/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Diff of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 930 by schoenebeck, Sun Oct 29 17:57:20 2006 UTC revision 3928 by schoenebeck, Tue Jun 15 11:38:38 2021 UTC
# Line 1  Line 1 
1  /***************************************************************************  /***************************************************************************
2   *                                                                         *   *                                                                         *
3   *   libgig - C++ cross-platform Gigasampler format file loader library    *   *   libgig - C++ cross-platform Gigasampler format file access library    *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003-2006 by Christian Schoenebeck                      *   *   Copyright (C) 2003-2021 by Christian Schoenebeck                      *
6   *                              <cuse@users.sourceforge.net>               *   *                              <cuse@users.sourceforge.net>               *
7   *                                                                         *   *                                                                         *
8   *   This library is free software; you can redistribute it and/or modify  *   *   This library is free software; you can redistribute it and/or modify  *
# Line 24  Line 24 
24  #include "gig.h"  #include "gig.h"
25    
26  #include "helper.h"  #include "helper.h"
27    #include "Serialization.h"
28    
29    #include <algorithm>
30  #include <math.h>  #include <math.h>
31  #include <iostream>  #include <iostream>
32    #include <assert.h>
33    
34    /// libgig's current file format version (for extending the original Giga file
35    /// format with libgig's own custom data / custom features).
36    #define GIG_FILE_EXT_VERSION    2
37    
38  /// Initial size of the sample buffer which is used for decompression of  /// Initial size of the sample buffer which is used for decompression of
39  /// compressed sample wave streams - this value should always be bigger than  /// compressed sample wave streams - this value should always be bigger than
# Line 49  Line 56 
56  #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x)    ((x & 0x03) << 3)  #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x)    ((x & 0x03) << 3)
57  #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x)  ((x & 0x03) << 5)  #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x)  ((x & 0x03) << 5)
58    
59  namespace gig {  #define SRLZ(member) \
60        archive->serializeMember(*this, member, #member);
 // *************** progress_t ***************  
 // *  
   
     progress_t::progress_t() {  
         callback    = NULL;  
         custom      = NULL;  
         __range_min = 0.0f;  
         __range_max = 1.0f;  
     }  
   
     // private helper function to convert progress of a subprocess into the global progress  
     static void __notify_progress(progress_t* pProgress, float subprogress) {  
         if (pProgress && pProgress->callback) {  
             const float totalrange    = pProgress->__range_max - pProgress->__range_min;  
             const float totalprogress = pProgress->__range_min + subprogress * totalrange;  
             pProgress->factor         = totalprogress;  
             pProgress->callback(pProgress); // now actually notify about the progress  
         }  
     }  
   
     // private helper function to divide a progress into subprogresses  
     static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {  
         if (pParentProgress && pParentProgress->callback) {  
             const float totalrange    = pParentProgress->__range_max - pParentProgress->__range_min;  
             pSubProgress->callback    = pParentProgress->callback;  
             pSubProgress->custom      = pParentProgress->custom;  
             pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;  
             pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;  
         }  
     }  
61    
62    namespace gig {
63    
64  // *************** Internal functions for sample decompression ***************  // *************** Internal functions for sample decompression ***************
65  // *  // *
# Line 121  namespace { Line 99  namespace {
99      void Decompress16(int compressionmode, const unsigned char* params,      void Decompress16(int compressionmode, const unsigned char* params,
100                        int srcStep, int dstStep,                        int srcStep, int dstStep,
101                        const unsigned char* pSrc, int16_t* pDst,                        const unsigned char* pSrc, int16_t* pDst,
102                        unsigned long currentframeoffset,                        file_offset_t currentframeoffset,
103                        unsigned long copysamples)                        file_offset_t copysamples)
104      {      {
105          switch (compressionmode) {          switch (compressionmode) {
106              case 0: // 16 bit uncompressed              case 0: // 16 bit uncompressed
# Line 158  namespace { Line 136  namespace {
136    
137      void Decompress24(int compressionmode, const unsigned char* params,      void Decompress24(int compressionmode, const unsigned char* params,
138                        int dstStep, const unsigned char* pSrc, uint8_t* pDst,                        int dstStep, const unsigned char* pSrc, uint8_t* pDst,
139                        unsigned long currentframeoffset,                        file_offset_t currentframeoffset,
140                        unsigned long copysamples, int truncatedBits)                        file_offset_t copysamples, int truncatedBits)
141      {      {
142          int y, dy, ddy, dddy;          int y, dy, ddy, dddy;
143    
# Line 254  namespace { Line 232  namespace {
232  }  }
233    
234    
235    
236    // *************** Internal CRC-32 (Cyclic Redundancy Check) functions  ***************
237    // *
238    
239        static uint32_t* __initCRCTable() {
240            static uint32_t res[256];
241    
242            for (int i = 0 ; i < 256 ; i++) {
243                uint32_t c = i;
244                for (int j = 0 ; j < 8 ; j++) {
245                    c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
246                }
247                res[i] = c;
248            }
249            return res;
250        }
251    
252        static const uint32_t* __CRCTable = __initCRCTable();
253    
254        /**
255         * Initialize a CRC variable.
256         *
257         * @param crc - variable to be initialized
258         */
259        inline static void __resetCRC(uint32_t& crc) {
260            crc = 0xffffffff;
261        }
262    
263        /**
264         * Used to calculate checksums of the sample data in a gig file. The
265         * checksums are stored in the 3crc chunk of the gig file and
266         * automatically updated when a sample is written with Sample::Write().
267         *
268         * One should call __resetCRC() to initialize the CRC variable to be
269         * used before calling this function the first time.
270         *
271         * After initializing the CRC variable one can call this function
272         * arbitrary times, i.e. to split the overall CRC calculation into
273         * steps.
274         *
275         * Once the whole data was processed by __calculateCRC(), one should
276         * call __finalizeCRC() to get the final CRC result.
277         *
278         * @param buf     - pointer to data the CRC shall be calculated of
279         * @param bufSize - size of the data to be processed
280         * @param crc     - variable the CRC sum shall be stored to
281         */
282        static void __calculateCRC(unsigned char* buf, size_t bufSize, uint32_t& crc) {
283            for (size_t i = 0 ; i < bufSize ; i++) {
284                crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
285            }
286        }
287    
288        /**
289         * Returns the final CRC result.
290         *
291         * @param crc - variable previously passed to __calculateCRC()
292         */
293        inline static void __finalizeCRC(uint32_t& crc) {
294            crc ^= 0xffffffff;
295        }
296    
297    
298    
299    // *************** Other Internal functions  ***************
300    // *
301    
302        static split_type_t __resolveSplitType(dimension_t dimension) {
303            return (
304                dimension == dimension_layer ||
305                dimension == dimension_samplechannel ||
306                dimension == dimension_releasetrigger ||
307                dimension == dimension_keyboard ||
308                dimension == dimension_roundrobin ||
309                dimension == dimension_random ||
310                dimension == dimension_smartmidi ||
311                dimension == dimension_roundrobinkeyboard
312            ) ? split_type_bit : split_type_normal;
313        }
314    
315        static int __resolveZoneSize(dimension_def_t& dimension_definition) {
316            return (dimension_definition.split_type == split_type_normal)
317            ? int(128.0 / dimension_definition.zones) : 0;
318        }
319    
320    
321    
322    // *************** leverage_ctrl_t ***************
323    // *
324    
325        void leverage_ctrl_t::serialize(Serialization::Archive* archive) {
326            SRLZ(type);
327            SRLZ(controller_number);
328        }
329    
330    
331    
332    // *************** crossfade_t ***************
333    // *
334    
335        void crossfade_t::serialize(Serialization::Archive* archive) {
336            SRLZ(in_start);
337            SRLZ(in_end);
338            SRLZ(out_start);
339            SRLZ(out_end);
340        }
341    
342    
343    
344    // *************** eg_opt_t ***************
345    // *
346    
347        eg_opt_t::eg_opt_t() {
348            AttackCancel     = true;
349            AttackHoldCancel = true;
350            Decay1Cancel     = true;
351            Decay2Cancel     = true;
352            ReleaseCancel    = true;
353        }
354    
355        void eg_opt_t::serialize(Serialization::Archive* archive) {
356            SRLZ(AttackCancel);
357            SRLZ(AttackHoldCancel);
358            SRLZ(Decay1Cancel);
359            SRLZ(Decay2Cancel);
360            SRLZ(ReleaseCancel);
361        }
362    
363    
364    
365  // *************** Sample ***************  // *************** Sample ***************
366  // *  // *
367    
368      unsigned int Sample::Instances = 0;      size_t       Sample::Instances = 0;
369      buffer_t     Sample::InternalDecompressionBuffer;      buffer_t     Sample::InternalDecompressionBuffer;
370    
371      /** @brief Constructor.      /** @brief Constructor.
# Line 277  namespace { Line 385  namespace {
385       *                         ('wvpl') list chunk       *                         ('wvpl') list chunk
386       * @param fileNo         - number of an extension file where this sample       * @param fileNo         - number of an extension file where this sample
387       *                         is located, 0 otherwise       *                         is located, 0 otherwise
388         * @param index          - wave pool index of sample (may be -1 on new sample)
389       */       */
390      Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {      Sample::Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo, int index)
391          pInfo->UseFixedLengthStrings = true;          : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset)
392        {
393            static const DLS::Info::string_length_t fixedStringLengths[] = {
394                { CHUNK_ID_INAM, 64 },
395                { 0, 0 }
396            };
397            pInfo->SetFixedStringLengths(fixedStringLengths);
398          Instances++;          Instances++;
399          FileNo = fileNo;          FileNo = fileNo;
400    
401            __resetCRC(crc);
402            // if this is not a new sample, try to get the sample's already existing
403            // CRC32 checksum from disk, this checksum will reflect the sample's CRC32
404            // checksum of the time when the sample was consciously modified by the
405            // user for the last time (by calling Sample::Write() that is).
406            if (index >= 0) { // not a new file ...
407                try {
408                    uint32_t crc = pFile->GetSampleChecksumByIndex(index);
409                    this->crc = crc;
410                } catch (...) {}
411            }
412    
413          pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);          pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
414          if (pCk3gix) {          if (pCk3gix) {
415                pCk3gix->SetPos(0);
416    
417              uint16_t iSampleGroup = pCk3gix->ReadInt16();              uint16_t iSampleGroup = pCk3gix->ReadInt16();
418              pGroup = pFile->GetGroup(iSampleGroup);              pGroup = pFile->GetGroup(iSampleGroup);
419          } else { // '3gix' chunk missing          } else { // '3gix' chunk missing
# Line 294  namespace { Line 423  namespace {
423    
424          pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);          pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
425          if (pCkSmpl) {          if (pCkSmpl) {
426                pCkSmpl->SetPos(0);
427    
428              Manufacturer  = pCkSmpl->ReadInt32();              Manufacturer  = pCkSmpl->ReadInt32();
429              Product       = pCkSmpl->ReadInt32();              Product       = pCkSmpl->ReadInt32();
430              SamplePeriod  = pCkSmpl->ReadInt32();              SamplePeriod  = pCkSmpl->ReadInt32();
# Line 314  namespace { Line 445  namespace {
445              Manufacturer  = 0;              Manufacturer  = 0;
446              Product       = 0;              Product       = 0;
447              SamplePeriod  = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);              SamplePeriod  = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
448              MIDIUnityNote = 64;              MIDIUnityNote = 60;
449              FineTune      = 0;              FineTune      = 0;
450                SMPTEFormat   = smpte_format_no_offset;
451              SMPTEOffset   = 0;              SMPTEOffset   = 0;
452              Loops         = 0;              Loops         = 0;
453              LoopID        = 0;              LoopID        = 0;
454                LoopType      = loop_type_normal;
455              LoopStart     = 0;              LoopStart     = 0;
456              LoopEnd       = 0;              LoopEnd       = 0;
457              LoopFraction  = 0;              LoopFraction  = 0;
# Line 338  namespace { Line 471  namespace {
471          Dithered          = false;          Dithered          = false;
472          TruncatedBits     = 0;          TruncatedBits     = 0;
473          if (Compressed) {          if (Compressed) {
474                ewav->SetPos(0);
475    
476              uint32_t version = ewav->ReadInt32();              uint32_t version = ewav->ReadInt32();
477              if (version == 3 && BitDepth == 24) {              if (version > 2 && BitDepth == 24) {
478                  Dithered = ewav->ReadInt32();                  Dithered = ewav->ReadInt32();
479                  ewav->SetPos(Channels == 2 ? 84 : 64);                  ewav->SetPos(Channels == 2 ? 84 : 64);
480                  TruncatedBits = ewav->ReadInt32();                  TruncatedBits = ewav->ReadInt32();
# Line 347  namespace { Line 482  namespace {
482              ScanCompressedSample();              ScanCompressedSample();
483          }          }
484    
485          // we use a buffer for decompression and for truncating 24 bit samples to 16 bit          // we use a buffer for decompression only
486          if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {          if (Compressed && !InternalDecompressionBuffer.Size) {
487              InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];              InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
488              InternalDecompressionBuffer.Size   = INITIAL_SAMPLE_BUFFER_SIZE;              InternalDecompressionBuffer.Size   = INITIAL_SAMPLE_BUFFER_SIZE;
489          }          }
# Line 358  namespace { Line 493  namespace {
493      }      }
494    
495      /**      /**
496         * Make a (semi) deep copy of the Sample object given by @a orig (without
497         * the actual waveform data) and assign it to this object.
498         *
499         * Discussion: copying .gig samples is a bit tricky. It requires three
500         * steps:
501         * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
502         *    its new sample waveform data size.
503         * 2. Saving the file (done by File::Save()) so that it gains correct size
504         *    and layout for writing the actual wave form data directly to disc
505         *    in next step.
506         * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
507         *
508         * @param orig - original Sample object to be copied from
509         */
510        void Sample::CopyAssignMeta(const Sample* orig) {
511            // handle base classes
512            DLS::Sample::CopyAssignCore(orig);
513            
514            // handle actual own attributes of this class
515            Manufacturer = orig->Manufacturer;
516            Product = orig->Product;
517            SamplePeriod = orig->SamplePeriod;
518            MIDIUnityNote = orig->MIDIUnityNote;
519            FineTune = orig->FineTune;
520            SMPTEFormat = orig->SMPTEFormat;
521            SMPTEOffset = orig->SMPTEOffset;
522            Loops = orig->Loops;
523            LoopID = orig->LoopID;
524            LoopType = orig->LoopType;
525            LoopStart = orig->LoopStart;
526            LoopEnd = orig->LoopEnd;
527            LoopSize = orig->LoopSize;
528            LoopFraction = orig->LoopFraction;
529            LoopPlayCount = orig->LoopPlayCount;
530            
531            // schedule resizing this sample to the given sample's size
532            Resize(orig->GetSize());
533        }
534    
535        /**
536         * Should be called after CopyAssignMeta() and File::Save() sequence.
537         * Read more about it in the discussion of CopyAssignMeta(). This method
538         * copies the actual waveform data by disk streaming.
539         *
540         * @e CAUTION: this method is currently not thread safe! During this
541         * operation the sample must not be used for other purposes by other
542         * threads!
543         *
544         * @param orig - original Sample object to be copied from
545         */
546        void Sample::CopyAssignWave(const Sample* orig) {
547            const int iReadAtOnce = 32*1024;
548            char* buf = new char[iReadAtOnce * orig->FrameSize];
549            Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
550            file_offset_t restorePos = pOrig->GetPos();
551            pOrig->SetPos(0);
552            SetPos(0);
553            for (file_offset_t n = pOrig->Read(buf, iReadAtOnce); n;
554                               n = pOrig->Read(buf, iReadAtOnce))
555            {
556                Write(buf, n);
557            }
558            pOrig->SetPos(restorePos);
559            delete [] buf;
560        }
561    
562        /**
563       * Apply sample and its settings to the respective RIFF chunks. You have       * Apply sample and its settings to the respective RIFF chunks. You have
564       * to call File::Save() to make changes persistent.       * to call File::Save() to make changes persistent.
565       *       *
566       * Usually there is absolutely no need to call this method explicitly.       * Usually there is absolutely no need to call this method explicitly.
567       * It will be called automatically when File::Save() was called.       * It will be called automatically when File::Save() was called.
568       *       *
569       * @throws DLS::Exception if FormatTag != WAVE_FORMAT_PCM or no sample data       * @param pProgress - callback function for progress notification
570         * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
571       *                        was provided yet       *                        was provided yet
572       * @throws gig::Exception if there is any invalid sample setting       * @throws gig::Exception if there is any invalid sample setting
573       */       */
574      void Sample::UpdateChunks() {      void Sample::UpdateChunks(progress_t* pProgress) {
575          // first update base class's chunks          // first update base class's chunks
576          DLS::Sample::UpdateChunks();          DLS::Sample::UpdateChunks(pProgress);
577    
578          // make sure 'smpl' chunk exists          // make sure 'smpl' chunk exists
579          pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);          pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
580          if (!pCkSmpl) pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);          if (!pCkSmpl) {
581                pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
582                memset(pCkSmpl->LoadChunkData(), 0, 60);
583            }
584          // update 'smpl' chunk          // update 'smpl' chunk
585          uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();          uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
586          SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);          SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
587          memcpy(&pData[0], &Manufacturer, 4);          store32(&pData[0], Manufacturer);
588          memcpy(&pData[4], &Product, 4);          store32(&pData[4], Product);
589          memcpy(&pData[8], &SamplePeriod, 4);          store32(&pData[8], SamplePeriod);
590          memcpy(&pData[12], &MIDIUnityNote, 4);          store32(&pData[12], MIDIUnityNote);
591          memcpy(&pData[16], &FineTune, 4);          store32(&pData[16], FineTune);
592          memcpy(&pData[20], &SMPTEFormat, 4);          store32(&pData[20], SMPTEFormat);
593          memcpy(&pData[24], &SMPTEOffset, 4);          store32(&pData[24], SMPTEOffset);
594          memcpy(&pData[28], &Loops, 4);          store32(&pData[28], Loops);
595    
596          // we skip 'manufByt' for now (4 bytes)          // we skip 'manufByt' for now (4 bytes)
597    
598          memcpy(&pData[36], &LoopID, 4);          store32(&pData[36], LoopID);
599          memcpy(&pData[40], &LoopType, 4);          store32(&pData[40], LoopType);
600          memcpy(&pData[44], &LoopStart, 4);          store32(&pData[44], LoopStart);
601          memcpy(&pData[48], &LoopEnd, 4);          store32(&pData[48], LoopEnd);
602          memcpy(&pData[52], &LoopFraction, 4);          store32(&pData[52], LoopFraction);
603          memcpy(&pData[56], &LoopPlayCount, 4);          store32(&pData[56], LoopPlayCount);
604    
605          // make sure '3gix' chunk exists          // make sure '3gix' chunk exists
606          pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);          pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
# Line 414  namespace { Line 620  namespace {
620          }          }
621          // update '3gix' chunk          // update '3gix' chunk
622          pData = (uint8_t*) pCk3gix->LoadChunkData();          pData = (uint8_t*) pCk3gix->LoadChunkData();
623          memcpy(&pData[0], &iSampleGroup, 2);          store16(&pData[0], iSampleGroup);
624    
625            // if the library user toggled the "Compressed" attribute from true to
626            // false, then the EWAV chunk associated with compressed samples needs
627            // to be deleted
628            RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
629            if (ewav && !Compressed) {
630                pWaveList->DeleteSubChunk(ewav);
631            }
632      }      }
633    
634      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
635      void Sample::ScanCompressedSample() {      void Sample::ScanCompressedSample() {
636          //TODO: we have to add some more scans here (e.g. determine compression rate)          //TODO: we have to add some more scans here (e.g. determine compression rate)
637          this->SamplesTotal = 0;          this->SamplesTotal = 0;
638          std::list<unsigned long> frameOffsets;          std::list<file_offset_t> frameOffsets;
639    
640          SamplesPerFrame = BitDepth == 24 ? 256 : 2048;          SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
641          WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag          WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
# Line 437  namespace { Line 651  namespace {
651                  const int mode_l = pCkData->ReadUint8();                  const int mode_l = pCkData->ReadUint8();
652                  const int mode_r = pCkData->ReadUint8();                  const int mode_r = pCkData->ReadUint8();
653                  if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");                  if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
654                  const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];                  const file_offset_t frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
655    
656                  if (pCkData->RemainingBytes() <= frameSize) {                  if (pCkData->RemainingBytes() <= frameSize) {
657                      SamplesInLastFrame =                      SamplesInLastFrame =
# Line 456  namespace { Line 670  namespace {
670    
671                  const int mode = pCkData->ReadUint8();                  const int mode = pCkData->ReadUint8();
672                  if (mode > 5) throw gig::Exception("Unknown compression mode");                  if (mode > 5) throw gig::Exception("Unknown compression mode");
673                  const unsigned long frameSize = bytesPerFrame[mode];                  const file_offset_t frameSize = bytesPerFrame[mode];
674    
675                  if (pCkData->RemainingBytes() <= frameSize) {                  if (pCkData->RemainingBytes() <= frameSize) {
676                      SamplesInLastFrame =                      SamplesInLastFrame =
# Line 472  namespace { Line 686  namespace {
686    
687          // Build the frames table (which is used for fast resolving of a frame's chunk offset)          // Build the frames table (which is used for fast resolving of a frame's chunk offset)
688          if (FrameTable) delete[] FrameTable;          if (FrameTable) delete[] FrameTable;
689          FrameTable = new unsigned long[frameOffsets.size()];          FrameTable = new file_offset_t[frameOffsets.size()];
690          std::list<unsigned long>::iterator end  = frameOffsets.end();          std::list<file_offset_t>::iterator end  = frameOffsets.end();
691          std::list<unsigned long>::iterator iter = frameOffsets.begin();          std::list<file_offset_t>::iterator iter = frameOffsets.begin();
692          for (int i = 0; iter != end; i++, iter++) {          for (int i = 0; iter != end; i++, iter++) {
693              FrameTable[i] = *iter;              FrameTable[i] = *iter;
694          }          }
# Line 515  namespace { Line 729  namespace {
729       *                      the cached sample data in bytes       *                      the cached sample data in bytes
730       * @see                 ReleaseSampleData(), Read(), SetPos()       * @see                 ReleaseSampleData(), Read(), SetPos()
731       */       */
732      buffer_t Sample::LoadSampleData(unsigned long SampleCount) {      buffer_t Sample::LoadSampleData(file_offset_t SampleCount) {
733          return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples          return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
734      }      }
735    
# Line 574  namespace { Line 788  namespace {
788       *                           size of the cached sample data in bytes       *                           size of the cached sample data in bytes
789       * @see                      ReleaseSampleData(), Read(), SetPos()       * @see                      ReleaseSampleData(), Read(), SetPos()
790       */       */
791      buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {      buffer_t Sample::LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount) {
792          if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;          if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
793          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
794          unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;          file_offset_t allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
795            SetPos(0); // reset read position to begin of sample
796          RAMCache.pStart            = new int8_t[allocationsize];          RAMCache.pStart            = new int8_t[allocationsize];
797          RAMCache.Size              = Read(RAMCache.pStart, SampleCount) * this->FrameSize;          RAMCache.Size              = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
798          RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;          RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
# Line 615  namespace { Line 830  namespace {
830          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
831          RAMCache.pStart = NULL;          RAMCache.pStart = NULL;
832          RAMCache.Size   = 0;          RAMCache.Size   = 0;
833            RAMCache.NullExtensionSize = 0;
834      }      }
835    
836      /** @brief Resize sample.      /** @brief Resize sample.
# Line 635  namespace { Line 851  namespace {
851       * enlarged samples before calling File::Save() as this might exceed the       * enlarged samples before calling File::Save() as this might exceed the
852       * current sample's boundary!       * current sample's boundary!
853       *       *
854       * Also note: only WAVE_FORMAT_PCM is currently supported, that is       * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
855       * FormatTag must be WAVE_FORMAT_PCM. Trying to resize samples with       * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
856       * other formats will fail!       * other formats will fail!
857       *       *
858       * @param iNewSize - new sample wave data size in sample points (must be       * @param NewSize - new sample wave data size in sample points (must be
859       *                   greater than zero)       *                  greater than zero)
860       * @throws DLS::Excecption if FormatTag != WAVE_FORMAT_PCM       * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
861       *                         or if \a iNewSize is less than 1       * @throws DLS::Exception if \a NewSize is less than 1 or unrealistic large
862       * @throws gig::Exception if existing sample is compressed       * @throws gig::Exception if existing sample is compressed
863       * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,       * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
864       *      DLS::Sample::FormatTag, File::Save()       *      DLS::Sample::FormatTag, File::Save()
865       */       */
866      void Sample::Resize(int iNewSize) {      void Sample::Resize(file_offset_t NewSize) {
867          if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");          if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
868          DLS::Sample::Resize(iNewSize);          DLS::Sample::Resize(NewSize);
869      }      }
870    
871      /**      /**
# Line 673  namespace { Line 889  namespace {
889       * @returns            the new sample position       * @returns            the new sample position
890       * @see                Read()       * @see                Read()
891       */       */
892      unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {      file_offset_t Sample::SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence) {
893          if (Compressed) {          if (Compressed) {
894              switch (Whence) {              switch (Whence) {
895                  case RIFF::stream_curpos:                  case RIFF::stream_curpos:
# Line 691  namespace { Line 907  namespace {
907              }              }
908              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
909    
910              unsigned long frame = this->SamplePos / 2048; // to which frame to jump              file_offset_t frame = this->SamplePos / 2048; // to which frame to jump
911              this->FrameOffset   = this->SamplePos % 2048; // offset (in sample points) within that frame              this->FrameOffset   = this->SamplePos % 2048; // offset (in sample points) within that frame
912              pCkData->SetPos(FrameTable[frame]);           // set chunk pointer to the start of sought frame              pCkData->SetPos(FrameTable[frame]);           // set chunk pointer to the start of sought frame
913              return this->SamplePos;              return this->SamplePos;
914          }          }
915          else { // not compressed          else { // not compressed
916              unsigned long orderedBytes = SampleCount * this->FrameSize;              file_offset_t orderedBytes = SampleCount * this->FrameSize;
917              unsigned long result = pCkData->SetPos(orderedBytes, Whence);              file_offset_t result = pCkData->SetPos(orderedBytes, Whence);
918              return (result == orderedBytes) ? SampleCount              return (result == orderedBytes) ? SampleCount
919                                              : result / this->FrameSize;                                              : result / this->FrameSize;
920          }          }
# Line 707  namespace { Line 923  namespace {
923      /**      /**
924       * Returns the current position in the sample (in sample points).       * Returns the current position in the sample (in sample points).
925       */       */
926      unsigned long Sample::GetPos() {      file_offset_t Sample::GetPos() const {
927          if (Compressed) return SamplePos;          if (Compressed) return SamplePos;
928          else            return pCkData->GetPos() / FrameSize;          else            return pCkData->GetPos() / FrameSize;
929      }      }
# Line 746  namespace { Line 962  namespace {
962       * @returns                number of successfully read sample points       * @returns                number of successfully read sample points
963       * @see                    CreateDecompressionBuffer()       * @see                    CreateDecompressionBuffer()
964       */       */
965      unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,      file_offset_t Sample::ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState,
966                                        DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {                                        DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
967          unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;          file_offset_t samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
968          uint8_t* pDst = (uint8_t*) pBuffer;          uint8_t* pDst = (uint8_t*) pBuffer;
969    
970          SetPos(pPlaybackState->position); // recover position from the last time          SetPos(pPlaybackState->position); // recover position from the last time
# Line 786  namespace { Line 1002  namespace {
1002                                  // reading, swap all sample frames so it reflects                                  // reading, swap all sample frames so it reflects
1003                                  // backward playback                                  // backward playback
1004    
1005                                  unsigned long swapareastart       = totalreadsamples;                                  file_offset_t swapareastart       = totalreadsamples;
1006                                  unsigned long loopoffset          = GetPos() - loop.LoopStart;                                  file_offset_t loopoffset          = GetPos() - loop.LoopStart;
1007                                  unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);                                  file_offset_t samplestoreadinloop = Min(samplestoread, loopoffset);
1008                                  unsigned long reverseplaybackend  = GetPos() - samplestoreadinloop;                                  file_offset_t reverseplaybackend  = GetPos() - samplestoreadinloop;
1009    
1010                                  SetPos(reverseplaybackend);                                  SetPos(reverseplaybackend);
1011    
# Line 809  namespace { Line 1025  namespace {
1025                                  }                                  }
1026    
1027                                  // reverse the sample frames for backward playback                                  // reverse the sample frames for backward playback
1028                                  SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);                                  if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
1029                                        SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1030                              }                              }
1031                          } while (samplestoread && readsamples);                          } while (samplestoread && readsamples);
1032                          break;                          break;
# Line 836  namespace { Line 1053  namespace {
1053                          // reading, swap all sample frames so it reflects                          // reading, swap all sample frames so it reflects
1054                          // backward playback                          // backward playback
1055    
1056                          unsigned long swapareastart       = totalreadsamples;                          file_offset_t swapareastart       = totalreadsamples;
1057                          unsigned long loopoffset          = GetPos() - loop.LoopStart;                          file_offset_t loopoffset          = GetPos() - loop.LoopStart;
1058                          unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)                          file_offset_t samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1059                                                                                    : samplestoread;                                                                                    : samplestoread;
1060                          unsigned long reverseplaybackend  = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);                          file_offset_t reverseplaybackend  = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1061    
1062                          SetPos(reverseplaybackend);                          SetPos(reverseplaybackend);
1063    
# Line 920  namespace { Line 1137  namespace {
1137       * @returns            number of successfully read sample points       * @returns            number of successfully read sample points
1138       * @see                SetPos(), CreateDecompressionBuffer()       * @see                SetPos(), CreateDecompressionBuffer()
1139       */       */
1140      unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {      file_offset_t Sample::Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer) {
1141          if (SampleCount == 0) return 0;          if (SampleCount == 0) return 0;
1142          if (!Compressed) {          if (!Compressed) {
1143              if (BitDepth == 24) {              if (BitDepth == 24) {
# Line 935  namespace { Line 1152  namespace {
1152          else {          else {
1153              if (this->SamplePos >= this->SamplesTotal) return 0;              if (this->SamplePos >= this->SamplesTotal) return 0;
1154              //TODO: efficiency: maybe we should test for an average compression rate              //TODO: efficiency: maybe we should test for an average compression rate
1155              unsigned long assumedsize      = GuessSize(SampleCount),              file_offset_t assumedsize      = GuessSize(SampleCount),
1156                            remainingbytes   = 0,           // remaining bytes in the local buffer                            remainingbytes   = 0,           // remaining bytes in the local buffer
1157                            remainingsamples = SampleCount,                            remainingsamples = SampleCount,
1158                            copysamples, skipsamples,                            copysamples, skipsamples,
# Line 958  namespace { Line 1175  namespace {
1175              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1176    
1177              while (remainingsamples && remainingbytes) {              while (remainingsamples && remainingbytes) {
1178                  unsigned long framesamples = SamplesPerFrame;                  file_offset_t framesamples = SamplesPerFrame;
1179                  unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;                  file_offset_t framebytes, rightChannelOffset = 0, nextFrameOffset;
1180    
1181                  int mode_l = *pSrc++, mode_r = 0;                  int mode_l = *pSrc++, mode_r = 0;
1182    
# Line 1099  namespace { Line 1316  namespace {
1316       *       *
1317       * Note: there is currently no support for writing compressed samples.       * Note: there is currently no support for writing compressed samples.
1318       *       *
1319         * For 16 bit samples, the data in the source buffer should be
1320         * int16_t (using native endianness). For 24 bit, the buffer
1321         * should contain three bytes per sample, little-endian.
1322         *
1323       * @param pBuffer     - source buffer       * @param pBuffer     - source buffer
1324       * @param SampleCount - number of sample points to write       * @param SampleCount - number of sample points to write
1325       * @throws DLS::Exception if current sample size is too small       * @throws DLS::Exception if current sample size is too small
1326       * @throws gig::Exception if sample is compressed       * @throws gig::Exception if sample is compressed
1327       * @see DLS::LoadSampleData()       * @see DLS::LoadSampleData()
1328       */       */
1329      unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {      file_offset_t Sample::Write(void* pBuffer, file_offset_t SampleCount) {
1330          if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");          if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1331          return DLS::Sample::Write(pBuffer, SampleCount);  
1332            // if this is the first write in this sample, reset the
1333            // checksum calculator
1334            if (pCkData->GetPos() == 0) {
1335                __resetCRC(crc);
1336            }
1337            if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1338            file_offset_t res;
1339            if (BitDepth == 24) {
1340                res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1341            } else { // 16 bit
1342                res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1343                                    : pCkData->Write(pBuffer, SampleCount, 2);
1344            }
1345            __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1346    
1347            // if this is the last write, update the checksum chunk in the
1348            // file
1349            if (pCkData->GetPos() == pCkData->GetSize()) {
1350                __finalizeCRC(crc);
1351                File* pFile = static_cast<File*>(GetParent());
1352                pFile->SetSampleChecksum(this, crc);
1353            }
1354            return res;
1355      }      }
1356    
1357      /**      /**
# Line 1126  namespace { Line 1370  namespace {
1370       * @returns allocated decompression buffer       * @returns allocated decompression buffer
1371       * @see DestroyDecompressionBuffer()       * @see DestroyDecompressionBuffer()
1372       */       */
1373      buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {      buffer_t Sample::CreateDecompressionBuffer(file_offset_t MaxReadSize) {
1374          buffer_t result;          buffer_t result;
1375          const double worstCaseHeaderOverhead =          const double worstCaseHeaderOverhead =
1376                  (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;                  (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1377          result.Size              = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);          result.Size              = (file_offset_t) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1378          result.pStart            = new int8_t[result.Size];          result.pStart            = new int8_t[result.Size];
1379          result.NullExtensionSize = 0;          result.NullExtensionSize = 0;
1380          return result;          return result;
# Line 1164  namespace { Line 1408  namespace {
1408          return pGroup;          return pGroup;
1409      }      }
1410    
1411        /**
1412         * Returns the CRC-32 checksum of the sample's raw wave form data at the
1413         * time when this sample's wave form data was modified for the last time
1414         * by calling Write(). This checksum only covers the raw wave form data,
1415         * not any meta informations like i.e. bit depth or loop points. Since
1416         * this method just returns the checksum stored for this sample i.e. when
1417         * the gig file was loaded, this method returns immediately. So it does no
1418         * recalcuation of the checksum with the currently available sample wave
1419         * form data.
1420         *
1421         * @see VerifyWaveData()
1422         */
1423        uint32_t Sample::GetWaveDataCRC32Checksum() {
1424            return crc;
1425        }
1426    
1427        /**
1428         * Checks the integrity of this sample's raw audio wave data. Whenever a
1429         * Sample's raw wave data is intentionally modified (i.e. by calling
1430         * Write() and supplying the new raw audio wave form data) a CRC32 checksum
1431         * is calculated and stored/updated for this sample, along to the sample's
1432         * meta informations.
1433         *
1434         * Now by calling this method the current raw audio wave data is checked
1435         * against the already stored CRC32 check sum in order to check whether the
1436         * sample data had been damaged unintentionally for some reason. Since by
1437         * calling this method always the entire raw audio wave data has to be
1438         * read, verifying all samples this way may take a long time accordingly.
1439         * And that's also the reason why the sample integrity is not checked by
1440         * default whenever a gig file is loaded. So this method must be called
1441         * explicitly to fulfill this task.
1442         *
1443         * @param pActually - (optional) if provided, will be set to the actually
1444         *                    calculated checksum of the current raw wave form data,
1445         *                    you can get the expected checksum instead by calling
1446         *                    GetWaveDataCRC32Checksum()
1447         * @returns true if sample is OK or false if the sample is damaged
1448         * @throws Exception if no checksum had been stored to disk for this
1449         *         sample yet, or on I/O issues
1450         * @see GetWaveDataCRC32Checksum()
1451         */
1452        bool Sample::VerifyWaveData(uint32_t* pActually) {
1453            //File* pFile = static_cast<File*>(GetParent());
1454            uint32_t crc = CalculateWaveDataChecksum();
1455            if (pActually) *pActually = crc;
1456            return crc == this->crc;
1457        }
1458    
1459        uint32_t Sample::CalculateWaveDataChecksum() {
1460            const size_t sz = 20*1024; // 20kB buffer size
1461            std::vector<uint8_t> buffer(sz);
1462            buffer.resize(sz);
1463    
1464            const size_t n = sz / FrameSize;
1465            SetPos(0);
1466            uint32_t crc = 0;
1467            __resetCRC(crc);
1468            while (true) {
1469                file_offset_t nRead = Read(&buffer[0], n);
1470                if (nRead <= 0) break;
1471                __calculateCRC(&buffer[0], nRead * FrameSize, crc);
1472            }
1473            __finalizeCRC(crc);
1474            return crc;
1475        }
1476    
1477      Sample::~Sample() {      Sample::~Sample() {
1478          Instances--;          Instances--;
1479          if (!Instances && InternalDecompressionBuffer.Size) {          if (!Instances && InternalDecompressionBuffer.Size) {
# Line 1180  namespace { Line 1490  namespace {
1490  // *************** DimensionRegion ***************  // *************** DimensionRegion ***************
1491  // *  // *
1492    
1493      uint                               DimensionRegion::Instances       = 0;      size_t                             DimensionRegion::Instances       = 0;
1494      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1495    
1496      DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {      DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1497          Instances++;          Instances++;
1498    
1499          pSample = NULL;          pSample = NULL;
1500            pRegion = pParent;
1501    
1502            if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1503            else memset(&Crossfade, 0, 4);
1504    
         memcpy(&Crossfade, &SamplerOptions, 4);  
1505          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1506    
1507          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1508          if (_3ewa) { // if '3ewa' chunk exists          if (_3ewa) { // if '3ewa' chunk exists
1509                _3ewa->SetPos(0);
1510    
1511              _3ewa->ReadInt32(); // unknown, always == chunk size ?              _3ewa->ReadInt32(); // unknown, always == chunk size ?
1512              LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1513              EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
# Line 1302  namespace { Line 1617  namespace {
1617                                                          : vcf_res_ctrl_none;                                                          : vcf_res_ctrl_none;
1618              uint16_t eg3depth = _3ewa->ReadUint16();              uint16_t eg3depth = _3ewa->ReadUint16();
1619              EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */              EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1620                                          : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */                                          : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1621              _3ewa->ReadInt16(); // unknown              _3ewa->ReadInt16(); // unknown
1622              ChannelOffset = _3ewa->ReadUint8() / 4;              ChannelOffset = _3ewa->ReadUint8() / 4;
1623              uint8_t regoptions = _3ewa->ReadUint8();              uint8_t regoptions = _3ewa->ReadUint8();
# Line 1338  namespace { Line 1653  namespace {
1653                  if (lfo3ctrl & 0x40) // bit 6                  if (lfo3ctrl & 0x40) // bit 6
1654                      VCFType = vcf_type_lowpassturbo;                      VCFType = vcf_type_lowpassturbo;
1655              }              }
1656                if (_3ewa->RemainingBytes() >= 8) {
1657                    _3ewa->Read(DimensionUpperLimits, 1, 8);
1658                } else {
1659                    memset(DimensionUpperLimits, 0, 8);
1660                }
1661          } else { // '3ewa' chunk does not exist yet          } else { // '3ewa' chunk does not exist yet
1662              // use default values              // use default values
1663              LFO3Frequency                   = 1.0;              LFO3Frequency                   = 1.0;
# Line 1347  namespace { Line 1667  namespace {
1667              LFO1ControlDepth                = 0;              LFO1ControlDepth                = 0;
1668              LFO3ControlDepth                = 0;              LFO3ControlDepth                = 0;
1669              EG1Attack                       = 0.0;              EG1Attack                       = 0.0;
1670              EG1Decay1                       = 0.0;              EG1Decay1                       = 0.005;
1671              EG1Sustain                      = 0;              EG1Sustain                      = 1000;
1672              EG1Release                      = 0.0;              EG1Release                      = 0.3;
1673              EG1Controller.type              = eg1_ctrl_t::type_none;              EG1Controller.type              = eg1_ctrl_t::type_none;
1674              EG1Controller.controller_number = 0;              EG1Controller.controller_number = 0;
1675              EG1ControllerInvert             = false;              EG1ControllerInvert             = false;
# Line 1364  namespace { Line 1684  namespace {
1684              EG2ControllerReleaseInfluence   = 0;              EG2ControllerReleaseInfluence   = 0;
1685              LFO1Frequency                   = 1.0;              LFO1Frequency                   = 1.0;
1686              EG2Attack                       = 0.0;              EG2Attack                       = 0.0;
1687              EG2Decay1                       = 0.0;              EG2Decay1                       = 0.005;
1688              EG2Sustain                      = 0;              EG2Sustain                      = 1000;
1689              EG2Release                      = 0.0;              EG2Release                      = 60;
1690              LFO2ControlDepth                = 0;              LFO2ControlDepth                = 0;
1691              LFO2Frequency                   = 1.0;              LFO2Frequency                   = 1.0;
1692              LFO2InternalDepth               = 0;              LFO2InternalDepth               = 0;
1693              EG1Decay2                       = 0.0;              EG1Decay2                       = 0.0;
1694              EG1InfiniteSustain              = false;              EG1InfiniteSustain              = true;
1695              EG1PreAttack                    = 1000;              EG1PreAttack                    = 0;
1696              EG2Decay2                       = 0.0;              EG2Decay2                       = 0.0;
1697              EG2InfiniteSustain              = false;              EG2InfiniteSustain              = true;
1698              EG2PreAttack                    = 1000;              EG2PreAttack                    = 0;
1699              VelocityResponseCurve           = curve_type_nonlinear;              VelocityResponseCurve           = curve_type_nonlinear;
1700              VelocityResponseDepth           = 3;              VelocityResponseDepth           = 3;
1701              ReleaseVelocityResponseCurve    = curve_type_nonlinear;              ReleaseVelocityResponseCurve    = curve_type_nonlinear;
# Line 1418  namespace { Line 1738  namespace {
1738              VCFVelocityDynamicRange         = 0x04;              VCFVelocityDynamicRange         = 0x04;
1739              VCFVelocityCurve                = curve_type_linear;              VCFVelocityCurve                = curve_type_linear;
1740              VCFType                         = vcf_type_lowpass;              VCFType                         = vcf_type_lowpass;
1741                memset(DimensionUpperLimits, 127, 8);
1742            }
1743    
1744            // chunk for own format extensions, these will *NOT* work with Gigasampler/GigaStudio !
1745            RIFF::Chunk* lsde = _3ewl->GetSubChunk(CHUNK_ID_LSDE);
1746            if (lsde) { // format extension for EG behavior options
1747                lsde->SetPos(0);
1748    
1749                eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
1750                for (int i = 0; i < 2; ++i) { // NOTE: we reserved a 3rd byte for a potential future EG3 option
1751                    unsigned char byte = lsde->ReadUint8();
1752                    pEGOpts[i]->AttackCancel     = byte & 1;
1753                    pEGOpts[i]->AttackHoldCancel = byte & (1 << 1);
1754                    pEGOpts[i]->Decay1Cancel     = byte & (1 << 2);
1755                    pEGOpts[i]->Decay2Cancel     = byte & (1 << 3);
1756                    pEGOpts[i]->ReleaseCancel    = byte & (1 << 4);
1757                }
1758            }
1759            // format extension for sustain pedal up effect on release trigger samples
1760            if (lsde && lsde->GetSize() > 3) { // NOTE: we reserved the 3rd byte for a potential future EG3 option
1761                lsde->SetPos(3);
1762                uint8_t byte = lsde->ReadUint8();
1763                SustainReleaseTrigger   = static_cast<sust_rel_trg_t>(byte & 0x03);
1764                NoNoteOffReleaseTrigger = byte >> 7;
1765            } else {
1766                SustainReleaseTrigger   = sust_rel_trg_none;
1767                NoNoteOffReleaseTrigger = false;
1768            }
1769            // format extension for LFOs' wave form, phase displacement and for
1770            // LFO3's flip phase
1771            if (lsde && lsde->GetSize() > 4) {
1772                lsde->SetPos(4);
1773                LFO1WaveForm = static_cast<lfo_wave_t>( lsde->ReadUint16() );
1774                LFO2WaveForm = static_cast<lfo_wave_t>( lsde->ReadUint16() );
1775                LFO3WaveForm = static_cast<lfo_wave_t>( lsde->ReadUint16() );
1776                lsde->ReadUint16(); // unused 16 bits, reserved for potential future use
1777                LFO1Phase = (double) GIG_EXP_DECODE( lsde->ReadInt32() );
1778                LFO2Phase = (double) GIG_EXP_DECODE( lsde->ReadInt32() );
1779                LFO3Phase = (double) GIG_EXP_DECODE( lsde->ReadInt32() );
1780                const uint32_t flags = lsde->ReadInt32();
1781                LFO3FlipPhase = flags & 1;
1782            } else {
1783                LFO1WaveForm = lfo_wave_sine;
1784                LFO2WaveForm = lfo_wave_sine;
1785                LFO3WaveForm = lfo_wave_sine;
1786                LFO1Phase = 0.0;
1787                LFO2Phase = 0.0;
1788                LFO3Phase = 0.0;
1789                LFO3FlipPhase = false;
1790          }          }
1791    
1792          pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,          pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1793                                                       VelocityResponseDepth,                                                       VelocityResponseDepth,
1794                                                       VelocityResponseCurveScaling);                                                       VelocityResponseCurveScaling);
1795    
1796          curve_type_t curveType = ReleaseVelocityResponseCurve;          pVelocityReleaseTable = GetReleaseVelocityTable(
1797          uint8_t depth = ReleaseVelocityResponseDepth;                                      ReleaseVelocityResponseCurve,
1798                                        ReleaseVelocityResponseDepth
1799                                    );
1800    
1801            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1802                                                          VCFVelocityDynamicRange,
1803                                                          VCFVelocityScale,
1804                                                          VCFCutoffController);
1805    
1806          // this models a strange behaviour or bug in GSt: two of the          SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1807          // velocity response curves for release time are not used even          VelocityTable = 0;
1808          // if specified, instead another curve is chosen.      }
         if ((curveType == curve_type_nonlinear && depth == 0) ||  
             (curveType == curve_type_special   && depth == 4)) {  
             curveType = curve_type_nonlinear;  
             depth = 3;  
         }  
         pVelocityReleaseTable = GetVelocityTable(curveType, depth, 0);  
   
         curveType = VCFVelocityCurve;  
         depth = VCFVelocityDynamicRange;  
1809    
1810          // even stranger GSt: two of the velocity response curves for      /*
1811          // filter cutoff are not used, instead another special curve       * Constructs a DimensionRegion by copying all parameters from
1812          // is chosen. This curve is not used anywhere else.       * another DimensionRegion
1813          if ((curveType == curve_type_nonlinear && depth == 0) ||       */
1814              (curveType == curve_type_special   && depth == 4)) {      DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1815              curveType = curve_type_special;          Instances++;
1816              depth = 5;          //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1817            *this = src; // default memberwise shallow copy of all parameters
1818            pParentList = _3ewl; // restore the chunk pointer
1819    
1820            // deep copy of owned structures
1821            if (src.VelocityTable) {
1822                VelocityTable = new uint8_t[128];
1823                for (int k = 0 ; k < 128 ; k++)
1824                    VelocityTable[k] = src.VelocityTable[k];
1825            }
1826            if (src.pSampleLoops) {
1827                pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1828                for (int k = 0 ; k < src.SampleLoops ; k++)
1829                    pSampleLoops[k] = src.pSampleLoops[k];
1830          }          }
1831          pVelocityCutoffTable = GetVelocityTable(curveType, depth,      }
1832                                                  VCFCutoffController <= vcf_cutoff_ctrl_none2 ? VCFVelocityScale : 0);      
1833        /**
1834         * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1835         * and assign it to this object.
1836         *
1837         * Note that all sample pointers referenced by @a orig are simply copied as
1838         * memory address. Thus the respective samples are shared, not duplicated!
1839         *
1840         * @param orig - original DimensionRegion object to be copied from
1841         */
1842        void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1843            CopyAssign(orig, NULL);
1844        }
1845    
1846        /**
1847         * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1848         * and assign it to this object.
1849         *
1850         * @param orig - original DimensionRegion object to be copied from
1851         * @param mSamples - crosslink map between the foreign file's samples and
1852         *                   this file's samples
1853         */
1854        void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1855            // delete all allocated data first
1856            if (VelocityTable) delete [] VelocityTable;
1857            if (pSampleLoops) delete [] pSampleLoops;
1858            
1859            // backup parent list pointer
1860            RIFF::List* p = pParentList;
1861            
1862            gig::Sample* pOriginalSample = pSample;
1863            gig::Region* pOriginalRegion = pRegion;
1864            
1865            //NOTE: copy code copied from assignment constructor above, see comment there as well
1866            
1867            *this = *orig; // default memberwise shallow copy of all parameters
1868            
1869            // restore members that shall not be altered
1870            pParentList = p; // restore the chunk pointer
1871            pRegion = pOriginalRegion;
1872            
1873            // only take the raw sample reference reference if the
1874            // two DimensionRegion objects are part of the same file
1875            if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1876                pSample = pOriginalSample;
1877            }
1878            
1879            if (mSamples && mSamples->count(orig->pSample)) {
1880                pSample = mSamples->find(orig->pSample)->second;
1881            }
1882    
1883            // deep copy of owned structures
1884            if (orig->VelocityTable) {
1885                VelocityTable = new uint8_t[128];
1886                for (int k = 0 ; k < 128 ; k++)
1887                    VelocityTable[k] = orig->VelocityTable[k];
1888            }
1889            if (orig->pSampleLoops) {
1890                pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1891                for (int k = 0 ; k < orig->SampleLoops ; k++)
1892                    pSampleLoops[k] = orig->pSampleLoops[k];
1893            }
1894        }
1895    
1896        void DimensionRegion::serialize(Serialization::Archive* archive) {
1897            // in case this class will become backward incompatible one day,
1898            // then set a version and minimum version for this class like:
1899            //archive->setVersion(*this, 2);
1900            //archive->setMinVersion(*this, 1);
1901    
1902            SRLZ(VelocityUpperLimit);
1903            SRLZ(EG1PreAttack);
1904            SRLZ(EG1Attack);
1905            SRLZ(EG1Decay1);
1906            SRLZ(EG1Decay2);
1907            SRLZ(EG1InfiniteSustain);
1908            SRLZ(EG1Sustain);
1909            SRLZ(EG1Release);
1910            SRLZ(EG1Hold);
1911            SRLZ(EG1Controller);
1912            SRLZ(EG1ControllerInvert);
1913            SRLZ(EG1ControllerAttackInfluence);
1914            SRLZ(EG1ControllerDecayInfluence);
1915            SRLZ(EG1ControllerReleaseInfluence);
1916            SRLZ(LFO1WaveForm);
1917            SRLZ(LFO1Frequency);
1918            SRLZ(LFO1Phase);
1919            SRLZ(LFO1InternalDepth);
1920            SRLZ(LFO1ControlDepth);
1921            SRLZ(LFO1Controller);
1922            SRLZ(LFO1FlipPhase);
1923            SRLZ(LFO1Sync);
1924            SRLZ(EG2PreAttack);
1925            SRLZ(EG2Attack);
1926            SRLZ(EG2Decay1);
1927            SRLZ(EG2Decay2);
1928            SRLZ(EG2InfiniteSustain);
1929            SRLZ(EG2Sustain);
1930            SRLZ(EG2Release);
1931            SRLZ(EG2Controller);
1932            SRLZ(EG2ControllerInvert);
1933            SRLZ(EG2ControllerAttackInfluence);
1934            SRLZ(EG2ControllerDecayInfluence);
1935            SRLZ(EG2ControllerReleaseInfluence);
1936            SRLZ(LFO2WaveForm);
1937            SRLZ(LFO2Frequency);
1938            SRLZ(LFO2Phase);
1939            SRLZ(LFO2InternalDepth);
1940            SRLZ(LFO2ControlDepth);
1941            SRLZ(LFO2Controller);
1942            SRLZ(LFO2FlipPhase);
1943            SRLZ(LFO2Sync);
1944            SRLZ(EG3Attack);
1945            SRLZ(EG3Depth);
1946            SRLZ(LFO3WaveForm);
1947            SRLZ(LFO3Frequency);
1948            SRLZ(LFO3Phase);
1949            SRLZ(LFO3InternalDepth);
1950            SRLZ(LFO3ControlDepth);
1951            SRLZ(LFO3Controller);
1952            SRLZ(LFO3FlipPhase);
1953            SRLZ(LFO3Sync);
1954            SRLZ(VCFEnabled);
1955            SRLZ(VCFType);
1956            SRLZ(VCFCutoffController);
1957            SRLZ(VCFCutoffControllerInvert);
1958            SRLZ(VCFCutoff);
1959            SRLZ(VCFVelocityCurve);
1960            SRLZ(VCFVelocityScale);
1961            SRLZ(VCFVelocityDynamicRange);
1962            SRLZ(VCFResonance);
1963            SRLZ(VCFResonanceDynamic);
1964            SRLZ(VCFResonanceController);
1965            SRLZ(VCFKeyboardTracking);
1966            SRLZ(VCFKeyboardTrackingBreakpoint);
1967            SRLZ(VelocityResponseCurve);
1968            SRLZ(VelocityResponseDepth);
1969            SRLZ(VelocityResponseCurveScaling);
1970            SRLZ(ReleaseVelocityResponseCurve);
1971            SRLZ(ReleaseVelocityResponseDepth);
1972            SRLZ(ReleaseTriggerDecay);
1973            SRLZ(Crossfade);
1974            SRLZ(PitchTrack);
1975            SRLZ(DimensionBypass);
1976            SRLZ(Pan);
1977            SRLZ(SelfMask);
1978            SRLZ(AttenuationController);
1979            SRLZ(InvertAttenuationController);
1980            SRLZ(AttenuationControllerThreshold);
1981            SRLZ(ChannelOffset);
1982            SRLZ(SustainDefeat);
1983            SRLZ(MSDecode);
1984            //SRLZ(SampleStartOffset);
1985            SRLZ(SampleAttenuation);
1986            SRLZ(EG1Options);
1987            SRLZ(EG2Options);
1988            SRLZ(SustainReleaseTrigger);
1989            SRLZ(NoNoteOffReleaseTrigger);
1990    
1991            // derived attributes from DLS::Sampler
1992            SRLZ(FineTune);
1993            SRLZ(Gain);
1994        }
1995    
1996        /**
1997         * Updates the respective member variable and updates @c SampleAttenuation
1998         * which depends on this value.
1999         */
2000        void DimensionRegion::SetGain(int32_t gain) {
2001            DLS::Sampler::SetGain(gain);
2002          SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));          SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
         VelocityTable = 0;  
2003      }      }
2004    
2005      /**      /**
# Line 1461  namespace { Line 2008  namespace {
2008       *       *
2009       * Usually there is absolutely no need to call this method explicitly.       * Usually there is absolutely no need to call this method explicitly.
2010       * It will be called automatically when File::Save() was called.       * It will be called automatically when File::Save() was called.
2011         *
2012         * @param pProgress - callback function for progress notification
2013       */       */
2014      void DimensionRegion::UpdateChunks() {      void DimensionRegion::UpdateChunks(progress_t* pProgress) {
2015          // first update base class's chunk          // first update base class's chunk
2016          DLS::Sampler::UpdateChunks();          DLS::Sampler::UpdateChunks(pProgress);
2017    
2018            RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
2019            uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
2020            pData[12] = Crossfade.in_start;
2021            pData[13] = Crossfade.in_end;
2022            pData[14] = Crossfade.out_start;
2023            pData[15] = Crossfade.out_end;
2024    
2025          // make sure '3ewa' chunk exists          // make sure '3ewa' chunk exists
2026          RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);          RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
2027          if (!_3ewa)  _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, 140);          if (!_3ewa) {
2028          uint8_t* pData = (uint8_t*) _3ewa->LoadChunkData();              File* pFile = (File*) GetParent()->GetParent()->GetParent();
2029                bool versiongt2 = pFile->pVersion && pFile->pVersion->major > 2;
2030                _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, versiongt2 ? 148 : 140);
2031            }
2032            pData = (uint8_t*) _3ewa->LoadChunkData();
2033    
2034          // update '3ewa' chunk with DimensionRegion's current settings          // update '3ewa' chunk with DimensionRegion's current settings
2035    
2036          const uint32_t unknown = _3ewa->GetSize(); // unknown, always chunk size ?          const uint32_t chunksize = (uint32_t) _3ewa->GetNewSize();
2037          memcpy(&pData[0], &unknown, 4);          store32(&pData[0], chunksize); // unknown, always chunk size?
2038    
2039          const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);          const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
2040          memcpy(&pData[4], &lfo3freq, 4);          store32(&pData[4], lfo3freq);
2041    
2042          const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);          const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
2043          memcpy(&pData[8], &eg3attack, 4);          store32(&pData[8], eg3attack);
2044    
2045          // next 2 bytes unknown          // next 2 bytes unknown
2046    
2047          memcpy(&pData[14], &LFO1InternalDepth, 2);          store16(&pData[14], LFO1InternalDepth);
2048    
2049          // next 2 bytes unknown          // next 2 bytes unknown
2050    
2051          memcpy(&pData[18], &LFO3InternalDepth, 2);          store16(&pData[18], LFO3InternalDepth);
2052    
2053          // next 2 bytes unknown          // next 2 bytes unknown
2054    
2055          memcpy(&pData[22], &LFO1ControlDepth, 2);          store16(&pData[22], LFO1ControlDepth);
2056    
2057          // next 2 bytes unknown          // next 2 bytes unknown
2058    
2059          memcpy(&pData[26], &LFO3ControlDepth, 2);          store16(&pData[26], LFO3ControlDepth);
2060    
2061          const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);          const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
2062          memcpy(&pData[28], &eg1attack, 4);          store32(&pData[28], eg1attack);
2063    
2064          const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);          const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
2065          memcpy(&pData[32], &eg1decay1, 4);          store32(&pData[32], eg1decay1);
2066    
2067          // next 2 bytes unknown          // next 2 bytes unknown
2068    
2069          memcpy(&pData[38], &EG1Sustain, 2);          store16(&pData[38], EG1Sustain);
2070    
2071          const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);          const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
2072          memcpy(&pData[40], &eg1release, 4);          store32(&pData[40], eg1release);
2073    
2074          const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);          const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
2075          memcpy(&pData[44], &eg1ctl, 1);          pData[44] = eg1ctl;
2076    
2077          const uint8_t eg1ctrloptions =          const uint8_t eg1ctrloptions =
2078              (EG1ControllerInvert) ? 0x01 : 0x00 |              (EG1ControllerInvert ? 0x01 : 0x00) |
2079              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
2080              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
2081              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
2082          memcpy(&pData[45], &eg1ctrloptions, 1);          pData[45] = eg1ctrloptions;
2083    
2084          const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);          const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
2085          memcpy(&pData[46], &eg2ctl, 1);          pData[46] = eg2ctl;
2086    
2087          const uint8_t eg2ctrloptions =          const uint8_t eg2ctrloptions =
2088              (EG2ControllerInvert) ? 0x01 : 0x00 |              (EG2ControllerInvert ? 0x01 : 0x00) |
2089              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |              GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
2090              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |              GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
2091              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);              GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
2092          memcpy(&pData[47], &eg2ctrloptions, 1);          pData[47] = eg2ctrloptions;
2093    
2094          const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);          const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
2095          memcpy(&pData[48], &lfo1freq, 4);          store32(&pData[48], lfo1freq);
2096    
2097          const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);          const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
2098          memcpy(&pData[52], &eg2attack, 4);          store32(&pData[52], eg2attack);
2099    
2100          const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);          const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
2101          memcpy(&pData[56], &eg2decay1, 4);          store32(&pData[56], eg2decay1);
2102    
2103          // next 2 bytes unknown          // next 2 bytes unknown
2104    
2105          memcpy(&pData[62], &EG2Sustain, 2);          store16(&pData[62], EG2Sustain);
2106    
2107          const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);          const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
2108          memcpy(&pData[64], &eg2release, 4);          store32(&pData[64], eg2release);
2109    
2110          // next 2 bytes unknown          // next 2 bytes unknown
2111    
2112          memcpy(&pData[70], &LFO2ControlDepth, 2);          store16(&pData[70], LFO2ControlDepth);
2113    
2114          const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);          const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
2115          memcpy(&pData[72], &lfo2freq, 4);          store32(&pData[72], lfo2freq);
2116    
2117          // next 2 bytes unknown          // next 2 bytes unknown
2118    
2119          memcpy(&pData[78], &LFO2InternalDepth, 2);          store16(&pData[78], LFO2InternalDepth);
2120    
2121          const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);          const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
2122          memcpy(&pData[80], &eg1decay2, 4);          store32(&pData[80], eg1decay2);
2123    
2124          // next 2 bytes unknown          // next 2 bytes unknown
2125    
2126          memcpy(&pData[86], &EG1PreAttack, 2);          store16(&pData[86], EG1PreAttack);
2127    
2128          const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);          const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
2129          memcpy(&pData[88], &eg2decay2, 4);          store32(&pData[88], eg2decay2);
2130    
2131          // next 2 bytes unknown          // next 2 bytes unknown
2132    
2133          memcpy(&pData[94], &EG2PreAttack, 2);          store16(&pData[94], EG2PreAttack);
2134    
2135          {          {
2136              if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");              if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
# Line 1588  namespace { Line 2148  namespace {
2148                  default:                  default:
2149                      throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");                      throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
2150              }              }
2151              memcpy(&pData[96], &velocityresponse, 1);              pData[96] = velocityresponse;
2152          }          }
2153    
2154          {          {
# Line 1607  namespace { Line 2167  namespace {
2167                  default:                  default:
2168                      throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");                      throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
2169              }              }
2170              memcpy(&pData[97], &releasevelocityresponse, 1);              pData[97] = releasevelocityresponse;
2171          }          }
2172    
2173          memcpy(&pData[98], &VelocityResponseCurveScaling, 1);          pData[98] = VelocityResponseCurveScaling;
2174    
2175          memcpy(&pData[99], &AttenuationControllerThreshold, 1);          pData[99] = AttenuationControllerThreshold;
2176    
2177          // next 4 bytes unknown          // next 4 bytes unknown
2178    
2179          memcpy(&pData[104], &SampleStartOffset, 2);          store16(&pData[104], SampleStartOffset);
2180    
2181          // next 2 bytes unknown          // next 2 bytes unknown
2182    
# Line 1635  namespace { Line 2195  namespace {
2195                  default:                  default:
2196                      throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");                      throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
2197              }              }
2198              memcpy(&pData[108], &pitchTrackDimensionBypass, 1);              pData[108] = pitchTrackDimensionBypass;
2199          }          }
2200    
2201          const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit          const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
2202          memcpy(&pData[109], &pan, 1);          pData[109] = pan;
2203    
2204          const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;          const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
2205          memcpy(&pData[110], &selfmask, 1);          pData[110] = selfmask;
2206    
2207          // next byte unknown          // next byte unknown
2208    
# Line 1651  namespace { Line 2211  namespace {
2211              if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5              if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
2212              if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7              if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
2213              if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6              if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
2214              memcpy(&pData[112], &lfo3ctrl, 1);              pData[112] = lfo3ctrl;
2215          }          }
2216    
2217          const uint8_t attenctl = EncodeLeverageController(AttenuationController);          const uint8_t attenctl = EncodeLeverageController(AttenuationController);
2218          memcpy(&pData[113], &attenctl, 1);          pData[113] = attenctl;
2219    
2220          {          {
2221              uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits              uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
2222              if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7              if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
2223              if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5              if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5
2224              if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6              if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
2225              memcpy(&pData[114], &lfo2ctrl, 1);              pData[114] = lfo2ctrl;
2226          }          }
2227    
2228          {          {
# Line 1671  namespace { Line 2231  namespace {
2231              if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6              if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6
2232              if (VCFResonanceController != vcf_res_ctrl_none)              if (VCFResonanceController != vcf_res_ctrl_none)
2233                  lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);                  lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
2234              memcpy(&pData[115], &lfo1ctrl, 1);              pData[115] = lfo1ctrl;
2235          }          }
2236    
2237          const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth          const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
2238                                                    : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */                                                    : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
2239          memcpy(&pData[116], &eg3depth, 1);          store16(&pData[116], eg3depth);
2240    
2241          // next 2 bytes unknown          // next 2 bytes unknown
2242    
2243          const uint8_t channeloffset = ChannelOffset * 4;          const uint8_t channeloffset = ChannelOffset * 4;
2244          memcpy(&pData[120], &channeloffset, 1);          pData[120] = channeloffset;
2245    
2246          {          {
2247              uint8_t regoptions = 0;              uint8_t regoptions = 0;
2248              if (MSDecode)      regoptions |= 0x01; // bit 0              if (MSDecode)      regoptions |= 0x01; // bit 0
2249              if (SustainDefeat) regoptions |= 0x02; // bit 1              if (SustainDefeat) regoptions |= 0x02; // bit 1
2250              memcpy(&pData[121], &regoptions, 1);              pData[121] = regoptions;
2251          }          }
2252    
2253          // next 2 bytes unknown          // next 2 bytes unknown
2254    
2255          memcpy(&pData[124], &VelocityUpperLimit, 1);          pData[124] = VelocityUpperLimit;
2256    
2257          // next 3 bytes unknown          // next 3 bytes unknown
2258    
2259          memcpy(&pData[128], &ReleaseTriggerDecay, 1);          pData[128] = ReleaseTriggerDecay;
2260    
2261          // next 2 bytes unknown          // next 2 bytes unknown
2262    
2263          const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7          const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2264          memcpy(&pData[131], &eg1hold, 1);          pData[131] = eg1hold;
2265    
2266          const uint8_t vcfcutoff = (VCFEnabled) ? 0x80 : 0x00 |  /* bit 7 */          const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) |  /* bit 7 */
2267                                    (VCFCutoff & 0x7f);   /* lower 7 bits */                                    (VCFCutoff & 0x7f);   /* lower 7 bits */
2268          memcpy(&pData[132], &vcfcutoff, 1);          pData[132] = vcfcutoff;
2269    
2270          memcpy(&pData[133], &VCFCutoffController, 1);          pData[133] = VCFCutoffController;
2271    
2272          const uint8_t vcfvelscale = (VCFCutoffControllerInvert) ? 0x80 : 0x00 | /* bit 7 */          const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2273                                      (VCFVelocityScale & 0x7f); /* lower 7 bits */                                      (VCFVelocityScale & 0x7f); /* lower 7 bits */
2274          memcpy(&pData[134], &vcfvelscale, 1);          pData[134] = vcfvelscale;
2275    
2276          // next byte unknown          // next byte unknown
2277    
2278          const uint8_t vcfresonance = (VCFResonanceDynamic) ? 0x00 : 0x80 | /* bit 7 */          const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2279                                       (VCFResonance & 0x7f); /* lower 7 bits */                                       (VCFResonance & 0x7f); /* lower 7 bits */
2280          memcpy(&pData[136], &vcfresonance, 1);          pData[136] = vcfresonance;
2281    
2282          const uint8_t vcfbreakpoint = (VCFKeyboardTracking) ? 0x80 : 0x00 | /* bit 7 */          const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2283                                        (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */                                        (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2284          memcpy(&pData[137], &vcfbreakpoint, 1);          pData[137] = vcfbreakpoint;
2285    
2286          const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |          const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2287                                      VCFVelocityCurve * 5;                                      VCFVelocityCurve * 5;
2288          memcpy(&pData[138], &vcfvelocity, 1);          pData[138] = vcfvelocity;
2289    
2290          const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;          const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2291          memcpy(&pData[139], &vcftype, 1);          pData[139] = vcftype;
2292    
2293            if (chunksize >= 148) {
2294                memcpy(&pData[140], DimensionUpperLimits, 8);
2295            }
2296    
2297            // chunk for own format extensions, these will *NOT* work with
2298            // Gigasampler/GigaStudio !
2299            RIFF::Chunk* lsde = pParentList->GetSubChunk(CHUNK_ID_LSDE);
2300            const int lsdeSize =
2301                3 /* EG cancel options */ +
2302                1 /* sustain pedal up on release trigger option */ +
2303                8 /* LFOs' wave forms */ + 12 /* LFOs' phase */ + 4 /* flags (LFO3FlipPhase) */;
2304            if (!lsde && UsesAnyGigFormatExtension()) {
2305                // only add this "LSDE" chunk if there is some (format extension)
2306                // setting effective that would require our "LSDE" format extension
2307                // chunk to be stored
2308                lsde = pParentList->AddSubChunk(CHUNK_ID_LSDE, lsdeSize);
2309                // move LSDE chunk to the end of parent list
2310                pParentList->MoveSubChunk(lsde, (RIFF::Chunk*)NULL);
2311            }
2312            if (lsde) {
2313                if (lsde->GetNewSize() < lsdeSize)
2314                    lsde->Resize(lsdeSize);
2315                // format extension for EG behavior options
2316                unsigned char* pData = (unsigned char*) lsde->LoadChunkData();
2317                eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
2318                for (int i = 0; i < 2; ++i) { // NOTE: we reserved the 3rd byte for a potential future EG3 option
2319                    pData[i] =
2320                        (pEGOpts[i]->AttackCancel     ? 1 : 0) |
2321                        (pEGOpts[i]->AttackHoldCancel ? (1<<1) : 0) |
2322                        (pEGOpts[i]->Decay1Cancel     ? (1<<2) : 0) |
2323                        (pEGOpts[i]->Decay2Cancel     ? (1<<3) : 0) |
2324                        (pEGOpts[i]->ReleaseCancel    ? (1<<4) : 0);
2325                }
2326                // format extension for release trigger options
2327                pData[3] = static_cast<uint8_t>(SustainReleaseTrigger) | (NoNoteOffReleaseTrigger ? (1<<7) : 0);
2328                // format extension for LFOs' wave form, phase displacement and for
2329                // LFO3's flip phase
2330                store16(&pData[4], LFO1WaveForm);
2331                store16(&pData[6], LFO2WaveForm);
2332                store16(&pData[8], LFO3WaveForm);
2333                //NOTE: 16 bits reserved here for potential future use !
2334                const int32_t lfo1Phase = (int32_t) GIG_EXP_ENCODE(LFO1Phase);
2335                const int32_t lfo2Phase = (int32_t) GIG_EXP_ENCODE(LFO2Phase);
2336                const int32_t lfo3Phase = (int32_t) GIG_EXP_ENCODE(LFO3Phase);
2337                store32(&pData[12], lfo1Phase);
2338                store32(&pData[16], lfo2Phase);
2339                store32(&pData[20], lfo3Phase);
2340                const int32_t flags = LFO3FlipPhase ? 1 : 0;
2341                store32(&pData[24], flags);
2342    
2343                // compile time sanity check: is our last store access here
2344                // consistent with the initial lsdeSize value assignment?
2345                static_assert(lsdeSize == 28, "Inconsistency in assumed 'LSDE' RIFF chunk size");
2346            }
2347        }
2348    
2349        /**
2350         * Returns @c true in case this DimensionRegion object uses any gig format
2351         * extension, that is whether this DimensionRegion object currently has any
2352         * setting effective that would require our "LSDE" RIFF chunk to be stored
2353         * to the gig file.
2354         *
2355         * Right now this is a private method. It is considerable though this method
2356         * to become (in slightly modified form) a public API method in future, i.e.
2357         * to allow instrument editors to visualize and/or warn the user of any
2358         * format extension being used. Right now this method really just serves to
2359         * answer the question whether an LSDE chunk is required, for the public API
2360         * purpose this method would also need to check whether any other setting
2361         * stored to the regular value '3ewa' chunk, is actually a format extension
2362         * as well.
2363         */
2364        bool DimensionRegion::UsesAnyGigFormatExtension() const {
2365            eg_opt_t defaultOpt;
2366            return memcmp(&EG1Options, &defaultOpt, sizeof(eg_opt_t)) ||
2367                   memcmp(&EG2Options, &defaultOpt, sizeof(eg_opt_t)) ||
2368                   SustainReleaseTrigger || NoNoteOffReleaseTrigger ||
2369                   LFO1WaveForm || LFO2WaveForm || LFO3WaveForm ||
2370                   LFO1Phase || LFO2Phase || LFO3Phase ||
2371                   LFO3FlipPhase;
2372        }
2373    
2374        double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2375            curve_type_t curveType = releaseVelocityResponseCurve;
2376            uint8_t depth = releaseVelocityResponseDepth;
2377            // this models a strange behaviour or bug in GSt: two of the
2378            // velocity response curves for release time are not used even
2379            // if specified, instead another curve is chosen.
2380            if ((curveType == curve_type_nonlinear && depth == 0) ||
2381                (curveType == curve_type_special   && depth == 4)) {
2382                curveType = curve_type_nonlinear;
2383                depth = 3;
2384            }
2385            return GetVelocityTable(curveType, depth, 0);
2386        }
2387    
2388        double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2389                                                        uint8_t vcfVelocityDynamicRange,
2390                                                        uint8_t vcfVelocityScale,
2391                                                        vcf_cutoff_ctrl_t vcfCutoffController)
2392        {
2393            curve_type_t curveType = vcfVelocityCurve;
2394            uint8_t depth = vcfVelocityDynamicRange;
2395            // even stranger GSt: two of the velocity response curves for
2396            // filter cutoff are not used, instead another special curve
2397            // is chosen. This curve is not used anywhere else.
2398            if ((curveType == curve_type_nonlinear && depth == 0) ||
2399                (curveType == curve_type_special   && depth == 4)) {
2400                curveType = curve_type_special;
2401                depth = 5;
2402            }
2403            return GetVelocityTable(curveType, depth,
2404                                    (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2405                                        ? vcfVelocityScale : 0);
2406      }      }
2407    
2408      // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet      // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2409      double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)      double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2410      {      {
2411            // sanity check input parameters
2412            // (fallback to some default parameters on ill input)
2413            switch (curveType) {
2414                case curve_type_nonlinear:
2415                case curve_type_linear:
2416                    if (depth > 4) {
2417                        printf("Warning: Invalid depth (0x%x) for velocity curve type (0x%x).\n", depth, curveType);
2418                        depth   = 0;
2419                        scaling = 0;
2420                    }
2421                    break;
2422                case curve_type_special:
2423                    if (depth > 5) {
2424                        printf("Warning: Invalid depth (0x%x) for velocity curve type 'special'.\n", depth);
2425                        depth   = 0;
2426                        scaling = 0;
2427                    }
2428                    break;
2429                case curve_type_unknown:
2430                default:
2431                    printf("Warning: Unknown velocity curve type (0x%x).\n", curveType);
2432                    curveType = curve_type_linear;
2433                    depth     = 0;
2434                    scaling   = 0;
2435                    break;
2436            }
2437    
2438          double* table;          double* table;
2439          uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;          uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2440          if (pVelocityTables->count(tableKey)) { // if key exists          if (pVelocityTables->count(tableKey)) { // if key exists
# Line 1746  namespace { Line 2447  namespace {
2447          return table;          return table;
2448      }      }
2449    
2450        Region* DimensionRegion::GetParent() const {
2451            return pRegion;
2452        }
2453    
2454    // show error if some _lev_ctrl_* enum entry is not listed in the following function
2455    // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2456    // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2457    //#pragma GCC diagnostic push
2458    //#pragma GCC diagnostic error "-Wswitch"
2459    
2460      leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {      leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2461          leverage_ctrl_t decodedcontroller;          leverage_ctrl_t decodedcontroller;
2462          switch (EncodedController) {          switch (EncodedController) {
# Line 1857  namespace { Line 2568  namespace {
2568                  decodedcontroller.controller_number = 95;                  decodedcontroller.controller_number = 95;
2569                  break;                  break;
2570    
2571                // format extension (these controllers are so far only supported by
2572                // LinuxSampler & gigedit) they will *NOT* work with
2573                // Gigasampler/GigaStudio !
2574                case _lev_ctrl_CC3_EXT:
2575                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2576                    decodedcontroller.controller_number = 3;
2577                    break;
2578                case _lev_ctrl_CC6_EXT:
2579                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2580                    decodedcontroller.controller_number = 6;
2581                    break;
2582                case _lev_ctrl_CC7_EXT:
2583                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2584                    decodedcontroller.controller_number = 7;
2585                    break;
2586                case _lev_ctrl_CC8_EXT:
2587                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2588                    decodedcontroller.controller_number = 8;
2589                    break;
2590                case _lev_ctrl_CC9_EXT:
2591                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2592                    decodedcontroller.controller_number = 9;
2593                    break;
2594                case _lev_ctrl_CC10_EXT:
2595                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2596                    decodedcontroller.controller_number = 10;
2597                    break;
2598                case _lev_ctrl_CC11_EXT:
2599                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2600                    decodedcontroller.controller_number = 11;
2601                    break;
2602                case _lev_ctrl_CC14_EXT:
2603                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2604                    decodedcontroller.controller_number = 14;
2605                    break;
2606                case _lev_ctrl_CC15_EXT:
2607                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2608                    decodedcontroller.controller_number = 15;
2609                    break;
2610                case _lev_ctrl_CC20_EXT:
2611                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2612                    decodedcontroller.controller_number = 20;
2613                    break;
2614                case _lev_ctrl_CC21_EXT:
2615                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2616                    decodedcontroller.controller_number = 21;
2617                    break;
2618                case _lev_ctrl_CC22_EXT:
2619                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2620                    decodedcontroller.controller_number = 22;
2621                    break;
2622                case _lev_ctrl_CC23_EXT:
2623                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2624                    decodedcontroller.controller_number = 23;
2625                    break;
2626                case _lev_ctrl_CC24_EXT:
2627                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2628                    decodedcontroller.controller_number = 24;
2629                    break;
2630                case _lev_ctrl_CC25_EXT:
2631                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2632                    decodedcontroller.controller_number = 25;
2633                    break;
2634                case _lev_ctrl_CC26_EXT:
2635                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2636                    decodedcontroller.controller_number = 26;
2637                    break;
2638                case _lev_ctrl_CC27_EXT:
2639                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2640                    decodedcontroller.controller_number = 27;
2641                    break;
2642                case _lev_ctrl_CC28_EXT:
2643                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2644                    decodedcontroller.controller_number = 28;
2645                    break;
2646                case _lev_ctrl_CC29_EXT:
2647                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2648                    decodedcontroller.controller_number = 29;
2649                    break;
2650                case _lev_ctrl_CC30_EXT:
2651                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2652                    decodedcontroller.controller_number = 30;
2653                    break;
2654                case _lev_ctrl_CC31_EXT:
2655                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2656                    decodedcontroller.controller_number = 31;
2657                    break;
2658                case _lev_ctrl_CC68_EXT:
2659                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2660                    decodedcontroller.controller_number = 68;
2661                    break;
2662                case _lev_ctrl_CC69_EXT:
2663                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2664                    decodedcontroller.controller_number = 69;
2665                    break;
2666                case _lev_ctrl_CC70_EXT:
2667                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2668                    decodedcontroller.controller_number = 70;
2669                    break;
2670                case _lev_ctrl_CC71_EXT:
2671                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2672                    decodedcontroller.controller_number = 71;
2673                    break;
2674                case _lev_ctrl_CC72_EXT:
2675                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2676                    decodedcontroller.controller_number = 72;
2677                    break;
2678                case _lev_ctrl_CC73_EXT:
2679                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2680                    decodedcontroller.controller_number = 73;
2681                    break;
2682                case _lev_ctrl_CC74_EXT:
2683                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2684                    decodedcontroller.controller_number = 74;
2685                    break;
2686                case _lev_ctrl_CC75_EXT:
2687                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2688                    decodedcontroller.controller_number = 75;
2689                    break;
2690                case _lev_ctrl_CC76_EXT:
2691                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2692                    decodedcontroller.controller_number = 76;
2693                    break;
2694                case _lev_ctrl_CC77_EXT:
2695                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2696                    decodedcontroller.controller_number = 77;
2697                    break;
2698                case _lev_ctrl_CC78_EXT:
2699                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2700                    decodedcontroller.controller_number = 78;
2701                    break;
2702                case _lev_ctrl_CC79_EXT:
2703                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2704                    decodedcontroller.controller_number = 79;
2705                    break;
2706                case _lev_ctrl_CC84_EXT:
2707                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2708                    decodedcontroller.controller_number = 84;
2709                    break;
2710                case _lev_ctrl_CC85_EXT:
2711                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2712                    decodedcontroller.controller_number = 85;
2713                    break;
2714                case _lev_ctrl_CC86_EXT:
2715                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2716                    decodedcontroller.controller_number = 86;
2717                    break;
2718                case _lev_ctrl_CC87_EXT:
2719                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2720                    decodedcontroller.controller_number = 87;
2721                    break;
2722                case _lev_ctrl_CC89_EXT:
2723                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2724                    decodedcontroller.controller_number = 89;
2725                    break;
2726                case _lev_ctrl_CC90_EXT:
2727                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2728                    decodedcontroller.controller_number = 90;
2729                    break;
2730                case _lev_ctrl_CC96_EXT:
2731                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2732                    decodedcontroller.controller_number = 96;
2733                    break;
2734                case _lev_ctrl_CC97_EXT:
2735                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2736                    decodedcontroller.controller_number = 97;
2737                    break;
2738                case _lev_ctrl_CC102_EXT:
2739                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2740                    decodedcontroller.controller_number = 102;
2741                    break;
2742                case _lev_ctrl_CC103_EXT:
2743                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2744                    decodedcontroller.controller_number = 103;
2745                    break;
2746                case _lev_ctrl_CC104_EXT:
2747                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2748                    decodedcontroller.controller_number = 104;
2749                    break;
2750                case _lev_ctrl_CC105_EXT:
2751                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2752                    decodedcontroller.controller_number = 105;
2753                    break;
2754                case _lev_ctrl_CC106_EXT:
2755                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2756                    decodedcontroller.controller_number = 106;
2757                    break;
2758                case _lev_ctrl_CC107_EXT:
2759                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2760                    decodedcontroller.controller_number = 107;
2761                    break;
2762                case _lev_ctrl_CC108_EXT:
2763                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2764                    decodedcontroller.controller_number = 108;
2765                    break;
2766                case _lev_ctrl_CC109_EXT:
2767                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2768                    decodedcontroller.controller_number = 109;
2769                    break;
2770                case _lev_ctrl_CC110_EXT:
2771                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2772                    decodedcontroller.controller_number = 110;
2773                    break;
2774                case _lev_ctrl_CC111_EXT:
2775                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2776                    decodedcontroller.controller_number = 111;
2777                    break;
2778                case _lev_ctrl_CC112_EXT:
2779                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2780                    decodedcontroller.controller_number = 112;
2781                    break;
2782                case _lev_ctrl_CC113_EXT:
2783                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2784                    decodedcontroller.controller_number = 113;
2785                    break;
2786                case _lev_ctrl_CC114_EXT:
2787                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2788                    decodedcontroller.controller_number = 114;
2789                    break;
2790                case _lev_ctrl_CC115_EXT:
2791                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2792                    decodedcontroller.controller_number = 115;
2793                    break;
2794                case _lev_ctrl_CC116_EXT:
2795                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2796                    decodedcontroller.controller_number = 116;
2797                    break;
2798                case _lev_ctrl_CC117_EXT:
2799                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2800                    decodedcontroller.controller_number = 117;
2801                    break;
2802                case _lev_ctrl_CC118_EXT:
2803                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2804                    decodedcontroller.controller_number = 118;
2805                    break;
2806                case _lev_ctrl_CC119_EXT:
2807                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2808                    decodedcontroller.controller_number = 119;
2809                    break;
2810    
2811              // unknown controller type              // unknown controller type
2812              default:              default:
2813                  throw gig::Exception("Unknown leverage controller type.");                  decodedcontroller.type = leverage_ctrl_t::type_none;
2814                    decodedcontroller.controller_number = 0;
2815                    printf("Warning: Unknown leverage controller type (0x%x).\n", EncodedController);
2816                    break;
2817          }          }
2818          return decodedcontroller;          return decodedcontroller;
2819      }      }
2820        
2821    // see above (diagnostic push not supported prior GCC 4.6)
2822    //#pragma GCC diagnostic pop
2823    
2824      DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {      DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2825          _lev_ctrl_t encodedcontroller;          _lev_ctrl_t encodedcontroller;
# Line 1950  namespace { Line 2907  namespace {
2907                      case 95:                      case 95:
2908                          encodedcontroller = _lev_ctrl_effect5depth;                          encodedcontroller = _lev_ctrl_effect5depth;
2909                          break;                          break;
2910    
2911                        // format extension (these controllers are so far only
2912                        // supported by LinuxSampler & gigedit) they will *NOT*
2913                        // work with Gigasampler/GigaStudio !
2914                        case 3:
2915                            encodedcontroller = _lev_ctrl_CC3_EXT;
2916                            break;
2917                        case 6:
2918                            encodedcontroller = _lev_ctrl_CC6_EXT;
2919                            break;
2920                        case 7:
2921                            encodedcontroller = _lev_ctrl_CC7_EXT;
2922                            break;
2923                        case 8:
2924                            encodedcontroller = _lev_ctrl_CC8_EXT;
2925                            break;
2926                        case 9:
2927                            encodedcontroller = _lev_ctrl_CC9_EXT;
2928                            break;
2929                        case 10:
2930                            encodedcontroller = _lev_ctrl_CC10_EXT;
2931                            break;
2932                        case 11:
2933                            encodedcontroller = _lev_ctrl_CC11_EXT;
2934                            break;
2935                        case 14:
2936                            encodedcontroller = _lev_ctrl_CC14_EXT;
2937                            break;
2938                        case 15:
2939                            encodedcontroller = _lev_ctrl_CC15_EXT;
2940                            break;
2941                        case 20:
2942                            encodedcontroller = _lev_ctrl_CC20_EXT;
2943                            break;
2944                        case 21:
2945                            encodedcontroller = _lev_ctrl_CC21_EXT;
2946                            break;
2947                        case 22:
2948                            encodedcontroller = _lev_ctrl_CC22_EXT;
2949                            break;
2950                        case 23:
2951                            encodedcontroller = _lev_ctrl_CC23_EXT;
2952                            break;
2953                        case 24:
2954                            encodedcontroller = _lev_ctrl_CC24_EXT;
2955                            break;
2956                        case 25:
2957                            encodedcontroller = _lev_ctrl_CC25_EXT;
2958                            break;
2959                        case 26:
2960                            encodedcontroller = _lev_ctrl_CC26_EXT;
2961                            break;
2962                        case 27:
2963                            encodedcontroller = _lev_ctrl_CC27_EXT;
2964                            break;
2965                        case 28:
2966                            encodedcontroller = _lev_ctrl_CC28_EXT;
2967                            break;
2968                        case 29:
2969                            encodedcontroller = _lev_ctrl_CC29_EXT;
2970                            break;
2971                        case 30:
2972                            encodedcontroller = _lev_ctrl_CC30_EXT;
2973                            break;
2974                        case 31:
2975                            encodedcontroller = _lev_ctrl_CC31_EXT;
2976                            break;
2977                        case 68:
2978                            encodedcontroller = _lev_ctrl_CC68_EXT;
2979                            break;
2980                        case 69:
2981                            encodedcontroller = _lev_ctrl_CC69_EXT;
2982                            break;
2983                        case 70:
2984                            encodedcontroller = _lev_ctrl_CC70_EXT;
2985                            break;
2986                        case 71:
2987                            encodedcontroller = _lev_ctrl_CC71_EXT;
2988                            break;
2989                        case 72:
2990                            encodedcontroller = _lev_ctrl_CC72_EXT;
2991                            break;
2992                        case 73:
2993                            encodedcontroller = _lev_ctrl_CC73_EXT;
2994                            break;
2995                        case 74:
2996                            encodedcontroller = _lev_ctrl_CC74_EXT;
2997                            break;
2998                        case 75:
2999                            encodedcontroller = _lev_ctrl_CC75_EXT;
3000                            break;
3001                        case 76:
3002                            encodedcontroller = _lev_ctrl_CC76_EXT;
3003                            break;
3004                        case 77:
3005                            encodedcontroller = _lev_ctrl_CC77_EXT;
3006                            break;
3007                        case 78:
3008                            encodedcontroller = _lev_ctrl_CC78_EXT;
3009                            break;
3010                        case 79:
3011                            encodedcontroller = _lev_ctrl_CC79_EXT;
3012                            break;
3013                        case 84:
3014                            encodedcontroller = _lev_ctrl_CC84_EXT;
3015                            break;
3016                        case 85:
3017                            encodedcontroller = _lev_ctrl_CC85_EXT;
3018                            break;
3019                        case 86:
3020                            encodedcontroller = _lev_ctrl_CC86_EXT;
3021                            break;
3022                        case 87:
3023                            encodedcontroller = _lev_ctrl_CC87_EXT;
3024                            break;
3025                        case 89:
3026                            encodedcontroller = _lev_ctrl_CC89_EXT;
3027                            break;
3028                        case 90:
3029                            encodedcontroller = _lev_ctrl_CC90_EXT;
3030                            break;
3031                        case 96:
3032                            encodedcontroller = _lev_ctrl_CC96_EXT;
3033                            break;
3034                        case 97:
3035                            encodedcontroller = _lev_ctrl_CC97_EXT;
3036                            break;
3037                        case 102:
3038                            encodedcontroller = _lev_ctrl_CC102_EXT;
3039                            break;
3040                        case 103:
3041                            encodedcontroller = _lev_ctrl_CC103_EXT;
3042                            break;
3043                        case 104:
3044                            encodedcontroller = _lev_ctrl_CC104_EXT;
3045                            break;
3046                        case 105:
3047                            encodedcontroller = _lev_ctrl_CC105_EXT;
3048                            break;
3049                        case 106:
3050                            encodedcontroller = _lev_ctrl_CC106_EXT;
3051                            break;
3052                        case 107:
3053                            encodedcontroller = _lev_ctrl_CC107_EXT;
3054                            break;
3055                        case 108:
3056                            encodedcontroller = _lev_ctrl_CC108_EXT;
3057                            break;
3058                        case 109:
3059                            encodedcontroller = _lev_ctrl_CC109_EXT;
3060                            break;
3061                        case 110:
3062                            encodedcontroller = _lev_ctrl_CC110_EXT;
3063                            break;
3064                        case 111:
3065                            encodedcontroller = _lev_ctrl_CC111_EXT;
3066                            break;
3067                        case 112:
3068                            encodedcontroller = _lev_ctrl_CC112_EXT;
3069                            break;
3070                        case 113:
3071                            encodedcontroller = _lev_ctrl_CC113_EXT;
3072                            break;
3073                        case 114:
3074                            encodedcontroller = _lev_ctrl_CC114_EXT;
3075                            break;
3076                        case 115:
3077                            encodedcontroller = _lev_ctrl_CC115_EXT;
3078                            break;
3079                        case 116:
3080                            encodedcontroller = _lev_ctrl_CC116_EXT;
3081                            break;
3082                        case 117:
3083                            encodedcontroller = _lev_ctrl_CC117_EXT;
3084                            break;
3085                        case 118:
3086                            encodedcontroller = _lev_ctrl_CC118_EXT;
3087                            break;
3088                        case 119:
3089                            encodedcontroller = _lev_ctrl_CC119_EXT;
3090                            break;
3091    
3092                      default:                      default:
3093                          throw gig::Exception("leverage controller number is not supported by the gig format");                          throw gig::Exception("leverage controller number is not supported by the gig format");
3094                  }                  }
3095                    break;
3096              default:              default:
3097                  throw gig::Exception("Unknown leverage controller type.");                  throw gig::Exception("Unknown leverage controller type.");
3098          }          }
# Line 1998  namespace { Line 3138  namespace {
3138          return pVelocityCutoffTable[MIDIKeyVelocity];          return pVelocityCutoffTable[MIDIKeyVelocity];
3139      }      }
3140    
3141        /**
3142         * Updates the respective member variable and the lookup table / cache
3143         * that depends on this value.
3144         */
3145        void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
3146            pVelocityAttenuationTable =
3147                GetVelocityTable(
3148                    curve, VelocityResponseDepth, VelocityResponseCurveScaling
3149                );
3150            VelocityResponseCurve = curve;
3151        }
3152    
3153        /**
3154         * Updates the respective member variable and the lookup table / cache
3155         * that depends on this value.
3156         */
3157        void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
3158            pVelocityAttenuationTable =
3159                GetVelocityTable(
3160                    VelocityResponseCurve, depth, VelocityResponseCurveScaling
3161                );
3162            VelocityResponseDepth = depth;
3163        }
3164    
3165        /**
3166         * Updates the respective member variable and the lookup table / cache
3167         * that depends on this value.
3168         */
3169        void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
3170            pVelocityAttenuationTable =
3171                GetVelocityTable(
3172                    VelocityResponseCurve, VelocityResponseDepth, scaling
3173                );
3174            VelocityResponseCurveScaling = scaling;
3175        }
3176    
3177        /**
3178         * Updates the respective member variable and the lookup table / cache
3179         * that depends on this value.
3180         */
3181        void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
3182            pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
3183            ReleaseVelocityResponseCurve = curve;
3184        }
3185    
3186        /**
3187         * Updates the respective member variable and the lookup table / cache
3188         * that depends on this value.
3189         */
3190        void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
3191            pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
3192            ReleaseVelocityResponseDepth = depth;
3193        }
3194    
3195        /**
3196         * Updates the respective member variable and the lookup table / cache
3197         * that depends on this value.
3198         */
3199        void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
3200            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
3201            VCFCutoffController = controller;
3202        }
3203    
3204        /**
3205         * Updates the respective member variable and the lookup table / cache
3206         * that depends on this value.
3207         */
3208        void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
3209            pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
3210            VCFVelocityCurve = curve;
3211        }
3212    
3213        /**
3214         * Updates the respective member variable and the lookup table / cache
3215         * that depends on this value.
3216         */
3217        void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
3218            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
3219            VCFVelocityDynamicRange = range;
3220        }
3221    
3222        /**
3223         * Updates the respective member variable and the lookup table / cache
3224         * that depends on this value.
3225         */
3226        void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
3227            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
3228            VCFVelocityScale = scaling;
3229        }
3230    
3231      double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {      double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
3232    
3233          // line-segment approximations of the 15 velocity curves          // line-segment approximations of the 15 velocity curves
# Line 2070  namespace { Line 3300  namespace {
3300  // *  // *
3301    
3302      Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {      Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
         pInfo->UseFixedLengthStrings = true;  
   
3303          // Initialization          // Initialization
3304          Dimensions = 0;          Dimensions = 0;
3305          for (int i = 0; i < 256; i++) {          for (int i = 0; i < 256; i++) {
# Line 2079  namespace { Line 3307  namespace {
3307          }          }
3308          Layers = 1;          Layers = 1;
3309          File* file = (File*) GetParent()->GetParent();          File* file = (File*) GetParent()->GetParent();
3310          int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;          int dimensionBits = (file->pVersion && file->pVersion->major > 2) ? 8 : 5;
3311    
3312          // Actual Loading          // Actual Loading
3313    
3314            if (!file->GetAutoLoad()) return;
3315    
3316          LoadDimensionRegions(rgnList);          LoadDimensionRegions(rgnList);
3317    
3318          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
3319          if (_3lnk) {          if (_3lnk) {
3320                _3lnk->SetPos(0);
3321    
3322              DimensionRegions = _3lnk->ReadUint32();              DimensionRegions = _3lnk->ReadUint32();
3323              for (int i = 0; i < dimensionBits; i++) {              for (int i = 0; i < dimensionBits; i++) {
3324                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
3325                  uint8_t     bits      = _3lnk->ReadUint8();                  uint8_t     bits      = _3lnk->ReadUint8();
3326                  _3lnk->ReadUint8(); // probably the position of the dimension                  _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
3327                  _3lnk->ReadUint8(); // unknown                  _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
3328                  uint8_t     zones     = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)                  uint8_t     zones     = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
3329                  if (dimension == dimension_none) { // inactive dimension                  if (dimension == dimension_none) { // inactive dimension
3330                      pDimensionDefinitions[i].dimension  = dimension_none;                      pDimensionDefinitions[i].dimension  = dimension_none;
# Line 2105  namespace { Line 3337  namespace {
3337                      pDimensionDefinitions[i].dimension = dimension;                      pDimensionDefinitions[i].dimension = dimension;
3338                      pDimensionDefinitions[i].bits      = bits;                      pDimensionDefinitions[i].bits      = bits;
3339                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)
3340                      pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||                      pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
3341                                                             dimension == dimension_samplechannel ||                      pDimensionDefinitions[i].zone_size  = __resolveZoneSize(pDimensionDefinitions[i]);
                                                            dimension == dimension_releasetrigger ||  
                                                            dimension == dimension_keyboard ||  
                                                            dimension == dimension_roundrobin ||  
                                                            dimension == dimension_random) ? split_type_bit  
                                                                                           : split_type_normal;  
                     pDimensionDefinitions[i].zone_size  =  
                         (pDimensionDefinitions[i].split_type == split_type_normal) ? 128.0 / pDimensionDefinitions[i].zones  
                                                                                    : 0;  
3342                      Dimensions++;                      Dimensions++;
3343    
3344                      // if this is a layer dimension, remember the amount of layers                      // if this is a layer dimension, remember the amount of layers
# Line 2129  namespace { Line 3353  namespace {
3353              UpdateVelocityTable();              UpdateVelocityTable();
3354    
3355              // jump to start of the wave pool indices (if not already there)              // jump to start of the wave pool indices (if not already there)
3356              if (file->pVersion && file->pVersion->major == 3)              if (file->pVersion && file->pVersion->major > 2)
3357                  _3lnk->SetPos(68); // version 3 has a different 3lnk structure                  _3lnk->SetPos(68); // version 3 has a different 3lnk structure
3358              else              else
3359                  _3lnk->SetPos(44);                  _3lnk->SetPos(44);
3360    
3361              // load sample references              // load sample references (if auto loading is enabled)
3362              for (uint i = 0; i < DimensionRegions; i++) {              if (file->GetAutoLoad()) {
3363                  uint32_t wavepoolindex = _3lnk->ReadUint32();                  for (uint i = 0; i < DimensionRegions; i++) {
3364                  if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);                      uint32_t wavepoolindex = _3lnk->ReadUint32();
3365                        if (file->pWavePoolTable && pDimensionRegions[i])
3366                            pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
3367                    }
3368                    GetSample(); // load global region sample reference
3369                }
3370            } else {
3371                DimensionRegions = 0;
3372                for (int i = 0 ; i < 8 ; i++) {
3373                    pDimensionDefinitions[i].dimension  = dimension_none;
3374                    pDimensionDefinitions[i].bits       = 0;
3375                    pDimensionDefinitions[i].zones      = 0;
3376              }              }
             GetSample(); // load global region sample reference  
3377          }          }
3378    
3379          // make sure there is at least one dimension region          // make sure there is at least one dimension region
# Line 2147  namespace { Line 3381  namespace {
3381              RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);              RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
3382              if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);              if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
3383              RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);              RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
3384              pDimensionRegions[0] = new DimensionRegion(_3ewl);              pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
3385              DimensionRegions = 1;              DimensionRegions = 1;
3386          }          }
3387      }      }
# Line 2159  namespace { Line 3393  namespace {
3393       * Usually there is absolutely no need to call this method explicitly.       * Usually there is absolutely no need to call this method explicitly.
3394       * It will be called automatically when File::Save() was called.       * It will be called automatically when File::Save() was called.
3395       *       *
3396         * @param pProgress - callback function for progress notification
3397       * @throws gig::Exception if samples cannot be dereferenced       * @throws gig::Exception if samples cannot be dereferenced
3398       */       */
3399      void Region::UpdateChunks() {      void Region::UpdateChunks(progress_t* pProgress) {
3400            // in the gig format we don't care about the Region's sample reference
3401            // but we still have to provide some existing one to not corrupt the
3402            // file, so to avoid the latter we simply always assign the sample of
3403            // the first dimension region of this region
3404            pSample = pDimensionRegions[0]->pSample;
3405    
3406          // first update base class's chunks          // first update base class's chunks
3407          DLS::Region::UpdateChunks();          DLS::Region::UpdateChunks(pProgress);
3408    
3409          // update dimension region's chunks          // update dimension region's chunks
3410          for (int i = 0; i < DimensionRegions; i++) {          for (int i = 0; i < DimensionRegions; i++) {
3411              pDimensionRegions[i]->UpdateChunks();              pDimensionRegions[i]->UpdateChunks(pProgress);
3412          }          }
3413    
3414          File* pFile = (File*) GetParent()->GetParent();          File* pFile = (File*) GetParent()->GetParent();
3415          const int iMaxDimensions = (pFile->pVersion && pFile->pVersion->major == 3) ? 8 : 5;          const bool versiongt2 = pFile->pVersion && pFile->pVersion->major > 2;
3416          const int iMaxDimensionRegions = (pFile->pVersion && pFile->pVersion->major == 3) ? 256 : 32;          const int iMaxDimensions =  versiongt2 ? 8 : 5;
3417            const int iMaxDimensionRegions = versiongt2 ? 256 : 32;
3418    
3419          // make sure '3lnk' chunk exists          // make sure '3lnk' chunk exists
3420          RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);          RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3421          if (!_3lnk) {          if (!_3lnk) {
3422              const int _3lnkChunkSize = (pFile->pVersion && pFile->pVersion->major == 3) ? 1092 : 172;              const int _3lnkChunkSize = versiongt2 ? 1092 : 172;
3423              _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);              _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3424                memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3425    
3426                // move 3prg to last position
3427                pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), (RIFF::Chunk*)NULL);
3428          }          }
3429    
3430          // update dimension definitions in '3lnk' chunk          // update dimension definitions in '3lnk' chunk
3431          uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();          uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3432          memcpy(&pData[0], &DimensionRegions, 4);          store32(&pData[0], DimensionRegions);
3433            int shift = 0;
3434          for (int i = 0; i < iMaxDimensions; i++) {          for (int i = 0; i < iMaxDimensions; i++) {
3435              pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;              pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3436              pData[5 + i * 8] = pDimensionDefinitions[i].bits;              pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3437              // next 2 bytes unknown              pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3438                pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3439              pData[8 + i * 8] = pDimensionDefinitions[i].zones;              pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3440              // next 3 bytes unknown              // next 3 bytes unknown, always zero?
3441    
3442                shift += pDimensionDefinitions[i].bits;
3443          }          }
3444    
3445          // update wave pool table in '3lnk' chunk          // update wave pool table in '3lnk' chunk
3446          const int iWavePoolOffset = (pFile->pVersion && pFile->pVersion->major == 3) ? 68 : 44;          const int iWavePoolOffset = versiongt2 ? 68 : 44;
3447          for (uint i = 0; i < iMaxDimensionRegions; i++) {          for (uint i = 0; i < iMaxDimensionRegions; i++) {
3448              int iWaveIndex = -1;              int iWaveIndex = -1;
3449              if (i < DimensionRegions) {              if (i < DimensionRegions) {
# Line 2206  namespace { Line 3456  namespace {
3456                          break;                          break;
3457                      }                      }
3458                  }                  }
                 if (iWaveIndex < 0) throw gig::Exception("Could not update gig::Region, could not find DimensionRegion's sample");  
3459              }              }
3460              memcpy(&pData[iWavePoolOffset + i * 4], &iWaveIndex, 4);              store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3461            }
3462    
3463            // The following chunks are just added for compatibility with the
3464            // GigaStudio software, which would show a warning if these were
3465            // missing. However currently these chunks don't cover any useful
3466            // data. So if this gig file uses any of our own gig format
3467            // extensions which would cause this gig file to be unloadable
3468            // with GSt software anyway, then just skip these GSt compatibility
3469            // chunks here as well.
3470            if (versiongt2 && !UsesAnyGigFormatExtension()) {
3471                // add 3dnm list which always seems to be empty
3472                RIFF::List* _3dnm = pCkRegion->GetSubList(LIST_TYPE_3DNM);
3473                if (!_3dnm) _3dnm = pCkRegion->AddSubList(LIST_TYPE_3DNM);
3474    
3475                // add 3ddp chunk which always seems to have 16 bytes of 0xFF
3476                RIFF::Chunk* _3ddp = pCkRegion->GetSubChunk(CHUNK_ID_3DDP);
3477                if (!_3ddp) _3ddp =  pCkRegion->AddSubChunk(CHUNK_ID_3DDP, 16);
3478                uint8_t* pData = (uint8_t*) _3ddp->LoadChunkData();
3479                for (int i = 0; i < 16; i += 4) {
3480                    store32(&pData[i], 0xFFFFFFFF);
3481                }
3482    
3483                // move 3dnm and 3ddp to the end of the region list
3484                pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3DNM), (RIFF::Chunk*)NULL);
3485                pCkRegion->MoveSubChunk(pCkRegion->GetSubChunk(CHUNK_ID_3DDP), (RIFF::Chunk*)NULL);
3486            } else {
3487                // this is intended for the user switching from GSt >= 3 version
3488                // back to an older format version, delete GSt3 chunks ...
3489                RIFF::List* _3dnm = pCkRegion->GetSubList(LIST_TYPE_3DNM);
3490                if (_3dnm) pCkRegion->DeleteSubChunk(_3dnm);
3491    
3492                RIFF::Chunk* _3ddp = pCkRegion->GetSubChunk(CHUNK_ID_3DDP);
3493                if (_3ddp) pCkRegion->DeleteSubChunk(_3ddp);
3494          }          }
3495      }      }
3496    
# Line 2216  namespace { Line 3498  namespace {
3498          RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);          RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
3499          if (_3prg) {          if (_3prg) {
3500              int dimensionRegionNr = 0;              int dimensionRegionNr = 0;
3501              RIFF::List* _3ewl = _3prg->GetFirstSubList();              size_t i = 0;
3502              while (_3ewl) {              for (RIFF::List* _3ewl = _3prg->GetSubListAt(i); _3ewl;
3503                     _3ewl = _3prg->GetSubListAt(++i))
3504                {
3505                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3506                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3507                      dimensionRegionNr++;                      dimensionRegionNr++;
3508                  }                  }
                 _3ewl = _3prg->GetNextSubList();  
3509              }              }
3510              if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");              if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
3511          }          }
3512      }      }
3513    
3514        void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3515            // update KeyRange struct and make sure regions are in correct order
3516            DLS::Region::SetKeyRange(Low, High);
3517            // update Region key table for fast lookup
3518            ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3519        }
3520    
3521      void Region::UpdateVelocityTable() {      void Region::UpdateVelocityTable() {
3522          // get velocity dimension's index          // get velocity dimension's index
3523          int veldim = -1;          int veldim = -1;
# Line 2242  namespace { Line 3532  namespace {
3532          int step = 1;          int step = 1;
3533          for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;          for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3534          int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;          int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
         int end = step * pDimensionDefinitions[veldim].zones;  
3535    
3536          // loop through all dimension regions for all dimensions except the velocity dimension          // loop through all dimension regions for all dimensions except the velocity dimension
3537          int dim[8] = { 0 };          int dim[8] = { 0 };
3538          for (int i = 0 ; i < DimensionRegions ; i++) {          for (int i = 0 ; i < DimensionRegions ; i++) {
3539                const int end = i + step * pDimensionDefinitions[veldim].zones;
3540    
3541              if (pDimensionRegions[i]->VelocityUpperLimit) {              // create a velocity table for all cases where the velocity zone is zero
3542                if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3543                    pDimensionRegions[i]->VelocityUpperLimit) {
3544                  // create the velocity table                  // create the velocity table
3545                  uint8_t* table = pDimensionRegions[i]->VelocityTable;                  uint8_t* table = pDimensionRegions[i]->VelocityTable;
3546                  if (!table) {                  if (!table) {
# Line 2257  namespace { Line 3549  namespace {
3549                  }                  }
3550                  int tableidx = 0;                  int tableidx = 0;
3551                  int velocityZone = 0;                  int velocityZone = 0;
3552                  for (int k = i ; k < end ; k += step) {                  if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
3553                      DimensionRegion *d = pDimensionRegions[k];                      for (int k = i ; k < end ; k += step) {
3554                      for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;                          DimensionRegion *d = pDimensionRegions[k];
3555                      velocityZone++;                          for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
3556                            velocityZone++;
3557                        }
3558                    } else { // gig2
3559                        for (int k = i ; k < end ; k += step) {
3560                            DimensionRegion *d = pDimensionRegions[k];
3561                            for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
3562                            velocityZone++;
3563                        }
3564                  }                  }
3565              } else {              } else {
3566                  if (pDimensionRegions[i]->VelocityTable) {                  if (pDimensionRegions[i]->VelocityTable) {
# Line 2269  namespace { Line 3569  namespace {
3569                  }                  }
3570              }              }
3571    
3572                // jump to the next case where the velocity zone is zero
3573              int j;              int j;
3574              int shift = 0;              int shift = 0;
3575              for (j = 0 ; j < Dimensions ; j++) {              for (j = 0 ; j < Dimensions ; j++) {
# Line 2305  namespace { Line 3606  namespace {
3606       *                        dimension bits limit is violated       *                        dimension bits limit is violated
3607       */       */
3608      void Region::AddDimension(dimension_def_t* pDimDef) {      void Region::AddDimension(dimension_def_t* pDimDef) {
3609            // some initial sanity checks of the given dimension definition
3610            if (pDimDef->zones < 2)
3611                throw gig::Exception("Could not add new dimension, amount of requested zones must always be at least two");
3612            if (pDimDef->bits < 1)
3613                throw gig::Exception("Could not add new dimension, amount of requested requested zone bits must always be at least one");
3614            if (pDimDef->dimension == dimension_samplechannel) {
3615                if (pDimDef->zones != 2)
3616                    throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zones must always be 2 for this dimension type");
3617                if (pDimDef->bits != 1)
3618                    throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zone bits must always be 1 for this dimension type");
3619            }
3620    
3621          // check if max. amount of dimensions reached          // check if max. amount of dimensions reached
3622          File* file = (File*) GetParent()->GetParent();          File* file = (File*) GetParent()->GetParent();
3623          const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;          const int iMaxDimensions = (file->pVersion && file->pVersion->major > 2) ? 8 : 5;
3624          if (Dimensions >= iMaxDimensions)          if (Dimensions >= iMaxDimensions)
3625              throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");              throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
3626          // check if max. amount of dimension bits reached          // check if max. amount of dimension bits reached
# Line 2324  namespace { Line 3637  namespace {
3637              if (pDimensionDefinitions[i].dimension == pDimDef->dimension)              if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3638                  throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");                  throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3639    
3640            // pos is where the new dimension should be placed, normally
3641            // last in list, except for the samplechannel dimension which
3642            // has to be first in list
3643            int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3644            int bitpos = 0;
3645            for (int i = 0 ; i < pos ; i++)
3646                bitpos += pDimensionDefinitions[i].bits;
3647    
3648            // make room for the new dimension
3649            for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3650            for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3651                for (int j = Dimensions ; j > pos ; j--) {
3652                    pDimensionRegions[i]->DimensionUpperLimits[j] =
3653                        pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3654                }
3655            }
3656    
3657          // assign definition of new dimension          // assign definition of new dimension
3658          pDimensionDefinitions[Dimensions] = *pDimDef;          pDimensionDefinitions[pos] = *pDimDef;
3659    
3660            // auto correct certain dimension definition fields (where possible)
3661            pDimensionDefinitions[pos].split_type  =
3662                __resolveSplitType(pDimensionDefinitions[pos].dimension);
3663            pDimensionDefinitions[pos].zone_size =
3664                __resolveZoneSize(pDimensionDefinitions[pos]);
3665    
3666            // create new dimension region(s) for this new dimension, and make
3667            // sure that the dimension regions are placed correctly in both the
3668            // RIFF list and the pDimensionRegions array
3669            RIFF::Chunk* moveTo = NULL;
3670            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3671            for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3672                for (int k = 0 ; k < (1 << bitpos) ; k++) {
3673                    pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3674                }
3675                for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3676                    for (int k = 0 ; k < (1 << bitpos) ; k++) {
3677                        RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3678                        if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3679                        // create a new dimension region and copy all parameter values from
3680                        // an existing dimension region
3681                        pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3682                            new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3683    
3684          // create new dimension region(s) for this new dimension                      DimensionRegions++;
3685          for (int i = 1 << iCurrentBits; i < 1 << iNewBits; i++) {                  }
3686              //TODO: maybe we should copy existing dimension regions if possible instead of simply creating new ones with default values              }
3687              RIFF::List* pNewDimRgnListChunk = pCkRegion->AddSubList(LIST_TYPE_3EWL);              moveTo = pDimensionRegions[i]->pParentList;
3688              pDimensionRegions[i] = new DimensionRegion(pNewDimRgnListChunk);          }
3689              DimensionRegions++;  
3690            // initialize the upper limits for this dimension
3691            int mask = (1 << bitpos) - 1;
3692            for (int z = 0 ; z < pDimDef->zones ; z++) {
3693                uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3694                for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3695                    pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3696                                      (z << bitpos) |
3697                                      (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3698                }
3699          }          }
3700    
3701          Dimensions++;          Dimensions++;
# Line 2375  namespace { Line 3738  namespace {
3738          for (int i = iDimensionNr + 1; i < Dimensions; i++)          for (int i = iDimensionNr + 1; i < Dimensions; i++)
3739              iUpperBits += pDimensionDefinitions[i].bits;              iUpperBits += pDimensionDefinitions[i].bits;
3740    
3741            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3742    
3743          // delete dimension regions which belong to the given dimension          // delete dimension regions which belong to the given dimension
3744          // (that is where the dimension's bit > 0)          // (that is where the dimension's bit > 0)
3745          for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {          for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
# Line 2383  namespace { Line 3748  namespace {
3748                      int iToDelete = iUpperBit    << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |                      int iToDelete = iUpperBit    << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3749                                      iObsoleteBit << iLowerBits |                                      iObsoleteBit << iLowerBits |
3750                                      iLowerBit;                                      iLowerBit;
3751    
3752                        _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3753                      delete pDimensionRegions[iToDelete];                      delete pDimensionRegions[iToDelete];
3754                      pDimensionRegions[iToDelete] = NULL;                      pDimensionRegions[iToDelete] = NULL;
3755                      DimensionRegions--;                      DimensionRegions--;
# Line 2403  namespace { Line 3770  namespace {
3770              }              }
3771          }          }
3772    
3773            // remove the this dimension from the upper limits arrays
3774            for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3775                DimensionRegion* d = pDimensionRegions[j];
3776                for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3777                    d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3778                }
3779                d->DimensionUpperLimits[Dimensions - 1] = 127;
3780            }
3781    
3782          // 'remove' dimension definition          // 'remove' dimension definition
3783          for (int i = iDimensionNr + 1; i < Dimensions; i++) {          for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3784              pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];              pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
# Line 2417  namespace { Line 3793  namespace {
3793          if (pDimDef->dimension == dimension_layer) Layers = 1;          if (pDimDef->dimension == dimension_layer) Layers = 1;
3794      }      }
3795    
3796        /** @brief Delete one split zone of a dimension (decrement zone amount).
3797         *
3798         * Instead of deleting an entire dimensions, this method will only delete
3799         * one particular split zone given by @a zone of the Region's dimension
3800         * given by @a type. So this method will simply decrement the amount of
3801         * zones by one of the dimension in question. To be able to do that, the
3802         * respective dimension must exist on this Region and it must have at least
3803         * 3 zones. All DimensionRegion objects associated with the zone will be
3804         * deleted.
3805         *
3806         * @param type - identifies the dimension where a zone shall be deleted
3807         * @param zone - index of the dimension split zone that shall be deleted
3808         * @throws gig::Exception if requested zone could not be deleted
3809         */
3810        void Region::DeleteDimensionZone(dimension_t type, int zone) {
3811            if (!Dimensions)
3812                throw gig::Exception("Could not delete dimension zone, because there is no dimension at all.");
3813            dimension_def_t* oldDef = GetDimensionDefinition(type);
3814            if (!oldDef)
3815                throw gig::Exception("Could not delete dimension zone, no such dimension of given type");
3816            if (oldDef->zones <= 2)
3817                throw gig::Exception("Could not delete dimension zone, because it would end up with only one zone.");
3818            if (zone < 0 || zone >= oldDef->zones)
3819                throw gig::Exception("Could not delete dimension zone, requested zone index out of bounds.");
3820    
3821            const int newZoneSize = oldDef->zones - 1;
3822    
3823            // create a temporary Region which just acts as a temporary copy
3824            // container and will be deleted at the end of this function and will
3825            // also not be visible through the API during this process
3826            gig::Region* tempRgn = NULL;
3827            {
3828                // adding these temporary chunks is probably not even necessary
3829                Instrument* instr = static_cast<Instrument*>(GetParent());
3830                RIFF::List* pCkInstrument = instr->pCkInstrument;
3831                RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3832                if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3833                RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3834                tempRgn = new Region(instr, rgn);
3835            }
3836    
3837            // copy this region's dimensions (with already the dimension split size
3838            // requested by the arguments of this method call) to the temporary
3839            // region, and don't use Region::CopyAssign() here for this task, since
3840            // it would also alter fast lookup helper variables here and there
3841            dimension_def_t newDef = {};
3842            for (int i = 0; i < Dimensions; ++i) {
3843                dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3844                // is this the dimension requested by the method arguments? ...
3845                if (def.dimension == type) { // ... if yes, decrement zone amount by one
3846                    def.zones = newZoneSize;
3847                    if ((1 << (def.bits - 1)) == def.zones) def.bits--;
3848                    newDef = def;
3849                }
3850                tempRgn->AddDimension(&def);
3851            }
3852            // silence clang sanitizer warning
3853            if (newDef.dimension == dimension_none)
3854                throw gig::Exception("Unexpected internal failure resolving dimension in DeleteDimensionZone() [this is a bug].");
3855    
3856            // find the dimension index in the tempRegion which is the dimension
3857            // type passed to this method (paranoidly expecting different order)
3858            int tempReducedDimensionIndex = -1;
3859            for (int d = 0; d < tempRgn->Dimensions; ++d) {
3860                if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3861                    tempReducedDimensionIndex = d;
3862                    break;
3863                }
3864            }
3865    
3866            // copy dimension regions from this region to the temporary region
3867            for (int iDst = 0; iDst < 256; ++iDst) {
3868                DimensionRegion* dstDimRgn = tempRgn->pDimensionRegions[iDst];
3869                if (!dstDimRgn) continue;
3870                std::map<dimension_t,int> dimCase;
3871                bool isValidZone = true;
3872                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3873                    const int dstBits = tempRgn->pDimensionDefinitions[d].bits;
3874                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3875                        (iDst >> baseBits) & ((1 << dstBits) - 1);
3876                    baseBits += dstBits;
3877                    // there are also DimensionRegion objects of unused zones, skip them
3878                    if (dimCase[tempRgn->pDimensionDefinitions[d].dimension] >= tempRgn->pDimensionDefinitions[d].zones) {
3879                        isValidZone = false;
3880                        break;
3881                    }
3882                }
3883                if (!isValidZone) continue;
3884                // a bit paranoid: cope with the chance that the dimensions would
3885                // have different order in source and destination regions
3886                const bool isLastZone = (dimCase[type] == newZoneSize - 1);
3887                if (dimCase[type] >= zone) dimCase[type]++;
3888                DimensionRegion* srcDimRgn = GetDimensionRegionByBit(dimCase);
3889                dstDimRgn->CopyAssign(srcDimRgn);
3890                // if this is the upper most zone of the dimension passed to this
3891                // method, then correct (raise) its upper limit to 127
3892                if (newDef.split_type == split_type_normal && isLastZone)
3893                    dstDimRgn->DimensionUpperLimits[tempReducedDimensionIndex] = 127;
3894            }
3895    
3896            // now tempRegion's dimensions and DimensionRegions basically reflect
3897            // what we wanted to get for this actual Region here, so we now just
3898            // delete and recreate the dimension in question with the new amount
3899            // zones and then copy back from tempRegion. we're actually deleting and
3900            // recreating all dimensions here, to avoid altering the precise order
3901            // of the dimensions (which would not be an error per se, but it would
3902            // cause usability issues with instrument editors)
3903            {
3904                std::vector<dimension_def_t> oldDefs;
3905                for (int i = 0; i < Dimensions; ++i)
3906                    oldDefs.push_back(pDimensionDefinitions[i]); // copy, don't reference
3907                for (int i = Dimensions - 1; i >= 0; --i)
3908                    DeleteDimension(&pDimensionDefinitions[i]);
3909                for (int i = 0; i < oldDefs.size(); ++i) {
3910                    dimension_def_t& def = oldDefs[i];
3911                    AddDimension(
3912                        (def.dimension == newDef.dimension) ? &newDef : &def
3913                    );
3914                }
3915            }
3916            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3917                DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3918                if (!srcDimRgn) continue;
3919                std::map<dimension_t,int> dimCase;
3920                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3921                    const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3922                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3923                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3924                    baseBits += srcBits;
3925                }
3926                // a bit paranoid: cope with the chance that the dimensions would
3927                // have different order in source and destination regions
3928                DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3929                if (!dstDimRgn) continue;
3930                dstDimRgn->CopyAssign(srcDimRgn);
3931            }
3932    
3933            // delete temporary region
3934            tempRgn->DeleteChunks();
3935            delete tempRgn;
3936    
3937            UpdateVelocityTable();
3938        }
3939    
3940        /** @brief Divide split zone of a dimension in two (increment zone amount).
3941         *
3942         * This will increment the amount of zones for the dimension (given by
3943         * @a type) by one. It will do so by dividing the zone (given by @a zone)
3944         * in the middle of its zone range in two. So the two zones resulting from
3945         * the zone being splitted, will be an equivalent copy regarding all their
3946         * articulation informations and sample reference. The two zones will only
3947         * differ in their zone's upper limit
3948         * (DimensionRegion::DimensionUpperLimits).
3949         *
3950         * @param type - identifies the dimension where a zone shall be splitted
3951         * @param zone - index of the dimension split zone that shall be splitted
3952         * @throws gig::Exception if requested zone could not be splitted
3953         */
3954        void Region::SplitDimensionZone(dimension_t type, int zone) {
3955            if (!Dimensions)
3956                throw gig::Exception("Could not split dimension zone, because there is no dimension at all.");
3957            dimension_def_t* oldDef = GetDimensionDefinition(type);
3958            if (!oldDef)
3959                throw gig::Exception("Could not split dimension zone, no such dimension of given type");
3960            if (zone < 0 || zone >= oldDef->zones)
3961                throw gig::Exception("Could not split dimension zone, requested zone index out of bounds.");
3962    
3963            const int newZoneSize = oldDef->zones + 1;
3964    
3965            // create a temporary Region which just acts as a temporary copy
3966            // container and will be deleted at the end of this function and will
3967            // also not be visible through the API during this process
3968            gig::Region* tempRgn = NULL;
3969            {
3970                // adding these temporary chunks is probably not even necessary
3971                Instrument* instr = static_cast<Instrument*>(GetParent());
3972                RIFF::List* pCkInstrument = instr->pCkInstrument;
3973                RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3974                if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3975                RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3976                tempRgn = new Region(instr, rgn);
3977            }
3978    
3979            // copy this region's dimensions (with already the dimension split size
3980            // requested by the arguments of this method call) to the temporary
3981            // region, and don't use Region::CopyAssign() here for this task, since
3982            // it would also alter fast lookup helper variables here and there
3983            dimension_def_t newDef = {};
3984            for (int i = 0; i < Dimensions; ++i) {
3985                dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3986                // is this the dimension requested by the method arguments? ...
3987                if (def.dimension == type) { // ... if yes, increment zone amount by one
3988                    def.zones = newZoneSize;
3989                    if ((1 << oldDef->bits) < newZoneSize) def.bits++;
3990                    newDef = def;
3991                }
3992                tempRgn->AddDimension(&def);
3993            }
3994            // silence clang sanitizer warning
3995            if (newDef.dimension == dimension_none)
3996                throw gig::Exception("Unexpected internal failure resolving dimension in SplitDimensionZone() [this is a bug].");
3997    
3998            // find the dimension index in the tempRegion which is the dimension
3999            // type passed to this method (paranoidly expecting different order)
4000            int tempIncreasedDimensionIndex = -1;
4001            for (int d = 0; d < tempRgn->Dimensions; ++d) {
4002                if (tempRgn->pDimensionDefinitions[d].dimension == type) {
4003                    tempIncreasedDimensionIndex = d;
4004                    break;
4005                }
4006            }
4007    
4008            // copy dimension regions from this region to the temporary region
4009            for (int iSrc = 0; iSrc < 256; ++iSrc) {
4010                DimensionRegion* srcDimRgn = pDimensionRegions[iSrc];
4011                if (!srcDimRgn) continue;
4012                std::map<dimension_t,int> dimCase;
4013                bool isValidZone = true;
4014                for (int d = 0, baseBits = 0; d < Dimensions; ++d) {
4015                    const int srcBits = pDimensionDefinitions[d].bits;
4016                    dimCase[pDimensionDefinitions[d].dimension] =
4017                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
4018                    // there are also DimensionRegion objects for unused zones, skip them
4019                    if (dimCase[pDimensionDefinitions[d].dimension] >= pDimensionDefinitions[d].zones) {
4020                        isValidZone = false;
4021                        break;
4022                    }
4023                    baseBits += srcBits;
4024                }
4025                if (!isValidZone) continue;
4026                // a bit paranoid: cope with the chance that the dimensions would
4027                // have different order in source and destination regions            
4028                if (dimCase[type] > zone) dimCase[type]++;
4029                DimensionRegion* dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
4030                dstDimRgn->CopyAssign(srcDimRgn);
4031                // if this is the requested zone to be splitted, then also copy
4032                // the source DimensionRegion to the newly created target zone
4033                // and set the old zones upper limit lower
4034                if (dimCase[type] == zone) {
4035                    // lower old zones upper limit
4036                    if (newDef.split_type == split_type_normal) {
4037                        const int high =
4038                            dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex];
4039                        int low = 0;
4040                        if (zone > 0) {
4041                            std::map<dimension_t,int> lowerCase = dimCase;
4042                            lowerCase[type]--;
4043                            DimensionRegion* dstDimRgnLow = tempRgn->GetDimensionRegionByBit(lowerCase);
4044                            low = dstDimRgnLow->DimensionUpperLimits[tempIncreasedDimensionIndex];
4045                        }
4046                        dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex] = low + (high - low) / 2;
4047                    }
4048                    // fill the newly created zone of the divided zone as well
4049                    dimCase[type]++;
4050                    dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
4051                    dstDimRgn->CopyAssign(srcDimRgn);
4052                }
4053            }
4054    
4055            // now tempRegion's dimensions and DimensionRegions basically reflect
4056            // what we wanted to get for this actual Region here, so we now just
4057            // delete and recreate the dimension in question with the new amount
4058            // zones and then copy back from tempRegion. we're actually deleting and
4059            // recreating all dimensions here, to avoid altering the precise order
4060            // of the dimensions (which would not be an error per se, but it would
4061            // cause usability issues with instrument editors)
4062            {
4063                std::vector<dimension_def_t> oldDefs;
4064                for (int i = 0; i < Dimensions; ++i)
4065                    oldDefs.push_back(pDimensionDefinitions[i]); // copy, don't reference
4066                for (int i = Dimensions - 1; i >= 0; --i)
4067                    DeleteDimension(&pDimensionDefinitions[i]);
4068                for (int i = 0; i < oldDefs.size(); ++i) {
4069                    dimension_def_t& def = oldDefs[i];
4070                    AddDimension(
4071                        (def.dimension == newDef.dimension) ? &newDef : &def
4072                    );
4073                }
4074            }
4075            for (int iSrc = 0; iSrc < 256; ++iSrc) {
4076                DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
4077                if (!srcDimRgn) continue;
4078                std::map<dimension_t,int> dimCase;
4079                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
4080                    const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
4081                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
4082                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
4083                    baseBits += srcBits;
4084                }
4085                // a bit paranoid: cope with the chance that the dimensions would
4086                // have different order in source and destination regions
4087                DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
4088                if (!dstDimRgn) continue;
4089                dstDimRgn->CopyAssign(srcDimRgn);
4090            }
4091    
4092            // delete temporary region
4093            tempRgn->DeleteChunks();
4094            delete tempRgn;
4095    
4096            UpdateVelocityTable();
4097        }
4098    
4099        /** @brief Change type of an existing dimension.
4100         *
4101         * Alters the dimension type of a dimension already existing on this
4102         * region. If there is currently no dimension on this Region with type
4103         * @a oldType, then this call with throw an Exception. Likewise there are
4104         * cases where the requested dimension type cannot be performed. For example
4105         * if the new dimension type shall be gig::dimension_samplechannel, and the
4106         * current dimension has more than 2 zones. In such cases an Exception is
4107         * thrown as well.
4108         *
4109         * @param oldType - identifies the existing dimension to be changed
4110         * @param newType - to which dimension type it should be changed to
4111         * @throws gig::Exception if requested change cannot be performed
4112         */
4113        void Region::SetDimensionType(dimension_t oldType, dimension_t newType) {
4114            if (oldType == newType) return;
4115            dimension_def_t* def = GetDimensionDefinition(oldType);
4116            if (!def)
4117                throw gig::Exception("No dimension with provided old dimension type exists on this region");
4118            if (newType == dimension_samplechannel && def->zones != 2)
4119                throw gig::Exception("Cannot change to dimension type 'sample channel', because existing dimension does not have 2 zones");
4120            if (GetDimensionDefinition(newType))
4121                throw gig::Exception("There is already a dimension with requested new dimension type on this region");
4122            def->dimension  = newType;
4123            def->split_type = __resolveSplitType(newType);
4124        }
4125    
4126        DimensionRegion* Region::GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase) {
4127            uint8_t bits[8] = {};
4128            for (std::map<dimension_t,int>::const_iterator it = DimCase.begin();
4129                 it != DimCase.end(); ++it)
4130            {
4131                for (int d = 0; d < Dimensions; ++d) {
4132                    if (pDimensionDefinitions[d].dimension == it->first) {
4133                        bits[d] = it->second;
4134                        goto nextDimCaseSlice;
4135                    }
4136                }
4137                assert(false); // do crash ... too harsh maybe ? ignore it instead ?
4138                nextDimCaseSlice:
4139                ; // noop
4140            }
4141            return GetDimensionRegionByBit(bits);
4142        }
4143    
4144        /**
4145         * Searches in the current Region for a dimension of the given dimension
4146         * type and returns the precise configuration of that dimension in this
4147         * Region.
4148         *
4149         * @param type - dimension type of the sought dimension
4150         * @returns dimension definition or NULL if there is no dimension with
4151         *          sought type in this Region.
4152         */
4153        dimension_def_t* Region::GetDimensionDefinition(dimension_t type) {
4154            for (int i = 0; i < Dimensions; ++i)
4155                if (pDimensionDefinitions[i].dimension == type)
4156                    return &pDimensionDefinitions[i];
4157            return NULL;
4158        }
4159    
4160      Region::~Region() {      Region::~Region() {
4161          for (int i = 0; i < 256; i++) {          for (int i = 0; i < 256; i++) {
4162              if (pDimensionRegions[i]) delete pDimensionRegions[i];              if (pDimensionRegions[i]) delete pDimensionRegions[i];
# Line 2444  namespace { Line 4184  namespace {
4184      DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {      DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
4185          uint8_t bits;          uint8_t bits;
4186          int veldim = -1;          int veldim = -1;
4187          int velbitpos;          int velbitpos = 0;
4188          int bitpos = 0;          int bitpos = 0;
4189          int dimregidx = 0;          int dimregidx = 0;
4190          for (uint i = 0; i < Dimensions; i++) {          for (uint i = 0; i < Dimensions; i++) {
# Line 2455  namespace { Line 4195  namespace {
4195              } else {              } else {
4196                  switch (pDimensionDefinitions[i].split_type) {                  switch (pDimensionDefinitions[i].split_type) {
4197                      case split_type_normal:                      case split_type_normal:
4198                          bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);                          if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
4199                                // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
4200                                for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
4201                                    if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
4202                                }
4203                            } else {
4204                                // gig2: evenly sized zones
4205                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
4206                            }
4207                          break;                          break;
4208                      case split_type_bit: // the value is already the sought dimension bit number                      case split_type_bit: // the value is already the sought dimension bit number
4209                          const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;                          const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
# Line 2466  namespace { Line 4214  namespace {
4214              }              }
4215              bitpos += pDimensionDefinitions[i].bits;              bitpos += pDimensionDefinitions[i].bits;
4216          }          }
4217          DimensionRegion* dimreg = pDimensionRegions[dimregidx];          DimensionRegion* dimreg = pDimensionRegions[dimregidx & 255];
4218            if (!dimreg) return NULL;
4219          if (veldim != -1) {          if (veldim != -1) {
4220              // (dimreg is now the dimension region for the lowest velocity)              // (dimreg is now the dimension region for the lowest velocity)
4221              if (dimreg->VelocityUpperLimit) // custom defined zone ranges              if (dimreg->VelocityTable) // custom defined zone ranges
4222                  bits = dimreg->VelocityTable[DimValues[veldim]];                  bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4223              else // normal split type              else // normal split type
4224                  bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);                  bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4225    
4226              dimregidx |= bits << velbitpos;              const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4227              dimreg = pDimensionRegions[dimregidx];              dimregidx |= (bits & limiter_mask) << velbitpos;
4228                dimreg = pDimensionRegions[dimregidx & 255];
4229          }          }
4230          return dimreg;          return dimreg;
4231      }      }
4232    
4233        int Region::GetDimensionRegionIndexByValue(const uint DimValues[8]) {
4234            uint8_t bits;
4235            int veldim = -1;
4236            int velbitpos = 0;
4237            int bitpos = 0;
4238            int dimregidx = 0;
4239            for (uint i = 0; i < Dimensions; i++) {
4240                if (pDimensionDefinitions[i].dimension == dimension_velocity) {
4241                    // the velocity dimension must be handled after the other dimensions
4242                    veldim = i;
4243                    velbitpos = bitpos;
4244                } else {
4245                    switch (pDimensionDefinitions[i].split_type) {
4246                        case split_type_normal:
4247                            if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
4248                                // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
4249                                for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
4250                                    if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
4251                                }
4252                            } else {
4253                                // gig2: evenly sized zones
4254                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
4255                            }
4256                            break;
4257                        case split_type_bit: // the value is already the sought dimension bit number
4258                            const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
4259                            bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
4260                            break;
4261                    }
4262                    dimregidx |= bits << bitpos;
4263                }
4264                bitpos += pDimensionDefinitions[i].bits;
4265            }
4266            dimregidx &= 255;
4267            DimensionRegion* dimreg = pDimensionRegions[dimregidx];
4268            if (!dimreg) return -1;
4269            if (veldim != -1) {
4270                // (dimreg is now the dimension region for the lowest velocity)
4271                if (dimreg->VelocityTable) // custom defined zone ranges
4272                    bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4273                else // normal split type
4274                    bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4275    
4276                const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4277                dimregidx |= (bits & limiter_mask) << velbitpos;
4278                dimregidx &= 255;
4279            }
4280            return dimregidx;
4281        }
4282    
4283      /**      /**
4284       * Returns the appropriate DimensionRegion for the given dimension bit       * Returns the appropriate DimensionRegion for the given dimension bit
4285       * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>       * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
# Line 2518  namespace { Line 4318  namespace {
4318          if ((int32_t)WavePoolTableIndex == -1) return NULL;          if ((int32_t)WavePoolTableIndex == -1) return NULL;
4319          File* file = (File*) GetParent()->GetParent();          File* file = (File*) GetParent()->GetParent();
4320          if (!file->pWavePoolTable) return NULL;          if (!file->pWavePoolTable) return NULL;
4321          unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];          if (WavePoolTableIndex + 1 > file->WavePoolCount) return NULL;
4322          unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];          // for new files or files >= 2 GB use 64 bit wave pool offsets
4323          Sample* sample = file->GetFirstSample(pProgress);          if (file->pRIFF->IsNew() || (file->pRIFF->GetCurrentFileSize() >> 31)) {
4324          while (sample) {              // use 64 bit wave pool offsets (treating this as large file)
4325              if (sample->ulWavePoolOffset == soughtoffset &&              uint64_t soughtoffset =
4326                  sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);                  uint64_t(file->pWavePoolTable[WavePoolTableIndex]) |
4327              sample = file->GetNextSample();                  uint64_t(file->pWavePoolTableHi[WavePoolTableIndex]) << 32;
4328                Sample* sample = file->GetFirstSample(pProgress);
4329                while (sample) {
4330                    if (sample->ullWavePoolOffset == soughtoffset)
4331                        return static_cast<gig::Sample*>(sample);
4332                    sample = file->GetNextSample();
4333                }
4334            } else {
4335                // use extension files and 32 bit wave pool offsets
4336                file_offset_t soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
4337                file_offset_t soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
4338                Sample* sample = file->GetFirstSample(pProgress);
4339                while (sample) {
4340                    if (sample->ullWavePoolOffset == soughtoffset &&
4341                        sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
4342                    sample = file->GetNextSample();
4343                }
4344          }          }
4345          return NULL;          return NULL;
4346      }      }
4347        
4348        /**
4349         * Make a (semi) deep copy of the Region object given by @a orig
4350         * and assign it to this object.
4351         *
4352         * Note that all sample pointers referenced by @a orig are simply copied as
4353         * memory address. Thus the respective samples are shared, not duplicated!
4354         *
4355         * @param orig - original Region object to be copied from
4356         */
4357        void Region::CopyAssign(const Region* orig) {
4358            CopyAssign(orig, NULL);
4359        }
4360        
4361        /**
4362         * Make a (semi) deep copy of the Region object given by @a orig and
4363         * assign it to this object
4364         *
4365         * @param mSamples - crosslink map between the foreign file's samples and
4366         *                   this file's samples
4367         */
4368        void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
4369            // handle base classes
4370            DLS::Region::CopyAssign(orig);
4371            
4372            if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
4373                pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
4374            }
4375            
4376            // handle own member variables
4377            for (int i = Dimensions - 1; i >= 0; --i) {
4378                DeleteDimension(&pDimensionDefinitions[i]);
4379            }
4380            Layers = 0; // just to be sure
4381            for (int i = 0; i < orig->Dimensions; i++) {
4382                // we need to copy the dim definition here, to avoid the compiler
4383                // complaining about const-ness issue
4384                dimension_def_t def = orig->pDimensionDefinitions[i];
4385                AddDimension(&def);
4386            }
4387            for (int i = 0; i < 256; i++) {
4388                if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
4389                    pDimensionRegions[i]->CopyAssign(
4390                        orig->pDimensionRegions[i],
4391                        mSamples
4392                    );
4393                }
4394            }
4395            Layers = orig->Layers;
4396        }
4397    
4398        /**
4399         * Returns @c true in case this Region object uses any gig format
4400         * extension, that is e.g. whether any DimensionRegion object currently
4401         * has any setting effective that would require our "LSDE" RIFF chunk to
4402         * be stored to the gig file.
4403         *
4404         * Right now this is a private method. It is considerable though this method
4405         * to become (in slightly modified form) a public API method in future, i.e.
4406         * to allow instrument editors to visualize and/or warn the user of any gig
4407         * format extension being used. See also comments on
4408         * DimensionRegion::UsesAnyGigFormatExtension() for details about such a
4409         * potential public API change in future.
4410         */
4411        bool Region::UsesAnyGigFormatExtension() const {
4412            for (int i = 0; i < 256; i++) {
4413                if (pDimensionRegions[i]) {
4414                    if (pDimensionRegions[i]->UsesAnyGigFormatExtension())
4415                        return true;
4416                }
4417            }
4418            return false;
4419        }
4420    
4421    
4422    // *************** MidiRule ***************
4423    // *
4424    
4425        MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
4426            _3ewg->SetPos(36);
4427            Triggers = _3ewg->ReadUint8();
4428            _3ewg->SetPos(40);
4429            ControllerNumber = _3ewg->ReadUint8();
4430            _3ewg->SetPos(46);
4431            for (int i = 0 ; i < Triggers ; i++) {
4432                pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
4433                pTriggers[i].Descending = _3ewg->ReadUint8();
4434                pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
4435                pTriggers[i].Key = _3ewg->ReadUint8();
4436                pTriggers[i].NoteOff = _3ewg->ReadUint8();
4437                pTriggers[i].Velocity = _3ewg->ReadUint8();
4438                pTriggers[i].OverridePedal = _3ewg->ReadUint8();
4439                _3ewg->ReadUint8();
4440            }
4441        }
4442    
4443        MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
4444            ControllerNumber(0),
4445            Triggers(0) {
4446        }
4447    
4448        void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
4449            pData[32] = 4;
4450            pData[33] = 16;
4451            pData[36] = Triggers;
4452            pData[40] = ControllerNumber;
4453            for (int i = 0 ; i < Triggers ; i++) {
4454                pData[46 + i * 8] = pTriggers[i].TriggerPoint;
4455                pData[47 + i * 8] = pTriggers[i].Descending;
4456                pData[48 + i * 8] = pTriggers[i].VelSensitivity;
4457                pData[49 + i * 8] = pTriggers[i].Key;
4458                pData[50 + i * 8] = pTriggers[i].NoteOff;
4459                pData[51 + i * 8] = pTriggers[i].Velocity;
4460                pData[52 + i * 8] = pTriggers[i].OverridePedal;
4461            }
4462        }
4463    
4464        MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
4465            _3ewg->SetPos(36);
4466            LegatoSamples = _3ewg->ReadUint8(); // always 12
4467            _3ewg->SetPos(40);
4468            BypassUseController = _3ewg->ReadUint8();
4469            BypassKey = _3ewg->ReadUint8();
4470            BypassController = _3ewg->ReadUint8();
4471            ThresholdTime = _3ewg->ReadUint16();
4472            _3ewg->ReadInt16();
4473            ReleaseTime = _3ewg->ReadUint16();
4474            _3ewg->ReadInt16();
4475            KeyRange.low = _3ewg->ReadUint8();
4476            KeyRange.high = _3ewg->ReadUint8();
4477            _3ewg->SetPos(64);
4478            ReleaseTriggerKey = _3ewg->ReadUint8();
4479            AltSustain1Key = _3ewg->ReadUint8();
4480            AltSustain2Key = _3ewg->ReadUint8();
4481        }
4482    
4483        MidiRuleLegato::MidiRuleLegato() :
4484            LegatoSamples(12),
4485            BypassUseController(false),
4486            BypassKey(0),
4487            BypassController(1),
4488            ThresholdTime(20),
4489            ReleaseTime(20),
4490            ReleaseTriggerKey(0),
4491            AltSustain1Key(0),
4492            AltSustain2Key(0)
4493        {
4494            KeyRange.low = KeyRange.high = 0;
4495        }
4496    
4497        void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
4498            pData[32] = 0;
4499            pData[33] = 16;
4500            pData[36] = LegatoSamples;
4501            pData[40] = BypassUseController;
4502            pData[41] = BypassKey;
4503            pData[42] = BypassController;
4504            store16(&pData[43], ThresholdTime);
4505            store16(&pData[47], ReleaseTime);
4506            pData[51] = KeyRange.low;
4507            pData[52] = KeyRange.high;
4508            pData[64] = ReleaseTriggerKey;
4509            pData[65] = AltSustain1Key;
4510            pData[66] = AltSustain2Key;
4511        }
4512    
4513        MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
4514            _3ewg->SetPos(36);
4515            Articulations = _3ewg->ReadUint8();
4516            int flags = _3ewg->ReadUint8();
4517            Polyphonic = flags & 8;
4518            Chained = flags & 4;
4519            Selector = (flags & 2) ? selector_controller :
4520                (flags & 1) ? selector_key_switch : selector_none;
4521            Patterns = _3ewg->ReadUint8();
4522            _3ewg->ReadUint8(); // chosen row
4523            _3ewg->ReadUint8(); // unknown
4524            _3ewg->ReadUint8(); // unknown
4525            _3ewg->ReadUint8(); // unknown
4526            KeySwitchRange.low = _3ewg->ReadUint8();
4527            KeySwitchRange.high = _3ewg->ReadUint8();
4528            Controller = _3ewg->ReadUint8();
4529            PlayRange.low = _3ewg->ReadUint8();
4530            PlayRange.high = _3ewg->ReadUint8();
4531    
4532            int n = std::min(int(Articulations), 32);
4533            for (int i = 0 ; i < n ; i++) {
4534                _3ewg->ReadString(pArticulations[i], 32);
4535            }
4536            _3ewg->SetPos(1072);
4537            n = std::min(int(Patterns), 32);
4538            for (int i = 0 ; i < n ; i++) {
4539                _3ewg->ReadString(pPatterns[i].Name, 16);
4540                pPatterns[i].Size = _3ewg->ReadUint8();
4541                _3ewg->Read(&pPatterns[i][0], 1, 32);
4542            }
4543        }
4544    
4545        MidiRuleAlternator::MidiRuleAlternator() :
4546            Articulations(0),
4547            Patterns(0),
4548            Selector(selector_none),
4549            Controller(0),
4550            Polyphonic(false),
4551            Chained(false)
4552        {
4553            PlayRange.low = PlayRange.high = 0;
4554            KeySwitchRange.low = KeySwitchRange.high = 0;
4555        }
4556    
4557        void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
4558            pData[32] = 3;
4559            pData[33] = 16;
4560            pData[36] = Articulations;
4561            pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
4562                (Selector == selector_controller ? 2 :
4563                 (Selector == selector_key_switch ? 1 : 0));
4564            pData[38] = Patterns;
4565    
4566            pData[43] = KeySwitchRange.low;
4567            pData[44] = KeySwitchRange.high;
4568            pData[45] = Controller;
4569            pData[46] = PlayRange.low;
4570            pData[47] = PlayRange.high;
4571    
4572            char* str = reinterpret_cast<char*>(pData);
4573            int pos = 48;
4574            int n = std::min(int(Articulations), 32);
4575            for (int i = 0 ; i < n ; i++, pos += 32) {
4576                strncpy(&str[pos], pArticulations[i].c_str(), 32);
4577            }
4578    
4579            pos = 1072;
4580            n = std::min(int(Patterns), 32);
4581            for (int i = 0 ; i < n ; i++, pos += 49) {
4582                strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
4583                pData[pos + 16] = pPatterns[i].Size;
4584                memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
4585            }
4586        }
4587    
4588    // *************** Script ***************
4589    // *
4590    
4591        Script::Script(ScriptGroup* group, RIFF::Chunk* ckScri) {
4592            pGroup = group;
4593            pChunk = ckScri;
4594            if (ckScri) { // object is loaded from file ...
4595                ckScri->SetPos(0);
4596    
4597                // read header
4598                uint32_t headerSize = ckScri->ReadUint32();
4599                Compression = (Compression_t) ckScri->ReadUint32();
4600                Encoding    = (Encoding_t) ckScri->ReadUint32();
4601                Language    = (Language_t) ckScri->ReadUint32();
4602                Bypass      = ckScri->ReadUint32() & 1;
4603                crc         = ckScri->ReadUint32();
4604                uint32_t nameSize = ckScri->ReadUint32();
4605                Name.resize(nameSize, ' ');
4606                for (int i = 0; i < nameSize; ++i)
4607                    Name[i] = ckScri->ReadUint8();
4608                // check if an uuid was already stored along with this script
4609                if (headerSize >= 6*sizeof(int32_t) + nameSize + 16) { // yes ...
4610                    for (uint i = 0; i < 16; ++i) {
4611                        Uuid[i] = ckScri->ReadUint8();
4612                    }
4613                } else { // no uuid yet, generate one now ...
4614                    GenerateUuid();
4615                }
4616                // to handle potential future extensions of the header
4617                ckScri->SetPos(sizeof(int32_t) + headerSize);
4618                // read actual script data
4619                uint32_t scriptSize = uint32_t(ckScri->GetSize() - ckScri->GetPos());
4620                data.resize(scriptSize);
4621                for (int i = 0; i < scriptSize; ++i)
4622                    data[i] = ckScri->ReadUint8();
4623            } else { // this is a new script object, so just initialize it as such ...
4624                Compression = COMPRESSION_NONE;
4625                Encoding = ENCODING_ASCII;
4626                Language = LANGUAGE_NKSP;
4627                Bypass   = false;
4628                crc      = 0;
4629                Name     = "Unnamed Script";
4630                GenerateUuid();
4631            }
4632        }
4633    
4634        Script::~Script() {
4635        }
4636    
4637        /**
4638         * Returns the current script (i.e. as source code) in text format.
4639         */
4640        String Script::GetScriptAsText() {
4641            String s;
4642            s.resize(data.size(), ' ');
4643            memcpy(&s[0], &data[0], data.size());
4644            return s;
4645        }
4646    
4647        /**
4648         * Replaces the current script with the new script source code text given
4649         * by @a text.
4650         *
4651         * @param text - new script source code
4652         */
4653        void Script::SetScriptAsText(const String& text) {
4654            data.resize(text.size());
4655            memcpy(&data[0], &text[0], text.size());
4656        }
4657    
4658        /** @brief Remove all RIFF chunks associated with this Script object.
4659         *
4660         * At the moment Script::DeleteChunks() does nothing. It is
4661         * recommended to call this method explicitly though from deriving classes's
4662         * own overridden implementation of this method to avoid potential future
4663         * compatiblity issues.
4664         *
4665         * See DLS::Storage::DeleteChunks() for details.
4666         */
4667        void Script::DeleteChunks() {
4668        }
4669    
4670        /**
4671         * Apply this script to the respective RIFF chunks. You have to call
4672         * File::Save() to make changes persistent.
4673         *
4674         * Usually there is absolutely no need to call this method explicitly.
4675         * It will be called automatically when File::Save() was called.
4676         *
4677         * @param pProgress - callback function for progress notification
4678         */
4679        void Script::UpdateChunks(progress_t* pProgress) {
4680            // recalculate CRC32 check sum
4681            __resetCRC(crc);
4682            __calculateCRC(&data[0], data.size(), crc);
4683            __finalizeCRC(crc);
4684            // make sure chunk exists and has the required size
4685            const file_offset_t chunkSize =
4686                (file_offset_t) 7*sizeof(int32_t) + Name.size() + 16 + data.size();
4687            if (!pChunk) pChunk = pGroup->pList->AddSubChunk(CHUNK_ID_SCRI, chunkSize);
4688            else pChunk->Resize(chunkSize);
4689            // fill the chunk data to be written to disk
4690            uint8_t* pData = (uint8_t*) pChunk->LoadChunkData();
4691            int pos = 0;
4692            store32(&pData[pos], uint32_t(6*sizeof(int32_t) + Name.size() + 16)); // total header size
4693            pos += sizeof(int32_t);
4694            store32(&pData[pos], Compression);
4695            pos += sizeof(int32_t);
4696            store32(&pData[pos], Encoding);
4697            pos += sizeof(int32_t);
4698            store32(&pData[pos], Language);
4699            pos += sizeof(int32_t);
4700            store32(&pData[pos], Bypass ? 1 : 0);
4701            pos += sizeof(int32_t);
4702            store32(&pData[pos], crc);
4703            pos += sizeof(int32_t);
4704            store32(&pData[pos], (uint32_t) Name.size());
4705            pos += sizeof(int32_t);
4706            for (int i = 0; i < Name.size(); ++i, ++pos)
4707                pData[pos] = Name[i];
4708            for (int i = 0; i < 16; ++i, ++pos)
4709                pData[pos] = Uuid[i];
4710            for (int i = 0; i < data.size(); ++i, ++pos)
4711                pData[pos] = data[i];
4712        }
4713    
4714        /**
4715         * Generate a new Universally Unique Identifier (UUID) for this script.
4716         */
4717        void Script::GenerateUuid() {
4718            DLS::dlsid_t dlsid;
4719            DLS::Resource::GenerateDLSID(&dlsid);
4720            Uuid[0]  = dlsid.ulData1       & 0xff;
4721            Uuid[1]  = dlsid.ulData1 >>  8 & 0xff;
4722            Uuid[2]  = dlsid.ulData1 >> 16 & 0xff;
4723            Uuid[3]  = dlsid.ulData1 >> 24 & 0xff;
4724            Uuid[4]  = dlsid.usData2       & 0xff;
4725            Uuid[5]  = dlsid.usData2 >>  8 & 0xff;
4726            Uuid[6]  = dlsid.usData3       & 0xff;
4727            Uuid[7]  = dlsid.usData3 >>  8 & 0xff;
4728            Uuid[8]  = dlsid.abData[0];
4729            Uuid[9]  = dlsid.abData[1];
4730            Uuid[10] = dlsid.abData[2];
4731            Uuid[11] = dlsid.abData[3];
4732            Uuid[12] = dlsid.abData[4];
4733            Uuid[13] = dlsid.abData[5];
4734            Uuid[14] = dlsid.abData[6];
4735            Uuid[15] = dlsid.abData[7];
4736        }
4737    
4738        /**
4739         * Move this script from its current ScriptGroup to another ScriptGroup
4740         * given by @a pGroup.
4741         *
4742         * @param pGroup - script's new group
4743         */
4744        void Script::SetGroup(ScriptGroup* pGroup) {
4745            if (this->pGroup == pGroup) return;
4746            if (pChunk)
4747                pChunk->GetParent()->MoveSubChunk(pChunk, pGroup->pList);
4748            this->pGroup = pGroup;
4749        }
4750    
4751        /**
4752         * Returns the script group this script currently belongs to. Each script
4753         * is a member of exactly one ScriptGroup.
4754         *
4755         * @returns current script group
4756         */
4757        ScriptGroup* Script::GetGroup() const {
4758            return pGroup;
4759        }
4760    
4761        /**
4762         * Make a (semi) deep copy of the Script object given by @a orig
4763         * and assign it to this object. Note: the ScriptGroup this Script
4764         * object belongs to remains untouched by this call.
4765         *
4766         * @param orig - original Script object to be copied from
4767         */
4768        void Script::CopyAssign(const Script* orig) {
4769            Name        = orig->Name;
4770            Compression = orig->Compression;
4771            Encoding    = orig->Encoding;
4772            Language    = orig->Language;
4773            Bypass      = orig->Bypass;
4774            data        = orig->data;
4775        }
4776    
4777        void Script::RemoveAllScriptReferences() {
4778            File* pFile = pGroup->pFile;
4779            for (int i = 0; pFile->GetInstrument(i); ++i) {
4780                Instrument* instr = pFile->GetInstrument(i);
4781                instr->RemoveScript(this);
4782            }
4783        }
4784    
4785    // *************** ScriptGroup ***************
4786    // *
4787    
4788        ScriptGroup::ScriptGroup(File* file, RIFF::List* lstRTIS) {
4789            pFile = file;
4790            pList = lstRTIS;
4791            pScripts = NULL;
4792            if (lstRTIS) {
4793                RIFF::Chunk* ckName = lstRTIS->GetSubChunk(CHUNK_ID_LSNM);
4794                ::LoadString(ckName, Name);
4795            } else {
4796                Name = "Default Group";
4797            }
4798        }
4799    
4800        ScriptGroup::~ScriptGroup() {
4801            if (pScripts) {
4802                std::list<Script*>::iterator iter = pScripts->begin();
4803                std::list<Script*>::iterator end  = pScripts->end();
4804                while (iter != end) {
4805                    delete *iter;
4806                    ++iter;
4807                }
4808                delete pScripts;
4809            }
4810        }
4811    
4812        /** @brief Remove all RIFF chunks associated with this ScriptGroup object.
4813         *
4814         * At the moment ScriptGroup::DeleteChunks() does nothing. It is
4815         * recommended to call this method explicitly though from deriving classes's
4816         * own overridden implementation of this method to avoid potential future
4817         * compatiblity issues.
4818         *
4819         * See DLS::Storage::DeleteChunks() for details.
4820         */
4821        void ScriptGroup::DeleteChunks() {
4822        }
4823    
4824        /**
4825         * Apply this script group to the respective RIFF chunks. You have to call
4826         * File::Save() to make changes persistent.
4827         *
4828         * Usually there is absolutely no need to call this method explicitly.
4829         * It will be called automatically when File::Save() was called.
4830         *
4831         * @param pProgress - callback function for progress notification
4832         */
4833        void ScriptGroup::UpdateChunks(progress_t* pProgress) {
4834            if (pScripts) {
4835                if (!pList)
4836                    pList = pFile->pRIFF->GetSubList(LIST_TYPE_3LS)->AddSubList(LIST_TYPE_RTIS);
4837    
4838                // now store the name of this group as <LSNM> chunk as subchunk of the <RTIS> list chunk
4839                ::SaveString(CHUNK_ID_LSNM, NULL, pList, Name, String("Unnamed Group"), true, 64);
4840    
4841                for (std::list<Script*>::iterator it = pScripts->begin();
4842                     it != pScripts->end(); ++it)
4843                {
4844                    (*it)->UpdateChunks(pProgress);
4845                }
4846            }
4847        }
4848    
4849        /** @brief Get instrument script.
4850         *
4851         * Returns the real-time instrument script with the given index.
4852         *
4853         * @param index - number of the sought script (0..n)
4854         * @returns sought script or NULL if there's no such script
4855         */
4856        Script* ScriptGroup::GetScript(uint index) {
4857            if (!pScripts) LoadScripts();
4858            std::list<Script*>::iterator it = pScripts->begin();
4859            for (uint i = 0; it != pScripts->end(); ++i, ++it)
4860                if (i == index) return *it;
4861            return NULL;
4862        }
4863    
4864        /** @brief Add new instrument script.
4865         *
4866         * Adds a new real-time instrument script to the file. The script is not
4867         * actually used / executed unless it is referenced by an instrument to be
4868         * used. This is similar to samples, which you can add to a file, without
4869         * an instrument necessarily actually using it.
4870         *
4871         * You have to call Save() to make this persistent to the file.
4872         *
4873         * @return new empty script object
4874         */
4875        Script* ScriptGroup::AddScript() {
4876            if (!pScripts) LoadScripts();
4877            Script* pScript = new Script(this, NULL);
4878            pScripts->push_back(pScript);
4879            return pScript;
4880        }
4881    
4882        /** @brief Delete an instrument script.
4883         *
4884         * This will delete the given real-time instrument script. References of
4885         * instruments that are using that script will be removed accordingly.
4886         *
4887         * You have to call Save() to make this persistent to the file.
4888         *
4889         * @param pScript - script to delete
4890         * @throws gig::Exception if given script could not be found
4891         */
4892        void ScriptGroup::DeleteScript(Script* pScript) {
4893            if (!pScripts) LoadScripts();
4894            std::list<Script*>::iterator iter =
4895                find(pScripts->begin(), pScripts->end(), pScript);
4896            if (iter == pScripts->end())
4897                throw gig::Exception("Could not delete script, could not find given script");
4898            pScripts->erase(iter);
4899            pScript->RemoveAllScriptReferences();
4900            if (pScript->pChunk)
4901                pScript->pChunk->GetParent()->DeleteSubChunk(pScript->pChunk);
4902            delete pScript;
4903        }
4904    
4905        void ScriptGroup::LoadScripts() {
4906            if (pScripts) return;
4907            pScripts = new std::list<Script*>;
4908            if (!pList) return;
4909    
4910            size_t i = 0;
4911            for (RIFF::Chunk* ck = pList->GetSubChunkAt(i); ck;
4912                 ck = pList->GetSubChunkAt(++i))
4913            {
4914                if (ck->GetChunkID() == CHUNK_ID_SCRI) {
4915                    pScripts->push_back(new Script(this, ck));
4916                }
4917            }
4918        }
4919    
4920  // *************** Instrument ***************  // *************** Instrument ***************
4921  // *  // *
4922    
4923      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
4924          pInfo->UseFixedLengthStrings = true;          static const DLS::Info::string_length_t fixedStringLengths[] = {
4925                { CHUNK_ID_INAM, 64 },
4926                { CHUNK_ID_ISFT, 12 },
4927                { 0, 0 }
4928            };
4929            pInfo->SetFixedStringLengths(fixedStringLengths);
4930    
4931          // Initialization          // Initialization
4932          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4933            EffectSend = 0;
4934            Attenuation = 0;
4935            FineTune = 0;
4936            PitchbendRange = 2;
4937            PianoReleaseMode = false;
4938            DimensionKeyRange.low = 0;
4939            DimensionKeyRange.high = 0;
4940            pMidiRules = new MidiRule*[3];
4941            pMidiRules[0] = NULL;
4942            pScriptRefs = NULL;
4943    
4944          // Loading          // Loading
4945          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
4946          if (lart) {          if (lart) {
4947              RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);              RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4948              if (_3ewg) {              if (_3ewg) {
4949                    _3ewg->SetPos(0);
4950    
4951                  EffectSend             = _3ewg->ReadUint16();                  EffectSend             = _3ewg->ReadUint16();
4952                  Attenuation            = _3ewg->ReadInt32();                  Attenuation            = _3ewg->ReadInt32();
4953                  FineTune               = _3ewg->ReadInt16();                  FineTune               = _3ewg->ReadInt16();
# Line 2553  namespace { Line 4956  namespace {
4956                  PianoReleaseMode       = dimkeystart & 0x01;                  PianoReleaseMode       = dimkeystart & 0x01;
4957                  DimensionKeyRange.low  = dimkeystart >> 1;                  DimensionKeyRange.low  = dimkeystart >> 1;
4958                  DimensionKeyRange.high = _3ewg->ReadUint8();                  DimensionKeyRange.high = _3ewg->ReadUint8();
4959    
4960                    if (_3ewg->GetSize() > 32) {
4961                        // read MIDI rules
4962                        int i = 0;
4963                        _3ewg->SetPos(32);
4964                        uint8_t id1 = _3ewg->ReadUint8();
4965                        uint8_t id2 = _3ewg->ReadUint8();
4966    
4967                        if (id2 == 16) {
4968                            if (id1 == 4) {
4969                                pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
4970                            } else if (id1 == 0) {
4971                                pMidiRules[i++] = new MidiRuleLegato(_3ewg);
4972                            } else if (id1 == 3) {
4973                                pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
4974                            } else {
4975                                pMidiRules[i++] = new MidiRuleUnknown;
4976                            }
4977                        }
4978                        else if (id1 != 0 || id2 != 0) {
4979                            pMidiRules[i++] = new MidiRuleUnknown;
4980                        }
4981                        //TODO: all the other types of rules
4982    
4983                        pMidiRules[i] = NULL;
4984                    }
4985              }              }
4986          }          }
4987    
4988          if (!pRegions) pRegions = new RegionList;          if (pFile->GetAutoLoad()) {
4989          RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);              if (!pRegions) pRegions = new RegionList;
4990          if (lrgn) {              RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
4991              RIFF::List* rgn = lrgn->GetFirstSubList();              if (lrgn) {
4992              while (rgn) {                  size_t i = 0;
4993                  if (rgn->GetListType() == LIST_TYPE_RGN) {                  for (RIFF::List* rgn = lrgn->GetSubListAt(i); rgn;
4994                      __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);                       rgn = lrgn->GetSubListAt(++i))
4995                      pRegions->push_back(new Region(this, rgn));                  {
4996                        if (rgn->GetListType() == LIST_TYPE_RGN) {
4997                            if (pProgress)
4998                                __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
4999                            pRegions->push_back(new Region(this, rgn));
5000                        }
5001                    }
5002                    // Creating Region Key Table for fast lookup
5003                    UpdateRegionKeyTable();
5004                }
5005            }
5006    
5007            // own gig format extensions
5008            RIFF::List* lst3LS = insList->GetSubList(LIST_TYPE_3LS);
5009            if (lst3LS) {
5010                // script slots (that is references to instrument scripts)
5011                RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
5012                if (ckSCSL) {
5013                    ckSCSL->SetPos(0);
5014    
5015                    int headerSize = ckSCSL->ReadUint32();
5016                    int slotCount  = ckSCSL->ReadUint32();
5017                    if (slotCount) {
5018                        int slotSize  = ckSCSL->ReadUint32();
5019                        ckSCSL->SetPos(headerSize); // in case of future header extensions
5020                        int unknownSpace = slotSize - 2*sizeof(uint32_t); // in case of future slot extensions
5021                        for (int i = 0; i < slotCount; ++i) {
5022                            _ScriptPooolEntry e;
5023                            e.fileOffset = ckSCSL->ReadUint32();
5024                            e.bypass     = ckSCSL->ReadUint32() & 1;
5025                            if (unknownSpace) ckSCSL->SetPos(unknownSpace, RIFF::stream_curpos); // in case of future extensions
5026                            scriptPoolFileOffsets.push_back(e);
5027                        }
5028                    }
5029                }
5030    
5031                // overridden script 'patch' variables
5032                RIFF::Chunk* ckSCPV = lst3LS->GetSubChunk(CHUNK_ID_SCPV);
5033                if (ckSCPV) {
5034                    ckSCPV->SetPos(0);
5035    
5036                    int nScripts = ckSCPV->ReadUint32();
5037                    for (int iScript = 0; iScript < nScripts; ++iScript) {
5038                        _UUID uuid;
5039                        for (int i = 0; i < 16; ++i)
5040                            uuid[i] = ckSCPV->ReadUint8();
5041                        uint slot = ckSCPV->ReadUint32();
5042                        ckSCPV->ReadUint32(); // unused, reserved 32 bit
5043                        int nVars = ckSCPV->ReadUint32();
5044                        for (int iVar = 0; iVar < nVars; ++iVar) {
5045                            uint8_t type = ckSCPV->ReadUint8();
5046                            ckSCPV->ReadUint8();  // unused, reserved byte
5047                            int blobSize = ckSCPV->ReadUint16();
5048                            RIFF::file_offset_t pos = ckSCPV->GetPos();
5049                            // assuming 1st bit is set in 'type', otherwise blob not
5050                            // supported for decoding
5051                            if (type & 1) {
5052                                String name, value;
5053                                int len = ckSCPV->ReadUint16();
5054                                for (int i = 0; i < len; ++i)
5055                                    name += (char) ckSCPV->ReadUint8();
5056                                len = ckSCPV->ReadUint16();
5057                                for (int i = 0; i < len; ++i)
5058                                    value += (char) ckSCPV->ReadUint8();
5059                                if (!name.empty()) // 'name' should never be empty, but just to be sure
5060                                    scriptVars[uuid][slot][name] = value;
5061                            }
5062                            // also for potential future extensions: seek forward
5063                            // according to blob size
5064                            ckSCPV->SetPos(pos + blobSize);
5065                        }
5066                  }                  }
                 rgn = lrgn->GetNextSubList();  
5067              }              }
             // Creating Region Key Table for fast lookup  
             UpdateRegionKeyTable();  
5068          }          }
5069    
5070          __notify_progress(pProgress, 1.0f); // notify done          if (pProgress)
5071                __notify_progress(pProgress, 1.0f); // notify done
5072      }      }
5073    
5074      void Instrument::UpdateRegionKeyTable() {      void Instrument::UpdateRegionKeyTable() {
5075            for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
5076          RegionList::iterator iter = pRegions->begin();          RegionList::iterator iter = pRegions->begin();
5077          RegionList::iterator end  = pRegions->end();          RegionList::iterator end  = pRegions->end();
5078          for (; iter != end; ++iter) {          for (; iter != end; ++iter) {
5079              gig::Region* pRegion = static_cast<gig::Region*>(*iter);              gig::Region* pRegion = static_cast<gig::Region*>(*iter);
5080              for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {              const int low  = std::max(int(pRegion->KeyRange.low), 0);
5081                const int high = std::min(int(pRegion->KeyRange.high), 127);
5082                for (int iKey = low; iKey <= high; iKey++) {
5083                  RegionKeyTable[iKey] = pRegion;                  RegionKeyTable[iKey] = pRegion;
5084              }              }
5085          }          }
5086      }      }
5087    
5088      Instrument::~Instrument() {      Instrument::~Instrument() {
5089            for (int i = 0 ; pMidiRules[i] ; i++) {
5090                delete pMidiRules[i];
5091            }
5092            delete[] pMidiRules;
5093            if (pScriptRefs) delete pScriptRefs;
5094      }      }
5095    
5096      /**      /**
# Line 2595  namespace { Line 5100  namespace {
5100       * Usually there is absolutely no need to call this method explicitly.       * Usually there is absolutely no need to call this method explicitly.
5101       * It will be called automatically when File::Save() was called.       * It will be called automatically when File::Save() was called.
5102       *       *
5103         * @param pProgress - callback function for progress notification
5104       * @throws gig::Exception if samples cannot be dereferenced       * @throws gig::Exception if samples cannot be dereferenced
5105       */       */
5106      void Instrument::UpdateChunks() {      void Instrument::UpdateChunks(progress_t* pProgress) {
5107          // first update base classes' chunks          // first update base classes' chunks
5108          DLS::Instrument::UpdateChunks();          DLS::Instrument::UpdateChunks(pProgress);
5109    
5110          // update Regions' chunks          // update Regions' chunks
5111          {          {
5112              RegionList::iterator iter = pRegions->begin();              RegionList::iterator iter = pRegions->begin();
5113              RegionList::iterator end  = pRegions->end();              RegionList::iterator end  = pRegions->end();
5114              for (; iter != end; ++iter)              for (; iter != end; ++iter)
5115                  (*iter)->UpdateChunks();                  (*iter)->UpdateChunks(pProgress);
5116          }          }
5117    
5118          // make sure 'lart' RIFF list chunk exists          // make sure 'lart' RIFF list chunk exists
# Line 2614  namespace { Line 5120  namespace {
5120          if (!lart)  lart = pCkInstrument->AddSubList(LIST_TYPE_LART);          if (!lart)  lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
5121          // make sure '3ewg' RIFF chunk exists          // make sure '3ewg' RIFF chunk exists
5122          RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);          RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
5123          if (!_3ewg)  _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, 12);          if (!_3ewg)  {
5124                File* pFile = (File*) GetParent();
5125    
5126                // 3ewg is bigger in gig3, as it includes the iMIDI rules
5127                int size = (pFile->pVersion && pFile->pVersion->major > 2) ? 16416 : 12;
5128                _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
5129                memset(_3ewg->LoadChunkData(), 0, size);
5130            }
5131          // update '3ewg' RIFF chunk          // update '3ewg' RIFF chunk
5132          uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();          uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
5133          memcpy(&pData[0], &EffectSend, 2);          store16(&pData[0], EffectSend);
5134          memcpy(&pData[2], &Attenuation, 4);          store32(&pData[2], Attenuation);
5135          memcpy(&pData[6], &FineTune, 2);          store16(&pData[6], FineTune);
5136          memcpy(&pData[8], &PitchbendRange, 2);          store16(&pData[8], PitchbendRange);
5137          const uint8_t dimkeystart = (PianoReleaseMode) ? 0x01 : 0x00 |          const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
5138                                      DimensionKeyRange.low << 1;                                      DimensionKeyRange.low << 1;
5139          memcpy(&pData[10], &dimkeystart, 1);          pData[10] = dimkeystart;
5140          memcpy(&pData[11], &DimensionKeyRange.high, 1);          pData[11] = DimensionKeyRange.high;
5141    
5142            if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
5143                pData[32] = 0;
5144                pData[33] = 0;
5145            } else {
5146                for (int i = 0 ; pMidiRules[i] ; i++) {
5147                    pMidiRules[i]->UpdateChunks(pData);
5148                }
5149            }
5150    
5151            // own gig format extensions
5152           if (ScriptSlotCount()) {
5153               // make sure we have converted the original loaded script file
5154               // offsets into valid Script object pointers
5155               LoadScripts();
5156    
5157               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
5158               if (!lst3LS) lst3LS = pCkInstrument->AddSubList(LIST_TYPE_3LS);
5159    
5160               // save script slots (that is references to instrument scripts)
5161               const int slotCount = (int) pScriptRefs->size();
5162               const int headerSize = 3 * sizeof(uint32_t);
5163               const int slotSize  = 2 * sizeof(uint32_t);
5164               const int totalChunkSize = headerSize + slotCount * slotSize;
5165               RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
5166               if (!ckSCSL) ckSCSL = lst3LS->AddSubChunk(CHUNK_ID_SCSL, totalChunkSize);
5167               else ckSCSL->Resize(totalChunkSize);
5168               uint8_t* pData = (uint8_t*) ckSCSL->LoadChunkData();
5169               int pos = 0;
5170               store32(&pData[pos], headerSize);
5171               pos += sizeof(uint32_t);
5172               store32(&pData[pos], slotCount);
5173               pos += sizeof(uint32_t);
5174               store32(&pData[pos], slotSize);
5175               pos += sizeof(uint32_t);
5176               for (int i = 0; i < slotCount; ++i) {
5177                   // arbitrary value, the actual file offset will be updated in
5178                   // UpdateScriptFileOffsets() after the file has been resized
5179                   int bogusFileOffset = 0;
5180                   store32(&pData[pos], bogusFileOffset);
5181                   pos += sizeof(uint32_t);
5182                   store32(&pData[pos], (*pScriptRefs)[i].bypass ? 1 : 0);
5183                   pos += sizeof(uint32_t);
5184               }
5185    
5186               // save overridden script 'patch' variables ...
5187    
5188               // the actual 'scriptVars' member variable might contain variables of
5189               // scripts which are currently no longer assigned to any script slot
5190               // of this instrument, we need to get rid of these variables here to
5191               // prevent saving those persistently, however instead of touching the
5192               // member variable 'scriptVars' directly, rather strip a separate
5193               // copy such that the overridden values are not lost during an
5194               // instrument editor session (i.e. if script might be re-assigned)
5195               _VarsByScript vars = stripScriptVars();
5196               if (!vars.empty()) {
5197                   // determine total size required for 'SCPV' RIFF chunk, and the
5198                   // total amount of scripts being overridden (the latter is
5199                   // required because a script might be used on several script
5200                   // slots, hence vars.size() could then not be used here instead)
5201                   size_t totalChunkSize = 4;
5202                   size_t totalScriptsOverridden = 0;
5203                   for (const auto& script : vars) {
5204                       for (const auto& slot : script.second) {
5205                           totalScriptsOverridden++;
5206                           totalChunkSize += 16 + 4 + 4 + 4;
5207                           for (const auto& var : slot.second) {
5208                               totalChunkSize += 4 + 2 + var.first.length() +
5209                                                     2 + var.second.length();
5210                           }
5211                       }
5212                   }
5213    
5214                   // ensure 'SCPV' RIFF chunk exists (with required size)
5215                   RIFF::Chunk* ckSCPV = lst3LS->GetSubChunk(CHUNK_ID_SCPV);
5216                   if (!ckSCPV) ckSCPV = lst3LS->AddSubChunk(CHUNK_ID_SCPV, totalChunkSize);
5217                   else ckSCPV->Resize(totalChunkSize);
5218    
5219                   // store the actual data to 'SCPV' RIFF chunk
5220                   uint8_t* pData = (uint8_t*) ckSCPV->LoadChunkData();
5221                   int pos = 0;
5222                   store32(&pData[pos], (uint32_t) totalScriptsOverridden); // scripts count
5223                   pos += 4;
5224                   for (const auto& script : vars) {
5225                       for (const auto& slot : script.second) {
5226                           for (int i = 0; i < 16; ++i)
5227                               pData[pos+i] = script.first[i]; // uuid
5228                           pos += 16;
5229                           store32(&pData[pos], (uint32_t) slot.first); // slot index
5230                           pos += 4;
5231                           store32(&pData[pos], (uint32_t) 0); // unused, reserved 32 bit
5232                           pos += 4;
5233                           store32(&pData[pos], (uint32_t) slot.second.size()); // variables count
5234                           pos += 4;
5235                           for (const auto& var : slot.second) {
5236                               pData[pos++] = 1; // type
5237                               pData[pos++] = 0; // reserved byte
5238                               store16(&pData[pos], 2 + var.first.size() + 2 + var.second.size()); // blob size
5239                               pos += 2;
5240                               store16(&pData[pos], var.first.size()); // variable name length
5241                               pos += 2;
5242                               for (int i = 0; i < var.first.size(); ++i)
5243                                   pData[pos++] = var.first[i];
5244                               store16(&pData[pos], var.second.size()); // variable value length
5245                               pos += 2;
5246                               for (int i = 0; i < var.second.size(); ++i)
5247                                   pData[pos++] = var.second[i];
5248                           }
5249                       }
5250                   }
5251               } else {
5252                   // no script variable overridden by this instrument, so get rid
5253                   // of 'SCPV' RIFF chunk (if any)
5254                   RIFF::Chunk* ckSCPV = lst3LS->GetSubChunk(CHUNK_ID_SCPV);
5255                   if (ckSCPV) lst3LS->DeleteSubChunk(ckSCPV);
5256               }
5257           } else {
5258               // no script slots, so get rid of any LS custom RIFF chunks (if any)
5259               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
5260               if (lst3LS) pCkInstrument->DeleteSubChunk(lst3LS);
5261           }
5262        }
5263    
5264        void Instrument::UpdateScriptFileOffsets() {
5265           // own gig format extensions
5266           if (pScriptRefs && pScriptRefs->size() > 0) {
5267               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
5268               RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
5269               const int slotCount = (int) pScriptRefs->size();
5270               const int headerSize = 3 * sizeof(uint32_t);
5271               ckSCSL->SetPos(headerSize);
5272               for (int i = 0; i < slotCount; ++i) {
5273                   uint32_t fileOffset = uint32_t(
5274                        (*pScriptRefs)[i].script->pChunk->GetFilePos() -
5275                        (*pScriptRefs)[i].script->pChunk->GetPos() -
5276                        CHUNK_HEADER_SIZE(ckSCSL->GetFile()->GetFileOffsetSize())
5277                   );
5278                   ckSCSL->WriteUint32(&fileOffset);
5279                   // jump over flags entry (containing the bypass flag)
5280                   ckSCSL->SetPos(sizeof(uint32_t), RIFF::stream_curpos);
5281               }
5282           }        
5283      }      }
5284    
5285      /**      /**
# Line 2635  namespace { Line 5290  namespace {
5290       *             there is no Region defined for the given \a Key       *             there is no Region defined for the given \a Key
5291       */       */
5292      Region* Instrument::GetRegion(unsigned int Key) {      Region* Instrument::GetRegion(unsigned int Key) {
5293          if (!pRegions || !pRegions->size() || Key > 127) return NULL;          if (!pRegions || pRegions->empty() || Key > 127) return NULL;
5294          return RegionKeyTable[Key];          return RegionKeyTable[Key];
5295    
5296          /*for (int i = 0; i < Regions; i++) {          /*for (int i = 0; i < Regions; i++) {
# Line 2646  namespace { Line 5301  namespace {
5301      }      }
5302    
5303      /**      /**
5304         * Returns Region at supplied @a pos position within the region list of
5305         * this instrument. If supplied @a pos is out of bounds then @c NULL is
5306         * returned.
5307         *
5308         * @param pos - position of sought Region in region list
5309         * @returns pointer address to requested region or @c NULL if @a pos is
5310         *          out of bounds
5311         */
5312        Region* Instrument::GetRegionAt(size_t pos) {
5313            if (!pRegions) return NULL;
5314            if (pos >= pRegions->size()) return NULL;
5315            return static_cast<gig::Region*>( (*pRegions)[pos] );
5316        }
5317    
5318        /**
5319       * Returns the first Region of the instrument. You have to call this       * Returns the first Region of the instrument. You have to call this
5320       * method once before you use GetNextRegion().       * method once before you use GetNextRegion().
5321       *       *
5322       * @returns  pointer address to first region or NULL if there is none       * @returns  pointer address to first region or NULL if there is none
5323       * @see      GetNextRegion()       * @see      GetNextRegion()
5324         * @deprecated  This method is not reentrant-safe, use GetRegionAt()
5325         *              instead.
5326       */       */
5327      Region* Instrument::GetFirstRegion() {      Region* Instrument::GetFirstRegion() {
5328          if (!pRegions) return NULL;          if (!pRegions) return NULL;
# Line 2665  namespace { Line 5337  namespace {
5337       *       *
5338       * @returns  pointer address to the next region or NULL if end reached       * @returns  pointer address to the next region or NULL if end reached
5339       * @see      GetFirstRegion()       * @see      GetFirstRegion()
5340         * @deprecated  This method is not reentrant-safe, use GetRegionAt()
5341         *              instead.
5342       */       */
5343      Region* Instrument::GetNextRegion() {      Region* Instrument::GetNextRegion() {
5344          if (!pRegions) return NULL;          if (!pRegions) return NULL;
# Line 2679  namespace { Line 5353  namespace {
5353          RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);          RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
5354          Region* pNewRegion = new Region(this, rgn);          Region* pNewRegion = new Region(this, rgn);
5355          pRegions->push_back(pNewRegion);          pRegions->push_back(pNewRegion);
5356          Regions = pRegions->size();          Regions = (uint32_t) pRegions->size();
5357          // update Region key table for fast lookup          // update Region key table for fast lookup
5358          UpdateRegionKeyTable();          UpdateRegionKeyTable();
5359          // done          // done
# Line 2693  namespace { Line 5367  namespace {
5367          UpdateRegionKeyTable();          UpdateRegionKeyTable();
5368      }      }
5369    
5370        /**
5371         * Move this instrument at the position before @arg dst.
5372         *
5373         * This method can be used to reorder the sequence of instruments in a
5374         * .gig file. This might be helpful especially on large .gig files which
5375         * contain a large number of instruments within the same .gig file. So
5376         * grouping such instruments to similar ones, can help to keep track of them
5377         * when working with such complex .gig files.
5378         *
5379         * When calling this method, this instrument will be removed from in its
5380         * current position in the instruments list and moved to the requested
5381         * target position provided by @param dst. You may also pass NULL as
5382         * argument to this method, in that case this intrument will be moved to the
5383         * very end of the .gig file's instrument list.
5384         *
5385         * You have to call Save() to make the order change persistent to the .gig
5386         * file.
5387         *
5388         * Currently this method is limited to moving the instrument within the same
5389         * .gig file. Trying to move it to another .gig file by calling this method
5390         * will throw an exception.
5391         *
5392         * @param dst - destination instrument at which this instrument will be
5393         *              moved to, or pass NULL for moving to end of list
5394         * @throw gig::Exception if this instrument and target instrument are not
5395         *                       part of the same file
5396         */
5397        void Instrument::MoveTo(Instrument* dst) {
5398            if (dst && GetParent() != dst->GetParent())
5399                throw Exception(
5400                    "gig::Instrument::MoveTo() can only be used for moving within "
5401                    "the same gig file."
5402                );
5403    
5404            File* pFile = (File*) GetParent();
5405    
5406            // move this instrument within the instrument list
5407            {
5408                File::InstrumentList& list = *pFile->pInstruments;
5409    
5410                File::InstrumentList::iterator itFrom =
5411                    std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(this));
5412    
5413                File::InstrumentList::iterator itTo =
5414                    std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(dst));
5415    
5416                list.splice(itTo, list, itFrom);
5417            }
5418    
5419            // move the instrument's actual list RIFF chunk appropriately
5420            RIFF::List* lstCkInstruments = pFile->pRIFF->GetSubList(LIST_TYPE_LINS);
5421            lstCkInstruments->MoveSubChunk(
5422                this->pCkInstrument,
5423                (RIFF::Chunk*) ((dst) ? dst->pCkInstrument : NULL)
5424            );
5425        }
5426    
5427        /**
5428         * Returns a MIDI rule of the instrument.
5429         *
5430         * The list of MIDI rules, at least in gig v3, always contains at
5431         * most two rules. The second rule can only be the DEF filter
5432         * (which currently isn't supported by libgig).
5433         *
5434         * @param i - MIDI rule number
5435         * @returns   pointer address to MIDI rule number i or NULL if there is none
5436         */
5437        MidiRule* Instrument::GetMidiRule(int i) {
5438            return pMidiRules[i];
5439        }
5440    
5441        /**
5442         * Adds the "controller trigger" MIDI rule to the instrument.
5443         *
5444         * @returns the new MIDI rule
5445         */
5446        MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
5447            delete pMidiRules[0];
5448            MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
5449            pMidiRules[0] = r;
5450            pMidiRules[1] = 0;
5451            return r;
5452        }
5453    
5454        /**
5455         * Adds the legato MIDI rule to the instrument.
5456         *
5457         * @returns the new MIDI rule
5458         */
5459        MidiRuleLegato* Instrument::AddMidiRuleLegato() {
5460            delete pMidiRules[0];
5461            MidiRuleLegato* r = new MidiRuleLegato;
5462            pMidiRules[0] = r;
5463            pMidiRules[1] = 0;
5464            return r;
5465        }
5466    
5467        /**
5468         * Adds the alternator MIDI rule to the instrument.
5469         *
5470         * @returns the new MIDI rule
5471         */
5472        MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
5473            delete pMidiRules[0];
5474            MidiRuleAlternator* r = new MidiRuleAlternator;
5475            pMidiRules[0] = r;
5476            pMidiRules[1] = 0;
5477            return r;
5478        }
5479    
5480        /**
5481         * Deletes a MIDI rule from the instrument.
5482         *
5483         * @param i - MIDI rule number
5484         */
5485        void Instrument::DeleteMidiRule(int i) {
5486            delete pMidiRules[i];
5487            pMidiRules[i] = 0;
5488        }
5489    
5490        void Instrument::LoadScripts() {
5491            if (pScriptRefs) return;
5492            pScriptRefs = new std::vector<_ScriptPooolRef>;
5493            if (scriptPoolFileOffsets.empty()) return;
5494            File* pFile = (File*) GetParent();
5495            for (uint k = 0; k < scriptPoolFileOffsets.size(); ++k) {
5496                uint32_t soughtOffset = scriptPoolFileOffsets[k].fileOffset;
5497                for (uint i = 0; pFile->GetScriptGroup(i); ++i) {
5498                    ScriptGroup* group = pFile->GetScriptGroup(i);
5499                    for (uint s = 0; group->GetScript(s); ++s) {
5500                        Script* script = group->GetScript(s);
5501                        if (script->pChunk) {
5502                            uint32_t offset = uint32_t(
5503                                script->pChunk->GetFilePos() -
5504                                script->pChunk->GetPos() -
5505                                CHUNK_HEADER_SIZE(script->pChunk->GetFile()->GetFileOffsetSize())
5506                            );
5507                            if (offset == soughtOffset)
5508                            {
5509                                _ScriptPooolRef ref;
5510                                ref.script = script;
5511                                ref.bypass = scriptPoolFileOffsets[k].bypass;
5512                                pScriptRefs->push_back(ref);
5513                                break;
5514                            }
5515                        }
5516                    }
5517                }
5518            }
5519            // we don't need that anymore
5520            scriptPoolFileOffsets.clear();
5521        }
5522    
5523        /** @brief Get instrument script (gig format extension).
5524         *
5525         * Returns the real-time instrument script of instrument script slot
5526         * @a index.
5527         *
5528         * @note This is an own format extension which did not exist i.e. in the
5529         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5530         * gigedit.
5531         *
5532         * @param index - instrument script slot index
5533         * @returns script or NULL if index is out of bounds
5534         */
5535        Script* Instrument::GetScriptOfSlot(uint index) {
5536            LoadScripts();
5537            if (index >= pScriptRefs->size()) return NULL;
5538            return pScriptRefs->at(index).script;
5539        }
5540    
5541        /** @brief Add new instrument script slot (gig format extension).
5542         *
5543         * Add the given real-time instrument script reference to this instrument,
5544         * which shall be executed by the sampler for for this instrument. The
5545         * script will be added to the end of the script list of this instrument.
5546         * The positions of the scripts in the Instrument's Script list are
5547         * relevant, because they define in which order they shall be executed by
5548         * the sampler. For this reason it is also legal to add the same script
5549         * twice to an instrument, for example you might have a script called
5550         * "MyFilter" which performs an event filter task, and you might have
5551         * another script called "MyNoteTrigger" which triggers new notes, then you
5552         * might for example have the following list of scripts on the instrument:
5553         *
5554         * 1. Script "MyFilter"
5555         * 2. Script "MyNoteTrigger"
5556         * 3. Script "MyFilter"
5557         *
5558         * Which would make sense, because the 2nd script launched new events, which
5559         * you might need to filter as well.
5560         *
5561         * There are two ways to disable / "bypass" scripts. You can either disable
5562         * a script locally for the respective script slot on an instrument (i.e. by
5563         * passing @c false to the 2nd argument of this method, or by calling
5564         * SetScriptBypassed()). Or you can disable a script globally for all slots
5565         * and all instruments by setting Script::Bypass.
5566         *
5567         * @note This is an own format extension which did not exist i.e. in the
5568         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5569         * gigedit.
5570         *
5571         * @param pScript - script that shall be executed for this instrument
5572         * @param bypass  - if enabled, the sampler shall skip executing this
5573         *                  script (in the respective list position)
5574         * @see SetScriptBypassed()
5575         */
5576        void Instrument::AddScriptSlot(Script* pScript, bool bypass) {
5577            LoadScripts();
5578            _ScriptPooolRef ref = { pScript, bypass };
5579            pScriptRefs->push_back(ref);
5580        }
5581    
5582        /** @brief Flip two script slots with each other (gig format extension).
5583         *
5584         * Swaps the position of the two given scripts in the Instrument's Script
5585         * list. The positions of the scripts in the Instrument's Script list are
5586         * relevant, because they define in which order they shall be executed by
5587         * the sampler.
5588         *
5589         * @note This is an own format extension which did not exist i.e. in the
5590         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5591         * gigedit.
5592         *
5593         * @param index1 - index of the first script slot to swap
5594         * @param index2 - index of the second script slot to swap
5595         */
5596        void Instrument::SwapScriptSlots(uint index1, uint index2) {
5597            LoadScripts();
5598            if (index1 >= pScriptRefs->size() || index2 >= pScriptRefs->size())
5599                return;
5600            _ScriptPooolRef tmp = (*pScriptRefs)[index1];
5601            (*pScriptRefs)[index1] = (*pScriptRefs)[index2];
5602            (*pScriptRefs)[index2] = tmp;
5603        }
5604    
5605        /** @brief Remove script slot.
5606         *
5607         * Removes the script slot with the given slot index.
5608         *
5609         * @param index - index of script slot to remove
5610         */
5611        void Instrument::RemoveScriptSlot(uint index) {
5612            LoadScripts();
5613            if (index >= pScriptRefs->size()) return;
5614            pScriptRefs->erase( pScriptRefs->begin() + index );
5615        }
5616    
5617        /** @brief Remove reference to given Script (gig format extension).
5618         *
5619         * This will remove all script slots on the instrument which are referencing
5620         * the given script.
5621         *
5622         * @note This is an own format extension which did not exist i.e. in the
5623         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5624         * gigedit.
5625         *
5626         * @param pScript - script reference to remove from this instrument
5627         * @see RemoveScriptSlot()
5628         */
5629        void Instrument::RemoveScript(Script* pScript) {
5630            LoadScripts();
5631            for (ssize_t i = pScriptRefs->size() - 1; i >= 0; --i) {
5632                if ((*pScriptRefs)[i].script == pScript) {
5633                    pScriptRefs->erase( pScriptRefs->begin() + i );
5634                }
5635            }
5636        }
5637    
5638        /** @brief Instrument's amount of script slots.
5639         *
5640         * This method returns the amount of script slots this instrument currently
5641         * uses.
5642         *
5643         * A script slot is a reference of a real-time instrument script to be
5644         * executed by the sampler. The scripts will be executed by the sampler in
5645         * sequence of the slots. One (same) script may be referenced multiple
5646         * times in different slots.
5647         *
5648         * @note This is an own format extension which did not exist i.e. in the
5649         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5650         * gigedit.
5651         */
5652        uint Instrument::ScriptSlotCount() const {
5653            return uint(pScriptRefs ? pScriptRefs->size() : scriptPoolFileOffsets.size());
5654        }
5655    
5656        /** @brief Whether script execution shall be skipped.
5657         *
5658         * Defines locally for the Script reference slot in the Instrument's Script
5659         * list, whether the script shall be skipped by the sampler regarding
5660         * execution.
5661         *
5662         * It is also possible to ignore exeuction of the script globally, for all
5663         * slots and for all instruments by setting Script::Bypass.
5664         *
5665         * @note This is an own format extension which did not exist i.e. in the
5666         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5667         * gigedit.
5668         *
5669         * @param index - index of the script slot on this instrument
5670         * @see Script::Bypass
5671         */
5672        bool Instrument::IsScriptSlotBypassed(uint index) {
5673            if (index >= ScriptSlotCount()) return false;
5674            return pScriptRefs ? pScriptRefs->at(index).bypass
5675                               : scriptPoolFileOffsets.at(index).bypass;
5676            
5677        }
5678    
5679        /** @brief Defines whether execution shall be skipped.
5680         *
5681         * You can call this method to define locally whether or whether not the
5682         * given script slot shall be executed by the sampler.
5683         *
5684         * @note This is an own format extension which did not exist i.e. in the
5685         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5686         * gigedit.
5687         *
5688         * @param index - script slot index on this instrument
5689         * @param bBypass - if true, the script slot will be skipped by the sampler
5690         * @see Script::Bypass
5691         */
5692        void Instrument::SetScriptSlotBypassed(uint index, bool bBypass) {
5693            if (index >= ScriptSlotCount()) return;
5694            if (pScriptRefs)
5695                pScriptRefs->at(index).bypass = bBypass;
5696            else
5697                scriptPoolFileOffsets.at(index).bypass = bBypass;
5698        }
5699    
5700        /// type cast (by copy) uint8_t[16] -> std::array<uint8_t,16>
5701        inline std::array<uint8_t,16> _UUIDFromCArray(const uint8_t* pData) {
5702            std::array<uint8_t,16> uuid;
5703            memcpy(&uuid[0], pData, 16);
5704            return uuid;
5705        }
5706    
5707        /**
5708         * Returns true if this @c Instrument has any script slot which references
5709         * the @c Script identified by passed @p uuid.
5710         */
5711        bool Instrument::ReferencesScriptWithUuid(const _UUID& uuid) {
5712            const uint nSlots = ScriptSlotCount();
5713            for (uint iSlot = 0; iSlot < nSlots; ++iSlot)
5714                if (_UUIDFromCArray(&GetScriptOfSlot(iSlot)->Uuid[0]) == uuid)
5715                    return true;
5716            return false;
5717        }
5718    
5719        /** @brief Checks whether a certain script 'patch' variable value is set.
5720         *
5721         * Returns @c true if the initial value for the requested script variable is
5722         * currently overridden by this instrument.
5723         *
5724         * @remarks Real-time instrument scripts allow to declare special 'patch'
5725         * variables, which essentially behave like regular variables of their data
5726         * type, however their initial value may optionally be overridden on a per
5727         * instrument basis. That allows to share scripts between instruments while
5728         * still being able to fine tune certain aspects of the script for each
5729         * instrument individually.
5730         *
5731         * @note This is an own format extension which did not exist i.e. in the
5732         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5733         * Gigedit.
5734         *
5735         * @param slot - script slot index of the variable to be retrieved
5736         * @param variable - name of the 'patch' variable in that script
5737         */
5738        bool Instrument::IsScriptPatchVariableSet(int slot, String variable) {
5739            if (variable.empty()) return false;
5740            Script* script = GetScriptOfSlot(slot);
5741            if (!script) return false;
5742            const _UUID uuid = _UUIDFromCArray(&script->Uuid[0]);
5743            if (!scriptVars.count(uuid)) return false;
5744            const _VarsBySlot& slots = scriptVars.find(uuid)->second;
5745            if (slots.empty()) return false;
5746            if (slots.count(slot))
5747                return slots.find(slot)->second.count(variable);
5748            else
5749                return slots.begin()->second.count(variable);
5750        }
5751    
5752        /** @brief Get all overridden script 'patch' variables.
5753         *
5754         * Returns map of key-value pairs reflecting all patch variables currently
5755         * being overridden by this instrument for the given script @p slot, where
5756         * key is the variable name and value is the hereby currently overridden
5757         * value for that variable.
5758         *
5759         * @remarks Real-time instrument scripts allow to declare special 'patch'
5760         * variables, which essentially behave like regular variables of their data
5761         * type, however their initial value may optionally be overridden on a per
5762         * instrument basis. That allows to share scripts between instruments while
5763         * still being able to fine tune certain aspects of the script for each
5764         * instrument individually.
5765         *
5766         * @note This is an own format extension which did not exist i.e. in the
5767         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5768         * Gigedit.
5769         *
5770         * @param slot - script slot index of the variable to be retrieved
5771         */
5772        std::map<String,String> Instrument::GetScriptPatchVariables(int slot) {
5773            Script* script = GetScriptOfSlot(slot);
5774            if (!script) return std::map<String,String>();
5775            const _UUID uuid = _UUIDFromCArray(&script->Uuid[0]);
5776            if (!scriptVars.count(uuid)) return std::map<String,String>();
5777            const _VarsBySlot& slots = scriptVars.find(uuid)->second;
5778            if (slots.empty()) return std::map<String,String>();
5779            const _PatchVars& vars =
5780                (slots.count(slot)) ?
5781                    slots.find(slot)->second : slots.begin()->second;
5782            return vars;
5783        }
5784    
5785        /** @brief Get overridden initial value for 'patch' variable.
5786         *
5787         * Returns current initial value for the requested script variable being
5788         * overridden by this instrument.
5789         *
5790         * @remarks Real-time instrument scripts allow to declare special 'patch'
5791         * variables, which essentially behave like regular variables of their data
5792         * type, however their initial value may optionally be overridden on a per
5793         * instrument basis. That allows to share scripts between instruments while
5794         * still being able to fine tune certain aspects of the script for each
5795         * instrument individually.
5796         *
5797         * @note This is an own format extension which did not exist i.e. in the
5798         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5799         * Gigedit.
5800         *
5801         * @param slot - script slot index of the variable to be retrieved
5802         * @param variable - name of the 'patch' variable in that script
5803         */
5804        String Instrument::GetScriptPatchVariable(int slot, String variable) {
5805            std::map<String,String> vars = GetScriptPatchVariables(slot);
5806            return (vars.count(variable)) ? vars.find(variable)->second : "";
5807        }
5808    
5809        /** @brief Override initial value for 'patch' variable.
5810         *
5811         * Overrides initial value for the requested script variable for this
5812         * instrument with the passed value.
5813         *
5814         * @remarks Real-time instrument scripts allow to declare special 'patch'
5815         * variables, which essentially behave like regular variables of their data
5816         * type, however their initial value may optionally be overridden on a per
5817         * instrument basis. That allows to share scripts between instruments while
5818         * still being able to fine tune certain aspects of the script for each
5819         * instrument individually.
5820         *
5821         * @note This is an own format extension which did not exist i.e. in the
5822         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5823         * Gigedit.
5824         *
5825         * @param slot - script slot index of the variable to be set
5826         * @param variable - name of the 'patch' variable in that script
5827         * @param value - overridden initial value for that script variable
5828         * @throws gig::Exception if given script @p slot index is invalid or given
5829         *         @p variable name is empty
5830         */
5831        void Instrument::SetScriptPatchVariable(int slot, String variable, String value) {
5832            if (variable.empty())
5833                throw Exception("Variable name must not be empty");
5834            Script* script = GetScriptOfSlot(slot);
5835            if (!script)
5836                throw Exception("No script slot with index " + ToString(slot));
5837            const _UUID uuid = _UUIDFromCArray(&script->Uuid[0]);
5838            scriptVars[uuid][slot][variable] = value;
5839        }
5840    
5841        /** @brief Drop overridden initial value(s) for 'patch' variable(s).
5842         *
5843         * Reverts initial value(s) for requested script variable(s) back to their
5844         * default initial value(s) defined in the script itself.
5845         *
5846         * Both arguments of this method are optional. The most obvious use case of
5847         * this method would be passing a valid script @p slot index and a
5848         * (non-emtpy string as) @p variable name to this method, which would cause
5849         * that single variable to be unset for that specific script slot (on this
5850         * @c Instrument level).
5851         *
5852         * Not passing a value (or @c -1 for @p slot and/or empty string for
5853         * @p variable) means 'wildcard'. So accordingly absence of argument(s) will
5854         * cause all variables and/or for all script slots being unset. Hence this
5855         * method serves 2^2 = 4 possible use cases in total and accordingly covers
5856         * 4 different behaviours in one method.
5857         *
5858         * @remarks Real-time instrument scripts allow to declare special 'patch'
5859         * variables, which essentially behave like regular variables of their data
5860         * type, however their initial value may optionally be overridden on a per
5861         * instrument basis. That allows to share scripts between instruments while
5862         * still being able to fine tune certain aspects of the script for each
5863         * instrument individually.
5864         *
5865         * @note This is an own format extension which did not exist i.e. in the
5866         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5867         * Gigedit.
5868         *
5869         * @param slot - script slot index of the variable to be unset
5870         * @param variable - name of the 'patch' variable in that script
5871         */
5872        void Instrument::UnsetScriptPatchVariable(int slot, String variable) {
5873            Script* script = GetScriptOfSlot(slot);
5874    
5875            // option 1: unset a particular variable of one particular script slot
5876            if (slot != -1 && !variable.empty()) {
5877                if (!script) return;
5878                const _UUID uuid = _UUIDFromCArray(&script->Uuid[0]);
5879                if (!scriptVars.count(uuid)) return;
5880                if (!scriptVars[uuid].count(slot)) return;
5881                if (scriptVars[uuid][slot].count(variable))
5882                    scriptVars[uuid][slot].erase(
5883                        scriptVars[uuid][slot].find(variable)
5884                    );
5885                if (scriptVars[uuid][slot].empty())
5886                    scriptVars[uuid].erase( scriptVars[uuid].find(slot) );
5887                if (scriptVars[uuid].empty())
5888                    scriptVars.erase( scriptVars.find(uuid) );
5889                return;
5890            }
5891    
5892            // option 2: unset all variables of all script slots
5893            if (slot == -1 && variable.empty()) {
5894                scriptVars.clear();
5895                return;
5896            }
5897    
5898            // option 3: unset all variables of one particular script slot only
5899            if (slot != -1) {
5900                if (!script) return;
5901                const _UUID uuid = _UUIDFromCArray(&script->Uuid[0]);
5902                if (scriptVars.count(uuid))
5903                    scriptVars.erase( scriptVars.find(uuid) );
5904                return;
5905            }
5906    
5907            // option 4: unset a particular variable of all script slots
5908            _VarsByScript::iterator itScript = scriptVars.begin();
5909            _VarsByScript::iterator endScript = scriptVars.end();
5910            while (itScript != endScript) {
5911                _VarsBySlot& slots = itScript->second;
5912                _VarsBySlot::iterator itSlot = slots.begin();
5913                _VarsBySlot::iterator endSlot = slots.end();
5914                while (itSlot != endSlot) {
5915                    _PatchVars& vars = itSlot->second;
5916                    if (vars.count(variable))
5917                        vars.erase( vars.find(variable) );
5918                    if (vars.empty())
5919                        slots.erase(itSlot++); // postfix increment to avoid iterator invalidation
5920                    else
5921                        ++itSlot;
5922                }
5923                if (slots.empty())
5924                    scriptVars.erase(itScript++); // postfix increment to avoid iterator invalidation
5925                else
5926                    ++itScript;
5927            }
5928        }
5929    
5930        /**
5931         * Returns stripped version of member variable @c scriptVars, where scripts
5932         * no longer referenced by this @c Instrument are filtered out, and so are
5933         * variables of meanwhile obsolete slots (i.e. a script still being
5934         * referenced, but previously overridden on a script slot which either no
5935         * longer exists or is hosting another script now).
5936         */
5937        Instrument::_VarsByScript Instrument::stripScriptVars() {
5938            _VarsByScript vars;
5939            _VarsByScript::const_iterator itScript = scriptVars.begin();
5940            _VarsByScript::const_iterator endScript = scriptVars.end();
5941            for (; itScript != endScript; ++itScript) {
5942                const _UUID& uuid = itScript->first;
5943                if (!ReferencesScriptWithUuid(uuid))
5944                    continue;
5945                const _VarsBySlot& slots = itScript->second;
5946                _VarsBySlot::const_iterator itSlot = slots.begin();
5947                _VarsBySlot::const_iterator endSlot = slots.end();
5948                for (; itSlot != endSlot; ++itSlot) {
5949                    Script* script = GetScriptOfSlot(itSlot->first);
5950                    if (!script) continue;
5951                    if (_UUIDFromCArray(&script->Uuid[0]) != uuid) continue;
5952                    if (itSlot->second.empty()) continue;
5953                    vars[uuid][itSlot->first] = itSlot->second;
5954                }
5955            }
5956            return vars;
5957        }
5958    
5959        /**
5960         * Make a (semi) deep copy of the Instrument object given by @a orig
5961         * and assign it to this object.
5962         *
5963         * Note that all sample pointers referenced by @a orig are simply copied as
5964         * memory address. Thus the respective samples are shared, not duplicated!
5965         *
5966         * @param orig - original Instrument object to be copied from
5967         */
5968        void Instrument::CopyAssign(const Instrument* orig) {
5969            CopyAssign(orig, NULL);
5970        }
5971            
5972        /**
5973         * Make a (semi) deep copy of the Instrument object given by @a orig
5974         * and assign it to this object.
5975         *
5976         * @param orig - original Instrument object to be copied from
5977         * @param mSamples - crosslink map between the foreign file's samples and
5978         *                   this file's samples
5979         */
5980        void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
5981            // handle base class
5982            // (without copying DLS region stuff)
5983            DLS::Instrument::CopyAssignCore(orig);
5984            
5985            // handle own member variables
5986            Attenuation = orig->Attenuation;
5987            EffectSend = orig->EffectSend;
5988            FineTune = orig->FineTune;
5989            PitchbendRange = orig->PitchbendRange;
5990            PianoReleaseMode = orig->PianoReleaseMode;
5991            DimensionKeyRange = orig->DimensionKeyRange;
5992            scriptPoolFileOffsets = orig->scriptPoolFileOffsets;
5993            // deep copy of pScriptRefs required (to avoid undefined behaviour)
5994            if (pScriptRefs) delete pScriptRefs;
5995            pScriptRefs = new std::vector<_ScriptPooolRef>;
5996            if (orig->pScriptRefs)
5997                *pScriptRefs = *orig->pScriptRefs;
5998            scriptVars = orig->scriptVars;
5999            
6000            // free old midi rules
6001            for (int i = 0 ; pMidiRules[i] ; i++) {
6002                delete pMidiRules[i];
6003            }
6004            //TODO: MIDI rule copying
6005            pMidiRules[0] = NULL;
6006            
6007            // delete all old regions
6008            while (Regions) DeleteRegion(GetRegionAt(0));
6009            // create new regions and copy them from original
6010            {
6011                RegionList::const_iterator it = orig->pRegions->begin();
6012                for (int i = 0; i < orig->Regions; ++i, ++it) {
6013                    Region* dstRgn = AddRegion();
6014                    //NOTE: Region does semi-deep copy !
6015                    dstRgn->CopyAssign(
6016                        static_cast<gig::Region*>(*it),
6017                        mSamples
6018                    );
6019                }
6020            }
6021    
6022            UpdateRegionKeyTable();
6023        }
6024    
6025        /**
6026         * Returns @c true in case this Instrument object uses any gig format
6027         * extension, that is e.g. whether any DimensionRegion object currently
6028         * has any setting effective that would require our "LSDE" RIFF chunk to
6029         * be stored to the gig file.
6030         *
6031         * Right now this is a private method. It is considerable though this method
6032         * to become (in slightly modified form) a public API method in future, i.e.
6033         * to allow instrument editors to visualize and/or warn the user of any gig
6034         * format extension being used. See also comments on
6035         * DimensionRegion::UsesAnyGigFormatExtension() for details about such a
6036         * potential public API change in future.
6037         */
6038        bool Instrument::UsesAnyGigFormatExtension() const {
6039            if (!pRegions) return false;
6040            if (!scriptVars.empty()) return true;
6041            RegionList::const_iterator iter = pRegions->begin();
6042            RegionList::const_iterator end  = pRegions->end();
6043            for (; iter != end; ++iter) {
6044                gig::Region* rgn = static_cast<gig::Region*>(*iter);
6045                if (rgn->UsesAnyGigFormatExtension())
6046                    return true;
6047            }
6048            return false;
6049        }
6050    
6051    
6052  // *************** Group ***************  // *************** Group ***************
# Line 2710  namespace { Line 6064  namespace {
6064          ::LoadString(pNameChunk, Name);          ::LoadString(pNameChunk, Name);
6065      }      }
6066    
6067        /** @brief Destructor.
6068         *
6069         * Currently this destructor implementation does nothing.
6070         */
6071      Group::~Group() {      Group::~Group() {
6072      }      }
6073    
6074        /** @brief Remove all RIFF chunks associated with this Group object.
6075         *
6076         * See DLS::Storage::DeleteChunks() for details.
6077         */
6078        void Group::DeleteChunks() {
6079            // handle own RIFF chunks
6080            if (pNameChunk) {
6081                pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
6082                pNameChunk = NULL;
6083            }
6084        }
6085    
6086      /** @brief Update chunks with current group settings.      /** @brief Update chunks with current group settings.
6087       *       *
6088       * Apply current Group field values to the respective. You have to call       * Apply current Group field values to the respective chunks. You have
6089       * File::Save() to make changes persistent.       * to call File::Save() to make changes persistent.
6090         *
6091         * Usually there is absolutely no need to call this method explicitly.
6092         * It will be called automatically when File::Save() was called.
6093         *
6094         * @param pProgress - callback function for progress notification
6095       */       */
6096      void Group::UpdateChunks() {      void Group::UpdateChunks(progress_t* pProgress) {
6097          // make sure <3gri> and <3gnl> list chunks exist          // make sure <3gri> and <3gnl> list chunks exist
6098          RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);          RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
6099          if (!_3gri) _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);          if (!_3gri) {
6100                _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
6101                pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
6102            }
6103          RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);          RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
6104          if (!_3gnl) _3gnl = pFile->pRIFF->AddSubList(LIST_TYPE_3GNL);          if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
6105    
6106            if (!pNameChunk && pFile->pVersion && pFile->pVersion->major > 2) {
6107                // v3 has a fixed list of 128 strings, find a free one
6108                size_t i = 0;
6109                for (RIFF::Chunk* ck = _3gnl->GetSubChunkAt(i); ck; ck = _3gnl->GetSubChunkAt(++i)) {
6110                    if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
6111                        pNameChunk = ck;
6112                        break;
6113                    }
6114                }
6115            }
6116    
6117          // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk          // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
6118          ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);          ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
6119      }      }
# Line 2799  namespace { Line 6189  namespace {
6189  // *************** File ***************  // *************** File ***************
6190  // *  // *
6191    
6192        /// Reflects Gigasampler file format version 2.0 (1998-06-28).
6193        const DLS::version_t File::VERSION_2 = {
6194            0, 2, 19980628 & 0xffff, 19980628 >> 16
6195        };
6196    
6197        /// Reflects Gigasampler file format version 3.0 (2003-03-31).
6198        const DLS::version_t File::VERSION_3 = {
6199            0, 3, 20030331 & 0xffff, 20030331 >> 16
6200        };
6201    
6202        /// Reflects Gigasampler file format version 4.0 (2007-10-12).
6203        const DLS::version_t File::VERSION_4 = {
6204            0, 4, 20071012 & 0xffff, 20071012 >> 16
6205        };
6206    
6207        static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
6208            { CHUNK_ID_IARL, 256 },
6209            { CHUNK_ID_IART, 128 },
6210            { CHUNK_ID_ICMS, 128 },
6211            { CHUNK_ID_ICMT, 1024 },
6212            { CHUNK_ID_ICOP, 128 },
6213            { CHUNK_ID_ICRD, 128 },
6214            { CHUNK_ID_IENG, 128 },
6215            { CHUNK_ID_IGNR, 128 },
6216            { CHUNK_ID_IKEY, 128 },
6217            { CHUNK_ID_IMED, 128 },
6218            { CHUNK_ID_INAM, 128 },
6219            { CHUNK_ID_IPRD, 128 },
6220            { CHUNK_ID_ISBJ, 128 },
6221            { CHUNK_ID_ISFT, 128 },
6222            { CHUNK_ID_ISRC, 128 },
6223            { CHUNK_ID_ISRF, 128 },
6224            { CHUNK_ID_ITCH, 128 },
6225            { 0, 0 }
6226        };
6227    
6228      File::File() : DLS::File() {      File::File() : DLS::File() {
6229            bAutoLoad = true;
6230            *pVersion = VERSION_3;
6231          pGroups = NULL;          pGroups = NULL;
6232          pInfo->UseFixedLengthStrings = true;          pScriptGroups = NULL;
6233            pInfo->SetFixedStringLengths(_FileFixedStringLengths);
6234            pInfo->ArchivalLocation = String(256, ' ');
6235    
6236            // add some mandatory chunks to get the file chunks in right
6237            // order (INFO chunk will be moved to first position later)
6238            pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
6239            pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
6240            pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
6241    
6242            GenerateDLSID();
6243      }      }
6244    
6245      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
6246            bAutoLoad = true;
6247          pGroups = NULL;          pGroups = NULL;
6248          pInfo->UseFixedLengthStrings = true;          pScriptGroups = NULL;
6249            pInfo->SetFixedStringLengths(_FileFixedStringLengths);
6250      }      }
6251    
6252      File::~File() {      File::~File() {
# Line 2819  namespace { Line 6259  namespace {
6259              }              }
6260              delete pGroups;              delete pGroups;
6261          }          }
6262            if (pScriptGroups) {
6263                std::list<ScriptGroup*>::iterator iter = pScriptGroups->begin();
6264                std::list<ScriptGroup*>::iterator end  = pScriptGroups->end();
6265                while (iter != end) {
6266                    delete *iter;
6267                    ++iter;
6268                }
6269                delete pScriptGroups;
6270            }
6271      }      }
6272    
6273        /**
6274         * Returns a pointer to the first <i>Sample</i> object of the file,
6275         * <i>NULL</i> otherwise.
6276         *
6277         * @param pProgress - optional: callback function for progress notification
6278         * @deprecated  This method is not reentrant-safe, use GetSample()
6279         *              instead.
6280         */
6281      Sample* File::GetFirstSample(progress_t* pProgress) {      Sample* File::GetFirstSample(progress_t* pProgress) {
6282          if (!pSamples) LoadSamples(pProgress);          if (!pSamples) LoadSamples(pProgress);
6283          if (!pSamples) return NULL;          if (!pSamples) return NULL;
# Line 2828  namespace { Line 6285  namespace {
6285          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
6286      }      }
6287    
6288        /**
6289         * Returns a pointer to the next <i>Sample</i> object of the file,
6290         * <i>NULL</i> otherwise.
6291         *
6292         * @deprecated  This method is not reentrant-safe, use GetSample()
6293         *              instead.
6294         */
6295      Sample* File::GetNextSample() {      Sample* File::GetNextSample() {
6296          if (!pSamples) return NULL;          if (!pSamples) return NULL;
6297          SamplesIterator++;          SamplesIterator++;
6298          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
6299      }      }
6300        
6301        /**
6302         * Returns Sample object of @a index.
6303         *
6304         * @param index - position of sample in sample list (0..n)
6305         * @param pProgress - optional: callback function for progress notification
6306         * @returns sample object or NULL if index is out of bounds
6307         */
6308        Sample* File::GetSample(size_t index, progress_t* pProgress) {
6309            if (!pSamples) LoadSamples(pProgress);
6310            if (!pSamples) return NULL;
6311            if (index >= pSamples->size()) return NULL;
6312            return static_cast<gig::Sample*>( (*pSamples)[index] );
6313        }
6314    
6315        /**
6316         * Returns the total amount of samples of this gig file.
6317         *
6318         * Note that this method might block for a long time in case it is required
6319         * to load the sample info for the first time.
6320         *
6321         * @returns total amount of samples
6322         */
6323        size_t File::CountSamples() {
6324            if (!pSamples) LoadSamples();
6325            if (!pSamples) return 0;
6326            return pSamples->size();
6327        }
6328    
6329      /** @brief Add a new sample.      /** @brief Add a new sample.
6330       *       *
# Line 2848  namespace { Line 6340  namespace {
6340         // create new Sample object and its respective 'wave' list chunk         // create new Sample object and its respective 'wave' list chunk
6341         RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);         RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
6342         Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);         Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
6343    
6344           // add mandatory chunks to get the chunks in right order
6345           wave->AddSubChunk(CHUNK_ID_FMT, 16);
6346           wave->AddSubList(LIST_TYPE_INFO);
6347    
6348         pSamples->push_back(pSample);         pSamples->push_back(pSample);
6349         return pSample;         return pSample;
6350      }      }
6351    
6352      /** @brief Delete a sample.      /** @brief Delete a sample.
6353       *       *
6354       * This will delete the given Sample object from the gig file. You have       * This will delete the given Sample object from the gig file. Any
6355       * to call Save() to make this persistent to the file.       * references to this sample from Regions and DimensionRegions will be
6356         * removed. You have to call Save() to make this persistent to the file.
6357       *       *
6358       * @param pSample - sample to delete       * @param pSample - sample to delete
6359       * @throws gig::Exception if given sample could not be found       * @throws gig::Exception if given sample could not be found
# Line 2864  namespace { Line 6362  namespace {
6362          if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");          if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
6363          SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);          SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
6364          if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");          if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
6365            if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
6366          pSamples->erase(iter);          pSamples->erase(iter);
6367            pSample->DeleteChunks();
6368          delete pSample;          delete pSample;
6369    
6370            SampleList::iterator tmp = SamplesIterator;
6371            // remove all references to the sample
6372            for (Instrument* instrument = GetFirstInstrument() ; instrument ;
6373                 instrument = GetNextInstrument()) {
6374                size_t iRgn = 0;
6375                for (Region* region = instrument->GetRegionAt(iRgn); region;
6376                     region = instrument->GetRegionAt(++iRgn))
6377                {
6378                    if (region->GetSample() == pSample) region->SetSample(NULL);
6379    
6380                    for (int i = 0 ; i < region->DimensionRegions ; i++) {
6381                        gig::DimensionRegion *d = region->pDimensionRegions[i];
6382                        if (d->pSample == pSample) d->pSample = NULL;
6383                    }
6384                }
6385            }
6386            SamplesIterator = tmp; // restore iterator
6387      }      }
6388    
6389      void File::LoadSamples() {      void File::LoadSamples() {
# Line 2875  namespace { Line 6393  namespace {
6393      void File::LoadSamples(progress_t* pProgress) {      void File::LoadSamples(progress_t* pProgress) {
6394          // Groups must be loaded before samples, because samples will try          // Groups must be loaded before samples, because samples will try
6395          // to resolve the group they belong to          // to resolve the group they belong to
6396          LoadGroups();          if (!pGroups) LoadGroups();
6397    
6398          if (!pSamples) pSamples = new SampleList;          if (!pSamples) pSamples = new SampleList;
6399    
         RIFF::File* file = pRIFF;  
   
6400          // just for progress calculation          // just for progress calculation
6401          int iSampleIndex  = 0;          int iSampleIndex  = 0;
6402          int iTotalSamples = WavePoolCount;          int iTotalSamples = WavePoolCount;
6403    
6404          // check if samples should be loaded from extension files          // just for assembling path of optional extension files to be read
6405          int lastFileNo = 0;          const std::string folder = parentPath(pRIFF->GetFileName());
6406          for (int i = 0 ; i < WavePoolCount ; i++) {          const std::string baseName = pathWithoutExtension(pRIFF->GetFileName());
6407              if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];  
6408          }          // the main gig file and the extension files (.gx01, ... , .gx98) may
6409          String name(pRIFF->GetFileName());          // contain wave data (wave pool)
6410          int nameLen = name.length();          std::vector<RIFF::File*> poolFiles;
6411          char suffix[6];          poolFiles.push_back(pRIFF);
6412          if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;  
6413            // get info about all extension files
6414            RIFF::Chunk* ckXfil = pRIFF->GetSubChunk(CHUNK_ID_XFIL);
6415            if (ckXfil) { // there are extension files (.gx01, ... , .gx98) ...
6416                const uint32_t n = ckXfil->ReadInt32();
6417                for (int i = 0; i < n; i++) {
6418                    // read the filename and load the extension file
6419                    std::string name;
6420                    ckXfil->ReadString(name, 128);
6421                    std::string path = concatPath(folder, name);
6422                    RIFF::File* pExtFile = new RIFF::File(path);
6423                    // check that the dlsids match
6424                    RIFF::Chunk* ckDLSID = pExtFile->GetSubChunk(CHUNK_ID_DLID);
6425                    if (ckDLSID) {
6426                        ::DLS::dlsid_t idExpected;
6427                        idExpected.ulData1 = ckXfil->ReadInt32();
6428                        idExpected.usData2 = ckXfil->ReadInt16();
6429                        idExpected.usData3 = ckXfil->ReadInt16();
6430                        ckXfil->Read(idExpected.abData, 8, 1);
6431                        ::DLS::dlsid_t idFound;
6432                        ckDLSID->Read(&idFound.ulData1, 1, 4);
6433                        ckDLSID->Read(&idFound.usData2, 1, 2);
6434                        ckDLSID->Read(&idFound.usData3, 1, 2);
6435                        ckDLSID->Read(idFound.abData, 8, 1);
6436                        if (memcmp(&idExpected, &idFound, 16) != 0)
6437                            throw gig::Exception("dlsid mismatch for extension file: %s", path.c_str());
6438                    }
6439                    poolFiles.push_back(pExtFile);
6440                    ExtensionFiles.push_back(pExtFile);
6441                }
6442            }
6443    
6444          for (int fileNo = 0 ; ; ) {          // check if a .gx99 (GigaPulse) file exists
6445            RIFF::Chunk* ckDoxf = pRIFF->GetSubChunk(CHUNK_ID_DOXF);
6446            if (ckDoxf) { // there is a .gx99 (GigaPulse) file ...
6447                std::string path = baseName + ".gx99";
6448                RIFF::File* pExtFile = new RIFF::File(path);
6449    
6450                // skip unused int and filename
6451                ckDoxf->SetPos(132, RIFF::stream_curpos);
6452    
6453                // check that the dlsids match
6454                RIFF::Chunk* ckDLSID = pExtFile->GetSubChunk(CHUNK_ID_DLID);
6455                if (ckDLSID) {
6456                    ::DLS::dlsid_t idExpected;
6457                    idExpected.ulData1 = ckDoxf->ReadInt32();
6458                    idExpected.usData2 = ckDoxf->ReadInt16();
6459                    idExpected.usData3 = ckDoxf->ReadInt16();
6460                    ckDoxf->Read(idExpected.abData, 8, 1);
6461                    ::DLS::dlsid_t idFound;
6462                    ckDLSID->Read(&idFound.ulData1, 1, 4);
6463                    ckDLSID->Read(&idFound.usData2, 1, 2);
6464                    ckDLSID->Read(&idFound.usData3, 1, 2);
6465                    ckDLSID->Read(idFound.abData, 8, 1);
6466                    if (memcmp(&idExpected, &idFound, 16) != 0)
6467                        throw gig::Exception("dlsid mismatch for GigaPulse file: %s", path.c_str());
6468                }
6469                poolFiles.push_back(pExtFile);
6470                ExtensionFiles.push_back(pExtFile);
6471            }
6472    
6473            // load samples from extension files (if required)
6474            for (int i = 0; i < poolFiles.size(); i++) {
6475                RIFF::File* file = poolFiles[i];
6476              RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);              RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
6477              if (wvpl) {              if (wvpl) {
6478                  unsigned long wvplFileOffset = wvpl->GetFilePos();                  file_offset_t wvplFileOffset = wvpl->GetFilePos() -
6479                  RIFF::List* wave = wvpl->GetFirstSubList();                                                 wvpl->GetPos(); // should be zero, but just to be sure
6480                  while (wave) {                  size_t i = 0;
6481                    for (RIFF::List* wave = wvpl->GetSubListAt(i); wave;
6482                         wave = wvpl->GetSubListAt(++i))
6483                    {
6484                      if (wave->GetListType() == LIST_TYPE_WAVE) {                      if (wave->GetListType() == LIST_TYPE_WAVE) {
6485                          // notify current progress                          // notify current progress
6486                          const float subprogress = (float) iSampleIndex / (float) iTotalSamples;                          if (pProgress) {
6487                          __notify_progress(pProgress, subprogress);                              const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
6488                                __notify_progress(pProgress, subprogress);
6489                            }
6490    
6491                          unsigned long waveFileOffset = wave->GetFilePos();                          file_offset_t waveFileOffset = wave->GetFilePos();
6492                          pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));                          pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, i, iSampleIndex));
6493    
6494                          iSampleIndex++;                          iSampleIndex++;
6495                      }                      }
                     wave = wvpl->GetNextSubList();  
6496                  }                  }
6497                }
                 if (fileNo == lastFileNo) break;  
   
                 // open extension file (*.gx01, *.gx02, ...)  
                 fileNo++;  
                 sprintf(suffix, ".gx%02d", fileNo);  
                 name.replace(nameLen, 5, suffix);  
                 file = new RIFF::File(name);  
                 ExtensionFiles.push_back(file);  
             } else break;  
6498          }          }
6499    
6500          __notify_progress(pProgress, 1.0); // notify done          if (pProgress)
6501                __notify_progress(pProgress, 1.0); // notify done
6502      }      }
6503    
6504      Instrument* File::GetFirstInstrument() {      Instrument* File::GetFirstInstrument() {
# Line 2942  namespace { Line 6515  namespace {
6515      }      }
6516    
6517      /**      /**
6518         * Returns the total amount of instruments of this gig file.
6519         *
6520         * Note that this method might block for a long time in case it is required
6521         * to load the instruments info for the first time.
6522         *
6523         * @returns total amount of instruments
6524         */
6525        size_t File::CountInstruments() {
6526            if (!pInstruments) LoadInstruments();
6527            if (!pInstruments) return 0;
6528            return pInstruments->size();
6529        }
6530    
6531        /**
6532       * Returns the instrument with the given index.       * Returns the instrument with the given index.
6533       *       *
6534       * @param index     - number of the sought instrument (0..n)       * @param index     - number of the sought instrument (0..n)
# Line 2952  namespace { Line 6539  namespace {
6539          if (!pInstruments) {          if (!pInstruments) {
6540              // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)              // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
6541    
6542              // sample loading subtask              if (pProgress) {
6543              progress_t subprogress;                  // sample loading subtask
6544              __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask                  progress_t subprogress;
6545              __notify_progress(&subprogress, 0.0f);                  __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
6546              GetFirstSample(&subprogress); // now force all samples to be loaded                  __notify_progress(&subprogress, 0.0f);
6547              __notify_progress(&subprogress, 1.0f);                  if (GetAutoLoad())
6548                        GetFirstSample(&subprogress); // now force all samples to be loaded
6549              // instrument loading subtask                  __notify_progress(&subprogress, 1.0f);
6550              if (pProgress && pProgress->callback) {  
6551                  subprogress.__range_min = subprogress.__range_max;                  // instrument loading subtask
6552                  subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask                  if (pProgress->callback) {
6553              }                      subprogress.__range_min = subprogress.__range_max;
6554              __notify_progress(&subprogress, 0.0f);                      subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
6555              LoadInstruments(&subprogress);                  }
6556              __notify_progress(&subprogress, 1.0f);                  __notify_progress(&subprogress, 0.0f);
6557                    LoadInstruments(&subprogress);
6558                    __notify_progress(&subprogress, 1.0f);
6559                } else {
6560                    // sample loading subtask
6561                    if (GetAutoLoad())
6562                        GetFirstSample(); // now force all samples to be loaded
6563    
6564                    // instrument loading subtask
6565                    LoadInstruments();
6566                }
6567          }          }
6568          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
6569          InstrumentsIterator = pInstruments->begin();          InstrumentsIterator = pInstruments->begin();
# Line 2989  namespace { Line 6586  namespace {
6586         __ensureMandatoryChunksExist();         __ensureMandatoryChunksExist();
6587         RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);         RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
6588         RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);         RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
6589    
6590           // add mandatory chunks to get the chunks in right order
6591           lstInstr->AddSubList(LIST_TYPE_INFO);
6592           lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
6593    
6594         Instrument* pInstrument = new Instrument(this, lstInstr);         Instrument* pInstrument = new Instrument(this, lstInstr);
6595           pInstrument->GenerateDLSID();
6596    
6597           lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
6598    
6599           // this string is needed for the gig to be loadable in GSt:
6600           pInstrument->pInfo->Software = "Endless Wave";
6601    
6602         pInstruments->push_back(pInstrument);         pInstruments->push_back(pInstrument);
6603         return pInstrument;         return pInstrument;
6604      }      }
6605        
6606        /** @brief Add a duplicate of an existing instrument.
6607         *
6608         * Duplicates the instrument definition given by @a orig and adds it
6609         * to this file. This allows in an instrument editor application to
6610         * easily create variations of an instrument, which will be stored in
6611         * the same .gig file, sharing i.e. the same samples.
6612         *
6613         * Note that all sample pointers referenced by @a orig are simply copied as
6614         * memory address. Thus the respective samples are shared, not duplicated!
6615         *
6616         * You have to call Save() to make this persistent to the file.
6617         *
6618         * @param orig - original instrument to be copied
6619         * @returns duplicated copy of the given instrument
6620         */
6621        Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
6622            Instrument* instr = AddInstrument();
6623            instr->CopyAssign(orig);
6624            return instr;
6625        }
6626        
6627        /** @brief Add content of another existing file.
6628         *
6629         * Duplicates the samples, groups and instruments of the original file
6630         * given by @a pFile and adds them to @c this File. In case @c this File is
6631         * a new one that you haven't saved before, then you have to call
6632         * SetFileName() before calling AddContentOf(), because this method will
6633         * automatically save this file during operation, which is required for
6634         * writing the sample waveform data by disk streaming.
6635         *
6636         * @param pFile - original file whose's content shall be copied from
6637         */
6638        void File::AddContentOf(File* pFile) {
6639            static int iCallCount = -1;
6640            iCallCount++;
6641            std::map<Group*,Group*> mGroups;
6642            std::map<Sample*,Sample*> mSamples;
6643            
6644            // clone sample groups
6645            for (int i = 0; pFile->GetGroup(i); ++i) {
6646                Group* g = AddGroup();
6647                g->Name =
6648                    "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
6649                mGroups[pFile->GetGroup(i)] = g;
6650            }
6651            
6652            // clone samples (not waveform data here yet)
6653            for (int i = 0; pFile->GetSample(i); ++i) {
6654                Sample* s = AddSample();
6655                s->CopyAssignMeta(pFile->GetSample(i));
6656                mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
6657                mSamples[pFile->GetSample(i)] = s;
6658            }
6659    
6660            // clone script groups and their scripts
6661            for (int iGroup = 0; pFile->GetScriptGroup(iGroup); ++iGroup) {
6662                ScriptGroup* sg = pFile->GetScriptGroup(iGroup);
6663                ScriptGroup* dg = AddScriptGroup();
6664                dg->Name = "COPY" + ToString(iCallCount) + "_" + sg->Name;
6665                for (int iScript = 0; sg->GetScript(iScript); ++iScript) {
6666                    Script* ss = sg->GetScript(iScript);
6667                    Script* ds = dg->AddScript();
6668                    ds->CopyAssign(ss);
6669                }
6670            }
6671    
6672            //BUG: For some reason this method only works with this additional
6673            //     Save() call in between here.
6674            //
6675            // Important: The correct one of the 2 Save() methods has to be called
6676            // here, depending on whether the file is completely new or has been
6677            // saved to disk already, otherwise it will result in data corruption.
6678            if (pRIFF->IsNew())
6679                Save(GetFileName());
6680            else
6681                Save();
6682            
6683            // clone instruments
6684            // (passing the crosslink table here for the cloned samples)
6685            for (int i = 0; pFile->GetInstrument(i); ++i) {
6686                Instrument* instr = AddInstrument();
6687                instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
6688            }
6689            
6690            // Mandatory: file needs to be saved to disk at this point, so this
6691            // file has the correct size and data layout for writing the samples'
6692            // waveform data to disk.
6693            Save();
6694            
6695            // clone samples' waveform data
6696            // (using direct read & write disk streaming)
6697            for (int i = 0; pFile->GetSample(i); ++i) {
6698                mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
6699            }
6700        }
6701    
6702      /** @brief Delete an instrument.      /** @brief Delete an instrument.
6703       *       *
# Line 3000  namespace { Line 6705  namespace {
6705       * have to call Save() to make this persistent to the file.       * have to call Save() to make this persistent to the file.
6706       *       *
6707       * @param pInstrument - instrument to delete       * @param pInstrument - instrument to delete
6708       * @throws gig::Excption if given instrument could not be found       * @throws gig::Exception if given instrument could not be found
6709       */       */
6710      void File::DeleteInstrument(Instrument* pInstrument) {      void File::DeleteInstrument(Instrument* pInstrument) {
6711          if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");          if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
6712          InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);          InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
6713          if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");          if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
6714          pInstruments->erase(iter);          pInstruments->erase(iter);
6715            pInstrument->DeleteChunks();
6716          delete pInstrument;          delete pInstrument;
6717      }      }
6718    
# Line 3019  namespace { Line 6725  namespace {
6725          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
6726          if (lstInstruments) {          if (lstInstruments) {
6727              int iInstrumentIndex = 0;              int iInstrumentIndex = 0;
6728              RIFF::List* lstInstr = lstInstruments->GetFirstSubList();              size_t i = 0;
6729              while (lstInstr) {              for (RIFF::List* lstInstr = lstInstruments->GetSubListAt(i);
6730                     lstInstr; lstInstr = lstInstruments->GetSubListAt(++i))
6731                {
6732                  if (lstInstr->GetListType() == LIST_TYPE_INS) {                  if (lstInstr->GetListType() == LIST_TYPE_INS) {
6733                      // notify current progress                      if (pProgress) {
6734                      const float localProgress = (float) iInstrumentIndex / (float) Instruments;                          // notify current progress
6735                      __notify_progress(pProgress, localProgress);                          const float localProgress = (float) iInstrumentIndex / (float) Instruments;
6736                            __notify_progress(pProgress, localProgress);
                     // divide local progress into subprogress for loading current Instrument  
                     progress_t subprogress;  
                     __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);  
6737    
6738                      pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));                          // divide local progress into subprogress for loading current Instrument
6739                            progress_t subprogress;
6740                            __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
6741    
6742                            pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
6743                        } else {
6744                            pInstruments->push_back(new Instrument(this, lstInstr));
6745                        }
6746    
6747                      iInstrumentIndex++;                      iInstrumentIndex++;
6748                  }                  }
                 lstInstr = lstInstruments->GetNextSubList();  
6749              }              }
6750              __notify_progress(pProgress, 1.0); // notify done              if (pProgress)
6751                    __notify_progress(pProgress, 1.0); // notify done
6752          }          }
6753      }      }
6754    
6755        /// Updates the 3crc chunk with the checksum of a sample. The
6756        /// update is done directly to disk, as this method is called
6757        /// after File::Save()
6758        void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
6759            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6760            if (!_3crc) return;
6761    
6762            // get the index of the sample
6763            int iWaveIndex = GetWaveTableIndexOf(pSample);
6764            if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
6765    
6766            // write the CRC-32 checksum to disk
6767            _3crc->SetPos(iWaveIndex * 8);
6768            uint32_t one = 1;
6769            _3crc->WriteUint32(&one); // always 1
6770            _3crc->WriteUint32(&crc);
6771        }
6772    
6773        uint32_t File::GetSampleChecksum(Sample* pSample) {
6774            // get the index of the sample
6775            int iWaveIndex = GetWaveTableIndexOf(pSample);
6776            if (iWaveIndex < 0) throw gig::Exception("Could not retrieve reference crc of sample, could not resolve sample's wave table index");
6777    
6778            return GetSampleChecksumByIndex(iWaveIndex);
6779        }
6780    
6781        uint32_t File::GetSampleChecksumByIndex(int index) {
6782            if (index < 0) throw gig::Exception("Could not retrieve reference crc of sample, invalid wave pool index of sample");
6783    
6784            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6785            if (!_3crc) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
6786            uint8_t* pData = (uint8_t*) _3crc->LoadChunkData();
6787            if (!pData) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
6788    
6789            // read the CRC-32 checksum directly from disk
6790            size_t pos = index * 8;
6791            if (pos + 8 > _3crc->GetNewSize())
6792                throw gig::Exception("Could not retrieve reference crc of sample, could not seek to required position in crc chunk");
6793    
6794            uint32_t one = load32(&pData[pos]); // always 1
6795            if (one != 1)
6796                throw gig::Exception("Could not retrieve reference crc of sample, because reference checksum table is damaged");
6797    
6798            return load32(&pData[pos+4]);
6799        }
6800    
6801        int File::GetWaveTableIndexOf(gig::Sample* pSample) {
6802            if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
6803            File::SampleList::iterator iter = pSamples->begin();
6804            File::SampleList::iterator end  = pSamples->end();
6805            for (int index = 0; iter != end; ++iter, ++index)
6806                if (*iter == pSample)
6807                    return index;
6808            return -1;
6809        }
6810    
6811        /**
6812         * Checks whether the file's "3CRC" chunk was damaged. This chunk contains
6813         * the CRC32 check sums of all samples' raw wave data.
6814         *
6815         * @return true if 3CRC chunk is OK, or false if 3CRC chunk is damaged
6816         */
6817        bool File::VerifySampleChecksumTable() {
6818            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6819            if (!_3crc) return false;
6820            if (_3crc->GetNewSize() <= 0) return false;
6821            if (_3crc->GetNewSize() % 8) return false;
6822            if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
6823            if (_3crc->GetNewSize() != pSamples->size() * 8) return false;
6824    
6825            const file_offset_t n = _3crc->GetNewSize() / 8;
6826    
6827            uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6828            if (!pData) return false;
6829    
6830            for (file_offset_t i = 0; i < n; ++i) {
6831                uint32_t one = pData[i*2];
6832                if (one != 1) return false;
6833            }
6834    
6835            return true;
6836        }
6837    
6838        /**
6839         * Recalculates CRC32 checksums for all samples and rebuilds this gig
6840         * file's checksum table with those new checksums. This might usually
6841         * just be necessary if the checksum table was damaged.
6842         *
6843         * @e IMPORTANT: The current implementation of this method only works
6844         * with files that have not been modified since it was loaded, because
6845         * it expects that no externally caused file structure changes are
6846         * required!
6847         *
6848         * Due to the expectation above, this method is currently protected
6849         * and actually only used by the command line tool "gigdump" yet.
6850         *
6851         * @returns true if Save() is required to be called after this call,
6852         *          false if no further action is required
6853         */
6854        bool File::RebuildSampleChecksumTable() {
6855            // make sure sample chunks were scanned
6856            if (!pSamples) GetFirstSample();
6857    
6858            bool bRequiresSave = false;
6859    
6860            // make sure "3CRC" chunk exists with required size
6861            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6862            if (!_3crc) {
6863                _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6864                // the order of einf and 3crc is not the same in v2 and v3
6865                RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6866                if (einf && pVersion && pVersion->major > 2) pRIFF->MoveSubChunk(_3crc, einf);
6867                bRequiresSave = true;
6868            } else if (_3crc->GetNewSize() != pSamples->size() * 8) {
6869                _3crc->Resize(pSamples->size() * 8);
6870                bRequiresSave = true;
6871            }
6872    
6873            if (bRequiresSave) { // refill CRC table for all samples in RAM ...
6874                uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6875                {
6876                    File::SampleList::iterator iter = pSamples->begin();
6877                    File::SampleList::iterator end  = pSamples->end();
6878                    for (; iter != end; ++iter) {
6879                        gig::Sample* pSample = (gig::Sample*) *iter;
6880                        int index = GetWaveTableIndexOf(pSample);
6881                        if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6882                        pData[index*2]   = 1; // always 1
6883                        pData[index*2+1] = pSample->CalculateWaveDataChecksum();
6884                    }
6885                }
6886            } else { // no file structure changes necessary, so directly write to disk and we are done ...
6887                // make sure file is in write mode
6888                pRIFF->SetMode(RIFF::stream_mode_read_write);
6889                {
6890                    File::SampleList::iterator iter = pSamples->begin();
6891                    File::SampleList::iterator end  = pSamples->end();
6892                    for (; iter != end; ++iter) {
6893                        gig::Sample* pSample = (gig::Sample*) *iter;
6894                        int index = GetWaveTableIndexOf(pSample);
6895                        if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6896                        pSample->crc  = pSample->CalculateWaveDataChecksum();
6897                        SetSampleChecksum(pSample, pSample->crc);
6898                    }
6899                }
6900            }
6901    
6902            return bRequiresSave;
6903        }
6904    
6905      Group* File::GetFirstGroup() {      Group* File::GetFirstGroup() {
6906          if (!pGroups) LoadGroups();          if (!pGroups) LoadGroups();
6907          // there must always be at least one group          // there must always be at least one group
# Line 3069  namespace { Line 6931  namespace {
6931          return NULL;          return NULL;
6932      }      }
6933    
6934        /**
6935         * Returns the group with the given group name.
6936         *
6937         * Note: group names don't have to be unique in the gig format! So there
6938         * can be multiple groups with the same name. This method will simply
6939         * return the first group found with the given name.
6940         *
6941         * @param name - name of the sought group
6942         * @returns sought group or NULL if there's no group with that name
6943         */
6944        Group* File::GetGroup(String name) {
6945            if (!pGroups) LoadGroups();
6946            GroupsIterator = pGroups->begin();
6947            for (uint i = 0; GroupsIterator != pGroups->end(); ++GroupsIterator, ++i)
6948                if ((*GroupsIterator)->Name == name) return *GroupsIterator;
6949            return NULL;
6950        }
6951    
6952      Group* File::AddGroup() {      Group* File::AddGroup() {
6953          if (!pGroups) LoadGroups();          if (!pGroups) LoadGroups();
6954          // there must always be at least one group          // there must always be at least one group
# Line 3078  namespace { Line 6958  namespace {
6958          return pGroup;          return pGroup;
6959      }      }
6960    
6961        /** @brief Delete a group and its samples.
6962         *
6963         * This will delete the given Group object and all the samples that
6964         * belong to this group from the gig file. You have to call Save() to
6965         * make this persistent to the file.
6966         *
6967         * @param pGroup - group to delete
6968         * @throws gig::Exception if given group could not be found
6969         */
6970      void File::DeleteGroup(Group* pGroup) {      void File::DeleteGroup(Group* pGroup) {
6971          if (!pGroups) LoadGroups();          if (!pGroups) LoadGroups();
6972          std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);          std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6973          if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");          if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6974          if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");          if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6975            // delete all members of this group
6976            for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
6977                DeleteSample(pSample);
6978            }
6979            // now delete this group object
6980            pGroups->erase(iter);
6981            pGroup->DeleteChunks();
6982            delete pGroup;
6983        }
6984    
6985        /** @brief Delete a group.
6986         *
6987         * This will delete the given Group object from the gig file. All the
6988         * samples that belong to this group will not be deleted, but instead
6989         * be moved to another group. You have to call Save() to make this
6990         * persistent to the file.
6991         *
6992         * @param pGroup - group to delete
6993         * @throws gig::Exception if given group could not be found
6994         */
6995        void File::DeleteGroupOnly(Group* pGroup) {
6996            if (!pGroups) LoadGroups();
6997            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6998            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6999            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
7000          // move all members of this group to another group          // move all members of this group to another group
7001          pGroup->MoveAll();          pGroup->MoveAll();
7002          pGroups->erase(iter);          pGroups->erase(iter);
7003            pGroup->DeleteChunks();
7004          delete pGroup;          delete pGroup;
7005      }      }
7006    
# Line 3096  namespace { Line 7011  namespace {
7011          if (lst3gri) {          if (lst3gri) {
7012              RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);              RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
7013              if (lst3gnl) {              if (lst3gnl) {
7014                  RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();                  size_t i = 0;
7015                  while (ck) {                  for (RIFF::Chunk* ck = lst3gnl->GetSubChunkAt(i); ck;
7016                         ck = lst3gnl->GetSubChunkAt(++i))
7017                    {
7018                      if (ck->GetChunkID() == CHUNK_ID_3GNM) {                      if (ck->GetChunkID() == CHUNK_ID_3GNM) {
7019                            if (pVersion && pVersion->major > 2 &&
7020                                strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
7021    
7022                          pGroups->push_back(new Group(this, ck));                          pGroups->push_back(new Group(this, ck));
7023                      }                      }
                     ck = lst3gnl->GetNextSubChunk();  
7024                  }                  }
7025              }              }
7026          }          }
# Line 3113  namespace { Line 7032  namespace {
7032          }          }
7033      }      }
7034    
7035        /** @brief Get instrument script group (by index).
7036         *
7037         * Returns the real-time instrument script group with the given index.
7038         *
7039         * @param index - number of the sought group (0..n)
7040         * @returns sought script group or NULL if there's no such group
7041         */
7042        ScriptGroup* File::GetScriptGroup(uint index) {
7043            if (!pScriptGroups) LoadScriptGroups();
7044            std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
7045            for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
7046                if (i == index) return *it;
7047            return NULL;
7048        }
7049    
7050        /** @brief Get instrument script group (by name).
7051         *
7052         * Returns the first real-time instrument script group found with the given
7053         * group name. Note that group names may not necessarily be unique.
7054         *
7055         * @param name - name of the sought script group
7056         * @returns sought script group or NULL if there's no such group
7057         */
7058        ScriptGroup* File::GetScriptGroup(const String& name) {
7059            if (!pScriptGroups) LoadScriptGroups();
7060            std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
7061            for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
7062                if ((*it)->Name == name) return *it;
7063            return NULL;
7064        }
7065    
7066        /** @brief Add new instrument script group.
7067         *
7068         * Adds a new, empty real-time instrument script group to the file.
7069         *
7070         * You have to call Save() to make this persistent to the file.
7071         *
7072         * @return new empty script group
7073         */
7074        ScriptGroup* File::AddScriptGroup() {
7075            if (!pScriptGroups) LoadScriptGroups();
7076            ScriptGroup* pScriptGroup = new ScriptGroup(this, NULL);
7077            pScriptGroups->push_back(pScriptGroup);
7078            return pScriptGroup;
7079        }
7080    
7081        /** @brief Delete an instrument script group.
7082         *
7083         * This will delete the given real-time instrument script group and all its
7084         * instrument scripts it contains. References inside instruments that are
7085         * using the deleted scripts will be removed from the respective instruments
7086         * accordingly.
7087         *
7088         * You have to call Save() to make this persistent to the file.
7089         *
7090         * @param pScriptGroup - script group to delete
7091         * @throws gig::Exception if given script group could not be found
7092         */
7093        void File::DeleteScriptGroup(ScriptGroup* pScriptGroup) {
7094            if (!pScriptGroups) LoadScriptGroups();
7095            std::list<ScriptGroup*>::iterator iter =
7096                find(pScriptGroups->begin(), pScriptGroups->end(), pScriptGroup);
7097            if (iter == pScriptGroups->end())
7098                throw gig::Exception("Could not delete script group, could not find given script group");
7099            pScriptGroups->erase(iter);
7100            for (int i = 0; pScriptGroup->GetScript(i); ++i)
7101                pScriptGroup->DeleteScript(pScriptGroup->GetScript(i));
7102            if (pScriptGroup->pList)
7103                pScriptGroup->pList->GetParent()->DeleteSubChunk(pScriptGroup->pList);
7104            pScriptGroup->DeleteChunks();
7105            delete pScriptGroup;
7106        }
7107    
7108        void File::LoadScriptGroups() {
7109            if (pScriptGroups) return;
7110            pScriptGroups = new std::list<ScriptGroup*>;
7111            RIFF::List* lstLS = pRIFF->GetSubList(LIST_TYPE_3LS);
7112            if (lstLS) {
7113                size_t i = 0;
7114                for (RIFF::List* lst = lstLS->GetSubListAt(i); lst;
7115                     lst = lstLS->GetSubListAt(++i))
7116                {
7117                    if (lst->GetListType() == LIST_TYPE_RTIS) {
7118                        pScriptGroups->push_back(new ScriptGroup(this, lst));
7119                    }
7120                }
7121            }
7122        }
7123    
7124        /**
7125         * Apply all the gig file's current instruments, samples, groups and settings
7126         * to the respective RIFF chunks. You have to call Save() to make changes
7127         * persistent.
7128         *
7129         * Usually there is absolutely no need to call this method explicitly.
7130         * It will be called automatically when File::Save() was called.
7131         *
7132         * @param pProgress - callback function for progress notification
7133         * @throws Exception - on errors
7134         */
7135        void File::UpdateChunks(progress_t* pProgress) {
7136            bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
7137    
7138            // update own gig format extension chunks
7139            // (not part of the GigaStudio 4 format)
7140            RIFF::List* lst3LS = pRIFF->GetSubList(LIST_TYPE_3LS);
7141            if (!lst3LS) {
7142                lst3LS = pRIFF->AddSubList(LIST_TYPE_3LS);
7143            }
7144            // Make sure <3LS > chunk is placed before <ptbl> chunk. The precise
7145            // location of <3LS > is irrelevant, however it should be located
7146            // before  the actual wave data
7147            RIFF::Chunk* ckPTBL = pRIFF->GetSubChunk(CHUNK_ID_PTBL);
7148            pRIFF->MoveSubChunk(lst3LS, ckPTBL);
7149    
7150            // This must be performed before writing the chunks for instruments,
7151            // because the instruments' script slots will write the file offsets
7152            // of the respective instrument script chunk as reference.
7153            if (pScriptGroups) {
7154                // Update instrument script (group) chunks.
7155                for (std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
7156                     it != pScriptGroups->end(); ++it)
7157                {
7158                    (*it)->UpdateChunks(pProgress);
7159                }
7160            }
7161    
7162            // in case no libgig custom format data was added, then remove the
7163            // custom "3LS " chunk again
7164            if (!lst3LS->CountSubChunks()) {
7165                pRIFF->DeleteSubChunk(lst3LS);
7166                lst3LS = NULL;
7167            }
7168    
7169            // first update base class's chunks
7170            DLS::File::UpdateChunks(pProgress);
7171    
7172            if (newFile) {
7173                // INFO was added by Resource::UpdateChunks - make sure it
7174                // is placed first in file
7175                RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
7176                RIFF::Chunk* first = pRIFF->GetSubChunkAt(0);
7177                if (first != info) {
7178                    pRIFF->MoveSubChunk(info, first);
7179                }
7180            }
7181    
7182            // update group's chunks
7183            if (pGroups) {
7184                // make sure '3gri' and '3gnl' list chunks exist
7185                // (before updating the Group chunks)
7186                RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
7187                if (!_3gri) {
7188                    _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
7189                    pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
7190                }
7191                RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
7192                if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
7193    
7194                // v3: make sure the file has 128 3gnm chunks
7195                // (before updating the Group chunks)
7196                if (pVersion && pVersion->major > 2) {
7197                    size_t i = 0;
7198                    for (RIFF::Chunk* _3gnm = _3gnl->GetSubChunkAt(i); i < 128;
7199                         _3gnm = _3gnl->GetSubChunkAt(++i))
7200                    {
7201                        // create 128 empty placeholder strings which will either
7202                        // be filled by Group::UpdateChunks below or left empty.
7203                        ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
7204                    }
7205                }
7206    
7207                std::list<Group*>::iterator iter = pGroups->begin();
7208                std::list<Group*>::iterator end  = pGroups->end();
7209                for (; iter != end; ++iter) {
7210                    (*iter)->UpdateChunks(pProgress);
7211                }
7212            }
7213    
7214            // update einf chunk
7215    
7216            // The einf chunk contains statistics about the gig file, such
7217            // as the number of regions and samples used by each
7218            // instrument. It is divided in equally sized parts, where the
7219            // first part contains information about the whole gig file,
7220            // and the rest of the parts map to each instrument in the
7221            // file.
7222            //
7223            // At the end of each part there is a bit map of each sample
7224            // in the file, where a set bit means that the sample is used
7225            // by the file/instrument.
7226            //
7227            // Note that there are several fields with unknown use. These
7228            // are set to zero.
7229    
7230            int sublen = int(pSamples->size() / 8 + 49);
7231            int einfSize = (Instruments + 1) * sublen;
7232    
7233            RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
7234            if (einf) {
7235                if (einf->GetSize() != einfSize) {
7236                    einf->Resize(einfSize);
7237                    memset(einf->LoadChunkData(), 0, einfSize);
7238                }
7239            } else if (newFile) {
7240                einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
7241            }
7242            if (einf) {
7243                uint8_t* pData = (uint8_t*) einf->LoadChunkData();
7244    
7245                std::map<gig::Sample*,int> sampleMap;
7246                int sampleIdx = 0;
7247                for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
7248                    sampleMap[pSample] = sampleIdx++;
7249                }
7250    
7251                int totnbusedsamples = 0;
7252                int totnbusedchannels = 0;
7253                int totnbregions = 0;
7254                int totnbdimregions = 0;
7255                int totnbloops = 0;
7256                int instrumentIdx = 0;
7257    
7258                memset(&pData[48], 0, sublen - 48);
7259    
7260                for (Instrument* instrument = GetFirstInstrument() ; instrument ;
7261                     instrument = GetNextInstrument()) {
7262                    int nbusedsamples = 0;
7263                    int nbusedchannels = 0;
7264                    int nbdimregions = 0;
7265                    int nbloops = 0;
7266    
7267                    memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
7268    
7269                    size_t iRgn = 0;
7270                    for (Region* region = instrument->GetRegionAt(iRgn); region;
7271                         region = instrument->GetRegionAt(++iRgn))
7272                    {
7273                        for (int i = 0 ; i < region->DimensionRegions ; i++) {
7274                            gig::DimensionRegion *d = region->pDimensionRegions[i];
7275                            if (d->pSample) {
7276                                int sampleIdx = sampleMap[d->pSample];
7277                                int byte = 48 + sampleIdx / 8;
7278                                int bit = 1 << (sampleIdx & 7);
7279                                if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
7280                                    pData[(instrumentIdx + 1) * sublen + byte] |= bit;
7281                                    nbusedsamples++;
7282                                    nbusedchannels += d->pSample->Channels;
7283    
7284                                    if ((pData[byte] & bit) == 0) {
7285                                        pData[byte] |= bit;
7286                                        totnbusedsamples++;
7287                                        totnbusedchannels += d->pSample->Channels;
7288                                    }
7289                                }
7290                            }
7291                            if (d->SampleLoops) nbloops++;
7292                        }
7293                        nbdimregions += region->DimensionRegions;
7294                    }
7295                    // first 4 bytes unknown - sometimes 0, sometimes length of einf part
7296                    // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
7297                    store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
7298                    store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
7299                    store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
7300                    store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
7301                    store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
7302                    store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
7303                    // next 8 bytes unknown
7304                    store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
7305                    store32(&pData[(instrumentIdx + 1) * sublen + 40], (uint32_t) pSamples->size());
7306                    // next 4 bytes unknown
7307    
7308                    totnbregions += instrument->Regions;
7309                    totnbdimregions += nbdimregions;
7310                    totnbloops += nbloops;
7311                    instrumentIdx++;
7312                }
7313                // first 4 bytes unknown - sometimes 0, sometimes length of einf part
7314                // store32(&pData[0], sublen);
7315                store32(&pData[4], totnbusedchannels);
7316                store32(&pData[8], totnbusedsamples);
7317                store32(&pData[12], Instruments);
7318                store32(&pData[16], totnbregions);
7319                store32(&pData[20], totnbdimregions);
7320                store32(&pData[24], totnbloops);
7321                // next 8 bytes unknown
7322                // next 4 bytes unknown, not always 0
7323                store32(&pData[40], (uint32_t) pSamples->size());
7324                // next 4 bytes unknown
7325            }
7326    
7327            // update 3crc chunk
7328    
7329            // The 3crc chunk contains CRC-32 checksums for the
7330            // samples. When saving a gig file to disk, we first update the 3CRC
7331            // chunk here (in RAM) with the old crc values which we read from the
7332            // 3CRC chunk when we opened the file (available with gig::Sample::crc
7333            // member variable). This step is required, because samples might have
7334            // been deleted by the user since the file was opened, which in turn
7335            // changes the order of the (i.e. old) checksums within the 3crc chunk.
7336            // If a sample was conciously modified by the user (that is if
7337            // Sample::Write() was called later on) then Sample::Write() will just
7338            // update the respective individual checksum(s) directly on disk and
7339            // leaves all other sample checksums untouched.
7340    
7341            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
7342            if (_3crc) {
7343                _3crc->Resize(pSamples->size() * 8);
7344            } else /*if (newFile)*/ {
7345                _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
7346                // the order of einf and 3crc is not the same in v2 and v3
7347                if (einf && pVersion && pVersion->major > 2) pRIFF->MoveSubChunk(_3crc, einf);
7348            }
7349            { // must be performed in RAM here ...
7350                uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
7351                if (pData) {
7352                    File::SampleList::iterator iter = pSamples->begin();
7353                    File::SampleList::iterator end  = pSamples->end();
7354                    for (int index = 0; iter != end; ++iter, ++index) {
7355                        gig::Sample* pSample = (gig::Sample*) *iter;
7356                        pData[index*2]   = 1; // always 1
7357                        pData[index*2+1] = pSample->crc;
7358                    }
7359                }
7360            }
7361        }
7362        
7363        void File::UpdateFileOffsets() {
7364            DLS::File::UpdateFileOffsets();
7365    
7366            for (Instrument* instrument = GetFirstInstrument(); instrument;
7367                 instrument = GetNextInstrument())
7368            {
7369                instrument->UpdateScriptFileOffsets();
7370            }
7371        }
7372    
7373        /**
7374         * Enable / disable automatic loading. By default this property is
7375         * enabled and every information is loaded automatically. However
7376         * loading all Regions, DimensionRegions and especially samples might
7377         * take a long time for large .gig files, and sometimes one might only
7378         * be interested in retrieving very superficial informations like the
7379         * amount of instruments and their names. In this case one might disable
7380         * automatic loading to avoid very slow response times.
7381         *
7382         * @e CAUTION: by disabling this property many pointers (i.e. sample
7383         * references) and attributes will have invalid or even undefined
7384         * data! This feature is currently only intended for retrieving very
7385         * superficial information in a very fast way. Don't use it to retrieve
7386         * details like synthesis information or even to modify .gig files!
7387         */
7388        void File::SetAutoLoad(bool b) {
7389            bAutoLoad = b;
7390        }
7391    
7392        /**
7393         * Returns whether automatic loading is enabled.
7394         * @see SetAutoLoad()
7395         */
7396        bool File::GetAutoLoad() {
7397            return bAutoLoad;
7398        }
7399    
7400        /**
7401         * Returns @c true in case this gig File object uses any gig format
7402         * extension, that is e.g. whether any DimensionRegion object currently
7403         * has any setting effective that would require our "LSDE" RIFF chunk to
7404         * be stored to the gig file.
7405         *
7406         * Right now this is a private method. It is considerable though this method
7407         * to become (in slightly modified form) a public API method in future, i.e.
7408         * to allow instrument editors to visualize and/or warn the user of any gig
7409         * format extension being used. See also comments on
7410         * DimensionRegion::UsesAnyGigFormatExtension() for details about such a
7411         * potential public API change in future.
7412         */
7413        bool File::UsesAnyGigFormatExtension() const {
7414            if (!pInstruments) return false;
7415            InstrumentList::iterator iter = pInstruments->begin();
7416            InstrumentList::iterator end  = pInstruments->end();
7417            for (; iter != end; ++iter) {
7418                Instrument* pInstrument = static_cast<gig::Instrument*>(*iter);
7419                if (pInstrument->UsesAnyGigFormatExtension())
7420                    return true;
7421            }
7422            return false;
7423        }
7424    
7425    
7426  // *************** Exception ***************  // *************** Exception ***************
7427  // *  // *
7428    
7429      Exception::Exception(String Message) : DLS::Exception(Message) {      Exception::Exception() : DLS::Exception() {
7430        }
7431    
7432        Exception::Exception(String format, ...) : DLS::Exception() {
7433            va_list arg;
7434            va_start(arg, format);
7435            Message = assemble(format, arg);
7436            va_end(arg);
7437        }
7438    
7439        Exception::Exception(String format, va_list arg) : DLS::Exception() {
7440            Message = assemble(format, arg);
7441      }      }
7442    
7443      void Exception::PrintMessage() {      void Exception::PrintMessage() {

Legend:
Removed from v.930  
changed lines
  Added in v.3928

  ViewVC Help
Powered by ViewVC