        file_offset_t Sample::Write(void* pBuffer, file_offset_t SampleCount) {
1324            if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1325    
1326            // if this is the first write in this sample, reset the
1327            // checksum calculator
1328            if (pCkData->GetPos() == 0) {
1329                __resetCRC(crc);
1330            }
1331            if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1332            file_offset_t res;
1333            if (BitDepth == 24) {
1334                res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1335            } else { // 16 bit
1336                res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1337                                    : pCkData->Write(pBuffer, SampleCount, 2);
1338            }
1339            __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1340    
1341            // if this is the last write, update the checksum chunk in the
1342            // file
1343            if (pCkData->GetPos() == pCkData->GetSize()) {
1344                __finalizeCRC(crc);
1345                File* pFile = static_cast<File*>(GetParent());
1346                pFile->SetSampleChecksum(this, crc);
1347            }
1348            return res;
1349        }
1350    
1351      /**      /**
1352       * Allocates a decompression buffer for streaming (compressed) samples       * Allocates a decompression buffer for streaming (compressed) samples
1353       * with Sample::Read(). If you are using more than one streaming thread       * with Sample::Read(). If you are using more than one streaming thread
# Line 960  namespace { Line 1364  namespace {
1364       * @returns allocated decompression buffer       * @returns allocated decompression buffer
1365       * @see DestroyDecompressionBuffer()       * @see DestroyDecompressionBuffer()
1366       */       */
1367      buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {      buffer_t Sample::CreateDecompressionBuffer(file_offset_t MaxReadSize) {
1368          buffer_t result;          buffer_t result;
1369          const double worstCaseHeaderOverhead =          const double worstCaseHeaderOverhead =
1370                  (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;                  (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1371          result.Size              = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);          result.Size              = (file_offset_t) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1372          result.pStart            = new int8_t[result.Size];          result.pStart            = new int8_t[result.Size];
1373          result.NullExtensionSize = 0;          result.NullExtensionSize = 0;
1374          return result;          return result;
# Line 986  namespace { Line 1390  namespace {
1390          }          }
1391      }      }
1392    
1393        /**
1394         * Returns pointer to the Group this Sample belongs to. In the .gig
1395         * format a sample always belongs to one group. If it wasn't explicitly
1396         * assigned to a certain group, it will be automatically assigned to a
1397         * default group.
1398         *
1399         * @returns Sample's Group (never NULL)
1400         */
1401        Group* Sample::GetGroup() const {
1402            return pGroup;
1403        }
1404    
1405        /**
1406         * Returns the CRC-32 checksum of the sample's raw wave form data at the
1407         * time when this sample's wave form data was modified for the last time
1408         * by calling Write(). This checksum only covers the raw wave form data,
1409         * not any meta informations like i.e. bit depth or loop points. Since
1410         * this method just returns the checksum stored for this sample i.e. when
1411         * the gig file was loaded, this method returns immediately. So it does no
1412         * recalcuation of the checksum with the currently available sample wave
1413         * form data.
1414         *
1415         * @see VerifyWaveData()
1416         */
1417        uint32_t Sample::GetWaveDataCRC32Checksum() {
1418            return crc;
1419        }
1420    
1421        /**
1422         * Checks the integrity of this sample's raw audio wave data. Whenever a
1423         * Sample's raw wave data is intentionally modified (i.e. by calling
1424         * Write() and supplying the new raw audio wave form data) a CRC32 checksum
1425         * is calculated and stored/updated for this sample, along to the sample's
1426         * meta informations.
1427         *
1428         * Now by calling this method the current raw audio wave data is checked
1429         * against the already stored CRC32 check sum in order to check whether the
1430         * sample data had been damaged unintentionally for some reason. Since by
1431         * calling this method always the entire raw audio wave data has to be
1432         * read, verifying all samples this way may take a long time accordingly.
1433         * And that's also the reason why the sample integrity is not checked by
1434         * default whenever a gig file is loaded. So this method must be called
1435         * explicitly to fulfill this task.
1436         *
1437         * @param pActually - (optional) if provided, will be set to the actually
1438         *                    calculated checksum of the current raw wave form data,
1439         *                    you can get the expected checksum instead by calling
1440         *                    GetWaveDataCRC32Checksum()
1441         * @returns true if sample is OK or false if the sample is damaged
1442         * @throws Exception if no checksum had been stored to disk for this
1443         *         sample yet, or on I/O issues
1444         * @see GetWaveDataCRC32Checksum()
1445         */
1446        bool Sample::VerifyWaveData(uint32_t* pActually) {
1447            //File* pFile = static_cast<File*>(GetParent());
1448            uint32_t crc = CalculateWaveDataChecksum();
1449            if (pActually) *pActually = crc;
1450            return crc == this->crc;
1451        }
1452    
1453        uint32_t Sample::CalculateWaveDataChecksum() {
1454            const size_t sz = 20*1024; // 20kB buffer size
1455            std::vector<uint8_t> buffer(sz);
1456            buffer.resize(sz);
1457    
1458            const size_t n = sz / FrameSize;
1459            SetPos(0);
1460            uint32_t crc = 0;
1461            __resetCRC(crc);
1462            while (true) {
1463                file_offset_t nRead = Read(&buffer[0], n);
1464                if (nRead <= 0) break;
1465                __calculateCRC(&buffer[0], nRead * FrameSize, crc);
1466            }
1467            __finalizeCRC(crc);
1468            return crc;
1469        }
1470    
1471      Sample::~Sample() {      Sample::~Sample() {
1472          Instances--;          Instances--;
1473          if (!Instances && InternalDecompressionBuffer.Size) {          if (!Instances && InternalDecompressionBuffer.Size) {
# Line 1002  namespace { Line 1484  namespace {
1484  // *************** DimensionRegion ***************  // *************** DimensionRegion ***************
1485  // *  // *
1486    
1487      uint                               DimensionRegion::Instances       = 0;      size_t                             DimensionRegion::Instances       = 0;
1488      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1489    
1490      DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {      DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1491          Instances++;          Instances++;
1492    
1493          memcpy(&Crossfade, &SamplerOptions, 4);          pSample = NULL;
1494            pRegion = pParent;
1495    
1496            if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1497            else memset(&Crossfade, 0, 4);
1498    
1499          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1500    
1501          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1502          _3ewa->ReadInt32(); // unknown, always 0x0000008C ?          if (_3ewa) { // if '3ewa' chunk exists
1503          LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              _3ewa->ReadInt32(); // unknown, always == chunk size ?
1504          EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1505          _3ewa->ReadInt16(); // unknown              EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1506          LFO1InternalDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1507          _3ewa->ReadInt16(); // unknown              LFO1InternalDepth = _3ewa->ReadUint16();
1508          LFO3InternalDepth = _3ewa->ReadInt16();              _3ewa->ReadInt16(); // unknown
1509          _3ewa->ReadInt16(); // unknown              LFO3InternalDepth = _3ewa->ReadInt16();
1510          LFO1ControlDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1511          _3ewa->ReadInt16(); // unknown              LFO1ControlDepth = _3ewa->ReadUint16();
1512          LFO3ControlDepth = _3ewa->ReadInt16();              _3ewa->ReadInt16(); // unknown
1513          EG1Attack           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO3ControlDepth = _3ewa->ReadInt16();
1514          EG1Decay1           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG1Attack           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1515          _3ewa->ReadInt16(); // unknown              EG1Decay1           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1516          EG1Sustain          = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1517          EG1Release          = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG1Sustain          = _3ewa->ReadUint16();
1518          EG1Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));              EG1Release          = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1519          uint8_t eg1ctrloptions        = _3ewa->ReadUint8();              EG1Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1520          EG1ControllerInvert           = eg1ctrloptions & 0x01;              uint8_t eg1ctrloptions        = _3ewa->ReadUint8();
1521          EG1ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerInvert           = eg1ctrloptions & 0x01;
1522          EG1ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1523          EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1524          EG2Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));              EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1525          uint8_t eg2ctrloptions        = _3ewa->ReadUint8();              EG2Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1526          EG2ControllerInvert           = eg2ctrloptions & 0x01;              uint8_t eg2ctrloptions        = _3ewa->ReadUint8();
1527          EG2ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerInvert           = eg2ctrloptions & 0x01;
1528          EG2ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1529          EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1530          LFO1Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1531          EG2Attack        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO1Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1532          EG2Decay1        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2Attack        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1533          _3ewa->ReadInt16(); // unknown              EG2Decay1        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1534          EG2Sustain       = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1535          EG2Release       = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2Sustain       = _3ewa->ReadUint16();
1536          _3ewa->ReadInt16(); // unknown              EG2Release       = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1537          LFO2ControlDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1538          LFO2Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO2ControlDepth = _3ewa->ReadUint16();
1539          _3ewa->ReadInt16(); // unknown              LFO2Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1540          LFO2InternalDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1541          int32_t eg1decay2 = _3ewa->ReadInt32();              LFO2InternalDepth = _3ewa->ReadUint16();
1542          EG1Decay2          = (double) GIG_EXP_DECODE(eg1decay2);              int32_t eg1decay2 = _3ewa->ReadInt32();
1543          EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);              EG1Decay2          = (double) GIG_EXP_DECODE(eg1decay2);
1544          _3ewa->ReadInt16(); // unknown              EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1545          EG1PreAttack      = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1546          int32_t eg2decay2 = _3ewa->ReadInt32();              EG1PreAttack      = _3ewa->ReadUint16();
1547          EG2Decay2         = (double) GIG_EXP_DECODE(eg2decay2);              int32_t eg2decay2 = _3ewa->ReadInt32();
1548          EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);              EG2Decay2         = (double) GIG_EXP_DECODE(eg2decay2);
1549          _3ewa->ReadInt16(); // unknown              EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1550          EG2PreAttack      = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1551          uint8_t velocityresponse = _3ewa->ReadUint8();              EG2PreAttack      = _3ewa->ReadUint16();
1552          if (velocityresponse < 5) {              uint8_t velocityresponse = _3ewa->ReadUint8();
1553              VelocityResponseCurve = curve_type_nonlinear;              if (velocityresponse < 5) {
1554              VelocityResponseDepth = velocityresponse;                  VelocityResponseCurve = curve_type_nonlinear;
1555          }                  VelocityResponseDepth = velocityresponse;
1556          else if (velocityresponse < 10) {              } else if (velocityresponse < 10) {
1557              VelocityResponseCurve = curve_type_linear;                  VelocityResponseCurve = curve_type_linear;
1558              VelocityResponseDepth = velocityresponse - 5;                  VelocityResponseDepth = velocityresponse - 5;
1559          }              } else if (velocityresponse < 15) {
1560          else if (velocityresponse < 15) {                  VelocityResponseCurve = curve_type_special;
1561              VelocityResponseCurve = curve_type_special;                  VelocityResponseDepth = velocityresponse - 10;
1562              VelocityResponseDepth = velocityresponse - 10;              } else {
1563          }                  VelocityResponseCurve = curve_type_unknown;
1564          else {                  VelocityResponseDepth = 0;
1565              VelocityResponseCurve = curve_type_unknown;              }
1566              VelocityResponseDepth = 0;              uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1567          }              if (releasevelocityresponse < 5) {
1568          uint8_t releasevelocityresponse = _3ewa->ReadUint8();                  ReleaseVelocityResponseCurve = curve_type_nonlinear;
1569          if (releasevelocityresponse < 5) {                  ReleaseVelocityResponseDepth = releasevelocityresponse;
1570              ReleaseVelocityResponseCurve = curve_type_nonlinear;              } else if (releasevelocityresponse < 10) {
1571              ReleaseVelocityResponseDepth = releasevelocityresponse;                  ReleaseVelocityResponseCurve = curve_type_linear;
1572          }                  ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1573          else if (releasevelocityresponse < 10) {              } else if (releasevelocityresponse < 15) {
1574              ReleaseVelocityResponseCurve = curve_type_linear;                  ReleaseVelocityResponseCurve = curve_type_special;
1575              ReleaseVelocityResponseDepth = releasevelocityresponse - 5;                  ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1576          }              } else {
1577          else if (releasevelocityresponse < 15) {                  ReleaseVelocityResponseCurve = curve_type_unknown;
1578              ReleaseVelocityResponseCurve = curve_type_special;                  ReleaseVelocityResponseDepth = 0;
1579              ReleaseVelocityResponseDepth = releasevelocityresponse - 10;              }
1580          }              VelocityResponseCurveScaling = _3ewa->ReadUint8();
1581          else {              AttenuationControllerThreshold = _3ewa->ReadInt8();
1582              ReleaseVelocityResponseCurve = curve_type_unknown;              _3ewa->ReadInt32(); // unknown
1583              ReleaseVelocityResponseDepth = 0;              SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1584                _3ewa->ReadInt16(); // unknown
1585                uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1586                PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1587                if      (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1588                else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1589                else                                       DimensionBypass = dim_bypass_ctrl_none;
1590                uint8_t pan = _3ewa->ReadUint8();
1591                Pan         = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1592                SelfMask = _3ewa->ReadInt8() & 0x01;
1593                _3ewa->ReadInt8(); // unknown
1594                uint8_t lfo3ctrl = _3ewa->ReadUint8();
1595                LFO3Controller           = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1596                LFO3Sync                 = lfo3ctrl & 0x20; // bit 5
1597                InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1598                AttenuationController  = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1599                uint8_t lfo2ctrl       = _3ewa->ReadUint8();
1600                LFO2Controller         = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1601                LFO2FlipPhase          = lfo2ctrl & 0x80; // bit 7
1602                LFO2Sync               = lfo2ctrl & 0x20; // bit 5
1603                bool extResonanceCtrl  = lfo2ctrl & 0x40; // bit 6
1604                uint8_t lfo1ctrl       = _3ewa->ReadUint8();
1605                LFO1Controller         = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1606                LFO1FlipPhase          = lfo1ctrl & 0x80; // bit 7
1607                LFO1Sync               = lfo1ctrl & 0x40; // bit 6
1608                VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1609                                                            : vcf_res_ctrl_none;
1610                uint16_t eg3depth = _3ewa->ReadUint16();
1611                EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1612                                            : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1613                _3ewa->ReadInt16(); // unknown
1614                ChannelOffset = _3ewa->ReadUint8() / 4;
1615                uint8_t regoptions = _3ewa->ReadUint8();
1616                MSDecode           = regoptions & 0x01; // bit 0
1617                SustainDefeat      = regoptions & 0x02; // bit 1
1618                _3ewa->ReadInt16(); // unknown
1619                VelocityUpperLimit = _3ewa->ReadInt8();
1620                _3ewa->ReadInt8(); // unknown
1621                _3ewa->ReadInt16(); // unknown
1622                ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1623                _3ewa->ReadInt8(); // unknown
1624                _3ewa->ReadInt8(); // unknown
1625                EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1626                uint8_t vcfcutoff = _3ewa->ReadUint8();
1627                VCFEnabled = vcfcutoff & 0x80; // bit 7
1628                VCFCutoff  = vcfcutoff & 0x7f; // lower 7 bits
1629                VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1630                uint8_t vcfvelscale = _3ewa->ReadUint8();
1631                VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1632                VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1633                _3ewa->ReadInt8(); // unknown
1634                uint8_t vcfresonance = _3ewa->ReadUint8();
1635                VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1636                VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1637                uint8_t vcfbreakpoint         = _3ewa->ReadUint8();
1638                VCFKeyboardTracking           = vcfbreakpoint & 0x80; // bit 7
1639                VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1640                uint8_t vcfvelocity = _3ewa->ReadUint8();
1641                VCFVelocityDynamicRange = vcfvelocity % 5;
1642                VCFVelocityCurve        = static_cast<curve_type_t>(vcfvelocity / 5);
1643                VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1644                if (VCFType == vcf_type_lowpass) {
1645                    if (lfo3ctrl & 0x40) // bit 6
1646                        VCFType = vcf_type_lowpassturbo;
1647                }
1648                if (_3ewa->RemainingBytes() >= 8) {
1649                    _3ewa->Read(DimensionUpperLimits, 1, 8);
1650                } else {
1651                    memset(DimensionUpperLimits, 0, 8);
1652                }
1653            } else { // '3ewa' chunk does not exist yet
1654                // use default values
1655                LFO3Frequency                   = 1.0;
1656                EG3Attack                       = 0.0;
1657                LFO1InternalDepth               = 0;
1658                LFO3InternalDepth               = 0;
1659                LFO1ControlDepth                = 0;
1660                LFO3ControlDepth                = 0;
1661                EG1Attack                       = 0.0;
1662                EG1Decay1                       = 0.005;
1663                EG1Sustain                      = 1000;
1664                EG1Release                      = 0.3;
1665                EG1Controller.type              = eg1_ctrl_t::type_none;
1666                EG1Controller.controller_number = 0;
1667                EG1ControllerInvert             = false;
1668                EG1ControllerAttackInfluence    = 0;
1669                EG1ControllerDecayInfluence     = 0;
1670                EG1ControllerReleaseInfluence   = 0;
1671                EG2Controller.type              = eg2_ctrl_t::type_none;
1672                EG2Controller.controller_number = 0;
1673                EG2ControllerInvert             = false;
1674                EG2ControllerAttackInfluence    = 0;
1675                EG2ControllerDecayInfluence     = 0;
1676                EG2ControllerReleaseInfluence   = 0;
1677                LFO1Frequency                   = 1.0;
1678                EG2Attack                       = 0.0;
1679                EG2Decay1                       = 0.005;
1680                EG2Sustain                      = 1000;
1681                EG2Release                      = 60;
1682                LFO2ControlDepth                = 0;
1683                LFO2Frequency                   = 1.0;
1684                LFO2InternalDepth               = 0;
1685                EG1Decay2                       = 0.0;
1686                EG1InfiniteSustain              = true;
1687                EG1PreAttack                    = 0;
1688                EG2Decay2                       = 0.0;
1689                EG2InfiniteSustain              = true;
1690                EG2PreAttack                    = 0;
1691                VelocityResponseCurve           = curve_type_nonlinear;
1692                VelocityResponseDepth           = 3;
1693                ReleaseVelocityResponseCurve    = curve_type_nonlinear;
1694                ReleaseVelocityResponseDepth    = 3;
1695                VelocityResponseCurveScaling    = 32;
1696                AttenuationControllerThreshold  = 0;
1697                SampleStartOffset               = 0;
1698                PitchTrack                      = true;
1699                DimensionBypass                 = dim_bypass_ctrl_none;
1700                Pan                             = 0;
1701                SelfMask                        = true;
1702                LFO3Controller                  = lfo3_ctrl_modwheel;
1703                LFO3Sync                        = false;
1704                InvertAttenuationController     = false;
1705                AttenuationController.type      = attenuation_ctrl_t::type_none;
1706                AttenuationController.controller_number = 0;
1707                LFO2Controller                  = lfo2_ctrl_internal;
1708                LFO2FlipPhase                   = false;
1709                LFO2Sync                        = false;
1710                LFO1Controller                  = lfo1_ctrl_internal;
1711                LFO1FlipPhase                   = false;
1712                LFO1Sync                        = false;
1713                VCFResonanceController          = vcf_res_ctrl_none;
1714                EG3Depth                        = 0;
1715                ChannelOffset                   = 0;
1716                MSDecode                        = false;
1717                SustainDefeat                   = false;
1718                VelocityUpperLimit              = 0;
1719                ReleaseTriggerDecay             = 0;
1720                EG1Hold                         = false;
1721                VCFEnabled                      = false;
1722                VCFCutoff                       = 0;
1723                VCFCutoffController             = vcf_cutoff_ctrl_none;
1724                VCFCutoffControllerInvert       = false;
1725                VCFVelocityScale                = 0;
1726                VCFResonance                    = 0;
1727                VCFResonanceDynamic             = false;
1728                VCFKeyboardTracking             = false;
1729                VCFKeyboardTrackingBreakpoint   = 0;
1730                VCFVelocityDynamicRange         = 0x04;
1731                VCFVelocityCurve                = curve_type_linear;
1732                VCFType                         = vcf_type_lowpass;
1733                memset(DimensionUpperLimits, 127, 8);
1734            }
1735            // chunk for own format extensions, these will *NOT* work with Gigasampler/GigaStudio !
1736            RIFF::Chunk* lsde = _3ewl->GetSubChunk(CHUNK_ID_LSDE);
1737            if (lsde) { // format extension for EG behavior options
1738                eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
1739                for (int i = 0; i < 2; ++i) { // NOTE: we reserved a 3rd byte for a potential future EG3 option
1740                    unsigned char byte = lsde->ReadUint8();
1741                    pEGOpts[i]->AttackCancel     = byte & 1;
1742                    pEGOpts[i]->AttackHoldCancel = byte & (1 << 1);
1743                    pEGOpts[i]->Decay1Cancel     = byte & (1 << 2);
1744                    pEGOpts[i]->Decay2Cancel     = byte & (1 << 3);
1745                    pEGOpts[i]->ReleaseCancel    = byte & (1 << 4);
1746                }
1747          }          }
1748          VelocityResponseCurveScaling = _3ewa->ReadUint8();          // format extension for sustain pedal up effect on release trigger samples
1749          AttenuationControllerThreshold = _3ewa->ReadInt8();          if (lsde && lsde->GetSize() > 3) { // NOTE: we reserved the 3rd byte for a potential future EG3 option
1750          _3ewa->ReadInt32(); // unknown              lsde->SetPos(3);
1751          SampleStartOffset = (uint16_t) _3ewa->ReadInt16();              uint8_t byte = lsde->ReadUint8();
1752          _3ewa->ReadInt16(); // unknown              SustainReleaseTrigger   = static_cast<sust_rel_trg_t>(byte & 0x03);
1753          uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();              NoNoteOffReleaseTrigger = byte >> 7;
1754          PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);          } else {
1755          if      (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;              SustainReleaseTrigger   = sust_rel_trg_none;
1756          else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;              NoNoteOffReleaseTrigger = false;
         else                                       DimensionBypass = dim_bypass_ctrl_none;  
         uint8_t pan = _3ewa->ReadUint8();  
         Pan         = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit  
         SelfMask = _3ewa->ReadInt8() & 0x01;  
         _3ewa->ReadInt8(); // unknown  
         uint8_t lfo3ctrl = _3ewa->ReadUint8();  
         LFO3Controller           = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits  
         LFO3Sync                 = lfo3ctrl & 0x20; // bit 5  
         InvertAttenuationController = lfo3ctrl & 0x80; // bit 7  
         AttenuationController  = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));  
         uint8_t lfo2ctrl       = _3ewa->ReadUint8();  
         LFO2Controller         = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits  
         LFO2FlipPhase          = lfo2ctrl & 0x80; // bit 7  
         LFO2Sync               = lfo2ctrl & 0x20; // bit 5  
         bool extResonanceCtrl  = lfo2ctrl & 0x40; // bit 6  
         uint8_t lfo1ctrl       = _3ewa->ReadUint8();  
         LFO1Controller         = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits  
         LFO1FlipPhase          = lfo1ctrl & 0x80; // bit 7  
         LFO1Sync               = lfo1ctrl & 0x40; // bit 6  
         VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))  
                                                     : vcf_res_ctrl_none;  
         uint16_t eg3depth = _3ewa->ReadUint16();  
         EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */  
                                       : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */  
         _3ewa->ReadInt16(); // unknown  
         ChannelOffset = _3ewa->ReadUint8() / 4;  
         uint8_t regoptions = _3ewa->ReadUint8();  
         MSDecode           = regoptions & 0x01; // bit 0  
         SustainDefeat      = regoptions & 0x02; // bit 1  
         _3ewa->ReadInt16(); // unknown  
         VelocityUpperLimit = _3ewa->ReadInt8();  
         _3ewa->ReadInt8(); // unknown  
         _3ewa->ReadInt16(); // unknown  
         ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay  
         _3ewa->ReadInt8(); // unknown  
         _3ewa->ReadInt8(); // unknown  
         EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7  
         uint8_t vcfcutoff = _3ewa->ReadUint8();  
         VCFEnabled = vcfcutoff & 0x80; // bit 7  
         VCFCutoff  = vcfcutoff & 0x7f; // lower 7 bits  
         VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());  
         VCFVelocityScale = _3ewa->ReadUint8();  
         _3ewa->ReadInt8(); // unknown  
         uint8_t vcfresonance = _3ewa->ReadUint8();  
         VCFResonance = vcfresonance & 0x7f; // lower 7 bits  
         VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7  
         uint8_t vcfbreakpoint         = _3ewa->ReadUint8();  
         VCFKeyboardTracking           = vcfbreakpoint & 0x80; // bit 7  
         VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits  
         uint8_t vcfvelocity = _3ewa->ReadUint8();  
         VCFVelocityDynamicRange = vcfvelocity % 5;  
         VCFVelocityCurve        = static_cast<curve_type_t>(vcfvelocity / 5);  
         VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());  
         if (VCFType == vcf_type_lowpass) {  
             if (lfo3ctrl & 0x40) // bit 6  
                 VCFType = vcf_type_lowpassturbo;  
1757          }          }
1758    
1759          pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,          pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1760                                                       VelocityResponseDepth,                                                       VelocityResponseDepth,
1761                                                       VelocityResponseCurveScaling);                                                       VelocityResponseCurveScaling);
1762    
1763          curve_type_t curveType = ReleaseVelocityResponseCurve;          pVelocityReleaseTable = GetReleaseVelocityTable(
1764          uint8_t depth = ReleaseVelocityResponseDepth;                                      ReleaseVelocityResponseCurve,
1765                                        ReleaseVelocityResponseDepth
1766                                    );
1767    
1768            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1769                                                          VCFVelocityDynamicRange,
1770                                                          VCFVelocityScale,
1771                                                          VCFCutoffController);
1772    
1773            SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1774            VelocityTable = 0;
1775        }
1776    
1777        /*
1778         * Constructs a DimensionRegion by copying all parameters from
1779         * another DimensionRegion
1780         */
1781        DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1782            Instances++;
1783            //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1784            *this = src; // default memberwise shallow copy of all parameters
1785            pParentList = _3ewl; // restore the chunk pointer
1786    
1787            // deep copy of owned structures
1788            if (src.VelocityTable) {
1789                VelocityTable = new uint8_t[128];
1790                for (int k = 0 ; k < 128 ; k++)
1791                    VelocityTable[k] = src.VelocityTable[k];
1792            }
1793            if (src.pSampleLoops) {
1794                pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1795                for (int k = 0 ; k < src.SampleLoops ; k++)
1796                    pSampleLoops[k] = src.pSampleLoops[k];
1797            }
1798        }
1799        
1800        /**
1801         * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1802         * and assign it to this object.
1803         *
1804         * Note that all sample pointers referenced by @a orig are simply copied as
1805         * memory address. Thus the respective samples are shared, not duplicated!
1806         *
1807         * @param orig - original DimensionRegion object to be copied from
1808         */
1809        void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1810            CopyAssign(orig, NULL);
1811        }
1812    
1813        /**
1814         * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1815         * and assign it to this object.
1816         *
1817         * @param orig - original DimensionRegion object to be copied from
1818         * @param mSamples - crosslink map between the foreign file's samples and
1819         *                   this file's samples
1820         */
1821        void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1822            // delete all allocated data first
1823            if (VelocityTable) delete [] VelocityTable;
1824            if (pSampleLoops) delete [] pSampleLoops;
1825            
1826            // backup parent list pointer
1827            RIFF::List* p = pParentList;
1828            
1829            gig::Sample* pOriginalSample = pSample;
1830            gig::Region* pOriginalRegion = pRegion;
1831            
1832            //NOTE: copy code copied from assignment constructor above, see comment there as well
1833            
1834            *this = *orig; // default memberwise shallow copy of all parameters
1835            
1836            // restore members that shall not be altered
1837            pParentList = p; // restore the chunk pointer
1838            pRegion = pOriginalRegion;
1839            
1840            // only take the raw sample reference reference if the
1841            // two DimensionRegion objects are part of the same file
1842            if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1843                pSample = pOriginalSample;
1844            }
1845            
1846            if (mSamples && mSamples->count(orig->pSample)) {
1847                pSample = mSamples->find(orig->pSample)->second;
1848            }
1849    
1850            // deep copy of owned structures
1851            if (orig->VelocityTable) {
1852                VelocityTable = new uint8_t[128];
1853                for (int k = 0 ; k < 128 ; k++)
1854                    VelocityTable[k] = orig->VelocityTable[k];
1855            }
1856            if (orig->pSampleLoops) {
1857                pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1858                for (int k = 0 ; k < orig->SampleLoops ; k++)
1859                    pSampleLoops[k] = orig->pSampleLoops[k];
1860            }
1861        }
1862    
1863        void DimensionRegion::serialize(Serialization::Archive* archive) {
1864            // in case this class will become backward incompatible one day,
1865            // then set a version and minimum version for this class like:
1866            //archive->setVersion(*this, 2);
1867            //archive->setMinVersion(*this, 1);
1868    
1869            SRLZ(VelocityUpperLimit);
1870            SRLZ(EG1PreAttack);
1871            SRLZ(EG1Attack);
1872            SRLZ(EG1Decay1);
1873            SRLZ(EG1Decay2);
1874            SRLZ(EG1InfiniteSustain);
1875            SRLZ(EG1Sustain);
1876            SRLZ(EG1Release);
1877            SRLZ(EG1Hold);
1878            SRLZ(EG1Controller);
1879            SRLZ(EG1ControllerInvert);
1880            SRLZ(EG1ControllerAttackInfluence);
1881            SRLZ(EG1ControllerDecayInfluence);
1882            SRLZ(EG1ControllerReleaseInfluence);
1883            SRLZ(LFO1Frequency);
1884            SRLZ(LFO1InternalDepth);
1885            SRLZ(LFO1ControlDepth);
1886            SRLZ(LFO1Controller);
1887            SRLZ(LFO1FlipPhase);
1888            SRLZ(LFO1Sync);
1889            SRLZ(EG2PreAttack);
1890            SRLZ(EG2Attack);
1891            SRLZ(EG2Decay1);
1892            SRLZ(EG2Decay2);
1893            SRLZ(EG2InfiniteSustain);
1894            SRLZ(EG2Sustain);
1895            SRLZ(EG2Release);
1896            SRLZ(EG2Controller);
1897            SRLZ(EG2ControllerInvert);
1898            SRLZ(EG2ControllerAttackInfluence);
1899            SRLZ(EG2ControllerDecayInfluence);
1900            SRLZ(EG2ControllerReleaseInfluence);
1901            SRLZ(LFO2Frequency);
1902            SRLZ(LFO2InternalDepth);
1903            SRLZ(LFO2ControlDepth);
1904            SRLZ(LFO2Controller);
1905            SRLZ(LFO2FlipPhase);
1906            SRLZ(LFO2Sync);
1907            SRLZ(EG3Attack);
1908            SRLZ(EG3Depth);
1909            SRLZ(LFO3Frequency);
1910            SRLZ(LFO3InternalDepth);
1911            SRLZ(LFO3ControlDepth);
1912            SRLZ(LFO3Controller);
1913            SRLZ(LFO3Sync);
1914            SRLZ(VCFEnabled);
1915            SRLZ(VCFType);
1916            SRLZ(VCFCutoffController);
1917            SRLZ(VCFCutoffControllerInvert);
1918            SRLZ(VCFCutoff);
1919            SRLZ(VCFVelocityCurve);
1920            SRLZ(VCFVelocityScale);
1921            SRLZ(VCFVelocityDynamicRange);
1922            SRLZ(VCFResonance);
1923            SRLZ(VCFResonanceDynamic);
1924            SRLZ(VCFResonanceController);
1925            SRLZ(VCFKeyboardTracking);
1926            SRLZ(VCFKeyboardTrackingBreakpoint);
1927            SRLZ(VelocityResponseCurve);
1928            SRLZ(VelocityResponseDepth);
1929            SRLZ(VelocityResponseCurveScaling);
1930            SRLZ(ReleaseVelocityResponseCurve);
1931            SRLZ(ReleaseVelocityResponseDepth);
1932            SRLZ(ReleaseTriggerDecay);
1933            SRLZ(Crossfade);
1934            SRLZ(PitchTrack);
1935            SRLZ(DimensionBypass);
1936            SRLZ(Pan);
1937            SRLZ(SelfMask);
1938            SRLZ(AttenuationController);
1939            SRLZ(InvertAttenuationController);
1940            SRLZ(AttenuationControllerThreshold);
1941            SRLZ(ChannelOffset);
1942            SRLZ(SustainDefeat);
1943            SRLZ(MSDecode);
1944            //SRLZ(SampleStartOffset);
1945            SRLZ(SampleAttenuation);
1946            SRLZ(EG1Options);
1947            SRLZ(EG2Options);
1948            SRLZ(SustainReleaseTrigger);
1949            SRLZ(NoNoteOffReleaseTrigger);
1950    
1951            // derived attributes from DLS::Sampler
1952            SRLZ(FineTune);
1953            SRLZ(Gain);
1954        }
1955    
1956        /**
1957         * Updates the respective member variable and updates @c SampleAttenuation
1958         * which depends on this value.
1959         */
1960        void DimensionRegion::SetGain(int32_t gain) {
1961            DLS::Sampler::SetGain(gain);
1962            SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1963        }
1964    
1965        /**
1966         * Apply dimension region settings to the respective RIFF chunks. You
1967         * have to call File::Save() to make changes persistent.
1968         *
1969         * Usually there is absolutely no need to call this method explicitly.
1970         * It will be called automatically when File::Save() was called.
1971         *
1972         * @param pProgress - callback function for progress notification
1973         */
1974        void DimensionRegion::UpdateChunks(progress_t* pProgress) {
1975            // first update base class's chunk
1976            DLS::Sampler::UpdateChunks(pProgress);
1977    
1978            RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1979            uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1980            pData[12] = Crossfade.in_start;
1981            pData[13] = Crossfade.in_end;
1982            pData[14] = Crossfade.out_start;
1983            pData[15] = Crossfade.out_end;
1984    
1985            // make sure '3ewa' chunk exists
1986            RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1987            if (!_3ewa) {
1988                File* pFile = (File*) GetParent()->GetParent()->GetParent();
1989                bool versiongt2 = pFile->pVersion && pFile->pVersion->major > 2;
1990                _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, versiongt2 ? 148 : 140);
1991            }
1992            pData = (uint8_t*) _3ewa->LoadChunkData();
1993    
1994            // update '3ewa' chunk with DimensionRegion's current settings
1995    
1996            const uint32_t chunksize = (uint32_t) _3ewa->GetNewSize();
1997            store32(&pData[0], chunksize); // unknown, always chunk size?
1998    
1999            const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
2000            store32(&pData[4], lfo3freq);
2001    
2002            const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
2003            store32(&pData[8], eg3attack);
2004    
2005            // next 2 bytes unknown
2006    
2007            store16(&pData[14], LFO1InternalDepth);
2008    
2009            // next 2 bytes unknown
2010    
2011            store16(&pData[18], LFO3InternalDepth);
2012    
2013            // next 2 bytes unknown
2014    
2015            store16(&pData[22], LFO1ControlDepth);
2016    
2017            // next 2 bytes unknown
2018    
2019            store16(&pData[26], LFO3ControlDepth);
2020    
2021            const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
2022            store32(&pData[28], eg1attack);
2023    
2024            const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
2025            store32(&pData[32], eg1decay1);
2026    
2027            // next 2 bytes unknown
2028    
2029            store16(&pData[38], EG1Sustain);
2030    
2031            const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
2032            store32(&pData[40], eg1release);
2033    
2034            const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
2035            pData[44] = eg1ctl;
2036    
2037            const uint8_t eg1ctrloptions =
2038                (EG1ControllerInvert ? 0x01 : 0x00) |
2039                GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
2040                GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
2041                GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
2042            pData[45] = eg1ctrloptions;
2043    
2044            const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
2045            pData[46] = eg2ctl;
2046    
2047            const uint8_t eg2ctrloptions =
2048                (EG2ControllerInvert ? 0x01 : 0x00) |
2049                GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
2050                GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
2051                GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
2052            pData[47] = eg2ctrloptions;
2053    
2054            const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
2055            store32(&pData[48], lfo1freq);
2056    
2057            const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
2058            store32(&pData[52], eg2attack);
2059    
2060            const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
2061            store32(&pData[56], eg2decay1);
2062    
2063            // next 2 bytes unknown
2064    
2065            store16(&pData[62], EG2Sustain);
2066    
2067            const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
2068            store32(&pData[64], eg2release);
2069    
2070            // next 2 bytes unknown
2071    
2072            store16(&pData[70], LFO2ControlDepth);
2073    
2074            const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
2075            store32(&pData[72], lfo2freq);
2076    
2077            // next 2 bytes unknown
2078    
2079            store16(&pData[78], LFO2InternalDepth);
2080    
2081            const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
2082            store32(&pData[80], eg1decay2);
2083    
2084            // next 2 bytes unknown
2085    
2086            store16(&pData[86], EG1PreAttack);
2087    
2088            const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
2089            store32(&pData[88], eg2decay2);
2090    
2091            // next 2 bytes unknown
2092    
2093            store16(&pData[94], EG2PreAttack);
2094    
2095            {
2096                if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
2097                uint8_t velocityresponse = VelocityResponseDepth;
2098                switch (VelocityResponseCurve) {
2099                    case curve_type_nonlinear:
2100                        break;
2101                    case curve_type_linear:
2102                        velocityresponse += 5;
2103                        break;
2104                    case curve_type_special:
2105                        velocityresponse += 10;
2106                        break;
2107                    case curve_type_unknown:
2108                    default:
2109                        throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
2110                }
2111                pData[96] = velocityresponse;
2112            }
2113    
2114            {
2115                if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
2116                uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
2117                switch (ReleaseVelocityResponseCurve) {
2118                    case curve_type_nonlinear:
2119                        break;
2120                    case curve_type_linear:
2121                        releasevelocityresponse += 5;
2122                        break;
2123                    case curve_type_special:
2124                        releasevelocityresponse += 10;
2125                        break;
2126                    case curve_type_unknown:
2127                    default:
2128                        throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
2129                }
2130                pData[97] = releasevelocityresponse;
2131            }
2132    
2133            pData[98] = VelocityResponseCurveScaling;
2134    
2135            pData[99] = AttenuationControllerThreshold;
2136    
2137            // next 4 bytes unknown
2138    
2139            store16(&pData[104], SampleStartOffset);
2140    
2141            // next 2 bytes unknown
2142    
2143            {
2144                uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
2145                switch (DimensionBypass) {
2146                    case dim_bypass_ctrl_94:
2147                        pitchTrackDimensionBypass |= 0x10;
2148                        break;
2149                    case dim_bypass_ctrl_95:
2150                        pitchTrackDimensionBypass |= 0x20;
2151                        break;
2152                    case dim_bypass_ctrl_none:
2153                        //FIXME: should we set anything here?
2154                        break;
2155                    default:
2156                        throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
2157                }
2158                pData[108] = pitchTrackDimensionBypass;
2159            }
2160    
2161            const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
2162            pData[109] = pan;
2163    
2164            const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
2165            pData[110] = selfmask;
2166    
2167            // next byte unknown
2168    
2169            {
2170                uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
2171                if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
2172                if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
2173                if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
2174                pData[112] = lfo3ctrl;
2175            }
2176    
2177            const uint8_t attenctl = EncodeLeverageController(AttenuationController);
2178            pData[113] = attenctl;
2179    
2180            {
2181                uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
2182                if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
2183                if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5
2184                if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
2185                pData[114] = lfo2ctrl;
2186            }
2187    
2188            {
2189                uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
2190                if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
2191                if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6
2192                if (VCFResonanceController != vcf_res_ctrl_none)
2193                    lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
2194                pData[115] = lfo1ctrl;
2195            }
2196    
2197            const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
2198                                                      : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
2199            store16(&pData[116], eg3depth);
2200    
2201            // next 2 bytes unknown
2202    
2203            const uint8_t channeloffset = ChannelOffset * 4;
2204            pData[120] = channeloffset;
2205    
2206            {
2207                uint8_t regoptions = 0;
2208                if (MSDecode)      regoptions |= 0x01; // bit 0
2209                if (SustainDefeat) regoptions |= 0x02; // bit 1
2210                pData[121] = regoptions;
2211            }
2212    
2213            // next 2 bytes unknown
2214    
2215            pData[124] = VelocityUpperLimit;
2216    
2217            // next 3 bytes unknown
2218    
2219            pData[128] = ReleaseTriggerDecay;
2220    
2221            // next 2 bytes unknown
2222    
2223            const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2224            pData[131] = eg1hold;
2225    
2226            const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) |  /* bit 7 */
2227                                      (VCFCutoff & 0x7f);   /* lower 7 bits */
2228            pData[132] = vcfcutoff;
2229    
2230            pData[133] = VCFCutoffController;
2231    
2232            const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2233                                        (VCFVelocityScale & 0x7f); /* lower 7 bits */
2234            pData[134] = vcfvelscale;
2235    
2236            // next byte unknown
2237    
2238            const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2239                                         (VCFResonance & 0x7f); /* lower 7 bits */
2240            pData[136] = vcfresonance;
2241    
2242            const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2243                                          (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2244            pData[137] = vcfbreakpoint;
2245    
2246            const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2247                                        VCFVelocityCurve * 5;
2248            pData[138] = vcfvelocity;
2249    
2250            const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2251            pData[139] = vcftype;
2252    
2253            if (chunksize >= 148) {
2254                memcpy(&pData[140], DimensionUpperLimits, 8);
2255            }
2256    
2257            // chunk for own format extensions, these will *NOT* work with
2258            // Gigasampler/GigaStudio !
2259            RIFF::Chunk* lsde = pParentList->GetSubChunk(CHUNK_ID_LSDE);
2260            const int lsdeSize = 4; // NOTE: we reserved the 3rd byte for a potential future EG3 option
2261            if (!lsde) {
2262                // only add this "LSDE" chunk if either EG options or release
2263                // trigger options deviate from their default behaviour
2264                eg_opt_t defaultOpt;
2265                if (memcmp(&EG1Options, &defaultOpt, sizeof(eg_opt_t)) ||
2266                    memcmp(&EG2Options, &defaultOpt, sizeof(eg_opt_t)) ||
2267                    SustainReleaseTrigger || NoNoteOffReleaseTrigger)
2268                {
2269                    lsde = pParentList->AddSubChunk(CHUNK_ID_LSDE, lsdeSize);
2270                    // move LSDE chunk to the end of parent list
2271                    pParentList->MoveSubChunk(lsde, (RIFF::Chunk*)NULL);
2272                }
2273            }
2274            if (lsde) {
2275                if (lsde->GetNewSize() < lsdeSize)
2276                    lsde->Resize(lsdeSize);
2277                // format extension for EG behavior options
2278                unsigned char* pData = (unsigned char*) lsde->LoadChunkData();
2279                eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
2280                for (int i = 0; i < 2; ++i) { // NOTE: we reserved the 3rd byte for a potential future EG3 option
2281                    pData[i] =
2282                        (pEGOpts[i]->AttackCancel     ? 1 : 0) |
2283                        (pEGOpts[i]->AttackHoldCancel ? (1<<1) : 0) |
2284                        (pEGOpts[i]->Decay1Cancel     ? (1<<2) : 0) |
2285                        (pEGOpts[i]->Decay2Cancel     ? (1<<3) : 0) |
2286                        (pEGOpts[i]->ReleaseCancel    ? (1<<4) : 0);
2287                }
2288                // format extension for release trigger options
2289                pData[3] = static_cast<uint8_t>(SustainReleaseTrigger) | (NoNoteOffReleaseTrigger ? (1<<7) : 0);
2290            }
2291        }
2292    
2293        double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2294            curve_type_t curveType = releaseVelocityResponseCurve;
2295            uint8_t depth = releaseVelocityResponseDepth;
2296          // this models a strange behaviour or bug in GSt: two of the          // this models a strange behaviour or bug in GSt: two of the
2297          // velocity response curves for release time are not used even          // velocity response curves for release time are not used even
2298          // if specified, instead another curve is chosen.          // if specified, instead another curve is chosen.
   
2299          if ((curveType == curve_type_nonlinear && depth == 0) ||          if ((curveType == curve_type_nonlinear && depth == 0) ||
2300              (curveType == curve_type_special   && depth == 4)) {              (curveType == curve_type_special   && depth == 4)) {
2301              curveType = curve_type_nonlinear;              curveType = curve_type_nonlinear;
2302              depth = 3;              depth = 3;
2303          }          }
2304          pVelocityReleaseTable = GetVelocityTable(curveType, depth, 0);          return GetVelocityTable(curveType, depth, 0);
2305        }
2306    
2307          SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));      double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2308                                                        uint8_t vcfVelocityDynamicRange,
2309                                                        uint8_t vcfVelocityScale,
2310                                                        vcf_cutoff_ctrl_t vcfCutoffController)
2311        {
2312            curve_type_t curveType = vcfVelocityCurve;
2313            uint8_t depth = vcfVelocityDynamicRange;
2314            // even stranger GSt: two of the velocity response curves for
2315            // filter cutoff are not used, instead another special curve
2316            // is chosen. This curve is not used anywhere else.
2317            if ((curveType == curve_type_nonlinear && depth == 0) ||
2318                (curveType == curve_type_special   && depth == 4)) {
2319                curveType = curve_type_special;
2320                depth = 5;
2321            }
2322            return GetVelocityTable(curveType, depth,
2323                                    (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2324                                        ? vcfVelocityScale : 0);
2325      }      }
2326    
2327      // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet      // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2328      double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)      double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2329      {      {
2330            // sanity check input parameters
2331            // (fallback to some default parameters on ill input)
2332            switch (curveType) {
2333                case curve_type_nonlinear:
2334                case curve_type_linear:
2335                    if (depth > 4) {
2336                        printf("Warning: Invalid depth (0x%x) for velocity curve type (0x%x).\n", depth, curveType);
2337                        depth   = 0;
2338                        scaling = 0;
2339                    }
2340                    break;
2341                case curve_type_special:
2342                    if (depth > 5) {
2343                        printf("Warning: Invalid depth (0x%x) for velocity curve type 'special'.\n", depth);
2344                        depth   = 0;
2345                        scaling = 0;
2346                    }
2347                    break;
2348                case curve_type_unknown:
2349                default:
2350                    printf("Warning: Unknown velocity curve type (0x%x).\n", curveType);
2351                    curveType = curve_type_linear;
2352                    depth     = 0;
2353                    scaling   = 0;
2354                    break;
2355            }
2356    
2357          double* table;          double* table;
2358          uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;          uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2359          if (pVelocityTables->count(tableKey)) { // if key exists          if (pVelocityTables->count(tableKey)) { // if key exists
# Line 1198  namespace { Line 2366  namespace {
2366          return table;          return table;
2367      }      }
2368    
2369        Region* DimensionRegion::GetParent() const {
2370            return pRegion;
2371        }
2372    
2373    // show error if some _lev_ctrl_* enum entry is not listed in the following function
2374    // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2375    // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2376    //#pragma GCC diagnostic push
2377    //#pragma GCC diagnostic error "-Wswitch"
2378    
2379      leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {      leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2380          leverage_ctrl_t decodedcontroller;          leverage_ctrl_t decodedcontroller;
2381          switch (EncodedController) {          switch (EncodedController) {
# Line 1309  namespace { Line 2487  namespace {
2487                  decodedcontroller.controller_number = 95;                  decodedcontroller.controller_number = 95;
2488                  break;                  break;
2489    
2490                // format extension (these controllers are so far only supported by
2491                // LinuxSampler & gigedit) they will *NOT* work with
2492                // Gigasampler/GigaStudio !
2493                case _lev_ctrl_CC3_EXT:
2494                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2495                    decodedcontroller.controller_number = 3;
2496                    break;
2497                case _lev_ctrl_CC6_EXT:
2498                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2499                    decodedcontroller.controller_number = 6;
2500                    break;
2501                case _lev_ctrl_CC7_EXT:
2502                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2503                    decodedcontroller.controller_number = 7;
2504                    break;
2505                case _lev_ctrl_CC8_EXT:
2506                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2507                    decodedcontroller.controller_number = 8;
2508                    break;
2509                case _lev_ctrl_CC9_EXT:
2510                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2511                    decodedcontroller.controller_number = 9;
2512                    break;
2513                case _lev_ctrl_CC10_EXT:
2514                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2515                    decodedcontroller.controller_number = 10;
2516                    break;
2517                case _lev_ctrl_CC11_EXT:
2518                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2519                    decodedcontroller.controller_number = 11;
2520                    break;
2521                case _lev_ctrl_CC14_EXT:
2522                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2523                    decodedcontroller.controller_number = 14;
2524                    break;
2525                case _lev_ctrl_CC15_EXT:
2526                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2527                    decodedcontroller.controller_number = 15;
2528                    break;
2529                case _lev_ctrl_CC20_EXT:
2530                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2531                    decodedcontroller.controller_number = 20;
2532                    break;
2533                case _lev_ctrl_CC21_EXT:
2534                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2535                    decodedcontroller.controller_number = 21;
2536                    break;
2537                case _lev_ctrl_CC22_EXT:
2538                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2539                    decodedcontroller.controller_number = 22;
2540                    break;
2541                case _lev_ctrl_CC23_EXT:
2542                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2543                    decodedcontroller.controller_number = 23;
2544                    break;
2545                case _lev_ctrl_CC24_EXT:
2546                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2547                    decodedcontroller.controller_number = 24;
2548                    break;
2549                case _lev_ctrl_CC25_EXT:
2550                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2551                    decodedcontroller.controller_number = 25;
2552                    break;
2553                case _lev_ctrl_CC26_EXT:
2554                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2555                    decodedcontroller.controller_number = 26;
2556                    break;
2557                case _lev_ctrl_CC27_EXT:
2558                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2559                    decodedcontroller.controller_number = 27;
2560                    break;
2561                case _lev_ctrl_CC28_EXT:
2562                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2563                    decodedcontroller.controller_number = 28;
2564                    break;
2565                case _lev_ctrl_CC29_EXT:
2566                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2567                    decodedcontroller.controller_number = 29;
2568                    break;
2569                case _lev_ctrl_CC30_EXT:
2570                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2571                    decodedcontroller.controller_number = 30;
2572                    break;
2573                case _lev_ctrl_CC31_EXT:
2574                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2575                    decodedcontroller.controller_number = 31;
2576                    break;
2577                case _lev_ctrl_CC68_EXT:
2578                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2579                    decodedcontroller.controller_number = 68;
2580                    break;
2581                case _lev_ctrl_CC69_EXT:
2582                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2583                    decodedcontroller.controller_number = 69;
2584                    break;
2585                case _lev_ctrl_CC70_EXT:
2586                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2587                    decodedcontroller.controller_number = 70;
2588                    break;
2589                case _lev_ctrl_CC71_EXT:
2590                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2591                    decodedcontroller.controller_number = 71;
2592                    break;
2593                case _lev_ctrl_CC72_EXT:
2594                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2595                    decodedcontroller.controller_number = 72;
2596                    break;
2597                case _lev_ctrl_CC73_EXT:
2598                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2599                    decodedcontroller.controller_number = 73;
2600                    break;
2601                case _lev_ctrl_CC74_EXT:
2602                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2603                    decodedcontroller.controller_number = 74;
2604                    break;
2605                case _lev_ctrl_CC75_EXT:
2606                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2607                    decodedcontroller.controller_number = 75;
2608                    break;
2609                case _lev_ctrl_CC76_EXT:
2610                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2611                    decodedcontroller.controller_number = 76;
2612                    break;
2613                case _lev_ctrl_CC77_EXT:
2614                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2615                    decodedcontroller.controller_number = 77;
2616                    break;
2617                case _lev_ctrl_CC78_EXT:
2618                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2619                    decodedcontroller.controller_number = 78;
2620                    break;
2621                case _lev_ctrl_CC79_EXT:
2622                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2623                    decodedcontroller.controller_number = 79;
2624                    break;
2625                case _lev_ctrl_CC84_EXT:
2626                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2627                    decodedcontroller.controller_number = 84;
2628                    break;
2629                case _lev_ctrl_CC85_EXT:
2630                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2631                    decodedcontroller.controller_number = 85;
2632                    break;
2633                case _lev_ctrl_CC86_EXT:
2634                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2635                    decodedcontroller.controller_number = 86;
2636                    break;
2637                case _lev_ctrl_CC87_EXT:
2638                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2639                    decodedcontroller.controller_number = 87;
2640                    break;
2641                case _lev_ctrl_CC89_EXT:
2642                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2643                    decodedcontroller.controller_number = 89;
2644                    break;
2645                case _lev_ctrl_CC90_EXT:
2646                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2647                    decodedcontroller.controller_number = 90;
2648                    break;
2649                case _lev_ctrl_CC96_EXT:
2650                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2651                    decodedcontroller.controller_number = 96;
2652                    break;
2653                case _lev_ctrl_CC97_EXT:
2654                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2655                    decodedcontroller.controller_number = 97;
2656                    break;
2657                case _lev_ctrl_CC102_EXT:
2658                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2659                    decodedcontroller.controller_number = 102;
2660                    break;
2661                case _lev_ctrl_CC103_EXT:
2662                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2663                    decodedcontroller.controller_number = 103;
2664                    break;
2665                case _lev_ctrl_CC104_EXT:
2666                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2667                    decodedcontroller.controller_number = 104;
2668                    break;
2669                case _lev_ctrl_CC105_EXT:
2670                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2671                    decodedcontroller.controller_number = 105;
2672                    break;
2673                case _lev_ctrl_CC106_EXT:
2674                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2675                    decodedcontroller.controller_number = 106;
2676                    break;
2677                case _lev_ctrl_CC107_EXT:
2678                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2679                    decodedcontroller.controller_number = 107;
2680                    break;
2681                case _lev_ctrl_CC108_EXT:
2682                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2683                    decodedcontroller.controller_number = 108;
2684                    break;
2685                case _lev_ctrl_CC109_EXT:
2686                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2687                    decodedcontroller.controller_number = 109;
2688                    break;
2689                case _lev_ctrl_CC110_EXT:
2690                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2691                    decodedcontroller.controller_number = 110;
2692                    break;
2693                case _lev_ctrl_CC111_EXT:
2694                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2695                    decodedcontroller.controller_number = 111;
2696                    break;
2697                case _lev_ctrl_CC112_EXT:
2698                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2699                    decodedcontroller.controller_number = 112;
2700                    break;
2701                case _lev_ctrl_CC113_EXT:
2702                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2703                    decodedcontroller.controller_number = 113;
2704                    break;
2705                case _lev_ctrl_CC114_EXT:
2706                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2707                    decodedcontroller.controller_number = 114;
2708                    break;
2709                case _lev_ctrl_CC115_EXT:
2710                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2711                    decodedcontroller.controller_number = 115;
2712                    break;
2713                case _lev_ctrl_CC116_EXT:
2714                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2715                    decodedcontroller.controller_number = 116;
2716                    break;
2717                case _lev_ctrl_CC117_EXT:
2718                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2719                    decodedcontroller.controller_number = 117;
2720                    break;
2721                case _lev_ctrl_CC118_EXT:
2722                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2723                    decodedcontroller.controller_number = 118;
2724                    break;
2725                case _lev_ctrl_CC119_EXT:
2726                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2727                    decodedcontroller.controller_number = 119;
2728                    break;
2729    
2730              // unknown controller type              // unknown controller type
2731              default:              default:
2732                  throw gig::Exception("Unknown leverage controller type.");                  decodedcontroller.type = leverage_ctrl_t::type_none;
2733                    decodedcontroller.controller_number = 0;
2734                    printf("Warning: Unknown leverage controller type (0x%x).\n", EncodedController);
2735                    break;
2736          }          }
2737          return decodedcontroller;          return decodedcontroller;
2738      }      }
2739        
2740    // see above (diagnostic push not supported prior GCC 4.6)
2741    //#pragma GCC diagnostic pop
2742    
2743        DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2744            _lev_ctrl_t encodedcontroller;
2745            switch (DecodedController.type) {
2746                // special controller
2747                case leverage_ctrl_t::type_none:
2748                    encodedcontroller = _lev_ctrl_none;
2749                    break;
2750                case leverage_ctrl_t::type_velocity:
2751                    encodedcontroller = _lev_ctrl_velocity;
2752                    break;
2753                case leverage_ctrl_t::type_channelaftertouch:
2754                    encodedcontroller = _lev_ctrl_channelaftertouch;
2755                    break;
2756    
2757                // ordinary MIDI control change controller
2758                case leverage_ctrl_t::type_controlchange:
2759                    switch (DecodedController.controller_number) {
2760                        case 1:
2761                            encodedcontroller = _lev_ctrl_modwheel;
2762                            break;
2763                        case 2:
2764                            encodedcontroller = _lev_ctrl_breath;
2765                            break;
2766                        case 4:
2767                            encodedcontroller = _lev_ctrl_foot;
2768                            break;
2769                        case 12:
2770                            encodedcontroller = _lev_ctrl_effect1;
2771                            break;
2772                        case 13:
2773                            encodedcontroller = _lev_ctrl_effect2;
2774                            break;
2775                        case 16:
2776                            encodedcontroller = _lev_ctrl_genpurpose1;
2777                            break;
2778                        case 17:
2779                            encodedcontroller = _lev_ctrl_genpurpose2;
2780                            break;
2781                        case 18:
2782                            encodedcontroller = _lev_ctrl_genpurpose3;
2783                            break;
2784                        case 19:
2785                            encodedcontroller = _lev_ctrl_genpurpose4;
2786                            break;
2787                        case 5:
2788                            encodedcontroller = _lev_ctrl_portamentotime;
2789                            break;
2790                        case 64:
2791                            encodedcontroller = _lev_ctrl_sustainpedal;
2792                            break;
2793                        case 65:
2794                            encodedcontroller = _lev_ctrl_portamento;
2795                            break;
2796                        case 66:
2797                            encodedcontroller = _lev_ctrl_sostenutopedal;
2798                            break;
2799                        case 67:
2800                            encodedcontroller = _lev_ctrl_softpedal;
2801                            break;
2802                        case 80:
2803                            encodedcontroller = _lev_ctrl_genpurpose5;
2804                            break;
2805                        case 81:
2806                            encodedcontroller = _lev_ctrl_genpurpose6;
2807                            break;
2808                        case 82:
2809                            encodedcontroller = _lev_ctrl_genpurpose7;
2810                            break;
2811                        case 83:
2812                            encodedcontroller = _lev_ctrl_genpurpose8;
2813                            break;
2814                        case 91:
2815                            encodedcontroller = _lev_ctrl_effect1depth;
2816                            break;
2817                        case 92:
2818                            encodedcontroller = _lev_ctrl_effect2depth;
2819                            break;
2820                        case 93:
2821                            encodedcontroller = _lev_ctrl_effect3depth;
2822                            break;
2823                        case 94:
2824                            encodedcontroller = _lev_ctrl_effect4depth;
2825                            break;
2826                        case 95:
2827                            encodedcontroller = _lev_ctrl_effect5depth;
2828                            break;
2829    
2830                        // format extension (these controllers are so far only
2831                        // supported by LinuxSampler & gigedit) they will *NOT*
2832                        // work with Gigasampler/GigaStudio !
2833                        case 3:
2834                            encodedcontroller = _lev_ctrl_CC3_EXT;
2835                            break;
2836                        case 6:
2837                            encodedcontroller = _lev_ctrl_CC6_EXT;
2838                            break;
2839                        case 7:
2840                            encodedcontroller = _lev_ctrl_CC7_EXT;
2841                            break;
2842                        case 8:
2843                            encodedcontroller = _lev_ctrl_CC8_EXT;
2844                            break;
2845                        case 9:
2846                            encodedcontroller = _lev_ctrl_CC9_EXT;
2847                            break;
2848                        case 10:
2849                            encodedcontroller = _lev_ctrl_CC10_EXT;
2850                            break;
2851                        case 11:
2852                            encodedcontroller = _lev_ctrl_CC11_EXT;
2853                            break;
2854                        case 14:
2855                            encodedcontroller = _lev_ctrl_CC14_EXT;
2856                            break;
2857                        case 15:
2858                            encodedcontroller = _lev_ctrl_CC15_EXT;
2859                            break;
2860                        case 20:
2861                            encodedcontroller = _lev_ctrl_CC20_EXT;
2862                            break;
2863                        case 21:
2864                            encodedcontroller = _lev_ctrl_CC21_EXT;
2865                            break;
2866                        case 22:
2867                            encodedcontroller = _lev_ctrl_CC22_EXT;
2868                            break;
2869                        case 23:
2870                            encodedcontroller = _lev_ctrl_CC23_EXT;
2871                            break;
2872                        case 24:
2873                            encodedcontroller = _lev_ctrl_CC24_EXT;
2874                            break;
2875                        case 25:
2876                            encodedcontroller = _lev_ctrl_CC25_EXT;
2877                            break;
2878                        case 26:
2879                            encodedcontroller = _lev_ctrl_CC26_EXT;
2880                            break;
2881                        case 27:
2882                            encodedcontroller = _lev_ctrl_CC27_EXT;
2883                            break;
2884                        case 28:
2885                            encodedcontroller = _lev_ctrl_CC28_EXT;
2886                            break;
2887                        case 29:
2888                            encodedcontroller = _lev_ctrl_CC29_EXT;
2889                            break;
2890                        case 30:
2891                            encodedcontroller = _lev_ctrl_CC30_EXT;
2892                            break;
2893                        case 31:
2894                            encodedcontroller = _lev_ctrl_CC31_EXT;
2895                            break;
2896                        case 68:
2897                            encodedcontroller = _lev_ctrl_CC68_EXT;
2898                            break;
2899                        case 69:
2900                            encodedcontroller = _lev_ctrl_CC69_EXT;
2901                            break;
2902                        case 70:
2903                            encodedcontroller = _lev_ctrl_CC70_EXT;
2904                            break;
2905                        case 71:
2906                            encodedcontroller = _lev_ctrl_CC71_EXT;
2907                            break;
2908                        case 72:
2909                            encodedcontroller = _lev_ctrl_CC72_EXT;
2910                            break;
2911                        case 73:
2912                            encodedcontroller = _lev_ctrl_CC73_EXT;
2913                            break;
2914                        case 74:
2915                            encodedcontroller = _lev_ctrl_CC74_EXT;
2916                            break;
2917                        case 75:
2918                            encodedcontroller = _lev_ctrl_CC75_EXT;
2919                            break;
2920                        case 76:
2921                            encodedcontroller = _lev_ctrl_CC76_EXT;
2922                            break;
2923                        case 77:
2924                            encodedcontroller = _lev_ctrl_CC77_EXT;
2925                            break;
2926                        case 78:
2927                            encodedcontroller = _lev_ctrl_CC78_EXT;
2928                            break;
2929                        case 79:
2930                            encodedcontroller = _lev_ctrl_CC79_EXT;
2931                            break;
2932                        case 84:
2933                            encodedcontroller = _lev_ctrl_CC84_EXT;
2934                            break;
2935                        case 85:
2936                            encodedcontroller = _lev_ctrl_CC85_EXT;
2937                            break;
2938                        case 86:
2939                            encodedcontroller = _lev_ctrl_CC86_EXT;
2940                            break;
2941                        case 87:
2942                            encodedcontroller = _lev_ctrl_CC87_EXT;
2943                            break;
2944                        case 89:
2945                            encodedcontroller = _lev_ctrl_CC89_EXT;
2946                            break;
2947                        case 90:
2948                            encodedcontroller = _lev_ctrl_CC90_EXT;
2949                            break;
2950                        case 96:
2951                            encodedcontroller = _lev_ctrl_CC96_EXT;
2952                            break;
2953                        case 97:
2954                            encodedcontroller = _lev_ctrl_CC97_EXT;
2955                            break;
2956                        case 102:
2957                            encodedcontroller = _lev_ctrl_CC102_EXT;
2958                            break;
2959                        case 103:
2960                            encodedcontroller = _lev_ctrl_CC103_EXT;
2961                            break;
2962                        case 104:
2963                            encodedcontroller = _lev_ctrl_CC104_EXT;
2964                            break;
2965                        case 105:
2966                            encodedcontroller = _lev_ctrl_CC105_EXT;
2967                            break;
2968                        case 106:
2969                            encodedcontroller = _lev_ctrl_CC106_EXT;
2970                            break;
2971                        case 107:
2972                            encodedcontroller = _lev_ctrl_CC107_EXT;
2973                            break;
2974                        case 108:
2975                            encodedcontroller = _lev_ctrl_CC108_EXT;
2976                            break;
2977                        case 109:
2978                            encodedcontroller = _lev_ctrl_CC109_EXT;
2979                            break;
2980                        case 110:
2981                            encodedcontroller = _lev_ctrl_CC110_EXT;
2982                            break;
2983                        case 111:
2984                            encodedcontroller = _lev_ctrl_CC111_EXT;
2985                            break;
2986                        case 112:
2987                            encodedcontroller = _lev_ctrl_CC112_EXT;
2988                            break;
2989                        case 113:
2990                            encodedcontroller = _lev_ctrl_CC113_EXT;
2991                            break;
2992                        case 114:
2993                            encodedcontroller = _lev_ctrl_CC114_EXT;
2994                            break;
2995                        case 115:
2996                            encodedcontroller = _lev_ctrl_CC115_EXT;
2997                            break;
2998                        case 116:
2999                            encodedcontroller = _lev_ctrl_CC116_EXT;
3000                            break;
3001                        case 117:
3002                            encodedcontroller = _lev_ctrl_CC117_EXT;
3003                            break;
3004                        case 118:
3005                            encodedcontroller = _lev_ctrl_CC118_EXT;
3006                            break;
3007                        case 119:
3008                            encodedcontroller = _lev_ctrl_CC119_EXT;
3009                            break;
3010    
3011                        default:
3012                            throw gig::Exception("leverage controller number is not supported by the gig format");
3013                    }
3014                    break;
3015                default:
3016                    throw gig::Exception("Unknown leverage controller type.");
3017            }
3018            return encodedcontroller;
3019        }
3020    
3021      DimensionRegion::~DimensionRegion() {      DimensionRegion::~DimensionRegion() {
3022          Instances--;          Instances--;
# Line 1329  namespace { Line 3031  namespace {
3031              delete pVelocityTables;              delete pVelocityTables;
3032              pVelocityTables = NULL;              pVelocityTables = NULL;
3033          }          }
3034            if (VelocityTable) delete[] VelocityTable;
3035      }      }
3036    
3037      /**      /**
# Line 1350  namespace { Line 3053  namespace {
3053          return pVelocityReleaseTable[MIDIKeyVelocity];          return pVelocityReleaseTable[MIDIKeyVelocity];
3054      }      }
3055    
3056        double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
3057            return pVelocityCutoffTable[MIDIKeyVelocity];
3058        }
3059    
3060        /**
3061         * Updates the respective member variable and the lookup table / cache
3062         * that depends on this value.
3063         */
3064        void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
3065            pVelocityAttenuationTable =
3066                GetVelocityTable(
3067                    curve, VelocityResponseDepth, VelocityResponseCurveScaling
3068                );
3069            VelocityResponseCurve = curve;
3070        }
3071    
3072        /**
3073         * Updates the respective member variable and the lookup table / cache
3074         * that depends on this value.
3075         */
3076        void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
3077            pVelocityAttenuationTable =
3078                GetVelocityTable(
3079                    VelocityResponseCurve, depth, VelocityResponseCurveScaling
3080                );
3081            VelocityResponseDepth = depth;
3082        }
3083    
3084        /**
3085         * Updates the respective member variable and the lookup table / cache
3086         * that depends on this value.
3087         */
3088        void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
3089            pVelocityAttenuationTable =
3090                GetVelocityTable(
3091                    VelocityResponseCurve, VelocityResponseDepth, scaling
3092                );
3093            VelocityResponseCurveScaling = scaling;
3094        }
3095    
3096        /**
3097         * Updates the respective member variable and the lookup table / cache
3098         * that depends on this value.
3099         */
3100        void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
3101            pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
3102            ReleaseVelocityResponseCurve = curve;
3103        }
3104    
3105        /**
3106         * Updates the respective member variable and the lookup table / cache
3107         * that depends on this value.
3108         */
3109        void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
3110            pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
3111            ReleaseVelocityResponseDepth = depth;
3112        }
3113    
3114        /**
3115         * Updates the respective member variable and the lookup table / cache
3116         * that depends on this value.
3117         */
3118        void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
3119            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
3120            VCFCutoffController = controller;
3121        }
3122    
3123        /**
3124         * Updates the respective member variable and the lookup table / cache
3125         * that depends on this value.
3126         */
3127        void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
3128            pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
3129            VCFVelocityCurve = curve;
3130        }
3131    
3132        /**
3133         * Updates the respective member variable and the lookup table / cache
3134         * that depends on this value.
3135         */
3136        void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
3137            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
3138            VCFVelocityDynamicRange = range;
3139        }
3140    
3141        /**
3142         * Updates the respective member variable and the lookup table / cache
3143         * that depends on this value.
3144         */
3145        void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
3146            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
3147            VCFVelocityScale = scaling;
3148        }
3149    
3150      double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {      double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
3151    
3152          // line-segment approximations of the 15 velocity curves          // line-segment approximations of the 15 velocity curves
# Line 1383  namespace { Line 3180  namespace {
3180          const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,          const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
3181                               127, 127 };                               127, 127 };
3182    
3183            // this is only used by the VCF velocity curve
3184            const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
3185                                 91, 127, 127, 127 };
3186    
3187          const int* const curves[] = { non0, non1, non2, non3, non4,          const int* const curves[] = { non0, non1, non2, non3, non4,
3188                                        lin0, lin1, lin2, lin3, lin4,                                        lin0, lin1, lin2, lin3, lin4,
3189                                        spe0, spe1, spe2, spe3, spe4 };                                        spe0, spe1, spe2, spe3, spe4, spe5 };
3190    
3191          double* const table = new double[128];          double* const table = new double[128];
3192    
# Line 1425  namespace { Line 3226  namespace {
3226          }          }
3227          Layers = 1;          Layers = 1;
3228          File* file = (File*) GetParent()->GetParent();          File* file = (File*) GetParent()->GetParent();
3229          int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;          int dimensionBits = (file->pVersion && file->pVersion->major > 2) ? 8 : 5;
3230    
3231          // Actual Loading          // Actual Loading
3232    
3233            if (!file->GetAutoLoad()) return;
3234    
3235          LoadDimensionRegions(rgnList);          LoadDimensionRegions(rgnList);
3236    
3237          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
# Line 1437  namespace { Line 3240  namespace {
3240              for (int i = 0; i < dimensionBits; i++) {              for (int i = 0; i < dimensionBits; i++) {
3241                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
3242                  uint8_t     bits      = _3lnk->ReadUint8();                  uint8_t     bits      = _3lnk->ReadUint8();
3243                    _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
3244                    _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
3245                    uint8_t     zones     = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
3246                  if (dimension == dimension_none) { // inactive dimension                  if (dimension == dimension_none) { // inactive dimension
3247                      pDimensionDefinitions[i].dimension  = dimension_none;                      pDimensionDefinitions[i].dimension  = dimension_none;
3248                      pDimensionDefinitions[i].bits       = 0;                      pDimensionDefinitions[i].bits       = 0;
3249                      pDimensionDefinitions[i].zones      = 0;                      pDimensionDefinitions[i].zones      = 0;
3250                      pDimensionDefinitions[i].split_type = split_type_bit;                      pDimensionDefinitions[i].split_type = split_type_bit;
                     pDimensionDefinitions[i].ranges     = NULL;  
3251                      pDimensionDefinitions[i].zone_size  = 0;                      pDimensionDefinitions[i].zone_size  = 0;
3252                  }                  }
3253                  else { // active dimension                  else { // active dimension
3254                      pDimensionDefinitions[i].dimension = dimension;                      pDimensionDefinitions[i].dimension = dimension;
3255                      pDimensionDefinitions[i].bits      = bits;                      pDimensionDefinitions[i].bits      = bits;
3256                      pDimensionDefinitions[i].zones     = 0x01 << bits; // = pow(2,bits)                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)
3257                      pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||                      pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
3258                                                             dimension == dimension_samplechannel ||                      pDimensionDefinitions[i].zone_size  = __resolveZoneSize(pDimensionDefinitions[i]);
                                                            dimension == dimension_releasetrigger ||  
                                                            dimension == dimension_roundrobin ||  
                                                            dimension == dimension_random) ? split_type_bit  
                                                                                           : split_type_normal;  
                     pDimensionDefinitions[i].ranges = NULL; // it's not possible to check velocity dimensions for custom defined ranges at this point  
                     pDimensionDefinitions[i].zone_size  =  
                         (pDimensionDefinitions[i].split_type == split_type_normal) ? 128 / pDimensionDefinitions[i].zones  
                                                                                    : 0;  
3259                      Dimensions++;                      Dimensions++;
3260    
3261                      // if this is a layer dimension, remember the amount of layers                      // if this is a layer dimension, remember the amount of layers
3262                      if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;                      if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
3263                  }                  }
3264                  _3lnk->SetPos(6, RIFF::stream_curpos); // jump forward to next dimension definition                  _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
3265              }              }
3266                for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
3267    
3268              // check velocity dimension (if there is one) for custom defined zone ranges              // if there's a velocity dimension and custom velocity zone splits are used,
3269              for (uint i = 0; i < Dimensions; i++) {              // update the VelocityTables in the dimension regions
3270                  dimension_def_t* pDimDef = pDimensionDefinitions + i;              UpdateVelocityTable();
                 if (pDimDef->dimension == dimension_velocity) {  
                     if (pDimensionRegions[0]->VelocityUpperLimit == 0) {  
                         // no custom defined ranges  
                         pDimDef->split_type = split_type_normal;  
                         pDimDef->ranges     = NULL;  
                     }  
                     else { // custom defined ranges  
                         pDimDef->split_type = split_type_customvelocity;  
                         pDimDef->ranges     = new range_t[pDimDef->zones];  
                         uint8_t bits[8] = { 0 };  
                         int previousUpperLimit = -1;  
                         for (int velocityZone = 0; velocityZone < pDimDef->zones; velocityZone++) {  
                             bits[i] = velocityZone;  
                             DimensionRegion* pDimRegion = GetDimensionRegionByBit(bits);  
   
                             pDimDef->ranges[velocityZone].low  = previousUpperLimit + 1;  
                             pDimDef->ranges[velocityZone].high = pDimRegion->VelocityUpperLimit;  
                             previousUpperLimit = pDimDef->ranges[velocityZone].high;  
                             // fill velocity table  
                             for (int i = pDimDef->ranges[velocityZone].low; i <= pDimDef->ranges[velocityZone].high; i++) {  
                                 VelocityTable[i] = velocityZone;  
                             }  
                         }  
                     }  
                 }  
             }  
3271    
3272              // jump to start of the wave pool indices (if not already there)              // jump to start of the wave pool indices (if not already there)
3273              File* file = (File*) GetParent()->GetParent();              if (file->pVersion && file->pVersion->major > 2)
             if (file->pVersion && file->pVersion->major == 3)  
3274                  _3lnk->SetPos(68); // version 3 has a different 3lnk structure                  _3lnk->SetPos(68); // version 3 has a different 3lnk structure
3275              else              else
3276                  _3lnk->SetPos(44);                  _3lnk->SetPos(44);
3277    
3278              // load sample references              // load sample references (if auto loading is enabled)
3279              for (uint i = 0; i < DimensionRegions; i++) {              if (file->GetAutoLoad()) {
3280                  uint32_t wavepoolindex = _3lnk->ReadUint32();                  for (uint i = 0; i < DimensionRegions; i++) {
3281                  pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);                      uint32_t wavepoolindex = _3lnk->ReadUint32();
3282                        if (file->pWavePoolTable && pDimensionRegions[i])
3283                            pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
3284                    }
3285                    GetSample(); // load global region sample reference
3286              }              }
3287            } else {
3288                DimensionRegions = 0;
3289                for (int i = 0 ; i < 8 ; i++) {
3290                    pDimensionDefinitions[i].dimension  = dimension_none;
3291                    pDimensionDefinitions[i].bits       = 0;
3292                    pDimensionDefinitions[i].zones      = 0;
3293                }
3294            }
3295    
3296            // make sure there is at least one dimension region
3297            if (!DimensionRegions) {
3298                RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
3299                if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
3300                RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
3301                pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
3302                DimensionRegions = 1;
3303            }
3304        }
3305    
3306        /**
3307         * Apply Region settings and all its DimensionRegions to the respective
3308         * RIFF chunks. You have to call File::Save() to make changes persistent.
3309         *
3310         * Usually there is absolutely no need to call this method explicitly.
3311         * It will be called automatically when File::Save() was called.
3312         *
3313         * @param pProgress - callback function for progress notification
3314         * @throws gig::Exception if samples cannot be dereferenced
3315         */
3316        void Region::UpdateChunks(progress_t* pProgress) {
3317            // in the gig format we don't care about the Region's sample reference
3318            // but we still have to provide some existing one to not corrupt the
3319            // file, so to avoid the latter we simply always assign the sample of
3320            // the first dimension region of this region
3321            pSample = pDimensionRegions[0]->pSample;
3322    
3323            // first update base class's chunks
3324            DLS::Region::UpdateChunks(pProgress);
3325    
3326            // update dimension region's chunks
3327            for (int i = 0; i < DimensionRegions; i++) {
3328                pDimensionRegions[i]->UpdateChunks(pProgress);
3329            }
3330    
3331            File* pFile = (File*) GetParent()->GetParent();
3332            bool versiongt2 = pFile->pVersion && pFile->pVersion->major > 2;
3333            const int iMaxDimensions =  versiongt2 ? 8 : 5;
3334            const int iMaxDimensionRegions = versiongt2 ? 256 : 32;
3335    
3336            // make sure '3lnk' chunk exists
3337            RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3338            if (!_3lnk) {
3339                const int _3lnkChunkSize = versiongt2 ? 1092 : 172;
3340                _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3341                memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3342    
3343                // move 3prg to last position
3344                pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), (RIFF::Chunk*)NULL);
3345            }
3346    
3347            // update dimension definitions in '3lnk' chunk
3348            uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3349            store32(&pData[0], DimensionRegions);
3350            int shift = 0;
3351            for (int i = 0; i < iMaxDimensions; i++) {
3352                pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3353                pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3354                pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3355                pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3356                pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3357                // next 3 bytes unknown, always zero?
3358    
3359                shift += pDimensionDefinitions[i].bits;
3360            }
3361    
3362            // update wave pool table in '3lnk' chunk
3363            const int iWavePoolOffset = versiongt2 ? 68 : 44;
3364            for (uint i = 0; i < iMaxDimensionRegions; i++) {
3365                int iWaveIndex = -1;
3366                if (i < DimensionRegions) {
3367                    if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
3368                    File::SampleList::iterator iter = pFile->pSamples->begin();
3369                    File::SampleList::iterator end  = pFile->pSamples->end();
3370                    for (int index = 0; iter != end; ++iter, ++index) {
3371                        if (*iter == pDimensionRegions[i]->pSample) {
3372                            iWaveIndex = index;
3373                            break;
3374                        }
3375                    }
3376                }
3377                store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3378          }          }
         else throw gig::Exception("Mandatory <3lnk> chunk not found.");  
3379      }      }
3380    
3381      void Region::LoadDimensionRegions(RIFF::List* rgn) {      void Region::LoadDimensionRegions(RIFF::List* rgn) {
# Line 1520  namespace { Line 3385  namespace {
3385              RIFF::List* _3ewl = _3prg->GetFirstSubList();              RIFF::List* _3ewl = _3prg->GetFirstSubList();
3386              while (_3ewl) {              while (_3ewl) {
3387                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3388                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3389                      dimensionRegionNr++;                      dimensionRegionNr++;
3390                  }                  }
3391                  _3ewl = _3prg->GetNextSubList();                  _3ewl = _3prg->GetNextSubList();
# Line 1529  namespace { Line 3394  namespace {
3394          }          }
3395      }      }
3396    
3397      Region::~Region() {      void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3398          for (uint i = 0; i < Dimensions; i++) {          // update KeyRange struct and make sure regions are in correct order
3399              if (pDimensionDefinitions[i].ranges) delete[] pDimensionDefinitions[i].ranges;          DLS::Region::SetKeyRange(Low, High);
3400            // update Region key table for fast lookup
3401            ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3402        }
3403    
3404        void Region::UpdateVelocityTable() {
3405            // get velocity dimension's index
3406            int veldim = -1;
3407            for (int i = 0 ; i < Dimensions ; i++) {
3408                if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
3409                    veldim = i;
3410                    break;
3411                }
3412            }
3413            if (veldim == -1) return;
3414    
3415            int step = 1;
3416            for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3417            int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
3418    
3419            // loop through all dimension regions for all dimensions except the velocity dimension
3420            int dim[8] = { 0 };
3421            for (int i = 0 ; i < DimensionRegions ; i++) {
3422                const int end = i + step * pDimensionDefinitions[veldim].zones;
3423    
3424                // create a velocity table for all cases where the velocity zone is zero
3425                if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3426                    pDimensionRegions[i]->VelocityUpperLimit) {
3427                    // create the velocity table
3428                    uint8_t* table = pDimensionRegions[i]->VelocityTable;
3429                    if (!table) {
3430                        table = new uint8_t[128];
3431                        pDimensionRegions[i]->VelocityTable = table;
3432                    }
3433                    int tableidx = 0;
3434                    int velocityZone = 0;
3435                    if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
3436                        for (int k = i ; k < end ; k += step) {
3437                            DimensionRegion *d = pDimensionRegions[k];
3438                            for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
3439                            velocityZone++;
3440                        }
3441                    } else { // gig2
3442                        for (int k = i ; k < end ; k += step) {
3443                            DimensionRegion *d = pDimensionRegions[k];
3444                            for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
3445                            velocityZone++;
3446                        }
3447                    }
3448                } else {
3449                    if (pDimensionRegions[i]->VelocityTable) {
3450                        delete[] pDimensionRegions[i]->VelocityTable;
3451                        pDimensionRegions[i]->VelocityTable = 0;
3452                    }
3453                }
3454    
3455                // jump to the next case where the velocity zone is zero
3456                int j;
3457                int shift = 0;
3458                for (j = 0 ; j < Dimensions ; j++) {
3459                    if (j == veldim) i += skipveldim; // skip velocity dimension
3460                    else {
3461                        dim[j]++;
3462                        if (dim[j] < pDimensionDefinitions[j].zones) break;
3463                        else {
3464                            // skip unused dimension regions
3465                            dim[j] = 0;
3466                            i += ((1 << pDimensionDefinitions[j].bits) -
3467                                  pDimensionDefinitions[j].zones) << shift;
3468                        }
3469                    }
3470                    shift += pDimensionDefinitions[j].bits;
3471                }
3472                if (j == Dimensions) break;
3473            }
3474        }
3475    
3476        /** @brief Einstein would have dreamed of it - create a new dimension.
3477         *
3478         * Creates a new dimension with the dimension definition given by
3479         * \a pDimDef. The appropriate amount of DimensionRegions will be created.
3480         * There is a hard limit of dimensions and total amount of "bits" all
3481         * dimensions can have. This limit is dependant to what gig file format
3482         * version this file refers to. The gig v2 (and lower) format has a
3483         * dimension limit and total amount of bits limit of 5, whereas the gig v3
3484         * format has a limit of 8.
3485         *
3486         * @param pDimDef - defintion of the new dimension
3487         * @throws gig::Exception if dimension of the same type exists already
3488         * @throws gig::Exception if amount of dimensions or total amount of
3489         *                        dimension bits limit is violated
3490         */
3491        void Region::AddDimension(dimension_def_t* pDimDef) {
3492            // some initial sanity checks of the given dimension definition
3493            if (pDimDef->zones < 2)
3494                throw gig::Exception("Could not add new dimension, amount of requested zones must always be at least two");
3495            if (pDimDef->bits < 1)
3496                throw gig::Exception("Could not add new dimension, amount of requested requested zone bits must always be at least one");
3497            if (pDimDef->dimension == dimension_samplechannel) {
3498                if (pDimDef->zones != 2)
3499                    throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zones must always be 2 for this dimension type");
3500                if (pDimDef->bits != 1)
3501                    throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zone bits must always be 1 for this dimension type");
3502            }
3503    
3504            // check if max. amount of dimensions reached
3505            File* file = (File*) GetParent()->GetParent();
3506            const int iMaxDimensions = (file->pVersion && file->pVersion->major > 2) ? 8 : 5;
3507            if (Dimensions >= iMaxDimensions)
3508                throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
3509            // check if max. amount of dimension bits reached
3510            int iCurrentBits = 0;
3511            for (int i = 0; i < Dimensions; i++)
3512                iCurrentBits += pDimensionDefinitions[i].bits;
3513            if (iCurrentBits >= iMaxDimensions)
3514                throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
3515            const int iNewBits = iCurrentBits + pDimDef->bits;
3516            if (iNewBits > iMaxDimensions)
3517                throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
3518            // check if there's already a dimensions of the same type
3519            for (int i = 0; i < Dimensions; i++)
3520                if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3521                    throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3522    
3523            // pos is where the new dimension should be placed, normally
3524            // last in list, except for the samplechannel dimension which
3525            // has to be first in list
3526            int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3527            int bitpos = 0;
3528            for (int i = 0 ; i < pos ; i++)
3529                bitpos += pDimensionDefinitions[i].bits;
3530    
3531            // make room for the new dimension
3532            for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3533            for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3534                for (int j = Dimensions ; j > pos ; j--) {
3535                    pDimensionRegions[i]->DimensionUpperLimits[j] =
3536                        pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3537                }
3538            }
3539    
3540            // assign definition of new dimension
3541            pDimensionDefinitions[pos] = *pDimDef;
3542    
3543            // auto correct certain dimension definition fields (where possible)
3544            pDimensionDefinitions[pos].split_type  =
3545                __resolveSplitType(pDimensionDefinitions[pos].dimension);
3546            pDimensionDefinitions[pos].zone_size =
3547                __resolveZoneSize(pDimensionDefinitions[pos]);
3548    
3549            // create new dimension region(s) for this new dimension, and make
3550            // sure that the dimension regions are placed correctly in both the
3551            // RIFF list and the pDimensionRegions array
3552            RIFF::Chunk* moveTo = NULL;
3553            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3554            for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3555                for (int k = 0 ; k < (1 << bitpos) ; k++) {
3556                    pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3557                }
3558                for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3559                    for (int k = 0 ; k < (1 << bitpos) ; k++) {
3560                        RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3561                        if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3562                        // create a new dimension region and copy all parameter values from
3563                        // an existing dimension region
3564                        pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3565                            new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3566    
3567                        DimensionRegions++;
3568                    }
3569                }
3570                moveTo = pDimensionRegions[i]->pParentList;
3571            }
3572    
3573            // initialize the upper limits for this dimension
3574            int mask = (1 << bitpos) - 1;
3575            for (int z = 0 ; z < pDimDef->zones ; z++) {
3576                uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3577                for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3578                    pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3579                                      (z << bitpos) |
3580                                      (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3581                }
3582            }
3583    
3584            Dimensions++;
3585    
3586            // if this is a layer dimension, update 'Layers' attribute
3587            if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
3588    
3589            UpdateVelocityTable();
3590        }
3591    
3592        /** @brief Delete an existing dimension.
3593         *
3594         * Deletes the dimension given by \a pDimDef and deletes all respective
3595         * dimension regions, that is all dimension regions where the dimension's
3596         * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
3597         * for example this would delete all dimension regions for the case(s)
3598         * where the sustain pedal is pressed down.
3599         *
3600         * @param pDimDef - dimension to delete
3601         * @throws gig::Exception if given dimension cannot be found
3602         */
3603        void Region::DeleteDimension(dimension_def_t* pDimDef) {
3604            // get dimension's index
3605            int iDimensionNr = -1;
3606            for (int i = 0; i < Dimensions; i++) {
3607                if (&pDimensionDefinitions[i] == pDimDef) {
3608                    iDimensionNr = i;
3609                    break;
3610                }
3611            }
3612            if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
3613    
3614            // get amount of bits below the dimension to delete
3615            int iLowerBits = 0;
3616            for (int i = 0; i < iDimensionNr; i++)
3617                iLowerBits += pDimensionDefinitions[i].bits;
3618    
3619            // get amount ot bits above the dimension to delete
3620            int iUpperBits = 0;
3621            for (int i = iDimensionNr + 1; i < Dimensions; i++)
3622                iUpperBits += pDimensionDefinitions[i].bits;
3623    
3624            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3625    
3626            // delete dimension regions which belong to the given dimension
3627            // (that is where the dimension's bit > 0)
3628            for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
3629                for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
3630                    for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
3631                        int iToDelete = iUpperBit    << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3632                                        iObsoleteBit << iLowerBits |
3633                                        iLowerBit;
3634    
3635                        _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3636                        delete pDimensionRegions[iToDelete];
3637                        pDimensionRegions[iToDelete] = NULL;
3638                        DimensionRegions--;
3639                    }
3640                }
3641            }
3642    
3643            // defrag pDimensionRegions array
3644            // (that is remove the NULL spaces within the pDimensionRegions array)
3645            for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
3646                if (!pDimensionRegions[iTo]) {
3647                    if (iFrom <= iTo) iFrom = iTo + 1;
3648                    while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
3649                    if (iFrom < 256 && pDimensionRegions[iFrom]) {
3650                        pDimensionRegions[iTo]   = pDimensionRegions[iFrom];
3651                        pDimensionRegions[iFrom] = NULL;
3652                    }
3653                }
3654            }
3655    
3656            // remove the this dimension from the upper limits arrays
3657            for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3658                DimensionRegion* d = pDimensionRegions[j];
3659                for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3660                    d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3661                }
3662                d->DimensionUpperLimits[Dimensions - 1] = 127;
3663            }
3664    
3665            // 'remove' dimension definition
3666            for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3667                pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
3668          }          }
3669            pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
3670            pDimensionDefinitions[Dimensions - 1].bits      = 0;
3671            pDimensionDefinitions[Dimensions - 1].zones     = 0;
3672    
3673            Dimensions--;
3674    
3675            // if this was a layer dimension, update 'Layers' attribute
3676            if (pDimDef->dimension == dimension_layer) Layers = 1;
3677        }
3678    
3679        /** @brief Delete one split zone of a dimension (decrement zone amount).
3680         *
3681         * Instead of deleting an entire dimensions, this method will only delete
3682         * one particular split zone given by @a zone of the Region's dimension
3683         * given by @a type. So this method will simply decrement the amount of
3684         * zones by one of the dimension in question. To be able to do that, the
3685         * respective dimension must exist on this Region and it must have at least
3686         * 3 zones. All DimensionRegion objects associated with the zone will be
3687         * deleted.
3688         *
3689         * @param type - identifies the dimension where a zone shall be deleted
3690         * @param zone - index of the dimension split zone that shall be deleted
3691         * @throws gig::Exception if requested zone could not be deleted
3692         */
3693        void Region::DeleteDimensionZone(dimension_t type, int zone) {
3694            dimension_def_t* oldDef = GetDimensionDefinition(type);
3695            if (!oldDef)
3696                throw gig::Exception("Could not delete dimension zone, no such dimension of given type");
3697            if (oldDef->zones <= 2)
3698                throw gig::Exception("Could not delete dimension zone, because it would end up with only one zone.");
3699            if (zone < 0 || zone >= oldDef->zones)
3700                throw gig::Exception("Could not delete dimension zone, requested zone index out of bounds.");
3701    
3702            const int newZoneSize = oldDef->zones - 1;
3703    
3704            // create a temporary Region which just acts as a temporary copy
3705            // container and will be deleted at the end of this function and will
3706            // also not be visible through the API during this process
3707            gig::Region* tempRgn = NULL;
3708            {
3709                // adding these temporary chunks is probably not even necessary
3710                Instrument* instr = static_cast<Instrument*>(GetParent());
3711                RIFF::List* pCkInstrument = instr->pCkInstrument;
3712                RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3713                if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3714                RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3715                tempRgn = new Region(instr, rgn);
3716            }
3717    
3718            // copy this region's dimensions (with already the dimension split size
3719            // requested by the arguments of this method call) to the temporary
3720            // region, and don't use Region::CopyAssign() here for this task, since
3721            // it would also alter fast lookup helper variables here and there
3722            dimension_def_t newDef;
3723            for (int i = 0; i < Dimensions; ++i) {
3724                dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3725                // is this the dimension requested by the method arguments? ...
3726                if (def.dimension == type) { // ... if yes, decrement zone amount by one
3727                    def.zones = newZoneSize;
3728                    if ((1 << (def.bits - 1)) == def.zones) def.bits--;
3729                    newDef = def;
3730                }
3731                tempRgn->AddDimension(&def);
3732            }
3733    
3734            // find the dimension index in the tempRegion which is the dimension
3735            // type passed to this method (paranoidly expecting different order)
3736            int tempReducedDimensionIndex = -1;
3737            for (int d = 0; d < tempRgn->Dimensions; ++d) {
3738                if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3739                    tempReducedDimensionIndex = d;
3740                    break;
3741                }
3742            }
3743    
3744            // copy dimension regions from this region to the temporary region
3745            for (int iDst = 0; iDst < 256; ++iDst) {
3746                DimensionRegion* dstDimRgn = tempRgn->pDimensionRegions[iDst];
3747                if (!dstDimRgn) continue;
3748                std::map<dimension_t,int> dimCase;
3749                bool isValidZone = true;
3750                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3751                    const int dstBits = tempRgn->pDimensionDefinitions[d].bits;
3752                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3753                        (iDst >> baseBits) & ((1 << dstBits) - 1);
3754                    baseBits += dstBits;
3755                    // there are also DimensionRegion objects of unused zones, skip them
3756                    if (dimCase[tempRgn->pDimensionDefinitions[d].dimension] >= tempRgn->pDimensionDefinitions[d].zones) {
3757                        isValidZone = false;
3758                        break;
3759                    }
3760                }
3761                if (!isValidZone) continue;
3762                // a bit paranoid: cope with the chance that the dimensions would
3763                // have different order in source and destination regions
3764                const bool isLastZone = (dimCase[type] == newZoneSize - 1);
3765                if (dimCase[type] >= zone) dimCase[type]++;
3766                DimensionRegion* srcDimRgn = GetDimensionRegionByBit(dimCase);
3767                dstDimRgn->CopyAssign(srcDimRgn);
3768                // if this is the upper most zone of the dimension passed to this
3769                // method, then correct (raise) its upper limit to 127
3770                if (newDef.split_type == split_type_normal && isLastZone)
3771                    dstDimRgn->DimensionUpperLimits[tempReducedDimensionIndex] = 127;
3772            }
3773    
3774            // now tempRegion's dimensions and DimensionRegions basically reflect
3775            // what we wanted to get for this actual Region here, so we now just
3776            // delete and recreate the dimension in question with the new amount
3777            // zones and then copy back from tempRegion      
3778            DeleteDimension(oldDef);
3779            AddDimension(&newDef);
3780            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3781                DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3782                if (!srcDimRgn) continue;
3783                std::map<dimension_t,int> dimCase;
3784                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3785                    const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3786                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3787                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3788                    baseBits += srcBits;
3789                }
3790                // a bit paranoid: cope with the chance that the dimensions would
3791                // have different order in source and destination regions
3792                DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3793                if (!dstDimRgn) continue;
3794                dstDimRgn->CopyAssign(srcDimRgn);
3795            }
3796    
3797            // delete temporary region
3798            delete tempRgn;
3799    
3800            UpdateVelocityTable();
3801        }
3802    
3803        /** @brief Divide split zone of a dimension in two (increment zone amount).
3804         *
3805         * This will increment the amount of zones for the dimension (given by
3806         * @a type) by one. It will do so by dividing the zone (given by @a zone)
3807         * in the middle of its zone range in two. So the two zones resulting from
3808         * the zone being splitted, will be an equivalent copy regarding all their
3809         * articulation informations and sample reference. The two zones will only
3810         * differ in their zone's upper limit
3811         * (DimensionRegion::DimensionUpperLimits).
3812         *
3813         * @param type - identifies the dimension where a zone shall be splitted
3814         * @param zone - index of the dimension split zone that shall be splitted
3815         * @throws gig::Exception if requested zone could not be splitted
3816         */
3817        void Region::SplitDimensionZone(dimension_t type, int zone) {
3818            dimension_def_t* oldDef = GetDimensionDefinition(type);
3819            if (!oldDef)
3820                throw gig::Exception("Could not split dimension zone, no such dimension of given type");
3821            if (zone < 0 || zone >= oldDef->zones)
3822                throw gig::Exception("Could not split dimension zone, requested zone index out of bounds.");
3823    
3824            const int newZoneSize = oldDef->zones + 1;
3825    
3826            // create a temporary Region which just acts as a temporary copy
3827            // container and will be deleted at the end of this function and will
3828            // also not be visible through the API during this process
3829            gig::Region* tempRgn = NULL;
3830            {
3831                // adding these temporary chunks is probably not even necessary
3832                Instrument* instr = static_cast<Instrument*>(GetParent());
3833                RIFF::List* pCkInstrument = instr->pCkInstrument;
3834                RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3835                if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3836                RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3837                tempRgn = new Region(instr, rgn);
3838            }
3839    
3840            // copy this region's dimensions (with already the dimension split size
3841            // requested by the arguments of this method call) to the temporary
3842            // region, and don't use Region::CopyAssign() here for this task, since
3843            // it would also alter fast lookup helper variables here and there
3844            dimension_def_t newDef;
3845            for (int i = 0; i < Dimensions; ++i) {
3846                dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3847                // is this the dimension requested by the method arguments? ...
3848                if (def.dimension == type) { // ... if yes, increment zone amount by one
3849                    def.zones = newZoneSize;
3850                    if ((1 << oldDef->bits) < newZoneSize) def.bits++;
3851                    newDef = def;
3852                }
3853                tempRgn->AddDimension(&def);
3854            }
3855    
3856            // find the dimension index in the tempRegion which is the dimension
3857            // type passed to this method (paranoidly expecting different order)
3858            int tempIncreasedDimensionIndex = -1;
3859            for (int d = 0; d < tempRgn->Dimensions; ++d) {
3860                if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3861                    tempIncreasedDimensionIndex = d;
3862                    break;
3863                }
3864            }
3865    
3866            // copy dimension regions from this region to the temporary region
3867            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3868                DimensionRegion* srcDimRgn = pDimensionRegions[iSrc];
3869                if (!srcDimRgn) continue;
3870                std::map<dimension_t,int> dimCase;
3871                bool isValidZone = true;
3872                for (int d = 0, baseBits = 0; d < Dimensions; ++d) {
3873                    const int srcBits = pDimensionDefinitions[d].bits;
3874                    dimCase[pDimensionDefinitions[d].dimension] =
3875                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3876                    // there are also DimensionRegion objects for unused zones, skip them
3877                    if (dimCase[pDimensionDefinitions[d].dimension] >= pDimensionDefinitions[d].zones) {
3878                        isValidZone = false;
3879                        break;
3880                    }
3881                    baseBits += srcBits;
3882                }
3883                if (!isValidZone) continue;
3884                // a bit paranoid: cope with the chance that the dimensions would
3885                // have different order in source and destination regions            
3886                if (dimCase[type] > zone) dimCase[type]++;
3887                DimensionRegion* dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3888                dstDimRgn->CopyAssign(srcDimRgn);
3889                // if this is the requested zone to be splitted, then also copy
3890                // the source DimensionRegion to the newly created target zone
3891                // and set the old zones upper limit lower
3892                if (dimCase[type] == zone) {
3893                    // lower old zones upper limit
3894                    if (newDef.split_type == split_type_normal) {
3895                        const int high =
3896                            dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex];
3897                        int low = 0;
3898                        if (zone > 0) {
3899                            std::map<dimension_t,int> lowerCase = dimCase;
3900                            lowerCase[type]--;
3901                            DimensionRegion* dstDimRgnLow = tempRgn->GetDimensionRegionByBit(lowerCase);
3902                            low = dstDimRgnLow->DimensionUpperLimits[tempIncreasedDimensionIndex];
3903                        }
3904                        dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex] = low + (high - low) / 2;
3905                    }
3906                    // fill the newly created zone of the divided zone as well
3907                    dimCase[type]++;
3908                    dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3909                    dstDimRgn->CopyAssign(srcDimRgn);
3910                }
3911            }
3912    
3913            // now tempRegion's dimensions and DimensionRegions basically reflect
3914            // what we wanted to get for this actual Region here, so we now just
3915            // delete and recreate the dimension in question with the new amount
3916            // zones and then copy back from tempRegion      
3917            DeleteDimension(oldDef);
3918            AddDimension(&newDef);
3919            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3920                DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3921                if (!srcDimRgn) continue;
3922                std::map<dimension_t,int> dimCase;
3923                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3924                    const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3925                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3926                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3927                    baseBits += srcBits;
3928                }
3929                // a bit paranoid: cope with the chance that the dimensions would
3930                // have different order in source and destination regions
3931                DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3932                if (!dstDimRgn) continue;
3933                dstDimRgn->CopyAssign(srcDimRgn);
3934            }
3935    
3936            // delete temporary region
3937            delete tempRgn;
3938    
3939            UpdateVelocityTable();
3940        }
3941    
3942        /** @brief Change type of an existing dimension.
3943         *
3944         * Alters the dimension type of a dimension already existing on this
3945         * region. If there is currently no dimension on this Region with type
3946         * @a oldType, then this call with throw an Exception. Likewise there are
3947         * cases where the requested dimension type cannot be performed. For example
3948         * if the new dimension type shall be gig::dimension_samplechannel, and the
3949         * current dimension has more than 2 zones. In such cases an Exception is
3950         * thrown as well.
3951         *
3952         * @param oldType - identifies the existing dimension to be changed
3953         * @param newType - to which dimension type it should be changed to
3954         * @throws gig::Exception if requested change cannot be performed
3955         */
3956        void Region::SetDimensionType(dimension_t oldType, dimension_t newType) {
3957            if (oldType == newType) return;
3958            dimension_def_t* def = GetDimensionDefinition(oldType);
3959            if (!def)
3960                throw gig::Exception("No dimension with provided old dimension type exists on this region");
3961            if (newType == dimension_samplechannel && def->zones != 2)
3962                throw gig::Exception("Cannot change to dimension type 'sample channel', because existing dimension does not have 2 zones");
3963            if (GetDimensionDefinition(newType))
3964                throw gig::Exception("There is already a dimension with requested new dimension type on this region");
3965            def->dimension  = newType;
3966            def->split_type = __resolveSplitType(newType);
3967        }
3968    
3969        DimensionRegion* Region::GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase) {
3970            uint8_t bits[8] = {};
3971            for (std::map<dimension_t,int>::const_iterator it = DimCase.begin();
3972                 it != DimCase.end(); ++it)
3973            {
3974                for (int d = 0; d < Dimensions; ++d) {
3975                    if (pDimensionDefinitions[d].dimension == it->first) {
3976                        bits[d] = it->second;
3977                        goto nextDimCaseSlice;
3978                    }
3979                }
3980                assert(false); // do crash ... too harsh maybe ? ignore it instead ?
3981                nextDimCaseSlice:
3982                ; // noop
3983            }
3984            return GetDimensionRegionByBit(bits);
3985        }
3986    
3987        /**
3988         * Searches in the current Region for a dimension of the given dimension
3989         * type and returns the precise configuration of that dimension in this
3990         * Region.
3991         *
3992         * @param type - dimension type of the sought dimension
3993         * @returns dimension definition or NULL if there is no dimension with
3994         *          sought type in this Region.
3995         */
3996        dimension_def_t* Region::GetDimensionDefinition(dimension_t type) {
3997            for (int i = 0; i < Dimensions; ++i)
3998                if (pDimensionDefinitions[i].dimension == type)
3999                    return &pDimensionDefinitions[i];
4000            return NULL;
4001        }
4002    
4003        Region::~Region() {
4004          for (int i = 0; i < 256; i++) {          for (int i = 0; i < 256; i++) {
4005              if (pDimensionRegions[i]) delete pDimensionRegions[i];              if (pDimensionRegions[i]) delete pDimensionRegions[i];
4006          }          }
# Line 1557  namespace { Line 4025  namespace {
4025       * @see             Dimensions       * @see             Dimensions
4026       */       */
4027      DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {      DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
4028          uint8_t bits[8] = { 0 };          uint8_t bits;
4029            int veldim = -1;
4030            int velbitpos = 0;
4031            int bitpos = 0;
4032            int dimregidx = 0;
4033          for (uint i = 0; i < Dimensions; i++) {          for (uint i = 0; i < Dimensions; i++) {
4034              bits[i] = DimValues[i];              if (pDimensionDefinitions[i].dimension == dimension_velocity) {
4035              switch (pDimensionDefinitions[i].split_type) {                  // the velocity dimension must be handled after the other dimensions
4036                  case split_type_normal:                  veldim = i;
4037                      bits[i] /= pDimensionDefinitions[i].zone_size;                  velbitpos = bitpos;
4038                      break;              } else {
4039                  case split_type_customvelocity:                  switch (pDimensionDefinitions[i].split_type) {
4040                      bits[i] = VelocityTable[bits[i]];                      case split_type_normal:
4041                      break;                          if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
4042                  case split_type_bit: // the value is already the sought dimension bit number                              // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
4043                      const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;                              for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
4044                      bits[i] = bits[i] & limiter_mask; // just make sure the value don't uses more bits than allowed                                  if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
4045                      break;                              }
4046                            } else {
4047                                // gig2: evenly sized zones
4048                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
4049                            }
4050                            break;
4051                        case split_type_bit: // the value is already the sought dimension bit number
4052                            const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
4053                            bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
4054                            break;
4055                    }
4056                    dimregidx |= bits << bitpos;
4057              }              }
4058                bitpos += pDimensionDefinitions[i].bits;
4059          }          }
4060          return GetDimensionRegionByBit(bits);          DimensionRegion* dimreg = pDimensionRegions[dimregidx & 255];
4061            if (!dimreg) return NULL;
4062            if (veldim != -1) {
4063                // (dimreg is now the dimension region for the lowest velocity)
4064                if (dimreg->VelocityTable) // custom defined zone ranges
4065                    bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4066                else // normal split type
4067                    bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4068    
4069                const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4070                dimregidx |= (bits & limiter_mask) << velbitpos;
4071                dimreg = pDimensionRegions[dimregidx & 255];
4072            }
4073            return dimreg;
4074        }
4075    
4076        int Region::GetDimensionRegionIndexByValue(const uint DimValues[8]) {
4077            uint8_t bits;
4078            int veldim = -1;
4079            int velbitpos = 0;
4080            int bitpos = 0;
4081            int dimregidx = 0;
4082            for (uint i = 0; i < Dimensions; i++) {
4083                if (pDimensionDefinitions[i].dimension == dimension_velocity) {
4084                    // the velocity dimension must be handled after the other dimensions
4085                    veldim = i;
4086                    velbitpos = bitpos;
4087                } else {
4088                    switch (pDimensionDefinitions[i].split_type) {
4089                        case split_type_normal:
4090                            if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
4091                                // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
4092                                for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
4093                                    if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
4094                                }
4095                            } else {
4096                                // gig2: evenly sized zones
4097                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
4098                            }
4099                            break;
4100                        case split_type_bit: // the value is already the sought dimension bit number
4101                            const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
4102                            bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
4103                            break;
4104                    }
4105                    dimregidx |= bits << bitpos;
4106                }
4107                bitpos += pDimensionDefinitions[i].bits;
4108            }
4109            dimregidx &= 255;
4110            DimensionRegion* dimreg = pDimensionRegions[dimregidx];
4111            if (!dimreg) return -1;
4112            if (veldim != -1) {
4113                // (dimreg is now the dimension region for the lowest velocity)
4114                if (dimreg->VelocityTable) // custom defined zone ranges
4115                    bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4116                else // normal split type
4117                    bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4118    
4119                const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4120                dimregidx |= (bits & limiter_mask) << velbitpos;
4121                dimregidx &= 255;
4122            }
4123            return dimregidx;
4124      }      }
4125    
4126      /**      /**
# Line 1613  namespace { Line 4160  namespace {
4160      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
4161          if ((int32_t)WavePoolTableIndex == -1) return NULL;          if ((int32_t)WavePoolTableIndex == -1) return NULL;
4162          File* file = (File*) GetParent()->GetParent();          File* file = (File*) GetParent()->GetParent();
4163          unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];          if (!file->pWavePoolTable) return NULL;
4164          unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];          if (WavePoolTableIndex + 1 > file->WavePoolCount) return NULL;
4165          Sample* sample = file->GetFirstSample(pProgress);          // for new files or files >= 2 GB use 64 bit wave pool offsets
4166          while (sample) {          if (file->pRIFF->IsNew() || (file->pRIFF->GetCurrentFileSize() >> 31)) {
4167              if (sample->ulWavePoolOffset == soughtoffset &&              // use 64 bit wave pool offsets (treating this as large file)
4168                  sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(pSample = sample);              uint64_t soughtoffset =
4169              sample = file->GetNextSample();                  uint64_t(file->pWavePoolTable[WavePoolTableIndex]) |
4170                    uint64_t(file->pWavePoolTableHi[WavePoolTableIndex]) << 32;
4171                Sample* sample = file->GetFirstSample(pProgress);
4172                while (sample) {
4173                    if (sample->ullWavePoolOffset == soughtoffset)
4174                        return static_cast<gig::Sample*>(sample);
4175                    sample = file->GetNextSample();
4176                }
4177            } else {
4178                // use extension files and 32 bit wave pool offsets
4179                file_offset_t soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
4180                file_offset_t soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
4181                Sample* sample = file->GetFirstSample(pProgress);
4182                while (sample) {
4183                    if (sample->ullWavePoolOffset == soughtoffset &&
4184                        sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
4185                    sample = file->GetNextSample();
4186                }
4187            }
4188            return NULL;
4189        }
4190        
4191        /**
4192         * Make a (semi) deep copy of the Region object given by @a orig
4193         * and assign it to this object.
4194         *
4195         * Note that all sample pointers referenced by @a orig are simply copied as
4196         * memory address. Thus the respective samples are shared, not duplicated!
4197         *
4198         * @param orig - original Region object to be copied from
4199         */
4200        void Region::CopyAssign(const Region* orig) {
4201            CopyAssign(orig, NULL);
4202        }
4203        
4204        /**
4205         * Make a (semi) deep copy of the Region object given by @a orig and
4206         * assign it to this object
4207         *
4208         * @param mSamples - crosslink map between the foreign file's samples and
4209         *                   this file's samples
4210         */
4211        void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
4212            // handle base classes
4213            DLS::Region::CopyAssign(orig);
4214            
4215            if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
4216                pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
4217            }
4218            
4219            // handle own member variables
4220            for (int i = Dimensions - 1; i >= 0; --i) {
4221                DeleteDimension(&pDimensionDefinitions[i]);
4222            }
4223            Layers = 0; // just to be sure
4224            for (int i = 0; i < orig->Dimensions; i++) {
4225                // we need to copy the dim definition here, to avoid the compiler
4226                // complaining about const-ness issue
4227                dimension_def_t def = orig->pDimensionDefinitions[i];
4228                AddDimension(&def);
4229            }
4230            for (int i = 0; i < 256; i++) {
4231                if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
4232                    pDimensionRegions[i]->CopyAssign(
4233                        orig->pDimensionRegions[i],
4234                        mSamples
4235                    );
4236                }
4237            }
4238            Layers = orig->Layers;
4239        }
4240    
4241    
4242    // *************** MidiRule ***************
4243    // *
4244    
4245        MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
4246            _3ewg->SetPos(36);
4247            Triggers = _3ewg->ReadUint8();
4248            _3ewg->SetPos(40);
4249            ControllerNumber = _3ewg->ReadUint8();
4250            _3ewg->SetPos(46);
4251            for (int i = 0 ; i < Triggers ; i++) {
4252                pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
4253                pTriggers[i].Descending = _3ewg->ReadUint8();
4254                pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
4255                pTriggers[i].Key = _3ewg->ReadUint8();
4256                pTriggers[i].NoteOff = _3ewg->ReadUint8();
4257                pTriggers[i].Velocity = _3ewg->ReadUint8();
4258                pTriggers[i].OverridePedal = _3ewg->ReadUint8();
4259                _3ewg->ReadUint8();
4260            }
4261        }
4262    
4263        MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
4264            ControllerNumber(0),
4265            Triggers(0) {
4266        }
4267    
4268        void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
4269            pData[32] = 4;
4270            pData[33] = 16;
4271            pData[36] = Triggers;
4272            pData[40] = ControllerNumber;
4273            for (int i = 0 ; i < Triggers ; i++) {
4274                pData[46 + i * 8] = pTriggers[i].TriggerPoint;
4275                pData[47 + i * 8] = pTriggers[i].Descending;
4276                pData[48 + i * 8] = pTriggers[i].VelSensitivity;
4277                pData[49 + i * 8] = pTriggers[i].Key;
4278                pData[50 + i * 8] = pTriggers[i].NoteOff;
4279                pData[51 + i * 8] = pTriggers[i].Velocity;
4280                pData[52 + i * 8] = pTriggers[i].OverridePedal;
4281            }
4282        }
4283    
4284        MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
4285            _3ewg->SetPos(36);
4286            LegatoSamples = _3ewg->ReadUint8(); // always 12
4287            _3ewg->SetPos(40);
4288            BypassUseController = _3ewg->ReadUint8();
4289            BypassKey = _3ewg->ReadUint8();
4290            BypassController = _3ewg->ReadUint8();
4291            ThresholdTime = _3ewg->ReadUint16();
4292            _3ewg->ReadInt16();
4293            ReleaseTime = _3ewg->ReadUint16();
4294            _3ewg->ReadInt16();
4295            KeyRange.low = _3ewg->ReadUint8();
4296            KeyRange.high = _3ewg->ReadUint8();
4297            _3ewg->SetPos(64);
4298            ReleaseTriggerKey = _3ewg->ReadUint8();
4299            AltSustain1Key = _3ewg->ReadUint8();
4300            AltSustain2Key = _3ewg->ReadUint8();
4301        }
4302    
4303        MidiRuleLegato::MidiRuleLegato() :
4304            LegatoSamples(12),
4305            BypassUseController(false),
4306            BypassKey(0),
4307            BypassController(1),
4308            ThresholdTime(20),
4309            ReleaseTime(20),
4310            ReleaseTriggerKey(0),
4311            AltSustain1Key(0),
4312            AltSustain2Key(0)
4313        {
4314            KeyRange.low = KeyRange.high = 0;
4315        }
4316    
4317        void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
4318            pData[32] = 0;
4319            pData[33] = 16;
4320            pData[36] = LegatoSamples;
4321            pData[40] = BypassUseController;
4322            pData[41] = BypassKey;
4323            pData[42] = BypassController;
4324            store16(&pData[43], ThresholdTime);
4325            store16(&pData[47], ReleaseTime);
4326            pData[51] = KeyRange.low;
4327            pData[52] = KeyRange.high;
4328            pData[64] = ReleaseTriggerKey;
4329            pData[65] = AltSustain1Key;
4330            pData[66] = AltSustain2Key;
4331        }
4332    
4333        MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
4334            _3ewg->SetPos(36);
4335            Articulations = _3ewg->ReadUint8();
4336            int flags = _3ewg->ReadUint8();
4337            Polyphonic = flags & 8;
4338            Chained = flags & 4;
4339            Selector = (flags & 2) ? selector_controller :
4340                (flags & 1) ? selector_key_switch : selector_none;
4341            Patterns = _3ewg->ReadUint8();
4342            _3ewg->ReadUint8(); // chosen row
4343            _3ewg->ReadUint8(); // unknown
4344            _3ewg->ReadUint8(); // unknown
4345            _3ewg->ReadUint8(); // unknown
4346            KeySwitchRange.low = _3ewg->ReadUint8();
4347            KeySwitchRange.high = _3ewg->ReadUint8();
4348            Controller = _3ewg->ReadUint8();
4349            PlayRange.low = _3ewg->ReadUint8();
4350            PlayRange.high = _3ewg->ReadUint8();
4351    
4352            int n = std::min(int(Articulations), 32);
4353            for (int i = 0 ; i < n ; i++) {
4354                _3ewg->ReadString(pArticulations[i], 32);
4355            }
4356            _3ewg->SetPos(1072);
4357            n = std::min(int(Patterns), 32);
4358            for (int i = 0 ; i < n ; i++) {
4359                _3ewg->ReadString(pPatterns[i].Name, 16);
4360                pPatterns[i].Size = _3ewg->ReadUint8();
4361                _3ewg->Read(&pPatterns[i][0], 1, 32);
4362            }
4363        }
4364    
4365        MidiRuleAlternator::MidiRuleAlternator() :
4366            Articulations(0),
4367            Patterns(0),
4368            Selector(selector_none),
4369            Controller(0),
4370            Polyphonic(false),
4371            Chained(false)
4372        {
4373            PlayRange.low = PlayRange.high = 0;
4374            KeySwitchRange.low = KeySwitchRange.high = 0;
4375        }
4376    
4377        void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
4378            pData[32] = 3;
4379            pData[33] = 16;
4380            pData[36] = Articulations;
4381            pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
4382                (Selector == selector_controller ? 2 :
4383                 (Selector == selector_key_switch ? 1 : 0));
4384            pData[38] = Patterns;
4385    
4386            pData[43] = KeySwitchRange.low;
4387            pData[44] = KeySwitchRange.high;
4388            pData[45] = Controller;
4389            pData[46] = PlayRange.low;
4390            pData[47] = PlayRange.high;
4391    
4392            char* str = reinterpret_cast<char*>(pData);
4393            int pos = 48;
4394            int n = std::min(int(Articulations), 32);
4395            for (int i = 0 ; i < n ; i++, pos += 32) {
4396                strncpy(&str[pos], pArticulations[i].c_str(), 32);
4397            }
4398    
4399            pos = 1072;
4400            n = std::min(int(Patterns), 32);
4401            for (int i = 0 ; i < n ; i++, pos += 49) {
4402                strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
4403                pData[pos + 16] = pPatterns[i].Size;
4404                memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
4405            }
4406        }
4407    
4408    // *************** Script ***************
4409    // *
4410    
4411        Script::Script(ScriptGroup* group, RIFF::Chunk* ckScri) {
4412            pGroup = group;
4413            pChunk = ckScri;
4414            if (ckScri) { // object is loaded from file ...
4415                // read header
4416                uint32_t headerSize = ckScri->ReadUint32();
4417                Compression = (Compression_t) ckScri->ReadUint32();
4418                Encoding    = (Encoding_t) ckScri->ReadUint32();
4419                Language    = (Language_t) ckScri->ReadUint32();
4420                Bypass      = (Language_t) ckScri->ReadUint32() & 1;
4421                crc         = ckScri->ReadUint32();
4422                uint32_t nameSize = ckScri->ReadUint32();
4423                Name.resize(nameSize, ' ');
4424                for (int i = 0; i < nameSize; ++i)
4425                    Name[i] = ckScri->ReadUint8();
4426                // to handle potential future extensions of the header
4427                ckScri->SetPos(sizeof(int32_t) + headerSize);
4428                // read actual script data
4429                uint32_t scriptSize = uint32_t(ckScri->GetSize() - ckScri->GetPos());
4430                data.resize(scriptSize);
4431                for (int i = 0; i < scriptSize; ++i)
4432                    data[i] = ckScri->ReadUint8();
4433            } else { // this is a new script object, so just initialize it as such ...
4434                Compression = COMPRESSION_NONE;
4435                Encoding = ENCODING_ASCII;
4436                Language = LANGUAGE_NKSP;
4437                Bypass   = false;
4438                crc      = 0;
4439                Name     = "Unnamed Script";
4440            }
4441        }
4442    
4443        Script::~Script() {
4444        }
4445    
4446        /**
4447         * Returns the current script (i.e. as source code) in text format.
4448         */
4449        String Script::GetScriptAsText() {
4450            String s;
4451            s.resize(data.size(), ' ');
4452            memcpy(&s[0], &data[0], data.size());
4453            return s;
4454        }
4455    
4456        /**
4457         * Replaces the current script with the new script source code text given
4458         * by @a text.
4459         *
4460         * @param text - new script source code
4461         */
4462        void Script::SetScriptAsText(const String& text) {
4463            data.resize(text.size());
4464            memcpy(&data[0], &text[0], text.size());
4465        }
4466    
4467        /**
4468         * Apply this script to the respective RIFF chunks. You have to call
4469         * File::Save() to make changes persistent.
4470         *
4471         * Usually there is absolutely no need to call this method explicitly.
4472         * It will be called automatically when File::Save() was called.
4473         *
4474         * @param pProgress - callback function for progress notification
4475         */
4476        void Script::UpdateChunks(progress_t* pProgress) {
4477            // recalculate CRC32 check sum
4478            __resetCRC(crc);
4479            __calculateCRC(&data[0], data.size(), crc);
4480            __finalizeCRC(crc);
4481            // make sure chunk exists and has the required size
4482            const file_offset_t chunkSize = (file_offset_t) 7*sizeof(int32_t) + Name.size() + data.size();
4483            if (!pChunk) pChunk = pGroup->pList->AddSubChunk(CHUNK_ID_SCRI, chunkSize);
4484            else pChunk->Resize(chunkSize);
4485            // fill the chunk data to be written to disk
4486            uint8_t* pData = (uint8_t*) pChunk->LoadChunkData();
4487            int pos = 0;
4488            store32(&pData[pos], uint32_t(6*sizeof(int32_t) + Name.size())); // total header size
4489            pos += sizeof(int32_t);
4490            store32(&pData[pos], Compression);
4491            pos += sizeof(int32_t);
4492            store32(&pData[pos], Encoding);
4493            pos += sizeof(int32_t);
4494            store32(&pData[pos], Language);
4495            pos += sizeof(int32_t);
4496            store32(&pData[pos], Bypass ? 1 : 0);
4497            pos += sizeof(int32_t);
4498            store32(&pData[pos], crc);
4499            pos += sizeof(int32_t);
4500            store32(&pData[pos], (uint32_t) Name.size());
4501            pos += sizeof(int32_t);
4502            for (int i = 0; i < Name.size(); ++i, ++pos)
4503                pData[pos] = Name[i];
4504            for (int i = 0; i < data.size(); ++i, ++pos)
4505                pData[pos] = data[i];
4506        }
4507    
4508        /**
4509         * Move this script from its current ScriptGroup to another ScriptGroup
4510         * given by @a pGroup.
4511         *
4512         * @param pGroup - script's new group
4513         */
4514        void Script::SetGroup(ScriptGroup* pGroup) {
4515            if (this->pGroup == pGroup) return;
4516            if (pChunk)
4517                pChunk->GetParent()->MoveSubChunk(pChunk, pGroup->pList);
4518            this->pGroup = pGroup;
4519        }
4520    
4521        /**
4522         * Returns the script group this script currently belongs to. Each script
4523         * is a member of exactly one ScriptGroup.
4524         *
4525         * @returns current script group
4526         */
4527        ScriptGroup* Script::GetGroup() const {
4528            return pGroup;
4529        }
4530    
4531        /**
4532         * Make a (semi) deep copy of the Script object given by @a orig
4533         * and assign it to this object. Note: the ScriptGroup this Script
4534         * object belongs to remains untouched by this call.
4535         *
4536         * @param orig - original Script object to be copied from
4537         */
4538        void Script::CopyAssign(const Script* orig) {
4539            Name        = orig->Name;
4540            Compression = orig->Compression;
4541            Encoding    = orig->Encoding;
4542            Language    = orig->Language;
4543            Bypass      = orig->Bypass;
4544            data        = orig->data;
4545        }
4546    
4547        void Script::RemoveAllScriptReferences() {
4548            File* pFile = pGroup->pFile;
4549            for (int i = 0; pFile->GetInstrument(i); ++i) {
4550                Instrument* instr = pFile->GetInstrument(i);
4551                instr->RemoveScript(this);
4552            }
4553        }
4554    
4555    // *************** ScriptGroup ***************
4556    // *
4557    
4558        ScriptGroup::ScriptGroup(File* file, RIFF::List* lstRTIS) {
4559            pFile = file;
4560            pList = lstRTIS;
4561            pScripts = NULL;
4562            if (lstRTIS) {
4563                RIFF::Chunk* ckName = lstRTIS->GetSubChunk(CHUNK_ID_LSNM);
4564                ::LoadString(ckName, Name);
4565            } else {
4566                Name = "Default Group";
4567            }
4568        }
4569    
4570        ScriptGroup::~ScriptGroup() {
4571            if (pScripts) {
4572                std::list<Script*>::iterator iter = pScripts->begin();
4573                std::list<Script*>::iterator end  = pScripts->end();
4574                while (iter != end) {
4575                    delete *iter;
4576                    ++iter;
4577                }
4578                delete pScripts;
4579          }          }
4580        }
4581    
4582        /**
4583         * Apply this script group to the respective RIFF chunks. You have to call
4584         * File::Save() to make changes persistent.
4585         *
4586         * Usually there is absolutely no need to call this method explicitly.
4587         * It will be called automatically when File::Save() was called.
4588         *
4589         * @param pProgress - callback function for progress notification
4590         */
4591        void ScriptGroup::UpdateChunks(progress_t* pProgress) {
4592            if (pScripts) {
4593                if (!pList)
4594                    pList = pFile->pRIFF->GetSubList(LIST_TYPE_3LS)->AddSubList(LIST_TYPE_RTIS);
4595    
4596                // now store the name of this group as <LSNM> chunk as subchunk of the <RTIS> list chunk
4597                ::SaveString(CHUNK_ID_LSNM, NULL, pList, Name, String("Unnamed Group"), true, 64);
4598    
4599                for (std::list<Script*>::iterator it = pScripts->begin();
4600                     it != pScripts->end(); ++it)
4601                {
4602                    (*it)->UpdateChunks(pProgress);
4603                }
4604            }
4605        }
4606    
4607        /** @brief Get instrument script.
4608         *
4609         * Returns the real-time instrument script with the given index.
4610         *
4611         * @param index - number of the sought script (0..n)
4612         * @returns sought script or NULL if there's no such script
4613         */
4614        Script* ScriptGroup::GetScript(uint index) {
4615            if (!pScripts) LoadScripts();
4616            std::list<Script*>::iterator it = pScripts->begin();
4617            for (uint i = 0; it != pScripts->end(); ++i, ++it)
4618                if (i == index) return *it;
4619          return NULL;          return NULL;
4620      }      }
4621    
4622        /** @brief Add new instrument script.
4623         *
4624         * Adds a new real-time instrument script to the file. The script is not
4625         * actually used / executed unless it is referenced by an instrument to be
4626         * used. This is similar to samples, which you can add to a file, without
4627         * an instrument necessarily actually using it.
4628         *
4629         * You have to call Save() to make this persistent to the file.
4630         *
4631         * @return new empty script object
4632         */
4633        Script* ScriptGroup::AddScript() {
4634            if (!pScripts) LoadScripts();
4635            Script* pScript = new Script(this, NULL);
4636            pScripts->push_back(pScript);
4637            return pScript;
4638        }
4639    
4640        /** @brief Delete an instrument script.
4641         *
4642         * This will delete the given real-time instrument script. References of
4643         * instruments that are using that script will be removed accordingly.
4644         *
4645         * You have to call Save() to make this persistent to the file.
4646         *
4647         * @param pScript - script to delete
4648         * @throws gig::Exception if given script could not be found
4649         */
4650        void ScriptGroup::DeleteScript(Script* pScript) {
4651            if (!pScripts) LoadScripts();
4652            std::list<Script*>::iterator iter =
4653                find(pScripts->begin(), pScripts->end(), pScript);
4654            if (iter == pScripts->end())
4655                throw gig::Exception("Could not delete script, could not find given script");
4656            pScripts->erase(iter);
4657            pScript->RemoveAllScriptReferences();
4658            if (pScript->pChunk)
4659                pScript->pChunk->GetParent()->DeleteSubChunk(pScript->pChunk);
4660            delete pScript;
4661        }
4662    
4663        void ScriptGroup::LoadScripts() {
4664            if (pScripts) return;
4665            pScripts = new std::list<Script*>;
4666            if (!pList) return;
4667    
4668            for (RIFF::Chunk* ck = pList->GetFirstSubChunk(); ck;
4669                 ck = pList->GetNextSubChunk())
4670            {
4671                if (ck->GetChunkID() == CHUNK_ID_SCRI) {
4672                    pScripts->push_back(new Script(this, ck));
4673                }
4674            }
4675        }
4676    
4677  // *************** Instrument ***************  // *************** Instrument ***************
4678  // *  // *
4679    
4680      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
4681            static const DLS::Info::string_length_t fixedStringLengths[] = {
4682                { CHUNK_ID_INAM, 64 },
4683                { CHUNK_ID_ISFT, 12 },
4684                { 0, 0 }
4685            };
4686            pInfo->SetFixedStringLengths(fixedStringLengths);
4687    
4688          // Initialization          // Initialization
4689          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4690          RegionIndex = -1;          EffectSend = 0;
4691            Attenuation = 0;
4692            FineTune = 0;
4693            PitchbendRange = 2;
4694            PianoReleaseMode = false;
4695            DimensionKeyRange.low = 0;
4696            DimensionKeyRange.high = 0;
4697            pMidiRules = new MidiRule*[3];
4698            pMidiRules[0] = NULL;
4699            pScriptRefs = NULL;
4700    
4701          // Loading          // Loading
4702          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
# Line 1647  namespace { Line 4711  namespace {
4711                  PianoReleaseMode       = dimkeystart & 0x01;                  PianoReleaseMode       = dimkeystart & 0x01;
4712                  DimensionKeyRange.low  = dimkeystart >> 1;                  DimensionKeyRange.low  = dimkeystart >> 1;
4713                  DimensionKeyRange.high = _3ewg->ReadUint8();                  DimensionKeyRange.high = _3ewg->ReadUint8();
4714    
4715                    if (_3ewg->GetSize() > 32) {
4716                        // read MIDI rules
4717                        int i = 0;
4718                        _3ewg->SetPos(32);
4719                        uint8_t id1 = _3ewg->ReadUint8();
4720                        uint8_t id2 = _3ewg->ReadUint8();
4721    
4722                        if (id2 == 16) {
4723                            if (id1 == 4) {
4724                                pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
4725                            } else if (id1 == 0) {
4726                                pMidiRules[i++] = new MidiRuleLegato(_3ewg);
4727                            } else if (id1 == 3) {
4728                                pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
4729                            } else {
4730                                pMidiRules[i++] = new MidiRuleUnknown;
4731                            }
4732                        }
4733                        else if (id1 != 0 || id2 != 0) {
4734                            pMidiRules[i++] = new MidiRuleUnknown;
4735                        }
4736                        //TODO: all the other types of rules
4737    
4738                        pMidiRules[i] = NULL;
4739                    }
4740              }              }
             else throw gig::Exception("Mandatory <3ewg> chunk not found.");  
4741          }          }
         else throw gig::Exception("Mandatory <lart> list chunk not found.");  
4742    
4743          RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);          if (pFile->GetAutoLoad()) {
4744          if (!lrgn) throw gig::Exception("Mandatory chunks in <ins > chunk not found.");              if (!pRegions) pRegions = new RegionList;
4745          pRegions = new Region*[Regions];              RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
4746          for (uint i = 0; i < Regions; i++) pRegions[i] = NULL;              if (lrgn) {
4747          RIFF::List* rgn = lrgn->GetFirstSubList();                  RIFF::List* rgn = lrgn->GetFirstSubList();
4748          unsigned int iRegion = 0;                  while (rgn) {
4749          while (rgn) {                      if (rgn->GetListType() == LIST_TYPE_RGN) {
4750              if (rgn->GetListType() == LIST_TYPE_RGN) {                          __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
4751                  __notify_progress(pProgress, (float) iRegion / (float) Regions);                          pRegions->push_back(new Region(this, rgn));
4752                  pRegions[iRegion] = new Region(this, rgn);                      }
4753                  iRegion++;                      rgn = lrgn->GetNextSubList();
4754              }                  }
4755              rgn = lrgn->GetNextSubList();                  // Creating Region Key Table for fast lookup
4756          }                  UpdateRegionKeyTable();
4757                }
4758          // Creating Region Key Table for fast lookup          }
4759          for (uint iReg = 0; iReg < Regions; iReg++) {  
4760              for (int iKey = pRegions[iReg]->KeyRange.low; iKey <= pRegions[iReg]->KeyRange.high; iKey++) {          // own gig format extensions
4761                  RegionKeyTable[iKey] = pRegions[iReg];          RIFF::List* lst3LS = insList->GetSubList(LIST_TYPE_3LS);
4762            if (lst3LS) {
4763                RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4764                if (ckSCSL) {
4765                    int headerSize = ckSCSL->ReadUint32();
4766                    int slotCount  = ckSCSL->ReadUint32();
4767                    if (slotCount) {
4768                        int slotSize  = ckSCSL->ReadUint32();
4769                        ckSCSL->SetPos(headerSize); // in case of future header extensions
4770                        int unknownSpace = slotSize - 2*sizeof(uint32_t); // in case of future slot extensions
4771                        for (int i = 0; i < slotCount; ++i) {
4772                            _ScriptPooolEntry e;
4773                            e.fileOffset = ckSCSL->ReadUint32();
4774                            e.bypass     = ckSCSL->ReadUint32() & 1;
4775                            if (unknownSpace) ckSCSL->SetPos(unknownSpace, RIFF::stream_curpos); // in case of future extensions
4776                            scriptPoolFileOffsets.push_back(e);
4777                        }
4778                    }
4779              }              }
4780          }          }
4781    
4782          __notify_progress(pProgress, 1.0f); // notify done          __notify_progress(pProgress, 1.0f); // notify done
4783      }      }
4784    
4785        void Instrument::UpdateRegionKeyTable() {
4786            for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4787            RegionList::iterator iter = pRegions->begin();
4788            RegionList::iterator end  = pRegions->end();
4789            for (; iter != end; ++iter) {
4790                gig::Region* pRegion = static_cast<gig::Region*>(*iter);
4791                const int low  = std::max(int(pRegion->KeyRange.low), 0);
4792                const int high = std::min(int(pRegion->KeyRange.high), 127);
4793                for (int iKey = low; iKey <= high; iKey++) {
4794                    RegionKeyTable[iKey] = pRegion;
4795                }
4796            }
4797        }
4798    
4799      Instrument::~Instrument() {      Instrument::~Instrument() {
4800          for (uint i = 0; i < Regions; i++) {          for (int i = 0 ; pMidiRules[i] ; i++) {
4801              if (pRegions) {              delete pMidiRules[i];
4802                  if (pRegions[i]) delete (pRegions[i]);          }
4803            delete[] pMidiRules;
4804            if (pScriptRefs) delete pScriptRefs;
4805        }
4806    
4807        /**
4808         * Apply Instrument with all its Regions to the respective RIFF chunks.
4809         * You have to call File::Save() to make changes persistent.
4810         *
4811         * Usually there is absolutely no need to call this method explicitly.
4812         * It will be called automatically when File::Save() was called.
4813         *
4814         * @param pProgress - callback function for progress notification
4815         * @throws gig::Exception if samples cannot be dereferenced
4816         */
4817        void Instrument::UpdateChunks(progress_t* pProgress) {
4818            // first update base classes' chunks
4819            DLS::Instrument::UpdateChunks(pProgress);
4820    
4821            // update Regions' chunks
4822            {
4823                RegionList::iterator iter = pRegions->begin();
4824                RegionList::iterator end  = pRegions->end();
4825                for (; iter != end; ++iter)
4826                    (*iter)->UpdateChunks(pProgress);
4827            }
4828    
4829            // make sure 'lart' RIFF list chunk exists
4830            RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
4831            if (!lart)  lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
4832            // make sure '3ewg' RIFF chunk exists
4833            RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4834            if (!_3ewg)  {
4835                File* pFile = (File*) GetParent();
4836    
4837                // 3ewg is bigger in gig3, as it includes the iMIDI rules
4838                int size = (pFile->pVersion && pFile->pVersion->major > 2) ? 16416 : 12;
4839                _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
4840                memset(_3ewg->LoadChunkData(), 0, size);
4841            }
4842            // update '3ewg' RIFF chunk
4843            uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
4844            store16(&pData[0], EffectSend);
4845            store32(&pData[2], Attenuation);
4846            store16(&pData[6], FineTune);
4847            store16(&pData[8], PitchbendRange);
4848            const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
4849                                        DimensionKeyRange.low << 1;
4850            pData[10] = dimkeystart;
4851            pData[11] = DimensionKeyRange.high;
4852    
4853            if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
4854                pData[32] = 0;
4855                pData[33] = 0;
4856            } else {
4857                for (int i = 0 ; pMidiRules[i] ; i++) {
4858                    pMidiRules[i]->UpdateChunks(pData);
4859              }              }
4860          }          }
4861          if (pRegions) delete[] pRegions;  
4862            // own gig format extensions
4863           if (ScriptSlotCount()) {
4864               // make sure we have converted the original loaded script file
4865               // offsets into valid Script object pointers
4866               LoadScripts();
4867    
4868               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4869               if (!lst3LS) lst3LS = pCkInstrument->AddSubList(LIST_TYPE_3LS);
4870               const int slotCount = (int) pScriptRefs->size();
4871               const int headerSize = 3 * sizeof(uint32_t);
4872               const int slotSize  = 2 * sizeof(uint32_t);
4873               const int totalChunkSize = headerSize + slotCount * slotSize;
4874               RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4875               if (!ckSCSL) ckSCSL = lst3LS->AddSubChunk(CHUNK_ID_SCSL, totalChunkSize);
4876               else ckSCSL->Resize(totalChunkSize);
4877               uint8_t* pData = (uint8_t*) ckSCSL->LoadChunkData();
4878               int pos = 0;
4879               store32(&pData[pos], headerSize);
4880               pos += sizeof(uint32_t);
4881               store32(&pData[pos], slotCount);
4882               pos += sizeof(uint32_t);
4883               store32(&pData[pos], slotSize);
4884               pos += sizeof(uint32_t);
4885               for (int i = 0; i < slotCount; ++i) {
4886                   // arbitrary value, the actual file offset will be updated in
4887                   // UpdateScriptFileOffsets() after the file has been resized
4888                   int bogusFileOffset = 0;
4889                   store32(&pData[pos], bogusFileOffset);
4890                   pos += sizeof(uint32_t);
4891                   store32(&pData[pos], (*pScriptRefs)[i].bypass ? 1 : 0);
4892                   pos += sizeof(uint32_t);
4893               }
4894           } else {
4895               // no script slots, so get rid of any LS custom RIFF chunks (if any)
4896               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4897               if (lst3LS) pCkInstrument->DeleteSubChunk(lst3LS);
4898           }
4899        }
4900    
4901        void Instrument::UpdateScriptFileOffsets() {
4902           // own gig format extensions
4903           if (pScriptRefs && pScriptRefs->size() > 0) {
4904               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4905               RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4906               const int slotCount = (int) pScriptRefs->size();
4907               const int headerSize = 3 * sizeof(uint32_t);
4908               ckSCSL->SetPos(headerSize);
4909               for (int i = 0; i < slotCount; ++i) {
4910                   uint32_t fileOffset = uint32_t(
4911                        (*pScriptRefs)[i].script->pChunk->GetFilePos() -
4912                        (*pScriptRefs)[i].script->pChunk->GetPos() -
4913                        CHUNK_HEADER_SIZE(ckSCSL->GetFile()->GetFileOffsetSize())
4914                   );
4915                   ckSCSL->WriteUint32(&fileOffset);
4916                   // jump over flags entry (containing the bypass flag)
4917                   ckSCSL->SetPos(sizeof(uint32_t), RIFF::stream_curpos);
4918               }
4919           }        
4920      }      }
4921    
4922      /**      /**
# Line 1694  namespace { Line 4927  namespace {
4927       *             there is no Region defined for the given \a Key       *             there is no Region defined for the given \a Key
4928       */       */
4929      Region* Instrument::GetRegion(unsigned int Key) {      Region* Instrument::GetRegion(unsigned int Key) {
4930          if (!pRegions || Key > 127) return NULL;          if (!pRegions || pRegions->empty() || Key > 127) return NULL;
4931          return RegionKeyTable[Key];          return RegionKeyTable[Key];
4932    
4933          /*for (int i = 0; i < Regions; i++) {          /*for (int i = 0; i < Regions; i++) {
4934              if (Key <= pRegions[i]->KeyRange.high &&              if (Key <= pRegions[i]->KeyRange.high &&
4935                  Key >= pRegions[i]->KeyRange.low) return pRegions[i];                  Key >= pRegions[i]->KeyRange.low) return pRegions[i];
# Line 1711  namespace { Line 4945  namespace {
4945       * @see      GetNextRegion()       * @see      GetNextRegion()
4946       */       */
4947      Region* Instrument::GetFirstRegion() {      Region* Instrument::GetFirstRegion() {
4948          if (!Regions) return NULL;          if (!pRegions) return NULL;
4949          RegionIndex = 1;          RegionsIterator = pRegions->begin();
4950          return pRegions[0];          return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4951      }      }
4952    
4953      /**      /**
# Line 1725  namespace { Line 4959  namespace {
4959       * @see      GetFirstRegion()       * @see      GetFirstRegion()
4960       */       */
4961      Region* Instrument::GetNextRegion() {      Region* Instrument::GetNextRegion() {
4962          if (RegionIndex < 0 || uint32_t(RegionIndex) >= Regions) return NULL;          if (!pRegions) return NULL;
4963          return pRegions[RegionIndex++];          RegionsIterator++;
4964            return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4965        }
4966    
4967        Region* Instrument::AddRegion() {
4968            // create new Region object (and its RIFF chunks)
4969            RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
4970            if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
4971            RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
4972            Region* pNewRegion = new Region(this, rgn);
4973            pRegions->push_back(pNewRegion);
4974            Regions = (uint32_t) pRegions->size();
4975            // update Region key table for fast lookup
4976            UpdateRegionKeyTable();
4977            // done
4978            return pNewRegion;
4979        }
4980    
4981        void Instrument::DeleteRegion(Region* pRegion) {
4982            if (!pRegions) return;
4983            DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
4984            // update Region key table for fast lookup
4985            UpdateRegionKeyTable();
4986        }
4987    
4988        /**
4989         * Move this instrument at the position before @arg dst.
4990         *
4991         * This method can be used to reorder the sequence of instruments in a
4992         * .gig file. This might be helpful especially on large .gig files which
4993         * contain a large number of instruments within the same .gig file. So
4994         * grouping such instruments to similar ones, can help to keep track of them
4995         * when working with such complex .gig files.
4996         *
4997         * When calling this method, this instrument will be removed from in its
4998         * current position in the instruments list and moved to the requested
4999         * target position provided by @param dst. You may also pass NULL as
5000         * argument to this method, in that case this intrument will be moved to the
5001         * very end of the .gig file's instrument list.
5002         *
5003         * You have to call Save() to make the order change persistent to the .gig
5004         * file.
5005         *
5006         * Currently this method is limited to moving the instrument within the same
5007         * .gig file. Trying to move it to another .gig file by calling this method
5008         * will throw an exception.
5009         *
5010         * @param dst - destination instrument at which this instrument will be
5011         *              moved to, or pass NULL for moving to end of list
5012         * @throw gig::Exception if this instrument and target instrument are not
5013         *                       part of the same file
5014         */
5015        void Instrument::MoveTo(Instrument* dst) {
5016            if (dst && GetParent() != dst->GetParent())
5017                throw Exception(
5018                    "gig::Instrument::MoveTo() can only be used for moving within "
5019                    "the same gig file."
5020                );
5021    
5022            File* pFile = (File*) GetParent();
5023    
5024            // move this instrument within the instrument list
5025            {
5026                File::InstrumentList& list = *pFile->pInstruments;
5027    
5028                File::InstrumentList::iterator itFrom =
5029                    std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(this));
5030    
5031                File::InstrumentList::iterator itTo =
5032                    std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(dst));
5033    
5034                list.splice(itTo, list, itFrom);
5035            }
5036    
5037            // move the instrument's actual list RIFF chunk appropriately
5038            RIFF::List* lstCkInstruments = pFile->pRIFF->GetSubList(LIST_TYPE_LINS);
5039            lstCkInstruments->MoveSubChunk(
5040                this->pCkInstrument,
5041                (RIFF::Chunk*) ((dst) ? dst->pCkInstrument : NULL)
5042            );
5043        }
5044    
5045        /**
5046         * Returns a MIDI rule of the instrument.
5047         *
5048         * The list of MIDI rules, at least in gig v3, always contains at
5049         * most two rules. The second rule can only be the DEF filter
5050         * (which currently isn't supported by libgig).
5051         *
5052         * @param i - MIDI rule number
5053         * @returns   pointer address to MIDI rule number i or NULL if there is none
5054         */
5055        MidiRule* Instrument::GetMidiRule(int i) {
5056            return pMidiRules[i];
5057        }
5058    
5059        /**
5060         * Adds the "controller trigger" MIDI rule to the instrument.
5061         *
5062         * @returns the new MIDI rule
5063         */
5064        MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
5065            delete pMidiRules[0];
5066            MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
5067            pMidiRules[0] = r;
5068            pMidiRules[1] = 0;
5069            return r;
5070        }
5071    
5072        /**
5073         * Adds the legato MIDI rule to the instrument.
5074         *
5075         * @returns the new MIDI rule
5076         */
5077        MidiRuleLegato* Instrument::AddMidiRuleLegato() {
5078            delete pMidiRules[0];
5079            MidiRuleLegato* r = new MidiRuleLegato;
5080            pMidiRules[0] = r;
5081            pMidiRules[1] = 0;
5082            return r;
5083        }
5084    
5085        /**
5086         * Adds the alternator MIDI rule to the instrument.
5087         *
5088         * @returns the new MIDI rule
5089         */
5090        MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
5091            delete pMidiRules[0];
5092            MidiRuleAlternator* r = new MidiRuleAlternator;
5093            pMidiRules[0] = r;
5094            pMidiRules[1] = 0;
5095            return r;
5096        }
5097    
5098        /**
5099         * Deletes a MIDI rule from the instrument.
5100         *
5101         * @param i - MIDI rule number
5102         */
5103        void Instrument::DeleteMidiRule(int i) {
5104            delete pMidiRules[i];
5105            pMidiRules[i] = 0;
5106        }
5107    
5108        void Instrument::LoadScripts() {
5109            if (pScriptRefs) return;
5110            pScriptRefs = new std::vector<_ScriptPooolRef>;
5111            if (scriptPoolFileOffsets.empty()) return;
5112            File* pFile = (File*) GetParent();
5113            for (uint k = 0; k < scriptPoolFileOffsets.size(); ++k) {
5114                uint32_t soughtOffset = scriptPoolFileOffsets[k].fileOffset;
5115                for (uint i = 0; pFile->GetScriptGroup(i); ++i) {
5116                    ScriptGroup* group = pFile->GetScriptGroup(i);
5117                    for (uint s = 0; group->GetScript(s); ++s) {
5118                        Script* script = group->GetScript(s);
5119                        if (script->pChunk) {
5120                            uint32_t offset = uint32_t(
5121                                script->pChunk->GetFilePos() -
5122                                script->pChunk->GetPos() -
5123                                CHUNK_HEADER_SIZE(script->pChunk->GetFile()->GetFileOffsetSize())
5124                            );
5125                            if (offset == soughtOffset)
5126                            {
5127                                _ScriptPooolRef ref;
5128                                ref.script = script;
5129                                ref.bypass = scriptPoolFileOffsets[k].bypass;
5130                                pScriptRefs->push_back(ref);
5131                                break;
5132                            }
5133                        }
5134                    }
5135                }
5136            }
5137            // we don't need that anymore
5138            scriptPoolFileOffsets.clear();
5139        }
5140    
5141        /** @brief Get instrument script (gig format extension).
5142         *
5143         * Returns the real-time instrument script of instrument script slot
5144         * @a index.
5145         *
5146         * @note This is an own format extension which did not exist i.e. in the
5147         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5148         * gigedit.
5149         *
5150         * @param index - instrument script slot index
5151         * @returns script or NULL if index is out of bounds
5152         */
5153        Script* Instrument::GetScriptOfSlot(uint index) {
5154            LoadScripts();
5155            if (index >= pScriptRefs->size()) return NULL;
5156            return pScriptRefs->at(index).script;
5157        }
5158    
5159        /** @brief Add new instrument script slot (gig format extension).
5160         *
5161         * Add the given real-time instrument script reference to this instrument,
5162         * which shall be executed by the sampler for for this instrument. The
5163         * script will be added to the end of the script list of this instrument.
5164         * The positions of the scripts in the Instrument's Script list are
5165         * relevant, because they define in which order they shall be executed by
5166         * the sampler. For this reason it is also legal to add the same script
5167         * twice to an instrument, for example you might have a script called
5168         * "MyFilter" which performs an event filter task, and you might have
5169         * another script called "MyNoteTrigger" which triggers new notes, then you
5170         * might for example have the following list of scripts on the instrument:
5171         *
5172         * 1. Script "MyFilter"
5173         * 2. Script "MyNoteTrigger"
5174         * 3. Script "MyFilter"
5175         *
5176         * Which would make sense, because the 2nd script launched new events, which
5177         * you might need to filter as well.
5178         *
5179         * There are two ways to disable / "bypass" scripts. You can either disable
5180         * a script locally for the respective script slot on an instrument (i.e. by
5181         * passing @c false to the 2nd argument of this method, or by calling
5182         * SetScriptBypassed()). Or you can disable a script globally for all slots
5183         * and all instruments by setting Script::Bypass.
5184         *
5185         * @note This is an own format extension which did not exist i.e. in the
5186         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5187         * gigedit.
5188         *
5189         * @param pScript - script that shall be executed for this instrument
5190         * @param bypass  - if enabled, the sampler shall skip executing this
5191         *                  script (in the respective list position)
5192         * @see SetScriptBypassed()
5193         */
5194        void Instrument::AddScriptSlot(Script* pScript, bool bypass) {
5195            LoadScripts();
5196            _ScriptPooolRef ref = { pScript, bypass };
5197            pScriptRefs->push_back(ref);
5198        }
5199    
5200        /** @brief Flip two script slots with each other (gig format extension).
5201         *
5202         * Swaps the position of the two given scripts in the Instrument's Script
5203         * list. The positions of the scripts in the Instrument's Script list are
5204         * relevant, because they define in which order they shall be executed by
5205         * the sampler.
5206         *
5207         * @note This is an own format extension which did not exist i.e. in the
5208         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5209         * gigedit.
5210         *
5211         * @param index1 - index of the first script slot to swap
5212         * @param index2 - index of the second script slot to swap
5213         */
5214        void Instrument::SwapScriptSlots(uint index1, uint index2) {
5215            LoadScripts();
5216            if (index1 >= pScriptRefs->size() || index2 >= pScriptRefs->size())
5217                return;
5218            _ScriptPooolRef tmp = (*pScriptRefs)[index1];
5219            (*pScriptRefs)[index1] = (*pScriptRefs)[index2];
5220            (*pScriptRefs)[index2] = tmp;
5221        }
5222    
5223        /** @brief Remove script slot.
5224         *
5225         * Removes the script slot with the given slot index.
5226         *
5227         * @param index - index of script slot to remove
5228         */
5229        void Instrument::RemoveScriptSlot(uint index) {
5230            LoadScripts();
5231            if (index >= pScriptRefs->size()) return;
5232            pScriptRefs->erase( pScriptRefs->begin() + index );
5233        }
5234    
5235        /** @brief Remove reference to given Script (gig format extension).
5236         *
5237         * This will remove all script slots on the instrument which are referencing
5238         * the given script.
5239         *
5240         * @note This is an own format extension which did not exist i.e. in the
5241         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5242         * gigedit.
5243         *
5244         * @param pScript - script reference to remove from this instrument
5245         * @see RemoveScriptSlot()
5246         */
5247        void Instrument::RemoveScript(Script* pScript) {
5248            LoadScripts();
5249            for (ssize_t i = pScriptRefs->size() - 1; i >= 0; --i) {
5250                if ((*pScriptRefs)[i].script == pScript) {
5251                    pScriptRefs->erase( pScriptRefs->begin() + i );
5252                }
5253            }
5254        }
5255    
5256        /** @brief Instrument's amount of script slots.
5257         *
5258         * This method returns the amount of script slots this instrument currently
5259         * uses.
5260         *
5261         * A script slot is a reference of a real-time instrument script to be
5262         * executed by the sampler. The scripts will be executed by the sampler in
5263         * sequence of the slots. One (same) script may be referenced multiple
5264         * times in different slots.
5265         *
5266         * @note This is an own format extension which did not exist i.e. in the
5267         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5268         * gigedit.
5269         */
5270        uint Instrument::ScriptSlotCount() const {
5271            return uint(pScriptRefs ? pScriptRefs->size() : scriptPoolFileOffsets.size());
5272        }
5273    
5274        /** @brief Whether script execution shall be skipped.
5275         *
5276         * Defines locally for the Script reference slot in the Instrument's Script
5277         * list, whether the script shall be skipped by the sampler regarding
5278         * execution.
5279         *
5280         * It is also possible to ignore exeuction of the script globally, for all
5281         * slots and for all instruments by setting Script::Bypass.
5282         *
5283         * @note This is an own format extension which did not exist i.e. in the
5284         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5285         * gigedit.
5286         *
5287         * @param index - index of the script slot on this instrument
5288         * @see Script::Bypass
5289         */
5290        bool Instrument::IsScriptSlotBypassed(uint index) {
5291            if (index >= ScriptSlotCount()) return false;
5292            return pScriptRefs ? pScriptRefs->at(index).bypass
5293                               : scriptPoolFileOffsets.at(index).bypass;
5294            
5295        }
5296    
5297        /** @brief Defines whether execution shall be skipped.
5298         *
5299         * You can call this method to define locally whether or whether not the
5300         * given script slot shall be executed by the sampler.
5301         *
5302         * @note This is an own format extension which did not exist i.e. in the
5303         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5304         * gigedit.
5305         *
5306         * @param index - script slot index on this instrument
5307         * @param bBypass - if true, the script slot will be skipped by the sampler
5308         * @see Script::Bypass
5309         */
5310        void Instrument::SetScriptSlotBypassed(uint index, bool bBypass) {
5311            if (index >= ScriptSlotCount()) return;
5312            if (pScriptRefs)
5313                pScriptRefs->at(index).bypass = bBypass;
5314            else
5315                scriptPoolFileOffsets.at(index).bypass = bBypass;
5316        }
5317    
5318        /**
5319         * Make a (semi) deep copy of the Instrument object given by @a orig
5320         * and assign it to this object.
5321         *
5322         * Note that all sample pointers referenced by @a orig are simply copied as
5323         * memory address. Thus the respective samples are shared, not duplicated!
5324         *
5325         * @param orig - original Instrument object to be copied from
5326         */
5327        void Instrument::CopyAssign(const Instrument* orig) {
5328            CopyAssign(orig, NULL);
5329        }
5330            
5331        /**
5332         * Make a (semi) deep copy of the Instrument object given by @a orig
5333         * and assign it to this object.
5334         *
5335         * @param orig - original Instrument object to be copied from
5336         * @param mSamples - crosslink map between the foreign file's samples and
5337         *                   this file's samples
5338         */
5339        void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
5340            // handle base class
5341            // (without copying DLS region stuff)
5342            DLS::Instrument::CopyAssignCore(orig);
5343            
5344            // handle own member variables
5345            Attenuation = orig->Attenuation;
5346            EffectSend = orig->EffectSend;
5347            FineTune = orig->FineTune;
5348            PitchbendRange = orig->PitchbendRange;
5349            PianoReleaseMode = orig->PianoReleaseMode;
5350            DimensionKeyRange = orig->DimensionKeyRange;
5351            scriptPoolFileOffsets = orig->scriptPoolFileOffsets;
5352            pScriptRefs = orig->pScriptRefs;
5353            
5354            // free old midi rules
5355            for (int i = 0 ; pMidiRules[i] ; i++) {
5356                delete pMidiRules[i];
5357            }
5358            //TODO: MIDI rule copying
5359            pMidiRules[0] = NULL;
5360            
5361            // delete all old regions
5362            while (Regions) DeleteRegion(GetFirstRegion());
5363            // create new regions and copy them from original
5364            {
5365                RegionList::const_iterator it = orig->pRegions->begin();
5366                for (int i = 0; i < orig->Regions; ++i, ++it) {
5367                    Region* dstRgn = AddRegion();
5368                    //NOTE: Region does semi-deep copy !
5369                    dstRgn->CopyAssign(
5370                        static_cast<gig::Region*>(*it),
5371                        mSamples
5372                    );
5373                }
5374            }
5375    
5376            UpdateRegionKeyTable();
5377        }
5378    
5379    
5380    // *************** Group ***************
5381    // *
5382    
5383        /** @brief Constructor.
5384         *
5385         * @param file   - pointer to the gig::File object
5386         * @param ck3gnm - pointer to 3gnm chunk associated with this group or
5387         *                 NULL if this is a new Group
5388         */
5389        Group::Group(File* file, RIFF::Chunk* ck3gnm) {
5390            pFile      = file;
5391            pNameChunk = ck3gnm;
5392            ::LoadString(pNameChunk, Name);
5393        }
5394    
5395        Group::~Group() {
5396            // remove the chunk associated with this group (if any)
5397            if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
5398        }
5399    
5400        /** @brief Update chunks with current group settings.
5401         *
5402         * Apply current Group field values to the respective chunks. You have
5403         * to call File::Save() to make changes persistent.
5404         *
5405         * Usually there is absolutely no need to call this method explicitly.
5406         * It will be called automatically when File::Save() was called.
5407         *
5408         * @param pProgress - callback function for progress notification
5409         */
5410        void Group::UpdateChunks(progress_t* pProgress) {
5411            // make sure <3gri> and <3gnl> list chunks exist
5412            RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
5413            if (!_3gri) {
5414                _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
5415                pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
5416            }
5417            RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
5418            if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
5419    
5420            if (!pNameChunk && pFile->pVersion && pFile->pVersion->major > 2) {
5421                // v3 has a fixed list of 128 strings, find a free one
5422                for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
5423                    if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
5424                        pNameChunk = ck;
5425                        break;
5426                    }
5427                }
5428            }
5429    
5430            // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
5431            ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
5432        }
5433    
5434        /**
5435         * Returns the first Sample of this Group. You have to call this method
5436         * once before you use GetNextSample().
5437         *
5438         * <b>Notice:</b> this method might block for a long time, in case the
5439         * samples of this .gig file were not scanned yet
5440         *
5441         * @returns  pointer address to first Sample or NULL if there is none
5442         *           applied to this Group
5443         * @see      GetNextSample()
5444         */
5445        Sample* Group::GetFirstSample() {
5446            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5447            for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
5448                if (pSample->GetGroup() == this) return pSample;
5449            }
5450            return NULL;
5451        }
5452    
5453        /**
5454         * Returns the next Sample of the Group. You have to call
5455         * GetFirstSample() once before you can use this method. By calling this
5456         * method multiple times it iterates through the Samples assigned to
5457         * this Group.
5458         *
5459         * @returns  pointer address to the next Sample of this Group or NULL if
5460         *           end reached
5461         * @see      GetFirstSample()
5462         */
5463        Sample* Group::GetNextSample() {
5464            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5465            for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
5466                if (pSample->GetGroup() == this) return pSample;
5467            }
5468            return NULL;
5469        }
5470    
5471        /**
5472         * Move Sample given by \a pSample from another Group to this Group.
5473         */
5474        void Group::AddSample(Sample* pSample) {
5475            pSample->pGroup = this;
5476        }
5477    
5478        /**
5479         * Move all members of this group to another group (preferably the 1st
5480         * one except this). This method is called explicitly by
5481         * File::DeleteGroup() thus when a Group was deleted. This code was
5482         * intentionally not placed in the destructor!
5483         */
5484        void Group::MoveAll() {
5485            // get "that" other group first
5486            Group* pOtherGroup = NULL;
5487            for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
5488                if (pOtherGroup != this) break;
5489            }
5490            if (!pOtherGroup) throw Exception(
5491                "Could not move samples to another group, since there is no "
5492                "other Group. This is a bug, report it!"
5493            );
5494            // now move all samples of this group to the other group
5495            for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
5496                pOtherGroup->AddSample(pSample);
5497            }
5498      }      }
5499    
5500    
# Line 1734  namespace { Line 5502  namespace {
5502  // *************** File ***************  // *************** File ***************
5503  // *  // *
5504    
5505        /// Reflects Gigasampler file format version 2.0 (1998-06-28).
5506        const DLS::version_t File::VERSION_2 = {
5507            0, 2, 19980628 & 0xffff, 19980628 >> 16
5508        };
5509    
5510        /// Reflects Gigasampler file format version 3.0 (2003-03-31).
5511        const DLS::version_t File::VERSION_3 = {
5512            0, 3, 20030331 & 0xffff, 20030331 >> 16
5513        };
5514    
5515        /// Reflects Gigasampler file format version 4.0 (2007-10-12).
5516        const DLS::version_t File::VERSION_4 = {
5517            0, 4, 20071012 & 0xffff, 20071012 >> 16
5518        };
5519    
5520        static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
5521            { CHUNK_ID_IARL, 256 },
5522            { CHUNK_ID_IART, 128 },
5523            { CHUNK_ID_ICMS, 128 },
5524            { CHUNK_ID_ICMT, 1024 },
5525            { CHUNK_ID_ICOP, 128 },
5526            { CHUNK_ID_ICRD, 128 },
5527            { CHUNK_ID_IENG, 128 },
5528            { CHUNK_ID_IGNR, 128 },
5529            { CHUNK_ID_IKEY, 128 },
5530            { CHUNK_ID_IMED, 128 },
5531            { CHUNK_ID_INAM, 128 },
5532            { CHUNK_ID_IPRD, 128 },
5533            { CHUNK_ID_ISBJ, 128 },
5534            { CHUNK_ID_ISFT, 128 },
5535            { CHUNK_ID_ISRC, 128 },
5536            { CHUNK_ID_ISRF, 128 },
5537            { CHUNK_ID_ITCH, 128 },
5538            { 0, 0 }
5539        };
5540    
5541        File::File() : DLS::File() {
5542            bAutoLoad = true;
5543            *pVersion = VERSION_3;
5544            pGroups = NULL;
5545            pScriptGroups = NULL;
5546            pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5547            pInfo->ArchivalLocation = String(256, ' ');
5548    
5549            // add some mandatory chunks to get the file chunks in right
5550            // order (INFO chunk will be moved to first position later)
5551            pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
5552            pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
5553            pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
5554    
5555            GenerateDLSID();
5556        }
5557    
5558      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
5559          pSamples     = NULL;          bAutoLoad = true;
5560          pInstruments = NULL;          pGroups = NULL;
5561            pScriptGroups = NULL;
5562            pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5563      }      }
5564    
5565      File::~File() {      File::~File() {
5566          // free samples          if (pGroups) {
5567          if (pSamples) {              std::list<Group*>::iterator iter = pGroups->begin();
5568              SamplesIterator = pSamples->begin();              std::list<Group*>::iterator end  = pGroups->end();
5569              while (SamplesIterator != pSamples->end() ) {              while (iter != end) {
5570                  delete (*SamplesIterator);                  delete *iter;
5571                  SamplesIterator++;                  ++iter;
5572              }              }
5573              pSamples->clear();              delete pGroups;
5574              delete pSamples;          }
5575            if (pScriptGroups) {
5576          }              std::list<ScriptGroup*>::iterator iter = pScriptGroups->begin();
5577          // free instruments              std::list<ScriptGroup*>::iterator end  = pScriptGroups->end();
5578          if (pInstruments) {              while (iter != end) {
5579              InstrumentsIterator = pInstruments->begin();                  delete *iter;
5580              while (InstrumentsIterator != pInstruments->end() ) {                  ++iter;
5581                  delete (*InstrumentsIterator);              }
5582                  InstrumentsIterator++;              delete pScriptGroups;
5583              }          }
             pInstruments->clear();  
             delete pInstruments;  
         }  
         // free extension files  
         for (std::list<RIFF::File*>::iterator i = ExtensionFiles.begin() ; i != ExtensionFiles.end() ; i++)  
             delete *i;  
5584      }      }
5585    
5586      Sample* File::GetFirstSample(progress_t* pProgress) {      Sample* File::GetFirstSample(progress_t* pProgress) {
# Line 1778  namespace { Line 5595  namespace {
5595          SamplesIterator++;          SamplesIterator++;
5596          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5597      }      }
5598        
5599        /**
5600         * Returns Sample object of @a index.
5601         *
5602         * @returns sample object or NULL if index is out of bounds
5603         */
5604        Sample* File::GetSample(uint index) {
5605            if (!pSamples) LoadSamples();
5606            if (!pSamples) return NULL;
5607            DLS::File::SampleList::iterator it = pSamples->begin();
5608            for (int i = 0; i < index; ++i) {
5609                ++it;
5610                if (it == pSamples->end()) return NULL;
5611            }
5612            if (it == pSamples->end()) return NULL;
5613            return static_cast<gig::Sample*>( *it );
5614        }
5615    
5616        /**
5617         * Returns the total amount of samples of this gig file.
5618         *
5619         * Note that this method might block for a long time in case it is required
5620         * to load the sample info for the first time.
5621         *
5622         * @returns total amount of samples
5623         */
5624        size_t File::CountSamples() {
5625            if (!pSamples) LoadSamples();
5626            if (!pSamples) return 0;
5627            return pSamples->size();
5628        }
5629    
5630        /** @brief Add a new sample.
5631         *
5632         * This will create a new Sample object for the gig file. You have to
5633         * call Save() to make this persistent to the file.
5634         *
5635         * @returns pointer to new Sample object
5636         */
5637        Sample* File::AddSample() {
5638           if (!pSamples) LoadSamples();
5639           __ensureMandatoryChunksExist();
5640           RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
5641           // create new Sample object and its respective 'wave' list chunk
5642           RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
5643           Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
5644    
5645           // add mandatory chunks to get the chunks in right order
5646           wave->AddSubChunk(CHUNK_ID_FMT, 16);
5647           wave->AddSubList(LIST_TYPE_INFO);
5648    
5649           pSamples->push_back(pSample);
5650           return pSample;
5651        }
5652    
5653        /** @brief Delete a sample.
5654         *
5655         * This will delete the given Sample object from the gig file. Any
5656         * references to this sample from Regions and DimensionRegions will be
5657         * removed. You have to call Save() to make this persistent to the file.
5658         *
5659         * @param pSample - sample to delete
5660         * @throws gig::Exception if given sample could not be found
5661         */
5662        void File::DeleteSample(Sample* pSample) {
5663            if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
5664            SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
5665            if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
5666            if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
5667            pSamples->erase(iter);
5668            delete pSample;
5669    
5670            SampleList::iterator tmp = SamplesIterator;
5671            // remove all references to the sample
5672            for (Instrument* instrument = GetFirstInstrument() ; instrument ;
5673                 instrument = GetNextInstrument()) {
5674                for (Region* region = instrument->GetFirstRegion() ; region ;
5675                     region = instrument->GetNextRegion()) {
5676    
5677                    if (region->GetSample() == pSample) region->SetSample(NULL);
5678    
5679                    for (int i = 0 ; i < region->DimensionRegions ; i++) {
5680                        gig::DimensionRegion *d = region->pDimensionRegions[i];
5681                        if (d->pSample == pSample) d->pSample = NULL;
5682                    }
5683                }
5684            }
5685            SamplesIterator = tmp; // restore iterator
5686        }
5687    
5688        void File::LoadSamples() {
5689            LoadSamples(NULL);
5690        }
5691    
5692      void File::LoadSamples(progress_t* pProgress) {      void File::LoadSamples(progress_t* pProgress) {
5693            // Groups must be loaded before samples, because samples will try
5694            // to resolve the group they belong to
5695            if (!pGroups) LoadGroups();
5696    
5697            if (!pSamples) pSamples = new SampleList;
5698    
5699          RIFF::File* file = pRIFF;          RIFF::File* file = pRIFF;
5700    
5701          // just for progress calculation          // just for progress calculation
5702          int iSampleIndex  = 0;          int iSampleIndex  = 0;
5703          int iTotalSamples = WavePoolCount;          int iTotalSamples = WavePoolCount;
5704    
5705          // check if samples should be loaded from extension files          // just for assembling path of optional extension files to be read
5706          int lastFileNo = 0;          const std::string folder = parentPath(pRIFF->GetFileName());
5707          for (int i = 0 ; i < WavePoolCount ; i++) {          const std::string baseName = pathWithoutExtension(pRIFF->GetFileName());
5708              if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];  
5709          }          // the main gig file and the extension files (.gx01, ... , .gx98) may
5710          String name(pRIFF->Filename);          // contain wave data (wave pool)
5711          int nameLen = pRIFF->Filename.length();          std::vector<RIFF::File*> poolFiles;
5712          char suffix[6];          poolFiles.push_back(pRIFF);
5713          if (nameLen > 4 && pRIFF->Filename.substr(nameLen - 4) == ".gig") nameLen -= 4;  
5714            // get info about all extension files
5715            RIFF::Chunk* ckXfil = pRIFF->GetSubChunk(CHUNK_ID_XFIL);
5716            if (ckXfil) { // there are extension files (.gx01, ... , .gx98) ...
5717                const uint32_t n = ckXfil->ReadInt32();
5718                for (int i = 0; i < n; i++) {
5719                    // read the filename and load the extension file
5720                    std::string name;
5721                    ckXfil->ReadString(name, 128);
5722                    std::string path = concatPath(folder, name);
5723                    RIFF::File* pExtFile = new RIFF::File(path);
5724                    // check that the dlsids match
5725                    RIFF::Chunk* ckDLSID = pExtFile->GetSubChunk(CHUNK_ID_DLID);
5726                    if (ckDLSID) {
5727                        ::DLS::dlsid_t idExpected;
5728                        idExpected.ulData1 = ckXfil->ReadInt32();
5729                        idExpected.usData2 = ckXfil->ReadInt16();
5730                        idExpected.usData3 = ckXfil->ReadInt16();
5731                        ckXfil->Read(idExpected.abData, 8, 1);
5732                        ::DLS::dlsid_t idFound;
5733                        ckDLSID->Read(&idFound.ulData1, 1, 4);
5734                        ckDLSID->Read(&idFound.usData2, 1, 2);
5735                        ckDLSID->Read(&idFound.usData3, 1, 2);
5736                        ckDLSID->Read(idFound.abData, 8, 1);
5737                        if (memcmp(&idExpected, &idFound, 16) != 0)
5738                            throw gig::Exception("dlsid mismatch for extension file: %s", path.c_str());
5739                    }
5740                    poolFiles.push_back(pExtFile);
5741                    ExtensionFiles.push_back(pExtFile);
5742                }
5743            }
5744    
5745          for (int fileNo = 0 ; ; ) {          // check if a .gx99 (GigaPulse) file exists
5746            RIFF::Chunk* ckDoxf = pRIFF->GetSubChunk(CHUNK_ID_DOXF);
5747            if (ckDoxf) { // there is a .gx99 (GigaPulse) file ...
5748                std::string path = baseName + ".gx99";
5749                RIFF::File* pExtFile = new RIFF::File(path);
5750    
5751                // skip unused int and filename
5752                ckDoxf->SetPos(132, RIFF::stream_curpos);
5753    
5754                // check that the dlsids match
5755                RIFF::Chunk* ckDLSID = pExtFile->GetSubChunk(CHUNK_ID_DLID);
5756                if (ckDLSID) {
5757                    ::DLS::dlsid_t idExpected;
5758                    idExpected.ulData1 = ckDoxf->ReadInt32();
5759                    idExpected.usData2 = ckDoxf->ReadInt16();
5760                    idExpected.usData3 = ckDoxf->ReadInt16();
5761                    ckDoxf->Read(idExpected.abData, 8, 1);
5762                    ::DLS::dlsid_t idFound;
5763                    ckDLSID->Read(&idFound.ulData1, 1, 4);
5764                    ckDLSID->Read(&idFound.usData2, 1, 2);
5765                    ckDLSID->Read(&idFound.usData3, 1, 2);
5766                    ckDLSID->Read(idFound.abData, 8, 1);
5767                    if (memcmp(&idExpected, &idFound, 16) != 0)
5768                        throw gig::Exception("dlsid mismatch for GigaPulse file: %s", path.c_str());
5769                }
5770                poolFiles.push_back(pExtFile);
5771                ExtensionFiles.push_back(pExtFile);
5772            }
5773    
5774            // load samples from extension files (if required)
5775            for (int i = 0; i < poolFiles.size(); i++) {
5776                RIFF::File* file = poolFiles[i];
5777              RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);              RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
5778              if (wvpl) {              if (wvpl) {
5779                  unsigned long wvplFileOffset = wvpl->GetFilePos();                  file_offset_t wvplFileOffset = wvpl->GetFilePos();
5780                  RIFF::List* wave = wvpl->GetFirstSubList();                  RIFF::List* wave = wvpl->GetFirstSubList();
5781                  while (wave) {                  while (wave) {
5782                      if (wave->GetListType() == LIST_TYPE_WAVE) {                      if (wave->GetListType() == LIST_TYPE_WAVE) {
# Line 1807  namespace { Line 5784  namespace {
5784                          const float subprogress = (float) iSampleIndex / (float) iTotalSamples;                          const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
5785                          __notify_progress(pProgress, subprogress);                          __notify_progress(pProgress, subprogress);
5786    
5787                          if (!pSamples) pSamples = new SampleList;                          file_offset_t waveFileOffset = wave->GetFilePos();
5788                          unsigned long waveFileOffset = wave->GetFilePos();                          pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, i, iSampleIndex));
                         pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));  
5789    
5790                          iSampleIndex++;                          iSampleIndex++;
5791                      }                      }
5792                      wave = wvpl->GetNextSubList();                      wave = wvpl->GetNextSubList();
5793                  }                  }
   
                 if (fileNo == lastFileNo) break;  
   
                 // open extension file (*.gx01, *.gx02, ...)  
                 fileNo++;  
                 sprintf(suffix, ".gx%02d", fileNo);  
                 name.replace(nameLen, 5, suffix);  
                 file = new RIFF::File(name);  
                 ExtensionFiles.push_back(file);  
5794              }              }
             else throw gig::Exception("Mandatory <wvpl> chunk not found.");  
5795          }          }
5796    
5797          __notify_progress(pProgress, 1.0); // notify done          __notify_progress(pProgress, 1.0); // notify done
# Line 1835  namespace { Line 5801  namespace {
5801          if (!pInstruments) LoadInstruments();          if (!pInstruments) LoadInstruments();
5802          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
5803          InstrumentsIterator = pInstruments->begin();          InstrumentsIterator = pInstruments->begin();
5804          return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;          return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5805      }      }
5806    
5807      Instrument* File::GetNextInstrument() {      Instrument* File::GetNextInstrument() {
5808          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
5809          InstrumentsIterator++;          InstrumentsIterator++;
5810          return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;          return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5811        }
5812    
5813        /**
5814         * Returns the total amount of instruments of this gig file.
5815         *
5816         * Note that this method might block for a long time in case it is required
5817         * to load the instruments info for the first time.
5818         *
5819         * @returns total amount of instruments
5820         */
5821        size_t File::CountInstruments() {
5822            if (!pInstruments) LoadInstruments();
5823            if (!pInstruments) return 0;
5824            return pInstruments->size();
5825      }      }
5826    
5827      /**      /**
# Line 1859  namespace { Line 5839  namespace {
5839              progress_t subprogress;              progress_t subprogress;
5840              __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask              __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
5841              __notify_progress(&subprogress, 0.0f);              __notify_progress(&subprogress, 0.0f);
5842              GetFirstSample(&subprogress); // now force all samples to be loaded              if (GetAutoLoad())
5843                    GetFirstSample(&subprogress); // now force all samples to be loaded
5844              __notify_progress(&subprogress, 1.0f);              __notify_progress(&subprogress, 1.0f);
5845    
5846              // instrument loading subtask              // instrument loading subtask
# Line 1874  namespace { Line 5855  namespace {
5855          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
5856          InstrumentsIterator = pInstruments->begin();          InstrumentsIterator = pInstruments->begin();
5857          for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {          for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
5858              if (i == index) return *InstrumentsIterator;              if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
5859              InstrumentsIterator++;              InstrumentsIterator++;
5860          }          }
5861          return NULL;          return NULL;
5862      }      }
5863    
5864        /** @brief Add a new instrument definition.
5865         *
5866         * This will create a new Instrument object for the gig file. You have
5867         * to call Save() to make this persistent to the file.
5868         *
5869         * @returns pointer to new Instrument object
5870         */
5871        Instrument* File::AddInstrument() {
5872           if (!pInstruments) LoadInstruments();
5873           __ensureMandatoryChunksExist();
5874           RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5875           RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
5876    
5877           // add mandatory chunks to get the chunks in right order
5878           lstInstr->AddSubList(LIST_TYPE_INFO);
5879           lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
5880    
5881           Instrument* pInstrument = new Instrument(this, lstInstr);
5882           pInstrument->GenerateDLSID();
5883    
5884           lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
5885    
5886           // this string is needed for the gig to be loadable in GSt:
5887           pInstrument->pInfo->Software = "Endless Wave";
5888    
5889           pInstruments->push_back(pInstrument);
5890           return pInstrument;
5891        }
5892        
5893        /** @brief Add a duplicate of an existing instrument.
5894         *
5895         * Duplicates the instrument definition given by @a orig and adds it
5896         * to this file. This allows in an instrument editor application to
5897         * easily create variations of an instrument, which will be stored in
5898         * the same .gig file, sharing i.e. the same samples.
5899         *
5900         * Note that all sample pointers referenced by @a orig are simply copied as
5901         * memory address. Thus the respective samples are shared, not duplicated!
5902         *
5903         * You have to call Save() to make this persistent to the file.
5904         *
5905         * @param orig - original instrument to be copied
5906         * @returns duplicated copy of the given instrument
5907         */
5908        Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
5909            Instrument* instr = AddInstrument();
5910            instr->CopyAssign(orig);
5911            return instr;
5912        }
5913        
5914        /** @brief Add content of another existing file.
5915         *
5916         * Duplicates the samples, groups and instruments of the original file
5917         * given by @a pFile and adds them to @c this File. In case @c this File is
5918         * a new one that you haven't saved before, then you have to call
5919         * SetFileName() before calling AddContentOf(), because this method will
5920         * automatically save this file during operation, which is required for
5921         * writing the sample waveform data by disk streaming.
5922         *
5923         * @param pFile - original file whose's content shall be copied from
5924         */
5925        void File::AddContentOf(File* pFile) {
5926            static int iCallCount = -1;
5927            iCallCount++;
5928            std::map<Group*,Group*> mGroups;
5929            std::map<Sample*,Sample*> mSamples;
5930            
5931            // clone sample groups
5932            for (int i = 0; pFile->GetGroup(i); ++i) {
5933                Group* g = AddGroup();
5934                g->Name =
5935                    "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
5936                mGroups[pFile->GetGroup(i)] = g;
5937            }
5938            
5939            // clone samples (not waveform data here yet)
5940            for (int i = 0; pFile->GetSample(i); ++i) {
5941                Sample* s = AddSample();
5942                s->CopyAssignMeta(pFile->GetSample(i));
5943                mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
5944                mSamples[pFile->GetSample(i)] = s;
5945            }
5946    
5947            // clone script groups and their scripts
5948            for (int iGroup = 0; pFile->GetScriptGroup(iGroup); ++iGroup) {
5949                ScriptGroup* sg = pFile->GetScriptGroup(iGroup);
5950                ScriptGroup* dg = AddScriptGroup();
5951                dg->Name = "COPY" + ToString(iCallCount) + "_" + sg->Name;
5952                for (int iScript = 0; sg->GetScript(iScript); ++iScript) {
5953                    Script* ss = sg->GetScript(iScript);
5954                    Script* ds = dg->AddScript();
5955                    ds->CopyAssign(ss);
5956                }
5957            }
5958    
5959            //BUG: For some reason this method only works with this additional
5960            //     Save() call in between here.
5961            //
5962            // Important: The correct one of the 2 Save() methods has to be called
5963            // here, depending on whether the file is completely new or has been
5964            // saved to disk already, otherwise it will result in data corruption.
5965            if (pRIFF->IsNew())
5966                Save(GetFileName());
5967            else
5968                Save();
5969            
5970            // clone instruments
5971            // (passing the crosslink table here for the cloned samples)
5972            for (int i = 0; pFile->GetInstrument(i); ++i) {
5973                Instrument* instr = AddInstrument();
5974                instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
5975            }
5976            
5977            // Mandatory: file needs to be saved to disk at this point, so this
5978            // file has the correct size and data layout for writing the samples'
5979            // waveform data to disk.
5980            Save();
5981            
5982            // clone samples' waveform data
5983            // (using direct read & write disk streaming)
5984            for (int i = 0; pFile->GetSample(i); ++i) {
5985                mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
5986            }
5987        }
5988    
5989        /** @brief Delete an instrument.
5990         *
5991         * This will delete the given Instrument object from the gig file. You
5992         * have to call Save() to make this persistent to the file.
5993         *
5994         * @param pInstrument - instrument to delete
5995         * @throws gig::Exception if given instrument could not be found
5996         */
5997        void File::DeleteInstrument(Instrument* pInstrument) {
5998            if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
5999            InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
6000            if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
6001            pInstruments->erase(iter);
6002            delete pInstrument;
6003        }
6004    
6005        void File::LoadInstruments() {
6006            LoadInstruments(NULL);
6007        }
6008    
6009      void File::LoadInstruments(progress_t* pProgress) {      void File::LoadInstruments(progress_t* pProgress) {
6010            if (!pInstruments) pInstruments = new InstrumentList;
6011          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
6012          if (lstInstruments) {          if (lstInstruments) {
6013              int iInstrumentIndex = 0;              int iInstrumentIndex = 0;
# Line 1895  namespace { Line 6022  namespace {
6022                      progress_t subprogress;                      progress_t subprogress;
6023                      __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);                      __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
6024    
                     if (!pInstruments) pInstruments = new InstrumentList;  
6025                      pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));                      pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
6026    
6027                      iInstrumentIndex++;                      iInstrumentIndex++;
# Line 1904  namespace { Line 6030  namespace {
6030              }              }
6031              __notify_progress(pProgress, 1.0); // notify done              __notify_progress(pProgress, 1.0); // notify done
6032          }          }
6033          else throw gig::Exception("Mandatory <lins> list chunk not found.");      }
6034    
6035        /// Updates the 3crc chunk with the checksum of a sample. The
6036        /// update is done directly to disk, as this method is called
6037        /// after File::Save()
6038        void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
6039            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6040            if (!_3crc) return;
6041    
6042            // get the index of the sample
6043            int iWaveIndex = GetWaveTableIndexOf(pSample);
6044            if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
6045    
6046            // write the CRC-32 checksum to disk
6047            _3crc->SetPos(iWaveIndex * 8);
6048            uint32_t one = 1;
6049            _3crc->WriteUint32(&one); // always 1
6050            _3crc->WriteUint32(&crc);
6051        }
6052    
6053        uint32_t File::GetSampleChecksum(Sample* pSample) {
6054            // get the index of the sample
6055            int iWaveIndex = GetWaveTableIndexOf(pSample);
6056            if (iWaveIndex < 0) throw gig::Exception("Could not retrieve reference crc of sample, could not resolve sample's wave table index");
6057    
6058            return GetSampleChecksumByIndex(iWaveIndex);
6059        }
6060    
6061        uint32_t File::GetSampleChecksumByIndex(int index) {
6062            if (index < 0) throw gig::Exception("Could not retrieve reference crc of sample, invalid wave pool index of sample");
6063    
6064            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6065            if (!_3crc) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
6066            uint8_t* pData = (uint8_t*) _3crc->LoadChunkData();
6067            if (!pData) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
6068    
6069            // read the CRC-32 checksum directly from disk
6070            size_t pos = index * 8;
6071            if (pos + 8 > _3crc->GetNewSize())
6072                throw gig::Exception("Could not retrieve reference crc of sample, could not seek to required position in crc chunk");
6073    
6074            uint32_t one = load32(&pData[pos]); // always 1
6075            if (one != 1)
6076                throw gig::Exception("Could not retrieve reference crc of sample, because reference checksum table is damaged");
6077    
6078            return load32(&pData[pos+4]);
6079        }
6080    
6081        int File::GetWaveTableIndexOf(gig::Sample* pSample) {
6082            if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
6083            File::SampleList::iterator iter = pSamples->begin();
6084            File::SampleList::iterator end  = pSamples->end();
6085            for (int index = 0; iter != end; ++iter, ++index)
6086                if (*iter == pSample)
6087                    return index;
6088            return -1;
6089        }
6090    
6091        /**
6092         * Checks whether the file's "3CRC" chunk was damaged. This chunk contains
6093         * the CRC32 check sums of all samples' raw wave data.
6094         *
6095         * @return true if 3CRC chunk is OK, or false if 3CRC chunk is damaged
6096         */
6097        bool File::VerifySampleChecksumTable() {
6098            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6099            if (!_3crc) return false;
6100            if (_3crc->GetNewSize() <= 0) return false;
6101            if (_3crc->GetNewSize() % 8) return false;
6102            if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
6103            if (_3crc->GetNewSize() != pSamples->size() * 8) return false;
6104    
6105            const file_offset_t n = _3crc->GetNewSize() / 8;
6106    
6107            uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6108            if (!pData) return false;
6109    
6110            for (file_offset_t i = 0; i < n; ++i) {
6111                uint32_t one = pData[i*2];
6112                if (one != 1) return false;
6113            }
6114    
6115            return true;
6116        }
6117    
6118        /**
6119         * Recalculates CRC32 checksums for all samples and rebuilds this gig
6120         * file's checksum table with those new checksums. This might usually
6121         * just be necessary if the checksum table was damaged.
6122         *
6123         * @e IMPORTANT: The current implementation of this method only works
6124         * with files that have not been modified since it was loaded, because
6125         * it expects that no externally caused file structure changes are
6126         * required!
6127         *
6128         * Due to the expectation above, this method is currently protected
6129         * and actually only used by the command line tool "gigdump" yet.
6130         *
6131         * @returns true if Save() is required to be called after this call,
6132         *          false if no further action is required
6133         */
6134        bool File::RebuildSampleChecksumTable() {
6135            // make sure sample chunks were scanned
6136            if (!pSamples) GetFirstSample();
6137    
6138            bool bRequiresSave = false;
6139    
6140            // make sure "3CRC" chunk exists with required size
6141            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6142            if (!_3crc) {
6143                _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6144                // the order of einf and 3crc is not the same in v2 and v3
6145                RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6146                if (einf && pVersion && pVersion->major > 2) pRIFF->MoveSubChunk(_3crc, einf);
6147                bRequiresSave = true;
6148            } else if (_3crc->GetNewSize() != pSamples->size() * 8) {
6149                _3crc->Resize(pSamples->size() * 8);
6150                bRequiresSave = true;
6151            }
6152    
6153            if (bRequiresSave) { // refill CRC table for all samples in RAM ...
6154                uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6155                {
6156                    File::SampleList::iterator iter = pSamples->begin();
6157                    File::SampleList::iterator end  = pSamples->end();
6158                    for (; iter != end; ++iter) {
6159                        gig::Sample* pSample = (gig::Sample*) *iter;
6160                        int index = GetWaveTableIndexOf(pSample);
6161                        if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6162                        pData[index*2]   = 1; // always 1
6163                        pData[index*2+1] = pSample->CalculateWaveDataChecksum();
6164                    }
6165                }
6166            } else { // no file structure changes necessary, so directly write to disk and we are done ...
6167                // make sure file is in write mode
6168                pRIFF->SetMode(RIFF::stream_mode_read_write);
6169                {
6170                    File::SampleList::iterator iter = pSamples->begin();
6171                    File::SampleList::iterator end  = pSamples->end();
6172                    for (; iter != end; ++iter) {
6173                        gig::Sample* pSample = (gig::Sample*) *iter;
6174                        int index = GetWaveTableIndexOf(pSample);
6175                        if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6176                        pSample->crc  = pSample->CalculateWaveDataChecksum();
6177                        SetSampleChecksum(pSample, pSample->crc);
6178                    }
6179                }
6180            }
6181    
6182            return bRequiresSave;
6183        }
6184    
6185        Group* File::GetFirstGroup() {
6186            if (!pGroups) LoadGroups();
6187            // there must always be at least one group
6188            GroupsIterator = pGroups->begin();
6189            return *GroupsIterator;
6190        }
6191    
6192        Group* File::GetNextGroup() {
6193            if (!pGroups) return NULL;
6194            ++GroupsIterator;
6195            return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
6196        }
6197    
6198        /**
6199         * Returns the group with the given index.
6200         *
6201         * @param index - number of the sought group (0..n)
6202         * @returns sought group or NULL if there's no such group
6203         */
6204        Group* File::GetGroup(uint index) {
6205            if (!pGroups) LoadGroups();
6206            GroupsIterator = pGroups->begin();
6207            for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
6208                if (i == index) return *GroupsIterator;
6209                ++GroupsIterator;
6210            }
6211            return NULL;
6212        }
6213    
6214        /**
6215         * Returns the group with the given group name.
6216         *
6217         * Note: group names don't have to be unique in the gig format! So there
6218         * can be multiple groups with the same name. This method will simply
6219         * return the first group found with the given name.
6220         *
6221         * @param name - name of the sought group
6222         * @returns sought group or NULL if there's no group with that name
6223         */
6224        Group* File::GetGroup(String name) {
6225            if (!pGroups) LoadGroups();
6226            GroupsIterator = pGroups->begin();
6227            for (uint i = 0; GroupsIterator != pGroups->end(); ++GroupsIterator, ++i)
6228                if ((*GroupsIterator)->Name == name) return *GroupsIterator;
6229            return NULL;
6230        }
6231    
6232        Group* File::AddGroup() {
6233            if (!pGroups) LoadGroups();
6234            // there must always be at least one group
6235            __ensureMandatoryChunksExist();
6236            Group* pGroup = new Group(this, NULL);
6237            pGroups->push_back(pGroup);
6238            return pGroup;
6239        }
6240    
6241        /** @brief Delete a group and its samples.
6242         *
6243         * This will delete the given Group object and all the samples that
6244         * belong to this group from the gig file. You have to call Save() to
6245         * make this persistent to the file.
6246         *
6247         * @param pGroup - group to delete
6248         * @throws gig::Exception if given group could not be found
6249         */
6250        void File::DeleteGroup(Group* pGroup) {
6251            if (!pGroups) LoadGroups();
6252            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6253            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6254            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6255            // delete all members of this group
6256            for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
6257                DeleteSample(pSample);
6258            }
6259            // now delete this group object
6260            pGroups->erase(iter);
6261            delete pGroup;
6262        }
6263    
6264        /** @brief Delete a group.
6265         *
6266         * This will delete the given Group object from the gig file. All the
6267         * samples that belong to this group will not be deleted, but instead
6268         * be moved to another group. You have to call Save() to make this
6269         * persistent to the file.
6270         *
6271         * @param pGroup - group to delete
6272         * @throws gig::Exception if given group could not be found
6273         */
6274        void File::DeleteGroupOnly(Group* pGroup) {
6275            if (!pGroups) LoadGroups();
6276            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6277            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6278            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6279            // move all members of this group to another group
6280            pGroup->MoveAll();
6281            pGroups->erase(iter);
6282            delete pGroup;
6283        }
6284    
6285        void File::LoadGroups() {
6286            if (!pGroups) pGroups = new std::list<Group*>;
6287            // try to read defined groups from file
6288            RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6289            if (lst3gri) {
6290                RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
6291                if (lst3gnl) {
6292                    RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
6293                    while (ck) {
6294                        if (ck->GetChunkID() == CHUNK_ID_3GNM) {
6295                            if (pVersion && pVersion->major > 2 &&
6296                                strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
6297    
6298                            pGroups->push_back(new Group(this, ck));
6299                        }
6300                        ck = lst3gnl->GetNextSubChunk();
6301                    }
6302                }
6303            }
6304            // if there were no group(s), create at least the mandatory default group
6305            if (!pGroups->size()) {
6306                Group* pGroup = new Group(this, NULL);
6307                pGroup->Name = "Default Group";
6308                pGroups->push_back(pGroup);
6309            }
6310        }
6311    
6312        /** @brief Get instrument script group (by index).
6313         *
6314         * Returns the real-time instrument script group with the given index.
6315         *
6316         * @param index - number of the sought group (0..n)
6317         * @returns sought script group or NULL if there's no such group
6318         */
6319        ScriptGroup* File::GetScriptGroup(uint index) {
6320            if (!pScriptGroups) LoadScriptGroups();
6321            std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6322            for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6323                if (i == index) return *it;
6324            return NULL;
6325        }
6326    
6327        /** @brief Get instrument script group (by name).
6328         *
6329         * Returns the first real-time instrument script group found with the given
6330         * group name. Note that group names may not necessarily be unique.
6331         *
6332         * @param name - name of the sought script group
6333         * @returns sought script group or NULL if there's no such group
6334         */
6335        ScriptGroup* File::GetScriptGroup(const String& name) {
6336            if (!pScriptGroups) LoadScriptGroups();
6337            std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6338            for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6339                if ((*it)->Name == name) return *it;
6340            return NULL;
6341        }
6342    
6343        /** @brief Add new instrument script group.
6344         *
6345         * Adds a new, empty real-time instrument script group to the file.
6346         *
6347         * You have to call Save() to make this persistent to the file.
6348         *
6349         * @return new empty script group
6350         */
6351        ScriptGroup* File::AddScriptGroup() {
6352            if (!pScriptGroups) LoadScriptGroups();
6353            ScriptGroup* pScriptGroup = new ScriptGroup(this, NULL);
6354            pScriptGroups->push_back(pScriptGroup);
6355            return pScriptGroup;
6356        }
6357    
6358        /** @brief Delete an instrument script group.
6359         *
6360         * This will delete the given real-time instrument script group and all its
6361         * instrument scripts it contains. References inside instruments that are
6362         * using the deleted scripts will be removed from the respective instruments
6363         * accordingly.
6364         *
6365         * You have to call Save() to make this persistent to the file.
6366         *
6367         * @param pScriptGroup - script group to delete
6368         * @throws gig::Exception if given script group could not be found
6369         */
6370        void File::DeleteScriptGroup(ScriptGroup* pScriptGroup) {
6371            if (!pScriptGroups) LoadScriptGroups();
6372            std::list<ScriptGroup*>::iterator iter =
6373                find(pScriptGroups->begin(), pScriptGroups->end(), pScriptGroup);
6374            if (iter == pScriptGroups->end())
6375                throw gig::Exception("Could not delete script group, could not find given script group");
6376            pScriptGroups->erase(iter);
6377            for (int i = 0; pScriptGroup->GetScript(i); ++i)
6378                pScriptGroup->DeleteScript(pScriptGroup->GetScript(i));
6379            if (pScriptGroup->pList)
6380                pScriptGroup->pList->GetParent()->DeleteSubChunk(pScriptGroup->pList);
6381            delete pScriptGroup;
6382        }
6383    
6384        void File::LoadScriptGroups() {
6385            if (pScriptGroups) return;
6386            pScriptGroups = new std::list<ScriptGroup*>;
6387            RIFF::List* lstLS = pRIFF->GetSubList(LIST_TYPE_3LS);
6388            if (lstLS) {
6389                for (RIFF::List* lst = lstLS->GetFirstSubList(); lst;
6390                     lst = lstLS->GetNextSubList())
6391                {
6392                    if (lst->GetListType() == LIST_TYPE_RTIS) {
6393                        pScriptGroups->push_back(new ScriptGroup(this, lst));
6394                    }
6395                }
6396            }
6397        }
6398    
6399        /**
6400         * Apply all the gig file's current instruments, samples, groups and settings
6401         * to the respective RIFF chunks. You have to call Save() to make changes
6402         * persistent.
6403         *
6404         * Usually there is absolutely no need to call this method explicitly.
6405         * It will be called automatically when File::Save() was called.
6406         *
6407         * @param pProgress - callback function for progress notification
6408         * @throws Exception - on errors
6409         */
6410        void File::UpdateChunks(progress_t* pProgress) {
6411            bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
6412    
6413            // update own gig format extension chunks
6414            // (not part of the GigaStudio 4 format)
6415            RIFF::List* lst3LS = pRIFF->GetSubList(LIST_TYPE_3LS);
6416            if (!lst3LS) {
6417                lst3LS = pRIFF->AddSubList(LIST_TYPE_3LS);
6418            }
6419            // Make sure <3LS > chunk is placed before <ptbl> chunk. The precise
6420            // location of <3LS > is irrelevant, however it should be located
6421            // before  the actual wave data
6422            RIFF::Chunk* ckPTBL = pRIFF->GetSubChunk(CHUNK_ID_PTBL);
6423            pRIFF->MoveSubChunk(lst3LS, ckPTBL);
6424    
6425            // This must be performed before writing the chunks for instruments,
6426            // because the instruments' script slots will write the file offsets
6427            // of the respective instrument script chunk as reference.
6428            if (pScriptGroups) {
6429                // Update instrument script (group) chunks.
6430                for (std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6431                     it != pScriptGroups->end(); ++it)
6432                {
6433                    (*it)->UpdateChunks(pProgress);
6434                }
6435            }
6436    
6437            // in case no libgig custom format data was added, then remove the
6438            // custom "3LS " chunk again
6439            if (!lst3LS->CountSubChunks()) {
6440                pRIFF->DeleteSubChunk(lst3LS);
6441                lst3LS = NULL;
6442            }
6443    
6444            // first update base class's chunks
6445            DLS::File::UpdateChunks(pProgress);
6446    
6447            if (newFile) {
6448                // INFO was added by Resource::UpdateChunks - make sure it
6449                // is placed first in file
6450                RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
6451                RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
6452                if (first != info) {
6453                    pRIFF->MoveSubChunk(info, first);
6454                }
6455            }
6456    
6457            // update group's chunks
6458            if (pGroups) {
6459                // make sure '3gri' and '3gnl' list chunks exist
6460                // (before updating the Group chunks)
6461                RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6462                if (!_3gri) {
6463                    _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
6464                    pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
6465                }
6466                RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
6467                if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
6468    
6469                // v3: make sure the file has 128 3gnm chunks
6470                // (before updating the Group chunks)
6471                if (pVersion && pVersion->major > 2) {
6472                    RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
6473                    for (int i = 0 ; i < 128 ; i++) {
6474                        if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
6475                        if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
6476                    }
6477                }
6478    
6479                std::list<Group*>::iterator iter = pGroups->begin();
6480                std::list<Group*>::iterator end  = pGroups->end();
6481                for (; iter != end; ++iter) {
6482                    (*iter)->UpdateChunks(pProgress);
6483                }
6484            }
6485    
6486            // update einf chunk
6487    
6488            // The einf chunk contains statistics about the gig file, such
6489            // as the number of regions and samples used by each
6490            // instrument. It is divided in equally sized parts, where the
6491            // first part contains information about the whole gig file,
6492            // and the rest of the parts map to each instrument in the
6493            // file.
6494            //
6495            // At the end of each part there is a bit map of each sample
6496            // in the file, where a set bit means that the sample is used
6497            // by the file/instrument.
6498            //
6499            // Note that there are several fields with unknown use. These
6500            // are set to zero.
6501    
6502            int sublen = int(pSamples->size() / 8 + 49);
6503            int einfSize = (Instruments + 1) * sublen;
6504    
6505            RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6506            if (einf) {
6507                if (einf->GetSize() != einfSize) {
6508                    einf->Resize(einfSize);
6509                    memset(einf->LoadChunkData(), 0, einfSize);
6510                }
6511            } else if (newFile) {
6512                einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
6513            }
6514            if (einf) {
6515                uint8_t* pData = (uint8_t*) einf->LoadChunkData();
6516    
6517                std::map<gig::Sample*,int> sampleMap;
6518                int sampleIdx = 0;
6519                for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
6520                    sampleMap[pSample] = sampleIdx++;
6521                }
6522    
6523                int totnbusedsamples = 0;
6524                int totnbusedchannels = 0;
6525                int totnbregions = 0;
6526                int totnbdimregions = 0;
6527                int totnbloops = 0;
6528                int instrumentIdx = 0;
6529    
6530                memset(&pData[48], 0, sublen - 48);
6531    
6532                for (Instrument* instrument = GetFirstInstrument() ; instrument ;
6533                     instrument = GetNextInstrument()) {
6534                    int nbusedsamples = 0;
6535                    int nbusedchannels = 0;
6536                    int nbdimregions = 0;
6537                    int nbloops = 0;
6538    
6539                    memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
6540    
6541                    for (Region* region = instrument->GetFirstRegion() ; region ;
6542                         region = instrument->GetNextRegion()) {
6543                        for (int i = 0 ; i < region->DimensionRegions ; i++) {
6544                            gig::DimensionRegion *d = region->pDimensionRegions[i];
6545                            if (d->pSample) {
6546                                int sampleIdx = sampleMap[d->pSample];
6547                                int byte = 48 + sampleIdx / 8;
6548                                int bit = 1 << (sampleIdx & 7);
6549                                if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
6550                                    pData[(instrumentIdx + 1) * sublen + byte] |= bit;
6551                                    nbusedsamples++;
6552                                    nbusedchannels += d->pSample->Channels;
6553    
6554                                    if ((pData[byte] & bit) == 0) {
6555                                        pData[byte] |= bit;
6556                                        totnbusedsamples++;
6557                                        totnbusedchannels += d->pSample->Channels;
6558                                    }
6559                                }
6560                            }
6561                            if (d->SampleLoops) nbloops++;
6562                        }
6563                        nbdimregions += region->DimensionRegions;
6564                    }
6565                    // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6566                    // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
6567                    store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
6568                    store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
6569                    store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
6570                    store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
6571                    store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
6572                    store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
6573                    // next 8 bytes unknown
6574                    store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
6575                    store32(&pData[(instrumentIdx + 1) * sublen + 40], (uint32_t) pSamples->size());
6576                    // next 4 bytes unknown
6577    
6578                    totnbregions += instrument->Regions;
6579                    totnbdimregions += nbdimregions;
6580                    totnbloops += nbloops;
6581                    instrumentIdx++;
6582                }
6583                // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6584                // store32(&pData[0], sublen);
6585                store32(&pData[4], totnbusedchannels);
6586                store32(&pData[8], totnbusedsamples);
6587                store32(&pData[12], Instruments);
6588                store32(&pData[16], totnbregions);
6589                store32(&pData[20], totnbdimregions);
6590                store32(&pData[24], totnbloops);
6591                // next 8 bytes unknown
6592                // next 4 bytes unknown, not always 0
6593                store32(&pData[40], (uint32_t) pSamples->size());
6594                // next 4 bytes unknown
6595            }
6596    
6597            // update 3crc chunk
6598    
6599            // The 3crc chunk contains CRC-32 checksums for the
6600            // samples. When saving a gig file to disk, we first update the 3CRC
6601            // chunk here (in RAM) with the old crc values which we read from the
6602            // 3CRC chunk when we opened the file (available with gig::Sample::crc
6603            // member variable). This step is required, because samples might have
6604            // been deleted by the user since the file was opened, which in turn
6605            // changes the order of the (i.e. old) checksums within the 3crc chunk.
6606            // If a sample was conciously modified by the user (that is if
6607            // Sample::Write() was called later on) then Sample::Write() will just
6608            // update the respective individual checksum(s) directly on disk and
6609            // leaves all other sample checksums untouched.
6610    
6611            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6612            if (_3crc) {
6613                _3crc->Resize(pSamples->size() * 8);
6614            } else /*if (newFile)*/ {
6615                _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6616                // the order of einf and 3crc is not the same in v2 and v3
6617                if (einf && pVersion && pVersion->major > 2) pRIFF->MoveSubChunk(_3crc, einf);
6618            }
6619            { // must be performed in RAM here ...
6620                uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6621                if (pData) {
6622                    File::SampleList::iterator iter = pSamples->begin();
6623                    File::SampleList::iterator end  = pSamples->end();
6624                    for (int index = 0; iter != end; ++iter, ++index) {
6625                        gig::Sample* pSample = (gig::Sample*) *iter;
6626                        pData[index*2]   = 1; // always 1
6627                        pData[index*2+1] = pSample->crc;
6628                    }
6629                }
6630            }
6631        }
6632        
6633        void File::UpdateFileOffsets() {
6634            DLS::File::UpdateFileOffsets();
6635    
6636            for (Instrument* instrument = GetFirstInstrument(); instrument;
6637                 instrument = GetNextInstrument())
6638            {
6639                instrument->UpdateScriptFileOffsets();
6640            }
6641        }
6642    
6643        /**
6644         * Enable / disable automatic loading. By default this properyt is
6645         * enabled and all informations are loaded automatically. However
6646         * loading all Regions, DimensionRegions and especially samples might
6647         * take a long time for large .gig files, and sometimes one might only
6648         * be interested in retrieving very superficial informations like the
6649         * amount of instruments and their names. In this case one might disable
6650         * automatic loading to avoid very slow response times.
6651         *
6652         * @e CAUTION: by disabling this property many pointers (i.e. sample
6653         * references) and informations will have invalid or even undefined
6654         * data! This feature is currently only intended for retrieving very
6655         * superficial informations in a very fast way. Don't use it to retrieve
6656         * details like synthesis informations or even to modify .gig files!
6657         */
6658        void File::SetAutoLoad(bool b) {
6659            bAutoLoad = b;
6660        }
6661    
6662        /**
6663         * Returns whether automatic loading is enabled.
6664         * @see SetAutoLoad()
6665         */
6666        bool File::GetAutoLoad() {
6667            return bAutoLoad;
6668      }      }
6669    
6670    
# Line 1912  namespace { Line 6672  namespace {
6672  // *************** Exception ***************  // *************** Exception ***************
6673  // *  // *
6674    
6675      Exception::Exception(String Message) : DLS::Exception(Message) {      Exception::Exception() : DLS::Exception() {
6676        }
6677    
6678        Exception::Exception(String format, ...) : DLS::Exception() {
6679            va_list arg;
6680            va_start(arg, format);
6681            Message = assemble(format, arg);
6682            va_end(arg);
6683        }
6684    
6685        Exception::Exception(String format, va_list arg) : DLS::Exception() {
6686            Message = assemble(format, arg);
6687      }      }
6688    
6689      void Exception::PrintMessage() {      void Exception::PrintMessage() {

Legend:
Removed from v.666  
changed lines
  Added in v.3475

  ViewVC Help
Powered by ViewVC