/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Contents of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1358 - (show annotations) (download)
Sun Sep 30 18:13:33 2007 UTC (16 years, 6 months ago) by schoenebeck
File size: 169507 byte(s)
* added various setter methods to which take care of updating
  lookup tables / caches

1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file access library *
4 * *
5 * Copyright (C) 2003-2007 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #include "gig.h"
25
26 #include "helper.h"
27
28 #include <math.h>
29 #include <iostream>
30
31 /// Initial size of the sample buffer which is used for decompression of
32 /// compressed sample wave streams - this value should always be bigger than
33 /// the biggest sample piece expected to be read by the sampler engine,
34 /// otherwise the buffer size will be raised at runtime and thus the buffer
35 /// reallocated which is time consuming and unefficient.
36 #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
37
38 /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
39 #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
40 #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
41 #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
42 #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
43 #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
44 #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
45 #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
46 #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
47 #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
48 #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
49 #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
50 #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
51
52 namespace gig {
53
54 // *************** progress_t ***************
55 // *
56
57 progress_t::progress_t() {
58 callback = NULL;
59 custom = NULL;
60 __range_min = 0.0f;
61 __range_max = 1.0f;
62 }
63
64 // private helper function to convert progress of a subprocess into the global progress
65 static void __notify_progress(progress_t* pProgress, float subprogress) {
66 if (pProgress && pProgress->callback) {
67 const float totalrange = pProgress->__range_max - pProgress->__range_min;
68 const float totalprogress = pProgress->__range_min + subprogress * totalrange;
69 pProgress->factor = totalprogress;
70 pProgress->callback(pProgress); // now actually notify about the progress
71 }
72 }
73
74 // private helper function to divide a progress into subprogresses
75 static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
76 if (pParentProgress && pParentProgress->callback) {
77 const float totalrange = pParentProgress->__range_max - pParentProgress->__range_min;
78 pSubProgress->callback = pParentProgress->callback;
79 pSubProgress->custom = pParentProgress->custom;
80 pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
81 pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
82 }
83 }
84
85
86 // *************** Internal functions for sample decompression ***************
87 // *
88
89 namespace {
90
91 inline int get12lo(const unsigned char* pSrc)
92 {
93 const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
94 return x & 0x800 ? x - 0x1000 : x;
95 }
96
97 inline int get12hi(const unsigned char* pSrc)
98 {
99 const int x = pSrc[1] >> 4 | pSrc[2] << 4;
100 return x & 0x800 ? x - 0x1000 : x;
101 }
102
103 inline int16_t get16(const unsigned char* pSrc)
104 {
105 return int16_t(pSrc[0] | pSrc[1] << 8);
106 }
107
108 inline int get24(const unsigned char* pSrc)
109 {
110 const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
111 return x & 0x800000 ? x - 0x1000000 : x;
112 }
113
114 inline void store24(unsigned char* pDst, int x)
115 {
116 pDst[0] = x;
117 pDst[1] = x >> 8;
118 pDst[2] = x >> 16;
119 }
120
121 void Decompress16(int compressionmode, const unsigned char* params,
122 int srcStep, int dstStep,
123 const unsigned char* pSrc, int16_t* pDst,
124 unsigned long currentframeoffset,
125 unsigned long copysamples)
126 {
127 switch (compressionmode) {
128 case 0: // 16 bit uncompressed
129 pSrc += currentframeoffset * srcStep;
130 while (copysamples) {
131 *pDst = get16(pSrc);
132 pDst += dstStep;
133 pSrc += srcStep;
134 copysamples--;
135 }
136 break;
137
138 case 1: // 16 bit compressed to 8 bit
139 int y = get16(params);
140 int dy = get16(params + 2);
141 while (currentframeoffset) {
142 dy -= int8_t(*pSrc);
143 y -= dy;
144 pSrc += srcStep;
145 currentframeoffset--;
146 }
147 while (copysamples) {
148 dy -= int8_t(*pSrc);
149 y -= dy;
150 *pDst = y;
151 pDst += dstStep;
152 pSrc += srcStep;
153 copysamples--;
154 }
155 break;
156 }
157 }
158
159 void Decompress24(int compressionmode, const unsigned char* params,
160 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
161 unsigned long currentframeoffset,
162 unsigned long copysamples, int truncatedBits)
163 {
164 int y, dy, ddy, dddy;
165
166 #define GET_PARAMS(params) \
167 y = get24(params); \
168 dy = y - get24((params) + 3); \
169 ddy = get24((params) + 6); \
170 dddy = get24((params) + 9)
171
172 #define SKIP_ONE(x) \
173 dddy -= (x); \
174 ddy -= dddy; \
175 dy = -dy - ddy; \
176 y += dy
177
178 #define COPY_ONE(x) \
179 SKIP_ONE(x); \
180 store24(pDst, y << truncatedBits); \
181 pDst += dstStep
182
183 switch (compressionmode) {
184 case 2: // 24 bit uncompressed
185 pSrc += currentframeoffset * 3;
186 while (copysamples) {
187 store24(pDst, get24(pSrc) << truncatedBits);
188 pDst += dstStep;
189 pSrc += 3;
190 copysamples--;
191 }
192 break;
193
194 case 3: // 24 bit compressed to 16 bit
195 GET_PARAMS(params);
196 while (currentframeoffset) {
197 SKIP_ONE(get16(pSrc));
198 pSrc += 2;
199 currentframeoffset--;
200 }
201 while (copysamples) {
202 COPY_ONE(get16(pSrc));
203 pSrc += 2;
204 copysamples--;
205 }
206 break;
207
208 case 4: // 24 bit compressed to 12 bit
209 GET_PARAMS(params);
210 while (currentframeoffset > 1) {
211 SKIP_ONE(get12lo(pSrc));
212 SKIP_ONE(get12hi(pSrc));
213 pSrc += 3;
214 currentframeoffset -= 2;
215 }
216 if (currentframeoffset) {
217 SKIP_ONE(get12lo(pSrc));
218 currentframeoffset--;
219 if (copysamples) {
220 COPY_ONE(get12hi(pSrc));
221 pSrc += 3;
222 copysamples--;
223 }
224 }
225 while (copysamples > 1) {
226 COPY_ONE(get12lo(pSrc));
227 COPY_ONE(get12hi(pSrc));
228 pSrc += 3;
229 copysamples -= 2;
230 }
231 if (copysamples) {
232 COPY_ONE(get12lo(pSrc));
233 }
234 break;
235
236 case 5: // 24 bit compressed to 8 bit
237 GET_PARAMS(params);
238 while (currentframeoffset) {
239 SKIP_ONE(int8_t(*pSrc++));
240 currentframeoffset--;
241 }
242 while (copysamples) {
243 COPY_ONE(int8_t(*pSrc++));
244 copysamples--;
245 }
246 break;
247 }
248 }
249
250 const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
251 const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
252 const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
253 const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
254 }
255
256
257
258 // *************** Other Internal functions ***************
259 // *
260
261 static split_type_t __resolveSplitType(dimension_t dimension) {
262 return (
263 dimension == dimension_layer ||
264 dimension == dimension_samplechannel ||
265 dimension == dimension_releasetrigger ||
266 dimension == dimension_keyboard ||
267 dimension == dimension_roundrobin ||
268 dimension == dimension_random ||
269 dimension == dimension_smartmidi ||
270 dimension == dimension_roundrobinkeyboard
271 ) ? split_type_bit : split_type_normal;
272 }
273
274 static int __resolveZoneSize(dimension_def_t& dimension_definition) {
275 return (dimension_definition.split_type == split_type_normal)
276 ? int(128.0 / dimension_definition.zones) : 0;
277 }
278
279
280
281 // *************** CRC ***************
282 // *
283
284 const uint32_t* CRC::table(initTable());
285
286 uint32_t* CRC::initTable() {
287 uint32_t* res = new uint32_t[256];
288
289 for (int i = 0 ; i < 256 ; i++) {
290 uint32_t c = i;
291 for (int j = 0 ; j < 8 ; j++) {
292 c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
293 }
294 res[i] = c;
295 }
296 return res;
297 }
298
299
300
301 // *************** Sample ***************
302 // *
303
304 unsigned int Sample::Instances = 0;
305 buffer_t Sample::InternalDecompressionBuffer;
306
307 /** @brief Constructor.
308 *
309 * Load an existing sample or create a new one. A 'wave' list chunk must
310 * be given to this constructor. In case the given 'wave' list chunk
311 * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
312 * format and sample data will be loaded from there, otherwise default
313 * values will be used and those chunks will be created when
314 * File::Save() will be called later on.
315 *
316 * @param pFile - pointer to gig::File where this sample is
317 * located (or will be located)
318 * @param waveList - pointer to 'wave' list chunk which is (or
319 * will be) associated with this sample
320 * @param WavePoolOffset - offset of this sample data from wave pool
321 * ('wvpl') list chunk
322 * @param fileNo - number of an extension file where this sample
323 * is located, 0 otherwise
324 */
325 Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
326 static const DLS::Info::FixedStringLength fixedStringLengths[] = {
327 { CHUNK_ID_INAM, 64 },
328 { 0, 0 }
329 };
330 pInfo->FixedStringLengths = fixedStringLengths;
331 Instances++;
332 FileNo = fileNo;
333
334 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
335 if (pCk3gix) {
336 uint16_t iSampleGroup = pCk3gix->ReadInt16();
337 pGroup = pFile->GetGroup(iSampleGroup);
338 } else { // '3gix' chunk missing
339 // by default assigned to that mandatory "Default Group"
340 pGroup = pFile->GetGroup(0);
341 }
342
343 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
344 if (pCkSmpl) {
345 Manufacturer = pCkSmpl->ReadInt32();
346 Product = pCkSmpl->ReadInt32();
347 SamplePeriod = pCkSmpl->ReadInt32();
348 MIDIUnityNote = pCkSmpl->ReadInt32();
349 FineTune = pCkSmpl->ReadInt32();
350 pCkSmpl->Read(&SMPTEFormat, 1, 4);
351 SMPTEOffset = pCkSmpl->ReadInt32();
352 Loops = pCkSmpl->ReadInt32();
353 pCkSmpl->ReadInt32(); // manufByt
354 LoopID = pCkSmpl->ReadInt32();
355 pCkSmpl->Read(&LoopType, 1, 4);
356 LoopStart = pCkSmpl->ReadInt32();
357 LoopEnd = pCkSmpl->ReadInt32();
358 LoopFraction = pCkSmpl->ReadInt32();
359 LoopPlayCount = pCkSmpl->ReadInt32();
360 } else { // 'smpl' chunk missing
361 // use default values
362 Manufacturer = 0;
363 Product = 0;
364 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
365 MIDIUnityNote = 60;
366 FineTune = 0;
367 SMPTEFormat = smpte_format_no_offset;
368 SMPTEOffset = 0;
369 Loops = 0;
370 LoopID = 0;
371 LoopType = loop_type_normal;
372 LoopStart = 0;
373 LoopEnd = 0;
374 LoopFraction = 0;
375 LoopPlayCount = 0;
376 }
377
378 FrameTable = NULL;
379 SamplePos = 0;
380 RAMCache.Size = 0;
381 RAMCache.pStart = NULL;
382 RAMCache.NullExtensionSize = 0;
383
384 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
385
386 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
387 Compressed = ewav;
388 Dithered = false;
389 TruncatedBits = 0;
390 if (Compressed) {
391 uint32_t version = ewav->ReadInt32();
392 if (version == 3 && BitDepth == 24) {
393 Dithered = ewav->ReadInt32();
394 ewav->SetPos(Channels == 2 ? 84 : 64);
395 TruncatedBits = ewav->ReadInt32();
396 }
397 ScanCompressedSample();
398 }
399
400 // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
401 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
402 InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
403 InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
404 }
405 FrameOffset = 0; // just for streaming compressed samples
406
407 LoopSize = LoopEnd - LoopStart + 1;
408 }
409
410 /**
411 * Apply sample and its settings to the respective RIFF chunks. You have
412 * to call File::Save() to make changes persistent.
413 *
414 * Usually there is absolutely no need to call this method explicitly.
415 * It will be called automatically when File::Save() was called.
416 *
417 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
418 * was provided yet
419 * @throws gig::Exception if there is any invalid sample setting
420 */
421 void Sample::UpdateChunks() {
422 // first update base class's chunks
423 DLS::Sample::UpdateChunks();
424
425 // make sure 'smpl' chunk exists
426 pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
427 if (!pCkSmpl) {
428 pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
429 memset(pCkSmpl->LoadChunkData(), 0, 60);
430 }
431 // update 'smpl' chunk
432 uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
433 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
434 store32(&pData[0], Manufacturer);
435 store32(&pData[4], Product);
436 store32(&pData[8], SamplePeriod);
437 store32(&pData[12], MIDIUnityNote);
438 store32(&pData[16], FineTune);
439 store32(&pData[20], SMPTEFormat);
440 store32(&pData[24], SMPTEOffset);
441 store32(&pData[28], Loops);
442
443 // we skip 'manufByt' for now (4 bytes)
444
445 store32(&pData[36], LoopID);
446 store32(&pData[40], LoopType);
447 store32(&pData[44], LoopStart);
448 store32(&pData[48], LoopEnd);
449 store32(&pData[52], LoopFraction);
450 store32(&pData[56], LoopPlayCount);
451
452 // make sure '3gix' chunk exists
453 pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
454 if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
455 // determine appropriate sample group index (to be stored in chunk)
456 uint16_t iSampleGroup = 0; // 0 refers to default sample group
457 File* pFile = static_cast<File*>(pParent);
458 if (pFile->pGroups) {
459 std::list<Group*>::iterator iter = pFile->pGroups->begin();
460 std::list<Group*>::iterator end = pFile->pGroups->end();
461 for (int i = 0; iter != end; i++, iter++) {
462 if (*iter == pGroup) {
463 iSampleGroup = i;
464 break; // found
465 }
466 }
467 }
468 // update '3gix' chunk
469 pData = (uint8_t*) pCk3gix->LoadChunkData();
470 store16(&pData[0], iSampleGroup);
471 }
472
473 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
474 void Sample::ScanCompressedSample() {
475 //TODO: we have to add some more scans here (e.g. determine compression rate)
476 this->SamplesTotal = 0;
477 std::list<unsigned long> frameOffsets;
478
479 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
480 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
481
482 // Scanning
483 pCkData->SetPos(0);
484 if (Channels == 2) { // Stereo
485 for (int i = 0 ; ; i++) {
486 // for 24 bit samples every 8:th frame offset is
487 // stored, to save some memory
488 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
489
490 const int mode_l = pCkData->ReadUint8();
491 const int mode_r = pCkData->ReadUint8();
492 if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
493 const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
494
495 if (pCkData->RemainingBytes() <= frameSize) {
496 SamplesInLastFrame =
497 ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
498 (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
499 SamplesTotal += SamplesInLastFrame;
500 break;
501 }
502 SamplesTotal += SamplesPerFrame;
503 pCkData->SetPos(frameSize, RIFF::stream_curpos);
504 }
505 }
506 else { // Mono
507 for (int i = 0 ; ; i++) {
508 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
509
510 const int mode = pCkData->ReadUint8();
511 if (mode > 5) throw gig::Exception("Unknown compression mode");
512 const unsigned long frameSize = bytesPerFrame[mode];
513
514 if (pCkData->RemainingBytes() <= frameSize) {
515 SamplesInLastFrame =
516 ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
517 SamplesTotal += SamplesInLastFrame;
518 break;
519 }
520 SamplesTotal += SamplesPerFrame;
521 pCkData->SetPos(frameSize, RIFF::stream_curpos);
522 }
523 }
524 pCkData->SetPos(0);
525
526 // Build the frames table (which is used for fast resolving of a frame's chunk offset)
527 if (FrameTable) delete[] FrameTable;
528 FrameTable = new unsigned long[frameOffsets.size()];
529 std::list<unsigned long>::iterator end = frameOffsets.end();
530 std::list<unsigned long>::iterator iter = frameOffsets.begin();
531 for (int i = 0; iter != end; i++, iter++) {
532 FrameTable[i] = *iter;
533 }
534 }
535
536 /**
537 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
538 * ReleaseSampleData() to free the memory if you don't need the cached
539 * sample data anymore.
540 *
541 * @returns buffer_t structure with start address and size of the buffer
542 * in bytes
543 * @see ReleaseSampleData(), Read(), SetPos()
544 */
545 buffer_t Sample::LoadSampleData() {
546 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
547 }
548
549 /**
550 * Reads (uncompresses if needed) and caches the first \a SampleCount
551 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
552 * memory space if you don't need the cached samples anymore. There is no
553 * guarantee that exactly \a SampleCount samples will be cached; this is
554 * not an error. The size will be eventually truncated e.g. to the
555 * beginning of a frame of a compressed sample. This is done for
556 * efficiency reasons while streaming the wave by your sampler engine
557 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
558 * that will be returned to determine the actual cached samples, but note
559 * that the size is given in bytes! You get the number of actually cached
560 * samples by dividing it by the frame size of the sample:
561 * @code
562 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
563 * long cachedsamples = buf.Size / pSample->FrameSize;
564 * @endcode
565 *
566 * @param SampleCount - number of sample points to load into RAM
567 * @returns buffer_t structure with start address and size of
568 * the cached sample data in bytes
569 * @see ReleaseSampleData(), Read(), SetPos()
570 */
571 buffer_t Sample::LoadSampleData(unsigned long SampleCount) {
572 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
573 }
574
575 /**
576 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
577 * ReleaseSampleData() to free the memory if you don't need the cached
578 * sample data anymore.
579 * The method will add \a NullSamplesCount silence samples past the
580 * official buffer end (this won't affect the 'Size' member of the
581 * buffer_t structure, that means 'Size' always reflects the size of the
582 * actual sample data, the buffer might be bigger though). Silence
583 * samples past the official buffer are needed for differential
584 * algorithms that always have to take subsequent samples into account
585 * (resampling/interpolation would be an important example) and avoids
586 * memory access faults in such cases.
587 *
588 * @param NullSamplesCount - number of silence samples the buffer should
589 * be extended past it's data end
590 * @returns buffer_t structure with start address and
591 * size of the buffer in bytes
592 * @see ReleaseSampleData(), Read(), SetPos()
593 */
594 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
595 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
596 }
597
598 /**
599 * Reads (uncompresses if needed) and caches the first \a SampleCount
600 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
601 * memory space if you don't need the cached samples anymore. There is no
602 * guarantee that exactly \a SampleCount samples will be cached; this is
603 * not an error. The size will be eventually truncated e.g. to the
604 * beginning of a frame of a compressed sample. This is done for
605 * efficiency reasons while streaming the wave by your sampler engine
606 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
607 * that will be returned to determine the actual cached samples, but note
608 * that the size is given in bytes! You get the number of actually cached
609 * samples by dividing it by the frame size of the sample:
610 * @code
611 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
612 * long cachedsamples = buf.Size / pSample->FrameSize;
613 * @endcode
614 * The method will add \a NullSamplesCount silence samples past the
615 * official buffer end (this won't affect the 'Size' member of the
616 * buffer_t structure, that means 'Size' always reflects the size of the
617 * actual sample data, the buffer might be bigger though). Silence
618 * samples past the official buffer are needed for differential
619 * algorithms that always have to take subsequent samples into account
620 * (resampling/interpolation would be an important example) and avoids
621 * memory access faults in such cases.
622 *
623 * @param SampleCount - number of sample points to load into RAM
624 * @param NullSamplesCount - number of silence samples the buffer should
625 * be extended past it's data end
626 * @returns buffer_t structure with start address and
627 * size of the cached sample data in bytes
628 * @see ReleaseSampleData(), Read(), SetPos()
629 */
630 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {
631 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
632 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
633 unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
634 RAMCache.pStart = new int8_t[allocationsize];
635 RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
636 RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
637 // fill the remaining buffer space with silence samples
638 memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
639 return GetCache();
640 }
641
642 /**
643 * Returns current cached sample points. A buffer_t structure will be
644 * returned which contains address pointer to the begin of the cache and
645 * the size of the cached sample data in bytes. Use
646 * <i>LoadSampleData()</i> to cache a specific amount of sample points in
647 * RAM.
648 *
649 * @returns buffer_t structure with current cached sample points
650 * @see LoadSampleData();
651 */
652 buffer_t Sample::GetCache() {
653 // return a copy of the buffer_t structure
654 buffer_t result;
655 result.Size = this->RAMCache.Size;
656 result.pStart = this->RAMCache.pStart;
657 result.NullExtensionSize = this->RAMCache.NullExtensionSize;
658 return result;
659 }
660
661 /**
662 * Frees the cached sample from RAM if loaded with
663 * <i>LoadSampleData()</i> previously.
664 *
665 * @see LoadSampleData();
666 */
667 void Sample::ReleaseSampleData() {
668 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
669 RAMCache.pStart = NULL;
670 RAMCache.Size = 0;
671 }
672
673 /** @brief Resize sample.
674 *
675 * Resizes the sample's wave form data, that is the actual size of
676 * sample wave data possible to be written for this sample. This call
677 * will return immediately and just schedule the resize operation. You
678 * should call File::Save() to actually perform the resize operation(s)
679 * "physically" to the file. As this can take a while on large files, it
680 * is recommended to call Resize() first on all samples which have to be
681 * resized and finally to call File::Save() to perform all those resize
682 * operations in one rush.
683 *
684 * The actual size (in bytes) is dependant to the current FrameSize
685 * value. You may want to set FrameSize before calling Resize().
686 *
687 * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
688 * enlarged samples before calling File::Save() as this might exceed the
689 * current sample's boundary!
690 *
691 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
692 * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
693 * other formats will fail!
694 *
695 * @param iNewSize - new sample wave data size in sample points (must be
696 * greater than zero)
697 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
698 * or if \a iNewSize is less than 1
699 * @throws gig::Exception if existing sample is compressed
700 * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
701 * DLS::Sample::FormatTag, File::Save()
702 */
703 void Sample::Resize(int iNewSize) {
704 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
705 DLS::Sample::Resize(iNewSize);
706 }
707
708 /**
709 * Sets the position within the sample (in sample points, not in
710 * bytes). Use this method and <i>Read()</i> if you don't want to load
711 * the sample into RAM, thus for disk streaming.
712 *
713 * Although the original Gigasampler engine doesn't allow positioning
714 * within compressed samples, I decided to implement it. Even though
715 * the Gigasampler format doesn't allow to define loops for compressed
716 * samples at the moment, positioning within compressed samples might be
717 * interesting for some sampler engines though. The only drawback about
718 * my decision is that it takes longer to load compressed gig Files on
719 * startup, because it's neccessary to scan the samples for some
720 * mandatory informations. But I think as it doesn't affect the runtime
721 * efficiency, nobody will have a problem with that.
722 *
723 * @param SampleCount number of sample points to jump
724 * @param Whence optional: to which relation \a SampleCount refers
725 * to, if omited <i>RIFF::stream_start</i> is assumed
726 * @returns the new sample position
727 * @see Read()
728 */
729 unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {
730 if (Compressed) {
731 switch (Whence) {
732 case RIFF::stream_curpos:
733 this->SamplePos += SampleCount;
734 break;
735 case RIFF::stream_end:
736 this->SamplePos = this->SamplesTotal - 1 - SampleCount;
737 break;
738 case RIFF::stream_backward:
739 this->SamplePos -= SampleCount;
740 break;
741 case RIFF::stream_start: default:
742 this->SamplePos = SampleCount;
743 break;
744 }
745 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
746
747 unsigned long frame = this->SamplePos / 2048; // to which frame to jump
748 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
749 pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
750 return this->SamplePos;
751 }
752 else { // not compressed
753 unsigned long orderedBytes = SampleCount * this->FrameSize;
754 unsigned long result = pCkData->SetPos(orderedBytes, Whence);
755 return (result == orderedBytes) ? SampleCount
756 : result / this->FrameSize;
757 }
758 }
759
760 /**
761 * Returns the current position in the sample (in sample points).
762 */
763 unsigned long Sample::GetPos() {
764 if (Compressed) return SamplePos;
765 else return pCkData->GetPos() / FrameSize;
766 }
767
768 /**
769 * Reads \a SampleCount number of sample points from the position stored
770 * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
771 * the position within the sample respectively, this method honors the
772 * looping informations of the sample (if any). The sample wave stream
773 * will be decompressed on the fly if using a compressed sample. Use this
774 * method if you don't want to load the sample into RAM, thus for disk
775 * streaming. All this methods needs to know to proceed with streaming
776 * for the next time you call this method is stored in \a pPlaybackState.
777 * You have to allocate and initialize the playback_state_t structure by
778 * yourself before you use it to stream a sample:
779 * @code
780 * gig::playback_state_t playbackstate;
781 * playbackstate.position = 0;
782 * playbackstate.reverse = false;
783 * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
784 * @endcode
785 * You don't have to take care of things like if there is actually a loop
786 * defined or if the current read position is located within a loop area.
787 * The method already handles such cases by itself.
788 *
789 * <b>Caution:</b> If you are using more than one streaming thread, you
790 * have to use an external decompression buffer for <b>EACH</b>
791 * streaming thread to avoid race conditions and crashes!
792 *
793 * @param pBuffer destination buffer
794 * @param SampleCount number of sample points to read
795 * @param pPlaybackState will be used to store and reload the playback
796 * state for the next ReadAndLoop() call
797 * @param pDimRgn dimension region with looping information
798 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
799 * @returns number of successfully read sample points
800 * @see CreateDecompressionBuffer()
801 */
802 unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,
803 DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
804 unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
805 uint8_t* pDst = (uint8_t*) pBuffer;
806
807 SetPos(pPlaybackState->position); // recover position from the last time
808
809 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
810
811 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
812 const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
813
814 if (GetPos() <= loopEnd) {
815 switch (loop.LoopType) {
816
817 case loop_type_bidirectional: { //TODO: not tested yet!
818 do {
819 // if not endless loop check if max. number of loop cycles have been passed
820 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
821
822 if (!pPlaybackState->reverse) { // forward playback
823 do {
824 samplestoloopend = loopEnd - GetPos();
825 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
826 samplestoread -= readsamples;
827 totalreadsamples += readsamples;
828 if (readsamples == samplestoloopend) {
829 pPlaybackState->reverse = true;
830 break;
831 }
832 } while (samplestoread && readsamples);
833 }
834 else { // backward playback
835
836 // as we can only read forward from disk, we have to
837 // determine the end position within the loop first,
838 // read forward from that 'end' and finally after
839 // reading, swap all sample frames so it reflects
840 // backward playback
841
842 unsigned long swapareastart = totalreadsamples;
843 unsigned long loopoffset = GetPos() - loop.LoopStart;
844 unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
845 unsigned long reverseplaybackend = GetPos() - samplestoreadinloop;
846
847 SetPos(reverseplaybackend);
848
849 // read samples for backward playback
850 do {
851 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
852 samplestoreadinloop -= readsamples;
853 samplestoread -= readsamples;
854 totalreadsamples += readsamples;
855 } while (samplestoreadinloop && readsamples);
856
857 SetPos(reverseplaybackend); // pretend we really read backwards
858
859 if (reverseplaybackend == loop.LoopStart) {
860 pPlaybackState->loop_cycles_left--;
861 pPlaybackState->reverse = false;
862 }
863
864 // reverse the sample frames for backward playback
865 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
866 }
867 } while (samplestoread && readsamples);
868 break;
869 }
870
871 case loop_type_backward: { // TODO: not tested yet!
872 // forward playback (not entered the loop yet)
873 if (!pPlaybackState->reverse) do {
874 samplestoloopend = loopEnd - GetPos();
875 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
876 samplestoread -= readsamples;
877 totalreadsamples += readsamples;
878 if (readsamples == samplestoloopend) {
879 pPlaybackState->reverse = true;
880 break;
881 }
882 } while (samplestoread && readsamples);
883
884 if (!samplestoread) break;
885
886 // as we can only read forward from disk, we have to
887 // determine the end position within the loop first,
888 // read forward from that 'end' and finally after
889 // reading, swap all sample frames so it reflects
890 // backward playback
891
892 unsigned long swapareastart = totalreadsamples;
893 unsigned long loopoffset = GetPos() - loop.LoopStart;
894 unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
895 : samplestoread;
896 unsigned long reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
897
898 SetPos(reverseplaybackend);
899
900 // read samples for backward playback
901 do {
902 // if not endless loop check if max. number of loop cycles have been passed
903 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
904 samplestoloopend = loopEnd - GetPos();
905 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
906 samplestoreadinloop -= readsamples;
907 samplestoread -= readsamples;
908 totalreadsamples += readsamples;
909 if (readsamples == samplestoloopend) {
910 pPlaybackState->loop_cycles_left--;
911 SetPos(loop.LoopStart);
912 }
913 } while (samplestoreadinloop && readsamples);
914
915 SetPos(reverseplaybackend); // pretend we really read backwards
916
917 // reverse the sample frames for backward playback
918 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
919 break;
920 }
921
922 default: case loop_type_normal: {
923 do {
924 // if not endless loop check if max. number of loop cycles have been passed
925 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
926 samplestoloopend = loopEnd - GetPos();
927 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
928 samplestoread -= readsamples;
929 totalreadsamples += readsamples;
930 if (readsamples == samplestoloopend) {
931 pPlaybackState->loop_cycles_left--;
932 SetPos(loop.LoopStart);
933 }
934 } while (samplestoread && readsamples);
935 break;
936 }
937 }
938 }
939 }
940
941 // read on without looping
942 if (samplestoread) do {
943 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
944 samplestoread -= readsamples;
945 totalreadsamples += readsamples;
946 } while (readsamples && samplestoread);
947
948 // store current position
949 pPlaybackState->position = GetPos();
950
951 return totalreadsamples;
952 }
953
954 /**
955 * Reads \a SampleCount number of sample points from the current
956 * position into the buffer pointed by \a pBuffer and increments the
957 * position within the sample. The sample wave stream will be
958 * decompressed on the fly if using a compressed sample. Use this method
959 * and <i>SetPos()</i> if you don't want to load the sample into RAM,
960 * thus for disk streaming.
961 *
962 * <b>Caution:</b> If you are using more than one streaming thread, you
963 * have to use an external decompression buffer for <b>EACH</b>
964 * streaming thread to avoid race conditions and crashes!
965 *
966 * For 16 bit samples, the data in the buffer will be int16_t
967 * (using native endianness). For 24 bit, the buffer will
968 * contain three bytes per sample, little-endian.
969 *
970 * @param pBuffer destination buffer
971 * @param SampleCount number of sample points to read
972 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
973 * @returns number of successfully read sample points
974 * @see SetPos(), CreateDecompressionBuffer()
975 */
976 unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
977 if (SampleCount == 0) return 0;
978 if (!Compressed) {
979 if (BitDepth == 24) {
980 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
981 }
982 else { // 16 bit
983 // (pCkData->Read does endian correction)
984 return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
985 : pCkData->Read(pBuffer, SampleCount, 2);
986 }
987 }
988 else {
989 if (this->SamplePos >= this->SamplesTotal) return 0;
990 //TODO: efficiency: maybe we should test for an average compression rate
991 unsigned long assumedsize = GuessSize(SampleCount),
992 remainingbytes = 0, // remaining bytes in the local buffer
993 remainingsamples = SampleCount,
994 copysamples, skipsamples,
995 currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
996 this->FrameOffset = 0;
997
998 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
999
1000 // if decompression buffer too small, then reduce amount of samples to read
1001 if (pDecompressionBuffer->Size < assumedsize) {
1002 std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1003 SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1004 remainingsamples = SampleCount;
1005 assumedsize = GuessSize(SampleCount);
1006 }
1007
1008 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1009 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1010 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1011 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1012
1013 while (remainingsamples && remainingbytes) {
1014 unsigned long framesamples = SamplesPerFrame;
1015 unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
1016
1017 int mode_l = *pSrc++, mode_r = 0;
1018
1019 if (Channels == 2) {
1020 mode_r = *pSrc++;
1021 framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1022 rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1023 nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1024 if (remainingbytes < framebytes) { // last frame in sample
1025 framesamples = SamplesInLastFrame;
1026 if (mode_l == 4 && (framesamples & 1)) {
1027 rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1028 }
1029 else {
1030 rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1031 }
1032 }
1033 }
1034 else {
1035 framebytes = bytesPerFrame[mode_l] + 1;
1036 nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1037 if (remainingbytes < framebytes) {
1038 framesamples = SamplesInLastFrame;
1039 }
1040 }
1041
1042 // determine how many samples in this frame to skip and read
1043 if (currentframeoffset + remainingsamples >= framesamples) {
1044 if (currentframeoffset <= framesamples) {
1045 copysamples = framesamples - currentframeoffset;
1046 skipsamples = currentframeoffset;
1047 }
1048 else {
1049 copysamples = 0;
1050 skipsamples = framesamples;
1051 }
1052 }
1053 else {
1054 // This frame has enough data for pBuffer, but not
1055 // all of the frame is needed. Set file position
1056 // to start of this frame for next call to Read.
1057 copysamples = remainingsamples;
1058 skipsamples = currentframeoffset;
1059 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1060 this->FrameOffset = currentframeoffset + copysamples;
1061 }
1062 remainingsamples -= copysamples;
1063
1064 if (remainingbytes > framebytes) {
1065 remainingbytes -= framebytes;
1066 if (remainingsamples == 0 &&
1067 currentframeoffset + copysamples == framesamples) {
1068 // This frame has enough data for pBuffer, and
1069 // all of the frame is needed. Set file
1070 // position to start of next frame for next
1071 // call to Read. FrameOffset is 0.
1072 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1073 }
1074 }
1075 else remainingbytes = 0;
1076
1077 currentframeoffset -= skipsamples;
1078
1079 if (copysamples == 0) {
1080 // skip this frame
1081 pSrc += framebytes - Channels;
1082 }
1083 else {
1084 const unsigned char* const param_l = pSrc;
1085 if (BitDepth == 24) {
1086 if (mode_l != 2) pSrc += 12;
1087
1088 if (Channels == 2) { // Stereo
1089 const unsigned char* const param_r = pSrc;
1090 if (mode_r != 2) pSrc += 12;
1091
1092 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1093 skipsamples, copysamples, TruncatedBits);
1094 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1095 skipsamples, copysamples, TruncatedBits);
1096 pDst24 += copysamples * 6;
1097 }
1098 else { // Mono
1099 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1100 skipsamples, copysamples, TruncatedBits);
1101 pDst24 += copysamples * 3;
1102 }
1103 }
1104 else { // 16 bit
1105 if (mode_l) pSrc += 4;
1106
1107 int step;
1108 if (Channels == 2) { // Stereo
1109 const unsigned char* const param_r = pSrc;
1110 if (mode_r) pSrc += 4;
1111
1112 step = (2 - mode_l) + (2 - mode_r);
1113 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1114 Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1115 skipsamples, copysamples);
1116 pDst += copysamples << 1;
1117 }
1118 else { // Mono
1119 step = 2 - mode_l;
1120 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1121 pDst += copysamples;
1122 }
1123 }
1124 pSrc += nextFrameOffset;
1125 }
1126
1127 // reload from disk to local buffer if needed
1128 if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1129 assumedsize = GuessSize(remainingsamples);
1130 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1131 if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1132 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1133 pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1134 }
1135 } // while
1136
1137 this->SamplePos += (SampleCount - remainingsamples);
1138 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1139 return (SampleCount - remainingsamples);
1140 }
1141 }
1142
1143 /** @brief Write sample wave data.
1144 *
1145 * Writes \a SampleCount number of sample points from the buffer pointed
1146 * by \a pBuffer and increments the position within the sample. Use this
1147 * method to directly write the sample data to disk, i.e. if you don't
1148 * want or cannot load the whole sample data into RAM.
1149 *
1150 * You have to Resize() the sample to the desired size and call
1151 * File::Save() <b>before</b> using Write().
1152 *
1153 * Note: there is currently no support for writing compressed samples.
1154 *
1155 * For 16 bit samples, the data in the source buffer should be
1156 * int16_t (using native endianness). For 24 bit, the buffer
1157 * should contain three bytes per sample, little-endian.
1158 *
1159 * @param pBuffer - source buffer
1160 * @param SampleCount - number of sample points to write
1161 * @throws DLS::Exception if current sample size is too small
1162 * @throws gig::Exception if sample is compressed
1163 * @see DLS::LoadSampleData()
1164 */
1165 unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1166 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1167
1168 // if this is the first write in this sample, reset the
1169 // checksum calculator
1170 if (pCkData->GetPos() == 0) {
1171 crc.reset();
1172 }
1173 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1174 unsigned long res;
1175 if (BitDepth == 24) {
1176 res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1177 } else { // 16 bit
1178 res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1179 : pCkData->Write(pBuffer, SampleCount, 2);
1180 }
1181 crc.update((unsigned char *)pBuffer, SampleCount * FrameSize);
1182
1183 // if this is the last write, update the checksum chunk in the
1184 // file
1185 if (pCkData->GetPos() == pCkData->GetSize()) {
1186 File* pFile = static_cast<File*>(GetParent());
1187 pFile->SetSampleChecksum(this, crc.getValue());
1188 }
1189 return res;
1190 }
1191
1192 /**
1193 * Allocates a decompression buffer for streaming (compressed) samples
1194 * with Sample::Read(). If you are using more than one streaming thread
1195 * in your application you <b>HAVE</b> to create a decompression buffer
1196 * for <b>EACH</b> of your streaming threads and provide it with the
1197 * Sample::Read() call in order to avoid race conditions and crashes.
1198 *
1199 * You should free the memory occupied by the allocated buffer(s) once
1200 * you don't need one of your streaming threads anymore by calling
1201 * DestroyDecompressionBuffer().
1202 *
1203 * @param MaxReadSize - the maximum size (in sample points) you ever
1204 * expect to read with one Read() call
1205 * @returns allocated decompression buffer
1206 * @see DestroyDecompressionBuffer()
1207 */
1208 buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
1209 buffer_t result;
1210 const double worstCaseHeaderOverhead =
1211 (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1212 result.Size = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1213 result.pStart = new int8_t[result.Size];
1214 result.NullExtensionSize = 0;
1215 return result;
1216 }
1217
1218 /**
1219 * Free decompression buffer, previously created with
1220 * CreateDecompressionBuffer().
1221 *
1222 * @param DecompressionBuffer - previously allocated decompression
1223 * buffer to free
1224 */
1225 void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1226 if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1227 delete[] (int8_t*) DecompressionBuffer.pStart;
1228 DecompressionBuffer.pStart = NULL;
1229 DecompressionBuffer.Size = 0;
1230 DecompressionBuffer.NullExtensionSize = 0;
1231 }
1232 }
1233
1234 /**
1235 * Returns pointer to the Group this Sample belongs to. In the .gig
1236 * format a sample always belongs to one group. If it wasn't explicitly
1237 * assigned to a certain group, it will be automatically assigned to a
1238 * default group.
1239 *
1240 * @returns Sample's Group (never NULL)
1241 */
1242 Group* Sample::GetGroup() const {
1243 return pGroup;
1244 }
1245
1246 Sample::~Sample() {
1247 Instances--;
1248 if (!Instances && InternalDecompressionBuffer.Size) {
1249 delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1250 InternalDecompressionBuffer.pStart = NULL;
1251 InternalDecompressionBuffer.Size = 0;
1252 }
1253 if (FrameTable) delete[] FrameTable;
1254 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1255 }
1256
1257
1258
1259 // *************** DimensionRegion ***************
1260 // *
1261
1262 uint DimensionRegion::Instances = 0;
1263 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1264
1265 DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1266 Instances++;
1267
1268 pSample = NULL;
1269 pRegion = pParent;
1270
1271 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1272 else memset(&Crossfade, 0, 4);
1273
1274 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1275
1276 RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1277 if (_3ewa) { // if '3ewa' chunk exists
1278 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1279 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1280 EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1281 _3ewa->ReadInt16(); // unknown
1282 LFO1InternalDepth = _3ewa->ReadUint16();
1283 _3ewa->ReadInt16(); // unknown
1284 LFO3InternalDepth = _3ewa->ReadInt16();
1285 _3ewa->ReadInt16(); // unknown
1286 LFO1ControlDepth = _3ewa->ReadUint16();
1287 _3ewa->ReadInt16(); // unknown
1288 LFO3ControlDepth = _3ewa->ReadInt16();
1289 EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1290 EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1291 _3ewa->ReadInt16(); // unknown
1292 EG1Sustain = _3ewa->ReadUint16();
1293 EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1294 EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1295 uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1296 EG1ControllerInvert = eg1ctrloptions & 0x01;
1297 EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1298 EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1299 EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1300 EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1301 uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1302 EG2ControllerInvert = eg2ctrloptions & 0x01;
1303 EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1304 EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1305 EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1306 LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1307 EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1308 EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1309 _3ewa->ReadInt16(); // unknown
1310 EG2Sustain = _3ewa->ReadUint16();
1311 EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1312 _3ewa->ReadInt16(); // unknown
1313 LFO2ControlDepth = _3ewa->ReadUint16();
1314 LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1315 _3ewa->ReadInt16(); // unknown
1316 LFO2InternalDepth = _3ewa->ReadUint16();
1317 int32_t eg1decay2 = _3ewa->ReadInt32();
1318 EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1319 EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1320 _3ewa->ReadInt16(); // unknown
1321 EG1PreAttack = _3ewa->ReadUint16();
1322 int32_t eg2decay2 = _3ewa->ReadInt32();
1323 EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1324 EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1325 _3ewa->ReadInt16(); // unknown
1326 EG2PreAttack = _3ewa->ReadUint16();
1327 uint8_t velocityresponse = _3ewa->ReadUint8();
1328 if (velocityresponse < 5) {
1329 VelocityResponseCurve = curve_type_nonlinear;
1330 VelocityResponseDepth = velocityresponse;
1331 } else if (velocityresponse < 10) {
1332 VelocityResponseCurve = curve_type_linear;
1333 VelocityResponseDepth = velocityresponse - 5;
1334 } else if (velocityresponse < 15) {
1335 VelocityResponseCurve = curve_type_special;
1336 VelocityResponseDepth = velocityresponse - 10;
1337 } else {
1338 VelocityResponseCurve = curve_type_unknown;
1339 VelocityResponseDepth = 0;
1340 }
1341 uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1342 if (releasevelocityresponse < 5) {
1343 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1344 ReleaseVelocityResponseDepth = releasevelocityresponse;
1345 } else if (releasevelocityresponse < 10) {
1346 ReleaseVelocityResponseCurve = curve_type_linear;
1347 ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1348 } else if (releasevelocityresponse < 15) {
1349 ReleaseVelocityResponseCurve = curve_type_special;
1350 ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1351 } else {
1352 ReleaseVelocityResponseCurve = curve_type_unknown;
1353 ReleaseVelocityResponseDepth = 0;
1354 }
1355 VelocityResponseCurveScaling = _3ewa->ReadUint8();
1356 AttenuationControllerThreshold = _3ewa->ReadInt8();
1357 _3ewa->ReadInt32(); // unknown
1358 SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1359 _3ewa->ReadInt16(); // unknown
1360 uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1361 PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1362 if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1363 else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1364 else DimensionBypass = dim_bypass_ctrl_none;
1365 uint8_t pan = _3ewa->ReadUint8();
1366 Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1367 SelfMask = _3ewa->ReadInt8() & 0x01;
1368 _3ewa->ReadInt8(); // unknown
1369 uint8_t lfo3ctrl = _3ewa->ReadUint8();
1370 LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1371 LFO3Sync = lfo3ctrl & 0x20; // bit 5
1372 InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1373 AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1374 uint8_t lfo2ctrl = _3ewa->ReadUint8();
1375 LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1376 LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1377 LFO2Sync = lfo2ctrl & 0x20; // bit 5
1378 bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1379 uint8_t lfo1ctrl = _3ewa->ReadUint8();
1380 LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1381 LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1382 LFO1Sync = lfo1ctrl & 0x40; // bit 6
1383 VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1384 : vcf_res_ctrl_none;
1385 uint16_t eg3depth = _3ewa->ReadUint16();
1386 EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1387 : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */
1388 _3ewa->ReadInt16(); // unknown
1389 ChannelOffset = _3ewa->ReadUint8() / 4;
1390 uint8_t regoptions = _3ewa->ReadUint8();
1391 MSDecode = regoptions & 0x01; // bit 0
1392 SustainDefeat = regoptions & 0x02; // bit 1
1393 _3ewa->ReadInt16(); // unknown
1394 VelocityUpperLimit = _3ewa->ReadInt8();
1395 _3ewa->ReadInt8(); // unknown
1396 _3ewa->ReadInt16(); // unknown
1397 ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1398 _3ewa->ReadInt8(); // unknown
1399 _3ewa->ReadInt8(); // unknown
1400 EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1401 uint8_t vcfcutoff = _3ewa->ReadUint8();
1402 VCFEnabled = vcfcutoff & 0x80; // bit 7
1403 VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1404 VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1405 uint8_t vcfvelscale = _3ewa->ReadUint8();
1406 VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1407 VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1408 _3ewa->ReadInt8(); // unknown
1409 uint8_t vcfresonance = _3ewa->ReadUint8();
1410 VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1411 VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1412 uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1413 VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1414 VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1415 uint8_t vcfvelocity = _3ewa->ReadUint8();
1416 VCFVelocityDynamicRange = vcfvelocity % 5;
1417 VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1418 VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1419 if (VCFType == vcf_type_lowpass) {
1420 if (lfo3ctrl & 0x40) // bit 6
1421 VCFType = vcf_type_lowpassturbo;
1422 }
1423 if (_3ewa->RemainingBytes() >= 8) {
1424 _3ewa->Read(DimensionUpperLimits, 1, 8);
1425 } else {
1426 memset(DimensionUpperLimits, 0, 8);
1427 }
1428 } else { // '3ewa' chunk does not exist yet
1429 // use default values
1430 LFO3Frequency = 1.0;
1431 EG3Attack = 0.0;
1432 LFO1InternalDepth = 0;
1433 LFO3InternalDepth = 0;
1434 LFO1ControlDepth = 0;
1435 LFO3ControlDepth = 0;
1436 EG1Attack = 0.0;
1437 EG1Decay1 = 0.005;
1438 EG1Sustain = 1000;
1439 EG1Release = 0.3;
1440 EG1Controller.type = eg1_ctrl_t::type_none;
1441 EG1Controller.controller_number = 0;
1442 EG1ControllerInvert = false;
1443 EG1ControllerAttackInfluence = 0;
1444 EG1ControllerDecayInfluence = 0;
1445 EG1ControllerReleaseInfluence = 0;
1446 EG2Controller.type = eg2_ctrl_t::type_none;
1447 EG2Controller.controller_number = 0;
1448 EG2ControllerInvert = false;
1449 EG2ControllerAttackInfluence = 0;
1450 EG2ControllerDecayInfluence = 0;
1451 EG2ControllerReleaseInfluence = 0;
1452 LFO1Frequency = 1.0;
1453 EG2Attack = 0.0;
1454 EG2Decay1 = 0.005;
1455 EG2Sustain = 1000;
1456 EG2Release = 0.3;
1457 LFO2ControlDepth = 0;
1458 LFO2Frequency = 1.0;
1459 LFO2InternalDepth = 0;
1460 EG1Decay2 = 0.0;
1461 EG1InfiniteSustain = true;
1462 EG1PreAttack = 0;
1463 EG2Decay2 = 0.0;
1464 EG2InfiniteSustain = true;
1465 EG2PreAttack = 0;
1466 VelocityResponseCurve = curve_type_nonlinear;
1467 VelocityResponseDepth = 3;
1468 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1469 ReleaseVelocityResponseDepth = 3;
1470 VelocityResponseCurveScaling = 32;
1471 AttenuationControllerThreshold = 0;
1472 SampleStartOffset = 0;
1473 PitchTrack = true;
1474 DimensionBypass = dim_bypass_ctrl_none;
1475 Pan = 0;
1476 SelfMask = true;
1477 LFO3Controller = lfo3_ctrl_modwheel;
1478 LFO3Sync = false;
1479 InvertAttenuationController = false;
1480 AttenuationController.type = attenuation_ctrl_t::type_none;
1481 AttenuationController.controller_number = 0;
1482 LFO2Controller = lfo2_ctrl_internal;
1483 LFO2FlipPhase = false;
1484 LFO2Sync = false;
1485 LFO1Controller = lfo1_ctrl_internal;
1486 LFO1FlipPhase = false;
1487 LFO1Sync = false;
1488 VCFResonanceController = vcf_res_ctrl_none;
1489 EG3Depth = 0;
1490 ChannelOffset = 0;
1491 MSDecode = false;
1492 SustainDefeat = false;
1493 VelocityUpperLimit = 0;
1494 ReleaseTriggerDecay = 0;
1495 EG1Hold = false;
1496 VCFEnabled = false;
1497 VCFCutoff = 0;
1498 VCFCutoffController = vcf_cutoff_ctrl_none;
1499 VCFCutoffControllerInvert = false;
1500 VCFVelocityScale = 0;
1501 VCFResonance = 0;
1502 VCFResonanceDynamic = false;
1503 VCFKeyboardTracking = false;
1504 VCFKeyboardTrackingBreakpoint = 0;
1505 VCFVelocityDynamicRange = 0x04;
1506 VCFVelocityCurve = curve_type_linear;
1507 VCFType = vcf_type_lowpass;
1508 memset(DimensionUpperLimits, 127, 8);
1509 }
1510
1511 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1512 VelocityResponseDepth,
1513 VelocityResponseCurveScaling);
1514
1515 pVelocityReleaseTable = GetReleaseVelocityTable(
1516 ReleaseVelocityResponseCurve,
1517 ReleaseVelocityResponseDepth
1518 );
1519
1520 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1521 VCFVelocityDynamicRange,
1522 VCFVelocityScale,
1523 VCFCutoffController);
1524
1525 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1526 VelocityTable = 0;
1527 }
1528
1529 /*
1530 * Constructs a DimensionRegion by copying all parameters from
1531 * another DimensionRegion
1532 */
1533 DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1534 Instances++;
1535 *this = src; // default memberwise shallow copy of all parameters
1536 pParentList = _3ewl; // restore the chunk pointer
1537
1538 // deep copy of owned structures
1539 if (src.VelocityTable) {
1540 VelocityTable = new uint8_t[128];
1541 for (int k = 0 ; k < 128 ; k++)
1542 VelocityTable[k] = src.VelocityTable[k];
1543 }
1544 if (src.pSampleLoops) {
1545 pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1546 for (int k = 0 ; k < src.SampleLoops ; k++)
1547 pSampleLoops[k] = src.pSampleLoops[k];
1548 }
1549 }
1550
1551 /**
1552 * Updates the respective member variable and updates @c SampleAttenuation
1553 * which depends on this value.
1554 */
1555 void DimensionRegion::SetGain(int32_t gain) {
1556 DLS::Sampler::SetGain(gain);
1557 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1558 }
1559
1560 /**
1561 * Apply dimension region settings to the respective RIFF chunks. You
1562 * have to call File::Save() to make changes persistent.
1563 *
1564 * Usually there is absolutely no need to call this method explicitly.
1565 * It will be called automatically when File::Save() was called.
1566 */
1567 void DimensionRegion::UpdateChunks() {
1568 // first update base class's chunk
1569 DLS::Sampler::UpdateChunks();
1570
1571 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1572 uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1573 pData[12] = Crossfade.in_start;
1574 pData[13] = Crossfade.in_end;
1575 pData[14] = Crossfade.out_start;
1576 pData[15] = Crossfade.out_end;
1577
1578 // make sure '3ewa' chunk exists
1579 RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1580 if (!_3ewa) {
1581 File* pFile = (File*) GetParent()->GetParent()->GetParent();
1582 bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1583 _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1584 }
1585 pData = (uint8_t*) _3ewa->LoadChunkData();
1586
1587 // update '3ewa' chunk with DimensionRegion's current settings
1588
1589 const uint32_t chunksize = _3ewa->GetNewSize();
1590 store32(&pData[0], chunksize); // unknown, always chunk size?
1591
1592 const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1593 store32(&pData[4], lfo3freq);
1594
1595 const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1596 store32(&pData[8], eg3attack);
1597
1598 // next 2 bytes unknown
1599
1600 store16(&pData[14], LFO1InternalDepth);
1601
1602 // next 2 bytes unknown
1603
1604 store16(&pData[18], LFO3InternalDepth);
1605
1606 // next 2 bytes unknown
1607
1608 store16(&pData[22], LFO1ControlDepth);
1609
1610 // next 2 bytes unknown
1611
1612 store16(&pData[26], LFO3ControlDepth);
1613
1614 const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1615 store32(&pData[28], eg1attack);
1616
1617 const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1618 store32(&pData[32], eg1decay1);
1619
1620 // next 2 bytes unknown
1621
1622 store16(&pData[38], EG1Sustain);
1623
1624 const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1625 store32(&pData[40], eg1release);
1626
1627 const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1628 pData[44] = eg1ctl;
1629
1630 const uint8_t eg1ctrloptions =
1631 (EG1ControllerInvert ? 0x01 : 0x00) |
1632 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1633 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1634 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1635 pData[45] = eg1ctrloptions;
1636
1637 const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1638 pData[46] = eg2ctl;
1639
1640 const uint8_t eg2ctrloptions =
1641 (EG2ControllerInvert ? 0x01 : 0x00) |
1642 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1643 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1644 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1645 pData[47] = eg2ctrloptions;
1646
1647 const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1648 store32(&pData[48], lfo1freq);
1649
1650 const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1651 store32(&pData[52], eg2attack);
1652
1653 const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1654 store32(&pData[56], eg2decay1);
1655
1656 // next 2 bytes unknown
1657
1658 store16(&pData[62], EG2Sustain);
1659
1660 const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1661 store32(&pData[64], eg2release);
1662
1663 // next 2 bytes unknown
1664
1665 store16(&pData[70], LFO2ControlDepth);
1666
1667 const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1668 store32(&pData[72], lfo2freq);
1669
1670 // next 2 bytes unknown
1671
1672 store16(&pData[78], LFO2InternalDepth);
1673
1674 const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1675 store32(&pData[80], eg1decay2);
1676
1677 // next 2 bytes unknown
1678
1679 store16(&pData[86], EG1PreAttack);
1680
1681 const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1682 store32(&pData[88], eg2decay2);
1683
1684 // next 2 bytes unknown
1685
1686 store16(&pData[94], EG2PreAttack);
1687
1688 {
1689 if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1690 uint8_t velocityresponse = VelocityResponseDepth;
1691 switch (VelocityResponseCurve) {
1692 case curve_type_nonlinear:
1693 break;
1694 case curve_type_linear:
1695 velocityresponse += 5;
1696 break;
1697 case curve_type_special:
1698 velocityresponse += 10;
1699 break;
1700 case curve_type_unknown:
1701 default:
1702 throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1703 }
1704 pData[96] = velocityresponse;
1705 }
1706
1707 {
1708 if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1709 uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1710 switch (ReleaseVelocityResponseCurve) {
1711 case curve_type_nonlinear:
1712 break;
1713 case curve_type_linear:
1714 releasevelocityresponse += 5;
1715 break;
1716 case curve_type_special:
1717 releasevelocityresponse += 10;
1718 break;
1719 case curve_type_unknown:
1720 default:
1721 throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1722 }
1723 pData[97] = releasevelocityresponse;
1724 }
1725
1726 pData[98] = VelocityResponseCurveScaling;
1727
1728 pData[99] = AttenuationControllerThreshold;
1729
1730 // next 4 bytes unknown
1731
1732 store16(&pData[104], SampleStartOffset);
1733
1734 // next 2 bytes unknown
1735
1736 {
1737 uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1738 switch (DimensionBypass) {
1739 case dim_bypass_ctrl_94:
1740 pitchTrackDimensionBypass |= 0x10;
1741 break;
1742 case dim_bypass_ctrl_95:
1743 pitchTrackDimensionBypass |= 0x20;
1744 break;
1745 case dim_bypass_ctrl_none:
1746 //FIXME: should we set anything here?
1747 break;
1748 default:
1749 throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1750 }
1751 pData[108] = pitchTrackDimensionBypass;
1752 }
1753
1754 const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1755 pData[109] = pan;
1756
1757 const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1758 pData[110] = selfmask;
1759
1760 // next byte unknown
1761
1762 {
1763 uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1764 if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1765 if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1766 if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1767 pData[112] = lfo3ctrl;
1768 }
1769
1770 const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1771 pData[113] = attenctl;
1772
1773 {
1774 uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1775 if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1776 if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
1777 if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1778 pData[114] = lfo2ctrl;
1779 }
1780
1781 {
1782 uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1783 if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1784 if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
1785 if (VCFResonanceController != vcf_res_ctrl_none)
1786 lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1787 pData[115] = lfo1ctrl;
1788 }
1789
1790 const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1791 : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */
1792 pData[116] = eg3depth;
1793
1794 // next 2 bytes unknown
1795
1796 const uint8_t channeloffset = ChannelOffset * 4;
1797 pData[120] = channeloffset;
1798
1799 {
1800 uint8_t regoptions = 0;
1801 if (MSDecode) regoptions |= 0x01; // bit 0
1802 if (SustainDefeat) regoptions |= 0x02; // bit 1
1803 pData[121] = regoptions;
1804 }
1805
1806 // next 2 bytes unknown
1807
1808 pData[124] = VelocityUpperLimit;
1809
1810 // next 3 bytes unknown
1811
1812 pData[128] = ReleaseTriggerDecay;
1813
1814 // next 2 bytes unknown
1815
1816 const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1817 pData[131] = eg1hold;
1818
1819 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
1820 (VCFCutoff & 0x7f); /* lower 7 bits */
1821 pData[132] = vcfcutoff;
1822
1823 pData[133] = VCFCutoffController;
1824
1825 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
1826 (VCFVelocityScale & 0x7f); /* lower 7 bits */
1827 pData[134] = vcfvelscale;
1828
1829 // next byte unknown
1830
1831 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
1832 (VCFResonance & 0x7f); /* lower 7 bits */
1833 pData[136] = vcfresonance;
1834
1835 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
1836 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
1837 pData[137] = vcfbreakpoint;
1838
1839 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |
1840 VCFVelocityCurve * 5;
1841 pData[138] = vcfvelocity;
1842
1843 const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1844 pData[139] = vcftype;
1845
1846 if (chunksize >= 148) {
1847 memcpy(&pData[140], DimensionUpperLimits, 8);
1848 }
1849 }
1850
1851 double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
1852 curve_type_t curveType = releaseVelocityResponseCurve;
1853 uint8_t depth = releaseVelocityResponseDepth;
1854 // this models a strange behaviour or bug in GSt: two of the
1855 // velocity response curves for release time are not used even
1856 // if specified, instead another curve is chosen.
1857 if ((curveType == curve_type_nonlinear && depth == 0) ||
1858 (curveType == curve_type_special && depth == 4)) {
1859 curveType = curve_type_nonlinear;
1860 depth = 3;
1861 }
1862 return GetVelocityTable(curveType, depth, 0);
1863 }
1864
1865 double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
1866 uint8_t vcfVelocityDynamicRange,
1867 uint8_t vcfVelocityScale,
1868 vcf_cutoff_ctrl_t vcfCutoffController)
1869 {
1870 curve_type_t curveType = vcfVelocityCurve;
1871 uint8_t depth = vcfVelocityDynamicRange;
1872 // even stranger GSt: two of the velocity response curves for
1873 // filter cutoff are not used, instead another special curve
1874 // is chosen. This curve is not used anywhere else.
1875 if ((curveType == curve_type_nonlinear && depth == 0) ||
1876 (curveType == curve_type_special && depth == 4)) {
1877 curveType = curve_type_special;
1878 depth = 5;
1879 }
1880 return GetVelocityTable(curveType, depth,
1881 (vcfCutoffController <= vcf_cutoff_ctrl_none2)
1882 ? vcfVelocityScale : 0);
1883 }
1884
1885 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
1886 double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
1887 {
1888 double* table;
1889 uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
1890 if (pVelocityTables->count(tableKey)) { // if key exists
1891 table = (*pVelocityTables)[tableKey];
1892 }
1893 else {
1894 table = CreateVelocityTable(curveType, depth, scaling);
1895 (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
1896 }
1897 return table;
1898 }
1899
1900 Region* DimensionRegion::GetParent() const {
1901 return pRegion;
1902 }
1903
1904 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
1905 leverage_ctrl_t decodedcontroller;
1906 switch (EncodedController) {
1907 // special controller
1908 case _lev_ctrl_none:
1909 decodedcontroller.type = leverage_ctrl_t::type_none;
1910 decodedcontroller.controller_number = 0;
1911 break;
1912 case _lev_ctrl_velocity:
1913 decodedcontroller.type = leverage_ctrl_t::type_velocity;
1914 decodedcontroller.controller_number = 0;
1915 break;
1916 case _lev_ctrl_channelaftertouch:
1917 decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
1918 decodedcontroller.controller_number = 0;
1919 break;
1920
1921 // ordinary MIDI control change controller
1922 case _lev_ctrl_modwheel:
1923 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1924 decodedcontroller.controller_number = 1;
1925 break;
1926 case _lev_ctrl_breath:
1927 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1928 decodedcontroller.controller_number = 2;
1929 break;
1930 case _lev_ctrl_foot:
1931 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1932 decodedcontroller.controller_number = 4;
1933 break;
1934 case _lev_ctrl_effect1:
1935 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1936 decodedcontroller.controller_number = 12;
1937 break;
1938 case _lev_ctrl_effect2:
1939 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1940 decodedcontroller.controller_number = 13;
1941 break;
1942 case _lev_ctrl_genpurpose1:
1943 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1944 decodedcontroller.controller_number = 16;
1945 break;
1946 case _lev_ctrl_genpurpose2:
1947 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1948 decodedcontroller.controller_number = 17;
1949 break;
1950 case _lev_ctrl_genpurpose3:
1951 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1952 decodedcontroller.controller_number = 18;
1953 break;
1954 case _lev_ctrl_genpurpose4:
1955 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1956 decodedcontroller.controller_number = 19;
1957 break;
1958 case _lev_ctrl_portamentotime:
1959 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1960 decodedcontroller.controller_number = 5;
1961 break;
1962 case _lev_ctrl_sustainpedal:
1963 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1964 decodedcontroller.controller_number = 64;
1965 break;
1966 case _lev_ctrl_portamento:
1967 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1968 decodedcontroller.controller_number = 65;
1969 break;
1970 case _lev_ctrl_sostenutopedal:
1971 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1972 decodedcontroller.controller_number = 66;
1973 break;
1974 case _lev_ctrl_softpedal:
1975 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1976 decodedcontroller.controller_number = 67;
1977 break;
1978 case _lev_ctrl_genpurpose5:
1979 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1980 decodedcontroller.controller_number = 80;
1981 break;
1982 case _lev_ctrl_genpurpose6:
1983 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1984 decodedcontroller.controller_number = 81;
1985 break;
1986 case _lev_ctrl_genpurpose7:
1987 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1988 decodedcontroller.controller_number = 82;
1989 break;
1990 case _lev_ctrl_genpurpose8:
1991 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1992 decodedcontroller.controller_number = 83;
1993 break;
1994 case _lev_ctrl_effect1depth:
1995 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1996 decodedcontroller.controller_number = 91;
1997 break;
1998 case _lev_ctrl_effect2depth:
1999 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2000 decodedcontroller.controller_number = 92;
2001 break;
2002 case _lev_ctrl_effect3depth:
2003 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2004 decodedcontroller.controller_number = 93;
2005 break;
2006 case _lev_ctrl_effect4depth:
2007 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2008 decodedcontroller.controller_number = 94;
2009 break;
2010 case _lev_ctrl_effect5depth:
2011 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2012 decodedcontroller.controller_number = 95;
2013 break;
2014
2015 // unknown controller type
2016 default:
2017 throw gig::Exception("Unknown leverage controller type.");
2018 }
2019 return decodedcontroller;
2020 }
2021
2022 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2023 _lev_ctrl_t encodedcontroller;
2024 switch (DecodedController.type) {
2025 // special controller
2026 case leverage_ctrl_t::type_none:
2027 encodedcontroller = _lev_ctrl_none;
2028 break;
2029 case leverage_ctrl_t::type_velocity:
2030 encodedcontroller = _lev_ctrl_velocity;
2031 break;
2032 case leverage_ctrl_t::type_channelaftertouch:
2033 encodedcontroller = _lev_ctrl_channelaftertouch;
2034 break;
2035
2036 // ordinary MIDI control change controller
2037 case leverage_ctrl_t::type_controlchange:
2038 switch (DecodedController.controller_number) {
2039 case 1:
2040 encodedcontroller = _lev_ctrl_modwheel;
2041 break;
2042 case 2:
2043 encodedcontroller = _lev_ctrl_breath;
2044 break;
2045 case 4:
2046 encodedcontroller = _lev_ctrl_foot;
2047 break;
2048 case 12:
2049 encodedcontroller = _lev_ctrl_effect1;
2050 break;
2051 case 13:
2052 encodedcontroller = _lev_ctrl_effect2;
2053 break;
2054 case 16:
2055 encodedcontroller = _lev_ctrl_genpurpose1;
2056 break;
2057 case 17:
2058 encodedcontroller = _lev_ctrl_genpurpose2;
2059 break;
2060 case 18:
2061 encodedcontroller = _lev_ctrl_genpurpose3;
2062 break;
2063 case 19:
2064 encodedcontroller = _lev_ctrl_genpurpose4;
2065 break;
2066 case 5:
2067 encodedcontroller = _lev_ctrl_portamentotime;
2068 break;
2069 case 64:
2070 encodedcontroller = _lev_ctrl_sustainpedal;
2071 break;
2072 case 65:
2073 encodedcontroller = _lev_ctrl_portamento;
2074 break;
2075 case 66:
2076 encodedcontroller = _lev_ctrl_sostenutopedal;
2077 break;
2078 case 67:
2079 encodedcontroller = _lev_ctrl_softpedal;
2080 break;
2081 case 80:
2082 encodedcontroller = _lev_ctrl_genpurpose5;
2083 break;
2084 case 81:
2085 encodedcontroller = _lev_ctrl_genpurpose6;
2086 break;
2087 case 82:
2088 encodedcontroller = _lev_ctrl_genpurpose7;
2089 break;
2090 case 83:
2091 encodedcontroller = _lev_ctrl_genpurpose8;
2092 break;
2093 case 91:
2094 encodedcontroller = _lev_ctrl_effect1depth;
2095 break;
2096 case 92:
2097 encodedcontroller = _lev_ctrl_effect2depth;
2098 break;
2099 case 93:
2100 encodedcontroller = _lev_ctrl_effect3depth;
2101 break;
2102 case 94:
2103 encodedcontroller = _lev_ctrl_effect4depth;
2104 break;
2105 case 95:
2106 encodedcontroller = _lev_ctrl_effect5depth;
2107 break;
2108 default:
2109 throw gig::Exception("leverage controller number is not supported by the gig format");
2110 }
2111 break;
2112 default:
2113 throw gig::Exception("Unknown leverage controller type.");
2114 }
2115 return encodedcontroller;
2116 }
2117
2118 DimensionRegion::~DimensionRegion() {
2119 Instances--;
2120 if (!Instances) {
2121 // delete the velocity->volume tables
2122 VelocityTableMap::iterator iter;
2123 for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
2124 double* pTable = iter->second;
2125 if (pTable) delete[] pTable;
2126 }
2127 pVelocityTables->clear();
2128 delete pVelocityTables;
2129 pVelocityTables = NULL;
2130 }
2131 if (VelocityTable) delete[] VelocityTable;
2132 }
2133
2134 /**
2135 * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
2136 * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
2137 * and VelocityResponseCurveScaling) involved are taken into account to
2138 * calculate the amplitude factor. Use this method when a key was
2139 * triggered to get the volume with which the sample should be played
2140 * back.
2141 *
2142 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
2143 * @returns amplitude factor (between 0.0 and 1.0)
2144 */
2145 double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2146 return pVelocityAttenuationTable[MIDIKeyVelocity];
2147 }
2148
2149 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2150 return pVelocityReleaseTable[MIDIKeyVelocity];
2151 }
2152
2153 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2154 return pVelocityCutoffTable[MIDIKeyVelocity];
2155 }
2156
2157 /**
2158 * Updates the respective member variable and the lookup table / cache
2159 * that depends on this value.
2160 */
2161 void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
2162 pVelocityAttenuationTable =
2163 GetVelocityTable(
2164 curve, VelocityResponseDepth, VelocityResponseCurveScaling
2165 );
2166 VelocityResponseCurve = curve;
2167 }
2168
2169 /**
2170 * Updates the respective member variable and the lookup table / cache
2171 * that depends on this value.
2172 */
2173 void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
2174 pVelocityAttenuationTable =
2175 GetVelocityTable(
2176 VelocityResponseCurve, depth, VelocityResponseCurveScaling
2177 );
2178 VelocityResponseDepth = depth;
2179 }
2180
2181 /**
2182 * Updates the respective member variable and the lookup table / cache
2183 * that depends on this value.
2184 */
2185 void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
2186 pVelocityAttenuationTable =
2187 GetVelocityTable(
2188 VelocityResponseCurve, VelocityResponseDepth, scaling
2189 );
2190 VelocityResponseCurveScaling = scaling;
2191 }
2192
2193 /**
2194 * Updates the respective member variable and the lookup table / cache
2195 * that depends on this value.
2196 */
2197 void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
2198 pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
2199 ReleaseVelocityResponseCurve = curve;
2200 }
2201
2202 /**
2203 * Updates the respective member variable and the lookup table / cache
2204 * that depends on this value.
2205 */
2206 void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
2207 pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
2208 ReleaseVelocityResponseDepth = depth;
2209 }
2210
2211 /**
2212 * Updates the respective member variable and the lookup table / cache
2213 * that depends on this value.
2214 */
2215 void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
2216 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
2217 VCFCutoffController = controller;
2218 }
2219
2220 /**
2221 * Updates the respective member variable and the lookup table / cache
2222 * that depends on this value.
2223 */
2224 void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
2225 pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
2226 VCFVelocityCurve = curve;
2227 }
2228
2229 /**
2230 * Updates the respective member variable and the lookup table / cache
2231 * that depends on this value.
2232 */
2233 void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
2234 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
2235 VCFVelocityDynamicRange = range;
2236 }
2237
2238 /**
2239 * Updates the respective member variable and the lookup table / cache
2240 * that depends on this value.
2241 */
2242 void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
2243 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
2244 VCFVelocityScale = scaling;
2245 }
2246
2247 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2248
2249 // line-segment approximations of the 15 velocity curves
2250
2251 // linear
2252 const int lin0[] = { 1, 1, 127, 127 };
2253 const int lin1[] = { 1, 21, 127, 127 };
2254 const int lin2[] = { 1, 45, 127, 127 };
2255 const int lin3[] = { 1, 74, 127, 127 };
2256 const int lin4[] = { 1, 127, 127, 127 };
2257
2258 // non-linear
2259 const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2260 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2261 127, 127 };
2262 const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2263 127, 127 };
2264 const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2265 127, 127 };
2266 const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2267
2268 // special
2269 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2270 113, 127, 127, 127 };
2271 const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2272 118, 127, 127, 127 };
2273 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2274 85, 90, 91, 127, 127, 127 };
2275 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2276 117, 127, 127, 127 };
2277 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2278 127, 127 };
2279
2280 // this is only used by the VCF velocity curve
2281 const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2282 91, 127, 127, 127 };
2283
2284 const int* const curves[] = { non0, non1, non2, non3, non4,
2285 lin0, lin1, lin2, lin3, lin4,
2286 spe0, spe1, spe2, spe3, spe4, spe5 };
2287
2288 double* const table = new double[128];
2289
2290 const int* curve = curves[curveType * 5 + depth];
2291 const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2292
2293 table[0] = 0;
2294 for (int x = 1 ; x < 128 ; x++) {
2295
2296 if (x > curve[2]) curve += 2;
2297 double y = curve[1] + (x - curve[0]) *
2298 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2299 y = y / 127;
2300
2301 // Scale up for s > 20, down for s < 20. When
2302 // down-scaling, the curve still ends at 1.0.
2303 if (s < 20 && y >= 0.5)
2304 y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2305 else
2306 y = y * (s / 20.0);
2307 if (y > 1) y = 1;
2308
2309 table[x] = y;
2310 }
2311 return table;
2312 }
2313
2314
2315 // *************** Region ***************
2316 // *
2317
2318 Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2319 // Initialization
2320 Dimensions = 0;
2321 for (int i = 0; i < 256; i++) {
2322 pDimensionRegions[i] = NULL;
2323 }
2324 Layers = 1;
2325 File* file = (File*) GetParent()->GetParent();
2326 int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2327
2328 // Actual Loading
2329
2330 LoadDimensionRegions(rgnList);
2331
2332 RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
2333 if (_3lnk) {
2334 DimensionRegions = _3lnk->ReadUint32();
2335 for (int i = 0; i < dimensionBits; i++) {
2336 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2337 uint8_t bits = _3lnk->ReadUint8();
2338 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
2339 _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
2340 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2341 if (dimension == dimension_none) { // inactive dimension
2342 pDimensionDefinitions[i].dimension = dimension_none;
2343 pDimensionDefinitions[i].bits = 0;
2344 pDimensionDefinitions[i].zones = 0;
2345 pDimensionDefinitions[i].split_type = split_type_bit;
2346 pDimensionDefinitions[i].zone_size = 0;
2347 }
2348 else { // active dimension
2349 pDimensionDefinitions[i].dimension = dimension;
2350 pDimensionDefinitions[i].bits = bits;
2351 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
2352 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2353 pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
2354 Dimensions++;
2355
2356 // if this is a layer dimension, remember the amount of layers
2357 if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
2358 }
2359 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2360 }
2361 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2362
2363 // if there's a velocity dimension and custom velocity zone splits are used,
2364 // update the VelocityTables in the dimension regions
2365 UpdateVelocityTable();
2366
2367 // jump to start of the wave pool indices (if not already there)
2368 if (file->pVersion && file->pVersion->major == 3)
2369 _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2370 else
2371 _3lnk->SetPos(44);
2372
2373 // load sample references
2374 for (uint i = 0; i < DimensionRegions; i++) {
2375 uint32_t wavepoolindex = _3lnk->ReadUint32();
2376 if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2377 }
2378 GetSample(); // load global region sample reference
2379 } else {
2380 DimensionRegions = 0;
2381 for (int i = 0 ; i < 8 ; i++) {
2382 pDimensionDefinitions[i].dimension = dimension_none;
2383 pDimensionDefinitions[i].bits = 0;
2384 pDimensionDefinitions[i].zones = 0;
2385 }
2386 }
2387
2388 // make sure there is at least one dimension region
2389 if (!DimensionRegions) {
2390 RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
2391 if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
2392 RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
2393 pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
2394 DimensionRegions = 1;
2395 }
2396 }
2397
2398 /**
2399 * Apply Region settings and all its DimensionRegions to the respective
2400 * RIFF chunks. You have to call File::Save() to make changes persistent.
2401 *
2402 * Usually there is absolutely no need to call this method explicitly.
2403 * It will be called automatically when File::Save() was called.
2404 *
2405 * @throws gig::Exception if samples cannot be dereferenced
2406 */
2407 void Region::UpdateChunks() {
2408 // in the gig format we don't care about the Region's sample reference
2409 // but we still have to provide some existing one to not corrupt the
2410 // file, so to avoid the latter we simply always assign the sample of
2411 // the first dimension region of this region
2412 pSample = pDimensionRegions[0]->pSample;
2413
2414 // first update base class's chunks
2415 DLS::Region::UpdateChunks();
2416
2417 // update dimension region's chunks
2418 for (int i = 0; i < DimensionRegions; i++) {
2419 pDimensionRegions[i]->UpdateChunks();
2420 }
2421
2422 File* pFile = (File*) GetParent()->GetParent();
2423 bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
2424 const int iMaxDimensions = version3 ? 8 : 5;
2425 const int iMaxDimensionRegions = version3 ? 256 : 32;
2426
2427 // make sure '3lnk' chunk exists
2428 RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
2429 if (!_3lnk) {
2430 const int _3lnkChunkSize = version3 ? 1092 : 172;
2431 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
2432 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
2433
2434 // move 3prg to last position
2435 pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), 0);
2436 }
2437
2438 // update dimension definitions in '3lnk' chunk
2439 uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2440 store32(&pData[0], DimensionRegions);
2441 int shift = 0;
2442 for (int i = 0; i < iMaxDimensions; i++) {
2443 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
2444 pData[5 + i * 8] = pDimensionDefinitions[i].bits;
2445 pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
2446 pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
2447 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
2448 // next 3 bytes unknown, always zero?
2449
2450 shift += pDimensionDefinitions[i].bits;
2451 }
2452
2453 // update wave pool table in '3lnk' chunk
2454 const int iWavePoolOffset = version3 ? 68 : 44;
2455 for (uint i = 0; i < iMaxDimensionRegions; i++) {
2456 int iWaveIndex = -1;
2457 if (i < DimensionRegions) {
2458 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
2459 File::SampleList::iterator iter = pFile->pSamples->begin();
2460 File::SampleList::iterator end = pFile->pSamples->end();
2461 for (int index = 0; iter != end; ++iter, ++index) {
2462 if (*iter == pDimensionRegions[i]->pSample) {
2463 iWaveIndex = index;
2464 break;
2465 }
2466 }
2467 }
2468 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
2469 }
2470 }
2471
2472 void Region::LoadDimensionRegions(RIFF::List* rgn) {
2473 RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
2474 if (_3prg) {
2475 int dimensionRegionNr = 0;
2476 RIFF::List* _3ewl = _3prg->GetFirstSubList();
2477 while (_3ewl) {
2478 if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
2479 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
2480 dimensionRegionNr++;
2481 }
2482 _3ewl = _3prg->GetNextSubList();
2483 }
2484 if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
2485 }
2486 }
2487
2488 void Region::SetKeyRange(uint16_t Low, uint16_t High) {
2489 // update KeyRange struct and make sure regions are in correct order
2490 DLS::Region::SetKeyRange(Low, High);
2491 // update Region key table for fast lookup
2492 ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
2493 }
2494
2495 void Region::UpdateVelocityTable() {
2496 // get velocity dimension's index
2497 int veldim = -1;
2498 for (int i = 0 ; i < Dimensions ; i++) {
2499 if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
2500 veldim = i;
2501 break;
2502 }
2503 }
2504 if (veldim == -1) return;
2505
2506 int step = 1;
2507 for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
2508 int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
2509 int end = step * pDimensionDefinitions[veldim].zones;
2510
2511 // loop through all dimension regions for all dimensions except the velocity dimension
2512 int dim[8] = { 0 };
2513 for (int i = 0 ; i < DimensionRegions ; i++) {
2514
2515 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
2516 pDimensionRegions[i]->VelocityUpperLimit) {
2517 // create the velocity table
2518 uint8_t* table = pDimensionRegions[i]->VelocityTable;
2519 if (!table) {
2520 table = new uint8_t[128];
2521 pDimensionRegions[i]->VelocityTable = table;
2522 }
2523 int tableidx = 0;
2524 int velocityZone = 0;
2525 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
2526 for (int k = i ; k < end ; k += step) {
2527 DimensionRegion *d = pDimensionRegions[k];
2528 for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
2529 velocityZone++;
2530 }
2531 } else { // gig2
2532 for (int k = i ; k < end ; k += step) {
2533 DimensionRegion *d = pDimensionRegions[k];
2534 for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
2535 velocityZone++;
2536 }
2537 }
2538 } else {
2539 if (pDimensionRegions[i]->VelocityTable) {
2540 delete[] pDimensionRegions[i]->VelocityTable;
2541 pDimensionRegions[i]->VelocityTable = 0;
2542 }
2543 }
2544
2545 int j;
2546 int shift = 0;
2547 for (j = 0 ; j < Dimensions ; j++) {
2548 if (j == veldim) i += skipveldim; // skip velocity dimension
2549 else {
2550 dim[j]++;
2551 if (dim[j] < pDimensionDefinitions[j].zones) break;
2552 else {
2553 // skip unused dimension regions
2554 dim[j] = 0;
2555 i += ((1 << pDimensionDefinitions[j].bits) -
2556 pDimensionDefinitions[j].zones) << shift;
2557 }
2558 }
2559 shift += pDimensionDefinitions[j].bits;
2560 }
2561 if (j == Dimensions) break;
2562 }
2563 }
2564
2565 /** @brief Einstein would have dreamed of it - create a new dimension.
2566 *
2567 * Creates a new dimension with the dimension definition given by
2568 * \a pDimDef. The appropriate amount of DimensionRegions will be created.
2569 * There is a hard limit of dimensions and total amount of "bits" all
2570 * dimensions can have. This limit is dependant to what gig file format
2571 * version this file refers to. The gig v2 (and lower) format has a
2572 * dimension limit and total amount of bits limit of 5, whereas the gig v3
2573 * format has a limit of 8.
2574 *
2575 * @param pDimDef - defintion of the new dimension
2576 * @throws gig::Exception if dimension of the same type exists already
2577 * @throws gig::Exception if amount of dimensions or total amount of
2578 * dimension bits limit is violated
2579 */
2580 void Region::AddDimension(dimension_def_t* pDimDef) {
2581 // check if max. amount of dimensions reached
2582 File* file = (File*) GetParent()->GetParent();
2583 const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2584 if (Dimensions >= iMaxDimensions)
2585 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
2586 // check if max. amount of dimension bits reached
2587 int iCurrentBits = 0;
2588 for (int i = 0; i < Dimensions; i++)
2589 iCurrentBits += pDimensionDefinitions[i].bits;
2590 if (iCurrentBits >= iMaxDimensions)
2591 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
2592 const int iNewBits = iCurrentBits + pDimDef->bits;
2593 if (iNewBits > iMaxDimensions)
2594 throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
2595 // check if there's already a dimensions of the same type
2596 for (int i = 0; i < Dimensions; i++)
2597 if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
2598 throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
2599
2600 // pos is where the new dimension should be placed, normally
2601 // last in list, except for the samplechannel dimension which
2602 // has to be first in list
2603 int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
2604 int bitpos = 0;
2605 for (int i = 0 ; i < pos ; i++)
2606 bitpos += pDimensionDefinitions[i].bits;
2607
2608 // make room for the new dimension
2609 for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
2610 for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
2611 for (int j = Dimensions ; j > pos ; j--) {
2612 pDimensionRegions[i]->DimensionUpperLimits[j] =
2613 pDimensionRegions[i]->DimensionUpperLimits[j - 1];
2614 }
2615 }
2616
2617 // assign definition of new dimension
2618 pDimensionDefinitions[pos] = *pDimDef;
2619
2620 // auto correct certain dimension definition fields (where possible)
2621 pDimensionDefinitions[pos].split_type =
2622 __resolveSplitType(pDimensionDefinitions[pos].dimension);
2623 pDimensionDefinitions[pos].zone_size =
2624 __resolveZoneSize(pDimensionDefinitions[pos]);
2625
2626 // create new dimension region(s) for this new dimension, and make
2627 // sure that the dimension regions are placed correctly in both the
2628 // RIFF list and the pDimensionRegions array
2629 RIFF::Chunk* moveTo = NULL;
2630 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2631 for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
2632 for (int k = 0 ; k < (1 << bitpos) ; k++) {
2633 pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
2634 }
2635 for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
2636 for (int k = 0 ; k < (1 << bitpos) ; k++) {
2637 RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
2638 if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
2639 // create a new dimension region and copy all parameter values from
2640 // an existing dimension region
2641 pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
2642 new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
2643
2644 DimensionRegions++;
2645 }
2646 }
2647 moveTo = pDimensionRegions[i]->pParentList;
2648 }
2649
2650 // initialize the upper limits for this dimension
2651 int mask = (1 << bitpos) - 1;
2652 for (int z = 0 ; z < pDimDef->zones ; z++) {
2653 uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
2654 for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
2655 pDimensionRegions[((i & ~mask) << pDimDef->bits) |
2656 (z << bitpos) |
2657 (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
2658 }
2659 }
2660
2661 Dimensions++;
2662
2663 // if this is a layer dimension, update 'Layers' attribute
2664 if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
2665
2666 UpdateVelocityTable();
2667 }
2668
2669 /** @brief Delete an existing dimension.
2670 *
2671 * Deletes the dimension given by \a pDimDef and deletes all respective
2672 * dimension regions, that is all dimension regions where the dimension's
2673 * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
2674 * for example this would delete all dimension regions for the case(s)
2675 * where the sustain pedal is pressed down.
2676 *
2677 * @param pDimDef - dimension to delete
2678 * @throws gig::Exception if given dimension cannot be found
2679 */
2680 void Region::DeleteDimension(dimension_def_t* pDimDef) {
2681 // get dimension's index
2682 int iDimensionNr = -1;
2683 for (int i = 0; i < Dimensions; i++) {
2684 if (&pDimensionDefinitions[i] == pDimDef) {
2685 iDimensionNr = i;
2686 break;
2687 }
2688 }
2689 if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
2690
2691 // get amount of bits below the dimension to delete
2692 int iLowerBits = 0;
2693 for (int i = 0; i < iDimensionNr; i++)
2694 iLowerBits += pDimensionDefinitions[i].bits;
2695
2696 // get amount ot bits above the dimension to delete
2697 int iUpperBits = 0;
2698 for (int i = iDimensionNr + 1; i < Dimensions; i++)
2699 iUpperBits += pDimensionDefinitions[i].bits;
2700
2701 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2702
2703 // delete dimension regions which belong to the given dimension
2704 // (that is where the dimension's bit > 0)
2705 for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
2706 for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
2707 for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
2708 int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
2709 iObsoleteBit << iLowerBits |
2710 iLowerBit;
2711
2712 _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
2713 delete pDimensionRegions[iToDelete];
2714 pDimensionRegions[iToDelete] = NULL;
2715 DimensionRegions--;
2716 }
2717 }
2718 }
2719
2720 // defrag pDimensionRegions array
2721 // (that is remove the NULL spaces within the pDimensionRegions array)
2722 for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
2723 if (!pDimensionRegions[iTo]) {
2724 if (iFrom <= iTo) iFrom = iTo + 1;
2725 while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
2726 if (iFrom < 256 && pDimensionRegions[iFrom]) {
2727 pDimensionRegions[iTo] = pDimensionRegions[iFrom];
2728 pDimensionRegions[iFrom] = NULL;
2729 }
2730 }
2731 }
2732
2733 // remove the this dimension from the upper limits arrays
2734 for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
2735 DimensionRegion* d = pDimensionRegions[j];
2736 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2737 d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
2738 }
2739 d->DimensionUpperLimits[Dimensions - 1] = 127;
2740 }
2741
2742 // 'remove' dimension definition
2743 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2744 pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
2745 }
2746 pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
2747 pDimensionDefinitions[Dimensions - 1].bits = 0;
2748 pDimensionDefinitions[Dimensions - 1].zones = 0;
2749
2750 Dimensions--;
2751
2752 // if this was a layer dimension, update 'Layers' attribute
2753 if (pDimDef->dimension == dimension_layer) Layers = 1;
2754 }
2755
2756 Region::~Region() {
2757 for (int i = 0; i < 256; i++) {
2758 if (pDimensionRegions[i]) delete pDimensionRegions[i];
2759 }
2760 }
2761
2762 /**
2763 * Use this method in your audio engine to get the appropriate dimension
2764 * region with it's articulation data for the current situation. Just
2765 * call the method with the current MIDI controller values and you'll get
2766 * the DimensionRegion with the appropriate articulation data for the
2767 * current situation (for this Region of course only). To do that you'll
2768 * first have to look which dimensions with which controllers and in
2769 * which order are defined for this Region when you load the .gig file.
2770 * Special cases are e.g. layer or channel dimensions where you just put
2771 * in the index numbers instead of a MIDI controller value (means 0 for
2772 * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
2773 * etc.).
2774 *
2775 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
2776 * @returns adress to the DimensionRegion for the given situation
2777 * @see pDimensionDefinitions
2778 * @see Dimensions
2779 */
2780 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
2781 uint8_t bits;
2782 int veldim = -1;
2783 int velbitpos;
2784 int bitpos = 0;
2785 int dimregidx = 0;
2786 for (uint i = 0; i < Dimensions; i++) {
2787 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
2788 // the velocity dimension must be handled after the other dimensions
2789 veldim = i;
2790 velbitpos = bitpos;
2791 } else {
2792 switch (pDimensionDefinitions[i].split_type) {
2793 case split_type_normal:
2794 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
2795 // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
2796 for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
2797 if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
2798 }
2799 } else {
2800 // gig2: evenly sized zones
2801 bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
2802 }
2803 break;
2804 case split_type_bit: // the value is already the sought dimension bit number
2805 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
2806 bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
2807 break;
2808 }
2809 dimregidx |= bits << bitpos;
2810 }
2811 bitpos += pDimensionDefinitions[i].bits;
2812 }
2813 DimensionRegion* dimreg = pDimensionRegions[dimregidx];
2814 if (veldim != -1) {
2815 // (dimreg is now the dimension region for the lowest velocity)
2816 if (dimreg->VelocityTable) // custom defined zone ranges
2817 bits = dimreg->VelocityTable[DimValues[veldim]];
2818 else // normal split type
2819 bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);
2820
2821 dimregidx |= bits << velbitpos;
2822 dimreg = pDimensionRegions[dimregidx];
2823 }
2824 return dimreg;
2825 }
2826
2827 /**
2828 * Returns the appropriate DimensionRegion for the given dimension bit
2829 * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
2830 * instead of calling this method directly!
2831 *
2832 * @param DimBits Bit numbers for dimension 0 to 7
2833 * @returns adress to the DimensionRegion for the given dimension
2834 * bit numbers
2835 * @see GetDimensionRegionByValue()
2836 */
2837 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
2838 return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
2839 << pDimensionDefinitions[5].bits | DimBits[5])
2840 << pDimensionDefinitions[4].bits | DimBits[4])
2841 << pDimensionDefinitions[3].bits | DimBits[3])
2842 << pDimensionDefinitions[2].bits | DimBits[2])
2843 << pDimensionDefinitions[1].bits | DimBits[1])
2844 << pDimensionDefinitions[0].bits | DimBits[0]];
2845 }
2846
2847 /**
2848 * Returns pointer address to the Sample referenced with this region.
2849 * This is the global Sample for the entire Region (not sure if this is
2850 * actually used by the Gigasampler engine - I would only use the Sample
2851 * referenced by the appropriate DimensionRegion instead of this sample).
2852 *
2853 * @returns address to Sample or NULL if there is no reference to a
2854 * sample saved in the .gig file
2855 */
2856 Sample* Region::GetSample() {
2857 if (pSample) return static_cast<gig::Sample*>(pSample);
2858 else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
2859 }
2860
2861 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
2862 if ((int32_t)WavePoolTableIndex == -1) return NULL;
2863 File* file = (File*) GetParent()->GetParent();
2864 if (!file->pWavePoolTable) return NULL;
2865 unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
2866 unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
2867 Sample* sample = file->GetFirstSample(pProgress);
2868 while (sample) {
2869 if (sample->ulWavePoolOffset == soughtoffset &&
2870 sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
2871 sample = file->GetNextSample();
2872 }
2873 return NULL;
2874 }
2875
2876
2877
2878 // *************** Instrument ***************
2879 // *
2880
2881 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
2882 static const DLS::Info::FixedStringLength fixedStringLengths[] = {
2883 { CHUNK_ID_INAM, 64 },
2884 { CHUNK_ID_ISFT, 12 },
2885 { 0, 0 }
2886 };
2887 pInfo->FixedStringLengths = fixedStringLengths;
2888
2889 // Initialization
2890 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
2891 EffectSend = 0;
2892 Attenuation = 0;
2893 FineTune = 0;
2894 PitchbendRange = 0;
2895 PianoReleaseMode = false;
2896 DimensionKeyRange.low = 0;
2897 DimensionKeyRange.high = 0;
2898
2899 // Loading
2900 RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
2901 if (lart) {
2902 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2903 if (_3ewg) {
2904 EffectSend = _3ewg->ReadUint16();
2905 Attenuation = _3ewg->ReadInt32();
2906 FineTune = _3ewg->ReadInt16();
2907 PitchbendRange = _3ewg->ReadInt16();
2908 uint8_t dimkeystart = _3ewg->ReadUint8();
2909 PianoReleaseMode = dimkeystart & 0x01;
2910 DimensionKeyRange.low = dimkeystart >> 1;
2911 DimensionKeyRange.high = _3ewg->ReadUint8();
2912 }
2913 }
2914
2915 if (!pRegions) pRegions = new RegionList;
2916 RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
2917 if (lrgn) {
2918 RIFF::List* rgn = lrgn->GetFirstSubList();
2919 while (rgn) {
2920 if (rgn->GetListType() == LIST_TYPE_RGN) {
2921 __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
2922 pRegions->push_back(new Region(this, rgn));
2923 }
2924 rgn = lrgn->GetNextSubList();
2925 }
2926 // Creating Region Key Table for fast lookup
2927 UpdateRegionKeyTable();
2928 }
2929
2930 __notify_progress(pProgress, 1.0f); // notify done
2931 }
2932
2933 void Instrument::UpdateRegionKeyTable() {
2934 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
2935 RegionList::iterator iter = pRegions->begin();
2936 RegionList::iterator end = pRegions->end();
2937 for (; iter != end; ++iter) {
2938 gig::Region* pRegion = static_cast<gig::Region*>(*iter);
2939 for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
2940 RegionKeyTable[iKey] = pRegion;
2941 }
2942 }
2943 }
2944
2945 Instrument::~Instrument() {
2946 }
2947
2948 /**
2949 * Apply Instrument with all its Regions to the respective RIFF chunks.
2950 * You have to call File::Save() to make changes persistent.
2951 *
2952 * Usually there is absolutely no need to call this method explicitly.
2953 * It will be called automatically when File::Save() was called.
2954 *
2955 * @throws gig::Exception if samples cannot be dereferenced
2956 */
2957 void Instrument::UpdateChunks() {
2958 // first update base classes' chunks
2959 DLS::Instrument::UpdateChunks();
2960
2961 // update Regions' chunks
2962 {
2963 RegionList::iterator iter = pRegions->begin();
2964 RegionList::iterator end = pRegions->end();
2965 for (; iter != end; ++iter)
2966 (*iter)->UpdateChunks();
2967 }
2968
2969 // make sure 'lart' RIFF list chunk exists
2970 RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
2971 if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
2972 // make sure '3ewg' RIFF chunk exists
2973 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2974 if (!_3ewg) {
2975 File* pFile = (File*) GetParent();
2976
2977 // 3ewg is bigger in gig3, as it includes the iMIDI rules
2978 int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
2979 _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
2980 memset(_3ewg->LoadChunkData(), 0, size);
2981 }
2982 // update '3ewg' RIFF chunk
2983 uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
2984 store16(&pData[0], EffectSend);
2985 store32(&pData[2], Attenuation);
2986 store16(&pData[6], FineTune);
2987 store16(&pData[8], PitchbendRange);
2988 const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
2989 DimensionKeyRange.low << 1;
2990 pData[10] = dimkeystart;
2991 pData[11] = DimensionKeyRange.high;
2992 }
2993
2994 /**
2995 * Returns the appropriate Region for a triggered note.
2996 *
2997 * @param Key MIDI Key number of triggered note / key (0 - 127)
2998 * @returns pointer adress to the appropriate Region or NULL if there
2999 * there is no Region defined for the given \a Key
3000 */
3001 Region* Instrument::GetRegion(unsigned int Key) {
3002 if (!pRegions || pRegions->empty() || Key > 127) return NULL;
3003 return RegionKeyTable[Key];
3004
3005 /*for (int i = 0; i < Regions; i++) {
3006 if (Key <= pRegions[i]->KeyRange.high &&
3007 Key >= pRegions[i]->KeyRange.low) return pRegions[i];
3008 }
3009 return NULL;*/
3010 }
3011
3012 /**
3013 * Returns the first Region of the instrument. You have to call this
3014 * method once before you use GetNextRegion().
3015 *
3016 * @returns pointer address to first region or NULL if there is none
3017 * @see GetNextRegion()
3018 */
3019 Region* Instrument::GetFirstRegion() {
3020 if (!pRegions) return NULL;
3021 RegionsIterator = pRegions->begin();
3022 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
3023 }
3024
3025 /**
3026 * Returns the next Region of the instrument. You have to call
3027 * GetFirstRegion() once before you can use this method. By calling this
3028 * method multiple times it iterates through the available Regions.
3029 *
3030 * @returns pointer address to the next region or NULL if end reached
3031 * @see GetFirstRegion()
3032 */
3033 Region* Instrument::GetNextRegion() {
3034 if (!pRegions) return NULL;
3035 RegionsIterator++;
3036 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
3037 }
3038
3039 Region* Instrument::AddRegion() {
3040 // create new Region object (and its RIFF chunks)
3041 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3042 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3043 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3044 Region* pNewRegion = new Region(this, rgn);
3045 pRegions->push_back(pNewRegion);
3046 Regions = pRegions->size();
3047 // update Region key table for fast lookup
3048 UpdateRegionKeyTable();
3049 // done
3050 return pNewRegion;
3051 }
3052
3053 void Instrument::DeleteRegion(Region* pRegion) {
3054 if (!pRegions) return;
3055 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
3056 // update Region key table for fast lookup
3057 UpdateRegionKeyTable();
3058 }
3059
3060
3061
3062 // *************** Group ***************
3063 // *
3064
3065 /** @brief Constructor.
3066 *
3067 * @param file - pointer to the gig::File object
3068 * @param ck3gnm - pointer to 3gnm chunk associated with this group or
3069 * NULL if this is a new Group
3070 */
3071 Group::Group(File* file, RIFF::Chunk* ck3gnm) {
3072 pFile = file;
3073 pNameChunk = ck3gnm;
3074 ::LoadString(pNameChunk, Name);
3075 }
3076
3077 Group::~Group() {
3078 // remove the chunk associated with this group (if any)
3079 if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
3080 }
3081
3082 /** @brief Update chunks with current group settings.
3083 *
3084 * Apply current Group field values to the respective chunks. You have
3085 * to call File::Save() to make changes persistent.
3086 *
3087 * Usually there is absolutely no need to call this method explicitly.
3088 * It will be called automatically when File::Save() was called.
3089 */
3090 void Group::UpdateChunks() {
3091 // make sure <3gri> and <3gnl> list chunks exist
3092 RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
3093 if (!_3gri) {
3094 _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
3095 pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
3096 }
3097 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
3098 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
3099
3100 if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
3101 // v3 has a fixed list of 128 strings, find a free one
3102 for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
3103 if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
3104 pNameChunk = ck;
3105 break;
3106 }
3107 }
3108 }
3109
3110 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
3111 ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
3112 }
3113
3114 /**
3115 * Returns the first Sample of this Group. You have to call this method
3116 * once before you use GetNextSample().
3117 *
3118 * <b>Notice:</b> this method might block for a long time, in case the
3119 * samples of this .gig file were not scanned yet
3120 *
3121 * @returns pointer address to first Sample or NULL if there is none
3122 * applied to this Group
3123 * @see GetNextSample()
3124 */
3125 Sample* Group::GetFirstSample() {
3126 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
3127 for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
3128 if (pSample->GetGroup() == this) return pSample;
3129 }
3130 return NULL;
3131 }
3132
3133 /**
3134 * Returns the next Sample of the Group. You have to call
3135 * GetFirstSample() once before you can use this method. By calling this
3136 * method multiple times it iterates through the Samples assigned to
3137 * this Group.
3138 *
3139 * @returns pointer address to the next Sample of this Group or NULL if
3140 * end reached
3141 * @see GetFirstSample()
3142 */
3143 Sample* Group::GetNextSample() {
3144 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
3145 for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
3146 if (pSample->GetGroup() == this) return pSample;
3147 }
3148 return NULL;
3149 }
3150
3151 /**
3152 * Move Sample given by \a pSample from another Group to this Group.
3153 */
3154 void Group::AddSample(Sample* pSample) {
3155 pSample->pGroup = this;
3156 }
3157
3158 /**
3159 * Move all members of this group to another group (preferably the 1st
3160 * one except this). This method is called explicitly by
3161 * File::DeleteGroup() thus when a Group was deleted. This code was
3162 * intentionally not placed in the destructor!
3163 */
3164 void Group::MoveAll() {
3165 // get "that" other group first
3166 Group* pOtherGroup = NULL;
3167 for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
3168 if (pOtherGroup != this) break;
3169 }
3170 if (!pOtherGroup) throw Exception(
3171 "Could not move samples to another group, since there is no "
3172 "other Group. This is a bug, report it!"
3173 );
3174 // now move all samples of this group to the other group
3175 for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
3176 pOtherGroup->AddSample(pSample);
3177 }
3178 }
3179
3180
3181
3182 // *************** File ***************
3183 // *
3184
3185 // File version 2.0, 1998-06-28
3186 const DLS::version_t File::VERSION_2 = {
3187 0, 2, 19980628 & 0xffff, 19980628 >> 16
3188 };
3189
3190 // File version 3.0, 2003-03-31
3191 const DLS::version_t File::VERSION_3 = {
3192 0, 3, 20030331 & 0xffff, 20030331 >> 16
3193 };
3194
3195 const DLS::Info::FixedStringLength File::FixedStringLengths[] = {
3196 { CHUNK_ID_IARL, 256 },
3197 { CHUNK_ID_IART, 128 },
3198 { CHUNK_ID_ICMS, 128 },
3199 { CHUNK_ID_ICMT, 1024 },
3200 { CHUNK_ID_ICOP, 128 },
3201 { CHUNK_ID_ICRD, 128 },
3202 { CHUNK_ID_IENG, 128 },
3203 { CHUNK_ID_IGNR, 128 },
3204 { CHUNK_ID_IKEY, 128 },
3205 { CHUNK_ID_IMED, 128 },
3206 { CHUNK_ID_INAM, 128 },
3207 { CHUNK_ID_IPRD, 128 },
3208 { CHUNK_ID_ISBJ, 128 },
3209 { CHUNK_ID_ISFT, 128 },
3210 { CHUNK_ID_ISRC, 128 },
3211 { CHUNK_ID_ISRF, 128 },
3212 { CHUNK_ID_ITCH, 128 },
3213 { 0, 0 }
3214 };
3215
3216 File::File() : DLS::File() {
3217 *pVersion = VERSION_3;
3218 pGroups = NULL;
3219 pInfo->FixedStringLengths = FixedStringLengths;
3220 pInfo->ArchivalLocation = String(256, ' ');
3221
3222 // add some mandatory chunks to get the file chunks in right
3223 // order (INFO chunk will be moved to first position later)
3224 pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
3225 pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
3226 pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
3227
3228 GenerateDLSID();
3229 }
3230
3231 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
3232 pGroups = NULL;
3233 pInfo->FixedStringLengths = FixedStringLengths;
3234 }
3235
3236 File::~File() {
3237 if (pGroups) {
3238 std::list<Group*>::iterator iter = pGroups->begin();
3239 std::list<Group*>::iterator end = pGroups->end();
3240 while (iter != end) {
3241 delete *iter;
3242 ++iter;
3243 }
3244 delete pGroups;
3245 }
3246 }
3247
3248 Sample* File::GetFirstSample(progress_t* pProgress) {
3249 if (!pSamples) LoadSamples(pProgress);
3250 if (!pSamples) return NULL;
3251 SamplesIterator = pSamples->begin();
3252 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
3253 }
3254
3255 Sample* File::GetNextSample() {
3256 if (!pSamples) return NULL;
3257 SamplesIterator++;
3258 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
3259 }
3260
3261 /** @brief Add a new sample.
3262 *
3263 * This will create a new Sample object for the gig file. You have to
3264 * call Save() to make this persistent to the file.
3265 *
3266 * @returns pointer to new Sample object
3267 */
3268 Sample* File::AddSample() {
3269 if (!pSamples) LoadSamples();
3270 __ensureMandatoryChunksExist();
3271 RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
3272 // create new Sample object and its respective 'wave' list chunk
3273 RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
3274 Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
3275
3276 // add mandatory chunks to get the chunks in right order
3277 wave->AddSubChunk(CHUNK_ID_FMT, 16);
3278 wave->AddSubList(LIST_TYPE_INFO);
3279
3280 pSamples->push_back(pSample);
3281 return pSample;
3282 }
3283
3284 /** @brief Delete a sample.
3285 *
3286 * This will delete the given Sample object from the gig file. Any
3287 * references to this sample from Regions and DimensionRegions will be
3288 * removed. You have to call Save() to make this persistent to the file.
3289 *
3290 * @param pSample - sample to delete
3291 * @throws gig::Exception if given sample could not be found
3292 */
3293 void File::DeleteSample(Sample* pSample) {
3294 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
3295 SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
3296 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
3297 if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
3298 pSamples->erase(iter);
3299 delete pSample;
3300
3301 // remove all references to the sample
3302 for (Instrument* instrument = GetFirstInstrument() ; instrument ;
3303 instrument = GetNextInstrument()) {
3304 for (Region* region = instrument->GetFirstRegion() ; region ;
3305 region = instrument->GetNextRegion()) {
3306
3307 if (region->GetSample() == pSample) region->SetSample(NULL);
3308
3309 for (int i = 0 ; i < region->DimensionRegions ; i++) {
3310 gig::DimensionRegion *d = region->pDimensionRegions[i];
3311 if (d->pSample == pSample) d->pSample = NULL;
3312 }
3313 }
3314 }
3315 }
3316
3317 void File::LoadSamples() {
3318 LoadSamples(NULL);
3319 }
3320
3321 void File::LoadSamples(progress_t* pProgress) {
3322 // Groups must be loaded before samples, because samples will try
3323 // to resolve the group they belong to
3324 if (!pGroups) LoadGroups();
3325
3326 if (!pSamples) pSamples = new SampleList;
3327
3328 RIFF::File* file = pRIFF;
3329
3330 // just for progress calculation
3331 int iSampleIndex = 0;
3332 int iTotalSamples = WavePoolCount;
3333
3334 // check if samples should be loaded from extension files
3335 int lastFileNo = 0;
3336 for (int i = 0 ; i < WavePoolCount ; i++) {
3337 if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
3338 }
3339 String name(pRIFF->GetFileName());
3340 int nameLen = name.length();
3341 char suffix[6];
3342 if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
3343
3344 for (int fileNo = 0 ; ; ) {
3345 RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
3346 if (wvpl) {
3347 unsigned long wvplFileOffset = wvpl->GetFilePos();
3348 RIFF::List* wave = wvpl->GetFirstSubList();
3349 while (wave) {
3350 if (wave->GetListType() == LIST_TYPE_WAVE) {
3351 // notify current progress
3352 const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
3353 __notify_progress(pProgress, subprogress);
3354
3355 unsigned long waveFileOffset = wave->GetFilePos();
3356 pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));
3357
3358 iSampleIndex++;
3359 }
3360 wave = wvpl->GetNextSubList();
3361 }
3362
3363 if (fileNo == lastFileNo) break;
3364
3365 // open extension file (*.gx01, *.gx02, ...)
3366 fileNo++;
3367 sprintf(suffix, ".gx%02d", fileNo);
3368 name.replace(nameLen, 5, suffix);
3369 file = new RIFF::File(name);
3370 ExtensionFiles.push_back(file);
3371 } else break;
3372 }
3373
3374 __notify_progress(pProgress, 1.0); // notify done
3375 }
3376
3377 Instrument* File::GetFirstInstrument() {
3378 if (!pInstruments) LoadInstruments();
3379 if (!pInstruments) return NULL;
3380 InstrumentsIterator = pInstruments->begin();
3381 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
3382 }
3383
3384 Instrument* File::GetNextInstrument() {
3385 if (!pInstruments) return NULL;
3386 InstrumentsIterator++;
3387 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
3388 }
3389
3390 /**
3391 * Returns the instrument with the given index.
3392 *
3393 * @param index - number of the sought instrument (0..n)
3394 * @param pProgress - optional: callback function for progress notification
3395 * @returns sought instrument or NULL if there's no such instrument
3396 */
3397 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
3398 if (!pInstruments) {
3399 // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
3400
3401 // sample loading subtask
3402 progress_t subprogress;
3403 __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
3404 __notify_progress(&subprogress, 0.0f);
3405 GetFirstSample(&subprogress); // now force all samples to be loaded
3406 __notify_progress(&subprogress, 1.0f);
3407
3408 // instrument loading subtask
3409 if (pProgress && pProgress->callback) {
3410 subprogress.__range_min = subprogress.__range_max;
3411 subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
3412 }
3413 __notify_progress(&subprogress, 0.0f);
3414 LoadInstruments(&subprogress);
3415 __notify_progress(&subprogress, 1.0f);
3416 }
3417 if (!pInstruments) return NULL;
3418 InstrumentsIterator = pInstruments->begin();
3419 for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
3420 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
3421 InstrumentsIterator++;
3422 }
3423 return NULL;
3424 }
3425
3426 /** @brief Add a new instrument definition.
3427 *
3428 * This will create a new Instrument object for the gig file. You have
3429 * to call Save() to make this persistent to the file.
3430 *
3431 * @returns pointer to new Instrument object
3432 */
3433 Instrument* File::AddInstrument() {
3434 if (!pInstruments) LoadInstruments();
3435 __ensureMandatoryChunksExist();
3436 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3437 RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
3438
3439 // add mandatory chunks to get the chunks in right order
3440 lstInstr->AddSubList(LIST_TYPE_INFO);
3441 lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
3442
3443 Instrument* pInstrument = new Instrument(this, lstInstr);
3444 pInstrument->GenerateDLSID();
3445
3446 lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
3447
3448 // this string is needed for the gig to be loadable in GSt:
3449 pInstrument->pInfo->Software = "Endless Wave";
3450
3451 pInstruments->push_back(pInstrument);
3452 return pInstrument;
3453 }
3454
3455 /** @brief Delete an instrument.
3456 *
3457 * This will delete the given Instrument object from the gig file. You
3458 * have to call Save() to make this persistent to the file.
3459 *
3460 * @param pInstrument - instrument to delete
3461 * @throws gig::Exception if given instrument could not be found
3462 */
3463 void File::DeleteInstrument(Instrument* pInstrument) {
3464 if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
3465 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
3466 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
3467 pInstruments->erase(iter);
3468 delete pInstrument;
3469 }
3470
3471 void File::LoadInstruments() {
3472 LoadInstruments(NULL);
3473 }
3474
3475 void File::LoadInstruments(progress_t* pProgress) {
3476 if (!pInstruments) pInstruments = new InstrumentList;
3477 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3478 if (lstInstruments) {
3479 int iInstrumentIndex = 0;
3480 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
3481 while (lstInstr) {
3482 if (lstInstr->GetListType() == LIST_TYPE_INS) {
3483 // notify current progress
3484 const float localProgress = (float) iInstrumentIndex / (float) Instruments;
3485 __notify_progress(pProgress, localProgress);
3486
3487 // divide local progress into subprogress for loading current Instrument
3488 progress_t subprogress;
3489 __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
3490
3491 pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
3492
3493 iInstrumentIndex++;
3494 }
3495 lstInstr = lstInstruments->GetNextSubList();
3496 }
3497 __notify_progress(pProgress, 1.0); // notify done
3498 }
3499 }
3500
3501 /// Updates the 3crc chunk with the checksum of a sample. The
3502 /// update is done directly to disk, as this method is called
3503 /// after File::Save()
3504 void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
3505 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
3506 if (!_3crc) return;
3507
3508 // get the index of the sample
3509 int iWaveIndex = -1;
3510 File::SampleList::iterator iter = pSamples->begin();
3511 File::SampleList::iterator end = pSamples->end();
3512 for (int index = 0; iter != end; ++iter, ++index) {
3513 if (*iter == pSample) {
3514 iWaveIndex = index;
3515 break;
3516 }
3517 }
3518 if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
3519
3520 // write the CRC-32 checksum to disk
3521 _3crc->SetPos(iWaveIndex * 8);
3522 uint32_t tmp = 1;
3523 _3crc->WriteUint32(&tmp); // unknown, always 1?
3524 _3crc->WriteUint32(&crc);
3525 }
3526
3527 Group* File::GetFirstGroup() {
3528 if (!pGroups) LoadGroups();
3529 // there must always be at least one group
3530 GroupsIterator = pGroups->begin();
3531 return *GroupsIterator;
3532 }
3533
3534 Group* File::GetNextGroup() {
3535 if (!pGroups) return NULL;
3536 ++GroupsIterator;
3537 return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
3538 }
3539
3540 /**
3541 * Returns the group with the given index.
3542 *
3543 * @param index - number of the sought group (0..n)
3544 * @returns sought group or NULL if there's no such group
3545 */
3546 Group* File::GetGroup(uint index) {
3547 if (!pGroups) LoadGroups();
3548 GroupsIterator = pGroups->begin();
3549 for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
3550 if (i == index) return *GroupsIterator;
3551 ++GroupsIterator;
3552 }
3553 return NULL;
3554 }
3555
3556 Group* File::AddGroup() {
3557 if (!pGroups) LoadGroups();
3558 // there must always be at least one group
3559 __ensureMandatoryChunksExist();
3560 Group* pGroup = new Group(this, NULL);
3561 pGroups->push_back(pGroup);
3562 return pGroup;
3563 }
3564
3565 /** @brief Delete a group and its samples.
3566 *
3567 * This will delete the given Group object and all the samples that
3568 * belong to this group from the gig file. You have to call Save() to
3569 * make this persistent to the file.
3570 *
3571 * @param pGroup - group to delete
3572 * @throws gig::Exception if given group could not be found
3573 */
3574 void File::DeleteGroup(Group* pGroup) {
3575 if (!pGroups) LoadGroups();
3576 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3577 if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3578 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3579 // delete all members of this group
3580 for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
3581 DeleteSample(pSample);
3582 }
3583 // now delete this group object
3584 pGroups->erase(iter);
3585 delete pGroup;
3586 }
3587
3588 /** @brief Delete a group.
3589 *
3590 * This will delete the given Group object from the gig file. All the
3591 * samples that belong to this group will not be deleted, but instead
3592 * be moved to another group. You have to call Save() to make this
3593 * persistent to the file.
3594 *
3595 * @param pGroup - group to delete
3596 * @throws gig::Exception if given group could not be found
3597 */
3598 void File::DeleteGroupOnly(Group* pGroup) {
3599 if (!pGroups) LoadGroups();
3600 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3601 if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3602 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3603 // move all members of this group to another group
3604 pGroup->MoveAll();
3605 pGroups->erase(iter);
3606 delete pGroup;
3607 }
3608
3609 void File::LoadGroups() {
3610 if (!pGroups) pGroups = new std::list<Group*>;
3611 // try to read defined groups from file
3612 RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
3613 if (lst3gri) {
3614 RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
3615 if (lst3gnl) {
3616 RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
3617 while (ck) {
3618 if (ck->GetChunkID() == CHUNK_ID_3GNM) {
3619 if (pVersion && pVersion->major == 3 &&
3620 strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
3621
3622 pGroups->push_back(new Group(this, ck));
3623 }
3624 ck = lst3gnl->GetNextSubChunk();
3625 }
3626 }
3627 }
3628 // if there were no group(s), create at least the mandatory default group
3629 if (!pGroups->size()) {
3630 Group* pGroup = new Group(this, NULL);
3631 pGroup->Name = "Default Group";
3632 pGroups->push_back(pGroup);
3633 }
3634 }
3635
3636 /**
3637 * Apply all the gig file's current instruments, samples, groups and settings
3638 * to the respective RIFF chunks. You have to call Save() to make changes
3639 * persistent.
3640 *
3641 * Usually there is absolutely no need to call this method explicitly.
3642 * It will be called automatically when File::Save() was called.
3643 *
3644 * @throws Exception - on errors
3645 */
3646 void File::UpdateChunks() {
3647 bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
3648
3649 b64BitWavePoolOffsets = pVersion && pVersion->major == 3;
3650
3651 // first update base class's chunks
3652 DLS::File::UpdateChunks();
3653
3654 if (newFile) {
3655 // INFO was added by Resource::UpdateChunks - make sure it
3656 // is placed first in file
3657 RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
3658 RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
3659 if (first != info) {
3660 pRIFF->MoveSubChunk(info, first);
3661 }
3662 }
3663
3664 // update group's chunks
3665 if (pGroups) {
3666 std::list<Group*>::iterator iter = pGroups->begin();
3667 std::list<Group*>::iterator end = pGroups->end();
3668 for (; iter != end; ++iter) {
3669 (*iter)->UpdateChunks();
3670 }
3671
3672 // v3: make sure the file has 128 3gnm chunks
3673 if (pVersion && pVersion->major == 3) {
3674 RIFF::List* _3gnl = pRIFF->GetSubList(LIST_TYPE_3GRI)->GetSubList(LIST_TYPE_3GNL);
3675 RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
3676 for (int i = 0 ; i < 128 ; i++) {
3677 if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
3678 if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
3679 }
3680 }
3681 }
3682
3683 // update einf chunk
3684
3685 // The einf chunk contains statistics about the gig file, such
3686 // as the number of regions and samples used by each
3687 // instrument. It is divided in equally sized parts, where the
3688 // first part contains information about the whole gig file,
3689 // and the rest of the parts map to each instrument in the
3690 // file.
3691 //
3692 // At the end of each part there is a bit map of each sample
3693 // in the file, where a set bit means that the sample is used
3694 // by the file/instrument.
3695 //
3696 // Note that there are several fields with unknown use. These
3697 // are set to zero.
3698
3699 int sublen = pSamples->size() / 8 + 49;
3700 int einfSize = (Instruments + 1) * sublen;
3701
3702 RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
3703 if (einf) {
3704 if (einf->GetSize() != einfSize) {
3705 einf->Resize(einfSize);
3706 memset(einf->LoadChunkData(), 0, einfSize);
3707 }
3708 } else if (newFile) {
3709 einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
3710 }
3711 if (einf) {
3712 uint8_t* pData = (uint8_t*) einf->LoadChunkData();
3713
3714 std::map<gig::Sample*,int> sampleMap;
3715 int sampleIdx = 0;
3716 for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
3717 sampleMap[pSample] = sampleIdx++;
3718 }
3719
3720 int totnbusedsamples = 0;
3721 int totnbusedchannels = 0;
3722 int totnbregions = 0;
3723 int totnbdimregions = 0;
3724 int totnbloops = 0;
3725 int instrumentIdx = 0;
3726
3727 memset(&pData[48], 0, sublen - 48);
3728
3729 for (Instrument* instrument = GetFirstInstrument() ; instrument ;
3730 instrument = GetNextInstrument()) {
3731 int nbusedsamples = 0;
3732 int nbusedchannels = 0;
3733 int nbdimregions = 0;
3734 int nbloops = 0;
3735
3736 memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
3737
3738 for (Region* region = instrument->GetFirstRegion() ; region ;
3739 region = instrument->GetNextRegion()) {
3740 for (int i = 0 ; i < region->DimensionRegions ; i++) {
3741 gig::DimensionRegion *d = region->pDimensionRegions[i];
3742 if (d->pSample) {
3743 int sampleIdx = sampleMap[d->pSample];
3744 int byte = 48 + sampleIdx / 8;
3745 int bit = 1 << (sampleIdx & 7);
3746 if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
3747 pData[(instrumentIdx + 1) * sublen + byte] |= bit;
3748 nbusedsamples++;
3749 nbusedchannels += d->pSample->Channels;
3750
3751 if ((pData[byte] & bit) == 0) {
3752 pData[byte] |= bit;
3753 totnbusedsamples++;
3754 totnbusedchannels += d->pSample->Channels;
3755 }
3756 }
3757 }
3758 if (d->SampleLoops) nbloops++;
3759 }
3760 nbdimregions += region->DimensionRegions;
3761 }
3762 // first 4 bytes unknown - sometimes 0, sometimes length of einf part
3763 // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
3764 store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
3765 store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
3766 store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
3767 store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
3768 store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
3769 store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
3770 // next 8 bytes unknown
3771 store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
3772 store32(&pData[(instrumentIdx + 1) * sublen + 40], pSamples->size());
3773 // next 4 bytes unknown
3774
3775 totnbregions += instrument->Regions;
3776 totnbdimregions += nbdimregions;
3777 totnbloops += nbloops;
3778 instrumentIdx++;
3779 }
3780 // first 4 bytes unknown - sometimes 0, sometimes length of einf part
3781 // store32(&pData[0], sublen);
3782 store32(&pData[4], totnbusedchannels);
3783 store32(&pData[8], totnbusedsamples);
3784 store32(&pData[12], Instruments);
3785 store32(&pData[16], totnbregions);
3786 store32(&pData[20], totnbdimregions);
3787 store32(&pData[24], totnbloops);
3788 // next 8 bytes unknown
3789 // next 4 bytes unknown, not always 0
3790 store32(&pData[40], pSamples->size());
3791 // next 4 bytes unknown
3792 }
3793
3794 // update 3crc chunk
3795
3796 // The 3crc chunk contains CRC-32 checksums for the
3797 // samples. The actual checksum values will be filled in
3798 // later, by Sample::Write.
3799
3800 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
3801 if (_3crc) {
3802 _3crc->Resize(pSamples->size() * 8);
3803 } else if (newFile) {
3804 _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
3805 _3crc->LoadChunkData();
3806
3807 // the order of einf and 3crc is not the same in v2 and v3
3808 if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
3809 }
3810 }
3811
3812
3813
3814 // *************** Exception ***************
3815 // *
3816
3817 Exception::Exception(String Message) : DLS::Exception(Message) {
3818 }
3819
3820 void Exception::PrintMessage() {
3821 std::cout << "gig::Exception: " << Message << std::endl;
3822 }
3823
3824
3825 // *************** functions ***************
3826 // *
3827
3828 /**
3829 * Returns the name of this C++ library. This is usually "libgig" of
3830 * course. This call is equivalent to RIFF::libraryName() and
3831 * DLS::libraryName().
3832 */
3833 String libraryName() {
3834 return PACKAGE;
3835 }
3836
3837 /**
3838 * Returns version of this C++ library. This call is equivalent to
3839 * RIFF::libraryVersion() and DLS::libraryVersion().
3840 */
3841 String libraryVersion() {
3842 return VERSION;
3843 }
3844
3845 } // namespace gig

  ViewVC Help
Powered by ViewVC