/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Diff of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 834 by persson, Mon Feb 6 17:58:21 2006 UTC revision 2601 by schoenebeck, Sat Jun 7 15:19:58 2014 UTC
# Line 1  Line 1 
1  /***************************************************************************  /***************************************************************************
2   *                                                                         *   *                                                                         *
3   *   libgig - C++ cross-platform Gigasampler format file loader library    *   *   libgig - C++ cross-platform Gigasampler format file access library    *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003-2005 by Christian Schoenebeck                      *   *   Copyright (C) 2003-2014 by Christian Schoenebeck                      *
6   *                              <cuse@users.sourceforge.net>               *   *                              <cuse@users.sourceforge.net>               *
7   *                                                                         *   *                                                                         *
8   *   This library is free software; you can redistribute it and/or modify  *   *   This library is free software; you can redistribute it and/or modify  *
# Line 25  Line 25 
25    
26  #include "helper.h"  #include "helper.h"
27    
28    #include <algorithm>
29  #include <math.h>  #include <math.h>
30  #include <iostream>  #include <iostream>
31    #include <assert.h>
32    
33  /// Initial size of the sample buffer which is used for decompression of  /// Initial size of the sample buffer which is used for decompression of
34  /// compressed sample wave streams - this value should always be bigger than  /// compressed sample wave streams - this value should always be bigger than
# Line 51  Line 53 
53    
54  namespace gig {  namespace gig {
55    
 // *************** dimension_def_t ***************  
 // *  
   
     dimension_def_t& dimension_def_t::operator=(const dimension_def_t& arg) {  
         dimension  = arg.dimension;  
         bits       = arg.bits;  
         zones      = arg.zones;  
         split_type = arg.split_type;  
         ranges     = arg.ranges;  
         zone_size  = arg.zone_size;  
         if (ranges) {  
             ranges = new range_t[zones];  
             for (int i = 0; i < zones; i++)  
                 ranges[i] = arg.ranges[i];  
         }  
         return *this;  
     }  
   
   
   
56  // *************** progress_t ***************  // *************** progress_t ***************
57  // *  // *
58    
# Line 131  namespace { Line 113  namespace {
113          return x & 0x800000 ? x - 0x1000000 : x;          return x & 0x800000 ? x - 0x1000000 : x;
114      }      }
115    
116        inline void store24(unsigned char* pDst, int x)
117        {
118            pDst[0] = x;
119            pDst[1] = x >> 8;
120            pDst[2] = x >> 16;
121        }
122    
123      void Decompress16(int compressionmode, const unsigned char* params,      void Decompress16(int compressionmode, const unsigned char* params,
124                        int srcStep, int dstStep,                        int srcStep, int dstStep,
125                        const unsigned char* pSrc, int16_t* pDst,                        const unsigned char* pSrc, int16_t* pDst,
# Line 170  namespace { Line 159  namespace {
159      }      }
160    
161      void Decompress24(int compressionmode, const unsigned char* params,      void Decompress24(int compressionmode, const unsigned char* params,
162                        int dstStep, const unsigned char* pSrc, int16_t* pDst,                        int dstStep, const unsigned char* pSrc, uint8_t* pDst,
163                        unsigned long currentframeoffset,                        unsigned long currentframeoffset,
164                        unsigned long copysamples, int truncatedBits)                        unsigned long copysamples, int truncatedBits)
165      {      {
         // Note: The 24 bits are truncated to 16 bits for now.  
   
166          int y, dy, ddy, dddy;          int y, dy, ddy, dddy;
         const int shift = 8 - truncatedBits;  
167    
168  #define GET_PARAMS(params)                      \  #define GET_PARAMS(params)                      \
169          y    = get24(params);                   \          y    = get24(params);                   \
# Line 193  namespace { Line 179  namespace {
179    
180  #define COPY_ONE(x)                             \  #define COPY_ONE(x)                             \
181          SKIP_ONE(x);                            \          SKIP_ONE(x);                            \
182          *pDst = y >> shift;                     \          store24(pDst, y << truncatedBits);      \
183          pDst += dstStep          pDst += dstStep
184    
185          switch (compressionmode) {          switch (compressionmode) {
186              case 2: // 24 bit uncompressed              case 2: // 24 bit uncompressed
187                  pSrc += currentframeoffset * 3;                  pSrc += currentframeoffset * 3;
188                  while (copysamples) {                  while (copysamples) {
189                      *pDst = get24(pSrc) >> shift;                      store24(pDst, get24(pSrc) << truncatedBits);
190                      pDst += dstStep;                      pDst += dstStep;
191                      pSrc += 3;                      pSrc += 3;
192                      copysamples--;                      copysamples--;
# Line 270  namespace { Line 256  namespace {
256  }  }
257    
258    
259    
260    // *************** Internal CRC-32 (Cyclic Redundancy Check) functions  ***************
261    // *
262    
263        static uint32_t* __initCRCTable() {
264            static uint32_t res[256];
265    
266            for (int i = 0 ; i < 256 ; i++) {
267                uint32_t c = i;
268                for (int j = 0 ; j < 8 ; j++) {
269                    c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
270                }
271                res[i] = c;
272            }
273            return res;
274        }
275    
276        static const uint32_t* __CRCTable = __initCRCTable();
277    
278        /**
279         * Initialize a CRC variable.
280         *
281         * @param crc - variable to be initialized
282         */
283        inline static void __resetCRC(uint32_t& crc) {
284            crc = 0xffffffff;
285        }
286    
287        /**
288         * Used to calculate checksums of the sample data in a gig file. The
289         * checksums are stored in the 3crc chunk of the gig file and
290         * automatically updated when a sample is written with Sample::Write().
291         *
292         * One should call __resetCRC() to initialize the CRC variable to be
293         * used before calling this function the first time.
294         *
295         * After initializing the CRC variable one can call this function
296         * arbitrary times, i.e. to split the overall CRC calculation into
297         * steps.
298         *
299         * Once the whole data was processed by __calculateCRC(), one should
300         * call __encodeCRC() to get the final CRC result.
301         *
302         * @param buf     - pointer to data the CRC shall be calculated of
303         * @param bufSize - size of the data to be processed
304         * @param crc     - variable the CRC sum shall be stored to
305         */
306        static void __calculateCRC(unsigned char* buf, int bufSize, uint32_t& crc) {
307            for (int i = 0 ; i < bufSize ; i++) {
308                crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
309            }
310        }
311    
312        /**
313         * Returns the final CRC result.
314         *
315         * @param crc - variable previously passed to __calculateCRC()
316         */
317        inline static uint32_t __encodeCRC(const uint32_t& crc) {
318            return crc ^ 0xffffffff;
319        }
320    
321    
322    
323    // *************** Other Internal functions  ***************
324    // *
325    
326        static split_type_t __resolveSplitType(dimension_t dimension) {
327            return (
328                dimension == dimension_layer ||
329                dimension == dimension_samplechannel ||
330                dimension == dimension_releasetrigger ||
331                dimension == dimension_keyboard ||
332                dimension == dimension_roundrobin ||
333                dimension == dimension_random ||
334                dimension == dimension_smartmidi ||
335                dimension == dimension_roundrobinkeyboard
336            ) ? split_type_bit : split_type_normal;
337        }
338    
339        static int __resolveZoneSize(dimension_def_t& dimension_definition) {
340            return (dimension_definition.split_type == split_type_normal)
341            ? int(128.0 / dimension_definition.zones) : 0;
342        }
343    
344    
345    
346  // *************** Sample ***************  // *************** Sample ***************
347  // *  // *
348    
# Line 295  namespace { Line 368  namespace {
368       *                         is located, 0 otherwise       *                         is located, 0 otherwise
369       */       */
370      Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {      Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
371            static const DLS::Info::string_length_t fixedStringLengths[] = {
372                { CHUNK_ID_INAM, 64 },
373                { 0, 0 }
374            };
375            pInfo->SetFixedStringLengths(fixedStringLengths);
376          Instances++;          Instances++;
377          FileNo = fileNo;          FileNo = fileNo;
378    
379            __resetCRC(crc);
380    
381          pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);          pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
382          if (pCk3gix) {          if (pCk3gix) {
383              SampleGroup = pCk3gix->ReadInt16();              uint16_t iSampleGroup = pCk3gix->ReadInt16();
384                pGroup = pFile->GetGroup(iSampleGroup);
385          } else { // '3gix' chunk missing          } else { // '3gix' chunk missing
386              // use default value(s)              // by default assigned to that mandatory "Default Group"
387              SampleGroup = 0;              pGroup = pFile->GetGroup(0);
388          }          }
389    
390          pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);          pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
# Line 327  namespace { Line 408  namespace {
408              // use default values              // use default values
409              Manufacturer  = 0;              Manufacturer  = 0;
410              Product       = 0;              Product       = 0;
411              SamplePeriod  = 1 / SamplesPerSecond;              SamplePeriod  = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
412              MIDIUnityNote = 64;              MIDIUnityNote = 60;
413              FineTune      = 0;              FineTune      = 0;
414                SMPTEFormat   = smpte_format_no_offset;
415              SMPTEOffset   = 0;              SMPTEOffset   = 0;
416              Loops         = 0;              Loops         = 0;
417              LoopID        = 0;              LoopID        = 0;
418                LoopType      = loop_type_normal;
419              LoopStart     = 0;              LoopStart     = 0;
420              LoopEnd       = 0;              LoopEnd       = 0;
421              LoopFraction  = 0;              LoopFraction  = 0;
# Line 368  namespace { Line 451  namespace {
451          }          }
452          FrameOffset = 0; // just for streaming compressed samples          FrameOffset = 0; // just for streaming compressed samples
453    
454          LoopSize = LoopEnd - LoopStart;          LoopSize = LoopEnd - LoopStart + 1;
455        }
456    
457        /**
458         * Make a (semi) deep copy of the Sample object given by @a orig (without
459         * the actual waveform data) and assign it to this object.
460         *
461         * Discussion: copying .gig samples is a bit tricky. It requires three
462         * steps:
463         * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
464         *    its new sample waveform data size.
465         * 2. Saving the file (done by File::Save()) so that it gains correct size
466         *    and layout for writing the actual wave form data directly to disc
467         *    in next step.
468         * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
469         *
470         * @param orig - original Sample object to be copied from
471         */
472        void Sample::CopyAssignMeta(const Sample* orig) {
473            // handle base classes
474            DLS::Sample::CopyAssignCore(orig);
475            
476            // handle actual own attributes of this class
477            Manufacturer = orig->Manufacturer;
478            Product = orig->Product;
479            SamplePeriod = orig->SamplePeriod;
480            MIDIUnityNote = orig->MIDIUnityNote;
481            FineTune = orig->FineTune;
482            SMPTEFormat = orig->SMPTEFormat;
483            SMPTEOffset = orig->SMPTEOffset;
484            Loops = orig->Loops;
485            LoopID = orig->LoopID;
486            LoopType = orig->LoopType;
487            LoopStart = orig->LoopStart;
488            LoopEnd = orig->LoopEnd;
489            LoopSize = orig->LoopSize;
490            LoopFraction = orig->LoopFraction;
491            LoopPlayCount = orig->LoopPlayCount;
492            
493            // schedule resizing this sample to the given sample's size
494            Resize(orig->GetSize());
495        }
496    
497        /**
498         * Should be called after CopyAssignMeta() and File::Save() sequence.
499         * Read more about it in the discussion of CopyAssignMeta(). This method
500         * copies the actual waveform data by disk streaming.
501         *
502         * @e CAUTION: this method is currently not thread safe! During this
503         * operation the sample must not be used for other purposes by other
504         * threads!
505         *
506         * @param orig - original Sample object to be copied from
507         */
508        void Sample::CopyAssignWave(const Sample* orig) {
509            const int iReadAtOnce = 32*1024;
510            char* buf = new char[iReadAtOnce * orig->FrameSize];
511            Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
512            unsigned long restorePos = pOrig->GetPos();
513            pOrig->SetPos(0);
514            SetPos(0);
515            for (unsigned long n = pOrig->Read(buf, iReadAtOnce); n;
516                               n = pOrig->Read(buf, iReadAtOnce))
517            {
518                Write(buf, n);
519            }
520            pOrig->SetPos(restorePos);
521            delete [] buf;
522      }      }
523    
524      /**      /**
# Line 378  namespace { Line 528  namespace {
528       * Usually there is absolutely no need to call this method explicitly.       * Usually there is absolutely no need to call this method explicitly.
529       * It will be called automatically when File::Save() was called.       * It will be called automatically when File::Save() was called.
530       *       *
531       * @throws DLS::Exception if FormatTag != WAVE_FORMAT_PCM or no sample data       * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
532       *                        was provided yet       *                        was provided yet
533       * @throws gig::Exception if there is any invalid sample setting       * @throws gig::Exception if there is any invalid sample setting
534       */       */
# Line 388  namespace { Line 538  namespace {
538    
539          // make sure 'smpl' chunk exists          // make sure 'smpl' chunk exists
540          pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);          pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
541          if (!pCkSmpl) pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);          if (!pCkSmpl) {
542                pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
543                memset(pCkSmpl->LoadChunkData(), 0, 60);
544            }
545          // update 'smpl' chunk          // update 'smpl' chunk
546          uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();          uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
547          SamplePeriod = 1 / SamplesPerSecond;          SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
548          memcpy(&pData[0], &Manufacturer, 4);          store32(&pData[0], Manufacturer);
549          memcpy(&pData[4], &Product, 4);          store32(&pData[4], Product);
550          memcpy(&pData[8], &SamplePeriod, 4);          store32(&pData[8], SamplePeriod);
551          memcpy(&pData[12], &MIDIUnityNote, 4);          store32(&pData[12], MIDIUnityNote);
552          memcpy(&pData[16], &FineTune, 4);          store32(&pData[16], FineTune);
553          memcpy(&pData[20], &SMPTEFormat, 4);          store32(&pData[20], SMPTEFormat);
554          memcpy(&pData[24], &SMPTEOffset, 4);          store32(&pData[24], SMPTEOffset);
555          memcpy(&pData[28], &Loops, 4);          store32(&pData[28], Loops);
556    
557          // we skip 'manufByt' for now (4 bytes)          // we skip 'manufByt' for now (4 bytes)
558    
559          memcpy(&pData[36], &LoopID, 4);          store32(&pData[36], LoopID);
560          memcpy(&pData[40], &LoopType, 4);          store32(&pData[40], LoopType);
561          memcpy(&pData[44], &LoopStart, 4);          store32(&pData[44], LoopStart);
562          memcpy(&pData[48], &LoopEnd, 4);          store32(&pData[48], LoopEnd);
563          memcpy(&pData[52], &LoopFraction, 4);          store32(&pData[52], LoopFraction);
564          memcpy(&pData[56], &LoopPlayCount, 4);          store32(&pData[56], LoopPlayCount);
565    
566          // make sure '3gix' chunk exists          // make sure '3gix' chunk exists
567          pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);          pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
568          if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);          if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
569            // determine appropriate sample group index (to be stored in chunk)
570            uint16_t iSampleGroup = 0; // 0 refers to default sample group
571            File* pFile = static_cast<File*>(pParent);
572            if (pFile->pGroups) {
573                std::list<Group*>::iterator iter = pFile->pGroups->begin();
574                std::list<Group*>::iterator end  = pFile->pGroups->end();
575                for (int i = 0; iter != end; i++, iter++) {
576                    if (*iter == pGroup) {
577                        iSampleGroup = i;
578                        break; // found
579                    }
580                }
581            }
582          // update '3gix' chunk          // update '3gix' chunk
583          pData = (uint8_t*) pCk3gix->LoadChunkData();          pData = (uint8_t*) pCk3gix->LoadChunkData();
584          memcpy(&pData[0], &SampleGroup, 2);          store16(&pData[0], iSampleGroup);
585    
586            // if the library user toggled the "Compressed" attribute from true to
587            // false, then the EWAV chunk associated with compressed samples needs
588            // to be deleted
589            RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
590            if (ewav && !Compressed) {
591                pWaveList->DeleteSubChunk(ewav);
592            }
593      }      }
594    
595      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
# Line 579  namespace { Line 753  namespace {
753          if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;          if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
754          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
755          unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;          unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
756            SetPos(0); // reset read position to begin of sample
757          RAMCache.pStart            = new int8_t[allocationsize];          RAMCache.pStart            = new int8_t[allocationsize];
758          RAMCache.Size              = Read(RAMCache.pStart, SampleCount) * this->FrameSize;          RAMCache.Size              = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
759          RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;          RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
# Line 616  namespace { Line 791  namespace {
791          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
792          RAMCache.pStart = NULL;          RAMCache.pStart = NULL;
793          RAMCache.Size   = 0;          RAMCache.Size   = 0;
794            RAMCache.NullExtensionSize = 0;
795      }      }
796    
797      /** @brief Resize sample.      /** @brief Resize sample.
# Line 636  namespace { Line 812  namespace {
812       * enlarged samples before calling File::Save() as this might exceed the       * enlarged samples before calling File::Save() as this might exceed the
813       * current sample's boundary!       * current sample's boundary!
814       *       *
815       * Also note: only WAVE_FORMAT_PCM is currently supported, that is       * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
816       * FormatTag must be WAVE_FORMAT_PCM. Trying to resize samples with       * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
817       * other formats will fail!       * other formats will fail!
818       *       *
819       * @param iNewSize - new sample wave data size in sample points (must be       * @param iNewSize - new sample wave data size in sample points (must be
820       *                   greater than zero)       *                   greater than zero)
821       * @throws DLS::Excecption if FormatTag != WAVE_FORMAT_PCM       * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
822       *                         or if \a iNewSize is less than 1       *                         or if \a iNewSize is less than 1
823       * @throws gig::Exception if existing sample is compressed       * @throws gig::Exception if existing sample is compressed
824       * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,       * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
# Line 708  namespace { Line 884  namespace {
884      /**      /**
885       * Returns the current position in the sample (in sample points).       * Returns the current position in the sample (in sample points).
886       */       */
887      unsigned long Sample::GetPos() {      unsigned long Sample::GetPos() const {
888          if (Compressed) return SamplePos;          if (Compressed) return SamplePos;
889          else            return pCkData->GetPos() / FrameSize;          else            return pCkData->GetPos() / FrameSize;
890      }      }
# Line 742  namespace { Line 918  namespace {
918       * @param SampleCount      number of sample points to read       * @param SampleCount      number of sample points to read
919       * @param pPlaybackState   will be used to store and reload the playback       * @param pPlaybackState   will be used to store and reload the playback
920       *                         state for the next ReadAndLoop() call       *                         state for the next ReadAndLoop() call
921         * @param pDimRgn          dimension region with looping information
922       * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression       * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
923       * @returns                number of successfully read sample points       * @returns                number of successfully read sample points
924       * @see                    CreateDecompressionBuffer()       * @see                    CreateDecompressionBuffer()
925       */       */
926      unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState, buffer_t* pExternalDecompressionBuffer) {      unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,
927                                          DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
928          unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;          unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
929          uint8_t* pDst = (uint8_t*) pBuffer;          uint8_t* pDst = (uint8_t*) pBuffer;
930    
931          SetPos(pPlaybackState->position); // recover position from the last time          SetPos(pPlaybackState->position); // recover position from the last time
932    
933          if (this->Loops && GetPos() <= this->LoopEnd) { // honor looping if there are loop points defined          if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
934    
935              switch (this->LoopType) {              const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
936                const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
937    
938                  case loop_type_bidirectional: { //TODO: not tested yet!              if (GetPos() <= loopEnd) {
939                      do {                  switch (loop.LoopType) {
                         // if not endless loop check if max. number of loop cycles have been passed  
                         if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;  
   
                         if (!pPlaybackState->reverse) { // forward playback  
                             do {  
                                 samplestoloopend  = this->LoopEnd - GetPos();  
                                 readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);  
                                 samplestoread    -= readsamples;  
                                 totalreadsamples += readsamples;  
                                 if (readsamples == samplestoloopend) {  
                                     pPlaybackState->reverse = true;  
                                     break;  
                                 }  
                             } while (samplestoread && readsamples);  
                         }  
                         else { // backward playback  
940    
941                              // as we can only read forward from disk, we have to                      case loop_type_bidirectional: { //TODO: not tested yet!
942                              // determine the end position within the loop first,                          do {
943                              // read forward from that 'end' and finally after                              // if not endless loop check if max. number of loop cycles have been passed
944                              // reading, swap all sample frames so it reflects                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
945                              // backward playback  
946                                if (!pPlaybackState->reverse) { // forward playback
947                              unsigned long swapareastart       = totalreadsamples;                                  do {
948                              unsigned long loopoffset          = GetPos() - this->LoopStart;                                      samplestoloopend  = loopEnd - GetPos();
949                              unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);                                      readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
950                              unsigned long reverseplaybackend  = GetPos() - samplestoreadinloop;                                      samplestoread    -= readsamples;
951                                        totalreadsamples += readsamples;
952                              SetPos(reverseplaybackend);                                      if (readsamples == samplestoloopend) {
953                                            pPlaybackState->reverse = true;
954                              // read samples for backward playback                                          break;
955                              do {                                      }
956                                  readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);                                  } while (samplestoread && readsamples);
957                                  samplestoreadinloop -= readsamples;                              }
958                                  samplestoread       -= readsamples;                              else { // backward playback
                                 totalreadsamples    += readsamples;  
                             } while (samplestoreadinloop && readsamples);  
959    
960                              SetPos(reverseplaybackend); // pretend we really read backwards                                  // as we can only read forward from disk, we have to
961                                    // determine the end position within the loop first,
962                                    // read forward from that 'end' and finally after
963                                    // reading, swap all sample frames so it reflects
964                                    // backward playback
965    
966                                    unsigned long swapareastart       = totalreadsamples;
967                                    unsigned long loopoffset          = GetPos() - loop.LoopStart;
968                                    unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
969                                    unsigned long reverseplaybackend  = GetPos() - samplestoreadinloop;
970    
971                                    SetPos(reverseplaybackend);
972    
973                                    // read samples for backward playback
974                                    do {
975                                        readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
976                                        samplestoreadinloop -= readsamples;
977                                        samplestoread       -= readsamples;
978                                        totalreadsamples    += readsamples;
979                                    } while (samplestoreadinloop && readsamples);
980    
981                                    SetPos(reverseplaybackend); // pretend we really read backwards
982    
983                                    if (reverseplaybackend == loop.LoopStart) {
984                                        pPlaybackState->loop_cycles_left--;
985                                        pPlaybackState->reverse = false;
986                                    }
987    
988                              if (reverseplaybackend == this->LoopStart) {                                  // reverse the sample frames for backward playback
989                                  pPlaybackState->loop_cycles_left--;                                  if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
990                                  pPlaybackState->reverse = false;                                      SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
991                              }                              }
992                            } while (samplestoread && readsamples);
993                            break;
994                        }
995    
996                              // reverse the sample frames for backward playback                      case loop_type_backward: { // TODO: not tested yet!
997                              SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);                          // forward playback (not entered the loop yet)
998                          }                          if (!pPlaybackState->reverse) do {
999                      } while (samplestoread && readsamples);                              samplestoloopend  = loopEnd - GetPos();
1000                      break;                              readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1001                  }                              samplestoread    -= readsamples;
1002                                totalreadsamples += readsamples;
1003                  case loop_type_backward: { // TODO: not tested yet!                              if (readsamples == samplestoloopend) {
1004                      // forward playback (not entered the loop yet)                                  pPlaybackState->reverse = true;
1005                      if (!pPlaybackState->reverse) do {                                  break;
1006                          samplestoloopend  = this->LoopEnd - GetPos();                              }
1007                          readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);                          } while (samplestoread && readsamples);
                         samplestoread    -= readsamples;  
                         totalreadsamples += readsamples;  
                         if (readsamples == samplestoloopend) {  
                             pPlaybackState->reverse = true;  
                             break;  
                         }  
                     } while (samplestoread && readsamples);  
1008    
1009                      if (!samplestoread) break;                          if (!samplestoread) break;
1010    
1011                      // as we can only read forward from disk, we have to                          // as we can only read forward from disk, we have to
1012                      // determine the end position within the loop first,                          // determine the end position within the loop first,
1013                      // read forward from that 'end' and finally after                          // read forward from that 'end' and finally after
1014                      // reading, swap all sample frames so it reflects                          // reading, swap all sample frames so it reflects
1015                      // backward playback                          // backward playback
1016    
1017                      unsigned long swapareastart       = totalreadsamples;                          unsigned long swapareastart       = totalreadsamples;
1018                      unsigned long loopoffset          = GetPos() - this->LoopStart;                          unsigned long loopoffset          = GetPos() - loop.LoopStart;
1019                      unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * LoopSize - loopoffset)                          unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1020                                                                                : samplestoread;                                                                                    : samplestoread;
1021                      unsigned long reverseplaybackend  = this->LoopStart + Abs((loopoffset - samplestoreadinloop) % this->LoopSize);                          unsigned long reverseplaybackend  = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1022    
1023                      SetPos(reverseplaybackend);                          SetPos(reverseplaybackend);
1024    
1025                      // read samples for backward playback                          // read samples for backward playback
1026                      do {                          do {
1027                          // if not endless loop check if max. number of loop cycles have been passed                              // if not endless loop check if max. number of loop cycles have been passed
1028                          if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1029                          samplestoloopend     = this->LoopEnd - GetPos();                              samplestoloopend     = loopEnd - GetPos();
1030                          readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);                              readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1031                          samplestoreadinloop -= readsamples;                              samplestoreadinloop -= readsamples;
1032                          samplestoread       -= readsamples;                              samplestoread       -= readsamples;
1033                          totalreadsamples    += readsamples;                              totalreadsamples    += readsamples;
1034                          if (readsamples == samplestoloopend) {                              if (readsamples == samplestoloopend) {
1035                              pPlaybackState->loop_cycles_left--;                                  pPlaybackState->loop_cycles_left--;
1036                              SetPos(this->LoopStart);                                  SetPos(loop.LoopStart);
1037                          }                              }
1038                      } while (samplestoreadinloop && readsamples);                          } while (samplestoreadinloop && readsamples);
1039    
1040                      SetPos(reverseplaybackend); // pretend we really read backwards                          SetPos(reverseplaybackend); // pretend we really read backwards
1041    
1042                      // reverse the sample frames for backward playback                          // reverse the sample frames for backward playback
1043                      SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);                          SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1044                      break;                          break;
1045                  }                      }
1046    
1047                  default: case loop_type_normal: {                      default: case loop_type_normal: {
1048                      do {                          do {
1049                          // if not endless loop check if max. number of loop cycles have been passed                              // if not endless loop check if max. number of loop cycles have been passed
1050                          if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1051                          samplestoloopend  = this->LoopEnd - GetPos();                              samplestoloopend  = loopEnd - GetPos();
1052                          readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);                              readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1053                          samplestoread    -= readsamples;                              samplestoread    -= readsamples;
1054                          totalreadsamples += readsamples;                              totalreadsamples += readsamples;
1055                          if (readsamples == samplestoloopend) {                              if (readsamples == samplestoloopend) {
1056                              pPlaybackState->loop_cycles_left--;                                  pPlaybackState->loop_cycles_left--;
1057                              SetPos(this->LoopStart);                                  SetPos(loop.LoopStart);
1058                          }                              }
1059                      } while (samplestoread && readsamples);                          } while (samplestoread && readsamples);
1060                      break;                          break;
1061                        }
1062                  }                  }
1063              }              }
1064          }          }
# Line 904  namespace { Line 1088  namespace {
1088       * have to use an external decompression buffer for <b>EACH</b>       * have to use an external decompression buffer for <b>EACH</b>
1089       * streaming thread to avoid race conditions and crashes!       * streaming thread to avoid race conditions and crashes!
1090       *       *
1091         * For 16 bit samples, the data in the buffer will be int16_t
1092         * (using native endianness). For 24 bit, the buffer will
1093         * contain three bytes per sample, little-endian.
1094         *
1095       * @param pBuffer      destination buffer       * @param pBuffer      destination buffer
1096       * @param SampleCount  number of sample points to read       * @param SampleCount  number of sample points to read
1097       * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression       * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
# Line 914  namespace { Line 1102  namespace {
1102          if (SampleCount == 0) return 0;          if (SampleCount == 0) return 0;
1103          if (!Compressed) {          if (!Compressed) {
1104              if (BitDepth == 24) {              if (BitDepth == 24) {
1105                  // 24 bit sample. For now just truncate to 16 bit.                  return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
                 unsigned char* pSrc = (unsigned char*) ((pExternalDecompressionBuffer) ? pExternalDecompressionBuffer->pStart : this->InternalDecompressionBuffer.pStart);  
                 int16_t* pDst = static_cast<int16_t*>(pBuffer);  
                 if (Channels == 2) { // Stereo  
                     unsigned long readBytes = pCkData->Read(pSrc, SampleCount * 6, 1);  
                     pSrc++;  
                     for (unsigned long i = readBytes ; i > 0 ; i -= 3) {  
                         *pDst++ = get16(pSrc);  
                         pSrc += 3;  
                     }  
                     return (pDst - static_cast<int16_t*>(pBuffer)) >> 1;  
                 }  
                 else { // Mono  
                     unsigned long readBytes = pCkData->Read(pSrc, SampleCount * 3, 1);  
                     pSrc++;  
                     for (unsigned long i = readBytes ; i > 0 ; i -= 3) {  
                         *pDst++ = get16(pSrc);  
                         pSrc += 3;  
                     }  
                     return pDst - static_cast<int16_t*>(pBuffer);  
                 }  
1106              }              }
1107              else { // 16 bit              else { // 16 bit
1108                  // (pCkData->Read does endian correction)                  // (pCkData->Read does endian correction)
# Line 964  namespace { Line 1132  namespace {
1132    
1133              unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;              unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1134              int16_t* pDst = static_cast<int16_t*>(pBuffer);              int16_t* pDst = static_cast<int16_t*>(pBuffer);
1135                uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1136              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1137    
1138              while (remainingsamples && remainingbytes) {              while (remainingsamples && remainingbytes) {
# Line 1045  namespace { Line 1214  namespace {
1214                              const unsigned char* const param_r = pSrc;                              const unsigned char* const param_r = pSrc;
1215                              if (mode_r != 2) pSrc += 12;                              if (mode_r != 2) pSrc += 12;
1216    
1217                              Decompress24(mode_l, param_l, 2, pSrc, pDst,                              Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1218                                           skipsamples, copysamples, TruncatedBits);                                           skipsamples, copysamples, TruncatedBits);
1219                              Decompress24(mode_r, param_r, 2, pSrc + rightChannelOffset, pDst + 1,                              Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1220                                           skipsamples, copysamples, TruncatedBits);                                           skipsamples, copysamples, TruncatedBits);
1221                              pDst += copysamples << 1;                              pDst24 += copysamples * 6;
1222                          }                          }
1223                          else { // Mono                          else { // Mono
1224                              Decompress24(mode_l, param_l, 1, pSrc, pDst,                              Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1225                                           skipsamples, copysamples, TruncatedBits);                                           skipsamples, copysamples, TruncatedBits);
1226                              pDst += copysamples;                              pDst24 += copysamples * 3;
1227                          }                          }
1228                      }                      }
1229                      else { // 16 bit                      else { // 16 bit
# Line 1108  namespace { Line 1277  namespace {
1277       *       *
1278       * Note: there is currently no support for writing compressed samples.       * Note: there is currently no support for writing compressed samples.
1279       *       *
1280         * For 16 bit samples, the data in the source buffer should be
1281         * int16_t (using native endianness). For 24 bit, the buffer
1282         * should contain three bytes per sample, little-endian.
1283         *
1284       * @param pBuffer     - source buffer       * @param pBuffer     - source buffer
1285       * @param SampleCount - number of sample points to write       * @param SampleCount - number of sample points to write
1286       * @throws DLS::Exception if current sample size is too small       * @throws DLS::Exception if current sample size is too small
# Line 1116  namespace { Line 1289  namespace {
1289       */       */
1290      unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {      unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1291          if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");          if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1292          return DLS::Sample::Write(pBuffer, SampleCount);  
1293            // if this is the first write in this sample, reset the
1294            // checksum calculator
1295            if (pCkData->GetPos() == 0) {
1296                __resetCRC(crc);
1297            }
1298            if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1299            unsigned long res;
1300            if (BitDepth == 24) {
1301                res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1302            } else { // 16 bit
1303                res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1304                                    : pCkData->Write(pBuffer, SampleCount, 2);
1305            }
1306            __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1307    
1308            // if this is the last write, update the checksum chunk in the
1309            // file
1310            if (pCkData->GetPos() == pCkData->GetSize()) {
1311                File* pFile = static_cast<File*>(GetParent());
1312                pFile->SetSampleChecksum(this, __encodeCRC(crc));
1313            }
1314            return res;
1315      }      }
1316    
1317      /**      /**
# Line 1161  namespace { Line 1356  namespace {
1356          }          }
1357      }      }
1358    
1359        /**
1360         * Returns pointer to the Group this Sample belongs to. In the .gig
1361         * format a sample always belongs to one group. If it wasn't explicitly
1362         * assigned to a certain group, it will be automatically assigned to a
1363         * default group.
1364         *
1365         * @returns Sample's Group (never NULL)
1366         */
1367        Group* Sample::GetGroup() const {
1368            return pGroup;
1369        }
1370    
1371      Sample::~Sample() {      Sample::~Sample() {
1372          Instances--;          Instances--;
1373          if (!Instances && InternalDecompressionBuffer.Size) {          if (!Instances && InternalDecompressionBuffer.Size) {
# Line 1180  namespace { Line 1387  namespace {
1387      uint                               DimensionRegion::Instances       = 0;      uint                               DimensionRegion::Instances       = 0;
1388      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1389    
1390      DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {      DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1391          Instances++;          Instances++;
1392    
1393          pSample = NULL;          pSample = NULL;
1394            pRegion = pParent;
1395    
1396            if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1397            else memset(&Crossfade, 0, 4);
1398    
         memcpy(&Crossfade, &SamplerOptions, 4);  
1399          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1400    
1401          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1402          if (_3ewa) { // if '3ewa' chunk exists          if (_3ewa) { // if '3ewa' chunk exists
1403              _3ewa->ReadInt32(); // unknown, always 0x0000008C ?              _3ewa->ReadInt32(); // unknown, always == chunk size ?
1404              LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1405              EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1406              _3ewa->ReadInt16(); // unknown              _3ewa->ReadInt16(); // unknown
# Line 1299  namespace { Line 1509  namespace {
1509                                                          : vcf_res_ctrl_none;                                                          : vcf_res_ctrl_none;
1510              uint16_t eg3depth = _3ewa->ReadUint16();              uint16_t eg3depth = _3ewa->ReadUint16();
1511              EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */              EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1512                                          : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */                                          : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1513              _3ewa->ReadInt16(); // unknown              _3ewa->ReadInt16(); // unknown
1514              ChannelOffset = _3ewa->ReadUint8() / 4;              ChannelOffset = _3ewa->ReadUint8() / 4;
1515              uint8_t regoptions = _3ewa->ReadUint8();              uint8_t regoptions = _3ewa->ReadUint8();
# Line 1335  namespace { Line 1545  namespace {
1545                  if (lfo3ctrl & 0x40) // bit 6                  if (lfo3ctrl & 0x40) // bit 6
1546                      VCFType = vcf_type_lowpassturbo;                      VCFType = vcf_type_lowpassturbo;
1547              }              }
1548                if (_3ewa->RemainingBytes() >= 8) {
1549                    _3ewa->Read(DimensionUpperLimits, 1, 8);
1550                } else {
1551                    memset(DimensionUpperLimits, 0, 8);
1552                }
1553          } else { // '3ewa' chunk does not exist yet          } else { // '3ewa' chunk does not exist yet
1554              // use default values              // use default values
1555              LFO3Frequency                   = 1.0;              LFO3Frequency                   = 1.0;
# Line 1344  namespace { Line 1559  namespace {
1559              LFO1ControlDepth                = 0;              LFO1ControlDepth                = 0;
1560              LFO3ControlDepth                = 0;              LFO3ControlDepth                = 0;
1561              EG1Attack                       = 0.0;              EG1Attack                       = 0.0;
1562              EG1Decay1                       = 0.0;              EG1Decay1                       = 0.005;
1563              EG1Sustain                      = 0;              EG1Sustain                      = 1000;
1564              EG1Release                      = 0.0;              EG1Release                      = 0.3;
1565              EG1Controller.type              = eg1_ctrl_t::type_none;              EG1Controller.type              = eg1_ctrl_t::type_none;
1566              EG1Controller.controller_number = 0;              EG1Controller.controller_number = 0;
1567              EG1ControllerInvert             = false;              EG1ControllerInvert             = false;
# Line 1361  namespace { Line 1576  namespace {
1576              EG2ControllerReleaseInfluence   = 0;              EG2ControllerReleaseInfluence   = 0;
1577              LFO1Frequency                   = 1.0;              LFO1Frequency                   = 1.0;
1578              EG2Attack                       = 0.0;              EG2Attack                       = 0.0;
1579              EG2Decay1                       = 0.0;              EG2Decay1                       = 0.005;
1580              EG2Sustain                      = 0;              EG2Sustain                      = 1000;
1581              EG2Release                      = 0.0;              EG2Release                      = 0.3;
1582              LFO2ControlDepth                = 0;              LFO2ControlDepth                = 0;
1583              LFO2Frequency                   = 1.0;              LFO2Frequency                   = 1.0;
1584              LFO2InternalDepth               = 0;              LFO2InternalDepth               = 0;
1585              EG1Decay2                       = 0.0;              EG1Decay2                       = 0.0;
1586              EG1InfiniteSustain              = false;              EG1InfiniteSustain              = true;
1587              EG1PreAttack                    = 1000;              EG1PreAttack                    = 0;
1588              EG2Decay2                       = 0.0;              EG2Decay2                       = 0.0;
1589              EG2InfiniteSustain              = false;              EG2InfiniteSustain              = true;
1590              EG2PreAttack                    = 1000;              EG2PreAttack                    = 0;
1591              VelocityResponseCurve           = curve_type_nonlinear;              VelocityResponseCurve           = curve_type_nonlinear;
1592              VelocityResponseDepth           = 3;              VelocityResponseDepth           = 3;
1593              ReleaseVelocityResponseCurve    = curve_type_nonlinear;              ReleaseVelocityResponseCurve    = curve_type_nonlinear;
# Line 1415  namespace { Line 1630  namespace {
1630              VCFVelocityDynamicRange         = 0x04;              VCFVelocityDynamicRange         = 0x04;
1631              VCFVelocityCurve                = curve_type_linear;              VCFVelocityCurve                = curve_type_linear;
1632              VCFType                         = vcf_type_lowpass;              VCFType                         = vcf_type_lowpass;
1633                memset(DimensionUpperLimits, 127, 8);
1634          }          }
1635    
1636          pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,          pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1637                                                       VelocityResponseDepth,                                                       VelocityResponseDepth,
1638                                                       VelocityResponseCurveScaling);                                                       VelocityResponseCurveScaling);
1639    
1640          curve_type_t curveType = ReleaseVelocityResponseCurve;          pVelocityReleaseTable = GetReleaseVelocityTable(
1641          uint8_t depth = ReleaseVelocityResponseDepth;                                      ReleaseVelocityResponseCurve,
1642                                        ReleaseVelocityResponseDepth
1643                                    );
1644    
1645            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1646                                                          VCFVelocityDynamicRange,
1647                                                          VCFVelocityScale,
1648                                                          VCFCutoffController);
1649    
1650          // this models a strange behaviour or bug in GSt: two of the          SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1651          // velocity response curves for release time are not used even          VelocityTable = 0;
1652          // if specified, instead another curve is chosen.      }
         if ((curveType == curve_type_nonlinear && depth == 0) ||  
             (curveType == curve_type_special   && depth == 4)) {  
             curveType = curve_type_nonlinear;  
             depth = 3;  
         }  
         pVelocityReleaseTable = GetVelocityTable(curveType, depth, 0);  
1653    
1654          curveType = VCFVelocityCurve;      /*
1655          depth = VCFVelocityDynamicRange;       * Constructs a DimensionRegion by copying all parameters from
1656         * another DimensionRegion
1657         */
1658        DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1659            Instances++;
1660            //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1661            *this = src; // default memberwise shallow copy of all parameters
1662            pParentList = _3ewl; // restore the chunk pointer
1663    
1664            // deep copy of owned structures
1665            if (src.VelocityTable) {
1666                VelocityTable = new uint8_t[128];
1667                for (int k = 0 ; k < 128 ; k++)
1668                    VelocityTable[k] = src.VelocityTable[k];
1669            }
1670            if (src.pSampleLoops) {
1671                pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1672                for (int k = 0 ; k < src.SampleLoops ; k++)
1673                    pSampleLoops[k] = src.pSampleLoops[k];
1674            }
1675        }
1676        
1677        /**
1678         * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1679         * and assign it to this object.
1680         *
1681         * Note that all sample pointers referenced by @a orig are simply copied as
1682         * memory address. Thus the respective samples are shared, not duplicated!
1683         *
1684         * @param orig - original DimensionRegion object to be copied from
1685         */
1686        void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1687            CopyAssign(orig, NULL);
1688        }
1689    
1690          // even stranger GSt: two of the velocity response curves for      /**
1691          // filter cutoff are not used, instead another special curve       * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1692          // is chosen. This curve is not used anywhere else.       * and assign it to this object.
1693          if ((curveType == curve_type_nonlinear && depth == 0) ||       *
1694              (curveType == curve_type_special   && depth == 4)) {       * @param orig - original DimensionRegion object to be copied from
1695              curveType = curve_type_special;       * @param mSamples - crosslink map between the foreign file's samples and
1696              depth = 5;       *                   this file's samples
1697         */
1698        void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1699            // delete all allocated data first
1700            if (VelocityTable) delete [] VelocityTable;
1701            if (pSampleLoops) delete [] pSampleLoops;
1702            
1703            // backup parent list pointer
1704            RIFF::List* p = pParentList;
1705            
1706            gig::Sample* pOriginalSample = pSample;
1707            gig::Region* pOriginalRegion = pRegion;
1708            
1709            //NOTE: copy code copied from assignment constructor above, see comment there as well
1710            
1711            *this = *orig; // default memberwise shallow copy of all parameters
1712            
1713            // restore members that shall not be altered
1714            pParentList = p; // restore the chunk pointer
1715            pRegion = pOriginalRegion;
1716            
1717            // only take the raw sample reference reference if the
1718            // two DimensionRegion objects are part of the same file
1719            if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1720                pSample = pOriginalSample;
1721            }
1722            
1723            if (mSamples && mSamples->count(orig->pSample)) {
1724                pSample = mSamples->find(orig->pSample)->second;
1725            }
1726    
1727            // deep copy of owned structures
1728            if (orig->VelocityTable) {
1729                VelocityTable = new uint8_t[128];
1730                for (int k = 0 ; k < 128 ; k++)
1731                    VelocityTable[k] = orig->VelocityTable[k];
1732            }
1733            if (orig->pSampleLoops) {
1734                pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1735                for (int k = 0 ; k < orig->SampleLoops ; k++)
1736                    pSampleLoops[k] = orig->pSampleLoops[k];
1737          }          }
1738          pVelocityCutoffTable = GetVelocityTable(curveType, depth,      }
                                                 VCFCutoffController <= vcf_cutoff_ctrl_none2 ? VCFVelocityScale : 0);  
1739    
1740        /**
1741         * Updates the respective member variable and updates @c SampleAttenuation
1742         * which depends on this value.
1743         */
1744        void DimensionRegion::SetGain(int32_t gain) {
1745            DLS::Sampler::SetGain(gain);
1746          SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));          SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1747      }      }
1748    
# Line 1462  namespace { Line 1757  namespace {
1757          // first update base class's chunk          // first update base class's chunk
1758          DLS::Sampler::UpdateChunks();          DLS::Sampler::UpdateChunks();
1759    
1760            RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1761            uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1762            pData[12] = Crossfade.in_start;
1763            pData[13] = Crossfade.in_end;
1764            pData[14] = Crossfade.out_start;
1765            pData[15] = Crossfade.out_end;
1766    
1767          // make sure '3ewa' chunk exists          // make sure '3ewa' chunk exists
1768          RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);          RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1769          if (!_3ewa)  _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, 140);          if (!_3ewa) {
1770          uint8_t* pData = (uint8_t*) _3ewa->LoadChunkData();              File* pFile = (File*) GetParent()->GetParent()->GetParent();
1771                bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1772                _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1773            }
1774            pData = (uint8_t*) _3ewa->LoadChunkData();
1775    
1776          // update '3ewa' chunk with DimensionRegion's current settings          // update '3ewa' chunk with DimensionRegion's current settings
1777    
1778          const uint32_t unknown = 0x0000008C; // unknown, always 0x0000008C ?          const uint32_t chunksize = _3ewa->GetNewSize();
1779          memcpy(&pData[0], &unknown, 4);          store32(&pData[0], chunksize); // unknown, always chunk size?
1780    
1781          const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);          const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1782          memcpy(&pData[4], &lfo3freq, 4);          store32(&pData[4], lfo3freq);
1783    
1784          const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);          const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1785          memcpy(&pData[4], &eg3attack, 4);          store32(&pData[8], eg3attack);
1786    
1787          // next 2 bytes unknown          // next 2 bytes unknown
1788    
1789          memcpy(&pData[10], &LFO1InternalDepth, 2);          store16(&pData[14], LFO1InternalDepth);
1790    
1791          // next 2 bytes unknown          // next 2 bytes unknown
1792    
1793          memcpy(&pData[14], &LFO3InternalDepth, 2);          store16(&pData[18], LFO3InternalDepth);
1794    
1795          // next 2 bytes unknown          // next 2 bytes unknown
1796    
1797          memcpy(&pData[18], &LFO1ControlDepth, 2);          store16(&pData[22], LFO1ControlDepth);
1798    
1799          // next 2 bytes unknown          // next 2 bytes unknown
1800    
1801          memcpy(&pData[22], &LFO3ControlDepth, 2);          store16(&pData[26], LFO3ControlDepth);
1802    
1803          const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);          const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1804          memcpy(&pData[24], &eg1attack, 4);          store32(&pData[28], eg1attack);
1805    
1806          const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);          const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1807          memcpy(&pData[28], &eg1decay1, 4);          store32(&pData[32], eg1decay1);
1808    
1809          // next 2 bytes unknown          // next 2 bytes unknown
1810    
1811          memcpy(&pData[34], &EG1Sustain, 2);          store16(&pData[38], EG1Sustain);
1812    
1813          const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);          const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1814          memcpy(&pData[36], &eg1release, 4);          store32(&pData[40], eg1release);
1815    
1816          const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);          const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1817          memcpy(&pData[40], &eg1ctl, 1);          pData[44] = eg1ctl;
1818    
1819          const uint8_t eg1ctrloptions =          const uint8_t eg1ctrloptions =
1820              (EG1ControllerInvert) ? 0x01 : 0x00 |              (EG1ControllerInvert ? 0x01 : 0x00) |
1821              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1822              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1823              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1824          memcpy(&pData[41], &eg1ctrloptions, 1);          pData[45] = eg1ctrloptions;
1825    
1826          const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);          const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1827          memcpy(&pData[42], &eg2ctl, 1);          pData[46] = eg2ctl;
1828    
1829          const uint8_t eg2ctrloptions =          const uint8_t eg2ctrloptions =
1830              (EG2ControllerInvert) ? 0x01 : 0x00 |              (EG2ControllerInvert ? 0x01 : 0x00) |
1831              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1832              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1833              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1834          memcpy(&pData[43], &eg2ctrloptions, 1);          pData[47] = eg2ctrloptions;
1835    
1836          const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);          const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1837          memcpy(&pData[44], &lfo1freq, 4);          store32(&pData[48], lfo1freq);
1838    
1839          const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);          const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1840          memcpy(&pData[48], &eg2attack, 4);          store32(&pData[52], eg2attack);
1841    
1842          const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);          const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1843          memcpy(&pData[52], &eg2decay1, 4);          store32(&pData[56], eg2decay1);
1844    
1845          // next 2 bytes unknown          // next 2 bytes unknown
1846    
1847          memcpy(&pData[58], &EG2Sustain, 2);          store16(&pData[62], EG2Sustain);
1848    
1849          const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);          const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1850          memcpy(&pData[60], &eg2release, 4);          store32(&pData[64], eg2release);
1851    
1852          // next 2 bytes unknown          // next 2 bytes unknown
1853    
1854          memcpy(&pData[66], &LFO2ControlDepth, 2);          store16(&pData[70], LFO2ControlDepth);
1855    
1856          const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);          const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1857          memcpy(&pData[68], &lfo2freq, 4);          store32(&pData[72], lfo2freq);
1858    
1859          // next 2 bytes unknown          // next 2 bytes unknown
1860    
1861          memcpy(&pData[72], &LFO2InternalDepth, 2);          store16(&pData[78], LFO2InternalDepth);
1862    
1863          const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);          const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1864          memcpy(&pData[74], &eg1decay2, 4);          store32(&pData[80], eg1decay2);
1865    
1866          // next 2 bytes unknown          // next 2 bytes unknown
1867    
1868          memcpy(&pData[80], &EG1PreAttack, 2);          store16(&pData[86], EG1PreAttack);
1869    
1870          const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);          const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1871          memcpy(&pData[82], &eg2decay2, 4);          store32(&pData[88], eg2decay2);
1872    
1873          // next 2 bytes unknown          // next 2 bytes unknown
1874    
1875          memcpy(&pData[88], &EG2PreAttack, 2);          store16(&pData[94], EG2PreAttack);
1876    
1877          {          {
1878              if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");              if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
# Line 1584  namespace { Line 1890  namespace {
1890                  default:                  default:
1891                      throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");                      throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1892              }              }
1893              memcpy(&pData[90], &velocityresponse, 1);              pData[96] = velocityresponse;
1894          }          }
1895    
1896          {          {
# Line 1603  namespace { Line 1909  namespace {
1909                  default:                  default:
1910                      throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");                      throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1911              }              }
1912              memcpy(&pData[91], &releasevelocityresponse, 1);              pData[97] = releasevelocityresponse;
1913          }          }
1914    
1915          memcpy(&pData[92], &VelocityResponseCurveScaling, 1);          pData[98] = VelocityResponseCurveScaling;
1916    
1917          memcpy(&pData[93], &AttenuationControllerThreshold, 1);          pData[99] = AttenuationControllerThreshold;
1918    
1919          // next 4 bytes unknown          // next 4 bytes unknown
1920    
1921          memcpy(&pData[98], &SampleStartOffset, 2);          store16(&pData[104], SampleStartOffset);
1922    
1923          // next 2 bytes unknown          // next 2 bytes unknown
1924    
# Line 1631  namespace { Line 1937  namespace {
1937                  default:                  default:
1938                      throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");                      throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1939              }              }
1940              memcpy(&pData[102], &pitchTrackDimensionBypass, 1);              pData[108] = pitchTrackDimensionBypass;
1941          }          }
1942    
1943          const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit          const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1944          memcpy(&pData[103], &pan, 1);          pData[109] = pan;
1945    
1946          const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;          const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1947          memcpy(&pData[104], &selfmask, 1);          pData[110] = selfmask;
1948    
1949          // next byte unknown          // next byte unknown
1950    
# Line 1647  namespace { Line 1953  namespace {
1953              if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5              if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1954              if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7              if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1955              if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6              if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1956              memcpy(&pData[106], &lfo3ctrl, 1);              pData[112] = lfo3ctrl;
1957          }          }
1958    
1959          const uint8_t attenctl = EncodeLeverageController(AttenuationController);          const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1960          memcpy(&pData[107], &attenctl, 1);          pData[113] = attenctl;
1961    
1962          {          {
1963              uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits              uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1964              if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7              if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1965              if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5              if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5
1966              if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6              if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1967              memcpy(&pData[108], &lfo2ctrl, 1);              pData[114] = lfo2ctrl;
1968          }          }
1969    
1970          {          {
# Line 1667  namespace { Line 1973  namespace {
1973              if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6              if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6
1974              if (VCFResonanceController != vcf_res_ctrl_none)              if (VCFResonanceController != vcf_res_ctrl_none)
1975                  lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);                  lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1976              memcpy(&pData[109], &lfo1ctrl, 1);              pData[115] = lfo1ctrl;
1977          }          }
1978    
1979          const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth          const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1980                                                    : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */                                                    : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
1981          memcpy(&pData[110], &eg3depth, 1);          store16(&pData[116], eg3depth);
1982    
1983          // next 2 bytes unknown          // next 2 bytes unknown
1984    
1985          const uint8_t channeloffset = ChannelOffset * 4;          const uint8_t channeloffset = ChannelOffset * 4;
1986          memcpy(&pData[113], &channeloffset, 1);          pData[120] = channeloffset;
1987    
1988          {          {
1989              uint8_t regoptions = 0;              uint8_t regoptions = 0;
1990              if (MSDecode)      regoptions |= 0x01; // bit 0              if (MSDecode)      regoptions |= 0x01; // bit 0
1991              if (SustainDefeat) regoptions |= 0x02; // bit 1              if (SustainDefeat) regoptions |= 0x02; // bit 1
1992              memcpy(&pData[114], &regoptions, 1);              pData[121] = regoptions;
1993          }          }
1994    
1995          // next 2 bytes unknown          // next 2 bytes unknown
1996    
1997          memcpy(&pData[117], &VelocityUpperLimit, 1);          pData[124] = VelocityUpperLimit;
1998    
1999          // next 3 bytes unknown          // next 3 bytes unknown
2000    
2001          memcpy(&pData[121], &ReleaseTriggerDecay, 1);          pData[128] = ReleaseTriggerDecay;
2002    
2003          // next 2 bytes unknown          // next 2 bytes unknown
2004    
2005          const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7          const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2006          memcpy(&pData[124], &eg1hold, 1);          pData[131] = eg1hold;
2007    
2008          const uint8_t vcfcutoff = (VCFEnabled) ? 0x80 : 0x00 |  /* bit 7 */          const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) |  /* bit 7 */
2009                                    (VCFCutoff)  ? 0x7f : 0x00;   /* lower 7 bits */                                    (VCFCutoff & 0x7f);   /* lower 7 bits */
2010          memcpy(&pData[125], &vcfcutoff, 1);          pData[132] = vcfcutoff;
2011    
2012          memcpy(&pData[126], &VCFCutoffController, 1);          pData[133] = VCFCutoffController;
2013    
2014          const uint8_t vcfvelscale = (VCFCutoffControllerInvert) ? 0x80 : 0x00 | /* bit 7 */          const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2015                                      (VCFVelocityScale) ? 0x7f : 0x00; /* lower 7 bits */                                      (VCFVelocityScale & 0x7f); /* lower 7 bits */
2016          memcpy(&pData[127], &vcfvelscale, 1);          pData[134] = vcfvelscale;
2017    
2018          // next byte unknown          // next byte unknown
2019    
2020          const uint8_t vcfresonance = (VCFResonanceDynamic) ? 0x00 : 0x80 | /* bit 7 */          const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2021                                       (VCFResonance) ? 0x7f : 0x00; /* lower 7 bits */                                       (VCFResonance & 0x7f); /* lower 7 bits */
2022          memcpy(&pData[129], &vcfresonance, 1);          pData[136] = vcfresonance;
2023    
2024          const uint8_t vcfbreakpoint = (VCFKeyboardTracking) ? 0x80 : 0x00 | /* bit 7 */          const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2025                                        (VCFKeyboardTrackingBreakpoint) ? 0x7f : 0x00; /* lower 7 bits */                                        (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2026          memcpy(&pData[130], &vcfbreakpoint, 1);          pData[137] = vcfbreakpoint;
2027    
2028          const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |          const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2029                                      VCFVelocityCurve * 5;                                      VCFVelocityCurve * 5;
2030          memcpy(&pData[131], &vcfvelocity, 1);          pData[138] = vcfvelocity;
2031    
2032          const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;          const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2033          memcpy(&pData[132], &vcftype, 1);          pData[139] = vcftype;
2034    
2035            if (chunksize >= 148) {
2036                memcpy(&pData[140], DimensionUpperLimits, 8);
2037            }
2038        }
2039    
2040        double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2041            curve_type_t curveType = releaseVelocityResponseCurve;
2042            uint8_t depth = releaseVelocityResponseDepth;
2043            // this models a strange behaviour or bug in GSt: two of the
2044            // velocity response curves for release time are not used even
2045            // if specified, instead another curve is chosen.
2046            if ((curveType == curve_type_nonlinear && depth == 0) ||
2047                (curveType == curve_type_special   && depth == 4)) {
2048                curveType = curve_type_nonlinear;
2049                depth = 3;
2050            }
2051            return GetVelocityTable(curveType, depth, 0);
2052        }
2053    
2054        double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2055                                                        uint8_t vcfVelocityDynamicRange,
2056                                                        uint8_t vcfVelocityScale,
2057                                                        vcf_cutoff_ctrl_t vcfCutoffController)
2058        {
2059            curve_type_t curveType = vcfVelocityCurve;
2060            uint8_t depth = vcfVelocityDynamicRange;
2061            // even stranger GSt: two of the velocity response curves for
2062            // filter cutoff are not used, instead another special curve
2063            // is chosen. This curve is not used anywhere else.
2064            if ((curveType == curve_type_nonlinear && depth == 0) ||
2065                (curveType == curve_type_special   && depth == 4)) {
2066                curveType = curve_type_special;
2067                depth = 5;
2068            }
2069            return GetVelocityTable(curveType, depth,
2070                                    (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2071                                        ? vcfVelocityScale : 0);
2072      }      }
2073    
2074      // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet      // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
# Line 1742  namespace { Line 2086  namespace {
2086          return table;          return table;
2087      }      }
2088    
2089        Region* DimensionRegion::GetParent() const {
2090            return pRegion;
2091        }
2092    
2093    // show error if some _lev_ctrl_* enum entry is not listed in the following function
2094    // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2095    // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2096    //#pragma GCC diagnostic push
2097    //#pragma GCC diagnostic error "-Wswitch"
2098    
2099      leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {      leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2100          leverage_ctrl_t decodedcontroller;          leverage_ctrl_t decodedcontroller;
2101          switch (EncodedController) {          switch (EncodedController) {
# Line 1853  namespace { Line 2207  namespace {
2207                  decodedcontroller.controller_number = 95;                  decodedcontroller.controller_number = 95;
2208                  break;                  break;
2209    
2210                // format extension (these controllers are so far only supported by
2211                // LinuxSampler & gigedit) they will *NOT* work with
2212                // Gigasampler/GigaStudio !
2213                case _lev_ctrl_CC3_EXT:
2214                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2215                    decodedcontroller.controller_number = 3;
2216                    break;
2217                case _lev_ctrl_CC6_EXT:
2218                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2219                    decodedcontroller.controller_number = 6;
2220                    break;
2221                case _lev_ctrl_CC7_EXT:
2222                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2223                    decodedcontroller.controller_number = 7;
2224                    break;
2225                case _lev_ctrl_CC8_EXT:
2226                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2227                    decodedcontroller.controller_number = 8;
2228                    break;
2229                case _lev_ctrl_CC9_EXT:
2230                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2231                    decodedcontroller.controller_number = 9;
2232                    break;
2233                case _lev_ctrl_CC10_EXT:
2234                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2235                    decodedcontroller.controller_number = 10;
2236                    break;
2237                case _lev_ctrl_CC11_EXT:
2238                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2239                    decodedcontroller.controller_number = 11;
2240                    break;
2241                case _lev_ctrl_CC14_EXT:
2242                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2243                    decodedcontroller.controller_number = 14;
2244                    break;
2245                case _lev_ctrl_CC15_EXT:
2246                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2247                    decodedcontroller.controller_number = 15;
2248                    break;
2249                case _lev_ctrl_CC20_EXT:
2250                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2251                    decodedcontroller.controller_number = 20;
2252                    break;
2253                case _lev_ctrl_CC21_EXT:
2254                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2255                    decodedcontroller.controller_number = 21;
2256                    break;
2257                case _lev_ctrl_CC22_EXT:
2258                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2259                    decodedcontroller.controller_number = 22;
2260                    break;
2261                case _lev_ctrl_CC23_EXT:
2262                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2263                    decodedcontroller.controller_number = 23;
2264                    break;
2265                case _lev_ctrl_CC24_EXT:
2266                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2267                    decodedcontroller.controller_number = 24;
2268                    break;
2269                case _lev_ctrl_CC25_EXT:
2270                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2271                    decodedcontroller.controller_number = 25;
2272                    break;
2273                case _lev_ctrl_CC26_EXT:
2274                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2275                    decodedcontroller.controller_number = 26;
2276                    break;
2277                case _lev_ctrl_CC27_EXT:
2278                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2279                    decodedcontroller.controller_number = 27;
2280                    break;
2281                case _lev_ctrl_CC28_EXT:
2282                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2283                    decodedcontroller.controller_number = 28;
2284                    break;
2285                case _lev_ctrl_CC29_EXT:
2286                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2287                    decodedcontroller.controller_number = 29;
2288                    break;
2289                case _lev_ctrl_CC30_EXT:
2290                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2291                    decodedcontroller.controller_number = 30;
2292                    break;
2293                case _lev_ctrl_CC31_EXT:
2294                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2295                    decodedcontroller.controller_number = 31;
2296                    break;
2297                case _lev_ctrl_CC68_EXT:
2298                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2299                    decodedcontroller.controller_number = 68;
2300                    break;
2301                case _lev_ctrl_CC69_EXT:
2302                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2303                    decodedcontroller.controller_number = 69;
2304                    break;
2305                case _lev_ctrl_CC70_EXT:
2306                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2307                    decodedcontroller.controller_number = 70;
2308                    break;
2309                case _lev_ctrl_CC71_EXT:
2310                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2311                    decodedcontroller.controller_number = 71;
2312                    break;
2313                case _lev_ctrl_CC72_EXT:
2314                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2315                    decodedcontroller.controller_number = 72;
2316                    break;
2317                case _lev_ctrl_CC73_EXT:
2318                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2319                    decodedcontroller.controller_number = 73;
2320                    break;
2321                case _lev_ctrl_CC74_EXT:
2322                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2323                    decodedcontroller.controller_number = 74;
2324                    break;
2325                case _lev_ctrl_CC75_EXT:
2326                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2327                    decodedcontroller.controller_number = 75;
2328                    break;
2329                case _lev_ctrl_CC76_EXT:
2330                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2331                    decodedcontroller.controller_number = 76;
2332                    break;
2333                case _lev_ctrl_CC77_EXT:
2334                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2335                    decodedcontroller.controller_number = 77;
2336                    break;
2337                case _lev_ctrl_CC78_EXT:
2338                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2339                    decodedcontroller.controller_number = 78;
2340                    break;
2341                case _lev_ctrl_CC79_EXT:
2342                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2343                    decodedcontroller.controller_number = 79;
2344                    break;
2345                case _lev_ctrl_CC84_EXT:
2346                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2347                    decodedcontroller.controller_number = 84;
2348                    break;
2349                case _lev_ctrl_CC85_EXT:
2350                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2351                    decodedcontroller.controller_number = 85;
2352                    break;
2353                case _lev_ctrl_CC86_EXT:
2354                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2355                    decodedcontroller.controller_number = 86;
2356                    break;
2357                case _lev_ctrl_CC87_EXT:
2358                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2359                    decodedcontroller.controller_number = 87;
2360                    break;
2361                case _lev_ctrl_CC89_EXT:
2362                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2363                    decodedcontroller.controller_number = 89;
2364                    break;
2365                case _lev_ctrl_CC90_EXT:
2366                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2367                    decodedcontroller.controller_number = 90;
2368                    break;
2369                case _lev_ctrl_CC96_EXT:
2370                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2371                    decodedcontroller.controller_number = 96;
2372                    break;
2373                case _lev_ctrl_CC97_EXT:
2374                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2375                    decodedcontroller.controller_number = 97;
2376                    break;
2377                case _lev_ctrl_CC102_EXT:
2378                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2379                    decodedcontroller.controller_number = 102;
2380                    break;
2381                case _lev_ctrl_CC103_EXT:
2382                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2383                    decodedcontroller.controller_number = 103;
2384                    break;
2385                case _lev_ctrl_CC104_EXT:
2386                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2387                    decodedcontroller.controller_number = 104;
2388                    break;
2389                case _lev_ctrl_CC105_EXT:
2390                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2391                    decodedcontroller.controller_number = 105;
2392                    break;
2393                case _lev_ctrl_CC106_EXT:
2394                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2395                    decodedcontroller.controller_number = 106;
2396                    break;
2397                case _lev_ctrl_CC107_EXT:
2398                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2399                    decodedcontroller.controller_number = 107;
2400                    break;
2401                case _lev_ctrl_CC108_EXT:
2402                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2403                    decodedcontroller.controller_number = 108;
2404                    break;
2405                case _lev_ctrl_CC109_EXT:
2406                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2407                    decodedcontroller.controller_number = 109;
2408                    break;
2409                case _lev_ctrl_CC110_EXT:
2410                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2411                    decodedcontroller.controller_number = 110;
2412                    break;
2413                case _lev_ctrl_CC111_EXT:
2414                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2415                    decodedcontroller.controller_number = 111;
2416                    break;
2417                case _lev_ctrl_CC112_EXT:
2418                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2419                    decodedcontroller.controller_number = 112;
2420                    break;
2421                case _lev_ctrl_CC113_EXT:
2422                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2423                    decodedcontroller.controller_number = 113;
2424                    break;
2425                case _lev_ctrl_CC114_EXT:
2426                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2427                    decodedcontroller.controller_number = 114;
2428                    break;
2429                case _lev_ctrl_CC115_EXT:
2430                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2431                    decodedcontroller.controller_number = 115;
2432                    break;
2433                case _lev_ctrl_CC116_EXT:
2434                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2435                    decodedcontroller.controller_number = 116;
2436                    break;
2437                case _lev_ctrl_CC117_EXT:
2438                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2439                    decodedcontroller.controller_number = 117;
2440                    break;
2441                case _lev_ctrl_CC118_EXT:
2442                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2443                    decodedcontroller.controller_number = 118;
2444                    break;
2445                case _lev_ctrl_CC119_EXT:
2446                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2447                    decodedcontroller.controller_number = 119;
2448                    break;
2449    
2450              // unknown controller type              // unknown controller type
2451              default:              default:
2452                  throw gig::Exception("Unknown leverage controller type.");                  throw gig::Exception("Unknown leverage controller type.");
2453          }          }
2454          return decodedcontroller;          return decodedcontroller;
2455      }      }
2456        
2457    // see above (diagnostic push not supported prior GCC 4.6)
2458    //#pragma GCC diagnostic pop
2459    
2460      DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {      DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2461          _lev_ctrl_t encodedcontroller;          _lev_ctrl_t encodedcontroller;
# Line 1946  namespace { Line 2543  namespace {
2543                      case 95:                      case 95:
2544                          encodedcontroller = _lev_ctrl_effect5depth;                          encodedcontroller = _lev_ctrl_effect5depth;
2545                          break;                          break;
2546    
2547                        // format extension (these controllers are so far only
2548                        // supported by LinuxSampler & gigedit) they will *NOT*
2549                        // work with Gigasampler/GigaStudio !
2550                        case 3:
2551                            encodedcontroller = _lev_ctrl_CC3_EXT;
2552                            break;
2553                        case 6:
2554                            encodedcontroller = _lev_ctrl_CC6_EXT;
2555                            break;
2556                        case 7:
2557                            encodedcontroller = _lev_ctrl_CC7_EXT;
2558                            break;
2559                        case 8:
2560                            encodedcontroller = _lev_ctrl_CC8_EXT;
2561                            break;
2562                        case 9:
2563                            encodedcontroller = _lev_ctrl_CC9_EXT;
2564                            break;
2565                        case 10:
2566                            encodedcontroller = _lev_ctrl_CC10_EXT;
2567                            break;
2568                        case 11:
2569                            encodedcontroller = _lev_ctrl_CC11_EXT;
2570                            break;
2571                        case 14:
2572                            encodedcontroller = _lev_ctrl_CC14_EXT;
2573                            break;
2574                        case 15:
2575                            encodedcontroller = _lev_ctrl_CC15_EXT;
2576                            break;
2577                        case 20:
2578                            encodedcontroller = _lev_ctrl_CC20_EXT;
2579                            break;
2580                        case 21:
2581                            encodedcontroller = _lev_ctrl_CC21_EXT;
2582                            break;
2583                        case 22:
2584                            encodedcontroller = _lev_ctrl_CC22_EXT;
2585                            break;
2586                        case 23:
2587                            encodedcontroller = _lev_ctrl_CC23_EXT;
2588                            break;
2589                        case 24:
2590                            encodedcontroller = _lev_ctrl_CC24_EXT;
2591                            break;
2592                        case 25:
2593                            encodedcontroller = _lev_ctrl_CC25_EXT;
2594                            break;
2595                        case 26:
2596                            encodedcontroller = _lev_ctrl_CC26_EXT;
2597                            break;
2598                        case 27:
2599                            encodedcontroller = _lev_ctrl_CC27_EXT;
2600                            break;
2601                        case 28:
2602                            encodedcontroller = _lev_ctrl_CC28_EXT;
2603                            break;
2604                        case 29:
2605                            encodedcontroller = _lev_ctrl_CC29_EXT;
2606                            break;
2607                        case 30:
2608                            encodedcontroller = _lev_ctrl_CC30_EXT;
2609                            break;
2610                        case 31:
2611                            encodedcontroller = _lev_ctrl_CC31_EXT;
2612                            break;
2613                        case 68:
2614                            encodedcontroller = _lev_ctrl_CC68_EXT;
2615                            break;
2616                        case 69:
2617                            encodedcontroller = _lev_ctrl_CC69_EXT;
2618                            break;
2619                        case 70:
2620                            encodedcontroller = _lev_ctrl_CC70_EXT;
2621                            break;
2622                        case 71:
2623                            encodedcontroller = _lev_ctrl_CC71_EXT;
2624                            break;
2625                        case 72:
2626                            encodedcontroller = _lev_ctrl_CC72_EXT;
2627                            break;
2628                        case 73:
2629                            encodedcontroller = _lev_ctrl_CC73_EXT;
2630                            break;
2631                        case 74:
2632                            encodedcontroller = _lev_ctrl_CC74_EXT;
2633                            break;
2634                        case 75:
2635                            encodedcontroller = _lev_ctrl_CC75_EXT;
2636                            break;
2637                        case 76:
2638                            encodedcontroller = _lev_ctrl_CC76_EXT;
2639                            break;
2640                        case 77:
2641                            encodedcontroller = _lev_ctrl_CC77_EXT;
2642                            break;
2643                        case 78:
2644                            encodedcontroller = _lev_ctrl_CC78_EXT;
2645                            break;
2646                        case 79:
2647                            encodedcontroller = _lev_ctrl_CC79_EXT;
2648                            break;
2649                        case 84:
2650                            encodedcontroller = _lev_ctrl_CC84_EXT;
2651                            break;
2652                        case 85:
2653                            encodedcontroller = _lev_ctrl_CC85_EXT;
2654                            break;
2655                        case 86:
2656                            encodedcontroller = _lev_ctrl_CC86_EXT;
2657                            break;
2658                        case 87:
2659                            encodedcontroller = _lev_ctrl_CC87_EXT;
2660                            break;
2661                        case 89:
2662                            encodedcontroller = _lev_ctrl_CC89_EXT;
2663                            break;
2664                        case 90:
2665                            encodedcontroller = _lev_ctrl_CC90_EXT;
2666                            break;
2667                        case 96:
2668                            encodedcontroller = _lev_ctrl_CC96_EXT;
2669                            break;
2670                        case 97:
2671                            encodedcontroller = _lev_ctrl_CC97_EXT;
2672                            break;
2673                        case 102:
2674                            encodedcontroller = _lev_ctrl_CC102_EXT;
2675                            break;
2676                        case 103:
2677                            encodedcontroller = _lev_ctrl_CC103_EXT;
2678                            break;
2679                        case 104:
2680                            encodedcontroller = _lev_ctrl_CC104_EXT;
2681                            break;
2682                        case 105:
2683                            encodedcontroller = _lev_ctrl_CC105_EXT;
2684                            break;
2685                        case 106:
2686                            encodedcontroller = _lev_ctrl_CC106_EXT;
2687                            break;
2688                        case 107:
2689                            encodedcontroller = _lev_ctrl_CC107_EXT;
2690                            break;
2691                        case 108:
2692                            encodedcontroller = _lev_ctrl_CC108_EXT;
2693                            break;
2694                        case 109:
2695                            encodedcontroller = _lev_ctrl_CC109_EXT;
2696                            break;
2697                        case 110:
2698                            encodedcontroller = _lev_ctrl_CC110_EXT;
2699                            break;
2700                        case 111:
2701                            encodedcontroller = _lev_ctrl_CC111_EXT;
2702                            break;
2703                        case 112:
2704                            encodedcontroller = _lev_ctrl_CC112_EXT;
2705                            break;
2706                        case 113:
2707                            encodedcontroller = _lev_ctrl_CC113_EXT;
2708                            break;
2709                        case 114:
2710                            encodedcontroller = _lev_ctrl_CC114_EXT;
2711                            break;
2712                        case 115:
2713                            encodedcontroller = _lev_ctrl_CC115_EXT;
2714                            break;
2715                        case 116:
2716                            encodedcontroller = _lev_ctrl_CC116_EXT;
2717                            break;
2718                        case 117:
2719                            encodedcontroller = _lev_ctrl_CC117_EXT;
2720                            break;
2721                        case 118:
2722                            encodedcontroller = _lev_ctrl_CC118_EXT;
2723                            break;
2724                        case 119:
2725                            encodedcontroller = _lev_ctrl_CC119_EXT;
2726                            break;
2727    
2728                      default:                      default:
2729                          throw gig::Exception("leverage controller number is not supported by the gig format");                          throw gig::Exception("leverage controller number is not supported by the gig format");
2730                  }                  }
2731                    break;
2732              default:              default:
2733                  throw gig::Exception("Unknown leverage controller type.");                  throw gig::Exception("Unknown leverage controller type.");
2734          }          }
# Line 1968  namespace { Line 2748  namespace {
2748              delete pVelocityTables;              delete pVelocityTables;
2749              pVelocityTables = NULL;              pVelocityTables = NULL;
2750          }          }
2751            if (VelocityTable) delete[] VelocityTable;
2752      }      }
2753    
2754      /**      /**
# Line 1993  namespace { Line 2774  namespace {
2774          return pVelocityCutoffTable[MIDIKeyVelocity];          return pVelocityCutoffTable[MIDIKeyVelocity];
2775      }      }
2776    
2777        /**
2778         * Updates the respective member variable and the lookup table / cache
2779         * that depends on this value.
2780         */
2781        void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
2782            pVelocityAttenuationTable =
2783                GetVelocityTable(
2784                    curve, VelocityResponseDepth, VelocityResponseCurveScaling
2785                );
2786            VelocityResponseCurve = curve;
2787        }
2788    
2789        /**
2790         * Updates the respective member variable and the lookup table / cache
2791         * that depends on this value.
2792         */
2793        void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
2794            pVelocityAttenuationTable =
2795                GetVelocityTable(
2796                    VelocityResponseCurve, depth, VelocityResponseCurveScaling
2797                );
2798            VelocityResponseDepth = depth;
2799        }
2800    
2801        /**
2802         * Updates the respective member variable and the lookup table / cache
2803         * that depends on this value.
2804         */
2805        void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
2806            pVelocityAttenuationTable =
2807                GetVelocityTable(
2808                    VelocityResponseCurve, VelocityResponseDepth, scaling
2809                );
2810            VelocityResponseCurveScaling = scaling;
2811        }
2812    
2813        /**
2814         * Updates the respective member variable and the lookup table / cache
2815         * that depends on this value.
2816         */
2817        void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
2818            pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
2819            ReleaseVelocityResponseCurve = curve;
2820        }
2821    
2822        /**
2823         * Updates the respective member variable and the lookup table / cache
2824         * that depends on this value.
2825         */
2826        void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
2827            pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
2828            ReleaseVelocityResponseDepth = depth;
2829        }
2830    
2831        /**
2832         * Updates the respective member variable and the lookup table / cache
2833         * that depends on this value.
2834         */
2835        void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
2836            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
2837            VCFCutoffController = controller;
2838        }
2839    
2840        /**
2841         * Updates the respective member variable and the lookup table / cache
2842         * that depends on this value.
2843         */
2844        void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
2845            pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
2846            VCFVelocityCurve = curve;
2847        }
2848    
2849        /**
2850         * Updates the respective member variable and the lookup table / cache
2851         * that depends on this value.
2852         */
2853        void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
2854            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
2855            VCFVelocityDynamicRange = range;
2856        }
2857    
2858        /**
2859         * Updates the respective member variable and the lookup table / cache
2860         * that depends on this value.
2861         */
2862        void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
2863            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
2864            VCFVelocityScale = scaling;
2865        }
2866    
2867      double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {      double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2868    
2869          // line-segment approximations of the 15 velocity curves          // line-segment approximations of the 15 velocity curves
# Line 2076  namespace { Line 2947  namespace {
2947    
2948          // Actual Loading          // Actual Loading
2949    
2950            if (!file->GetAutoLoad()) return;
2951    
2952          LoadDimensionRegions(rgnList);          LoadDimensionRegions(rgnList);
2953    
2954          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
# Line 2084  namespace { Line 2957  namespace {
2957              for (int i = 0; i < dimensionBits; i++) {              for (int i = 0; i < dimensionBits; i++) {
2958                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2959                  uint8_t     bits      = _3lnk->ReadUint8();                  uint8_t     bits      = _3lnk->ReadUint8();
2960                  _3lnk->ReadUint8(); // probably the position of the dimension                  _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
2961                  _3lnk->ReadUint8(); // unknown                  _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
2962                  uint8_t     zones     = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)                  uint8_t     zones     = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2963                  if (dimension == dimension_none) { // inactive dimension                  if (dimension == dimension_none) { // inactive dimension
2964                      pDimensionDefinitions[i].dimension  = dimension_none;                      pDimensionDefinitions[i].dimension  = dimension_none;
2965                      pDimensionDefinitions[i].bits       = 0;                      pDimensionDefinitions[i].bits       = 0;
2966                      pDimensionDefinitions[i].zones      = 0;                      pDimensionDefinitions[i].zones      = 0;
2967                      pDimensionDefinitions[i].split_type = split_type_bit;                      pDimensionDefinitions[i].split_type = split_type_bit;
                     pDimensionDefinitions[i].ranges     = NULL;  
2968                      pDimensionDefinitions[i].zone_size  = 0;                      pDimensionDefinitions[i].zone_size  = 0;
2969                  }                  }
2970                  else { // active dimension                  else { // active dimension
2971                      pDimensionDefinitions[i].dimension = dimension;                      pDimensionDefinitions[i].dimension = dimension;
2972                      pDimensionDefinitions[i].bits      = bits;                      pDimensionDefinitions[i].bits      = bits;
2973                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)
2974                      pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||                      pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2975                                                             dimension == dimension_samplechannel ||                      pDimensionDefinitions[i].zone_size  = __resolveZoneSize(pDimensionDefinitions[i]);
                                                            dimension == dimension_releasetrigger ||  
                                                            dimension == dimension_roundrobin ||  
                                                            dimension == dimension_random) ? split_type_bit  
                                                                                           : split_type_normal;  
                     pDimensionDefinitions[i].ranges = NULL; // it's not possible to check velocity dimensions for custom defined ranges at this point  
                     pDimensionDefinitions[i].zone_size  =  
                         (pDimensionDefinitions[i].split_type == split_type_normal) ? 128.0 / pDimensionDefinitions[i].zones  
                                                                                    : 0;  
2976                      Dimensions++;                      Dimensions++;
2977    
2978                      // if this is a layer dimension, remember the amount of layers                      // if this is a layer dimension, remember the amount of layers
# Line 2118  namespace { Line 2982  namespace {
2982              }              }
2983              for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;              for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2984    
2985              // check velocity dimension (if there is one) for custom defined zone ranges              // if there's a velocity dimension and custom velocity zone splits are used,
2986              for (uint i = 0; i < Dimensions; i++) {              // update the VelocityTables in the dimension regions
2987                  dimension_def_t* pDimDef = pDimensionDefinitions + i;              UpdateVelocityTable();
                 if (pDimDef->dimension == dimension_velocity) {  
                     if (pDimensionRegions[0]->VelocityUpperLimit == 0) {  
                         // no custom defined ranges  
                         pDimDef->split_type = split_type_normal;  
                         pDimDef->ranges     = NULL;  
                     }  
                     else { // custom defined ranges  
                         pDimDef->split_type = split_type_customvelocity;  
                         pDimDef->ranges     = new range_t[pDimDef->zones];  
                         UpdateVelocityTable(pDimDef);  
                     }  
                 }  
             }  
2988    
2989              // jump to start of the wave pool indices (if not already there)              // jump to start of the wave pool indices (if not already there)
             File* file = (File*) GetParent()->GetParent();  
2990              if (file->pVersion && file->pVersion->major == 3)              if (file->pVersion && file->pVersion->major == 3)
2991                  _3lnk->SetPos(68); // version 3 has a different 3lnk structure                  _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2992              else              else
2993                  _3lnk->SetPos(44);                  _3lnk->SetPos(44);
2994    
2995              // load sample references              // load sample references (if auto loading is enabled)
2996              for (uint i = 0; i < DimensionRegions; i++) {              if (file->GetAutoLoad()) {
2997                  uint32_t wavepoolindex = _3lnk->ReadUint32();                  for (uint i = 0; i < DimensionRegions; i++) {
2998                  pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);                      uint32_t wavepoolindex = _3lnk->ReadUint32();
2999                        if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
3000                    }
3001                    GetSample(); // load global region sample reference
3002                }
3003            } else {
3004                DimensionRegions = 0;
3005                for (int i = 0 ; i < 8 ; i++) {
3006                    pDimensionDefinitions[i].dimension  = dimension_none;
3007                    pDimensionDefinitions[i].bits       = 0;
3008                    pDimensionDefinitions[i].zones      = 0;
3009              }              }
3010          }          }
3011    
# Line 2154  namespace { Line 3014  namespace {
3014              RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);              RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
3015              if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);              if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
3016              RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);              RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
3017              pDimensionRegions[0] = new DimensionRegion(_3ewl);              pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
3018              DimensionRegions = 1;              DimensionRegions = 1;
3019          }          }
3020      }      }
# Line 2169  namespace { Line 3029  namespace {
3029       * @throws gig::Exception if samples cannot be dereferenced       * @throws gig::Exception if samples cannot be dereferenced
3030       */       */
3031      void Region::UpdateChunks() {      void Region::UpdateChunks() {
3032            // in the gig format we don't care about the Region's sample reference
3033            // but we still have to provide some existing one to not corrupt the
3034            // file, so to avoid the latter we simply always assign the sample of
3035            // the first dimension region of this region
3036            pSample = pDimensionRegions[0]->pSample;
3037    
3038          // first update base class's chunks          // first update base class's chunks
3039          DLS::Region::UpdateChunks();          DLS::Region::UpdateChunks();
3040    
# Line 2178  namespace { Line 3044  namespace {
3044          }          }
3045    
3046          File* pFile = (File*) GetParent()->GetParent();          File* pFile = (File*) GetParent()->GetParent();
3047          const int iMaxDimensions = (pFile->pVersion && pFile->pVersion->major == 3) ? 8 : 5;          bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
3048          const int iMaxDimensionRegions = (pFile->pVersion && pFile->pVersion->major == 3) ? 256 : 32;          const int iMaxDimensions =  version3 ? 8 : 5;
3049            const int iMaxDimensionRegions = version3 ? 256 : 32;
3050    
3051          // make sure '3lnk' chunk exists          // make sure '3lnk' chunk exists
3052          RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);          RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3053          if (!_3lnk) {          if (!_3lnk) {
3054              const int _3lnkChunkSize = (pFile->pVersion && pFile->pVersion->major == 3) ? 1092 : 172;              const int _3lnkChunkSize = version3 ? 1092 : 172;
3055              _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);              _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3056                memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3057    
3058                // move 3prg to last position
3059                pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), (RIFF::Chunk*)NULL);
3060          }          }
3061    
3062          // update dimension definitions in '3lnk' chunk          // update dimension definitions in '3lnk' chunk
3063          uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();          uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3064            store32(&pData[0], DimensionRegions);
3065            int shift = 0;
3066          for (int i = 0; i < iMaxDimensions; i++) {          for (int i = 0; i < iMaxDimensions; i++) {
3067              pData[i * 8]     = (uint8_t) pDimensionDefinitions[i].dimension;              pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3068              pData[i * 8 + 1] = pDimensionDefinitions[i].bits;              pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3069              // next 2 bytes unknown              pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3070              pData[i * 8 + 4] = pDimensionDefinitions[i].zones;              pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3071              // next 3 bytes unknown              pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3072                // next 3 bytes unknown, always zero?
3073    
3074                shift += pDimensionDefinitions[i].bits;
3075          }          }
3076    
3077          // update wave pool table in '3lnk' chunk          // update wave pool table in '3lnk' chunk
3078          const int iWavePoolOffset = (pFile->pVersion && pFile->pVersion->major == 3) ? 68 : 44;          const int iWavePoolOffset = version3 ? 68 : 44;
3079          for (uint i = 0; i < iMaxDimensionRegions; i++) {          for (uint i = 0; i < iMaxDimensionRegions; i++) {
3080              int iWaveIndex = -1;              int iWaveIndex = -1;
3081              if (i < DimensionRegions) {              if (i < DimensionRegions) {
# Line 2212  namespace { Line 3088  namespace {
3088                          break;                          break;
3089                      }                      }
3090                  }                  }
                 if (iWaveIndex < 0) throw gig::Exception("Could not update gig::Region, could not find DimensionRegion's sample");  
3091              }              }
3092              memcpy(&pData[iWavePoolOffset + i * 4], &iWaveIndex, 4);              store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3093          }          }
3094      }      }
3095    
# Line 2225  namespace { Line 3100  namespace {
3100              RIFF::List* _3ewl = _3prg->GetFirstSubList();              RIFF::List* _3ewl = _3prg->GetFirstSubList();
3101              while (_3ewl) {              while (_3ewl) {
3102                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3103                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3104                      dimensionRegionNr++;                      dimensionRegionNr++;
3105                  }                  }
3106                  _3ewl = _3prg->GetNextSubList();                  _3ewl = _3prg->GetNextSubList();
# Line 2234  namespace { Line 3109  namespace {
3109          }          }
3110      }      }
3111    
3112      void Region::UpdateVelocityTable(dimension_def_t* pDimDef) {      void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3113          // get dimension's index          // update KeyRange struct and make sure regions are in correct order
3114          int iDimensionNr = -1;          DLS::Region::SetKeyRange(Low, High);
3115          for (int i = 0; i < Dimensions; i++) {          // update Region key table for fast lookup
3116              if (&pDimensionDefinitions[i] == pDimDef) {          ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3117                  iDimensionNr = i;      }
3118    
3119        void Region::UpdateVelocityTable() {
3120            // get velocity dimension's index
3121            int veldim = -1;
3122            for (int i = 0 ; i < Dimensions ; i++) {
3123                if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
3124                    veldim = i;
3125                  break;                  break;
3126              }              }
3127          }          }
3128          if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");          if (veldim == -1) return;
3129    
3130          uint8_t bits[8] = { 0 };          int step = 1;
3131          int previousUpperLimit = -1;          for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3132          for (int velocityZone = 0; velocityZone < pDimDef->zones; velocityZone++) {          int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
3133              bits[iDimensionNr] = velocityZone;          int end = step * pDimensionDefinitions[veldim].zones;
3134              DimensionRegion* pDimRegion = GetDimensionRegionByBit(bits);  
3135            // loop through all dimension regions for all dimensions except the velocity dimension
3136              pDimDef->ranges[velocityZone].low  = previousUpperLimit + 1;          int dim[8] = { 0 };
3137              pDimDef->ranges[velocityZone].high = pDimRegion->VelocityUpperLimit;          for (int i = 0 ; i < DimensionRegions ; i++) {
3138              previousUpperLimit = pDimDef->ranges[velocityZone].high;  
3139              // fill velocity table              if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3140              for (int i = pDimDef->ranges[velocityZone].low; i <= pDimDef->ranges[velocityZone].high; i++) {                  pDimensionRegions[i]->VelocityUpperLimit) {
3141                  VelocityTable[i] = velocityZone;                  // create the velocity table
3142                    uint8_t* table = pDimensionRegions[i]->VelocityTable;
3143                    if (!table) {
3144                        table = new uint8_t[128];
3145                        pDimensionRegions[i]->VelocityTable = table;
3146                    }
3147                    int tableidx = 0;
3148                    int velocityZone = 0;
3149                    if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
3150                        for (int k = i ; k < end ; k += step) {
3151                            DimensionRegion *d = pDimensionRegions[k];
3152                            for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
3153                            velocityZone++;
3154                        }
3155                    } else { // gig2
3156                        for (int k = i ; k < end ; k += step) {
3157                            DimensionRegion *d = pDimensionRegions[k];
3158                            for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
3159                            velocityZone++;
3160                        }
3161                    }
3162                } else {
3163                    if (pDimensionRegions[i]->VelocityTable) {
3164                        delete[] pDimensionRegions[i]->VelocityTable;
3165                        pDimensionRegions[i]->VelocityTable = 0;
3166                    }
3167              }              }
3168    
3169                int j;
3170                int shift = 0;
3171                for (j = 0 ; j < Dimensions ; j++) {
3172                    if (j == veldim) i += skipveldim; // skip velocity dimension
3173                    else {
3174                        dim[j]++;
3175                        if (dim[j] < pDimensionDefinitions[j].zones) break;
3176                        else {
3177                            // skip unused dimension regions
3178                            dim[j] = 0;
3179                            i += ((1 << pDimensionDefinitions[j].bits) -
3180                                  pDimensionDefinitions[j].zones) << shift;
3181                        }
3182                    }
3183                    shift += pDimensionDefinitions[j].bits;
3184                }
3185                if (j == Dimensions) break;
3186          }          }
3187      }      }
3188    
# Line 2277  namespace { Line 3202  namespace {
3202       *                        dimension bits limit is violated       *                        dimension bits limit is violated
3203       */       */
3204      void Region::AddDimension(dimension_def_t* pDimDef) {      void Region::AddDimension(dimension_def_t* pDimDef) {
3205            // some initial sanity checks of the given dimension definition
3206            if (pDimDef->zones < 2)
3207                throw gig::Exception("Could not add new dimension, amount of requested zones must always be at least two");
3208            if (pDimDef->bits < 1)
3209                throw gig::Exception("Could not add new dimension, amount of requested requested zone bits must always be at least one");
3210            if (pDimDef->dimension == dimension_samplechannel) {
3211                if (pDimDef->zones != 2)
3212                    throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zones must always be 2 for this dimension type");
3213                if (pDimDef->bits != 1)
3214                    throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zone bits must always be 1 for this dimension type");
3215            }
3216    
3217          // check if max. amount of dimensions reached          // check if max. amount of dimensions reached
3218          File* file = (File*) GetParent()->GetParent();          File* file = (File*) GetParent()->GetParent();
3219          const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;          const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
# Line 2296  namespace { Line 3233  namespace {
3233              if (pDimensionDefinitions[i].dimension == pDimDef->dimension)              if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3234                  throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");                  throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3235    
3236            // pos is where the new dimension should be placed, normally
3237            // last in list, except for the samplechannel dimension which
3238            // has to be first in list
3239            int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3240            int bitpos = 0;
3241            for (int i = 0 ; i < pos ; i++)
3242                bitpos += pDimensionDefinitions[i].bits;
3243    
3244            // make room for the new dimension
3245            for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3246            for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3247                for (int j = Dimensions ; j > pos ; j--) {
3248                    pDimensionRegions[i]->DimensionUpperLimits[j] =
3249                        pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3250                }
3251            }
3252    
3253          // assign definition of new dimension          // assign definition of new dimension
3254          pDimensionDefinitions[Dimensions] = *pDimDef;          pDimensionDefinitions[pos] = *pDimDef;
3255    
3256            // auto correct certain dimension definition fields (where possible)
3257            pDimensionDefinitions[pos].split_type  =
3258                __resolveSplitType(pDimensionDefinitions[pos].dimension);
3259            pDimensionDefinitions[pos].zone_size =
3260                __resolveZoneSize(pDimensionDefinitions[pos]);
3261    
3262            // create new dimension region(s) for this new dimension, and make
3263            // sure that the dimension regions are placed correctly in both the
3264            // RIFF list and the pDimensionRegions array
3265            RIFF::Chunk* moveTo = NULL;
3266            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3267            for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3268                for (int k = 0 ; k < (1 << bitpos) ; k++) {
3269                    pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3270                }
3271                for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3272                    for (int k = 0 ; k < (1 << bitpos) ; k++) {
3273                        RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3274                        if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3275                        // create a new dimension region and copy all parameter values from
3276                        // an existing dimension region
3277                        pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3278                            new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3279    
3280          // create new dimension region(s) for this new dimension                      DimensionRegions++;
3281          for (int i = 1 << iCurrentBits; i < 1 << iNewBits; i++) {                  }
3282              //TODO: maybe we should copy existing dimension regions if possible instead of simply creating new ones with default values              }
3283              RIFF::List* pNewDimRgnListChunk = pCkRegion->AddSubList(LIST_TYPE_3EWL);              moveTo = pDimensionRegions[i]->pParentList;
3284              pDimensionRegions[i] = new DimensionRegion(pNewDimRgnListChunk);          }
3285              DimensionRegions++;  
3286            // initialize the upper limits for this dimension
3287            int mask = (1 << bitpos) - 1;
3288            for (int z = 0 ; z < pDimDef->zones ; z++) {
3289                uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3290                for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3291                    pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3292                                      (z << bitpos) |
3293                                      (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3294                }
3295          }          }
3296    
3297          Dimensions++;          Dimensions++;
# Line 2312  namespace { Line 3299  namespace {
3299          // if this is a layer dimension, update 'Layers' attribute          // if this is a layer dimension, update 'Layers' attribute
3300          if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;          if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
3301    
3302          // if this is velocity dimension and got custom defined ranges, update velocity table          UpdateVelocityTable();
         if (pDimDef->dimension  == dimension_velocity &&  
             pDimDef->split_type == split_type_customvelocity) {  
             UpdateVelocityTable(pDimDef);  
         }  
3303      }      }
3304    
3305      /** @brief Delete an existing dimension.      /** @brief Delete an existing dimension.
# Line 2351  namespace { Line 3334  namespace {
3334          for (int i = iDimensionNr + 1; i < Dimensions; i++)          for (int i = iDimensionNr + 1; i < Dimensions; i++)
3335              iUpperBits += pDimensionDefinitions[i].bits;              iUpperBits += pDimensionDefinitions[i].bits;
3336    
3337            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3338    
3339          // delete dimension regions which belong to the given dimension          // delete dimension regions which belong to the given dimension
3340          // (that is where the dimension's bit > 0)          // (that is where the dimension's bit > 0)
3341          for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {          for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
# Line 2359  namespace { Line 3344  namespace {
3344                      int iToDelete = iUpperBit    << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |                      int iToDelete = iUpperBit    << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3345                                      iObsoleteBit << iLowerBits |                                      iObsoleteBit << iLowerBits |
3346                                      iLowerBit;                                      iLowerBit;
3347    
3348                        _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3349                      delete pDimensionRegions[iToDelete];                      delete pDimensionRegions[iToDelete];
3350                      pDimensionRegions[iToDelete] = NULL;                      pDimensionRegions[iToDelete] = NULL;
3351                      DimensionRegions--;                      DimensionRegions--;
# Line 2379  namespace { Line 3366  namespace {
3366              }              }
3367          }          }
3368    
3369            // remove the this dimension from the upper limits arrays
3370            for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3371                DimensionRegion* d = pDimensionRegions[j];
3372                for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3373                    d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3374                }
3375                d->DimensionUpperLimits[Dimensions - 1] = 127;
3376            }
3377    
3378          // 'remove' dimension definition          // 'remove' dimension definition
3379          for (int i = iDimensionNr + 1; i < Dimensions; i++) {          for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3380              pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];              pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
# Line 2386  namespace { Line 3382  namespace {
3382          pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;          pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
3383          pDimensionDefinitions[Dimensions - 1].bits      = 0;          pDimensionDefinitions[Dimensions - 1].bits      = 0;
3384          pDimensionDefinitions[Dimensions - 1].zones     = 0;          pDimensionDefinitions[Dimensions - 1].zones     = 0;
         if (pDimensionDefinitions[Dimensions - 1].ranges) {  
             delete[] pDimensionDefinitions[Dimensions - 1].ranges;  
             pDimensionDefinitions[Dimensions - 1].ranges = NULL;  
         }  
3385    
3386          Dimensions--;          Dimensions--;
3387    
# Line 2397  namespace { Line 3389  namespace {
3389          if (pDimDef->dimension == dimension_layer) Layers = 1;          if (pDimDef->dimension == dimension_layer) Layers = 1;
3390      }      }
3391    
3392      Region::~Region() {      /** @brief Delete one split zone of a dimension (decrement zone amount).
3393          for (uint i = 0; i < Dimensions; i++) {       *
3394              if (pDimensionDefinitions[i].ranges) delete[] pDimensionDefinitions[i].ranges;       * Instead of deleting an entire dimensions, this method will only delete
3395         * one particular split zone given by @a zone of the Region's dimension
3396         * given by @a type. So this method will simply decrement the amount of
3397         * zones by one of the dimension in question. To be able to do that, the
3398         * respective dimension must exist on this Region and it must have at least
3399         * 3 zones. All DimensionRegion objects associated with the zone will be
3400         * deleted.
3401         *
3402         * @param type - identifies the dimension where a zone shall be deleted
3403         * @param zone - index of the dimension split zone that shall be deleted
3404         * @throws gig::Exception if requested zone could not be deleted
3405         */
3406        void Region::DeleteDimensionZone(dimension_t type, int zone) {
3407            dimension_def_t* oldDef = GetDimensionDefinition(type);
3408            if (!oldDef)
3409                throw gig::Exception("Could not delete dimension zone, no such dimension of given type");
3410            if (oldDef->zones <= 2)
3411                throw gig::Exception("Could not delete dimension zone, because it would end up with only one zone.");
3412            if (zone < 0 || zone >= oldDef->zones)
3413                throw gig::Exception("Could not delete dimension zone, requested zone index out of bounds.");
3414    
3415            const int newZoneSize = oldDef->zones - 1;
3416    
3417            // create a temporary Region which just acts as a temporary copy
3418            // container and will be deleted at the end of this function and will
3419            // also not be visible through the API during this process
3420            gig::Region* tempRgn = NULL;
3421            {
3422                // adding these temporary chunks is probably not even necessary
3423                Instrument* instr = static_cast<Instrument*>(GetParent());
3424                RIFF::List* pCkInstrument = instr->pCkInstrument;
3425                RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3426                if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3427                RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3428                tempRgn = new Region(instr, rgn);
3429            }
3430    
3431            // copy this region's dimensions (with already the dimension split size
3432            // requested by the arguments of this method call) to the temporary
3433            // region, and don't use Region::CopyAssign() here for this task, since
3434            // it would also alter fast lookup helper variables here and there
3435            dimension_def_t newDef;
3436            for (int i = 0; i < Dimensions; ++i) {
3437                dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3438                // is this the dimension requested by the method arguments? ...
3439                if (def.dimension == type) { // ... if yes, decrement zone amount by one
3440                    def.zones = newZoneSize;
3441                    if ((1 << (def.bits - 1)) == def.zones) def.bits--;
3442                    newDef = def;
3443                }
3444                tempRgn->AddDimension(&def);
3445            }
3446    
3447            // find the dimension index in the tempRegion which is the dimension
3448            // type passed to this method (paranoidly expecting different order)
3449            int tempReducedDimensionIndex = -1;
3450            for (int d = 0; d < tempRgn->Dimensions; ++d) {
3451                if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3452                    tempReducedDimensionIndex = d;
3453                    break;
3454                }
3455            }
3456    
3457            // copy dimension regions from this region to the temporary region
3458            for (int iDst = 0; iDst < 256; ++iDst) {
3459                DimensionRegion* dstDimRgn = tempRgn->pDimensionRegions[iDst];
3460                if (!dstDimRgn) continue;
3461                std::map<dimension_t,int> dimCase;
3462                bool isValidZone = true;
3463                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3464                    const int dstBits = tempRgn->pDimensionDefinitions[d].bits;
3465                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3466                        (iDst >> baseBits) & ((1 << dstBits) - 1);
3467                    baseBits += dstBits;
3468                    // there are also DimensionRegion objects of unused zones, skip them
3469                    if (dimCase[tempRgn->pDimensionDefinitions[d].dimension] >= tempRgn->pDimensionDefinitions[d].zones) {
3470                        isValidZone = false;
3471                        break;
3472                    }
3473                }
3474                if (!isValidZone) continue;
3475                // a bit paranoid: cope with the chance that the dimensions would
3476                // have different order in source and destination regions
3477                const bool isLastZone = (dimCase[type] == newZoneSize - 1);
3478                if (dimCase[type] >= zone) dimCase[type]++;
3479                DimensionRegion* srcDimRgn = GetDimensionRegionByBit(dimCase);
3480                dstDimRgn->CopyAssign(srcDimRgn);
3481                // if this is the upper most zone of the dimension passed to this
3482                // method, then correct (raise) its upper limit to 127
3483                if (newDef.split_type == split_type_normal && isLastZone)
3484                    dstDimRgn->DimensionUpperLimits[tempReducedDimensionIndex] = 127;
3485            }
3486    
3487            // now tempRegion's dimensions and DimensionRegions basically reflect
3488            // what we wanted to get for this actual Region here, so we now just
3489            // delete and recreate the dimension in question with the new amount
3490            // zones and then copy back from tempRegion      
3491            DeleteDimension(oldDef);
3492            AddDimension(&newDef);
3493            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3494                DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3495                if (!srcDimRgn) continue;
3496                std::map<dimension_t,int> dimCase;
3497                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3498                    const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3499                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3500                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3501                    baseBits += srcBits;
3502                }
3503                // a bit paranoid: cope with the chance that the dimensions would
3504                // have different order in source and destination regions
3505                DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3506                if (!dstDimRgn) continue;
3507                dstDimRgn->CopyAssign(srcDimRgn);
3508            }
3509    
3510            // delete temporary region
3511            delete tempRgn;
3512    
3513            UpdateVelocityTable();
3514        }
3515    
3516        /** @brief Divide split zone of a dimension in two (increment zone amount).
3517         *
3518         * This will increment the amount of zones for the dimension (given by
3519         * @a type) by one. It will do so by dividing the zone (given by @a zone)
3520         * in the middle of its zone range in two. So the two zones resulting from
3521         * the zone being splitted, will be an equivalent copy regarding all their
3522         * articulation informations and sample reference. The two zones will only
3523         * differ in their zone's upper limit
3524         * (DimensionRegion::DimensionUpperLimits).
3525         *
3526         * @param type - identifies the dimension where a zone shall be splitted
3527         * @param zone - index of the dimension split zone that shall be splitted
3528         * @throws gig::Exception if requested zone could not be splitted
3529         */
3530        void Region::SplitDimensionZone(dimension_t type, int zone) {
3531            dimension_def_t* oldDef = GetDimensionDefinition(type);
3532            if (!oldDef)
3533                throw gig::Exception("Could not split dimension zone, no such dimension of given type");
3534            if (zone < 0 || zone >= oldDef->zones)
3535                throw gig::Exception("Could not split dimension zone, requested zone index out of bounds.");
3536    
3537            const int newZoneSize = oldDef->zones + 1;
3538    
3539            // create a temporary Region which just acts as a temporary copy
3540            // container and will be deleted at the end of this function and will
3541            // also not be visible through the API during this process
3542            gig::Region* tempRgn = NULL;
3543            {
3544                // adding these temporary chunks is probably not even necessary
3545                Instrument* instr = static_cast<Instrument*>(GetParent());
3546                RIFF::List* pCkInstrument = instr->pCkInstrument;
3547                RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3548                if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3549                RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3550                tempRgn = new Region(instr, rgn);
3551            }
3552    
3553            // copy this region's dimensions (with already the dimension split size
3554            // requested by the arguments of this method call) to the temporary
3555            // region, and don't use Region::CopyAssign() here for this task, since
3556            // it would also alter fast lookup helper variables here and there
3557            dimension_def_t newDef;
3558            for (int i = 0; i < Dimensions; ++i) {
3559                dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3560                // is this the dimension requested by the method arguments? ...
3561                if (def.dimension == type) { // ... if yes, increment zone amount by one
3562                    def.zones = newZoneSize;
3563                    if ((1 << oldDef->bits) < newZoneSize) def.bits++;
3564                    newDef = def;
3565                }
3566                tempRgn->AddDimension(&def);
3567          }          }
3568    
3569            // find the dimension index in the tempRegion which is the dimension
3570            // type passed to this method (paranoidly expecting different order)
3571            int tempIncreasedDimensionIndex = -1;
3572            for (int d = 0; d < tempRgn->Dimensions; ++d) {
3573                if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3574                    tempIncreasedDimensionIndex = d;
3575                    break;
3576                }
3577            }
3578    
3579            // copy dimension regions from this region to the temporary region
3580            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3581                DimensionRegion* srcDimRgn = pDimensionRegions[iSrc];
3582                if (!srcDimRgn) continue;
3583                std::map<dimension_t,int> dimCase;
3584                bool isValidZone = true;
3585                for (int d = 0, baseBits = 0; d < Dimensions; ++d) {
3586                    const int srcBits = pDimensionDefinitions[d].bits;
3587                    dimCase[pDimensionDefinitions[d].dimension] =
3588                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3589                    // there are also DimensionRegion objects for unused zones, skip them
3590                    if (dimCase[pDimensionDefinitions[d].dimension] >= pDimensionDefinitions[d].zones) {
3591                        isValidZone = false;
3592                        break;
3593                    }
3594                    baseBits += srcBits;
3595                }
3596                if (!isValidZone) continue;
3597                // a bit paranoid: cope with the chance that the dimensions would
3598                // have different order in source and destination regions            
3599                if (dimCase[type] > zone) dimCase[type]++;
3600                DimensionRegion* dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3601                dstDimRgn->CopyAssign(srcDimRgn);
3602                // if this is the requested zone to be splitted, then also copy
3603                // the source DimensionRegion to the newly created target zone
3604                // and set the old zones upper limit lower
3605                if (dimCase[type] == zone) {
3606                    // lower old zones upper limit
3607                    if (newDef.split_type == split_type_normal) {
3608                        const int high =
3609                            dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex];
3610                        int low = 0;
3611                        if (zone > 0) {
3612                            std::map<dimension_t,int> lowerCase = dimCase;
3613                            lowerCase[type]--;
3614                            DimensionRegion* dstDimRgnLow = tempRgn->GetDimensionRegionByBit(lowerCase);
3615                            low = dstDimRgnLow->DimensionUpperLimits[tempIncreasedDimensionIndex];
3616                        }
3617                        dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex] = low + (high - low) / 2;
3618                    }
3619                    // fill the newly created zone of the divided zone as well
3620                    dimCase[type]++;
3621                    dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3622                    dstDimRgn->CopyAssign(srcDimRgn);
3623                }
3624            }
3625    
3626            // now tempRegion's dimensions and DimensionRegions basically reflect
3627            // what we wanted to get for this actual Region here, so we now just
3628            // delete and recreate the dimension in question with the new amount
3629            // zones and then copy back from tempRegion      
3630            DeleteDimension(oldDef);
3631            AddDimension(&newDef);
3632            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3633                DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3634                if (!srcDimRgn) continue;
3635                std::map<dimension_t,int> dimCase;
3636                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3637                    const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3638                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3639                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3640                    baseBits += srcBits;
3641                }
3642                // a bit paranoid: cope with the chance that the dimensions would
3643                // have different order in source and destination regions
3644                DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3645                if (!dstDimRgn) continue;
3646                dstDimRgn->CopyAssign(srcDimRgn);
3647            }
3648    
3649            // delete temporary region
3650            delete tempRgn;
3651    
3652            UpdateVelocityTable();
3653        }
3654    
3655        DimensionRegion* Region::GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase) {
3656            uint8_t bits[8] = {};
3657            for (std::map<dimension_t,int>::const_iterator it = DimCase.begin();
3658                 it != DimCase.end(); ++it)
3659            {
3660                for (int d = 0; d < Dimensions; ++d) {
3661                    if (pDimensionDefinitions[d].dimension == it->first) {
3662                        bits[d] = it->second;
3663                        goto nextDimCaseSlice;
3664                    }
3665                }
3666                assert(false); // do crash ... too harsh maybe ? ignore it instead ?
3667                nextDimCaseSlice:
3668                ; // noop
3669            }
3670            return GetDimensionRegionByBit(bits);
3671        }
3672    
3673        /**
3674         * Searches in the current Region for a dimension of the given dimension
3675         * type and returns the precise configuration of that dimension in this
3676         * Region.
3677         *
3678         * @param type - dimension type of the sought dimension
3679         * @returns dimension definition or NULL if there is no dimension with
3680         *          sought type in this Region.
3681         */
3682        dimension_def_t* Region::GetDimensionDefinition(dimension_t type) {
3683            for (int i = 0; i < Dimensions; ++i)
3684                if (pDimensionDefinitions[i].dimension == type)
3685                    return &pDimensionDefinitions[i];
3686            return NULL;
3687        }
3688    
3689        Region::~Region() {
3690          for (int i = 0; i < 256; i++) {          for (int i = 0; i < 256; i++) {
3691              if (pDimensionRegions[i]) delete pDimensionRegions[i];              if (pDimensionRegions[i]) delete pDimensionRegions[i];
3692          }          }
# Line 2425  namespace { Line 3711  namespace {
3711       * @see             Dimensions       * @see             Dimensions
3712       */       */
3713      DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {      DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
3714          uint8_t bits[8] = { 0 };          uint8_t bits;
3715            int veldim = -1;
3716            int velbitpos;
3717            int bitpos = 0;
3718            int dimregidx = 0;
3719          for (uint i = 0; i < Dimensions; i++) {          for (uint i = 0; i < Dimensions; i++) {
3720              bits[i] = DimValues[i];              if (pDimensionDefinitions[i].dimension == dimension_velocity) {
3721              switch (pDimensionDefinitions[i].split_type) {                  // the velocity dimension must be handled after the other dimensions
3722                  case split_type_normal:                  veldim = i;
3723                      bits[i] = uint8_t(bits[i] / pDimensionDefinitions[i].zone_size);                  velbitpos = bitpos;
3724                      break;              } else {
3725                  case split_type_customvelocity:                  switch (pDimensionDefinitions[i].split_type) {
3726                      bits[i] = VelocityTable[bits[i]];                      case split_type_normal:
3727                      break;                          if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
3728                  case split_type_bit: // the value is already the sought dimension bit number                              // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
3729                      const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;                              for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
3730                      bits[i] = bits[i] & limiter_mask; // just make sure the value don't uses more bits than allowed                                  if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
3731                      break;                              }
3732                            } else {
3733                                // gig2: evenly sized zones
3734                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
3735                            }
3736                            break;
3737                        case split_type_bit: // the value is already the sought dimension bit number
3738                            const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
3739                            bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
3740                            break;
3741                    }
3742                    dimregidx |= bits << bitpos;
3743              }              }
3744                bitpos += pDimensionDefinitions[i].bits;
3745          }          }
3746          return GetDimensionRegionByBit(bits);          DimensionRegion* dimreg = pDimensionRegions[dimregidx & 255];
3747            if (!dimreg) return NULL;
3748            if (veldim != -1) {
3749                // (dimreg is now the dimension region for the lowest velocity)
3750                if (dimreg->VelocityTable) // custom defined zone ranges
3751                    bits = dimreg->VelocityTable[DimValues[veldim] & 127];
3752                else // normal split type
3753                    bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
3754    
3755                const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
3756                dimregidx |= (bits & limiter_mask) << velbitpos;
3757                dimreg = pDimensionRegions[dimregidx & 255];
3758            }
3759            return dimreg;
3760        }
3761    
3762        int Region::GetDimensionRegionIndexByValue(const uint DimValues[8]) {
3763            uint8_t bits;
3764            int veldim = -1;
3765            int velbitpos;
3766            int bitpos = 0;
3767            int dimregidx = 0;
3768            for (uint i = 0; i < Dimensions; i++) {
3769                if (pDimensionDefinitions[i].dimension == dimension_velocity) {
3770                    // the velocity dimension must be handled after the other dimensions
3771                    veldim = i;
3772                    velbitpos = bitpos;
3773                } else {
3774                    switch (pDimensionDefinitions[i].split_type) {
3775                        case split_type_normal:
3776                            if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
3777                                // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
3778                                for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
3779                                    if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
3780                                }
3781                            } else {
3782                                // gig2: evenly sized zones
3783                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
3784                            }
3785                            break;
3786                        case split_type_bit: // the value is already the sought dimension bit number
3787                            const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
3788                            bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
3789                            break;
3790                    }
3791                    dimregidx |= bits << bitpos;
3792                }
3793                bitpos += pDimensionDefinitions[i].bits;
3794            }
3795            dimregidx &= 255;
3796            DimensionRegion* dimreg = pDimensionRegions[dimregidx];
3797            if (!dimreg) return -1;
3798            if (veldim != -1) {
3799                // (dimreg is now the dimension region for the lowest velocity)
3800                if (dimreg->VelocityTable) // custom defined zone ranges
3801                    bits = dimreg->VelocityTable[DimValues[veldim] & 127];
3802                else // normal split type
3803                    bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
3804    
3805                const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
3806                dimregidx |= (bits & limiter_mask) << velbitpos;
3807                dimregidx &= 255;
3808            }
3809            return dimregidx;
3810      }      }
3811    
3812      /**      /**
# Line 2481  namespace { Line 3846  namespace {
3846      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
3847          if ((int32_t)WavePoolTableIndex == -1) return NULL;          if ((int32_t)WavePoolTableIndex == -1) return NULL;
3848          File* file = (File*) GetParent()->GetParent();          File* file = (File*) GetParent()->GetParent();
3849            if (!file->pWavePoolTable) return NULL;
3850          unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];          unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
3851          unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];          unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
3852          Sample* sample = file->GetFirstSample(pProgress);          Sample* sample = file->GetFirstSample(pProgress);
3853          while (sample) {          while (sample) {
3854              if (sample->ulWavePoolOffset == soughtoffset &&              if (sample->ulWavePoolOffset == soughtoffset &&
3855                  sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(pSample = sample);                  sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
3856              sample = file->GetNextSample();              sample = file->GetNextSample();
3857          }          }
3858          return NULL;          return NULL;
3859      }      }
3860        
3861        /**
3862         * Make a (semi) deep copy of the Region object given by @a orig
3863         * and assign it to this object.
3864         *
3865         * Note that all sample pointers referenced by @a orig are simply copied as
3866         * memory address. Thus the respective samples are shared, not duplicated!
3867         *
3868         * @param orig - original Region object to be copied from
3869         */
3870        void Region::CopyAssign(const Region* orig) {
3871            CopyAssign(orig, NULL);
3872        }
3873        
3874        /**
3875         * Make a (semi) deep copy of the Region object given by @a orig and
3876         * assign it to this object
3877         *
3878         * @param mSamples - crosslink map between the foreign file's samples and
3879         *                   this file's samples
3880         */
3881        void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
3882            // handle base classes
3883            DLS::Region::CopyAssign(orig);
3884            
3885            if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
3886                pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
3887            }
3888            
3889            // handle own member variables
3890            for (int i = Dimensions - 1; i >= 0; --i) {
3891                DeleteDimension(&pDimensionDefinitions[i]);
3892            }
3893            Layers = 0; // just to be sure
3894            for (int i = 0; i < orig->Dimensions; i++) {
3895                // we need to copy the dim definition here, to avoid the compiler
3896                // complaining about const-ness issue
3897                dimension_def_t def = orig->pDimensionDefinitions[i];
3898                AddDimension(&def);
3899            }
3900            for (int i = 0; i < 256; i++) {
3901                if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
3902                    pDimensionRegions[i]->CopyAssign(
3903                        orig->pDimensionRegions[i],
3904                        mSamples
3905                    );
3906                }
3907            }
3908            Layers = orig->Layers;
3909        }
3910    
3911    
3912    // *************** MidiRule ***************
3913    // *
3914    
3915        MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
3916            _3ewg->SetPos(36);
3917            Triggers = _3ewg->ReadUint8();
3918            _3ewg->SetPos(40);
3919            ControllerNumber = _3ewg->ReadUint8();
3920            _3ewg->SetPos(46);
3921            for (int i = 0 ; i < Triggers ; i++) {
3922                pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
3923                pTriggers[i].Descending = _3ewg->ReadUint8();
3924                pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
3925                pTriggers[i].Key = _3ewg->ReadUint8();
3926                pTriggers[i].NoteOff = _3ewg->ReadUint8();
3927                pTriggers[i].Velocity = _3ewg->ReadUint8();
3928                pTriggers[i].OverridePedal = _3ewg->ReadUint8();
3929                _3ewg->ReadUint8();
3930            }
3931        }
3932    
3933        MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
3934            ControllerNumber(0),
3935            Triggers(0) {
3936        }
3937    
3938        void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
3939            pData[32] = 4;
3940            pData[33] = 16;
3941            pData[36] = Triggers;
3942            pData[40] = ControllerNumber;
3943            for (int i = 0 ; i < Triggers ; i++) {
3944                pData[46 + i * 8] = pTriggers[i].TriggerPoint;
3945                pData[47 + i * 8] = pTriggers[i].Descending;
3946                pData[48 + i * 8] = pTriggers[i].VelSensitivity;
3947                pData[49 + i * 8] = pTriggers[i].Key;
3948                pData[50 + i * 8] = pTriggers[i].NoteOff;
3949                pData[51 + i * 8] = pTriggers[i].Velocity;
3950                pData[52 + i * 8] = pTriggers[i].OverridePedal;
3951            }
3952        }
3953    
3954        MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
3955            _3ewg->SetPos(36);
3956            LegatoSamples = _3ewg->ReadUint8(); // always 12
3957            _3ewg->SetPos(40);
3958            BypassUseController = _3ewg->ReadUint8();
3959            BypassKey = _3ewg->ReadUint8();
3960            BypassController = _3ewg->ReadUint8();
3961            ThresholdTime = _3ewg->ReadUint16();
3962            _3ewg->ReadInt16();
3963            ReleaseTime = _3ewg->ReadUint16();
3964            _3ewg->ReadInt16();
3965            KeyRange.low = _3ewg->ReadUint8();
3966            KeyRange.high = _3ewg->ReadUint8();
3967            _3ewg->SetPos(64);
3968            ReleaseTriggerKey = _3ewg->ReadUint8();
3969            AltSustain1Key = _3ewg->ReadUint8();
3970            AltSustain2Key = _3ewg->ReadUint8();
3971        }
3972    
3973        MidiRuleLegato::MidiRuleLegato() :
3974            LegatoSamples(12),
3975            BypassUseController(false),
3976            BypassKey(0),
3977            BypassController(1),
3978            ThresholdTime(20),
3979            ReleaseTime(20),
3980            ReleaseTriggerKey(0),
3981            AltSustain1Key(0),
3982            AltSustain2Key(0)
3983        {
3984            KeyRange.low = KeyRange.high = 0;
3985        }
3986    
3987        void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
3988            pData[32] = 0;
3989            pData[33] = 16;
3990            pData[36] = LegatoSamples;
3991            pData[40] = BypassUseController;
3992            pData[41] = BypassKey;
3993            pData[42] = BypassController;
3994            store16(&pData[43], ThresholdTime);
3995            store16(&pData[47], ReleaseTime);
3996            pData[51] = KeyRange.low;
3997            pData[52] = KeyRange.high;
3998            pData[64] = ReleaseTriggerKey;
3999            pData[65] = AltSustain1Key;
4000            pData[66] = AltSustain2Key;
4001        }
4002    
4003        MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
4004            _3ewg->SetPos(36);
4005            Articulations = _3ewg->ReadUint8();
4006            int flags = _3ewg->ReadUint8();
4007            Polyphonic = flags & 8;
4008            Chained = flags & 4;
4009            Selector = (flags & 2) ? selector_controller :
4010                (flags & 1) ? selector_key_switch : selector_none;
4011            Patterns = _3ewg->ReadUint8();
4012            _3ewg->ReadUint8(); // chosen row
4013            _3ewg->ReadUint8(); // unknown
4014            _3ewg->ReadUint8(); // unknown
4015            _3ewg->ReadUint8(); // unknown
4016            KeySwitchRange.low = _3ewg->ReadUint8();
4017            KeySwitchRange.high = _3ewg->ReadUint8();
4018            Controller = _3ewg->ReadUint8();
4019            PlayRange.low = _3ewg->ReadUint8();
4020            PlayRange.high = _3ewg->ReadUint8();
4021    
4022            int n = std::min(int(Articulations), 32);
4023            for (int i = 0 ; i < n ; i++) {
4024                _3ewg->ReadString(pArticulations[i], 32);
4025            }
4026            _3ewg->SetPos(1072);
4027            n = std::min(int(Patterns), 32);
4028            for (int i = 0 ; i < n ; i++) {
4029                _3ewg->ReadString(pPatterns[i].Name, 16);
4030                pPatterns[i].Size = _3ewg->ReadUint8();
4031                _3ewg->Read(&pPatterns[i][0], 1, 32);
4032            }
4033        }
4034    
4035        MidiRuleAlternator::MidiRuleAlternator() :
4036            Articulations(0),
4037            Patterns(0),
4038            Selector(selector_none),
4039            Controller(0),
4040            Polyphonic(false),
4041            Chained(false)
4042        {
4043            PlayRange.low = PlayRange.high = 0;
4044            KeySwitchRange.low = KeySwitchRange.high = 0;
4045        }
4046    
4047        void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
4048            pData[32] = 3;
4049            pData[33] = 16;
4050            pData[36] = Articulations;
4051            pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
4052                (Selector == selector_controller ? 2 :
4053                 (Selector == selector_key_switch ? 1 : 0));
4054            pData[38] = Patterns;
4055    
4056            pData[43] = KeySwitchRange.low;
4057            pData[44] = KeySwitchRange.high;
4058            pData[45] = Controller;
4059            pData[46] = PlayRange.low;
4060            pData[47] = PlayRange.high;
4061    
4062            char* str = reinterpret_cast<char*>(pData);
4063            int pos = 48;
4064            int n = std::min(int(Articulations), 32);
4065            for (int i = 0 ; i < n ; i++, pos += 32) {
4066                strncpy(&str[pos], pArticulations[i].c_str(), 32);
4067            }
4068    
4069            pos = 1072;
4070            n = std::min(int(Patterns), 32);
4071            for (int i = 0 ; i < n ; i++, pos += 49) {
4072                strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
4073                pData[pos + 16] = pPatterns[i].Size;
4074                memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
4075            }
4076        }
4077    
4078    // *************** Script ***************
4079    // *
4080    
4081        Script::Script(ScriptGroup* group, RIFF::Chunk* ckScri) {
4082            pGroup = group;
4083            pChunk = ckScri;
4084            if (ckScri) { // object is loaded from file ...
4085                // read header
4086                uint32_t headerSize = ckScri->ReadUint32();
4087                Compression = (Compression_t) ckScri->ReadUint32();
4088                Encoding    = (Encoding_t) ckScri->ReadUint32();
4089                Language    = (Language_t) ckScri->ReadUint32();
4090                Bypass      = (Language_t) ckScri->ReadUint32() & 1;
4091                crc         = ckScri->ReadUint32();
4092                uint32_t nameSize = ckScri->ReadUint32();
4093                Name.resize(nameSize, ' ');
4094                for (int i = 0; i < nameSize; ++i)
4095                    Name[i] = ckScri->ReadUint8();
4096                // to handle potential future extensions of the header
4097                ckScri->SetPos(headerSize - 6*sizeof(int32_t) + nameSize, RIFF::stream_curpos);
4098                // read actual script data
4099                uint32_t scriptSize = ckScri->GetSize() - ckScri->GetPos();
4100                data.resize(scriptSize);
4101                for (int i = 0; i < scriptSize; ++i)
4102                    data[i] = ckScri->ReadUint8();
4103            } else { // this is a new script object, so just initialize it as such ...
4104                Compression = COMPRESSION_NONE;
4105                Encoding = ENCODING_ASCII;
4106                Language = LANGUAGE_NKSP;
4107                Bypass   = false;
4108                crc      = 0;
4109                Name     = "Unnamed Script";
4110            }
4111        }
4112    
4113        Script::~Script() {
4114        }
4115    
4116        /**
4117         * Returns the current script (i.e. as source code) in text format.
4118         */
4119        String Script::GetScriptAsText() {
4120            String s;
4121            s.resize(data.size(), ' ');
4122            memcpy(&s[0], &data[0], data.size());
4123            return s;
4124        }
4125    
4126        /**
4127         * Replaces the current script with the new script source code text given
4128         * by @a text.
4129         *
4130         * @param text - new script source code
4131         */
4132        void Script::SetScriptAsText(const String& text) {
4133            data.resize(text.size());
4134            memcpy(&data[0], &text[0], text.size());
4135        }
4136    
4137        void Script::UpdateChunks() {
4138            // recalculate CRC32 check sum
4139            __resetCRC(crc);
4140            __calculateCRC(&data[0], data.size(), crc);
4141            __encodeCRC(crc);
4142            // make sure chunk exists and has the required size
4143            const int chunkSize = 7*sizeof(int32_t) + Name.size() + data.size();
4144            if (!pChunk) pChunk = pGroup->pList->AddSubChunk(CHUNK_ID_SCRI, chunkSize);
4145            else pChunk->Resize(chunkSize);
4146            // fill the chunk data to be written to disk
4147            uint8_t* pData = (uint8_t*) pChunk->LoadChunkData();
4148            int pos = 0;
4149            store32(&pData[pos], 6*sizeof(int32_t) + Name.size()); // total header size
4150            pos += sizeof(int32_t);
4151            store32(&pData[pos], Compression);
4152            pos += sizeof(int32_t);
4153            store32(&pData[pos], Encoding);
4154            pos += sizeof(int32_t);
4155            store32(&pData[pos], Language);
4156            pos += sizeof(int32_t);
4157            store32(&pData[pos], Bypass ? 1 : 0);
4158            pos += sizeof(int32_t);
4159            store32(&pData[pos], crc);
4160            pos += sizeof(int32_t);
4161            store32(&pData[pos], Name.size());
4162            pos += sizeof(int32_t);
4163            for (int i = 0; i < Name.size(); ++i, ++pos)
4164                pData[pos] = Name[i];
4165            for (int i = 0; i < data.size(); ++i, ++pos)
4166                pData[pos] = data[i];
4167        }
4168    
4169        /**
4170         * Move this script from its current ScriptGroup to another ScriptGroup
4171         * given by @a pGroup.
4172         *
4173         * @param pGroup - script's new group
4174         */
4175        void Script::SetGroup(ScriptGroup* pGroup) {
4176            if (this->pGroup = pGroup) return;
4177            if (pChunk)
4178                pChunk->GetParent()->MoveSubChunk(pChunk, pGroup->pList);
4179            this->pGroup = pGroup;
4180        }
4181    
4182        /**
4183         * Returns the script group this script currently belongs to. Each script
4184         * is a member of exactly one ScriptGroup.
4185         *
4186         * @returns current script group
4187         */
4188        ScriptGroup* Script::GetGroup() const {
4189            return pGroup;
4190        }
4191    
4192        void Script::RemoveAllScriptReferences() {
4193            File* pFile = pGroup->pFile;
4194            for (int i = 0; pFile->GetInstrument(i); ++i) {
4195                Instrument* instr = pFile->GetInstrument(i);
4196                instr->RemoveScript(this);
4197            }
4198        }
4199    
4200    // *************** ScriptGroup ***************
4201    // *
4202    
4203        ScriptGroup::ScriptGroup(File* file, RIFF::List* lstRTIS) {
4204            pFile = file;
4205            pList = lstRTIS;
4206            pScripts = NULL;
4207            if (lstRTIS) {
4208                RIFF::Chunk* ckName = lstRTIS->GetSubChunk(CHUNK_ID_LSNM);
4209                ::LoadString(ckName, Name);
4210            } else {
4211                Name = "Default Group";
4212            }
4213        }
4214    
4215        ScriptGroup::~ScriptGroup() {
4216            if (pScripts) {
4217                std::list<Script*>::iterator iter = pScripts->begin();
4218                std::list<Script*>::iterator end  = pScripts->end();
4219                while (iter != end) {
4220                    delete *iter;
4221                    ++iter;
4222                }
4223                delete pScripts;
4224            }
4225        }
4226    
4227        void ScriptGroup::UpdateChunks() {
4228            if (pScripts) {
4229                if (!pList)
4230                    pList = pFile->pRIFF->GetSubList(LIST_TYPE_3LS)->AddSubList(LIST_TYPE_RTIS);
4231    
4232                // now store the name of this group as <LSNM> chunk as subchunk of the <RTIS> list chunk
4233                ::SaveString(CHUNK_ID_LSNM, NULL, pList, Name, String("Unnamed Group"), true, 64);
4234    
4235                for (std::list<Script*>::iterator it = pScripts->begin();
4236                     it != pScripts->end(); ++it)
4237                {
4238                    (*it)->UpdateChunks();
4239                }
4240            }
4241        }
4242    
4243        /** @brief Get instrument script.
4244         *
4245         * Returns the real-time instrument script with the given index.
4246         *
4247         * @param index - number of the sought script (0..n)
4248         * @returns sought script or NULL if there's no such script
4249         */
4250        Script* ScriptGroup::GetScript(uint index) {
4251            if (!pScripts) LoadScripts();
4252            std::list<Script*>::iterator it = pScripts->begin();
4253            for (uint i = 0; it != pScripts->end(); ++i, ++it)
4254                if (i == index) return *it;
4255            return NULL;
4256        }
4257    
4258        /** @brief Add new instrument script.
4259         *
4260         * Adds a new real-time instrument script to the file. The script is not
4261         * actually used / executed unless it is referenced by an instrument to be
4262         * used. This is similar to samples, which you can add to a file, without
4263         * an instrument necessarily actually using it.
4264         *
4265         * You have to call Save() to make this persistent to the file.
4266         *
4267         * @return new empty script object
4268         */
4269        Script* ScriptGroup::AddScript() {
4270            if (!pScripts) LoadScripts();
4271            Script* pScript = new Script(this, NULL);
4272            pScripts->push_back(pScript);
4273            return pScript;
4274        }
4275    
4276        /** @brief Delete an instrument script.
4277         *
4278         * This will delete the given real-time instrument script. References of
4279         * instruments that are using that script will be removed accordingly.
4280         *
4281         * You have to call Save() to make this persistent to the file.
4282         *
4283         * @param pScript - script to delete
4284         * @throws gig::Exception if given script could not be found
4285         */
4286        void ScriptGroup::DeleteScript(Script* pScript) {
4287            if (!pScripts) LoadScripts();
4288            std::list<Script*>::iterator iter =
4289                find(pScripts->begin(), pScripts->end(), pScript);
4290            if (iter == pScripts->end())
4291                throw gig::Exception("Could not delete script, could not find given script");
4292            pScripts->erase(iter);
4293            pScript->RemoveAllScriptReferences();
4294            if (pScript->pChunk)
4295                pScript->pChunk->GetParent()->DeleteSubChunk(pScript->pChunk);
4296            delete pScript;
4297        }
4298    
4299        void ScriptGroup::LoadScripts() {
4300            if (pScripts) return;
4301            pScripts = new std::list<Script*>;
4302            if (!pList) return;
4303    
4304            for (RIFF::Chunk* ck = pList->GetFirstSubChunk(); ck;
4305                 ck = pList->GetNextSubChunk())
4306            {
4307                if (ck->GetChunkID() == CHUNK_ID_SCRI) {
4308                    pScripts->push_back(new Script(this, ck));
4309                }
4310            }
4311        }
4312    
4313  // *************** Instrument ***************  // *************** Instrument ***************
4314  // *  // *
4315    
4316      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
4317            static const DLS::Info::string_length_t fixedStringLengths[] = {
4318                { CHUNK_ID_INAM, 64 },
4319                { CHUNK_ID_ISFT, 12 },
4320                { 0, 0 }
4321            };
4322            pInfo->SetFixedStringLengths(fixedStringLengths);
4323    
4324          // Initialization          // Initialization
4325          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4326            EffectSend = 0;
4327            Attenuation = 0;
4328            FineTune = 0;
4329            PitchbendRange = 0;
4330            PianoReleaseMode = false;
4331            DimensionKeyRange.low = 0;
4332            DimensionKeyRange.high = 0;
4333            pMidiRules = new MidiRule*[3];
4334            pMidiRules[0] = NULL;
4335            pScriptRefs = NULL;
4336    
4337          // Loading          // Loading
4338          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
# Line 2514  namespace { Line 4347  namespace {
4347                  PianoReleaseMode       = dimkeystart & 0x01;                  PianoReleaseMode       = dimkeystart & 0x01;
4348                  DimensionKeyRange.low  = dimkeystart >> 1;                  DimensionKeyRange.low  = dimkeystart >> 1;
4349                  DimensionKeyRange.high = _3ewg->ReadUint8();                  DimensionKeyRange.high = _3ewg->ReadUint8();
4350    
4351                    if (_3ewg->GetSize() > 32) {
4352                        // read MIDI rules
4353                        int i = 0;
4354                        _3ewg->SetPos(32);
4355                        uint8_t id1 = _3ewg->ReadUint8();
4356                        uint8_t id2 = _3ewg->ReadUint8();
4357    
4358                        if (id2 == 16) {
4359                            if (id1 == 4) {
4360                                pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
4361                            } else if (id1 == 0) {
4362                                pMidiRules[i++] = new MidiRuleLegato(_3ewg);
4363                            } else if (id1 == 3) {
4364                                pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
4365                            } else {
4366                                pMidiRules[i++] = new MidiRuleUnknown;
4367                            }
4368                        }
4369                        else if (id1 != 0 || id2 != 0) {
4370                            pMidiRules[i++] = new MidiRuleUnknown;
4371                        }
4372                        //TODO: all the other types of rules
4373    
4374                        pMidiRules[i] = NULL;
4375                    }
4376              }              }
4377          }          }
4378    
4379          if (!pRegions) pRegions = new RegionList;          if (pFile->GetAutoLoad()) {
4380          RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);              if (!pRegions) pRegions = new RegionList;
4381          if (lrgn) {              RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
4382              RIFF::List* rgn = lrgn->GetFirstSubList();              if (lrgn) {
4383              while (rgn) {                  RIFF::List* rgn = lrgn->GetFirstSubList();
4384                  if (rgn->GetListType() == LIST_TYPE_RGN) {                  while (rgn) {
4385                      __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);                      if (rgn->GetListType() == LIST_TYPE_RGN) {
4386                      pRegions->push_back(new Region(this, rgn));                          __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
4387                            pRegions->push_back(new Region(this, rgn));
4388                        }
4389                        rgn = lrgn->GetNextSubList();
4390                    }
4391                    // Creating Region Key Table for fast lookup
4392                    UpdateRegionKeyTable();
4393                }
4394            }
4395    
4396            // own gig format extensions
4397            RIFF::List* lst3LS = insList->GetSubList(LIST_TYPE_3LS);
4398            if (lst3LS) {
4399                RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4400                if (ckSCSL) {
4401                    int slotCount = ckSCSL->ReadUint32();
4402                    int slotSize  = ckSCSL->ReadUint32();
4403                    int unknownSpace = slotSize - 2*sizeof(uint32_t); // in case of future extensions
4404                    for (int i = 0; i < slotCount; ++i) {
4405                        _ScriptPooolEntry e;
4406                        e.fileOffset = ckSCSL->ReadUint32();
4407                        e.bypass     = ckSCSL->ReadUint32() & 1;
4408                        if (unknownSpace) ckSCSL->SetPos(unknownSpace, RIFF::stream_curpos); // in case of future extensions
4409                        scriptPoolFileOffsets.push_back(e);
4410                  }                  }
                 rgn = lrgn->GetNextSubList();  
4411              }              }
             // Creating Region Key Table for fast lookup  
             UpdateRegionKeyTable();  
4412          }          }
4413    
4414          __notify_progress(pProgress, 1.0f); // notify done          __notify_progress(pProgress, 1.0f); // notify done
4415      }      }
4416    
4417      void Instrument::UpdateRegionKeyTable() {      void Instrument::UpdateRegionKeyTable() {
4418            for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4419          RegionList::iterator iter = pRegions->begin();          RegionList::iterator iter = pRegions->begin();
4420          RegionList::iterator end  = pRegions->end();          RegionList::iterator end  = pRegions->end();
4421          for (; iter != end; ++iter) {          for (; iter != end; ++iter) {
# Line 2547  namespace { Line 4427  namespace {
4427      }      }
4428    
4429      Instrument::~Instrument() {      Instrument::~Instrument() {
4430            for (int i = 0 ; pMidiRules[i] ; i++) {
4431                delete pMidiRules[i];
4432            }
4433            delete[] pMidiRules;
4434            if (pScriptRefs) delete pScriptRefs;
4435      }      }
4436    
4437      /**      /**
# Line 2575  namespace { Line 4460  namespace {
4460          if (!lart)  lart = pCkInstrument->AddSubList(LIST_TYPE_LART);          if (!lart)  lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
4461          // make sure '3ewg' RIFF chunk exists          // make sure '3ewg' RIFF chunk exists
4462          RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);          RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4463          if (!_3ewg)  _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, 12);          if (!_3ewg)  {
4464                File* pFile = (File*) GetParent();
4465    
4466                // 3ewg is bigger in gig3, as it includes the iMIDI rules
4467                int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
4468                _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
4469                memset(_3ewg->LoadChunkData(), 0, size);
4470            }
4471          // update '3ewg' RIFF chunk          // update '3ewg' RIFF chunk
4472          uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();          uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
4473          memcpy(&pData[0], &EffectSend, 2);          store16(&pData[0], EffectSend);
4474          memcpy(&pData[2], &Attenuation, 4);          store32(&pData[2], Attenuation);
4475          memcpy(&pData[6], &FineTune, 2);          store16(&pData[6], FineTune);
4476          memcpy(&pData[8], &PitchbendRange, 2);          store16(&pData[8], PitchbendRange);
4477          const uint8_t dimkeystart = (PianoReleaseMode) ? 0x01 : 0x00 |          const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
4478                                      DimensionKeyRange.low << 1;                                      DimensionKeyRange.low << 1;
4479          memcpy(&pData[10], &dimkeystart, 1);          pData[10] = dimkeystart;
4480          memcpy(&pData[11], &DimensionKeyRange.high, 1);          pData[11] = DimensionKeyRange.high;
4481    
4482            if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
4483                pData[32] = 0;
4484                pData[33] = 0;
4485            } else {
4486                for (int i = 0 ; pMidiRules[i] ; i++) {
4487                    pMidiRules[i]->UpdateChunks(pData);
4488                }
4489            }
4490    
4491            // own gig format extensions
4492           if (pScriptRefs) {
4493               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4494               if (!lst3LS) lst3LS = pCkInstrument->AddSubList(LIST_TYPE_3LS);
4495               const int totalSize = pScriptRefs->size() * 2*sizeof(uint32_t);
4496               RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4497               if (!ckSCSL) ckSCSL = lst3LS->AddSubChunk(CHUNK_ID_SCSL, totalSize);
4498               else ckSCSL->Resize(totalSize);
4499               uint8_t* pData = (uint8_t*) ckSCSL->LoadChunkData();
4500               for (int i = 0, pos = 0; i < pScriptRefs->size(); ++i) {
4501                   int fileOffset =
4502                        (*pScriptRefs)[i].script->pChunk->GetFilePos() -
4503                        (*pScriptRefs)[i].script->pChunk->GetPos() -
4504                        CHUNK_HEADER_SIZE;
4505                   store32(&pData[pos], fileOffset);
4506                   pos += sizeof(uint32_t);
4507                   store32(&pData[pos], (*pScriptRefs)[i].bypass ? 1 : 0);
4508                   pos += sizeof(uint32_t);
4509               }
4510           }
4511      }      }
4512    
4513      /**      /**
# Line 2596  namespace { Line 4518  namespace {
4518       *             there is no Region defined for the given \a Key       *             there is no Region defined for the given \a Key
4519       */       */
4520      Region* Instrument::GetRegion(unsigned int Key) {      Region* Instrument::GetRegion(unsigned int Key) {
4521          if (!pRegions || !pRegions->size() || Key > 127) return NULL;          if (!pRegions || pRegions->empty() || Key > 127) return NULL;
4522          return RegionKeyTable[Key];          return RegionKeyTable[Key];
4523    
4524          /*for (int i = 0; i < Regions; i++) {          /*for (int i = 0; i < Regions; i++) {
# Line 2654  namespace { Line 4576  namespace {
4576          UpdateRegionKeyTable();          UpdateRegionKeyTable();
4577      }      }
4578    
4579        /**
4580         * Returns a MIDI rule of the instrument.
4581         *
4582         * The list of MIDI rules, at least in gig v3, always contains at
4583         * most two rules. The second rule can only be the DEF filter
4584         * (which currently isn't supported by libgig).
4585         *
4586         * @param i - MIDI rule number
4587         * @returns   pointer address to MIDI rule number i or NULL if there is none
4588         */
4589        MidiRule* Instrument::GetMidiRule(int i) {
4590            return pMidiRules[i];
4591        }
4592    
4593        /**
4594         * Adds the "controller trigger" MIDI rule to the instrument.
4595         *
4596         * @returns the new MIDI rule
4597         */
4598        MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
4599            delete pMidiRules[0];
4600            MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
4601            pMidiRules[0] = r;
4602            pMidiRules[1] = 0;
4603            return r;
4604        }
4605    
4606        /**
4607         * Adds the legato MIDI rule to the instrument.
4608         *
4609         * @returns the new MIDI rule
4610         */
4611        MidiRuleLegato* Instrument::AddMidiRuleLegato() {
4612            delete pMidiRules[0];
4613            MidiRuleLegato* r = new MidiRuleLegato;
4614            pMidiRules[0] = r;
4615            pMidiRules[1] = 0;
4616            return r;
4617        }
4618    
4619        /**
4620         * Adds the alternator MIDI rule to the instrument.
4621         *
4622         * @returns the new MIDI rule
4623         */
4624        MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
4625            delete pMidiRules[0];
4626            MidiRuleAlternator* r = new MidiRuleAlternator;
4627            pMidiRules[0] = r;
4628            pMidiRules[1] = 0;
4629            return r;
4630        }
4631    
4632        /**
4633         * Deletes a MIDI rule from the instrument.
4634         *
4635         * @param i - MIDI rule number
4636         */
4637        void Instrument::DeleteMidiRule(int i) {
4638            delete pMidiRules[i];
4639            pMidiRules[i] = 0;
4640        }
4641    
4642        void Instrument::LoadScripts() {
4643            if (pScriptRefs) return;
4644            pScriptRefs = new std::vector<_ScriptPooolRef>;
4645            if (scriptPoolFileOffsets.empty()) return;
4646            File* pFile = (File*) GetParent();
4647            for (uint k = 0; k < scriptPoolFileOffsets.size(); ++k) {
4648                uint32_t offset = scriptPoolFileOffsets[k].fileOffset;
4649                for (uint i = 0; pFile->GetScriptGroup(i); ++i) {
4650                    ScriptGroup* group = pFile->GetScriptGroup(i);
4651                    for (uint s = 0; group->GetScript(s); ++s) {
4652                        Script* script = group->GetScript(s);
4653                        if (script->pChunk) {
4654                            script->pChunk->SetPos(0);
4655                            if (script->pChunk->GetFilePos() -
4656                                script->pChunk->GetPos() -
4657                                CHUNK_HEADER_SIZE == offset)
4658                            {
4659                                _ScriptPooolRef ref;
4660                                ref.script = script;
4661                                ref.bypass = scriptPoolFileOffsets[k].bypass;
4662                                pScriptRefs->push_back(ref);
4663                                break;
4664                            }
4665                        }
4666                    }
4667                }
4668            }
4669            // we don't need that anymore
4670            scriptPoolFileOffsets.clear();
4671        }
4672    
4673        /** @brief Get instrument script (gig format extension).
4674         *
4675         * Returns the real-time instrument script of instrument script slot
4676         * @a index.
4677         *
4678         * @note This is an own format extension which did not exist i.e. in the
4679         * GigaStudio 4 software. It will currently only work with LinuxSampler and
4680         * gigedit.
4681         *
4682         * @param index - instrument script slot index
4683         * @returns script or NULL if index is out of bounds
4684         */
4685        Script* Instrument::GetScriptOfSlot(uint index) {
4686            LoadScripts();
4687            if (index >= pScriptRefs->size()) return NULL;
4688            return pScriptRefs->at(index).script;
4689        }
4690    
4691        /** @brief Add new instrument script slot (gig format extension).
4692         *
4693         * Add the given real-time instrument script reference to this instrument,
4694         * which shall be executed by the sampler for for this instrument. The
4695         * script will be added to the end of the script list of this instrument.
4696         * The positions of the scripts in the Instrument's Script list are
4697         * relevant, because they define in which order they shall be executed by
4698         * the sampler. For this reason it is also legal to add the same script
4699         * twice to an instrument, for example you might have a script called
4700         * "MyFilter" which performs an event filter task, and you might have
4701         * another script called "MyNoteTrigger" which triggers new notes, then you
4702         * might for example have the following list of scripts on the instrument:
4703         *
4704         * 1. Script "MyFilter"
4705         * 2. Script "MyNoteTrigger"
4706         * 3. Script "MyFilter"
4707         *
4708         * Which would make sense, because the 2nd script launched new events, which
4709         * you might need to filter as well.
4710         *
4711         * There are two ways to disable / "bypass" scripts. You can either disable
4712         * a script locally for the respective script slot on an instrument (i.e. by
4713         * passing @c false to the 2nd argument of this method, or by calling
4714         * SetScriptBypassed()). Or you can disable a script globally for all slots
4715         * and all instruments by setting Script::Bypass.
4716         *
4717         * @note This is an own format extension which did not exist i.e. in the
4718         * GigaStudio 4 software. It will currently only work with LinuxSampler and
4719         * gigedit.
4720         *
4721         * @param pScript - script that shall be executed for this instrument
4722         * @param bypass  - if enabled, the sampler shall skip executing this
4723         *                  script (in the respective list position)
4724         * @see SetScriptBypassed()
4725         */
4726        void Instrument::AddScriptSlot(Script* pScript, bool bypass) {
4727            LoadScripts();
4728            _ScriptPooolRef ref = { pScript, bypass };
4729            pScriptRefs->push_back(ref);
4730        }
4731    
4732        /** @brief Flip two script slots with each other (gig format extension).
4733         *
4734         * Swaps the position of the two given scripts in the Instrument's Script
4735         * list. The positions of the scripts in the Instrument's Script list are
4736         * relevant, because they define in which order they shall be executed by
4737         * the sampler.
4738         *
4739         * @note This is an own format extension which did not exist i.e. in the
4740         * GigaStudio 4 software. It will currently only work with LinuxSampler and
4741         * gigedit.
4742         *
4743         * @param index1 - index of the first script slot to swap
4744         * @param index2 - index of the second script slot to swap
4745         */
4746        void Instrument::SwapScriptSlots(uint index1, uint index2) {
4747            LoadScripts();
4748            if (index1 >= pScriptRefs->size() || index2 >= pScriptRefs->size())
4749                return;
4750            _ScriptPooolRef tmp = (*pScriptRefs)[index1];
4751            (*pScriptRefs)[index1] = (*pScriptRefs)[index2];
4752            (*pScriptRefs)[index2] = tmp;
4753        }
4754    
4755        /** @brief Remove script slot.
4756         *
4757         * Removes the script slot with the given slot index.
4758         *
4759         * @param index - index of script slot to remove
4760         */
4761        void Instrument::RemoveScriptSlot(uint index) {
4762            LoadScripts();
4763            if (index >= pScriptRefs->size()) return;
4764            pScriptRefs->erase( pScriptRefs->begin() + index );
4765        }
4766    
4767        /** @brief Remove reference to given Script (gig format extension).
4768         *
4769         * This will remove all script slots on the instrument which are referencing
4770         * the given script.
4771         *
4772         * @note This is an own format extension which did not exist i.e. in the
4773         * GigaStudio 4 software. It will currently only work with LinuxSampler and
4774         * gigedit.
4775         *
4776         * @param pScript - script reference to remove from this instrument
4777         * @see RemoveScriptSlot()
4778         */
4779        void Instrument::RemoveScript(Script* pScript) {
4780            LoadScripts();
4781            for (int i = pScriptRefs->size() - 1; i >= 0; --i) {
4782                if ((*pScriptRefs)[i].script == pScript) {
4783                    pScriptRefs->erase( pScriptRefs->begin() + i );
4784                }
4785            }
4786        }
4787    
4788        /** @brief Instrument's amount of script slots.
4789         *
4790         * This method returns the amount of script slots this instrument currently
4791         * uses.
4792         *
4793         * A script slot is a reference of a real-time instrument script to be
4794         * executed by the sampler. The scripts will be executed by the sampler in
4795         * sequence of the slots. One (same) script may be referenced multiple
4796         * times in different slots.
4797         *
4798         * @note This is an own format extension which did not exist i.e. in the
4799         * GigaStudio 4 software. It will currently only work with LinuxSampler and
4800         * gigedit.
4801         */
4802        uint Instrument::ScriptSlotCount() const {
4803            return pScriptRefs ? pScriptRefs->size() : scriptPoolFileOffsets.size();
4804        }
4805    
4806        /** @brief Whether script execution shall be skipped.
4807         *
4808         * Defines locally for the Script reference slot in the Instrument's Script
4809         * list, whether the script shall be skipped by the sampler regarding
4810         * execution.
4811         *
4812         * It is also possible to ignore exeuction of the script globally, for all
4813         * slots and for all instruments by setting Script::Bypass.
4814         *
4815         * @note This is an own format extension which did not exist i.e. in the
4816         * GigaStudio 4 software. It will currently only work with LinuxSampler and
4817         * gigedit.
4818         *
4819         * @param index - index of the script slot on this instrument
4820         * @see Script::Bypass
4821         */
4822        bool Instrument::IsScriptSlotBypassed(uint index) {
4823            if (index >= ScriptSlotCount()) return false;
4824            return pScriptRefs ? pScriptRefs->at(index).bypass
4825                               : scriptPoolFileOffsets.at(index).bypass;
4826            
4827        }
4828    
4829        /** @brief Defines whether execution shall be skipped.
4830         *
4831         * You can call this method to define locally whether or whether not the
4832         * given script slot shall be executed by the sampler.
4833         *
4834         * @note This is an own format extension which did not exist i.e. in the
4835         * GigaStudio 4 software. It will currently only work with LinuxSampler and
4836         * gigedit.
4837         *
4838         * @param index - script slot index on this instrument
4839         * @param bBypass - if true, the script slot will be skipped by the sampler
4840         * @see Script::Bypass
4841         */
4842        void Instrument::SetScriptSlotBypassed(uint index, bool bBypass) {
4843            if (index >= ScriptSlotCount()) return;
4844            if (pScriptRefs)
4845                pScriptRefs->at(index).bypass = bBypass;
4846            else
4847                scriptPoolFileOffsets.at(index).bypass = bBypass;
4848        }
4849    
4850        /**
4851         * Make a (semi) deep copy of the Instrument object given by @a orig
4852         * and assign it to this object.
4853         *
4854         * Note that all sample pointers referenced by @a orig are simply copied as
4855         * memory address. Thus the respective samples are shared, not duplicated!
4856         *
4857         * @param orig - original Instrument object to be copied from
4858         */
4859        void Instrument::CopyAssign(const Instrument* orig) {
4860            CopyAssign(orig, NULL);
4861        }
4862            
4863        /**
4864         * Make a (semi) deep copy of the Instrument object given by @a orig
4865         * and assign it to this object.
4866         *
4867         * @param orig - original Instrument object to be copied from
4868         * @param mSamples - crosslink map between the foreign file's samples and
4869         *                   this file's samples
4870         */
4871        void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
4872            // handle base class
4873            // (without copying DLS region stuff)
4874            DLS::Instrument::CopyAssignCore(orig);
4875            
4876            // handle own member variables
4877            Attenuation = orig->Attenuation;
4878            EffectSend = orig->EffectSend;
4879            FineTune = orig->FineTune;
4880            PitchbendRange = orig->PitchbendRange;
4881            PianoReleaseMode = orig->PianoReleaseMode;
4882            DimensionKeyRange = orig->DimensionKeyRange;
4883            scriptPoolFileOffsets = orig->scriptPoolFileOffsets;
4884            pScriptRefs = orig->pScriptRefs;
4885            
4886            // free old midi rules
4887            for (int i = 0 ; pMidiRules[i] ; i++) {
4888                delete pMidiRules[i];
4889            }
4890            //TODO: MIDI rule copying
4891            pMidiRules[0] = NULL;
4892            
4893            // delete all old regions
4894            while (Regions) DeleteRegion(GetFirstRegion());
4895            // create new regions and copy them from original
4896            {
4897                RegionList::const_iterator it = orig->pRegions->begin();
4898                for (int i = 0; i < orig->Regions; ++i, ++it) {
4899                    Region* dstRgn = AddRegion();
4900                    //NOTE: Region does semi-deep copy !
4901                    dstRgn->CopyAssign(
4902                        static_cast<gig::Region*>(*it),
4903                        mSamples
4904                    );
4905                }
4906            }
4907    
4908            UpdateRegionKeyTable();
4909        }
4910    
4911    
4912    // *************** Group ***************
4913    // *
4914    
4915        /** @brief Constructor.
4916         *
4917         * @param file   - pointer to the gig::File object
4918         * @param ck3gnm - pointer to 3gnm chunk associated with this group or
4919         *                 NULL if this is a new Group
4920         */
4921        Group::Group(File* file, RIFF::Chunk* ck3gnm) {
4922            pFile      = file;
4923            pNameChunk = ck3gnm;
4924            ::LoadString(pNameChunk, Name);
4925        }
4926    
4927        Group::~Group() {
4928            // remove the chunk associated with this group (if any)
4929            if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
4930        }
4931    
4932        /** @brief Update chunks with current group settings.
4933         *
4934         * Apply current Group field values to the respective chunks. You have
4935         * to call File::Save() to make changes persistent.
4936         *
4937         * Usually there is absolutely no need to call this method explicitly.
4938         * It will be called automatically when File::Save() was called.
4939         */
4940        void Group::UpdateChunks() {
4941            // make sure <3gri> and <3gnl> list chunks exist
4942            RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
4943            if (!_3gri) {
4944                _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
4945                pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
4946            }
4947            RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
4948            if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
4949    
4950            if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
4951                // v3 has a fixed list of 128 strings, find a free one
4952                for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
4953                    if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
4954                        pNameChunk = ck;
4955                        break;
4956                    }
4957                }
4958            }
4959    
4960            // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
4961            ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
4962        }
4963    
4964        /**
4965         * Returns the first Sample of this Group. You have to call this method
4966         * once before you use GetNextSample().
4967         *
4968         * <b>Notice:</b> this method might block for a long time, in case the
4969         * samples of this .gig file were not scanned yet
4970         *
4971         * @returns  pointer address to first Sample or NULL if there is none
4972         *           applied to this Group
4973         * @see      GetNextSample()
4974         */
4975        Sample* Group::GetFirstSample() {
4976            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
4977            for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
4978                if (pSample->GetGroup() == this) return pSample;
4979            }
4980            return NULL;
4981        }
4982    
4983        /**
4984         * Returns the next Sample of the Group. You have to call
4985         * GetFirstSample() once before you can use this method. By calling this
4986         * method multiple times it iterates through the Samples assigned to
4987         * this Group.
4988         *
4989         * @returns  pointer address to the next Sample of this Group or NULL if
4990         *           end reached
4991         * @see      GetFirstSample()
4992         */
4993        Sample* Group::GetNextSample() {
4994            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
4995            for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
4996                if (pSample->GetGroup() == this) return pSample;
4997            }
4998            return NULL;
4999        }
5000    
5001        /**
5002         * Move Sample given by \a pSample from another Group to this Group.
5003         */
5004        void Group::AddSample(Sample* pSample) {
5005            pSample->pGroup = this;
5006        }
5007    
5008        /**
5009         * Move all members of this group to another group (preferably the 1st
5010         * one except this). This method is called explicitly by
5011         * File::DeleteGroup() thus when a Group was deleted. This code was
5012         * intentionally not placed in the destructor!
5013         */
5014        void Group::MoveAll() {
5015            // get "that" other group first
5016            Group* pOtherGroup = NULL;
5017            for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
5018                if (pOtherGroup != this) break;
5019            }
5020            if (!pOtherGroup) throw Exception(
5021                "Could not move samples to another group, since there is no "
5022                "other Group. This is a bug, report it!"
5023            );
5024            // now move all samples of this group to the other group
5025            for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
5026                pOtherGroup->AddSample(pSample);
5027            }
5028        }
5029    
5030    
5031    
5032  // *************** File ***************  // *************** File ***************
5033  // *  // *
5034    
5035        /// Reflects Gigasampler file format version 2.0 (1998-06-28).
5036        const DLS::version_t File::VERSION_2 = {
5037            0, 2, 19980628 & 0xffff, 19980628 >> 16
5038        };
5039    
5040        /// Reflects Gigasampler file format version 3.0 (2003-03-31).
5041        const DLS::version_t File::VERSION_3 = {
5042            0, 3, 20030331 & 0xffff, 20030331 >> 16
5043        };
5044    
5045        static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
5046            { CHUNK_ID_IARL, 256 },
5047            { CHUNK_ID_IART, 128 },
5048            { CHUNK_ID_ICMS, 128 },
5049            { CHUNK_ID_ICMT, 1024 },
5050            { CHUNK_ID_ICOP, 128 },
5051            { CHUNK_ID_ICRD, 128 },
5052            { CHUNK_ID_IENG, 128 },
5053            { CHUNK_ID_IGNR, 128 },
5054            { CHUNK_ID_IKEY, 128 },
5055            { CHUNK_ID_IMED, 128 },
5056            { CHUNK_ID_INAM, 128 },
5057            { CHUNK_ID_IPRD, 128 },
5058            { CHUNK_ID_ISBJ, 128 },
5059            { CHUNK_ID_ISFT, 128 },
5060            { CHUNK_ID_ISRC, 128 },
5061            { CHUNK_ID_ISRF, 128 },
5062            { CHUNK_ID_ITCH, 128 },
5063            { 0, 0 }
5064        };
5065    
5066      File::File() : DLS::File() {      File::File() : DLS::File() {
5067            bAutoLoad = true;
5068            *pVersion = VERSION_3;
5069            pGroups = NULL;
5070            pScriptGroups = NULL;
5071            pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5072            pInfo->ArchivalLocation = String(256, ' ');
5073    
5074            // add some mandatory chunks to get the file chunks in right
5075            // order (INFO chunk will be moved to first position later)
5076            pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
5077            pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
5078            pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
5079    
5080            GenerateDLSID();
5081      }      }
5082    
5083      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
5084            bAutoLoad = true;
5085            pGroups = NULL;
5086            pScriptGroups = NULL;
5087            pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5088        }
5089    
5090        File::~File() {
5091            if (pGroups) {
5092                std::list<Group*>::iterator iter = pGroups->begin();
5093                std::list<Group*>::iterator end  = pGroups->end();
5094                while (iter != end) {
5095                    delete *iter;
5096                    ++iter;
5097                }
5098                delete pGroups;
5099            }
5100            if (pScriptGroups) {
5101                std::list<ScriptGroup*>::iterator iter = pScriptGroups->begin();
5102                std::list<ScriptGroup*>::iterator end  = pScriptGroups->end();
5103                while (iter != end) {
5104                    delete *iter;
5105                    ++iter;
5106                }
5107                delete pScriptGroups;
5108            }
5109      }      }
5110    
5111      Sample* File::GetFirstSample(progress_t* pProgress) {      Sample* File::GetFirstSample(progress_t* pProgress) {
# Line 2677  namespace { Line 5120  namespace {
5120          SamplesIterator++;          SamplesIterator++;
5121          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5122      }      }
5123        
5124        /**
5125         * Returns Sample object of @a index.
5126         *
5127         * @returns sample object or NULL if index is out of bounds
5128         */
5129        Sample* File::GetSample(uint index) {
5130            if (!pSamples) LoadSamples();
5131            if (!pSamples) return NULL;
5132            DLS::File::SampleList::iterator it = pSamples->begin();
5133            for (int i = 0; i < index; ++i) {
5134                ++it;
5135                if (it == pSamples->end()) return NULL;
5136            }
5137            if (it == pSamples->end()) return NULL;
5138            return static_cast<gig::Sample*>( *it );
5139        }
5140    
5141      /** @brief Add a new sample.      /** @brief Add a new sample.
5142       *       *
# Line 2692  namespace { Line 5152  namespace {
5152         // create new Sample object and its respective 'wave' list chunk         // create new Sample object and its respective 'wave' list chunk
5153         RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);         RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
5154         Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);         Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
5155    
5156           // add mandatory chunks to get the chunks in right order
5157           wave->AddSubChunk(CHUNK_ID_FMT, 16);
5158           wave->AddSubList(LIST_TYPE_INFO);
5159    
5160         pSamples->push_back(pSample);         pSamples->push_back(pSample);
5161         return pSample;         return pSample;
5162      }      }
5163    
5164      /** @brief Delete a sample.      /** @brief Delete a sample.
5165       *       *
5166       * This will delete the given Sample object from the gig file. You have       * This will delete the given Sample object from the gig file. Any
5167       * to call Save() to make this persistent to the file.       * references to this sample from Regions and DimensionRegions will be
5168         * removed. You have to call Save() to make this persistent to the file.
5169       *       *
5170       * @param pSample - sample to delete       * @param pSample - sample to delete
5171       * @throws gig::Exception if given sample could not be found       * @throws gig::Exception if given sample could not be found
# Line 2708  namespace { Line 5174  namespace {
5174          if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");          if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
5175          SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);          SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
5176          if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");          if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
5177            if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
5178          pSamples->erase(iter);          pSamples->erase(iter);
5179          delete pSample;          delete pSample;
5180    
5181            SampleList::iterator tmp = SamplesIterator;
5182            // remove all references to the sample
5183            for (Instrument* instrument = GetFirstInstrument() ; instrument ;
5184                 instrument = GetNextInstrument()) {
5185                for (Region* region = instrument->GetFirstRegion() ; region ;
5186                     region = instrument->GetNextRegion()) {
5187    
5188                    if (region->GetSample() == pSample) region->SetSample(NULL);
5189    
5190                    for (int i = 0 ; i < region->DimensionRegions ; i++) {
5191                        gig::DimensionRegion *d = region->pDimensionRegions[i];
5192                        if (d->pSample == pSample) d->pSample = NULL;
5193                    }
5194                }
5195            }
5196            SamplesIterator = tmp; // restore iterator
5197      }      }
5198    
5199      void File::LoadSamples() {      void File::LoadSamples() {
# Line 2717  namespace { Line 5201  namespace {
5201      }      }
5202    
5203      void File::LoadSamples(progress_t* pProgress) {      void File::LoadSamples(progress_t* pProgress) {
5204            // Groups must be loaded before samples, because samples will try
5205            // to resolve the group they belong to
5206            if (!pGroups) LoadGroups();
5207    
5208          if (!pSamples) pSamples = new SampleList;          if (!pSamples) pSamples = new SampleList;
5209    
5210          RIFF::File* file = pRIFF;          RIFF::File* file = pRIFF;
# Line 2796  namespace { Line 5284  namespace {
5284              progress_t subprogress;              progress_t subprogress;
5285              __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask              __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
5286              __notify_progress(&subprogress, 0.0f);              __notify_progress(&subprogress, 0.0f);
5287              GetFirstSample(&subprogress); // now force all samples to be loaded              if (GetAutoLoad())
5288                    GetFirstSample(&subprogress); // now force all samples to be loaded
5289              __notify_progress(&subprogress, 1.0f);              __notify_progress(&subprogress, 1.0f);
5290    
5291              // instrument loading subtask              // instrument loading subtask
# Line 2829  namespace { Line 5318  namespace {
5318         __ensureMandatoryChunksExist();         __ensureMandatoryChunksExist();
5319         RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);         RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5320         RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);         RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
5321    
5322           // add mandatory chunks to get the chunks in right order
5323           lstInstr->AddSubList(LIST_TYPE_INFO);
5324           lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
5325    
5326         Instrument* pInstrument = new Instrument(this, lstInstr);         Instrument* pInstrument = new Instrument(this, lstInstr);
5327           pInstrument->GenerateDLSID();
5328    
5329           lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
5330    
5331           // this string is needed for the gig to be loadable in GSt:
5332           pInstrument->pInfo->Software = "Endless Wave";
5333    
5334         pInstruments->push_back(pInstrument);         pInstruments->push_back(pInstrument);
5335         return pInstrument;         return pInstrument;
5336      }      }
5337        
5338        /** @brief Add a duplicate of an existing instrument.
5339         *
5340         * Duplicates the instrument definition given by @a orig and adds it
5341         * to this file. This allows in an instrument editor application to
5342         * easily create variations of an instrument, which will be stored in
5343         * the same .gig file, sharing i.e. the same samples.
5344         *
5345         * Note that all sample pointers referenced by @a orig are simply copied as
5346         * memory address. Thus the respective samples are shared, not duplicated!
5347         *
5348         * You have to call Save() to make this persistent to the file.
5349         *
5350         * @param orig - original instrument to be copied
5351         * @returns duplicated copy of the given instrument
5352         */
5353        Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
5354            Instrument* instr = AddInstrument();
5355            instr->CopyAssign(orig);
5356            return instr;
5357        }
5358        
5359        /** @brief Add content of another existing file.
5360         *
5361         * Duplicates the samples, groups and instruments of the original file
5362         * given by @a pFile and adds them to @c this File. In case @c this File is
5363         * a new one that you haven't saved before, then you have to call
5364         * SetFileName() before calling AddContentOf(), because this method will
5365         * automatically save this file during operation, which is required for
5366         * writing the sample waveform data by disk streaming.
5367         *
5368         * @param pFile - original file whose's content shall be copied from
5369         */
5370        void File::AddContentOf(File* pFile) {
5371            static int iCallCount = -1;
5372            iCallCount++;
5373            std::map<Group*,Group*> mGroups;
5374            std::map<Sample*,Sample*> mSamples;
5375            
5376            // clone sample groups
5377            for (int i = 0; pFile->GetGroup(i); ++i) {
5378                Group* g = AddGroup();
5379                g->Name =
5380                    "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
5381                mGroups[pFile->GetGroup(i)] = g;
5382            }
5383            
5384            // clone samples (not waveform data here yet)
5385            for (int i = 0; pFile->GetSample(i); ++i) {
5386                Sample* s = AddSample();
5387                s->CopyAssignMeta(pFile->GetSample(i));
5388                mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
5389                mSamples[pFile->GetSample(i)] = s;
5390            }
5391            
5392            //BUG: For some reason this method only works with this additional
5393            //     Save() call in between here.
5394            //
5395            // Important: The correct one of the 2 Save() methods has to be called
5396            // here, depending on whether the file is completely new or has been
5397            // saved to disk already, otherwise it will result in data corruption.
5398            if (pRIFF->IsNew())
5399                Save(GetFileName());
5400            else
5401                Save();
5402            
5403            // clone instruments
5404            // (passing the crosslink table here for the cloned samples)
5405            for (int i = 0; pFile->GetInstrument(i); ++i) {
5406                Instrument* instr = AddInstrument();
5407                instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
5408            }
5409            
5410            // Mandatory: file needs to be saved to disk at this point, so this
5411            // file has the correct size and data layout for writing the samples'
5412            // waveform data to disk.
5413            Save();
5414            
5415            // clone samples' waveform data
5416            // (using direct read & write disk streaming)
5417            for (int i = 0; pFile->GetSample(i); ++i) {
5418                mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
5419            }
5420        }
5421    
5422      /** @brief Delete an instrument.      /** @brief Delete an instrument.
5423       *       *
# Line 2840  namespace { Line 5425  namespace {
5425       * have to call Save() to make this persistent to the file.       * have to call Save() to make this persistent to the file.
5426       *       *
5427       * @param pInstrument - instrument to delete       * @param pInstrument - instrument to delete
5428       * @throws gig::Excption if given instrument could not be found       * @throws gig::Exception if given instrument could not be found
5429       */       */
5430      void File::DeleteInstrument(Instrument* pInstrument) {      void File::DeleteInstrument(Instrument* pInstrument) {
5431          if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");          if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
# Line 2880  namespace { Line 5465  namespace {
5465          }          }
5466      }      }
5467    
5468        /// Updates the 3crc chunk with the checksum of a sample. The
5469        /// update is done directly to disk, as this method is called
5470        /// after File::Save()
5471        void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
5472            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5473            if (!_3crc) return;
5474    
5475            // get the index of the sample
5476            int iWaveIndex = -1;
5477            File::SampleList::iterator iter = pSamples->begin();
5478            File::SampleList::iterator end  = pSamples->end();
5479            for (int index = 0; iter != end; ++iter, ++index) {
5480                if (*iter == pSample) {
5481                    iWaveIndex = index;
5482                    break;
5483                }
5484            }
5485            if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
5486    
5487            // write the CRC-32 checksum to disk
5488            _3crc->SetPos(iWaveIndex * 8);
5489            uint32_t tmp = 1;
5490            _3crc->WriteUint32(&tmp); // unknown, always 1?
5491            _3crc->WriteUint32(&crc);
5492        }
5493    
5494        Group* File::GetFirstGroup() {
5495            if (!pGroups) LoadGroups();
5496            // there must always be at least one group
5497            GroupsIterator = pGroups->begin();
5498            return *GroupsIterator;
5499        }
5500    
5501        Group* File::GetNextGroup() {
5502            if (!pGroups) return NULL;
5503            ++GroupsIterator;
5504            return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
5505        }
5506    
5507        /**
5508         * Returns the group with the given index.
5509         *
5510         * @param index - number of the sought group (0..n)
5511         * @returns sought group or NULL if there's no such group
5512         */
5513        Group* File::GetGroup(uint index) {
5514            if (!pGroups) LoadGroups();
5515            GroupsIterator = pGroups->begin();
5516            for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
5517                if (i == index) return *GroupsIterator;
5518                ++GroupsIterator;
5519            }
5520            return NULL;
5521        }
5522    
5523        /**
5524         * Returns the group with the given group name.
5525         *
5526         * Note: group names don't have to be unique in the gig format! So there
5527         * can be multiple groups with the same name. This method will simply
5528         * return the first group found with the given name.
5529         *
5530         * @param name - name of the sought group
5531         * @returns sought group or NULL if there's no group with that name
5532         */
5533        Group* File::GetGroup(String name) {
5534            if (!pGroups) LoadGroups();
5535            GroupsIterator = pGroups->begin();
5536            for (uint i = 0; GroupsIterator != pGroups->end(); ++GroupsIterator, ++i)
5537                if ((*GroupsIterator)->Name == name) return *GroupsIterator;
5538            return NULL;
5539        }
5540    
5541        Group* File::AddGroup() {
5542            if (!pGroups) LoadGroups();
5543            // there must always be at least one group
5544            __ensureMandatoryChunksExist();
5545            Group* pGroup = new Group(this, NULL);
5546            pGroups->push_back(pGroup);
5547            return pGroup;
5548        }
5549    
5550        /** @brief Delete a group and its samples.
5551         *
5552         * This will delete the given Group object and all the samples that
5553         * belong to this group from the gig file. You have to call Save() to
5554         * make this persistent to the file.
5555         *
5556         * @param pGroup - group to delete
5557         * @throws gig::Exception if given group could not be found
5558         */
5559        void File::DeleteGroup(Group* pGroup) {
5560            if (!pGroups) LoadGroups();
5561            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
5562            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
5563            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
5564            // delete all members of this group
5565            for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
5566                DeleteSample(pSample);
5567            }
5568            // now delete this group object
5569            pGroups->erase(iter);
5570            delete pGroup;
5571        }
5572    
5573        /** @brief Delete a group.
5574         *
5575         * This will delete the given Group object from the gig file. All the
5576         * samples that belong to this group will not be deleted, but instead
5577         * be moved to another group. You have to call Save() to make this
5578         * persistent to the file.
5579         *
5580         * @param pGroup - group to delete
5581         * @throws gig::Exception if given group could not be found
5582         */
5583        void File::DeleteGroupOnly(Group* pGroup) {
5584            if (!pGroups) LoadGroups();
5585            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
5586            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
5587            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
5588            // move all members of this group to another group
5589            pGroup->MoveAll();
5590            pGroups->erase(iter);
5591            delete pGroup;
5592        }
5593    
5594        void File::LoadGroups() {
5595            if (!pGroups) pGroups = new std::list<Group*>;
5596            // try to read defined groups from file
5597            RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
5598            if (lst3gri) {
5599                RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
5600                if (lst3gnl) {
5601                    RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
5602                    while (ck) {
5603                        if (ck->GetChunkID() == CHUNK_ID_3GNM) {
5604                            if (pVersion && pVersion->major == 3 &&
5605                                strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
5606    
5607                            pGroups->push_back(new Group(this, ck));
5608                        }
5609                        ck = lst3gnl->GetNextSubChunk();
5610                    }
5611                }
5612            }
5613            // if there were no group(s), create at least the mandatory default group
5614            if (!pGroups->size()) {
5615                Group* pGroup = new Group(this, NULL);
5616                pGroup->Name = "Default Group";
5617                pGroups->push_back(pGroup);
5618            }
5619        }
5620    
5621        /** @brief Get instrument script group (by index).
5622         *
5623         * Returns the real-time instrument script group with the given index.
5624         *
5625         * @param index - number of the sought group (0..n)
5626         * @returns sought script group or NULL if there's no such group
5627         */
5628        ScriptGroup* File::GetScriptGroup(uint index) {
5629            if (!pScriptGroups) LoadScriptGroups();
5630            std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
5631            for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
5632                if (i == index) return *it;
5633            return NULL;
5634        }
5635    
5636        /** @brief Get instrument script group (by name).
5637         *
5638         * Returns the first real-time instrument script group found with the given
5639         * group name. Note that group names may not necessarily be unique.
5640         *
5641         * @param name - name of the sought script group
5642         * @returns sought script group or NULL if there's no such group
5643         */
5644        ScriptGroup* File::GetScriptGroup(const String& name) {
5645            if (!pScriptGroups) LoadScriptGroups();
5646            std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
5647            for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
5648                if ((*it)->Name == name) return *it;
5649            return NULL;
5650        }
5651    
5652        /** @brief Add new instrument script group.
5653         *
5654         * Adds a new, empty real-time instrument script group to the file.
5655         *
5656         * You have to call Save() to make this persistent to the file.
5657         *
5658         * @return new empty script group
5659         */
5660        ScriptGroup* File::AddScriptGroup() {
5661            if (!pScriptGroups) LoadScriptGroups();
5662            ScriptGroup* pScriptGroup = new ScriptGroup(this, NULL);
5663            pScriptGroups->push_back(pScriptGroup);
5664            return pScriptGroup;
5665        }
5666    
5667        /** @brief Delete an instrument script group.
5668         *
5669         * This will delete the given real-time instrument script group and all its
5670         * instrument scripts it contains. References inside instruments that are
5671         * using the deleted scripts will be removed from the respective instruments
5672         * accordingly.
5673         *
5674         * You have to call Save() to make this persistent to the file.
5675         *
5676         * @param pScriptGroup - script group to delete
5677         * @throws gig::Exception if given script group could not be found
5678         */
5679        void File::DeleteScriptGroup(ScriptGroup* pScriptGroup) {
5680            if (!pScriptGroups) LoadScriptGroups();
5681            std::list<ScriptGroup*>::iterator iter =
5682                find(pScriptGroups->begin(), pScriptGroups->end(), pScriptGroup);
5683            if (iter == pScriptGroups->end())
5684                throw gig::Exception("Could not delete script group, could not find given script group");
5685            pScriptGroups->erase(iter);
5686            for (int i = 0; pScriptGroup->GetScript(i); ++i)
5687                pScriptGroup->DeleteScript(pScriptGroup->GetScript(i));
5688            if (pScriptGroup->pList)
5689                pScriptGroup->pList->GetParent()->DeleteSubChunk(pScriptGroup->pList);
5690            delete pScriptGroup;
5691        }
5692    
5693        void File::LoadScriptGroups() {
5694            if (pScriptGroups) return;
5695            pScriptGroups = new std::list<ScriptGroup*>;
5696            RIFF::List* lstLS = pRIFF->GetSubList(LIST_TYPE_3LS);
5697            if (lstLS) {
5698                for (RIFF::List* lst = lstLS->GetFirstSubList(); lst;
5699                     lst = lstLS->GetNextSubList())
5700                {
5701                    if (lst->GetListType() == LIST_TYPE_RTIS) {
5702                        pScriptGroups->push_back(new ScriptGroup(this, lst));
5703                    }
5704                }
5705            }
5706        }
5707    
5708        /**
5709         * Apply all the gig file's current instruments, samples, groups and settings
5710         * to the respective RIFF chunks. You have to call Save() to make changes
5711         * persistent.
5712         *
5713         * Usually there is absolutely no need to call this method explicitly.
5714         * It will be called automatically when File::Save() was called.
5715         *
5716         * @throws Exception - on errors
5717         */
5718        void File::UpdateChunks() {
5719            bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
5720    
5721            b64BitWavePoolOffsets = pVersion && pVersion->major == 3;
5722    
5723            // update own gig format extension chunks
5724            // (not part of the GigaStudio 4 format)
5725            //
5726            // This must be performed before writing the chunks for instruments,
5727            // because the instruments' script slots will write the file offsets
5728            // of the respective instrument script chunk as reference.
5729            if (pScriptGroups) {
5730                RIFF::List* lst3LS = pRIFF->GetSubList(LIST_TYPE_3LS);
5731                if (pScriptGroups->empty()) {
5732                    if (lst3LS) pRIFF->DeleteSubChunk(lst3LS);
5733                } else {
5734                    if (!lst3LS) lst3LS = pRIFF->AddSubList(LIST_TYPE_3LS);
5735    
5736                    // Update instrument script (group) chunks.
5737    
5738                    for (std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
5739                         it != pScriptGroups->end(); ++it)
5740                    {
5741                        (*it)->UpdateChunks();
5742                    }
5743                }
5744            }
5745    
5746            // first update base class's chunks
5747            DLS::File::UpdateChunks();
5748    
5749            if (newFile) {
5750                // INFO was added by Resource::UpdateChunks - make sure it
5751                // is placed first in file
5752                RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
5753                RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
5754                if (first != info) {
5755                    pRIFF->MoveSubChunk(info, first);
5756                }
5757            }
5758    
5759            // update group's chunks
5760            if (pGroups) {
5761                // make sure '3gri' and '3gnl' list chunks exist
5762                // (before updating the Group chunks)
5763                RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
5764                if (!_3gri) {
5765                    _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
5766                    pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
5767                }
5768                RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
5769                if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
5770    
5771                // v3: make sure the file has 128 3gnm chunks
5772                // (before updating the Group chunks)
5773                if (pVersion && pVersion->major == 3) {
5774                    RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
5775                    for (int i = 0 ; i < 128 ; i++) {
5776                        if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
5777                        if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
5778                    }
5779                }
5780    
5781                std::list<Group*>::iterator iter = pGroups->begin();
5782                std::list<Group*>::iterator end  = pGroups->end();
5783                for (; iter != end; ++iter) {
5784                    (*iter)->UpdateChunks();
5785                }
5786            }
5787    
5788            // update einf chunk
5789    
5790            // The einf chunk contains statistics about the gig file, such
5791            // as the number of regions and samples used by each
5792            // instrument. It is divided in equally sized parts, where the
5793            // first part contains information about the whole gig file,
5794            // and the rest of the parts map to each instrument in the
5795            // file.
5796            //
5797            // At the end of each part there is a bit map of each sample
5798            // in the file, where a set bit means that the sample is used
5799            // by the file/instrument.
5800            //
5801            // Note that there are several fields with unknown use. These
5802            // are set to zero.
5803    
5804            int sublen = pSamples->size() / 8 + 49;
5805            int einfSize = (Instruments + 1) * sublen;
5806    
5807            RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
5808            if (einf) {
5809                if (einf->GetSize() != einfSize) {
5810                    einf->Resize(einfSize);
5811                    memset(einf->LoadChunkData(), 0, einfSize);
5812                }
5813            } else if (newFile) {
5814                einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
5815            }
5816            if (einf) {
5817                uint8_t* pData = (uint8_t*) einf->LoadChunkData();
5818    
5819                std::map<gig::Sample*,int> sampleMap;
5820                int sampleIdx = 0;
5821                for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
5822                    sampleMap[pSample] = sampleIdx++;
5823                }
5824    
5825                int totnbusedsamples = 0;
5826                int totnbusedchannels = 0;
5827                int totnbregions = 0;
5828                int totnbdimregions = 0;
5829                int totnbloops = 0;
5830                int instrumentIdx = 0;
5831    
5832                memset(&pData[48], 0, sublen - 48);
5833    
5834                for (Instrument* instrument = GetFirstInstrument() ; instrument ;
5835                     instrument = GetNextInstrument()) {
5836                    int nbusedsamples = 0;
5837                    int nbusedchannels = 0;
5838                    int nbdimregions = 0;
5839                    int nbloops = 0;
5840    
5841                    memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
5842    
5843                    for (Region* region = instrument->GetFirstRegion() ; region ;
5844                         region = instrument->GetNextRegion()) {
5845                        for (int i = 0 ; i < region->DimensionRegions ; i++) {
5846                            gig::DimensionRegion *d = region->pDimensionRegions[i];
5847                            if (d->pSample) {
5848                                int sampleIdx = sampleMap[d->pSample];
5849                                int byte = 48 + sampleIdx / 8;
5850                                int bit = 1 << (sampleIdx & 7);
5851                                if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
5852                                    pData[(instrumentIdx + 1) * sublen + byte] |= bit;
5853                                    nbusedsamples++;
5854                                    nbusedchannels += d->pSample->Channels;
5855    
5856                                    if ((pData[byte] & bit) == 0) {
5857                                        pData[byte] |= bit;
5858                                        totnbusedsamples++;
5859                                        totnbusedchannels += d->pSample->Channels;
5860                                    }
5861                                }
5862                            }
5863                            if (d->SampleLoops) nbloops++;
5864                        }
5865                        nbdimregions += region->DimensionRegions;
5866                    }
5867                    // first 4 bytes unknown - sometimes 0, sometimes length of einf part
5868                    // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
5869                    store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
5870                    store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
5871                    store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
5872                    store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
5873                    store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
5874                    store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
5875                    // next 8 bytes unknown
5876                    store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
5877                    store32(&pData[(instrumentIdx + 1) * sublen + 40], pSamples->size());
5878                    // next 4 bytes unknown
5879    
5880                    totnbregions += instrument->Regions;
5881                    totnbdimregions += nbdimregions;
5882                    totnbloops += nbloops;
5883                    instrumentIdx++;
5884                }
5885                // first 4 bytes unknown - sometimes 0, sometimes length of einf part
5886                // store32(&pData[0], sublen);
5887                store32(&pData[4], totnbusedchannels);
5888                store32(&pData[8], totnbusedsamples);
5889                store32(&pData[12], Instruments);
5890                store32(&pData[16], totnbregions);
5891                store32(&pData[20], totnbdimregions);
5892                store32(&pData[24], totnbloops);
5893                // next 8 bytes unknown
5894                // next 4 bytes unknown, not always 0
5895                store32(&pData[40], pSamples->size());
5896                // next 4 bytes unknown
5897            }
5898    
5899            // update 3crc chunk
5900    
5901            // The 3crc chunk contains CRC-32 checksums for the
5902            // samples. The actual checksum values will be filled in
5903            // later, by Sample::Write.
5904    
5905            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5906            if (_3crc) {
5907                _3crc->Resize(pSamples->size() * 8);
5908            } else if (newFile) {
5909                _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
5910                _3crc->LoadChunkData();
5911    
5912                // the order of einf and 3crc is not the same in v2 and v3
5913                if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
5914            }
5915        }
5916    
5917        /**
5918         * Enable / disable automatic loading. By default this properyt is
5919         * enabled and all informations are loaded automatically. However
5920         * loading all Regions, DimensionRegions and especially samples might
5921         * take a long time for large .gig files, and sometimes one might only
5922         * be interested in retrieving very superficial informations like the
5923         * amount of instruments and their names. In this case one might disable
5924         * automatic loading to avoid very slow response times.
5925         *
5926         * @e CAUTION: by disabling this property many pointers (i.e. sample
5927         * references) and informations will have invalid or even undefined
5928         * data! This feature is currently only intended for retrieving very
5929         * superficial informations in a very fast way. Don't use it to retrieve
5930         * details like synthesis informations or even to modify .gig files!
5931         */
5932        void File::SetAutoLoad(bool b) {
5933            bAutoLoad = b;
5934        }
5935    
5936        /**
5937         * Returns whether automatic loading is enabled.
5938         * @see SetAutoLoad()
5939         */
5940        bool File::GetAutoLoad() {
5941            return bAutoLoad;
5942        }
5943    
5944    
5945    
5946  // *************** Exception ***************  // *************** Exception ***************

Legend:
Removed from v.834  
changed lines
  Added in v.2601

  ViewVC Help
Powered by ViewVC