/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Contents of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 2394 - (show annotations) (download)
Mon Jan 7 23:23:58 2013 UTC (11 years, 2 months ago) by schoenebeck
File size: 180274 byte(s)
* implemented gig::File::AddDuplicateInstrument()
* bumped version to 3.3.0.svn4

1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file access library *
4 * *
5 * Copyright (C) 2003-2013 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #include "gig.h"
25
26 #include "helper.h"
27
28 #include <algorithm>
29 #include <math.h>
30 #include <iostream>
31
32 /// Initial size of the sample buffer which is used for decompression of
33 /// compressed sample wave streams - this value should always be bigger than
34 /// the biggest sample piece expected to be read by the sampler engine,
35 /// otherwise the buffer size will be raised at runtime and thus the buffer
36 /// reallocated which is time consuming and unefficient.
37 #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
38
39 /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
40 #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
41 #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
42 #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
43 #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
44 #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
45 #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
46 #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
47 #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
48 #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
49 #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
50 #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
51 #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
52
53 namespace gig {
54
55 // *************** progress_t ***************
56 // *
57
58 progress_t::progress_t() {
59 callback = NULL;
60 custom = NULL;
61 __range_min = 0.0f;
62 __range_max = 1.0f;
63 }
64
65 // private helper function to convert progress of a subprocess into the global progress
66 static void __notify_progress(progress_t* pProgress, float subprogress) {
67 if (pProgress && pProgress->callback) {
68 const float totalrange = pProgress->__range_max - pProgress->__range_min;
69 const float totalprogress = pProgress->__range_min + subprogress * totalrange;
70 pProgress->factor = totalprogress;
71 pProgress->callback(pProgress); // now actually notify about the progress
72 }
73 }
74
75 // private helper function to divide a progress into subprogresses
76 static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
77 if (pParentProgress && pParentProgress->callback) {
78 const float totalrange = pParentProgress->__range_max - pParentProgress->__range_min;
79 pSubProgress->callback = pParentProgress->callback;
80 pSubProgress->custom = pParentProgress->custom;
81 pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
82 pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
83 }
84 }
85
86
87 // *************** Internal functions for sample decompression ***************
88 // *
89
90 namespace {
91
92 inline int get12lo(const unsigned char* pSrc)
93 {
94 const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
95 return x & 0x800 ? x - 0x1000 : x;
96 }
97
98 inline int get12hi(const unsigned char* pSrc)
99 {
100 const int x = pSrc[1] >> 4 | pSrc[2] << 4;
101 return x & 0x800 ? x - 0x1000 : x;
102 }
103
104 inline int16_t get16(const unsigned char* pSrc)
105 {
106 return int16_t(pSrc[0] | pSrc[1] << 8);
107 }
108
109 inline int get24(const unsigned char* pSrc)
110 {
111 const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
112 return x & 0x800000 ? x - 0x1000000 : x;
113 }
114
115 inline void store24(unsigned char* pDst, int x)
116 {
117 pDst[0] = x;
118 pDst[1] = x >> 8;
119 pDst[2] = x >> 16;
120 }
121
122 void Decompress16(int compressionmode, const unsigned char* params,
123 int srcStep, int dstStep,
124 const unsigned char* pSrc, int16_t* pDst,
125 unsigned long currentframeoffset,
126 unsigned long copysamples)
127 {
128 switch (compressionmode) {
129 case 0: // 16 bit uncompressed
130 pSrc += currentframeoffset * srcStep;
131 while (copysamples) {
132 *pDst = get16(pSrc);
133 pDst += dstStep;
134 pSrc += srcStep;
135 copysamples--;
136 }
137 break;
138
139 case 1: // 16 bit compressed to 8 bit
140 int y = get16(params);
141 int dy = get16(params + 2);
142 while (currentframeoffset) {
143 dy -= int8_t(*pSrc);
144 y -= dy;
145 pSrc += srcStep;
146 currentframeoffset--;
147 }
148 while (copysamples) {
149 dy -= int8_t(*pSrc);
150 y -= dy;
151 *pDst = y;
152 pDst += dstStep;
153 pSrc += srcStep;
154 copysamples--;
155 }
156 break;
157 }
158 }
159
160 void Decompress24(int compressionmode, const unsigned char* params,
161 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
162 unsigned long currentframeoffset,
163 unsigned long copysamples, int truncatedBits)
164 {
165 int y, dy, ddy, dddy;
166
167 #define GET_PARAMS(params) \
168 y = get24(params); \
169 dy = y - get24((params) + 3); \
170 ddy = get24((params) + 6); \
171 dddy = get24((params) + 9)
172
173 #define SKIP_ONE(x) \
174 dddy -= (x); \
175 ddy -= dddy; \
176 dy = -dy - ddy; \
177 y += dy
178
179 #define COPY_ONE(x) \
180 SKIP_ONE(x); \
181 store24(pDst, y << truncatedBits); \
182 pDst += dstStep
183
184 switch (compressionmode) {
185 case 2: // 24 bit uncompressed
186 pSrc += currentframeoffset * 3;
187 while (copysamples) {
188 store24(pDst, get24(pSrc) << truncatedBits);
189 pDst += dstStep;
190 pSrc += 3;
191 copysamples--;
192 }
193 break;
194
195 case 3: // 24 bit compressed to 16 bit
196 GET_PARAMS(params);
197 while (currentframeoffset) {
198 SKIP_ONE(get16(pSrc));
199 pSrc += 2;
200 currentframeoffset--;
201 }
202 while (copysamples) {
203 COPY_ONE(get16(pSrc));
204 pSrc += 2;
205 copysamples--;
206 }
207 break;
208
209 case 4: // 24 bit compressed to 12 bit
210 GET_PARAMS(params);
211 while (currentframeoffset > 1) {
212 SKIP_ONE(get12lo(pSrc));
213 SKIP_ONE(get12hi(pSrc));
214 pSrc += 3;
215 currentframeoffset -= 2;
216 }
217 if (currentframeoffset) {
218 SKIP_ONE(get12lo(pSrc));
219 currentframeoffset--;
220 if (copysamples) {
221 COPY_ONE(get12hi(pSrc));
222 pSrc += 3;
223 copysamples--;
224 }
225 }
226 while (copysamples > 1) {
227 COPY_ONE(get12lo(pSrc));
228 COPY_ONE(get12hi(pSrc));
229 pSrc += 3;
230 copysamples -= 2;
231 }
232 if (copysamples) {
233 COPY_ONE(get12lo(pSrc));
234 }
235 break;
236
237 case 5: // 24 bit compressed to 8 bit
238 GET_PARAMS(params);
239 while (currentframeoffset) {
240 SKIP_ONE(int8_t(*pSrc++));
241 currentframeoffset--;
242 }
243 while (copysamples) {
244 COPY_ONE(int8_t(*pSrc++));
245 copysamples--;
246 }
247 break;
248 }
249 }
250
251 const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
252 const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
253 const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
254 const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
255 }
256
257
258
259 // *************** Internal CRC-32 (Cyclic Redundancy Check) functions ***************
260 // *
261
262 static uint32_t* __initCRCTable() {
263 static uint32_t res[256];
264
265 for (int i = 0 ; i < 256 ; i++) {
266 uint32_t c = i;
267 for (int j = 0 ; j < 8 ; j++) {
268 c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
269 }
270 res[i] = c;
271 }
272 return res;
273 }
274
275 static const uint32_t* __CRCTable = __initCRCTable();
276
277 /**
278 * Initialize a CRC variable.
279 *
280 * @param crc - variable to be initialized
281 */
282 inline static void __resetCRC(uint32_t& crc) {
283 crc = 0xffffffff;
284 }
285
286 /**
287 * Used to calculate checksums of the sample data in a gig file. The
288 * checksums are stored in the 3crc chunk of the gig file and
289 * automatically updated when a sample is written with Sample::Write().
290 *
291 * One should call __resetCRC() to initialize the CRC variable to be
292 * used before calling this function the first time.
293 *
294 * After initializing the CRC variable one can call this function
295 * arbitrary times, i.e. to split the overall CRC calculation into
296 * steps.
297 *
298 * Once the whole data was processed by __calculateCRC(), one should
299 * call __encodeCRC() to get the final CRC result.
300 *
301 * @param buf - pointer to data the CRC shall be calculated of
302 * @param bufSize - size of the data to be processed
303 * @param crc - variable the CRC sum shall be stored to
304 */
305 static void __calculateCRC(unsigned char* buf, int bufSize, uint32_t& crc) {
306 for (int i = 0 ; i < bufSize ; i++) {
307 crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
308 }
309 }
310
311 /**
312 * Returns the final CRC result.
313 *
314 * @param crc - variable previously passed to __calculateCRC()
315 */
316 inline static uint32_t __encodeCRC(const uint32_t& crc) {
317 return crc ^ 0xffffffff;
318 }
319
320
321
322 // *************** Other Internal functions ***************
323 // *
324
325 static split_type_t __resolveSplitType(dimension_t dimension) {
326 return (
327 dimension == dimension_layer ||
328 dimension == dimension_samplechannel ||
329 dimension == dimension_releasetrigger ||
330 dimension == dimension_keyboard ||
331 dimension == dimension_roundrobin ||
332 dimension == dimension_random ||
333 dimension == dimension_smartmidi ||
334 dimension == dimension_roundrobinkeyboard
335 ) ? split_type_bit : split_type_normal;
336 }
337
338 static int __resolveZoneSize(dimension_def_t& dimension_definition) {
339 return (dimension_definition.split_type == split_type_normal)
340 ? int(128.0 / dimension_definition.zones) : 0;
341 }
342
343
344
345 // *************** Sample ***************
346 // *
347
348 unsigned int Sample::Instances = 0;
349 buffer_t Sample::InternalDecompressionBuffer;
350
351 /** @brief Constructor.
352 *
353 * Load an existing sample or create a new one. A 'wave' list chunk must
354 * be given to this constructor. In case the given 'wave' list chunk
355 * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
356 * format and sample data will be loaded from there, otherwise default
357 * values will be used and those chunks will be created when
358 * File::Save() will be called later on.
359 *
360 * @param pFile - pointer to gig::File where this sample is
361 * located (or will be located)
362 * @param waveList - pointer to 'wave' list chunk which is (or
363 * will be) associated with this sample
364 * @param WavePoolOffset - offset of this sample data from wave pool
365 * ('wvpl') list chunk
366 * @param fileNo - number of an extension file where this sample
367 * is located, 0 otherwise
368 */
369 Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
370 static const DLS::Info::string_length_t fixedStringLengths[] = {
371 { CHUNK_ID_INAM, 64 },
372 { 0, 0 }
373 };
374 pInfo->SetFixedStringLengths(fixedStringLengths);
375 Instances++;
376 FileNo = fileNo;
377
378 __resetCRC(crc);
379
380 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
381 if (pCk3gix) {
382 uint16_t iSampleGroup = pCk3gix->ReadInt16();
383 pGroup = pFile->GetGroup(iSampleGroup);
384 } else { // '3gix' chunk missing
385 // by default assigned to that mandatory "Default Group"
386 pGroup = pFile->GetGroup(0);
387 }
388
389 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
390 if (pCkSmpl) {
391 Manufacturer = pCkSmpl->ReadInt32();
392 Product = pCkSmpl->ReadInt32();
393 SamplePeriod = pCkSmpl->ReadInt32();
394 MIDIUnityNote = pCkSmpl->ReadInt32();
395 FineTune = pCkSmpl->ReadInt32();
396 pCkSmpl->Read(&SMPTEFormat, 1, 4);
397 SMPTEOffset = pCkSmpl->ReadInt32();
398 Loops = pCkSmpl->ReadInt32();
399 pCkSmpl->ReadInt32(); // manufByt
400 LoopID = pCkSmpl->ReadInt32();
401 pCkSmpl->Read(&LoopType, 1, 4);
402 LoopStart = pCkSmpl->ReadInt32();
403 LoopEnd = pCkSmpl->ReadInt32();
404 LoopFraction = pCkSmpl->ReadInt32();
405 LoopPlayCount = pCkSmpl->ReadInt32();
406 } else { // 'smpl' chunk missing
407 // use default values
408 Manufacturer = 0;
409 Product = 0;
410 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
411 MIDIUnityNote = 60;
412 FineTune = 0;
413 SMPTEFormat = smpte_format_no_offset;
414 SMPTEOffset = 0;
415 Loops = 0;
416 LoopID = 0;
417 LoopType = loop_type_normal;
418 LoopStart = 0;
419 LoopEnd = 0;
420 LoopFraction = 0;
421 LoopPlayCount = 0;
422 }
423
424 FrameTable = NULL;
425 SamplePos = 0;
426 RAMCache.Size = 0;
427 RAMCache.pStart = NULL;
428 RAMCache.NullExtensionSize = 0;
429
430 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
431
432 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
433 Compressed = ewav;
434 Dithered = false;
435 TruncatedBits = 0;
436 if (Compressed) {
437 uint32_t version = ewav->ReadInt32();
438 if (version == 3 && BitDepth == 24) {
439 Dithered = ewav->ReadInt32();
440 ewav->SetPos(Channels == 2 ? 84 : 64);
441 TruncatedBits = ewav->ReadInt32();
442 }
443 ScanCompressedSample();
444 }
445
446 // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
447 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
448 InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
449 InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
450 }
451 FrameOffset = 0; // just for streaming compressed samples
452
453 LoopSize = LoopEnd - LoopStart + 1;
454 }
455
456 /**
457 * Apply sample and its settings to the respective RIFF chunks. You have
458 * to call File::Save() to make changes persistent.
459 *
460 * Usually there is absolutely no need to call this method explicitly.
461 * It will be called automatically when File::Save() was called.
462 *
463 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
464 * was provided yet
465 * @throws gig::Exception if there is any invalid sample setting
466 */
467 void Sample::UpdateChunks() {
468 // first update base class's chunks
469 DLS::Sample::UpdateChunks();
470
471 // make sure 'smpl' chunk exists
472 pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
473 if (!pCkSmpl) {
474 pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
475 memset(pCkSmpl->LoadChunkData(), 0, 60);
476 }
477 // update 'smpl' chunk
478 uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
479 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
480 store32(&pData[0], Manufacturer);
481 store32(&pData[4], Product);
482 store32(&pData[8], SamplePeriod);
483 store32(&pData[12], MIDIUnityNote);
484 store32(&pData[16], FineTune);
485 store32(&pData[20], SMPTEFormat);
486 store32(&pData[24], SMPTEOffset);
487 store32(&pData[28], Loops);
488
489 // we skip 'manufByt' for now (4 bytes)
490
491 store32(&pData[36], LoopID);
492 store32(&pData[40], LoopType);
493 store32(&pData[44], LoopStart);
494 store32(&pData[48], LoopEnd);
495 store32(&pData[52], LoopFraction);
496 store32(&pData[56], LoopPlayCount);
497
498 // make sure '3gix' chunk exists
499 pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
500 if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
501 // determine appropriate sample group index (to be stored in chunk)
502 uint16_t iSampleGroup = 0; // 0 refers to default sample group
503 File* pFile = static_cast<File*>(pParent);
504 if (pFile->pGroups) {
505 std::list<Group*>::iterator iter = pFile->pGroups->begin();
506 std::list<Group*>::iterator end = pFile->pGroups->end();
507 for (int i = 0; iter != end; i++, iter++) {
508 if (*iter == pGroup) {
509 iSampleGroup = i;
510 break; // found
511 }
512 }
513 }
514 // update '3gix' chunk
515 pData = (uint8_t*) pCk3gix->LoadChunkData();
516 store16(&pData[0], iSampleGroup);
517 }
518
519 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
520 void Sample::ScanCompressedSample() {
521 //TODO: we have to add some more scans here (e.g. determine compression rate)
522 this->SamplesTotal = 0;
523 std::list<unsigned long> frameOffsets;
524
525 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
526 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
527
528 // Scanning
529 pCkData->SetPos(0);
530 if (Channels == 2) { // Stereo
531 for (int i = 0 ; ; i++) {
532 // for 24 bit samples every 8:th frame offset is
533 // stored, to save some memory
534 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
535
536 const int mode_l = pCkData->ReadUint8();
537 const int mode_r = pCkData->ReadUint8();
538 if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
539 const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
540
541 if (pCkData->RemainingBytes() <= frameSize) {
542 SamplesInLastFrame =
543 ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
544 (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
545 SamplesTotal += SamplesInLastFrame;
546 break;
547 }
548 SamplesTotal += SamplesPerFrame;
549 pCkData->SetPos(frameSize, RIFF::stream_curpos);
550 }
551 }
552 else { // Mono
553 for (int i = 0 ; ; i++) {
554 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
555
556 const int mode = pCkData->ReadUint8();
557 if (mode > 5) throw gig::Exception("Unknown compression mode");
558 const unsigned long frameSize = bytesPerFrame[mode];
559
560 if (pCkData->RemainingBytes() <= frameSize) {
561 SamplesInLastFrame =
562 ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
563 SamplesTotal += SamplesInLastFrame;
564 break;
565 }
566 SamplesTotal += SamplesPerFrame;
567 pCkData->SetPos(frameSize, RIFF::stream_curpos);
568 }
569 }
570 pCkData->SetPos(0);
571
572 // Build the frames table (which is used for fast resolving of a frame's chunk offset)
573 if (FrameTable) delete[] FrameTable;
574 FrameTable = new unsigned long[frameOffsets.size()];
575 std::list<unsigned long>::iterator end = frameOffsets.end();
576 std::list<unsigned long>::iterator iter = frameOffsets.begin();
577 for (int i = 0; iter != end; i++, iter++) {
578 FrameTable[i] = *iter;
579 }
580 }
581
582 /**
583 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
584 * ReleaseSampleData() to free the memory if you don't need the cached
585 * sample data anymore.
586 *
587 * @returns buffer_t structure with start address and size of the buffer
588 * in bytes
589 * @see ReleaseSampleData(), Read(), SetPos()
590 */
591 buffer_t Sample::LoadSampleData() {
592 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
593 }
594
595 /**
596 * Reads (uncompresses if needed) and caches the first \a SampleCount
597 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
598 * memory space if you don't need the cached samples anymore. There is no
599 * guarantee that exactly \a SampleCount samples will be cached; this is
600 * not an error. The size will be eventually truncated e.g. to the
601 * beginning of a frame of a compressed sample. This is done for
602 * efficiency reasons while streaming the wave by your sampler engine
603 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
604 * that will be returned to determine the actual cached samples, but note
605 * that the size is given in bytes! You get the number of actually cached
606 * samples by dividing it by the frame size of the sample:
607 * @code
608 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
609 * long cachedsamples = buf.Size / pSample->FrameSize;
610 * @endcode
611 *
612 * @param SampleCount - number of sample points to load into RAM
613 * @returns buffer_t structure with start address and size of
614 * the cached sample data in bytes
615 * @see ReleaseSampleData(), Read(), SetPos()
616 */
617 buffer_t Sample::LoadSampleData(unsigned long SampleCount) {
618 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
619 }
620
621 /**
622 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
623 * ReleaseSampleData() to free the memory if you don't need the cached
624 * sample data anymore.
625 * The method will add \a NullSamplesCount silence samples past the
626 * official buffer end (this won't affect the 'Size' member of the
627 * buffer_t structure, that means 'Size' always reflects the size of the
628 * actual sample data, the buffer might be bigger though). Silence
629 * samples past the official buffer are needed for differential
630 * algorithms that always have to take subsequent samples into account
631 * (resampling/interpolation would be an important example) and avoids
632 * memory access faults in such cases.
633 *
634 * @param NullSamplesCount - number of silence samples the buffer should
635 * be extended past it's data end
636 * @returns buffer_t structure with start address and
637 * size of the buffer in bytes
638 * @see ReleaseSampleData(), Read(), SetPos()
639 */
640 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
641 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
642 }
643
644 /**
645 * Reads (uncompresses if needed) and caches the first \a SampleCount
646 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
647 * memory space if you don't need the cached samples anymore. There is no
648 * guarantee that exactly \a SampleCount samples will be cached; this is
649 * not an error. The size will be eventually truncated e.g. to the
650 * beginning of a frame of a compressed sample. This is done for
651 * efficiency reasons while streaming the wave by your sampler engine
652 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
653 * that will be returned to determine the actual cached samples, but note
654 * that the size is given in bytes! You get the number of actually cached
655 * samples by dividing it by the frame size of the sample:
656 * @code
657 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
658 * long cachedsamples = buf.Size / pSample->FrameSize;
659 * @endcode
660 * The method will add \a NullSamplesCount silence samples past the
661 * official buffer end (this won't affect the 'Size' member of the
662 * buffer_t structure, that means 'Size' always reflects the size of the
663 * actual sample data, the buffer might be bigger though). Silence
664 * samples past the official buffer are needed for differential
665 * algorithms that always have to take subsequent samples into account
666 * (resampling/interpolation would be an important example) and avoids
667 * memory access faults in such cases.
668 *
669 * @param SampleCount - number of sample points to load into RAM
670 * @param NullSamplesCount - number of silence samples the buffer should
671 * be extended past it's data end
672 * @returns buffer_t structure with start address and
673 * size of the cached sample data in bytes
674 * @see ReleaseSampleData(), Read(), SetPos()
675 */
676 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {
677 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
678 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
679 unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
680 SetPos(0); // reset read position to begin of sample
681 RAMCache.pStart = new int8_t[allocationsize];
682 RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
683 RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
684 // fill the remaining buffer space with silence samples
685 memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
686 return GetCache();
687 }
688
689 /**
690 * Returns current cached sample points. A buffer_t structure will be
691 * returned which contains address pointer to the begin of the cache and
692 * the size of the cached sample data in bytes. Use
693 * <i>LoadSampleData()</i> to cache a specific amount of sample points in
694 * RAM.
695 *
696 * @returns buffer_t structure with current cached sample points
697 * @see LoadSampleData();
698 */
699 buffer_t Sample::GetCache() {
700 // return a copy of the buffer_t structure
701 buffer_t result;
702 result.Size = this->RAMCache.Size;
703 result.pStart = this->RAMCache.pStart;
704 result.NullExtensionSize = this->RAMCache.NullExtensionSize;
705 return result;
706 }
707
708 /**
709 * Frees the cached sample from RAM if loaded with
710 * <i>LoadSampleData()</i> previously.
711 *
712 * @see LoadSampleData();
713 */
714 void Sample::ReleaseSampleData() {
715 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
716 RAMCache.pStart = NULL;
717 RAMCache.Size = 0;
718 RAMCache.NullExtensionSize = 0;
719 }
720
721 /** @brief Resize sample.
722 *
723 * Resizes the sample's wave form data, that is the actual size of
724 * sample wave data possible to be written for this sample. This call
725 * will return immediately and just schedule the resize operation. You
726 * should call File::Save() to actually perform the resize operation(s)
727 * "physically" to the file. As this can take a while on large files, it
728 * is recommended to call Resize() first on all samples which have to be
729 * resized and finally to call File::Save() to perform all those resize
730 * operations in one rush.
731 *
732 * The actual size (in bytes) is dependant to the current FrameSize
733 * value. You may want to set FrameSize before calling Resize().
734 *
735 * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
736 * enlarged samples before calling File::Save() as this might exceed the
737 * current sample's boundary!
738 *
739 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
740 * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
741 * other formats will fail!
742 *
743 * @param iNewSize - new sample wave data size in sample points (must be
744 * greater than zero)
745 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
746 * or if \a iNewSize is less than 1
747 * @throws gig::Exception if existing sample is compressed
748 * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
749 * DLS::Sample::FormatTag, File::Save()
750 */
751 void Sample::Resize(int iNewSize) {
752 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
753 DLS::Sample::Resize(iNewSize);
754 }
755
756 /**
757 * Sets the position within the sample (in sample points, not in
758 * bytes). Use this method and <i>Read()</i> if you don't want to load
759 * the sample into RAM, thus for disk streaming.
760 *
761 * Although the original Gigasampler engine doesn't allow positioning
762 * within compressed samples, I decided to implement it. Even though
763 * the Gigasampler format doesn't allow to define loops for compressed
764 * samples at the moment, positioning within compressed samples might be
765 * interesting for some sampler engines though. The only drawback about
766 * my decision is that it takes longer to load compressed gig Files on
767 * startup, because it's neccessary to scan the samples for some
768 * mandatory informations. But I think as it doesn't affect the runtime
769 * efficiency, nobody will have a problem with that.
770 *
771 * @param SampleCount number of sample points to jump
772 * @param Whence optional: to which relation \a SampleCount refers
773 * to, if omited <i>RIFF::stream_start</i> is assumed
774 * @returns the new sample position
775 * @see Read()
776 */
777 unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {
778 if (Compressed) {
779 switch (Whence) {
780 case RIFF::stream_curpos:
781 this->SamplePos += SampleCount;
782 break;
783 case RIFF::stream_end:
784 this->SamplePos = this->SamplesTotal - 1 - SampleCount;
785 break;
786 case RIFF::stream_backward:
787 this->SamplePos -= SampleCount;
788 break;
789 case RIFF::stream_start: default:
790 this->SamplePos = SampleCount;
791 break;
792 }
793 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
794
795 unsigned long frame = this->SamplePos / 2048; // to which frame to jump
796 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
797 pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
798 return this->SamplePos;
799 }
800 else { // not compressed
801 unsigned long orderedBytes = SampleCount * this->FrameSize;
802 unsigned long result = pCkData->SetPos(orderedBytes, Whence);
803 return (result == orderedBytes) ? SampleCount
804 : result / this->FrameSize;
805 }
806 }
807
808 /**
809 * Returns the current position in the sample (in sample points).
810 */
811 unsigned long Sample::GetPos() {
812 if (Compressed) return SamplePos;
813 else return pCkData->GetPos() / FrameSize;
814 }
815
816 /**
817 * Reads \a SampleCount number of sample points from the position stored
818 * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
819 * the position within the sample respectively, this method honors the
820 * looping informations of the sample (if any). The sample wave stream
821 * will be decompressed on the fly if using a compressed sample. Use this
822 * method if you don't want to load the sample into RAM, thus for disk
823 * streaming. All this methods needs to know to proceed with streaming
824 * for the next time you call this method is stored in \a pPlaybackState.
825 * You have to allocate and initialize the playback_state_t structure by
826 * yourself before you use it to stream a sample:
827 * @code
828 * gig::playback_state_t playbackstate;
829 * playbackstate.position = 0;
830 * playbackstate.reverse = false;
831 * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
832 * @endcode
833 * You don't have to take care of things like if there is actually a loop
834 * defined or if the current read position is located within a loop area.
835 * The method already handles such cases by itself.
836 *
837 * <b>Caution:</b> If you are using more than one streaming thread, you
838 * have to use an external decompression buffer for <b>EACH</b>
839 * streaming thread to avoid race conditions and crashes!
840 *
841 * @param pBuffer destination buffer
842 * @param SampleCount number of sample points to read
843 * @param pPlaybackState will be used to store and reload the playback
844 * state for the next ReadAndLoop() call
845 * @param pDimRgn dimension region with looping information
846 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
847 * @returns number of successfully read sample points
848 * @see CreateDecompressionBuffer()
849 */
850 unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,
851 DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
852 unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
853 uint8_t* pDst = (uint8_t*) pBuffer;
854
855 SetPos(pPlaybackState->position); // recover position from the last time
856
857 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
858
859 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
860 const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
861
862 if (GetPos() <= loopEnd) {
863 switch (loop.LoopType) {
864
865 case loop_type_bidirectional: { //TODO: not tested yet!
866 do {
867 // if not endless loop check if max. number of loop cycles have been passed
868 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
869
870 if (!pPlaybackState->reverse) { // forward playback
871 do {
872 samplestoloopend = loopEnd - GetPos();
873 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
874 samplestoread -= readsamples;
875 totalreadsamples += readsamples;
876 if (readsamples == samplestoloopend) {
877 pPlaybackState->reverse = true;
878 break;
879 }
880 } while (samplestoread && readsamples);
881 }
882 else { // backward playback
883
884 // as we can only read forward from disk, we have to
885 // determine the end position within the loop first,
886 // read forward from that 'end' and finally after
887 // reading, swap all sample frames so it reflects
888 // backward playback
889
890 unsigned long swapareastart = totalreadsamples;
891 unsigned long loopoffset = GetPos() - loop.LoopStart;
892 unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
893 unsigned long reverseplaybackend = GetPos() - samplestoreadinloop;
894
895 SetPos(reverseplaybackend);
896
897 // read samples for backward playback
898 do {
899 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
900 samplestoreadinloop -= readsamples;
901 samplestoread -= readsamples;
902 totalreadsamples += readsamples;
903 } while (samplestoreadinloop && readsamples);
904
905 SetPos(reverseplaybackend); // pretend we really read backwards
906
907 if (reverseplaybackend == loop.LoopStart) {
908 pPlaybackState->loop_cycles_left--;
909 pPlaybackState->reverse = false;
910 }
911
912 // reverse the sample frames for backward playback
913 if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
914 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
915 }
916 } while (samplestoread && readsamples);
917 break;
918 }
919
920 case loop_type_backward: { // TODO: not tested yet!
921 // forward playback (not entered the loop yet)
922 if (!pPlaybackState->reverse) do {
923 samplestoloopend = loopEnd - GetPos();
924 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
925 samplestoread -= readsamples;
926 totalreadsamples += readsamples;
927 if (readsamples == samplestoloopend) {
928 pPlaybackState->reverse = true;
929 break;
930 }
931 } while (samplestoread && readsamples);
932
933 if (!samplestoread) break;
934
935 // as we can only read forward from disk, we have to
936 // determine the end position within the loop first,
937 // read forward from that 'end' and finally after
938 // reading, swap all sample frames so it reflects
939 // backward playback
940
941 unsigned long swapareastart = totalreadsamples;
942 unsigned long loopoffset = GetPos() - loop.LoopStart;
943 unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
944 : samplestoread;
945 unsigned long reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
946
947 SetPos(reverseplaybackend);
948
949 // read samples for backward playback
950 do {
951 // if not endless loop check if max. number of loop cycles have been passed
952 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
953 samplestoloopend = loopEnd - GetPos();
954 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
955 samplestoreadinloop -= readsamples;
956 samplestoread -= readsamples;
957 totalreadsamples += readsamples;
958 if (readsamples == samplestoloopend) {
959 pPlaybackState->loop_cycles_left--;
960 SetPos(loop.LoopStart);
961 }
962 } while (samplestoreadinloop && readsamples);
963
964 SetPos(reverseplaybackend); // pretend we really read backwards
965
966 // reverse the sample frames for backward playback
967 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
968 break;
969 }
970
971 default: case loop_type_normal: {
972 do {
973 // if not endless loop check if max. number of loop cycles have been passed
974 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
975 samplestoloopend = loopEnd - GetPos();
976 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
977 samplestoread -= readsamples;
978 totalreadsamples += readsamples;
979 if (readsamples == samplestoloopend) {
980 pPlaybackState->loop_cycles_left--;
981 SetPos(loop.LoopStart);
982 }
983 } while (samplestoread && readsamples);
984 break;
985 }
986 }
987 }
988 }
989
990 // read on without looping
991 if (samplestoread) do {
992 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
993 samplestoread -= readsamples;
994 totalreadsamples += readsamples;
995 } while (readsamples && samplestoread);
996
997 // store current position
998 pPlaybackState->position = GetPos();
999
1000 return totalreadsamples;
1001 }
1002
1003 /**
1004 * Reads \a SampleCount number of sample points from the current
1005 * position into the buffer pointed by \a pBuffer and increments the
1006 * position within the sample. The sample wave stream will be
1007 * decompressed on the fly if using a compressed sample. Use this method
1008 * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1009 * thus for disk streaming.
1010 *
1011 * <b>Caution:</b> If you are using more than one streaming thread, you
1012 * have to use an external decompression buffer for <b>EACH</b>
1013 * streaming thread to avoid race conditions and crashes!
1014 *
1015 * For 16 bit samples, the data in the buffer will be int16_t
1016 * (using native endianness). For 24 bit, the buffer will
1017 * contain three bytes per sample, little-endian.
1018 *
1019 * @param pBuffer destination buffer
1020 * @param SampleCount number of sample points to read
1021 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
1022 * @returns number of successfully read sample points
1023 * @see SetPos(), CreateDecompressionBuffer()
1024 */
1025 unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
1026 if (SampleCount == 0) return 0;
1027 if (!Compressed) {
1028 if (BitDepth == 24) {
1029 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1030 }
1031 else { // 16 bit
1032 // (pCkData->Read does endian correction)
1033 return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1034 : pCkData->Read(pBuffer, SampleCount, 2);
1035 }
1036 }
1037 else {
1038 if (this->SamplePos >= this->SamplesTotal) return 0;
1039 //TODO: efficiency: maybe we should test for an average compression rate
1040 unsigned long assumedsize = GuessSize(SampleCount),
1041 remainingbytes = 0, // remaining bytes in the local buffer
1042 remainingsamples = SampleCount,
1043 copysamples, skipsamples,
1044 currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
1045 this->FrameOffset = 0;
1046
1047 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1048
1049 // if decompression buffer too small, then reduce amount of samples to read
1050 if (pDecompressionBuffer->Size < assumedsize) {
1051 std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1052 SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1053 remainingsamples = SampleCount;
1054 assumedsize = GuessSize(SampleCount);
1055 }
1056
1057 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1058 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1059 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1060 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1061
1062 while (remainingsamples && remainingbytes) {
1063 unsigned long framesamples = SamplesPerFrame;
1064 unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
1065
1066 int mode_l = *pSrc++, mode_r = 0;
1067
1068 if (Channels == 2) {
1069 mode_r = *pSrc++;
1070 framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1071 rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1072 nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1073 if (remainingbytes < framebytes) { // last frame in sample
1074 framesamples = SamplesInLastFrame;
1075 if (mode_l == 4 && (framesamples & 1)) {
1076 rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1077 }
1078 else {
1079 rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1080 }
1081 }
1082 }
1083 else {
1084 framebytes = bytesPerFrame[mode_l] + 1;
1085 nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1086 if (remainingbytes < framebytes) {
1087 framesamples = SamplesInLastFrame;
1088 }
1089 }
1090
1091 // determine how many samples in this frame to skip and read
1092 if (currentframeoffset + remainingsamples >= framesamples) {
1093 if (currentframeoffset <= framesamples) {
1094 copysamples = framesamples - currentframeoffset;
1095 skipsamples = currentframeoffset;
1096 }
1097 else {
1098 copysamples = 0;
1099 skipsamples = framesamples;
1100 }
1101 }
1102 else {
1103 // This frame has enough data for pBuffer, but not
1104 // all of the frame is needed. Set file position
1105 // to start of this frame for next call to Read.
1106 copysamples = remainingsamples;
1107 skipsamples = currentframeoffset;
1108 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1109 this->FrameOffset = currentframeoffset + copysamples;
1110 }
1111 remainingsamples -= copysamples;
1112
1113 if (remainingbytes > framebytes) {
1114 remainingbytes -= framebytes;
1115 if (remainingsamples == 0 &&
1116 currentframeoffset + copysamples == framesamples) {
1117 // This frame has enough data for pBuffer, and
1118 // all of the frame is needed. Set file
1119 // position to start of next frame for next
1120 // call to Read. FrameOffset is 0.
1121 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1122 }
1123 }
1124 else remainingbytes = 0;
1125
1126 currentframeoffset -= skipsamples;
1127
1128 if (copysamples == 0) {
1129 // skip this frame
1130 pSrc += framebytes - Channels;
1131 }
1132 else {
1133 const unsigned char* const param_l = pSrc;
1134 if (BitDepth == 24) {
1135 if (mode_l != 2) pSrc += 12;
1136
1137 if (Channels == 2) { // Stereo
1138 const unsigned char* const param_r = pSrc;
1139 if (mode_r != 2) pSrc += 12;
1140
1141 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1142 skipsamples, copysamples, TruncatedBits);
1143 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1144 skipsamples, copysamples, TruncatedBits);
1145 pDst24 += copysamples * 6;
1146 }
1147 else { // Mono
1148 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1149 skipsamples, copysamples, TruncatedBits);
1150 pDst24 += copysamples * 3;
1151 }
1152 }
1153 else { // 16 bit
1154 if (mode_l) pSrc += 4;
1155
1156 int step;
1157 if (Channels == 2) { // Stereo
1158 const unsigned char* const param_r = pSrc;
1159 if (mode_r) pSrc += 4;
1160
1161 step = (2 - mode_l) + (2 - mode_r);
1162 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1163 Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1164 skipsamples, copysamples);
1165 pDst += copysamples << 1;
1166 }
1167 else { // Mono
1168 step = 2 - mode_l;
1169 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1170 pDst += copysamples;
1171 }
1172 }
1173 pSrc += nextFrameOffset;
1174 }
1175
1176 // reload from disk to local buffer if needed
1177 if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1178 assumedsize = GuessSize(remainingsamples);
1179 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1180 if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1181 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1182 pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1183 }
1184 } // while
1185
1186 this->SamplePos += (SampleCount - remainingsamples);
1187 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1188 return (SampleCount - remainingsamples);
1189 }
1190 }
1191
1192 /** @brief Write sample wave data.
1193 *
1194 * Writes \a SampleCount number of sample points from the buffer pointed
1195 * by \a pBuffer and increments the position within the sample. Use this
1196 * method to directly write the sample data to disk, i.e. if you don't
1197 * want or cannot load the whole sample data into RAM.
1198 *
1199 * You have to Resize() the sample to the desired size and call
1200 * File::Save() <b>before</b> using Write().
1201 *
1202 * Note: there is currently no support for writing compressed samples.
1203 *
1204 * For 16 bit samples, the data in the source buffer should be
1205 * int16_t (using native endianness). For 24 bit, the buffer
1206 * should contain three bytes per sample, little-endian.
1207 *
1208 * @param pBuffer - source buffer
1209 * @param SampleCount - number of sample points to write
1210 * @throws DLS::Exception if current sample size is too small
1211 * @throws gig::Exception if sample is compressed
1212 * @see DLS::LoadSampleData()
1213 */
1214 unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1215 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1216
1217 // if this is the first write in this sample, reset the
1218 // checksum calculator
1219 if (pCkData->GetPos() == 0) {
1220 __resetCRC(crc);
1221 }
1222 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1223 unsigned long res;
1224 if (BitDepth == 24) {
1225 res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1226 } else { // 16 bit
1227 res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1228 : pCkData->Write(pBuffer, SampleCount, 2);
1229 }
1230 __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1231
1232 // if this is the last write, update the checksum chunk in the
1233 // file
1234 if (pCkData->GetPos() == pCkData->GetSize()) {
1235 File* pFile = static_cast<File*>(GetParent());
1236 pFile->SetSampleChecksum(this, __encodeCRC(crc));
1237 }
1238 return res;
1239 }
1240
1241 /**
1242 * Allocates a decompression buffer for streaming (compressed) samples
1243 * with Sample::Read(). If you are using more than one streaming thread
1244 * in your application you <b>HAVE</b> to create a decompression buffer
1245 * for <b>EACH</b> of your streaming threads and provide it with the
1246 * Sample::Read() call in order to avoid race conditions and crashes.
1247 *
1248 * You should free the memory occupied by the allocated buffer(s) once
1249 * you don't need one of your streaming threads anymore by calling
1250 * DestroyDecompressionBuffer().
1251 *
1252 * @param MaxReadSize - the maximum size (in sample points) you ever
1253 * expect to read with one Read() call
1254 * @returns allocated decompression buffer
1255 * @see DestroyDecompressionBuffer()
1256 */
1257 buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
1258 buffer_t result;
1259 const double worstCaseHeaderOverhead =
1260 (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1261 result.Size = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1262 result.pStart = new int8_t[result.Size];
1263 result.NullExtensionSize = 0;
1264 return result;
1265 }
1266
1267 /**
1268 * Free decompression buffer, previously created with
1269 * CreateDecompressionBuffer().
1270 *
1271 * @param DecompressionBuffer - previously allocated decompression
1272 * buffer to free
1273 */
1274 void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1275 if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1276 delete[] (int8_t*) DecompressionBuffer.pStart;
1277 DecompressionBuffer.pStart = NULL;
1278 DecompressionBuffer.Size = 0;
1279 DecompressionBuffer.NullExtensionSize = 0;
1280 }
1281 }
1282
1283 /**
1284 * Returns pointer to the Group this Sample belongs to. In the .gig
1285 * format a sample always belongs to one group. If it wasn't explicitly
1286 * assigned to a certain group, it will be automatically assigned to a
1287 * default group.
1288 *
1289 * @returns Sample's Group (never NULL)
1290 */
1291 Group* Sample::GetGroup() const {
1292 return pGroup;
1293 }
1294
1295 Sample::~Sample() {
1296 Instances--;
1297 if (!Instances && InternalDecompressionBuffer.Size) {
1298 delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1299 InternalDecompressionBuffer.pStart = NULL;
1300 InternalDecompressionBuffer.Size = 0;
1301 }
1302 if (FrameTable) delete[] FrameTable;
1303 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1304 }
1305
1306
1307
1308 // *************** DimensionRegion ***************
1309 // *
1310
1311 uint DimensionRegion::Instances = 0;
1312 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1313
1314 DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1315 Instances++;
1316
1317 pSample = NULL;
1318 pRegion = pParent;
1319
1320 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1321 else memset(&Crossfade, 0, 4);
1322
1323 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1324
1325 RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1326 if (_3ewa) { // if '3ewa' chunk exists
1327 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1328 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1329 EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1330 _3ewa->ReadInt16(); // unknown
1331 LFO1InternalDepth = _3ewa->ReadUint16();
1332 _3ewa->ReadInt16(); // unknown
1333 LFO3InternalDepth = _3ewa->ReadInt16();
1334 _3ewa->ReadInt16(); // unknown
1335 LFO1ControlDepth = _3ewa->ReadUint16();
1336 _3ewa->ReadInt16(); // unknown
1337 LFO3ControlDepth = _3ewa->ReadInt16();
1338 EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1339 EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1340 _3ewa->ReadInt16(); // unknown
1341 EG1Sustain = _3ewa->ReadUint16();
1342 EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1343 EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1344 uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1345 EG1ControllerInvert = eg1ctrloptions & 0x01;
1346 EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1347 EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1348 EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1349 EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1350 uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1351 EG2ControllerInvert = eg2ctrloptions & 0x01;
1352 EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1353 EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1354 EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1355 LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1356 EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1357 EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1358 _3ewa->ReadInt16(); // unknown
1359 EG2Sustain = _3ewa->ReadUint16();
1360 EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1361 _3ewa->ReadInt16(); // unknown
1362 LFO2ControlDepth = _3ewa->ReadUint16();
1363 LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1364 _3ewa->ReadInt16(); // unknown
1365 LFO2InternalDepth = _3ewa->ReadUint16();
1366 int32_t eg1decay2 = _3ewa->ReadInt32();
1367 EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1368 EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1369 _3ewa->ReadInt16(); // unknown
1370 EG1PreAttack = _3ewa->ReadUint16();
1371 int32_t eg2decay2 = _3ewa->ReadInt32();
1372 EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1373 EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1374 _3ewa->ReadInt16(); // unknown
1375 EG2PreAttack = _3ewa->ReadUint16();
1376 uint8_t velocityresponse = _3ewa->ReadUint8();
1377 if (velocityresponse < 5) {
1378 VelocityResponseCurve = curve_type_nonlinear;
1379 VelocityResponseDepth = velocityresponse;
1380 } else if (velocityresponse < 10) {
1381 VelocityResponseCurve = curve_type_linear;
1382 VelocityResponseDepth = velocityresponse - 5;
1383 } else if (velocityresponse < 15) {
1384 VelocityResponseCurve = curve_type_special;
1385 VelocityResponseDepth = velocityresponse - 10;
1386 } else {
1387 VelocityResponseCurve = curve_type_unknown;
1388 VelocityResponseDepth = 0;
1389 }
1390 uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1391 if (releasevelocityresponse < 5) {
1392 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1393 ReleaseVelocityResponseDepth = releasevelocityresponse;
1394 } else if (releasevelocityresponse < 10) {
1395 ReleaseVelocityResponseCurve = curve_type_linear;
1396 ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1397 } else if (releasevelocityresponse < 15) {
1398 ReleaseVelocityResponseCurve = curve_type_special;
1399 ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1400 } else {
1401 ReleaseVelocityResponseCurve = curve_type_unknown;
1402 ReleaseVelocityResponseDepth = 0;
1403 }
1404 VelocityResponseCurveScaling = _3ewa->ReadUint8();
1405 AttenuationControllerThreshold = _3ewa->ReadInt8();
1406 _3ewa->ReadInt32(); // unknown
1407 SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1408 _3ewa->ReadInt16(); // unknown
1409 uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1410 PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1411 if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1412 else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1413 else DimensionBypass = dim_bypass_ctrl_none;
1414 uint8_t pan = _3ewa->ReadUint8();
1415 Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1416 SelfMask = _3ewa->ReadInt8() & 0x01;
1417 _3ewa->ReadInt8(); // unknown
1418 uint8_t lfo3ctrl = _3ewa->ReadUint8();
1419 LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1420 LFO3Sync = lfo3ctrl & 0x20; // bit 5
1421 InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1422 AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1423 uint8_t lfo2ctrl = _3ewa->ReadUint8();
1424 LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1425 LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1426 LFO2Sync = lfo2ctrl & 0x20; // bit 5
1427 bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1428 uint8_t lfo1ctrl = _3ewa->ReadUint8();
1429 LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1430 LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1431 LFO1Sync = lfo1ctrl & 0x40; // bit 6
1432 VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1433 : vcf_res_ctrl_none;
1434 uint16_t eg3depth = _3ewa->ReadUint16();
1435 EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1436 : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */
1437 _3ewa->ReadInt16(); // unknown
1438 ChannelOffset = _3ewa->ReadUint8() / 4;
1439 uint8_t regoptions = _3ewa->ReadUint8();
1440 MSDecode = regoptions & 0x01; // bit 0
1441 SustainDefeat = regoptions & 0x02; // bit 1
1442 _3ewa->ReadInt16(); // unknown
1443 VelocityUpperLimit = _3ewa->ReadInt8();
1444 _3ewa->ReadInt8(); // unknown
1445 _3ewa->ReadInt16(); // unknown
1446 ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1447 _3ewa->ReadInt8(); // unknown
1448 _3ewa->ReadInt8(); // unknown
1449 EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1450 uint8_t vcfcutoff = _3ewa->ReadUint8();
1451 VCFEnabled = vcfcutoff & 0x80; // bit 7
1452 VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1453 VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1454 uint8_t vcfvelscale = _3ewa->ReadUint8();
1455 VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1456 VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1457 _3ewa->ReadInt8(); // unknown
1458 uint8_t vcfresonance = _3ewa->ReadUint8();
1459 VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1460 VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1461 uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1462 VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1463 VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1464 uint8_t vcfvelocity = _3ewa->ReadUint8();
1465 VCFVelocityDynamicRange = vcfvelocity % 5;
1466 VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1467 VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1468 if (VCFType == vcf_type_lowpass) {
1469 if (lfo3ctrl & 0x40) // bit 6
1470 VCFType = vcf_type_lowpassturbo;
1471 }
1472 if (_3ewa->RemainingBytes() >= 8) {
1473 _3ewa->Read(DimensionUpperLimits, 1, 8);
1474 } else {
1475 memset(DimensionUpperLimits, 0, 8);
1476 }
1477 } else { // '3ewa' chunk does not exist yet
1478 // use default values
1479 LFO3Frequency = 1.0;
1480 EG3Attack = 0.0;
1481 LFO1InternalDepth = 0;
1482 LFO3InternalDepth = 0;
1483 LFO1ControlDepth = 0;
1484 LFO3ControlDepth = 0;
1485 EG1Attack = 0.0;
1486 EG1Decay1 = 0.005;
1487 EG1Sustain = 1000;
1488 EG1Release = 0.3;
1489 EG1Controller.type = eg1_ctrl_t::type_none;
1490 EG1Controller.controller_number = 0;
1491 EG1ControllerInvert = false;
1492 EG1ControllerAttackInfluence = 0;
1493 EG1ControllerDecayInfluence = 0;
1494 EG1ControllerReleaseInfluence = 0;
1495 EG2Controller.type = eg2_ctrl_t::type_none;
1496 EG2Controller.controller_number = 0;
1497 EG2ControllerInvert = false;
1498 EG2ControllerAttackInfluence = 0;
1499 EG2ControllerDecayInfluence = 0;
1500 EG2ControllerReleaseInfluence = 0;
1501 LFO1Frequency = 1.0;
1502 EG2Attack = 0.0;
1503 EG2Decay1 = 0.005;
1504 EG2Sustain = 1000;
1505 EG2Release = 0.3;
1506 LFO2ControlDepth = 0;
1507 LFO2Frequency = 1.0;
1508 LFO2InternalDepth = 0;
1509 EG1Decay2 = 0.0;
1510 EG1InfiniteSustain = true;
1511 EG1PreAttack = 0;
1512 EG2Decay2 = 0.0;
1513 EG2InfiniteSustain = true;
1514 EG2PreAttack = 0;
1515 VelocityResponseCurve = curve_type_nonlinear;
1516 VelocityResponseDepth = 3;
1517 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1518 ReleaseVelocityResponseDepth = 3;
1519 VelocityResponseCurveScaling = 32;
1520 AttenuationControllerThreshold = 0;
1521 SampleStartOffset = 0;
1522 PitchTrack = true;
1523 DimensionBypass = dim_bypass_ctrl_none;
1524 Pan = 0;
1525 SelfMask = true;
1526 LFO3Controller = lfo3_ctrl_modwheel;
1527 LFO3Sync = false;
1528 InvertAttenuationController = false;
1529 AttenuationController.type = attenuation_ctrl_t::type_none;
1530 AttenuationController.controller_number = 0;
1531 LFO2Controller = lfo2_ctrl_internal;
1532 LFO2FlipPhase = false;
1533 LFO2Sync = false;
1534 LFO1Controller = lfo1_ctrl_internal;
1535 LFO1FlipPhase = false;
1536 LFO1Sync = false;
1537 VCFResonanceController = vcf_res_ctrl_none;
1538 EG3Depth = 0;
1539 ChannelOffset = 0;
1540 MSDecode = false;
1541 SustainDefeat = false;
1542 VelocityUpperLimit = 0;
1543 ReleaseTriggerDecay = 0;
1544 EG1Hold = false;
1545 VCFEnabled = false;
1546 VCFCutoff = 0;
1547 VCFCutoffController = vcf_cutoff_ctrl_none;
1548 VCFCutoffControllerInvert = false;
1549 VCFVelocityScale = 0;
1550 VCFResonance = 0;
1551 VCFResonanceDynamic = false;
1552 VCFKeyboardTracking = false;
1553 VCFKeyboardTrackingBreakpoint = 0;
1554 VCFVelocityDynamicRange = 0x04;
1555 VCFVelocityCurve = curve_type_linear;
1556 VCFType = vcf_type_lowpass;
1557 memset(DimensionUpperLimits, 127, 8);
1558 }
1559
1560 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1561 VelocityResponseDepth,
1562 VelocityResponseCurveScaling);
1563
1564 pVelocityReleaseTable = GetReleaseVelocityTable(
1565 ReleaseVelocityResponseCurve,
1566 ReleaseVelocityResponseDepth
1567 );
1568
1569 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1570 VCFVelocityDynamicRange,
1571 VCFVelocityScale,
1572 VCFCutoffController);
1573
1574 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1575 VelocityTable = 0;
1576 }
1577
1578 /*
1579 * Constructs a DimensionRegion by copying all parameters from
1580 * another DimensionRegion
1581 */
1582 DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1583 Instances++;
1584 //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1585 *this = src; // default memberwise shallow copy of all parameters
1586 pParentList = _3ewl; // restore the chunk pointer
1587
1588 // deep copy of owned structures
1589 if (src.VelocityTable) {
1590 VelocityTable = new uint8_t[128];
1591 for (int k = 0 ; k < 128 ; k++)
1592 VelocityTable[k] = src.VelocityTable[k];
1593 }
1594 if (src.pSampleLoops) {
1595 pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1596 for (int k = 0 ; k < src.SampleLoops ; k++)
1597 pSampleLoops[k] = src.pSampleLoops[k];
1598 }
1599 }
1600
1601 /**
1602 * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1603 * and assign it to this object.
1604 *
1605 * Note that all sample pointers referenced by @a orig are simply copied as
1606 * memory address. Thus the respective samples are shared, not duplicated!
1607 *
1608 * @param orig - original DimensionRegion object to be copied from
1609 */
1610 void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1611 // delete all allocated data first
1612 if (VelocityTable) delete [] VelocityTable;
1613 if (pSampleLoops) delete [] pSampleLoops;
1614
1615 // backup parent list pointer
1616 RIFF::List* p = pParentList;
1617
1618 //NOTE: copy code copied from assignment constructor above, see comment there as well
1619
1620 *this = *orig; // default memberwise shallow copy of all parameters
1621 pParentList = p; // restore the chunk pointer
1622
1623 // deep copy of owned structures
1624 if (orig->VelocityTable) {
1625 VelocityTable = new uint8_t[128];
1626 for (int k = 0 ; k < 128 ; k++)
1627 VelocityTable[k] = orig->VelocityTable[k];
1628 }
1629 if (orig->pSampleLoops) {
1630 pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1631 for (int k = 0 ; k < orig->SampleLoops ; k++)
1632 pSampleLoops[k] = orig->pSampleLoops[k];
1633 }
1634 }
1635
1636 /**
1637 * Updates the respective member variable and updates @c SampleAttenuation
1638 * which depends on this value.
1639 */
1640 void DimensionRegion::SetGain(int32_t gain) {
1641 DLS::Sampler::SetGain(gain);
1642 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1643 }
1644
1645 /**
1646 * Apply dimension region settings to the respective RIFF chunks. You
1647 * have to call File::Save() to make changes persistent.
1648 *
1649 * Usually there is absolutely no need to call this method explicitly.
1650 * It will be called automatically when File::Save() was called.
1651 */
1652 void DimensionRegion::UpdateChunks() {
1653 // first update base class's chunk
1654 DLS::Sampler::UpdateChunks();
1655
1656 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1657 uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1658 pData[12] = Crossfade.in_start;
1659 pData[13] = Crossfade.in_end;
1660 pData[14] = Crossfade.out_start;
1661 pData[15] = Crossfade.out_end;
1662
1663 // make sure '3ewa' chunk exists
1664 RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1665 if (!_3ewa) {
1666 File* pFile = (File*) GetParent()->GetParent()->GetParent();
1667 bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1668 _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1669 }
1670 pData = (uint8_t*) _3ewa->LoadChunkData();
1671
1672 // update '3ewa' chunk with DimensionRegion's current settings
1673
1674 const uint32_t chunksize = _3ewa->GetNewSize();
1675 store32(&pData[0], chunksize); // unknown, always chunk size?
1676
1677 const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1678 store32(&pData[4], lfo3freq);
1679
1680 const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1681 store32(&pData[8], eg3attack);
1682
1683 // next 2 bytes unknown
1684
1685 store16(&pData[14], LFO1InternalDepth);
1686
1687 // next 2 bytes unknown
1688
1689 store16(&pData[18], LFO3InternalDepth);
1690
1691 // next 2 bytes unknown
1692
1693 store16(&pData[22], LFO1ControlDepth);
1694
1695 // next 2 bytes unknown
1696
1697 store16(&pData[26], LFO3ControlDepth);
1698
1699 const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1700 store32(&pData[28], eg1attack);
1701
1702 const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1703 store32(&pData[32], eg1decay1);
1704
1705 // next 2 bytes unknown
1706
1707 store16(&pData[38], EG1Sustain);
1708
1709 const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1710 store32(&pData[40], eg1release);
1711
1712 const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1713 pData[44] = eg1ctl;
1714
1715 const uint8_t eg1ctrloptions =
1716 (EG1ControllerInvert ? 0x01 : 0x00) |
1717 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1718 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1719 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1720 pData[45] = eg1ctrloptions;
1721
1722 const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1723 pData[46] = eg2ctl;
1724
1725 const uint8_t eg2ctrloptions =
1726 (EG2ControllerInvert ? 0x01 : 0x00) |
1727 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1728 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1729 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1730 pData[47] = eg2ctrloptions;
1731
1732 const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1733 store32(&pData[48], lfo1freq);
1734
1735 const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1736 store32(&pData[52], eg2attack);
1737
1738 const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1739 store32(&pData[56], eg2decay1);
1740
1741 // next 2 bytes unknown
1742
1743 store16(&pData[62], EG2Sustain);
1744
1745 const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1746 store32(&pData[64], eg2release);
1747
1748 // next 2 bytes unknown
1749
1750 store16(&pData[70], LFO2ControlDepth);
1751
1752 const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1753 store32(&pData[72], lfo2freq);
1754
1755 // next 2 bytes unknown
1756
1757 store16(&pData[78], LFO2InternalDepth);
1758
1759 const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1760 store32(&pData[80], eg1decay2);
1761
1762 // next 2 bytes unknown
1763
1764 store16(&pData[86], EG1PreAttack);
1765
1766 const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1767 store32(&pData[88], eg2decay2);
1768
1769 // next 2 bytes unknown
1770
1771 store16(&pData[94], EG2PreAttack);
1772
1773 {
1774 if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1775 uint8_t velocityresponse = VelocityResponseDepth;
1776 switch (VelocityResponseCurve) {
1777 case curve_type_nonlinear:
1778 break;
1779 case curve_type_linear:
1780 velocityresponse += 5;
1781 break;
1782 case curve_type_special:
1783 velocityresponse += 10;
1784 break;
1785 case curve_type_unknown:
1786 default:
1787 throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1788 }
1789 pData[96] = velocityresponse;
1790 }
1791
1792 {
1793 if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1794 uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1795 switch (ReleaseVelocityResponseCurve) {
1796 case curve_type_nonlinear:
1797 break;
1798 case curve_type_linear:
1799 releasevelocityresponse += 5;
1800 break;
1801 case curve_type_special:
1802 releasevelocityresponse += 10;
1803 break;
1804 case curve_type_unknown:
1805 default:
1806 throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1807 }
1808 pData[97] = releasevelocityresponse;
1809 }
1810
1811 pData[98] = VelocityResponseCurveScaling;
1812
1813 pData[99] = AttenuationControllerThreshold;
1814
1815 // next 4 bytes unknown
1816
1817 store16(&pData[104], SampleStartOffset);
1818
1819 // next 2 bytes unknown
1820
1821 {
1822 uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1823 switch (DimensionBypass) {
1824 case dim_bypass_ctrl_94:
1825 pitchTrackDimensionBypass |= 0x10;
1826 break;
1827 case dim_bypass_ctrl_95:
1828 pitchTrackDimensionBypass |= 0x20;
1829 break;
1830 case dim_bypass_ctrl_none:
1831 //FIXME: should we set anything here?
1832 break;
1833 default:
1834 throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1835 }
1836 pData[108] = pitchTrackDimensionBypass;
1837 }
1838
1839 const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1840 pData[109] = pan;
1841
1842 const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1843 pData[110] = selfmask;
1844
1845 // next byte unknown
1846
1847 {
1848 uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1849 if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1850 if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1851 if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1852 pData[112] = lfo3ctrl;
1853 }
1854
1855 const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1856 pData[113] = attenctl;
1857
1858 {
1859 uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1860 if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1861 if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
1862 if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1863 pData[114] = lfo2ctrl;
1864 }
1865
1866 {
1867 uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1868 if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1869 if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
1870 if (VCFResonanceController != vcf_res_ctrl_none)
1871 lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1872 pData[115] = lfo1ctrl;
1873 }
1874
1875 const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1876 : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */
1877 store16(&pData[116], eg3depth);
1878
1879 // next 2 bytes unknown
1880
1881 const uint8_t channeloffset = ChannelOffset * 4;
1882 pData[120] = channeloffset;
1883
1884 {
1885 uint8_t regoptions = 0;
1886 if (MSDecode) regoptions |= 0x01; // bit 0
1887 if (SustainDefeat) regoptions |= 0x02; // bit 1
1888 pData[121] = regoptions;
1889 }
1890
1891 // next 2 bytes unknown
1892
1893 pData[124] = VelocityUpperLimit;
1894
1895 // next 3 bytes unknown
1896
1897 pData[128] = ReleaseTriggerDecay;
1898
1899 // next 2 bytes unknown
1900
1901 const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1902 pData[131] = eg1hold;
1903
1904 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
1905 (VCFCutoff & 0x7f); /* lower 7 bits */
1906 pData[132] = vcfcutoff;
1907
1908 pData[133] = VCFCutoffController;
1909
1910 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
1911 (VCFVelocityScale & 0x7f); /* lower 7 bits */
1912 pData[134] = vcfvelscale;
1913
1914 // next byte unknown
1915
1916 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
1917 (VCFResonance & 0x7f); /* lower 7 bits */
1918 pData[136] = vcfresonance;
1919
1920 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
1921 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
1922 pData[137] = vcfbreakpoint;
1923
1924 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
1925 VCFVelocityCurve * 5;
1926 pData[138] = vcfvelocity;
1927
1928 const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1929 pData[139] = vcftype;
1930
1931 if (chunksize >= 148) {
1932 memcpy(&pData[140], DimensionUpperLimits, 8);
1933 }
1934 }
1935
1936 double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
1937 curve_type_t curveType = releaseVelocityResponseCurve;
1938 uint8_t depth = releaseVelocityResponseDepth;
1939 // this models a strange behaviour or bug in GSt: two of the
1940 // velocity response curves for release time are not used even
1941 // if specified, instead another curve is chosen.
1942 if ((curveType == curve_type_nonlinear && depth == 0) ||
1943 (curveType == curve_type_special && depth == 4)) {
1944 curveType = curve_type_nonlinear;
1945 depth = 3;
1946 }
1947 return GetVelocityTable(curveType, depth, 0);
1948 }
1949
1950 double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
1951 uint8_t vcfVelocityDynamicRange,
1952 uint8_t vcfVelocityScale,
1953 vcf_cutoff_ctrl_t vcfCutoffController)
1954 {
1955 curve_type_t curveType = vcfVelocityCurve;
1956 uint8_t depth = vcfVelocityDynamicRange;
1957 // even stranger GSt: two of the velocity response curves for
1958 // filter cutoff are not used, instead another special curve
1959 // is chosen. This curve is not used anywhere else.
1960 if ((curveType == curve_type_nonlinear && depth == 0) ||
1961 (curveType == curve_type_special && depth == 4)) {
1962 curveType = curve_type_special;
1963 depth = 5;
1964 }
1965 return GetVelocityTable(curveType, depth,
1966 (vcfCutoffController <= vcf_cutoff_ctrl_none2)
1967 ? vcfVelocityScale : 0);
1968 }
1969
1970 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
1971 double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
1972 {
1973 double* table;
1974 uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
1975 if (pVelocityTables->count(tableKey)) { // if key exists
1976 table = (*pVelocityTables)[tableKey];
1977 }
1978 else {
1979 table = CreateVelocityTable(curveType, depth, scaling);
1980 (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
1981 }
1982 return table;
1983 }
1984
1985 Region* DimensionRegion::GetParent() const {
1986 return pRegion;
1987 }
1988
1989 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
1990 leverage_ctrl_t decodedcontroller;
1991 switch (EncodedController) {
1992 // special controller
1993 case _lev_ctrl_none:
1994 decodedcontroller.type = leverage_ctrl_t::type_none;
1995 decodedcontroller.controller_number = 0;
1996 break;
1997 case _lev_ctrl_velocity:
1998 decodedcontroller.type = leverage_ctrl_t::type_velocity;
1999 decodedcontroller.controller_number = 0;
2000 break;
2001 case _lev_ctrl_channelaftertouch:
2002 decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
2003 decodedcontroller.controller_number = 0;
2004 break;
2005
2006 // ordinary MIDI control change controller
2007 case _lev_ctrl_modwheel:
2008 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2009 decodedcontroller.controller_number = 1;
2010 break;
2011 case _lev_ctrl_breath:
2012 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2013 decodedcontroller.controller_number = 2;
2014 break;
2015 case _lev_ctrl_foot:
2016 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2017 decodedcontroller.controller_number = 4;
2018 break;
2019 case _lev_ctrl_effect1:
2020 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2021 decodedcontroller.controller_number = 12;
2022 break;
2023 case _lev_ctrl_effect2:
2024 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2025 decodedcontroller.controller_number = 13;
2026 break;
2027 case _lev_ctrl_genpurpose1:
2028 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2029 decodedcontroller.controller_number = 16;
2030 break;
2031 case _lev_ctrl_genpurpose2:
2032 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2033 decodedcontroller.controller_number = 17;
2034 break;
2035 case _lev_ctrl_genpurpose3:
2036 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2037 decodedcontroller.controller_number = 18;
2038 break;
2039 case _lev_ctrl_genpurpose4:
2040 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2041 decodedcontroller.controller_number = 19;
2042 break;
2043 case _lev_ctrl_portamentotime:
2044 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2045 decodedcontroller.controller_number = 5;
2046 break;
2047 case _lev_ctrl_sustainpedal:
2048 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2049 decodedcontroller.controller_number = 64;
2050 break;
2051 case _lev_ctrl_portamento:
2052 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2053 decodedcontroller.controller_number = 65;
2054 break;
2055 case _lev_ctrl_sostenutopedal:
2056 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2057 decodedcontroller.controller_number = 66;
2058 break;
2059 case _lev_ctrl_softpedal:
2060 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2061 decodedcontroller.controller_number = 67;
2062 break;
2063 case _lev_ctrl_genpurpose5:
2064 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2065 decodedcontroller.controller_number = 80;
2066 break;
2067 case _lev_ctrl_genpurpose6:
2068 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2069 decodedcontroller.controller_number = 81;
2070 break;
2071 case _lev_ctrl_genpurpose7:
2072 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2073 decodedcontroller.controller_number = 82;
2074 break;
2075 case _lev_ctrl_genpurpose8:
2076 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2077 decodedcontroller.controller_number = 83;
2078 break;
2079 case _lev_ctrl_effect1depth:
2080 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2081 decodedcontroller.controller_number = 91;
2082 break;
2083 case _lev_ctrl_effect2depth:
2084 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2085 decodedcontroller.controller_number = 92;
2086 break;
2087 case _lev_ctrl_effect3depth:
2088 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2089 decodedcontroller.controller_number = 93;
2090 break;
2091 case _lev_ctrl_effect4depth:
2092 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2093 decodedcontroller.controller_number = 94;
2094 break;
2095 case _lev_ctrl_effect5depth:
2096 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2097 decodedcontroller.controller_number = 95;
2098 break;
2099
2100 // unknown controller type
2101 default:
2102 throw gig::Exception("Unknown leverage controller type.");
2103 }
2104 return decodedcontroller;
2105 }
2106
2107 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2108 _lev_ctrl_t encodedcontroller;
2109 switch (DecodedController.type) {
2110 // special controller
2111 case leverage_ctrl_t::type_none:
2112 encodedcontroller = _lev_ctrl_none;
2113 break;
2114 case leverage_ctrl_t::type_velocity:
2115 encodedcontroller = _lev_ctrl_velocity;
2116 break;
2117 case leverage_ctrl_t::type_channelaftertouch:
2118 encodedcontroller = _lev_ctrl_channelaftertouch;
2119 break;
2120
2121 // ordinary MIDI control change controller
2122 case leverage_ctrl_t::type_controlchange:
2123 switch (DecodedController.controller_number) {
2124 case 1:
2125 encodedcontroller = _lev_ctrl_modwheel;
2126 break;
2127 case 2:
2128 encodedcontroller = _lev_ctrl_breath;
2129 break;
2130 case 4:
2131 encodedcontroller = _lev_ctrl_foot;
2132 break;
2133 case 12:
2134 encodedcontroller = _lev_ctrl_effect1;
2135 break;
2136 case 13:
2137 encodedcontroller = _lev_ctrl_effect2;
2138 break;
2139 case 16:
2140 encodedcontroller = _lev_ctrl_genpurpose1;
2141 break;
2142 case 17:
2143 encodedcontroller = _lev_ctrl_genpurpose2;
2144 break;
2145 case 18:
2146 encodedcontroller = _lev_ctrl_genpurpose3;
2147 break;
2148 case 19:
2149 encodedcontroller = _lev_ctrl_genpurpose4;
2150 break;
2151 case 5:
2152 encodedcontroller = _lev_ctrl_portamentotime;
2153 break;
2154 case 64:
2155 encodedcontroller = _lev_ctrl_sustainpedal;
2156 break;
2157 case 65:
2158 encodedcontroller = _lev_ctrl_portamento;
2159 break;
2160 case 66:
2161 encodedcontroller = _lev_ctrl_sostenutopedal;
2162 break;
2163 case 67:
2164 encodedcontroller = _lev_ctrl_softpedal;
2165 break;
2166 case 80:
2167 encodedcontroller = _lev_ctrl_genpurpose5;
2168 break;
2169 case 81:
2170 encodedcontroller = _lev_ctrl_genpurpose6;
2171 break;
2172 case 82:
2173 encodedcontroller = _lev_ctrl_genpurpose7;
2174 break;
2175 case 83:
2176 encodedcontroller = _lev_ctrl_genpurpose8;
2177 break;
2178 case 91:
2179 encodedcontroller = _lev_ctrl_effect1depth;
2180 break;
2181 case 92:
2182 encodedcontroller = _lev_ctrl_effect2depth;
2183 break;
2184 case 93:
2185 encodedcontroller = _lev_ctrl_effect3depth;
2186 break;
2187 case 94:
2188 encodedcontroller = _lev_ctrl_effect4depth;
2189 break;
2190 case 95:
2191 encodedcontroller = _lev_ctrl_effect5depth;
2192 break;
2193 default:
2194 throw gig::Exception("leverage controller number is not supported by the gig format");
2195 }
2196 break;
2197 default:
2198 throw gig::Exception("Unknown leverage controller type.");
2199 }
2200 return encodedcontroller;
2201 }
2202
2203 DimensionRegion::~DimensionRegion() {
2204 Instances--;
2205 if (!Instances) {
2206 // delete the velocity->volume tables
2207 VelocityTableMap::iterator iter;
2208 for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
2209 double* pTable = iter->second;
2210 if (pTable) delete[] pTable;
2211 }
2212 pVelocityTables->clear();
2213 delete pVelocityTables;
2214 pVelocityTables = NULL;
2215 }
2216 if (VelocityTable) delete[] VelocityTable;
2217 }
2218
2219 /**
2220 * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
2221 * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
2222 * and VelocityResponseCurveScaling) involved are taken into account to
2223 * calculate the amplitude factor. Use this method when a key was
2224 * triggered to get the volume with which the sample should be played
2225 * back.
2226 *
2227 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
2228 * @returns amplitude factor (between 0.0 and 1.0)
2229 */
2230 double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2231 return pVelocityAttenuationTable[MIDIKeyVelocity];
2232 }
2233
2234 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2235 return pVelocityReleaseTable[MIDIKeyVelocity];
2236 }
2237
2238 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2239 return pVelocityCutoffTable[MIDIKeyVelocity];
2240 }
2241
2242 /**
2243 * Updates the respective member variable and the lookup table / cache
2244 * that depends on this value.
2245 */
2246 void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
2247 pVelocityAttenuationTable =
2248 GetVelocityTable(
2249 curve, VelocityResponseDepth, VelocityResponseCurveScaling
2250 );
2251 VelocityResponseCurve = curve;
2252 }
2253
2254 /**
2255 * Updates the respective member variable and the lookup table / cache
2256 * that depends on this value.
2257 */
2258 void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
2259 pVelocityAttenuationTable =
2260 GetVelocityTable(
2261 VelocityResponseCurve, depth, VelocityResponseCurveScaling
2262 );
2263 VelocityResponseDepth = depth;
2264 }
2265
2266 /**
2267 * Updates the respective member variable and the lookup table / cache
2268 * that depends on this value.
2269 */
2270 void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
2271 pVelocityAttenuationTable =
2272 GetVelocityTable(
2273 VelocityResponseCurve, VelocityResponseDepth, scaling
2274 );
2275 VelocityResponseCurveScaling = scaling;
2276 }
2277
2278 /**
2279 * Updates the respective member variable and the lookup table / cache
2280 * that depends on this value.
2281 */
2282 void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
2283 pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
2284 ReleaseVelocityResponseCurve = curve;
2285 }
2286
2287 /**
2288 * Updates the respective member variable and the lookup table / cache
2289 * that depends on this value.
2290 */
2291 void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
2292 pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
2293 ReleaseVelocityResponseDepth = depth;
2294 }
2295
2296 /**
2297 * Updates the respective member variable and the lookup table / cache
2298 * that depends on this value.
2299 */
2300 void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
2301 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
2302 VCFCutoffController = controller;
2303 }
2304
2305 /**
2306 * Updates the respective member variable and the lookup table / cache
2307 * that depends on this value.
2308 */
2309 void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
2310 pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
2311 VCFVelocityCurve = curve;
2312 }
2313
2314 /**
2315 * Updates the respective member variable and the lookup table / cache
2316 * that depends on this value.
2317 */
2318 void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
2319 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
2320 VCFVelocityDynamicRange = range;
2321 }
2322
2323 /**
2324 * Updates the respective member variable and the lookup table / cache
2325 * that depends on this value.
2326 */
2327 void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
2328 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
2329 VCFVelocityScale = scaling;
2330 }
2331
2332 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2333
2334 // line-segment approximations of the 15 velocity curves
2335
2336 // linear
2337 const int lin0[] = { 1, 1, 127, 127 };
2338 const int lin1[] = { 1, 21, 127, 127 };
2339 const int lin2[] = { 1, 45, 127, 127 };
2340 const int lin3[] = { 1, 74, 127, 127 };
2341 const int lin4[] = { 1, 127, 127, 127 };
2342
2343 // non-linear
2344 const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2345 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2346 127, 127 };
2347 const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2348 127, 127 };
2349 const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2350 127, 127 };
2351 const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2352
2353 // special
2354 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2355 113, 127, 127, 127 };
2356 const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2357 118, 127, 127, 127 };
2358 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2359 85, 90, 91, 127, 127, 127 };
2360 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2361 117, 127, 127, 127 };
2362 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2363 127, 127 };
2364
2365 // this is only used by the VCF velocity curve
2366 const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2367 91, 127, 127, 127 };
2368
2369 const int* const curves[] = { non0, non1, non2, non3, non4,
2370 lin0, lin1, lin2, lin3, lin4,
2371 spe0, spe1, spe2, spe3, spe4, spe5 };
2372
2373 double* const table = new double[128];
2374
2375 const int* curve = curves[curveType * 5 + depth];
2376 const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2377
2378 table[0] = 0;
2379 for (int x = 1 ; x < 128 ; x++) {
2380
2381 if (x > curve[2]) curve += 2;
2382 double y = curve[1] + (x - curve[0]) *
2383 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2384 y = y / 127;
2385
2386 // Scale up for s > 20, down for s < 20. When
2387 // down-scaling, the curve still ends at 1.0.
2388 if (s < 20 && y >= 0.5)
2389 y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2390 else
2391 y = y * (s / 20.0);
2392 if (y > 1) y = 1;
2393
2394 table[x] = y;
2395 }
2396 return table;
2397 }
2398
2399
2400 // *************** Region ***************
2401 // *
2402
2403 Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2404 // Initialization
2405 Dimensions = 0;
2406 for (int i = 0; i < 256; i++) {
2407 pDimensionRegions[i] = NULL;
2408 }
2409 Layers = 1;
2410 File* file = (File*) GetParent()->GetParent();
2411 int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2412
2413 // Actual Loading
2414
2415 if (!file->GetAutoLoad()) return;
2416
2417 LoadDimensionRegions(rgnList);
2418
2419 RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
2420 if (_3lnk) {
2421 DimensionRegions = _3lnk->ReadUint32();
2422 for (int i = 0; i < dimensionBits; i++) {
2423 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2424 uint8_t bits = _3lnk->ReadUint8();
2425 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
2426 _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
2427 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2428 if (dimension == dimension_none) { // inactive dimension
2429 pDimensionDefinitions[i].dimension = dimension_none;
2430 pDimensionDefinitions[i].bits = 0;
2431 pDimensionDefinitions[i].zones = 0;
2432 pDimensionDefinitions[i].split_type = split_type_bit;
2433 pDimensionDefinitions[i].zone_size = 0;
2434 }
2435 else { // active dimension
2436 pDimensionDefinitions[i].dimension = dimension;
2437 pDimensionDefinitions[i].bits = bits;
2438 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
2439 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2440 pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
2441 Dimensions++;
2442
2443 // if this is a layer dimension, remember the amount of layers
2444 if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
2445 }
2446 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2447 }
2448 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2449
2450 // if there's a velocity dimension and custom velocity zone splits are used,
2451 // update the VelocityTables in the dimension regions
2452 UpdateVelocityTable();
2453
2454 // jump to start of the wave pool indices (if not already there)
2455 if (file->pVersion && file->pVersion->major == 3)
2456 _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2457 else
2458 _3lnk->SetPos(44);
2459
2460 // load sample references (if auto loading is enabled)
2461 if (file->GetAutoLoad()) {
2462 for (uint i = 0; i < DimensionRegions; i++) {
2463 uint32_t wavepoolindex = _3lnk->ReadUint32();
2464 if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2465 }
2466 GetSample(); // load global region sample reference
2467 }
2468 } else {
2469 DimensionRegions = 0;
2470 for (int i = 0 ; i < 8 ; i++) {
2471 pDimensionDefinitions[i].dimension = dimension_none;
2472 pDimensionDefinitions[i].bits = 0;
2473 pDimensionDefinitions[i].zones = 0;
2474 }
2475 }
2476
2477 // make sure there is at least one dimension region
2478 if (!DimensionRegions) {
2479 RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
2480 if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
2481 RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
2482 pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
2483 DimensionRegions = 1;
2484 }
2485 }
2486
2487 /**
2488 * Apply Region settings and all its DimensionRegions to the respective
2489 * RIFF chunks. You have to call File::Save() to make changes persistent.
2490 *
2491 * Usually there is absolutely no need to call this method explicitly.
2492 * It will be called automatically when File::Save() was called.
2493 *
2494 * @throws gig::Exception if samples cannot be dereferenced
2495 */
2496 void Region::UpdateChunks() {
2497 // in the gig format we don't care about the Region's sample reference
2498 // but we still have to provide some existing one to not corrupt the
2499 // file, so to avoid the latter we simply always assign the sample of
2500 // the first dimension region of this region
2501 pSample = pDimensionRegions[0]->pSample;
2502
2503 // first update base class's chunks
2504 DLS::Region::UpdateChunks();
2505
2506 // update dimension region's chunks
2507 for (int i = 0; i < DimensionRegions; i++) {
2508 pDimensionRegions[i]->UpdateChunks();
2509 }
2510
2511 File* pFile = (File*) GetParent()->GetParent();
2512 bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
2513 const int iMaxDimensions = version3 ? 8 : 5;
2514 const int iMaxDimensionRegions = version3 ? 256 : 32;
2515
2516 // make sure '3lnk' chunk exists
2517 RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
2518 if (!_3lnk) {
2519 const int _3lnkChunkSize = version3 ? 1092 : 172;
2520 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
2521 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
2522
2523 // move 3prg to last position
2524 pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), 0);
2525 }
2526
2527 // update dimension definitions in '3lnk' chunk
2528 uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2529 store32(&pData[0], DimensionRegions);
2530 int shift = 0;
2531 for (int i = 0; i < iMaxDimensions; i++) {
2532 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
2533 pData[5 + i * 8] = pDimensionDefinitions[i].bits;
2534 pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
2535 pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
2536 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
2537 // next 3 bytes unknown, always zero?
2538
2539 shift += pDimensionDefinitions[i].bits;
2540 }
2541
2542 // update wave pool table in '3lnk' chunk
2543 const int iWavePoolOffset = version3 ? 68 : 44;
2544 for (uint i = 0; i < iMaxDimensionRegions; i++) {
2545 int iWaveIndex = -1;
2546 if (i < DimensionRegions) {
2547 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
2548 File::SampleList::iterator iter = pFile->pSamples->begin();
2549 File::SampleList::iterator end = pFile->pSamples->end();
2550 for (int index = 0; iter != end; ++iter, ++index) {
2551 if (*iter == pDimensionRegions[i]->pSample) {
2552 iWaveIndex = index;
2553 break;
2554 }
2555 }
2556 }
2557 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
2558 }
2559 }
2560
2561 void Region::LoadDimensionRegions(RIFF::List* rgn) {
2562 RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
2563 if (_3prg) {
2564 int dimensionRegionNr = 0;
2565 RIFF::List* _3ewl = _3prg->GetFirstSubList();
2566 while (_3ewl) {
2567 if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
2568 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
2569 dimensionRegionNr++;
2570 }
2571 _3ewl = _3prg->GetNextSubList();
2572 }
2573 if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
2574 }
2575 }
2576
2577 void Region::SetKeyRange(uint16_t Low, uint16_t High) {
2578 // update KeyRange struct and make sure regions are in correct order
2579 DLS::Region::SetKeyRange(Low, High);
2580 // update Region key table for fast lookup
2581 ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
2582 }
2583
2584 void Region::UpdateVelocityTable() {
2585 // get velocity dimension's index
2586 int veldim = -1;
2587 for (int i = 0 ; i < Dimensions ; i++) {
2588 if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
2589 veldim = i;
2590 break;
2591 }
2592 }
2593 if (veldim == -1) return;
2594
2595 int step = 1;
2596 for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
2597 int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
2598 int end = step * pDimensionDefinitions[veldim].zones;
2599
2600 // loop through all dimension regions for all dimensions except the velocity dimension
2601 int dim[8] = { 0 };
2602 for (int i = 0 ; i < DimensionRegions ; i++) {
2603
2604 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
2605 pDimensionRegions[i]->VelocityUpperLimit) {
2606 // create the velocity table
2607 uint8_t* table = pDimensionRegions[i]->VelocityTable;
2608 if (!table) {
2609 table = new uint8_t[128];
2610 pDimensionRegions[i]->VelocityTable = table;
2611 }
2612 int tableidx = 0;
2613 int velocityZone = 0;
2614 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
2615 for (int k = i ; k < end ; k += step) {
2616 DimensionRegion *d = pDimensionRegions[k];
2617 for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
2618 velocityZone++;
2619 }
2620 } else { // gig2
2621 for (int k = i ; k < end ; k += step) {
2622 DimensionRegion *d = pDimensionRegions[k];
2623 for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
2624 velocityZone++;
2625 }
2626 }
2627 } else {
2628 if (pDimensionRegions[i]->VelocityTable) {
2629 delete[] pDimensionRegions[i]->VelocityTable;
2630 pDimensionRegions[i]->VelocityTable = 0;
2631 }
2632 }
2633
2634 int j;
2635 int shift = 0;
2636 for (j = 0 ; j < Dimensions ; j++) {
2637 if (j == veldim) i += skipveldim; // skip velocity dimension
2638 else {
2639 dim[j]++;
2640 if (dim[j] < pDimensionDefinitions[j].zones) break;
2641 else {
2642 // skip unused dimension regions
2643 dim[j] = 0;
2644 i += ((1 << pDimensionDefinitions[j].bits) -
2645 pDimensionDefinitions[j].zones) << shift;
2646 }
2647 }
2648 shift += pDimensionDefinitions[j].bits;
2649 }
2650 if (j == Dimensions) break;
2651 }
2652 }
2653
2654 /** @brief Einstein would have dreamed of it - create a new dimension.
2655 *
2656 * Creates a new dimension with the dimension definition given by
2657 * \a pDimDef. The appropriate amount of DimensionRegions will be created.
2658 * There is a hard limit of dimensions and total amount of "bits" all
2659 * dimensions can have. This limit is dependant to what gig file format
2660 * version this file refers to. The gig v2 (and lower) format has a
2661 * dimension limit and total amount of bits limit of 5, whereas the gig v3
2662 * format has a limit of 8.
2663 *
2664 * @param pDimDef - defintion of the new dimension
2665 * @throws gig::Exception if dimension of the same type exists already
2666 * @throws gig::Exception if amount of dimensions or total amount of
2667 * dimension bits limit is violated
2668 */
2669 void Region::AddDimension(dimension_def_t* pDimDef) {
2670 // check if max. amount of dimensions reached
2671 File* file = (File*) GetParent()->GetParent();
2672 const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2673 if (Dimensions >= iMaxDimensions)
2674 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
2675 // check if max. amount of dimension bits reached
2676 int iCurrentBits = 0;
2677 for (int i = 0; i < Dimensions; i++)
2678 iCurrentBits += pDimensionDefinitions[i].bits;
2679 if (iCurrentBits >= iMaxDimensions)
2680 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
2681 const int iNewBits = iCurrentBits + pDimDef->bits;
2682 if (iNewBits > iMaxDimensions)
2683 throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
2684 // check if there's already a dimensions of the same type
2685 for (int i = 0; i < Dimensions; i++)
2686 if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
2687 throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
2688
2689 // pos is where the new dimension should be placed, normally
2690 // last in list, except for the samplechannel dimension which
2691 // has to be first in list
2692 int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
2693 int bitpos = 0;
2694 for (int i = 0 ; i < pos ; i++)
2695 bitpos += pDimensionDefinitions[i].bits;
2696
2697 // make room for the new dimension
2698 for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
2699 for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
2700 for (int j = Dimensions ; j > pos ; j--) {
2701 pDimensionRegions[i]->DimensionUpperLimits[j] =
2702 pDimensionRegions[i]->DimensionUpperLimits[j - 1];
2703 }
2704 }
2705
2706 // assign definition of new dimension
2707 pDimensionDefinitions[pos] = *pDimDef;
2708
2709 // auto correct certain dimension definition fields (where possible)
2710 pDimensionDefinitions[pos].split_type =
2711 __resolveSplitType(pDimensionDefinitions[pos].dimension);
2712 pDimensionDefinitions[pos].zone_size =
2713 __resolveZoneSize(pDimensionDefinitions[pos]);
2714
2715 // create new dimension region(s) for this new dimension, and make
2716 // sure that the dimension regions are placed correctly in both the
2717 // RIFF list and the pDimensionRegions array
2718 RIFF::Chunk* moveTo = NULL;
2719 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2720 for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
2721 for (int k = 0 ; k < (1 << bitpos) ; k++) {
2722 pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
2723 }
2724 for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
2725 for (int k = 0 ; k < (1 << bitpos) ; k++) {
2726 RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
2727 if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
2728 // create a new dimension region and copy all parameter values from
2729 // an existing dimension region
2730 pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
2731 new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
2732
2733 DimensionRegions++;
2734 }
2735 }
2736 moveTo = pDimensionRegions[i]->pParentList;
2737 }
2738
2739 // initialize the upper limits for this dimension
2740 int mask = (1 << bitpos) - 1;
2741 for (int z = 0 ; z < pDimDef->zones ; z++) {
2742 uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
2743 for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
2744 pDimensionRegions[((i & ~mask) << pDimDef->bits) |
2745 (z << bitpos) |
2746 (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
2747 }
2748 }
2749
2750 Dimensions++;
2751
2752 // if this is a layer dimension, update 'Layers' attribute
2753 if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
2754
2755 UpdateVelocityTable();
2756 }
2757
2758 /** @brief Delete an existing dimension.
2759 *
2760 * Deletes the dimension given by \a pDimDef and deletes all respective
2761 * dimension regions, that is all dimension regions where the dimension's
2762 * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
2763 * for example this would delete all dimension regions for the case(s)
2764 * where the sustain pedal is pressed down.
2765 *
2766 * @param pDimDef - dimension to delete
2767 * @throws gig::Exception if given dimension cannot be found
2768 */
2769 void Region::DeleteDimension(dimension_def_t* pDimDef) {
2770 // get dimension's index
2771 int iDimensionNr = -1;
2772 for (int i = 0; i < Dimensions; i++) {
2773 if (&pDimensionDefinitions[i] == pDimDef) {
2774 iDimensionNr = i;
2775 break;
2776 }
2777 }
2778 if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
2779
2780 // get amount of bits below the dimension to delete
2781 int iLowerBits = 0;
2782 for (int i = 0; i < iDimensionNr; i++)
2783 iLowerBits += pDimensionDefinitions[i].bits;
2784
2785 // get amount ot bits above the dimension to delete
2786 int iUpperBits = 0;
2787 for (int i = iDimensionNr + 1; i < Dimensions; i++)
2788 iUpperBits += pDimensionDefinitions[i].bits;
2789
2790 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2791
2792 // delete dimension regions which belong to the given dimension
2793 // (that is where the dimension's bit > 0)
2794 for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
2795 for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
2796 for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
2797 int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
2798 iObsoleteBit << iLowerBits |
2799 iLowerBit;
2800
2801 _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
2802 delete pDimensionRegions[iToDelete];
2803 pDimensionRegions[iToDelete] = NULL;
2804 DimensionRegions--;
2805 }
2806 }
2807 }
2808
2809 // defrag pDimensionRegions array
2810 // (that is remove the NULL spaces within the pDimensionRegions array)
2811 for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
2812 if (!pDimensionRegions[iTo]) {
2813 if (iFrom <= iTo) iFrom = iTo + 1;
2814 while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
2815 if (iFrom < 256 && pDimensionRegions[iFrom]) {
2816 pDimensionRegions[iTo] = pDimensionRegions[iFrom];
2817 pDimensionRegions[iFrom] = NULL;
2818 }
2819 }
2820 }
2821
2822 // remove the this dimension from the upper limits arrays
2823 for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
2824 DimensionRegion* d = pDimensionRegions[j];
2825 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2826 d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
2827 }
2828 d->DimensionUpperLimits[Dimensions - 1] = 127;
2829 }
2830
2831 // 'remove' dimension definition
2832 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2833 pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
2834 }
2835 pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
2836 pDimensionDefinitions[Dimensions - 1].bits = 0;
2837 pDimensionDefinitions[Dimensions - 1].zones = 0;
2838
2839 Dimensions--;
2840
2841 // if this was a layer dimension, update 'Layers' attribute
2842 if (pDimDef->dimension == dimension_layer) Layers = 1;
2843 }
2844
2845 Region::~Region() {
2846 for (int i = 0; i < 256; i++) {
2847 if (pDimensionRegions[i]) delete pDimensionRegions[i];
2848 }
2849 }
2850
2851 /**
2852 * Use this method in your audio engine to get the appropriate dimension
2853 * region with it's articulation data for the current situation. Just
2854 * call the method with the current MIDI controller values and you'll get
2855 * the DimensionRegion with the appropriate articulation data for the
2856 * current situation (for this Region of course only). To do that you'll
2857 * first have to look which dimensions with which controllers and in
2858 * which order are defined for this Region when you load the .gig file.
2859 * Special cases are e.g. layer or channel dimensions where you just put
2860 * in the index numbers instead of a MIDI controller value (means 0 for
2861 * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
2862 * etc.).
2863 *
2864 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
2865 * @returns adress to the DimensionRegion for the given situation
2866 * @see pDimensionDefinitions
2867 * @see Dimensions
2868 */
2869 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
2870 uint8_t bits;
2871 int veldim = -1;
2872 int velbitpos;
2873 int bitpos = 0;
2874 int dimregidx = 0;
2875 for (uint i = 0; i < Dimensions; i++) {
2876 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
2877 // the velocity dimension must be handled after the other dimensions
2878 veldim = i;
2879 velbitpos = bitpos;
2880 } else {
2881 switch (pDimensionDefinitions[i].split_type) {
2882 case split_type_normal:
2883 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
2884 // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
2885 for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
2886 if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
2887 }
2888 } else {
2889 // gig2: evenly sized zones
2890 bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
2891 }
2892 break;
2893 case split_type_bit: // the value is already the sought dimension bit number
2894 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
2895 bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
2896 break;
2897 }
2898 dimregidx |= bits << bitpos;
2899 }
2900 bitpos += pDimensionDefinitions[i].bits;
2901 }
2902 DimensionRegion* dimreg = pDimensionRegions[dimregidx];
2903 if (veldim != -1) {
2904 // (dimreg is now the dimension region for the lowest velocity)
2905 if (dimreg->VelocityTable) // custom defined zone ranges
2906 bits = dimreg->VelocityTable[DimValues[veldim]];
2907 else // normal split type
2908 bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);
2909
2910 dimregidx |= bits << velbitpos;
2911 dimreg = pDimensionRegions[dimregidx];
2912 }
2913 return dimreg;
2914 }
2915
2916 /**
2917 * Returns the appropriate DimensionRegion for the given dimension bit
2918 * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
2919 * instead of calling this method directly!
2920 *
2921 * @param DimBits Bit numbers for dimension 0 to 7
2922 * @returns adress to the DimensionRegion for the given dimension
2923 * bit numbers
2924 * @see GetDimensionRegionByValue()
2925 */
2926 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
2927 return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
2928 << pDimensionDefinitions[5].bits | DimBits[5])
2929 << pDimensionDefinitions[4].bits | DimBits[4])
2930 << pDimensionDefinitions[3].bits | DimBits[3])
2931 << pDimensionDefinitions[2].bits | DimBits[2])
2932 << pDimensionDefinitions[1].bits | DimBits[1])
2933 << pDimensionDefinitions[0].bits | DimBits[0]];
2934 }
2935
2936 /**
2937 * Returns pointer address to the Sample referenced with this region.
2938 * This is the global Sample for the entire Region (not sure if this is
2939 * actually used by the Gigasampler engine - I would only use the Sample
2940 * referenced by the appropriate DimensionRegion instead of this sample).
2941 *
2942 * @returns address to Sample or NULL if there is no reference to a
2943 * sample saved in the .gig file
2944 */
2945 Sample* Region::GetSample() {
2946 if (pSample) return static_cast<gig::Sample*>(pSample);
2947 else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
2948 }
2949
2950 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
2951 if ((int32_t)WavePoolTableIndex == -1) return NULL;
2952 File* file = (File*) GetParent()->GetParent();
2953 if (!file->pWavePoolTable) return NULL;
2954 unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
2955 unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
2956 Sample* sample = file->GetFirstSample(pProgress);
2957 while (sample) {
2958 if (sample->ulWavePoolOffset == soughtoffset &&
2959 sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
2960 sample = file->GetNextSample();
2961 }
2962 return NULL;
2963 }
2964
2965 /**
2966 * Make a (semi) deep copy of the Region object given by @a orig
2967 * and assign it to this object.
2968 *
2969 * Note that all sample pointers referenced by @a orig are simply copied as
2970 * memory address. Thus the respective samples are shared, not duplicated!
2971 *
2972 * @param orig - original Region object to be copied from
2973 */
2974 void Region::CopyAssign(const Region* orig) {
2975 // handle base classes
2976 DLS::Region::CopyAssign(orig);
2977
2978 // handle own member variables
2979 for (int i = Dimensions - 1; i >= 0; --i) {
2980 DeleteDimension(&pDimensionDefinitions[i]);
2981 }
2982 Layers = 0; // just to be sure
2983 for (int i = 0; i < orig->Dimensions; i++) {
2984 // we need to copy the dim definition here, to avoid the compiler
2985 // complaining about const-ness issue
2986 dimension_def_t def = orig->pDimensionDefinitions[i];
2987 AddDimension(&def);
2988 }
2989 for (int i = 0; i < 256; i++) {
2990 if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
2991 pDimensionRegions[i]->CopyAssign(
2992 orig->pDimensionRegions[i]
2993 );
2994 }
2995 }
2996 Layers = orig->Layers;
2997 }
2998
2999
3000 // *************** MidiRule ***************
3001 // *
3002
3003 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
3004 _3ewg->SetPos(36);
3005 Triggers = _3ewg->ReadUint8();
3006 _3ewg->SetPos(40);
3007 ControllerNumber = _3ewg->ReadUint8();
3008 _3ewg->SetPos(46);
3009 for (int i = 0 ; i < Triggers ; i++) {
3010 pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
3011 pTriggers[i].Descending = _3ewg->ReadUint8();
3012 pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
3013 pTriggers[i].Key = _3ewg->ReadUint8();
3014 pTriggers[i].NoteOff = _3ewg->ReadUint8();
3015 pTriggers[i].Velocity = _3ewg->ReadUint8();
3016 pTriggers[i].OverridePedal = _3ewg->ReadUint8();
3017 _3ewg->ReadUint8();
3018 }
3019 }
3020
3021
3022 // *************** Instrument ***************
3023 // *
3024
3025 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
3026 static const DLS::Info::string_length_t fixedStringLengths[] = {
3027 { CHUNK_ID_INAM, 64 },
3028 { CHUNK_ID_ISFT, 12 },
3029 { 0, 0 }
3030 };
3031 pInfo->SetFixedStringLengths(fixedStringLengths);
3032
3033 // Initialization
3034 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
3035 EffectSend = 0;
3036 Attenuation = 0;
3037 FineTune = 0;
3038 PitchbendRange = 0;
3039 PianoReleaseMode = false;
3040 DimensionKeyRange.low = 0;
3041 DimensionKeyRange.high = 0;
3042 pMidiRules = new MidiRule*[3];
3043 pMidiRules[0] = NULL;
3044
3045 // Loading
3046 RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
3047 if (lart) {
3048 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
3049 if (_3ewg) {
3050 EffectSend = _3ewg->ReadUint16();
3051 Attenuation = _3ewg->ReadInt32();
3052 FineTune = _3ewg->ReadInt16();
3053 PitchbendRange = _3ewg->ReadInt16();
3054 uint8_t dimkeystart = _3ewg->ReadUint8();
3055 PianoReleaseMode = dimkeystart & 0x01;
3056 DimensionKeyRange.low = dimkeystart >> 1;
3057 DimensionKeyRange.high = _3ewg->ReadUint8();
3058
3059 if (_3ewg->GetSize() > 32) {
3060 // read MIDI rules
3061 int i = 0;
3062 _3ewg->SetPos(32);
3063 uint8_t id1 = _3ewg->ReadUint8();
3064 uint8_t id2 = _3ewg->ReadUint8();
3065
3066 if (id1 == 4 && id2 == 16) {
3067 pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
3068 }
3069 //TODO: all the other types of rules
3070
3071 pMidiRules[i] = NULL;
3072 }
3073 }
3074 }
3075
3076 if (pFile->GetAutoLoad()) {
3077 if (!pRegions) pRegions = new RegionList;
3078 RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
3079 if (lrgn) {
3080 RIFF::List* rgn = lrgn->GetFirstSubList();
3081 while (rgn) {
3082 if (rgn->GetListType() == LIST_TYPE_RGN) {
3083 __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
3084 pRegions->push_back(new Region(this, rgn));
3085 }
3086 rgn = lrgn->GetNextSubList();
3087 }
3088 // Creating Region Key Table for fast lookup
3089 UpdateRegionKeyTable();
3090 }
3091 }
3092
3093 __notify_progress(pProgress, 1.0f); // notify done
3094 }
3095
3096 void Instrument::UpdateRegionKeyTable() {
3097 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
3098 RegionList::iterator iter = pRegions->begin();
3099 RegionList::iterator end = pRegions->end();
3100 for (; iter != end; ++iter) {
3101 gig::Region* pRegion = static_cast<gig::Region*>(*iter);
3102 for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
3103 RegionKeyTable[iKey] = pRegion;
3104 }
3105 }
3106 }
3107
3108 Instrument::~Instrument() {
3109 for (int i = 0 ; pMidiRules[i] ; i++) {
3110 delete pMidiRules[i];
3111 }
3112 delete[] pMidiRules;
3113 }
3114
3115 /**
3116 * Apply Instrument with all its Regions to the respective RIFF chunks.
3117 * You have to call File::Save() to make changes persistent.
3118 *
3119 * Usually there is absolutely no need to call this method explicitly.
3120 * It will be called automatically when File::Save() was called.
3121 *
3122 * @throws gig::Exception if samples cannot be dereferenced
3123 */
3124 void Instrument::UpdateChunks() {
3125 // first update base classes' chunks
3126 DLS::Instrument::UpdateChunks();
3127
3128 // update Regions' chunks
3129 {
3130 RegionList::iterator iter = pRegions->begin();
3131 RegionList::iterator end = pRegions->end();
3132 for (; iter != end; ++iter)
3133 (*iter)->UpdateChunks();
3134 }
3135
3136 // make sure 'lart' RIFF list chunk exists
3137 RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
3138 if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
3139 // make sure '3ewg' RIFF chunk exists
3140 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
3141 if (!_3ewg) {
3142 File* pFile = (File*) GetParent();
3143
3144 // 3ewg is bigger in gig3, as it includes the iMIDI rules
3145 int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
3146 _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
3147 memset(_3ewg->LoadChunkData(), 0, size);
3148 }
3149 // update '3ewg' RIFF chunk
3150 uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
3151 store16(&pData[0], EffectSend);
3152 store32(&pData[2], Attenuation);
3153 store16(&pData[6], FineTune);
3154 store16(&pData[8], PitchbendRange);
3155 const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
3156 DimensionKeyRange.low << 1;
3157 pData[10] = dimkeystart;
3158 pData[11] = DimensionKeyRange.high;
3159 }
3160
3161 /**
3162 * Returns the appropriate Region for a triggered note.
3163 *
3164 * @param Key MIDI Key number of triggered note / key (0 - 127)
3165 * @returns pointer adress to the appropriate Region or NULL if there
3166 * there is no Region defined for the given \a Key
3167 */
3168 Region* Instrument::GetRegion(unsigned int Key) {
3169 if (!pRegions || pRegions->empty() || Key > 127) return NULL;
3170 return RegionKeyTable[Key];
3171
3172 /*for (int i = 0; i < Regions; i++) {
3173 if (Key <= pRegions[i]->KeyRange.high &&
3174 Key >= pRegions[i]->KeyRange.low) return pRegions[i];
3175 }
3176 return NULL;*/
3177 }
3178
3179 /**
3180 * Returns the first Region of the instrument. You have to call this
3181 * method once before you use GetNextRegion().
3182 *
3183 * @returns pointer address to first region or NULL if there is none
3184 * @see GetNextRegion()
3185 */
3186 Region* Instrument::GetFirstRegion() {
3187 if (!pRegions) return NULL;
3188 RegionsIterator = pRegions->begin();
3189 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
3190 }
3191
3192 /**
3193 * Returns the next Region of the instrument. You have to call
3194 * GetFirstRegion() once before you can use this method. By calling this
3195 * method multiple times it iterates through the available Regions.
3196 *
3197 * @returns pointer address to the next region or NULL if end reached
3198 * @see GetFirstRegion()
3199 */
3200 Region* Instrument::GetNextRegion() {
3201 if (!pRegions) return NULL;
3202 RegionsIterator++;
3203 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
3204 }
3205
3206 Region* Instrument::AddRegion() {
3207 // create new Region object (and its RIFF chunks)
3208 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3209 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3210 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3211 Region* pNewRegion = new Region(this, rgn);
3212 pRegions->push_back(pNewRegion);
3213 Regions = pRegions->size();
3214 // update Region key table for fast lookup
3215 UpdateRegionKeyTable();
3216 // done
3217 return pNewRegion;
3218 }
3219
3220 void Instrument::DeleteRegion(Region* pRegion) {
3221 if (!pRegions) return;
3222 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
3223 // update Region key table for fast lookup
3224 UpdateRegionKeyTable();
3225 }
3226
3227 /**
3228 * Returns a MIDI rule of the instrument.
3229 *
3230 * The list of MIDI rules, at least in gig v3, always contains at
3231 * most two rules. The second rule can only be the DEF filter
3232 * (which currently isn't supported by libgig).
3233 *
3234 * @param i - MIDI rule number
3235 * @returns pointer address to MIDI rule number i or NULL if there is none
3236 */
3237 MidiRule* Instrument::GetMidiRule(int i) {
3238 return pMidiRules[i];
3239 }
3240
3241 /**
3242 * Make a (semi) deep copy of the Instrument object given by @a orig
3243 * and assign it to this object.
3244 *
3245 * Note that all sample pointers referenced by @a orig are simply copied as
3246 * memory address. Thus the respective samples are shared, not duplicated!
3247 *
3248 * @param orig - original Instrument object to be copied from
3249 */
3250 void Instrument::CopyAssign(const Instrument* orig) {
3251 // handle base class
3252 // (without copying DLS region stuff)
3253 DLS::Instrument::CopyAssignCore(orig);
3254
3255 // handle own member variables
3256 Attenuation = orig->Attenuation;
3257 EffectSend = orig->EffectSend;
3258 FineTune = orig->FineTune;
3259 PitchbendRange = orig->PitchbendRange;
3260 PianoReleaseMode = orig->PianoReleaseMode;
3261 DimensionKeyRange = orig->DimensionKeyRange;
3262
3263 // free old midi rules
3264 for (int i = 0 ; pMidiRules[i] ; i++) {
3265 delete pMidiRules[i];
3266 }
3267 //TODO: MIDI rule copying
3268 pMidiRules[0] = NULL;
3269
3270 // delete all old regions
3271 while (Regions) DeleteRegion(GetFirstRegion());
3272 // create new regions and copy them from original
3273 {
3274 RegionList::const_iterator it = orig->pRegions->begin();
3275 for (int i = 0; i < orig->Regions; ++i, ++it) {
3276 Region* dstRgn = AddRegion();
3277 //NOTE: Region does semi-deep copy !
3278 dstRgn->CopyAssign(
3279 static_cast<gig::Region*>(*it)
3280 );
3281 }
3282 }
3283
3284 UpdateRegionKeyTable();
3285 }
3286
3287
3288 // *************** Group ***************
3289 // *
3290
3291 /** @brief Constructor.
3292 *
3293 * @param file - pointer to the gig::File object
3294 * @param ck3gnm - pointer to 3gnm chunk associated with this group or
3295 * NULL if this is a new Group
3296 */
3297 Group::Group(File* file, RIFF::Chunk* ck3gnm) {
3298 pFile = file;
3299 pNameChunk = ck3gnm;
3300 ::LoadString(pNameChunk, Name);
3301 }
3302
3303 Group::~Group() {
3304 // remove the chunk associated with this group (if any)
3305 if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
3306 }
3307
3308 /** @brief Update chunks with current group settings.
3309 *
3310 * Apply current Group field values to the respective chunks. You have
3311 * to call File::Save() to make changes persistent.
3312 *
3313 * Usually there is absolutely no need to call this method explicitly.
3314 * It will be called automatically when File::Save() was called.
3315 */
3316 void Group::UpdateChunks() {
3317 // make sure <3gri> and <3gnl> list chunks exist
3318 RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
3319 if (!_3gri) {
3320 _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
3321 pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
3322 }
3323 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
3324 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
3325
3326 if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
3327 // v3 has a fixed list of 128 strings, find a free one
3328 for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
3329 if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
3330 pNameChunk = ck;
3331 break;
3332 }
3333 }
3334 }
3335
3336 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
3337 ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
3338 }
3339
3340 /**
3341 * Returns the first Sample of this Group. You have to call this method
3342 * once before you use GetNextSample().
3343 *
3344 * <b>Notice:</b> this method might block for a long time, in case the
3345 * samples of this .gig file were not scanned yet
3346 *
3347 * @returns pointer address to first Sample or NULL if there is none
3348 * applied to this Group
3349 * @see GetNextSample()
3350 */
3351 Sample* Group::GetFirstSample() {
3352 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
3353 for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
3354 if (pSample->GetGroup() == this) return pSample;
3355 }
3356 return NULL;
3357 }
3358
3359 /**
3360 * Returns the next Sample of the Group. You have to call
3361 * GetFirstSample() once before you can use this method. By calling this
3362 * method multiple times it iterates through the Samples assigned to
3363 * this Group.
3364 *
3365 * @returns pointer address to the next Sample of this Group or NULL if
3366 * end reached
3367 * @see GetFirstSample()
3368 */
3369 Sample* Group::GetNextSample() {
3370 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
3371 for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
3372 if (pSample->GetGroup() == this) return pSample;
3373 }
3374 return NULL;
3375 }
3376
3377 /**
3378 * Move Sample given by \a pSample from another Group to this Group.
3379 */
3380 void Group::AddSample(Sample* pSample) {
3381 pSample->pGroup = this;
3382 }
3383
3384 /**
3385 * Move all members of this group to another group (preferably the 1st
3386 * one except this). This method is called explicitly by
3387 * File::DeleteGroup() thus when a Group was deleted. This code was
3388 * intentionally not placed in the destructor!
3389 */
3390 void Group::MoveAll() {
3391 // get "that" other group first
3392 Group* pOtherGroup = NULL;
3393 for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
3394 if (pOtherGroup != this) break;
3395 }
3396 if (!pOtherGroup) throw Exception(
3397 "Could not move samples to another group, since there is no "
3398 "other Group. This is a bug, report it!"
3399 );
3400 // now move all samples of this group to the other group
3401 for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
3402 pOtherGroup->AddSample(pSample);
3403 }
3404 }
3405
3406
3407
3408 // *************** File ***************
3409 // *
3410
3411 /// Reflects Gigasampler file format version 2.0 (1998-06-28).
3412 const DLS::version_t File::VERSION_2 = {
3413 0, 2, 19980628 & 0xffff, 19980628 >> 16
3414 };
3415
3416 /// Reflects Gigasampler file format version 3.0 (2003-03-31).
3417 const DLS::version_t File::VERSION_3 = {
3418 0, 3, 20030331 & 0xffff, 20030331 >> 16
3419 };
3420
3421 static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
3422 { CHUNK_ID_IARL, 256 },
3423 { CHUNK_ID_IART, 128 },
3424 { CHUNK_ID_ICMS, 128 },
3425 { CHUNK_ID_ICMT, 1024 },
3426 { CHUNK_ID_ICOP, 128 },
3427 { CHUNK_ID_ICRD, 128 },
3428 { CHUNK_ID_IENG, 128 },
3429 { CHUNK_ID_IGNR, 128 },
3430 { CHUNK_ID_IKEY, 128 },
3431 { CHUNK_ID_IMED, 128 },
3432 { CHUNK_ID_INAM, 128 },
3433 { CHUNK_ID_IPRD, 128 },
3434 { CHUNK_ID_ISBJ, 128 },
3435 { CHUNK_ID_ISFT, 128 },
3436 { CHUNK_ID_ISRC, 128 },
3437 { CHUNK_ID_ISRF, 128 },
3438 { CHUNK_ID_ITCH, 128 },
3439 { 0, 0 }
3440 };
3441
3442 File::File() : DLS::File() {
3443 bAutoLoad = true;
3444 *pVersion = VERSION_3;
3445 pGroups = NULL;
3446 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
3447 pInfo->ArchivalLocation = String(256, ' ');
3448
3449 // add some mandatory chunks to get the file chunks in right
3450 // order (INFO chunk will be moved to first position later)
3451 pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
3452 pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
3453 pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
3454
3455 GenerateDLSID();
3456 }
3457
3458 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
3459 bAutoLoad = true;
3460 pGroups = NULL;
3461 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
3462 }
3463
3464 File::~File() {
3465 if (pGroups) {
3466 std::list<Group*>::iterator iter = pGroups->begin();
3467 std::list<Group*>::iterator end = pGroups->end();
3468 while (iter != end) {
3469 delete *iter;
3470 ++iter;
3471 }
3472 delete pGroups;
3473 }
3474 }
3475
3476 Sample* File::GetFirstSample(progress_t* pProgress) {
3477 if (!pSamples) LoadSamples(pProgress);
3478 if (!pSamples) return NULL;
3479 SamplesIterator = pSamples->begin();
3480 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
3481 }
3482
3483 Sample* File::GetNextSample() {
3484 if (!pSamples) return NULL;
3485 SamplesIterator++;
3486 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
3487 }
3488
3489 /** @brief Add a new sample.
3490 *
3491 * This will create a new Sample object for the gig file. You have to
3492 * call Save() to make this persistent to the file.
3493 *
3494 * @returns pointer to new Sample object
3495 */
3496 Sample* File::AddSample() {
3497 if (!pSamples) LoadSamples();
3498 __ensureMandatoryChunksExist();
3499 RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
3500 // create new Sample object and its respective 'wave' list chunk
3501 RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
3502 Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
3503
3504 // add mandatory chunks to get the chunks in right order
3505 wave->AddSubChunk(CHUNK_ID_FMT, 16);
3506 wave->AddSubList(LIST_TYPE_INFO);
3507
3508 pSamples->push_back(pSample);
3509 return pSample;
3510 }
3511
3512 /** @brief Delete a sample.
3513 *
3514 * This will delete the given Sample object from the gig file. Any
3515 * references to this sample from Regions and DimensionRegions will be
3516 * removed. You have to call Save() to make this persistent to the file.
3517 *
3518 * @param pSample - sample to delete
3519 * @throws gig::Exception if given sample could not be found
3520 */
3521 void File::DeleteSample(Sample* pSample) {
3522 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
3523 SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
3524 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
3525 if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
3526 pSamples->erase(iter);
3527 delete pSample;
3528
3529 SampleList::iterator tmp = SamplesIterator;
3530 // remove all references to the sample
3531 for (Instrument* instrument = GetFirstInstrument() ; instrument ;
3532 instrument = GetNextInstrument()) {
3533 for (Region* region = instrument->GetFirstRegion() ; region ;
3534 region = instrument->GetNextRegion()) {
3535
3536 if (region->GetSample() == pSample) region->SetSample(NULL);
3537
3538 for (int i = 0 ; i < region->DimensionRegions ; i++) {
3539 gig::DimensionRegion *d = region->pDimensionRegions[i];
3540 if (d->pSample == pSample) d->pSample = NULL;
3541 }
3542 }
3543 }
3544 SamplesIterator = tmp; // restore iterator
3545 }
3546
3547 void File::LoadSamples() {
3548 LoadSamples(NULL);
3549 }
3550
3551 void File::LoadSamples(progress_t* pProgress) {
3552 // Groups must be loaded before samples, because samples will try
3553 // to resolve the group they belong to
3554 if (!pGroups) LoadGroups();
3555
3556 if (!pSamples) pSamples = new SampleList;
3557
3558 RIFF::File* file = pRIFF;
3559
3560 // just for progress calculation
3561 int iSampleIndex = 0;
3562 int iTotalSamples = WavePoolCount;
3563
3564 // check if samples should be loaded from extension files
3565 int lastFileNo = 0;
3566 for (int i = 0 ; i < WavePoolCount ; i++) {
3567 if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
3568 }
3569 String name(pRIFF->GetFileName());
3570 int nameLen = name.length();
3571 char suffix[6];
3572 if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
3573
3574 for (int fileNo = 0 ; ; ) {
3575 RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
3576 if (wvpl) {
3577 unsigned long wvplFileOffset = wvpl->GetFilePos();
3578 RIFF::List* wave = wvpl->GetFirstSubList();
3579 while (wave) {
3580 if (wave->GetListType() == LIST_TYPE_WAVE) {
3581 // notify current progress
3582 const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
3583 __notify_progress(pProgress, subprogress);
3584
3585 unsigned long waveFileOffset = wave->GetFilePos();
3586 pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));
3587
3588 iSampleIndex++;
3589 }
3590 wave = wvpl->GetNextSubList();
3591 }
3592
3593 if (fileNo == lastFileNo) break;
3594
3595 // open extension file (*.gx01, *.gx02, ...)
3596 fileNo++;
3597 sprintf(suffix, ".gx%02d", fileNo);
3598 name.replace(nameLen, 5, suffix);
3599 file = new RIFF::File(name);
3600 ExtensionFiles.push_back(file);
3601 } else break;
3602 }
3603
3604 __notify_progress(pProgress, 1.0); // notify done
3605 }
3606
3607 Instrument* File::GetFirstInstrument() {
3608 if (!pInstruments) LoadInstruments();
3609 if (!pInstruments) return NULL;
3610 InstrumentsIterator = pInstruments->begin();
3611 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
3612 }
3613
3614 Instrument* File::GetNextInstrument() {
3615 if (!pInstruments) return NULL;
3616 InstrumentsIterator++;
3617 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
3618 }
3619
3620 /**
3621 * Returns the instrument with the given index.
3622 *
3623 * @param index - number of the sought instrument (0..n)
3624 * @param pProgress - optional: callback function for progress notification
3625 * @returns sought instrument or NULL if there's no such instrument
3626 */
3627 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
3628 if (!pInstruments) {
3629 // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
3630
3631 // sample loading subtask
3632 progress_t subprogress;
3633 __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
3634 __notify_progress(&subprogress, 0.0f);
3635 if (GetAutoLoad())
3636 GetFirstSample(&subprogress); // now force all samples to be loaded
3637 __notify_progress(&subprogress, 1.0f);
3638
3639 // instrument loading subtask
3640 if (pProgress && pProgress->callback) {
3641 subprogress.__range_min = subprogress.__range_max;
3642 subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
3643 }
3644 __notify_progress(&subprogress, 0.0f);
3645 LoadInstruments(&subprogress);
3646 __notify_progress(&subprogress, 1.0f);
3647 }
3648 if (!pInstruments) return NULL;
3649 InstrumentsIterator = pInstruments->begin();
3650 for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
3651 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
3652 InstrumentsIterator++;
3653 }
3654 return NULL;
3655 }
3656
3657 /** @brief Add a new instrument definition.
3658 *
3659 * This will create a new Instrument object for the gig file. You have
3660 * to call Save() to make this persistent to the file.
3661 *
3662 * @returns pointer to new Instrument object
3663 */
3664 Instrument* File::AddInstrument() {
3665 if (!pInstruments) LoadInstruments();
3666 __ensureMandatoryChunksExist();
3667 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3668 RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
3669
3670 // add mandatory chunks to get the chunks in right order
3671 lstInstr->AddSubList(LIST_TYPE_INFO);
3672 lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
3673
3674 Instrument* pInstrument = new Instrument(this, lstInstr);
3675 pInstrument->GenerateDLSID();
3676
3677 lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
3678
3679 // this string is needed for the gig to be loadable in GSt:
3680 pInstrument->pInfo->Software = "Endless Wave";
3681
3682 pInstruments->push_back(pInstrument);
3683 return pInstrument;
3684 }
3685
3686 /** @brief Add a duplicate of an existing instrument.
3687 *
3688 * Duplicates the instrument definition given by @a orig and adds it
3689 * to this file. This allows in an instrument editor application to
3690 * easily create variations of an instrument, which will be stored in
3691 * the same .gig file, sharing i.e. the same samples.
3692 *
3693 * Note that all sample pointers referenced by @a orig are simply copied as
3694 * memory address. Thus the respective samples are shared, not duplicated!
3695 *
3696 * You have to call Save() to make this persistent to the file.
3697 *
3698 * @param orig - original instrument to be copied
3699 * @returns duplicated copy of the given instrument
3700 */
3701 Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
3702 Instrument* instr = AddInstrument();
3703 instr->CopyAssign(orig);
3704 return instr;
3705 }
3706
3707 /** @brief Delete an instrument.
3708 *
3709 * This will delete the given Instrument object from the gig file. You
3710 * have to call Save() to make this persistent to the file.
3711 *
3712 * @param pInstrument - instrument to delete
3713 * @throws gig::Exception if given instrument could not be found
3714 */
3715 void File::DeleteInstrument(Instrument* pInstrument) {
3716 if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
3717 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
3718 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
3719 pInstruments->erase(iter);
3720 delete pInstrument;
3721 }
3722
3723 void File::LoadInstruments() {
3724 LoadInstruments(NULL);
3725 }
3726
3727 void File::LoadInstruments(progress_t* pProgress) {
3728 if (!pInstruments) pInstruments = new InstrumentList;
3729 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
3730 if (lstInstruments) {
3731 int iInstrumentIndex = 0;
3732 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
3733 while (lstInstr) {
3734 if (lstInstr->GetListType() == LIST_TYPE_INS) {
3735 // notify current progress
3736 const float localProgress = (float) iInstrumentIndex / (float) Instruments;
3737 __notify_progress(pProgress, localProgress);
3738
3739 // divide local progress into subprogress for loading current Instrument
3740 progress_t subprogress;
3741 __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
3742
3743 pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
3744
3745 iInstrumentIndex++;
3746 }
3747 lstInstr = lstInstruments->GetNextSubList();
3748 }
3749 __notify_progress(pProgress, 1.0); // notify done
3750 }
3751 }
3752
3753 /// Updates the 3crc chunk with the checksum of a sample. The
3754 /// update is done directly to disk, as this method is called
3755 /// after File::Save()
3756 void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
3757 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
3758 if (!_3crc) return;
3759
3760 // get the index of the sample
3761 int iWaveIndex = -1;
3762 File::SampleList::iterator iter = pSamples->begin();
3763 File::SampleList::iterator end = pSamples->end();
3764 for (int index = 0; iter != end; ++iter, ++index) {
3765 if (*iter == pSample) {
3766 iWaveIndex = index;
3767 break;
3768 }
3769 }
3770 if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
3771
3772 // write the CRC-32 checksum to disk
3773 _3crc->SetPos(iWaveIndex * 8);
3774 uint32_t tmp = 1;
3775 _3crc->WriteUint32(&tmp); // unknown, always 1?
3776 _3crc->WriteUint32(&crc);
3777 }
3778
3779 Group* File::GetFirstGroup() {
3780 if (!pGroups) LoadGroups();
3781 // there must always be at least one group
3782 GroupsIterator = pGroups->begin();
3783 return *GroupsIterator;
3784 }
3785
3786 Group* File::GetNextGroup() {
3787 if (!pGroups) return NULL;
3788 ++GroupsIterator;
3789 return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
3790 }
3791
3792 /**
3793 * Returns the group with the given index.
3794 *
3795 * @param index - number of the sought group (0..n)
3796 * @returns sought group or NULL if there's no such group
3797 */
3798 Group* File::GetGroup(uint index) {
3799 if (!pGroups) LoadGroups();
3800 GroupsIterator = pGroups->begin();
3801 for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
3802 if (i == index) return *GroupsIterator;
3803 ++GroupsIterator;
3804 }
3805 return NULL;
3806 }
3807
3808 Group* File::AddGroup() {
3809 if (!pGroups) LoadGroups();
3810 // there must always be at least one group
3811 __ensureMandatoryChunksExist();
3812 Group* pGroup = new Group(this, NULL);
3813 pGroups->push_back(pGroup);
3814 return pGroup;
3815 }
3816
3817 /** @brief Delete a group and its samples.
3818 *
3819 * This will delete the given Group object and all the samples that
3820 * belong to this group from the gig file. You have to call Save() to
3821 * make this persistent to the file.
3822 *
3823 * @param pGroup - group to delete
3824 * @throws gig::Exception if given group could not be found
3825 */
3826 void File::DeleteGroup(Group* pGroup) {
3827 if (!pGroups) LoadGroups();
3828 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3829 if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3830 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3831 // delete all members of this group
3832 for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
3833 DeleteSample(pSample);
3834 }
3835 // now delete this group object
3836 pGroups->erase(iter);
3837 delete pGroup;
3838 }
3839
3840 /** @brief Delete a group.
3841 *
3842 * This will delete the given Group object from the gig file. All the
3843 * samples that belong to this group will not be deleted, but instead
3844 * be moved to another group. You have to call Save() to make this
3845 * persistent to the file.
3846 *
3847 * @param pGroup - group to delete
3848 * @throws gig::Exception if given group could not be found
3849 */
3850 void File::DeleteGroupOnly(Group* pGroup) {
3851 if (!pGroups) LoadGroups();
3852 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
3853 if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
3854 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
3855 // move all members of this group to another group
3856 pGroup->MoveAll();
3857 pGroups->erase(iter);
3858 delete pGroup;
3859 }
3860
3861 void File::LoadGroups() {
3862 if (!pGroups) pGroups = new std::list<Group*>;
3863 // try to read defined groups from file
3864 RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
3865 if (lst3gri) {
3866 RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
3867 if (lst3gnl) {
3868 RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
3869 while (ck) {
3870 if (ck->GetChunkID() == CHUNK_ID_3GNM) {
3871 if (pVersion && pVersion->major == 3 &&
3872 strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
3873
3874 pGroups->push_back(new Group(this, ck));
3875 }
3876 ck = lst3gnl->GetNextSubChunk();
3877 }
3878 }
3879 }
3880 // if there were no group(s), create at least the mandatory default group
3881 if (!pGroups->size()) {
3882 Group* pGroup = new Group(this, NULL);
3883 pGroup->Name = "Default Group";
3884 pGroups->push_back(pGroup);
3885 }
3886 }
3887
3888 /**
3889 * Apply all the gig file's current instruments, samples, groups and settings
3890 * to the respective RIFF chunks. You have to call Save() to make changes
3891 * persistent.
3892 *
3893 * Usually there is absolutely no need to call this method explicitly.
3894 * It will be called automatically when File::Save() was called.
3895 *
3896 * @throws Exception - on errors
3897 */
3898 void File::UpdateChunks() {
3899 bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
3900
3901 b64BitWavePoolOffsets = pVersion && pVersion->major == 3;
3902
3903 // first update base class's chunks
3904 DLS::File::UpdateChunks();
3905
3906 if (newFile) {
3907 // INFO was added by Resource::UpdateChunks - make sure it
3908 // is placed first in file
3909 RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
3910 RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
3911 if (first != info) {
3912 pRIFF->MoveSubChunk(info, first);
3913 }
3914 }
3915
3916 // update group's chunks
3917 if (pGroups) {
3918 std::list<Group*>::iterator iter = pGroups->begin();
3919 std::list<Group*>::iterator end = pGroups->end();
3920 for (; iter != end; ++iter) {
3921 (*iter)->UpdateChunks();
3922 }
3923
3924 // v3: make sure the file has 128 3gnm chunks
3925 if (pVersion && pVersion->major == 3) {
3926 RIFF::List* _3gnl = pRIFF->GetSubList(LIST_TYPE_3GRI)->GetSubList(LIST_TYPE_3GNL);
3927 RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
3928 for (int i = 0 ; i < 128 ; i++) {
3929 if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
3930 if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
3931 }
3932 }
3933 }
3934
3935 // update einf chunk
3936
3937 // The einf chunk contains statistics about the gig file, such
3938 // as the number of regions and samples used by each
3939 // instrument. It is divided in equally sized parts, where the
3940 // first part contains information about the whole gig file,
3941 // and the rest of the parts map to each instrument in the
3942 // file.
3943 //
3944 // At the end of each part there is a bit map of each sample
3945 // in the file, where a set bit means that the sample is used
3946 // by the file/instrument.
3947 //
3948 // Note that there are several fields with unknown use. These
3949 // are set to zero.
3950
3951 int sublen = pSamples->size() / 8 + 49;
3952 int einfSize = (Instruments + 1) * sublen;
3953
3954 RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
3955 if (einf) {
3956 if (einf->GetSize() != einfSize) {
3957 einf->Resize(einfSize);
3958 memset(einf->LoadChunkData(), 0, einfSize);
3959 }
3960 } else if (newFile) {
3961 einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
3962 }
3963 if (einf) {
3964 uint8_t* pData = (uint8_t*) einf->LoadChunkData();
3965
3966 std::map<gig::Sample*,int> sampleMap;
3967 int sampleIdx = 0;
3968 for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
3969 sampleMap[pSample] = sampleIdx++;
3970 }
3971
3972 int totnbusedsamples = 0;
3973 int totnbusedchannels = 0;
3974 int totnbregions = 0;
3975 int totnbdimregions = 0;
3976 int totnbloops = 0;
3977 int instrumentIdx = 0;
3978
3979 memset(&pData[48], 0, sublen - 48);
3980
3981 for (Instrument* instrument = GetFirstInstrument() ; instrument ;
3982 instrument = GetNextInstrument()) {
3983 int nbusedsamples = 0;
3984 int nbusedchannels = 0;
3985 int nbdimregions = 0;
3986 int nbloops = 0;
3987
3988 memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
3989
3990 for (Region* region = instrument->GetFirstRegion() ; region ;
3991 region = instrument->GetNextRegion()) {
3992 for (int i = 0 ; i < region->DimensionRegions ; i++) {
3993 gig::DimensionRegion *d = region->pDimensionRegions[i];
3994 if (d->pSample) {
3995 int sampleIdx = sampleMap[d->pSample];
3996 int byte = 48 + sampleIdx / 8;
3997 int bit = 1 << (sampleIdx & 7);
3998 if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
3999 pData[(instrumentIdx + 1) * sublen + byte] |= bit;
4000 nbusedsamples++;
4001 nbusedchannels += d->pSample->Channels;
4002
4003 if ((pData[byte] & bit) == 0) {
4004 pData[byte] |= bit;
4005 totnbusedsamples++;
4006 totnbusedchannels += d->pSample->Channels;
4007 }
4008 }
4009 }
4010 if (d->SampleLoops) nbloops++;
4011 }
4012 nbdimregions += region->DimensionRegions;
4013 }
4014 // first 4 bytes unknown - sometimes 0, sometimes length of einf part
4015 // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
4016 store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
4017 store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
4018 store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
4019 store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
4020 store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
4021 store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
4022 // next 8 bytes unknown
4023 store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
4024 store32(&pData[(instrumentIdx + 1) * sublen + 40], pSamples->size());
4025 // next 4 bytes unknown
4026
4027 totnbregions += instrument->Regions;
4028 totnbdimregions += nbdimregions;
4029 totnbloops += nbloops;
4030 instrumentIdx++;
4031 }
4032 // first 4 bytes unknown - sometimes 0, sometimes length of einf part
4033 // store32(&pData[0], sublen);
4034 store32(&pData[4], totnbusedchannels);
4035 store32(&pData[8], totnbusedsamples);
4036 store32(&pData[12], Instruments);
4037 store32(&pData[16], totnbregions);
4038 store32(&pData[20], totnbdimregions);
4039 store32(&pData[24], totnbloops);
4040 // next 8 bytes unknown
4041 // next 4 bytes unknown, not always 0
4042 store32(&pData[40], pSamples->size());
4043 // next 4 bytes unknown
4044 }
4045
4046 // update 3crc chunk
4047
4048 // The 3crc chunk contains CRC-32 checksums for the
4049 // samples. The actual checksum values will be filled in
4050 // later, by Sample::Write.
4051
4052 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
4053 if (_3crc) {
4054 _3crc->Resize(pSamples->size() * 8);
4055 } else if (newFile) {
4056 _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
4057 _3crc->LoadChunkData();
4058
4059 // the order of einf and 3crc is not the same in v2 and v3
4060 if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
4061 }
4062 }
4063
4064 /**
4065 * Enable / disable automatic loading. By default this properyt is
4066 * enabled and all informations are loaded automatically. However
4067 * loading all Regions, DimensionRegions and especially samples might
4068 * take a long time for large .gig files, and sometimes one might only
4069 * be interested in retrieving very superficial informations like the
4070 * amount of instruments and their names. In this case one might disable
4071 * automatic loading to avoid very slow response times.
4072 *
4073 * @e CAUTION: by disabling this property many pointers (i.e. sample
4074 * references) and informations will have invalid or even undefined
4075 * data! This feature is currently only intended for retrieving very
4076 * superficial informations in a very fast way. Don't use it to retrieve
4077 * details like synthesis informations or even to modify .gig files!
4078 */
4079 void File::SetAutoLoad(bool b) {
4080 bAutoLoad = b;
4081 }
4082
4083 /**
4084 * Returns whether automatic loading is enabled.
4085 * @see SetAutoLoad()
4086 */
4087 bool File::GetAutoLoad() {
4088 return bAutoLoad;
4089 }
4090
4091
4092
4093 // *************** Exception ***************
4094 // *
4095
4096 Exception::Exception(String Message) : DLS::Exception(Message) {
4097 }
4098
4099 void Exception::PrintMessage() {
4100 std::cout << "gig::Exception: " << Message << std::endl;
4101 }
4102
4103
4104 // *************** functions ***************
4105 // *
4106
4107 /**
4108 * Returns the name of this C++ library. This is usually "libgig" of
4109 * course. This call is equivalent to RIFF::libraryName() and
4110 * DLS::libraryName().
4111 */
4112 String libraryName() {
4113 return PACKAGE;
4114 }
4115
4116 /**
4117 * Returns version of this C++ library. This call is equivalent to
4118 * RIFF::libraryVersion() and DLS::libraryVersion().
4119 */
4120 String libraryVersion() {
4121 return VERSION;
4122 }
4123
4124 } // namespace gig

  ViewVC Help
Powered by ViewVC