/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Contents of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 2482 - (show annotations) (download)
Mon Nov 25 02:22:38 2013 UTC (10 years, 4 months ago) by schoenebeck
File size: 195665 byte(s)
* Added new command line tool "gigmerge" which allows to merge
  a list of gig files to one single gig file.
* Added new "man" page for new tool "gigmerge".
* src/gig.h: Added new method File::AddContentOf().
* src/DLS.h: Added new method File::SetFileName().
* src/RIFF.h: Added new method File::SetFileName().
* src/RIFF.h: Added new method File::IsNew().
* Added "const" keyword to several methods.
* Bumped version to 3.3.0.svn6.

1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file access library *
4 * *
5 * Copyright (C) 2003-2013 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #include "gig.h"
25
26 #include "helper.h"
27
28 #include <algorithm>
29 #include <math.h>
30 #include <iostream>
31
32 /// Initial size of the sample buffer which is used for decompression of
33 /// compressed sample wave streams - this value should always be bigger than
34 /// the biggest sample piece expected to be read by the sampler engine,
35 /// otherwise the buffer size will be raised at runtime and thus the buffer
36 /// reallocated which is time consuming and unefficient.
37 #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
38
39 /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
40 #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
41 #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
42 #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
43 #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
44 #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
45 #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
46 #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
47 #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
48 #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
49 #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
50 #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
51 #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
52
53 namespace gig {
54
55 // *************** progress_t ***************
56 // *
57
58 progress_t::progress_t() {
59 callback = NULL;
60 custom = NULL;
61 __range_min = 0.0f;
62 __range_max = 1.0f;
63 }
64
65 // private helper function to convert progress of a subprocess into the global progress
66 static void __notify_progress(progress_t* pProgress, float subprogress) {
67 if (pProgress && pProgress->callback) {
68 const float totalrange = pProgress->__range_max - pProgress->__range_min;
69 const float totalprogress = pProgress->__range_min + subprogress * totalrange;
70 pProgress->factor = totalprogress;
71 pProgress->callback(pProgress); // now actually notify about the progress
72 }
73 }
74
75 // private helper function to divide a progress into subprogresses
76 static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
77 if (pParentProgress && pParentProgress->callback) {
78 const float totalrange = pParentProgress->__range_max - pParentProgress->__range_min;
79 pSubProgress->callback = pParentProgress->callback;
80 pSubProgress->custom = pParentProgress->custom;
81 pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
82 pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
83 }
84 }
85
86
87 // *************** Internal functions for sample decompression ***************
88 // *
89
90 namespace {
91
92 inline int get12lo(const unsigned char* pSrc)
93 {
94 const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
95 return x & 0x800 ? x - 0x1000 : x;
96 }
97
98 inline int get12hi(const unsigned char* pSrc)
99 {
100 const int x = pSrc[1] >> 4 | pSrc[2] << 4;
101 return x & 0x800 ? x - 0x1000 : x;
102 }
103
104 inline int16_t get16(const unsigned char* pSrc)
105 {
106 return int16_t(pSrc[0] | pSrc[1] << 8);
107 }
108
109 inline int get24(const unsigned char* pSrc)
110 {
111 const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
112 return x & 0x800000 ? x - 0x1000000 : x;
113 }
114
115 inline void store24(unsigned char* pDst, int x)
116 {
117 pDst[0] = x;
118 pDst[1] = x >> 8;
119 pDst[2] = x >> 16;
120 }
121
122 void Decompress16(int compressionmode, const unsigned char* params,
123 int srcStep, int dstStep,
124 const unsigned char* pSrc, int16_t* pDst,
125 unsigned long currentframeoffset,
126 unsigned long copysamples)
127 {
128 switch (compressionmode) {
129 case 0: // 16 bit uncompressed
130 pSrc += currentframeoffset * srcStep;
131 while (copysamples) {
132 *pDst = get16(pSrc);
133 pDst += dstStep;
134 pSrc += srcStep;
135 copysamples--;
136 }
137 break;
138
139 case 1: // 16 bit compressed to 8 bit
140 int y = get16(params);
141 int dy = get16(params + 2);
142 while (currentframeoffset) {
143 dy -= int8_t(*pSrc);
144 y -= dy;
145 pSrc += srcStep;
146 currentframeoffset--;
147 }
148 while (copysamples) {
149 dy -= int8_t(*pSrc);
150 y -= dy;
151 *pDst = y;
152 pDst += dstStep;
153 pSrc += srcStep;
154 copysamples--;
155 }
156 break;
157 }
158 }
159
160 void Decompress24(int compressionmode, const unsigned char* params,
161 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
162 unsigned long currentframeoffset,
163 unsigned long copysamples, int truncatedBits)
164 {
165 int y, dy, ddy, dddy;
166
167 #define GET_PARAMS(params) \
168 y = get24(params); \
169 dy = y - get24((params) + 3); \
170 ddy = get24((params) + 6); \
171 dddy = get24((params) + 9)
172
173 #define SKIP_ONE(x) \
174 dddy -= (x); \
175 ddy -= dddy; \
176 dy = -dy - ddy; \
177 y += dy
178
179 #define COPY_ONE(x) \
180 SKIP_ONE(x); \
181 store24(pDst, y << truncatedBits); \
182 pDst += dstStep
183
184 switch (compressionmode) {
185 case 2: // 24 bit uncompressed
186 pSrc += currentframeoffset * 3;
187 while (copysamples) {
188 store24(pDst, get24(pSrc) << truncatedBits);
189 pDst += dstStep;
190 pSrc += 3;
191 copysamples--;
192 }
193 break;
194
195 case 3: // 24 bit compressed to 16 bit
196 GET_PARAMS(params);
197 while (currentframeoffset) {
198 SKIP_ONE(get16(pSrc));
199 pSrc += 2;
200 currentframeoffset--;
201 }
202 while (copysamples) {
203 COPY_ONE(get16(pSrc));
204 pSrc += 2;
205 copysamples--;
206 }
207 break;
208
209 case 4: // 24 bit compressed to 12 bit
210 GET_PARAMS(params);
211 while (currentframeoffset > 1) {
212 SKIP_ONE(get12lo(pSrc));
213 SKIP_ONE(get12hi(pSrc));
214 pSrc += 3;
215 currentframeoffset -= 2;
216 }
217 if (currentframeoffset) {
218 SKIP_ONE(get12lo(pSrc));
219 currentframeoffset--;
220 if (copysamples) {
221 COPY_ONE(get12hi(pSrc));
222 pSrc += 3;
223 copysamples--;
224 }
225 }
226 while (copysamples > 1) {
227 COPY_ONE(get12lo(pSrc));
228 COPY_ONE(get12hi(pSrc));
229 pSrc += 3;
230 copysamples -= 2;
231 }
232 if (copysamples) {
233 COPY_ONE(get12lo(pSrc));
234 }
235 break;
236
237 case 5: // 24 bit compressed to 8 bit
238 GET_PARAMS(params);
239 while (currentframeoffset) {
240 SKIP_ONE(int8_t(*pSrc++));
241 currentframeoffset--;
242 }
243 while (copysamples) {
244 COPY_ONE(int8_t(*pSrc++));
245 copysamples--;
246 }
247 break;
248 }
249 }
250
251 const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
252 const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
253 const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
254 const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
255 }
256
257
258
259 // *************** Internal CRC-32 (Cyclic Redundancy Check) functions ***************
260 // *
261
262 static uint32_t* __initCRCTable() {
263 static uint32_t res[256];
264
265 for (int i = 0 ; i < 256 ; i++) {
266 uint32_t c = i;
267 for (int j = 0 ; j < 8 ; j++) {
268 c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
269 }
270 res[i] = c;
271 }
272 return res;
273 }
274
275 static const uint32_t* __CRCTable = __initCRCTable();
276
277 /**
278 * Initialize a CRC variable.
279 *
280 * @param crc - variable to be initialized
281 */
282 inline static void __resetCRC(uint32_t& crc) {
283 crc = 0xffffffff;
284 }
285
286 /**
287 * Used to calculate checksums of the sample data in a gig file. The
288 * checksums are stored in the 3crc chunk of the gig file and
289 * automatically updated when a sample is written with Sample::Write().
290 *
291 * One should call __resetCRC() to initialize the CRC variable to be
292 * used before calling this function the first time.
293 *
294 * After initializing the CRC variable one can call this function
295 * arbitrary times, i.e. to split the overall CRC calculation into
296 * steps.
297 *
298 * Once the whole data was processed by __calculateCRC(), one should
299 * call __encodeCRC() to get the final CRC result.
300 *
301 * @param buf - pointer to data the CRC shall be calculated of
302 * @param bufSize - size of the data to be processed
303 * @param crc - variable the CRC sum shall be stored to
304 */
305 static void __calculateCRC(unsigned char* buf, int bufSize, uint32_t& crc) {
306 for (int i = 0 ; i < bufSize ; i++) {
307 crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
308 }
309 }
310
311 /**
312 * Returns the final CRC result.
313 *
314 * @param crc - variable previously passed to __calculateCRC()
315 */
316 inline static uint32_t __encodeCRC(const uint32_t& crc) {
317 return crc ^ 0xffffffff;
318 }
319
320
321
322 // *************** Other Internal functions ***************
323 // *
324
325 static split_type_t __resolveSplitType(dimension_t dimension) {
326 return (
327 dimension == dimension_layer ||
328 dimension == dimension_samplechannel ||
329 dimension == dimension_releasetrigger ||
330 dimension == dimension_keyboard ||
331 dimension == dimension_roundrobin ||
332 dimension == dimension_random ||
333 dimension == dimension_smartmidi ||
334 dimension == dimension_roundrobinkeyboard
335 ) ? split_type_bit : split_type_normal;
336 }
337
338 static int __resolveZoneSize(dimension_def_t& dimension_definition) {
339 return (dimension_definition.split_type == split_type_normal)
340 ? int(128.0 / dimension_definition.zones) : 0;
341 }
342
343
344
345 // *************** Sample ***************
346 // *
347
348 unsigned int Sample::Instances = 0;
349 buffer_t Sample::InternalDecompressionBuffer;
350
351 /** @brief Constructor.
352 *
353 * Load an existing sample or create a new one. A 'wave' list chunk must
354 * be given to this constructor. In case the given 'wave' list chunk
355 * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
356 * format and sample data will be loaded from there, otherwise default
357 * values will be used and those chunks will be created when
358 * File::Save() will be called later on.
359 *
360 * @param pFile - pointer to gig::File where this sample is
361 * located (or will be located)
362 * @param waveList - pointer to 'wave' list chunk which is (or
363 * will be) associated with this sample
364 * @param WavePoolOffset - offset of this sample data from wave pool
365 * ('wvpl') list chunk
366 * @param fileNo - number of an extension file where this sample
367 * is located, 0 otherwise
368 */
369 Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
370 static const DLS::Info::string_length_t fixedStringLengths[] = {
371 { CHUNK_ID_INAM, 64 },
372 { 0, 0 }
373 };
374 pInfo->SetFixedStringLengths(fixedStringLengths);
375 Instances++;
376 FileNo = fileNo;
377
378 __resetCRC(crc);
379
380 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
381 if (pCk3gix) {
382 uint16_t iSampleGroup = pCk3gix->ReadInt16();
383 pGroup = pFile->GetGroup(iSampleGroup);
384 } else { // '3gix' chunk missing
385 // by default assigned to that mandatory "Default Group"
386 pGroup = pFile->GetGroup(0);
387 }
388
389 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
390 if (pCkSmpl) {
391 Manufacturer = pCkSmpl->ReadInt32();
392 Product = pCkSmpl->ReadInt32();
393 SamplePeriod = pCkSmpl->ReadInt32();
394 MIDIUnityNote = pCkSmpl->ReadInt32();
395 FineTune = pCkSmpl->ReadInt32();
396 pCkSmpl->Read(&SMPTEFormat, 1, 4);
397 SMPTEOffset = pCkSmpl->ReadInt32();
398 Loops = pCkSmpl->ReadInt32();
399 pCkSmpl->ReadInt32(); // manufByt
400 LoopID = pCkSmpl->ReadInt32();
401 pCkSmpl->Read(&LoopType, 1, 4);
402 LoopStart = pCkSmpl->ReadInt32();
403 LoopEnd = pCkSmpl->ReadInt32();
404 LoopFraction = pCkSmpl->ReadInt32();
405 LoopPlayCount = pCkSmpl->ReadInt32();
406 } else { // 'smpl' chunk missing
407 // use default values
408 Manufacturer = 0;
409 Product = 0;
410 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
411 MIDIUnityNote = 60;
412 FineTune = 0;
413 SMPTEFormat = smpte_format_no_offset;
414 SMPTEOffset = 0;
415 Loops = 0;
416 LoopID = 0;
417 LoopType = loop_type_normal;
418 LoopStart = 0;
419 LoopEnd = 0;
420 LoopFraction = 0;
421 LoopPlayCount = 0;
422 }
423
424 FrameTable = NULL;
425 SamplePos = 0;
426 RAMCache.Size = 0;
427 RAMCache.pStart = NULL;
428 RAMCache.NullExtensionSize = 0;
429
430 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
431
432 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
433 Compressed = ewav;
434 Dithered = false;
435 TruncatedBits = 0;
436 if (Compressed) {
437 uint32_t version = ewav->ReadInt32();
438 if (version == 3 && BitDepth == 24) {
439 Dithered = ewav->ReadInt32();
440 ewav->SetPos(Channels == 2 ? 84 : 64);
441 TruncatedBits = ewav->ReadInt32();
442 }
443 ScanCompressedSample();
444 }
445
446 // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
447 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
448 InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
449 InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
450 }
451 FrameOffset = 0; // just for streaming compressed samples
452
453 LoopSize = LoopEnd - LoopStart + 1;
454 }
455
456 /**
457 * Make a (semi) deep copy of the Sample object given by @a orig (without
458 * the actual waveform data) and assign it to this object.
459 *
460 * Discussion: copying .gig samples is a bit tricky. It requires three
461 * steps:
462 * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
463 * its new sample waveform data size.
464 * 2. Saving the file (done by File::Save()) so that it gains correct size
465 * and layout for writing the actual wave form data directly to disc
466 * in next step.
467 * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
468 *
469 * @param orig - original Sample object to be copied from
470 */
471 void Sample::CopyAssignMeta(const Sample* orig) {
472 // handle base classes
473 DLS::Sample::CopyAssignCore(orig);
474
475 // handle actual own attributes of this class
476 Manufacturer = orig->Manufacturer;
477 Product = orig->Product;
478 SamplePeriod = orig->SamplePeriod;
479 MIDIUnityNote = orig->MIDIUnityNote;
480 FineTune = orig->FineTune;
481 SMPTEFormat = orig->SMPTEFormat;
482 SMPTEOffset = orig->SMPTEOffset;
483 Loops = orig->Loops;
484 LoopID = orig->LoopID;
485 LoopType = orig->LoopType;
486 LoopStart = orig->LoopStart;
487 LoopEnd = orig->LoopEnd;
488 LoopSize = orig->LoopSize;
489 LoopFraction = orig->LoopFraction;
490 LoopPlayCount = orig->LoopPlayCount;
491
492 // schedule resizing this sample to the given sample's size
493 Resize(orig->GetSize());
494 }
495
496 /**
497 * Should be called after CopyAssignMeta() and File::Save() sequence.
498 * Read more about it in the discussion of CopyAssignMeta(). This method
499 * copies the actual waveform data by disk streaming.
500 *
501 * @e CAUTION: this method is currently not thread safe! During this
502 * operation the sample must not be used for other purposes by other
503 * threads!
504 *
505 * @param orig - original Sample object to be copied from
506 */
507 void Sample::CopyAssignWave(const Sample* orig) {
508 const int iReadAtOnce = 32*1024;
509 char* buf = new char[iReadAtOnce * orig->FrameSize];
510 Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
511 unsigned long restorePos = pOrig->GetPos();
512 pOrig->SetPos(0);
513 SetPos(0);
514 for (unsigned long n = pOrig->Read(buf, iReadAtOnce); n;
515 n = pOrig->Read(buf, iReadAtOnce))
516 {
517 Write(buf, n);
518 }
519 pOrig->SetPos(restorePos);
520 delete [] buf;
521 }
522
523 /**
524 * Apply sample and its settings to the respective RIFF chunks. You have
525 * to call File::Save() to make changes persistent.
526 *
527 * Usually there is absolutely no need to call this method explicitly.
528 * It will be called automatically when File::Save() was called.
529 *
530 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
531 * was provided yet
532 * @throws gig::Exception if there is any invalid sample setting
533 */
534 void Sample::UpdateChunks() {
535 // first update base class's chunks
536 DLS::Sample::UpdateChunks();
537
538 // make sure 'smpl' chunk exists
539 pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
540 if (!pCkSmpl) {
541 pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
542 memset(pCkSmpl->LoadChunkData(), 0, 60);
543 }
544 // update 'smpl' chunk
545 uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
546 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
547 store32(&pData[0], Manufacturer);
548 store32(&pData[4], Product);
549 store32(&pData[8], SamplePeriod);
550 store32(&pData[12], MIDIUnityNote);
551 store32(&pData[16], FineTune);
552 store32(&pData[20], SMPTEFormat);
553 store32(&pData[24], SMPTEOffset);
554 store32(&pData[28], Loops);
555
556 // we skip 'manufByt' for now (4 bytes)
557
558 store32(&pData[36], LoopID);
559 store32(&pData[40], LoopType);
560 store32(&pData[44], LoopStart);
561 store32(&pData[48], LoopEnd);
562 store32(&pData[52], LoopFraction);
563 store32(&pData[56], LoopPlayCount);
564
565 // make sure '3gix' chunk exists
566 pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
567 if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
568 // determine appropriate sample group index (to be stored in chunk)
569 uint16_t iSampleGroup = 0; // 0 refers to default sample group
570 File* pFile = static_cast<File*>(pParent);
571 if (pFile->pGroups) {
572 std::list<Group*>::iterator iter = pFile->pGroups->begin();
573 std::list<Group*>::iterator end = pFile->pGroups->end();
574 for (int i = 0; iter != end; i++, iter++) {
575 if (*iter == pGroup) {
576 iSampleGroup = i;
577 break; // found
578 }
579 }
580 }
581 // update '3gix' chunk
582 pData = (uint8_t*) pCk3gix->LoadChunkData();
583 store16(&pData[0], iSampleGroup);
584 }
585
586 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
587 void Sample::ScanCompressedSample() {
588 //TODO: we have to add some more scans here (e.g. determine compression rate)
589 this->SamplesTotal = 0;
590 std::list<unsigned long> frameOffsets;
591
592 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
593 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
594
595 // Scanning
596 pCkData->SetPos(0);
597 if (Channels == 2) { // Stereo
598 for (int i = 0 ; ; i++) {
599 // for 24 bit samples every 8:th frame offset is
600 // stored, to save some memory
601 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
602
603 const int mode_l = pCkData->ReadUint8();
604 const int mode_r = pCkData->ReadUint8();
605 if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
606 const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
607
608 if (pCkData->RemainingBytes() <= frameSize) {
609 SamplesInLastFrame =
610 ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
611 (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
612 SamplesTotal += SamplesInLastFrame;
613 break;
614 }
615 SamplesTotal += SamplesPerFrame;
616 pCkData->SetPos(frameSize, RIFF::stream_curpos);
617 }
618 }
619 else { // Mono
620 for (int i = 0 ; ; i++) {
621 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
622
623 const int mode = pCkData->ReadUint8();
624 if (mode > 5) throw gig::Exception("Unknown compression mode");
625 const unsigned long frameSize = bytesPerFrame[mode];
626
627 if (pCkData->RemainingBytes() <= frameSize) {
628 SamplesInLastFrame =
629 ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
630 SamplesTotal += SamplesInLastFrame;
631 break;
632 }
633 SamplesTotal += SamplesPerFrame;
634 pCkData->SetPos(frameSize, RIFF::stream_curpos);
635 }
636 }
637 pCkData->SetPos(0);
638
639 // Build the frames table (which is used for fast resolving of a frame's chunk offset)
640 if (FrameTable) delete[] FrameTable;
641 FrameTable = new unsigned long[frameOffsets.size()];
642 std::list<unsigned long>::iterator end = frameOffsets.end();
643 std::list<unsigned long>::iterator iter = frameOffsets.begin();
644 for (int i = 0; iter != end; i++, iter++) {
645 FrameTable[i] = *iter;
646 }
647 }
648
649 /**
650 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
651 * ReleaseSampleData() to free the memory if you don't need the cached
652 * sample data anymore.
653 *
654 * @returns buffer_t structure with start address and size of the buffer
655 * in bytes
656 * @see ReleaseSampleData(), Read(), SetPos()
657 */
658 buffer_t Sample::LoadSampleData() {
659 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
660 }
661
662 /**
663 * Reads (uncompresses if needed) and caches the first \a SampleCount
664 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
665 * memory space if you don't need the cached samples anymore. There is no
666 * guarantee that exactly \a SampleCount samples will be cached; this is
667 * not an error. The size will be eventually truncated e.g. to the
668 * beginning of a frame of a compressed sample. This is done for
669 * efficiency reasons while streaming the wave by your sampler engine
670 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
671 * that will be returned to determine the actual cached samples, but note
672 * that the size is given in bytes! You get the number of actually cached
673 * samples by dividing it by the frame size of the sample:
674 * @code
675 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
676 * long cachedsamples = buf.Size / pSample->FrameSize;
677 * @endcode
678 *
679 * @param SampleCount - number of sample points to load into RAM
680 * @returns buffer_t structure with start address and size of
681 * the cached sample data in bytes
682 * @see ReleaseSampleData(), Read(), SetPos()
683 */
684 buffer_t Sample::LoadSampleData(unsigned long SampleCount) {
685 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
686 }
687
688 /**
689 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
690 * ReleaseSampleData() to free the memory if you don't need the cached
691 * sample data anymore.
692 * The method will add \a NullSamplesCount silence samples past the
693 * official buffer end (this won't affect the 'Size' member of the
694 * buffer_t structure, that means 'Size' always reflects the size of the
695 * actual sample data, the buffer might be bigger though). Silence
696 * samples past the official buffer are needed for differential
697 * algorithms that always have to take subsequent samples into account
698 * (resampling/interpolation would be an important example) and avoids
699 * memory access faults in such cases.
700 *
701 * @param NullSamplesCount - number of silence samples the buffer should
702 * be extended past it's data end
703 * @returns buffer_t structure with start address and
704 * size of the buffer in bytes
705 * @see ReleaseSampleData(), Read(), SetPos()
706 */
707 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
708 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
709 }
710
711 /**
712 * Reads (uncompresses if needed) and caches the first \a SampleCount
713 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
714 * memory space if you don't need the cached samples anymore. There is no
715 * guarantee that exactly \a SampleCount samples will be cached; this is
716 * not an error. The size will be eventually truncated e.g. to the
717 * beginning of a frame of a compressed sample. This is done for
718 * efficiency reasons while streaming the wave by your sampler engine
719 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
720 * that will be returned to determine the actual cached samples, but note
721 * that the size is given in bytes! You get the number of actually cached
722 * samples by dividing it by the frame size of the sample:
723 * @code
724 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
725 * long cachedsamples = buf.Size / pSample->FrameSize;
726 * @endcode
727 * The method will add \a NullSamplesCount silence samples past the
728 * official buffer end (this won't affect the 'Size' member of the
729 * buffer_t structure, that means 'Size' always reflects the size of the
730 * actual sample data, the buffer might be bigger though). Silence
731 * samples past the official buffer are needed for differential
732 * algorithms that always have to take subsequent samples into account
733 * (resampling/interpolation would be an important example) and avoids
734 * memory access faults in such cases.
735 *
736 * @param SampleCount - number of sample points to load into RAM
737 * @param NullSamplesCount - number of silence samples the buffer should
738 * be extended past it's data end
739 * @returns buffer_t structure with start address and
740 * size of the cached sample data in bytes
741 * @see ReleaseSampleData(), Read(), SetPos()
742 */
743 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {
744 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
745 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
746 unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
747 SetPos(0); // reset read position to begin of sample
748 RAMCache.pStart = new int8_t[allocationsize];
749 RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
750 RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
751 // fill the remaining buffer space with silence samples
752 memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
753 return GetCache();
754 }
755
756 /**
757 * Returns current cached sample points. A buffer_t structure will be
758 * returned which contains address pointer to the begin of the cache and
759 * the size of the cached sample data in bytes. Use
760 * <i>LoadSampleData()</i> to cache a specific amount of sample points in
761 * RAM.
762 *
763 * @returns buffer_t structure with current cached sample points
764 * @see LoadSampleData();
765 */
766 buffer_t Sample::GetCache() {
767 // return a copy of the buffer_t structure
768 buffer_t result;
769 result.Size = this->RAMCache.Size;
770 result.pStart = this->RAMCache.pStart;
771 result.NullExtensionSize = this->RAMCache.NullExtensionSize;
772 return result;
773 }
774
775 /**
776 * Frees the cached sample from RAM if loaded with
777 * <i>LoadSampleData()</i> previously.
778 *
779 * @see LoadSampleData();
780 */
781 void Sample::ReleaseSampleData() {
782 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
783 RAMCache.pStart = NULL;
784 RAMCache.Size = 0;
785 RAMCache.NullExtensionSize = 0;
786 }
787
788 /** @brief Resize sample.
789 *
790 * Resizes the sample's wave form data, that is the actual size of
791 * sample wave data possible to be written for this sample. This call
792 * will return immediately and just schedule the resize operation. You
793 * should call File::Save() to actually perform the resize operation(s)
794 * "physically" to the file. As this can take a while on large files, it
795 * is recommended to call Resize() first on all samples which have to be
796 * resized and finally to call File::Save() to perform all those resize
797 * operations in one rush.
798 *
799 * The actual size (in bytes) is dependant to the current FrameSize
800 * value. You may want to set FrameSize before calling Resize().
801 *
802 * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
803 * enlarged samples before calling File::Save() as this might exceed the
804 * current sample's boundary!
805 *
806 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
807 * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
808 * other formats will fail!
809 *
810 * @param iNewSize - new sample wave data size in sample points (must be
811 * greater than zero)
812 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
813 * or if \a iNewSize is less than 1
814 * @throws gig::Exception if existing sample is compressed
815 * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
816 * DLS::Sample::FormatTag, File::Save()
817 */
818 void Sample::Resize(int iNewSize) {
819 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
820 DLS::Sample::Resize(iNewSize);
821 }
822
823 /**
824 * Sets the position within the sample (in sample points, not in
825 * bytes). Use this method and <i>Read()</i> if you don't want to load
826 * the sample into RAM, thus for disk streaming.
827 *
828 * Although the original Gigasampler engine doesn't allow positioning
829 * within compressed samples, I decided to implement it. Even though
830 * the Gigasampler format doesn't allow to define loops for compressed
831 * samples at the moment, positioning within compressed samples might be
832 * interesting for some sampler engines though. The only drawback about
833 * my decision is that it takes longer to load compressed gig Files on
834 * startup, because it's neccessary to scan the samples for some
835 * mandatory informations. But I think as it doesn't affect the runtime
836 * efficiency, nobody will have a problem with that.
837 *
838 * @param SampleCount number of sample points to jump
839 * @param Whence optional: to which relation \a SampleCount refers
840 * to, if omited <i>RIFF::stream_start</i> is assumed
841 * @returns the new sample position
842 * @see Read()
843 */
844 unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {
845 if (Compressed) {
846 switch (Whence) {
847 case RIFF::stream_curpos:
848 this->SamplePos += SampleCount;
849 break;
850 case RIFF::stream_end:
851 this->SamplePos = this->SamplesTotal - 1 - SampleCount;
852 break;
853 case RIFF::stream_backward:
854 this->SamplePos -= SampleCount;
855 break;
856 case RIFF::stream_start: default:
857 this->SamplePos = SampleCount;
858 break;
859 }
860 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
861
862 unsigned long frame = this->SamplePos / 2048; // to which frame to jump
863 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
864 pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
865 return this->SamplePos;
866 }
867 else { // not compressed
868 unsigned long orderedBytes = SampleCount * this->FrameSize;
869 unsigned long result = pCkData->SetPos(orderedBytes, Whence);
870 return (result == orderedBytes) ? SampleCount
871 : result / this->FrameSize;
872 }
873 }
874
875 /**
876 * Returns the current position in the sample (in sample points).
877 */
878 unsigned long Sample::GetPos() const {
879 if (Compressed) return SamplePos;
880 else return pCkData->GetPos() / FrameSize;
881 }
882
883 /**
884 * Reads \a SampleCount number of sample points from the position stored
885 * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
886 * the position within the sample respectively, this method honors the
887 * looping informations of the sample (if any). The sample wave stream
888 * will be decompressed on the fly if using a compressed sample. Use this
889 * method if you don't want to load the sample into RAM, thus for disk
890 * streaming. All this methods needs to know to proceed with streaming
891 * for the next time you call this method is stored in \a pPlaybackState.
892 * You have to allocate and initialize the playback_state_t structure by
893 * yourself before you use it to stream a sample:
894 * @code
895 * gig::playback_state_t playbackstate;
896 * playbackstate.position = 0;
897 * playbackstate.reverse = false;
898 * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
899 * @endcode
900 * You don't have to take care of things like if there is actually a loop
901 * defined or if the current read position is located within a loop area.
902 * The method already handles such cases by itself.
903 *
904 * <b>Caution:</b> If you are using more than one streaming thread, you
905 * have to use an external decompression buffer for <b>EACH</b>
906 * streaming thread to avoid race conditions and crashes!
907 *
908 * @param pBuffer destination buffer
909 * @param SampleCount number of sample points to read
910 * @param pPlaybackState will be used to store and reload the playback
911 * state for the next ReadAndLoop() call
912 * @param pDimRgn dimension region with looping information
913 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
914 * @returns number of successfully read sample points
915 * @see CreateDecompressionBuffer()
916 */
917 unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,
918 DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
919 unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
920 uint8_t* pDst = (uint8_t*) pBuffer;
921
922 SetPos(pPlaybackState->position); // recover position from the last time
923
924 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
925
926 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
927 const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
928
929 if (GetPos() <= loopEnd) {
930 switch (loop.LoopType) {
931
932 case loop_type_bidirectional: { //TODO: not tested yet!
933 do {
934 // if not endless loop check if max. number of loop cycles have been passed
935 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
936
937 if (!pPlaybackState->reverse) { // forward playback
938 do {
939 samplestoloopend = loopEnd - GetPos();
940 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
941 samplestoread -= readsamples;
942 totalreadsamples += readsamples;
943 if (readsamples == samplestoloopend) {
944 pPlaybackState->reverse = true;
945 break;
946 }
947 } while (samplestoread && readsamples);
948 }
949 else { // backward playback
950
951 // as we can only read forward from disk, we have to
952 // determine the end position within the loop first,
953 // read forward from that 'end' and finally after
954 // reading, swap all sample frames so it reflects
955 // backward playback
956
957 unsigned long swapareastart = totalreadsamples;
958 unsigned long loopoffset = GetPos() - loop.LoopStart;
959 unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
960 unsigned long reverseplaybackend = GetPos() - samplestoreadinloop;
961
962 SetPos(reverseplaybackend);
963
964 // read samples for backward playback
965 do {
966 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
967 samplestoreadinloop -= readsamples;
968 samplestoread -= readsamples;
969 totalreadsamples += readsamples;
970 } while (samplestoreadinloop && readsamples);
971
972 SetPos(reverseplaybackend); // pretend we really read backwards
973
974 if (reverseplaybackend == loop.LoopStart) {
975 pPlaybackState->loop_cycles_left--;
976 pPlaybackState->reverse = false;
977 }
978
979 // reverse the sample frames for backward playback
980 if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
981 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
982 }
983 } while (samplestoread && readsamples);
984 break;
985 }
986
987 case loop_type_backward: { // TODO: not tested yet!
988 // forward playback (not entered the loop yet)
989 if (!pPlaybackState->reverse) do {
990 samplestoloopend = loopEnd - GetPos();
991 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
992 samplestoread -= readsamples;
993 totalreadsamples += readsamples;
994 if (readsamples == samplestoloopend) {
995 pPlaybackState->reverse = true;
996 break;
997 }
998 } while (samplestoread && readsamples);
999
1000 if (!samplestoread) break;
1001
1002 // as we can only read forward from disk, we have to
1003 // determine the end position within the loop first,
1004 // read forward from that 'end' and finally after
1005 // reading, swap all sample frames so it reflects
1006 // backward playback
1007
1008 unsigned long swapareastart = totalreadsamples;
1009 unsigned long loopoffset = GetPos() - loop.LoopStart;
1010 unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1011 : samplestoread;
1012 unsigned long reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1013
1014 SetPos(reverseplaybackend);
1015
1016 // read samples for backward playback
1017 do {
1018 // if not endless loop check if max. number of loop cycles have been passed
1019 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1020 samplestoloopend = loopEnd - GetPos();
1021 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1022 samplestoreadinloop -= readsamples;
1023 samplestoread -= readsamples;
1024 totalreadsamples += readsamples;
1025 if (readsamples == samplestoloopend) {
1026 pPlaybackState->loop_cycles_left--;
1027 SetPos(loop.LoopStart);
1028 }
1029 } while (samplestoreadinloop && readsamples);
1030
1031 SetPos(reverseplaybackend); // pretend we really read backwards
1032
1033 // reverse the sample frames for backward playback
1034 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1035 break;
1036 }
1037
1038 default: case loop_type_normal: {
1039 do {
1040 // if not endless loop check if max. number of loop cycles have been passed
1041 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1042 samplestoloopend = loopEnd - GetPos();
1043 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1044 samplestoread -= readsamples;
1045 totalreadsamples += readsamples;
1046 if (readsamples == samplestoloopend) {
1047 pPlaybackState->loop_cycles_left--;
1048 SetPos(loop.LoopStart);
1049 }
1050 } while (samplestoread && readsamples);
1051 break;
1052 }
1053 }
1054 }
1055 }
1056
1057 // read on without looping
1058 if (samplestoread) do {
1059 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
1060 samplestoread -= readsamples;
1061 totalreadsamples += readsamples;
1062 } while (readsamples && samplestoread);
1063
1064 // store current position
1065 pPlaybackState->position = GetPos();
1066
1067 return totalreadsamples;
1068 }
1069
1070 /**
1071 * Reads \a SampleCount number of sample points from the current
1072 * position into the buffer pointed by \a pBuffer and increments the
1073 * position within the sample. The sample wave stream will be
1074 * decompressed on the fly if using a compressed sample. Use this method
1075 * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1076 * thus for disk streaming.
1077 *
1078 * <b>Caution:</b> If you are using more than one streaming thread, you
1079 * have to use an external decompression buffer for <b>EACH</b>
1080 * streaming thread to avoid race conditions and crashes!
1081 *
1082 * For 16 bit samples, the data in the buffer will be int16_t
1083 * (using native endianness). For 24 bit, the buffer will
1084 * contain three bytes per sample, little-endian.
1085 *
1086 * @param pBuffer destination buffer
1087 * @param SampleCount number of sample points to read
1088 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
1089 * @returns number of successfully read sample points
1090 * @see SetPos(), CreateDecompressionBuffer()
1091 */
1092 unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
1093 if (SampleCount == 0) return 0;
1094 if (!Compressed) {
1095 if (BitDepth == 24) {
1096 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1097 }
1098 else { // 16 bit
1099 // (pCkData->Read does endian correction)
1100 return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1101 : pCkData->Read(pBuffer, SampleCount, 2);
1102 }
1103 }
1104 else {
1105 if (this->SamplePos >= this->SamplesTotal) return 0;
1106 //TODO: efficiency: maybe we should test for an average compression rate
1107 unsigned long assumedsize = GuessSize(SampleCount),
1108 remainingbytes = 0, // remaining bytes in the local buffer
1109 remainingsamples = SampleCount,
1110 copysamples, skipsamples,
1111 currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
1112 this->FrameOffset = 0;
1113
1114 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1115
1116 // if decompression buffer too small, then reduce amount of samples to read
1117 if (pDecompressionBuffer->Size < assumedsize) {
1118 std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1119 SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1120 remainingsamples = SampleCount;
1121 assumedsize = GuessSize(SampleCount);
1122 }
1123
1124 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1125 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1126 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1127 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1128
1129 while (remainingsamples && remainingbytes) {
1130 unsigned long framesamples = SamplesPerFrame;
1131 unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
1132
1133 int mode_l = *pSrc++, mode_r = 0;
1134
1135 if (Channels == 2) {
1136 mode_r = *pSrc++;
1137 framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1138 rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1139 nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1140 if (remainingbytes < framebytes) { // last frame in sample
1141 framesamples = SamplesInLastFrame;
1142 if (mode_l == 4 && (framesamples & 1)) {
1143 rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1144 }
1145 else {
1146 rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1147 }
1148 }
1149 }
1150 else {
1151 framebytes = bytesPerFrame[mode_l] + 1;
1152 nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1153 if (remainingbytes < framebytes) {
1154 framesamples = SamplesInLastFrame;
1155 }
1156 }
1157
1158 // determine how many samples in this frame to skip and read
1159 if (currentframeoffset + remainingsamples >= framesamples) {
1160 if (currentframeoffset <= framesamples) {
1161 copysamples = framesamples - currentframeoffset;
1162 skipsamples = currentframeoffset;
1163 }
1164 else {
1165 copysamples = 0;
1166 skipsamples = framesamples;
1167 }
1168 }
1169 else {
1170 // This frame has enough data for pBuffer, but not
1171 // all of the frame is needed. Set file position
1172 // to start of this frame for next call to Read.
1173 copysamples = remainingsamples;
1174 skipsamples = currentframeoffset;
1175 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1176 this->FrameOffset = currentframeoffset + copysamples;
1177 }
1178 remainingsamples -= copysamples;
1179
1180 if (remainingbytes > framebytes) {
1181 remainingbytes -= framebytes;
1182 if (remainingsamples == 0 &&
1183 currentframeoffset + copysamples == framesamples) {
1184 // This frame has enough data for pBuffer, and
1185 // all of the frame is needed. Set file
1186 // position to start of next frame for next
1187 // call to Read. FrameOffset is 0.
1188 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1189 }
1190 }
1191 else remainingbytes = 0;
1192
1193 currentframeoffset -= skipsamples;
1194
1195 if (copysamples == 0) {
1196 // skip this frame
1197 pSrc += framebytes - Channels;
1198 }
1199 else {
1200 const unsigned char* const param_l = pSrc;
1201 if (BitDepth == 24) {
1202 if (mode_l != 2) pSrc += 12;
1203
1204 if (Channels == 2) { // Stereo
1205 const unsigned char* const param_r = pSrc;
1206 if (mode_r != 2) pSrc += 12;
1207
1208 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1209 skipsamples, copysamples, TruncatedBits);
1210 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1211 skipsamples, copysamples, TruncatedBits);
1212 pDst24 += copysamples * 6;
1213 }
1214 else { // Mono
1215 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1216 skipsamples, copysamples, TruncatedBits);
1217 pDst24 += copysamples * 3;
1218 }
1219 }
1220 else { // 16 bit
1221 if (mode_l) pSrc += 4;
1222
1223 int step;
1224 if (Channels == 2) { // Stereo
1225 const unsigned char* const param_r = pSrc;
1226 if (mode_r) pSrc += 4;
1227
1228 step = (2 - mode_l) + (2 - mode_r);
1229 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1230 Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1231 skipsamples, copysamples);
1232 pDst += copysamples << 1;
1233 }
1234 else { // Mono
1235 step = 2 - mode_l;
1236 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1237 pDst += copysamples;
1238 }
1239 }
1240 pSrc += nextFrameOffset;
1241 }
1242
1243 // reload from disk to local buffer if needed
1244 if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1245 assumedsize = GuessSize(remainingsamples);
1246 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1247 if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1248 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1249 pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1250 }
1251 } // while
1252
1253 this->SamplePos += (SampleCount - remainingsamples);
1254 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1255 return (SampleCount - remainingsamples);
1256 }
1257 }
1258
1259 /** @brief Write sample wave data.
1260 *
1261 * Writes \a SampleCount number of sample points from the buffer pointed
1262 * by \a pBuffer and increments the position within the sample. Use this
1263 * method to directly write the sample data to disk, i.e. if you don't
1264 * want or cannot load the whole sample data into RAM.
1265 *
1266 * You have to Resize() the sample to the desired size and call
1267 * File::Save() <b>before</b> using Write().
1268 *
1269 * Note: there is currently no support for writing compressed samples.
1270 *
1271 * For 16 bit samples, the data in the source buffer should be
1272 * int16_t (using native endianness). For 24 bit, the buffer
1273 * should contain three bytes per sample, little-endian.
1274 *
1275 * @param pBuffer - source buffer
1276 * @param SampleCount - number of sample points to write
1277 * @throws DLS::Exception if current sample size is too small
1278 * @throws gig::Exception if sample is compressed
1279 * @see DLS::LoadSampleData()
1280 */
1281 unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1282 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1283
1284 // if this is the first write in this sample, reset the
1285 // checksum calculator
1286 if (pCkData->GetPos() == 0) {
1287 __resetCRC(crc);
1288 }
1289 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1290 unsigned long res;
1291 if (BitDepth == 24) {
1292 res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1293 } else { // 16 bit
1294 res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1295 : pCkData->Write(pBuffer, SampleCount, 2);
1296 }
1297 __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1298
1299 // if this is the last write, update the checksum chunk in the
1300 // file
1301 if (pCkData->GetPos() == pCkData->GetSize()) {
1302 File* pFile = static_cast<File*>(GetParent());
1303 pFile->SetSampleChecksum(this, __encodeCRC(crc));
1304 }
1305 return res;
1306 }
1307
1308 /**
1309 * Allocates a decompression buffer for streaming (compressed) samples
1310 * with Sample::Read(). If you are using more than one streaming thread
1311 * in your application you <b>HAVE</b> to create a decompression buffer
1312 * for <b>EACH</b> of your streaming threads and provide it with the
1313 * Sample::Read() call in order to avoid race conditions and crashes.
1314 *
1315 * You should free the memory occupied by the allocated buffer(s) once
1316 * you don't need one of your streaming threads anymore by calling
1317 * DestroyDecompressionBuffer().
1318 *
1319 * @param MaxReadSize - the maximum size (in sample points) you ever
1320 * expect to read with one Read() call
1321 * @returns allocated decompression buffer
1322 * @see DestroyDecompressionBuffer()
1323 */
1324 buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
1325 buffer_t result;
1326 const double worstCaseHeaderOverhead =
1327 (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1328 result.Size = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1329 result.pStart = new int8_t[result.Size];
1330 result.NullExtensionSize = 0;
1331 return result;
1332 }
1333
1334 /**
1335 * Free decompression buffer, previously created with
1336 * CreateDecompressionBuffer().
1337 *
1338 * @param DecompressionBuffer - previously allocated decompression
1339 * buffer to free
1340 */
1341 void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1342 if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1343 delete[] (int8_t*) DecompressionBuffer.pStart;
1344 DecompressionBuffer.pStart = NULL;
1345 DecompressionBuffer.Size = 0;
1346 DecompressionBuffer.NullExtensionSize = 0;
1347 }
1348 }
1349
1350 /**
1351 * Returns pointer to the Group this Sample belongs to. In the .gig
1352 * format a sample always belongs to one group. If it wasn't explicitly
1353 * assigned to a certain group, it will be automatically assigned to a
1354 * default group.
1355 *
1356 * @returns Sample's Group (never NULL)
1357 */
1358 Group* Sample::GetGroup() const {
1359 return pGroup;
1360 }
1361
1362 Sample::~Sample() {
1363 Instances--;
1364 if (!Instances && InternalDecompressionBuffer.Size) {
1365 delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1366 InternalDecompressionBuffer.pStart = NULL;
1367 InternalDecompressionBuffer.Size = 0;
1368 }
1369 if (FrameTable) delete[] FrameTable;
1370 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1371 }
1372
1373
1374
1375 // *************** DimensionRegion ***************
1376 // *
1377
1378 uint DimensionRegion::Instances = 0;
1379 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1380
1381 DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1382 Instances++;
1383
1384 pSample = NULL;
1385 pRegion = pParent;
1386
1387 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1388 else memset(&Crossfade, 0, 4);
1389
1390 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1391
1392 RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1393 if (_3ewa) { // if '3ewa' chunk exists
1394 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1395 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1396 EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1397 _3ewa->ReadInt16(); // unknown
1398 LFO1InternalDepth = _3ewa->ReadUint16();
1399 _3ewa->ReadInt16(); // unknown
1400 LFO3InternalDepth = _3ewa->ReadInt16();
1401 _3ewa->ReadInt16(); // unknown
1402 LFO1ControlDepth = _3ewa->ReadUint16();
1403 _3ewa->ReadInt16(); // unknown
1404 LFO3ControlDepth = _3ewa->ReadInt16();
1405 EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1406 EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1407 _3ewa->ReadInt16(); // unknown
1408 EG1Sustain = _3ewa->ReadUint16();
1409 EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1410 EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1411 uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1412 EG1ControllerInvert = eg1ctrloptions & 0x01;
1413 EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1414 EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1415 EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1416 EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1417 uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1418 EG2ControllerInvert = eg2ctrloptions & 0x01;
1419 EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1420 EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1421 EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1422 LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1423 EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1424 EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1425 _3ewa->ReadInt16(); // unknown
1426 EG2Sustain = _3ewa->ReadUint16();
1427 EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1428 _3ewa->ReadInt16(); // unknown
1429 LFO2ControlDepth = _3ewa->ReadUint16();
1430 LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1431 _3ewa->ReadInt16(); // unknown
1432 LFO2InternalDepth = _3ewa->ReadUint16();
1433 int32_t eg1decay2 = _3ewa->ReadInt32();
1434 EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1435 EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1436 _3ewa->ReadInt16(); // unknown
1437 EG1PreAttack = _3ewa->ReadUint16();
1438 int32_t eg2decay2 = _3ewa->ReadInt32();
1439 EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1440 EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1441 _3ewa->ReadInt16(); // unknown
1442 EG2PreAttack = _3ewa->ReadUint16();
1443 uint8_t velocityresponse = _3ewa->ReadUint8();
1444 if (velocityresponse < 5) {
1445 VelocityResponseCurve = curve_type_nonlinear;
1446 VelocityResponseDepth = velocityresponse;
1447 } else if (velocityresponse < 10) {
1448 VelocityResponseCurve = curve_type_linear;
1449 VelocityResponseDepth = velocityresponse - 5;
1450 } else if (velocityresponse < 15) {
1451 VelocityResponseCurve = curve_type_special;
1452 VelocityResponseDepth = velocityresponse - 10;
1453 } else {
1454 VelocityResponseCurve = curve_type_unknown;
1455 VelocityResponseDepth = 0;
1456 }
1457 uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1458 if (releasevelocityresponse < 5) {
1459 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1460 ReleaseVelocityResponseDepth = releasevelocityresponse;
1461 } else if (releasevelocityresponse < 10) {
1462 ReleaseVelocityResponseCurve = curve_type_linear;
1463 ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1464 } else if (releasevelocityresponse < 15) {
1465 ReleaseVelocityResponseCurve = curve_type_special;
1466 ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1467 } else {
1468 ReleaseVelocityResponseCurve = curve_type_unknown;
1469 ReleaseVelocityResponseDepth = 0;
1470 }
1471 VelocityResponseCurveScaling = _3ewa->ReadUint8();
1472 AttenuationControllerThreshold = _3ewa->ReadInt8();
1473 _3ewa->ReadInt32(); // unknown
1474 SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1475 _3ewa->ReadInt16(); // unknown
1476 uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1477 PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1478 if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1479 else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1480 else DimensionBypass = dim_bypass_ctrl_none;
1481 uint8_t pan = _3ewa->ReadUint8();
1482 Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1483 SelfMask = _3ewa->ReadInt8() & 0x01;
1484 _3ewa->ReadInt8(); // unknown
1485 uint8_t lfo3ctrl = _3ewa->ReadUint8();
1486 LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1487 LFO3Sync = lfo3ctrl & 0x20; // bit 5
1488 InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1489 AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1490 uint8_t lfo2ctrl = _3ewa->ReadUint8();
1491 LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1492 LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1493 LFO2Sync = lfo2ctrl & 0x20; // bit 5
1494 bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1495 uint8_t lfo1ctrl = _3ewa->ReadUint8();
1496 LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1497 LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1498 LFO1Sync = lfo1ctrl & 0x40; // bit 6
1499 VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1500 : vcf_res_ctrl_none;
1501 uint16_t eg3depth = _3ewa->ReadUint16();
1502 EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1503 : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1504 _3ewa->ReadInt16(); // unknown
1505 ChannelOffset = _3ewa->ReadUint8() / 4;
1506 uint8_t regoptions = _3ewa->ReadUint8();
1507 MSDecode = regoptions & 0x01; // bit 0
1508 SustainDefeat = regoptions & 0x02; // bit 1
1509 _3ewa->ReadInt16(); // unknown
1510 VelocityUpperLimit = _3ewa->ReadInt8();
1511 _3ewa->ReadInt8(); // unknown
1512 _3ewa->ReadInt16(); // unknown
1513 ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1514 _3ewa->ReadInt8(); // unknown
1515 _3ewa->ReadInt8(); // unknown
1516 EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1517 uint8_t vcfcutoff = _3ewa->ReadUint8();
1518 VCFEnabled = vcfcutoff & 0x80; // bit 7
1519 VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1520 VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1521 uint8_t vcfvelscale = _3ewa->ReadUint8();
1522 VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1523 VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1524 _3ewa->ReadInt8(); // unknown
1525 uint8_t vcfresonance = _3ewa->ReadUint8();
1526 VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1527 VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1528 uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1529 VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1530 VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1531 uint8_t vcfvelocity = _3ewa->ReadUint8();
1532 VCFVelocityDynamicRange = vcfvelocity % 5;
1533 VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1534 VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1535 if (VCFType == vcf_type_lowpass) {
1536 if (lfo3ctrl & 0x40) // bit 6
1537 VCFType = vcf_type_lowpassturbo;
1538 }
1539 if (_3ewa->RemainingBytes() >= 8) {
1540 _3ewa->Read(DimensionUpperLimits, 1, 8);
1541 } else {
1542 memset(DimensionUpperLimits, 0, 8);
1543 }
1544 } else { // '3ewa' chunk does not exist yet
1545 // use default values
1546 LFO3Frequency = 1.0;
1547 EG3Attack = 0.0;
1548 LFO1InternalDepth = 0;
1549 LFO3InternalDepth = 0;
1550 LFO1ControlDepth = 0;
1551 LFO3ControlDepth = 0;
1552 EG1Attack = 0.0;
1553 EG1Decay1 = 0.005;
1554 EG1Sustain = 1000;
1555 EG1Release = 0.3;
1556 EG1Controller.type = eg1_ctrl_t::type_none;
1557 EG1Controller.controller_number = 0;
1558 EG1ControllerInvert = false;
1559 EG1ControllerAttackInfluence = 0;
1560 EG1ControllerDecayInfluence = 0;
1561 EG1ControllerReleaseInfluence = 0;
1562 EG2Controller.type = eg2_ctrl_t::type_none;
1563 EG2Controller.controller_number = 0;
1564 EG2ControllerInvert = false;
1565 EG2ControllerAttackInfluence = 0;
1566 EG2ControllerDecayInfluence = 0;
1567 EG2ControllerReleaseInfluence = 0;
1568 LFO1Frequency = 1.0;
1569 EG2Attack = 0.0;
1570 EG2Decay1 = 0.005;
1571 EG2Sustain = 1000;
1572 EG2Release = 0.3;
1573 LFO2ControlDepth = 0;
1574 LFO2Frequency = 1.0;
1575 LFO2InternalDepth = 0;
1576 EG1Decay2 = 0.0;
1577 EG1InfiniteSustain = true;
1578 EG1PreAttack = 0;
1579 EG2Decay2 = 0.0;
1580 EG2InfiniteSustain = true;
1581 EG2PreAttack = 0;
1582 VelocityResponseCurve = curve_type_nonlinear;
1583 VelocityResponseDepth = 3;
1584 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1585 ReleaseVelocityResponseDepth = 3;
1586 VelocityResponseCurveScaling = 32;
1587 AttenuationControllerThreshold = 0;
1588 SampleStartOffset = 0;
1589 PitchTrack = true;
1590 DimensionBypass = dim_bypass_ctrl_none;
1591 Pan = 0;
1592 SelfMask = true;
1593 LFO3Controller = lfo3_ctrl_modwheel;
1594 LFO3Sync = false;
1595 InvertAttenuationController = false;
1596 AttenuationController.type = attenuation_ctrl_t::type_none;
1597 AttenuationController.controller_number = 0;
1598 LFO2Controller = lfo2_ctrl_internal;
1599 LFO2FlipPhase = false;
1600 LFO2Sync = false;
1601 LFO1Controller = lfo1_ctrl_internal;
1602 LFO1FlipPhase = false;
1603 LFO1Sync = false;
1604 VCFResonanceController = vcf_res_ctrl_none;
1605 EG3Depth = 0;
1606 ChannelOffset = 0;
1607 MSDecode = false;
1608 SustainDefeat = false;
1609 VelocityUpperLimit = 0;
1610 ReleaseTriggerDecay = 0;
1611 EG1Hold = false;
1612 VCFEnabled = false;
1613 VCFCutoff = 0;
1614 VCFCutoffController = vcf_cutoff_ctrl_none;
1615 VCFCutoffControllerInvert = false;
1616 VCFVelocityScale = 0;
1617 VCFResonance = 0;
1618 VCFResonanceDynamic = false;
1619 VCFKeyboardTracking = false;
1620 VCFKeyboardTrackingBreakpoint = 0;
1621 VCFVelocityDynamicRange = 0x04;
1622 VCFVelocityCurve = curve_type_linear;
1623 VCFType = vcf_type_lowpass;
1624 memset(DimensionUpperLimits, 127, 8);
1625 }
1626
1627 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1628 VelocityResponseDepth,
1629 VelocityResponseCurveScaling);
1630
1631 pVelocityReleaseTable = GetReleaseVelocityTable(
1632 ReleaseVelocityResponseCurve,
1633 ReleaseVelocityResponseDepth
1634 );
1635
1636 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1637 VCFVelocityDynamicRange,
1638 VCFVelocityScale,
1639 VCFCutoffController);
1640
1641 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1642 VelocityTable = 0;
1643 }
1644
1645 /*
1646 * Constructs a DimensionRegion by copying all parameters from
1647 * another DimensionRegion
1648 */
1649 DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1650 Instances++;
1651 //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1652 *this = src; // default memberwise shallow copy of all parameters
1653 pParentList = _3ewl; // restore the chunk pointer
1654
1655 // deep copy of owned structures
1656 if (src.VelocityTable) {
1657 VelocityTable = new uint8_t[128];
1658 for (int k = 0 ; k < 128 ; k++)
1659 VelocityTable[k] = src.VelocityTable[k];
1660 }
1661 if (src.pSampleLoops) {
1662 pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1663 for (int k = 0 ; k < src.SampleLoops ; k++)
1664 pSampleLoops[k] = src.pSampleLoops[k];
1665 }
1666 }
1667
1668 /**
1669 * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1670 * and assign it to this object.
1671 *
1672 * Note that all sample pointers referenced by @a orig are simply copied as
1673 * memory address. Thus the respective samples are shared, not duplicated!
1674 *
1675 * @param orig - original DimensionRegion object to be copied from
1676 */
1677 void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1678 CopyAssign(orig, NULL);
1679 }
1680
1681 /**
1682 * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1683 * and assign it to this object.
1684 *
1685 * @param orig - original DimensionRegion object to be copied from
1686 * @param mSamples - crosslink map between the foreign file's samples and
1687 * this file's samples
1688 */
1689 void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1690 // delete all allocated data first
1691 if (VelocityTable) delete [] VelocityTable;
1692 if (pSampleLoops) delete [] pSampleLoops;
1693
1694 // backup parent list pointer
1695 RIFF::List* p = pParentList;
1696
1697 gig::Sample* pOriginalSample = pSample;
1698 gig::Region* pOriginalRegion = pRegion;
1699
1700 //NOTE: copy code copied from assignment constructor above, see comment there as well
1701
1702 *this = *orig; // default memberwise shallow copy of all parameters
1703 pParentList = p; // restore the chunk pointer
1704
1705 // only take the raw sample reference & parent region reference if the
1706 // two DimensionRegion objects are part of the same file
1707 if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1708 pRegion = pOriginalRegion;
1709 pSample = pOriginalSample;
1710 }
1711
1712 if (mSamples && mSamples->count(orig->pSample)) {
1713 pSample = mSamples->find(orig->pSample)->second;
1714 }
1715
1716 // deep copy of owned structures
1717 if (orig->VelocityTable) {
1718 VelocityTable = new uint8_t[128];
1719 for (int k = 0 ; k < 128 ; k++)
1720 VelocityTable[k] = orig->VelocityTable[k];
1721 }
1722 if (orig->pSampleLoops) {
1723 pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1724 for (int k = 0 ; k < orig->SampleLoops ; k++)
1725 pSampleLoops[k] = orig->pSampleLoops[k];
1726 }
1727 }
1728
1729 /**
1730 * Updates the respective member variable and updates @c SampleAttenuation
1731 * which depends on this value.
1732 */
1733 void DimensionRegion::SetGain(int32_t gain) {
1734 DLS::Sampler::SetGain(gain);
1735 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1736 }
1737
1738 /**
1739 * Apply dimension region settings to the respective RIFF chunks. You
1740 * have to call File::Save() to make changes persistent.
1741 *
1742 * Usually there is absolutely no need to call this method explicitly.
1743 * It will be called automatically when File::Save() was called.
1744 */
1745 void DimensionRegion::UpdateChunks() {
1746 // first update base class's chunk
1747 DLS::Sampler::UpdateChunks();
1748
1749 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1750 uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1751 pData[12] = Crossfade.in_start;
1752 pData[13] = Crossfade.in_end;
1753 pData[14] = Crossfade.out_start;
1754 pData[15] = Crossfade.out_end;
1755
1756 // make sure '3ewa' chunk exists
1757 RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1758 if (!_3ewa) {
1759 File* pFile = (File*) GetParent()->GetParent()->GetParent();
1760 bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1761 _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1762 }
1763 pData = (uint8_t*) _3ewa->LoadChunkData();
1764
1765 // update '3ewa' chunk with DimensionRegion's current settings
1766
1767 const uint32_t chunksize = _3ewa->GetNewSize();
1768 store32(&pData[0], chunksize); // unknown, always chunk size?
1769
1770 const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1771 store32(&pData[4], lfo3freq);
1772
1773 const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1774 store32(&pData[8], eg3attack);
1775
1776 // next 2 bytes unknown
1777
1778 store16(&pData[14], LFO1InternalDepth);
1779
1780 // next 2 bytes unknown
1781
1782 store16(&pData[18], LFO3InternalDepth);
1783
1784 // next 2 bytes unknown
1785
1786 store16(&pData[22], LFO1ControlDepth);
1787
1788 // next 2 bytes unknown
1789
1790 store16(&pData[26], LFO3ControlDepth);
1791
1792 const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1793 store32(&pData[28], eg1attack);
1794
1795 const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1796 store32(&pData[32], eg1decay1);
1797
1798 // next 2 bytes unknown
1799
1800 store16(&pData[38], EG1Sustain);
1801
1802 const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1803 store32(&pData[40], eg1release);
1804
1805 const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1806 pData[44] = eg1ctl;
1807
1808 const uint8_t eg1ctrloptions =
1809 (EG1ControllerInvert ? 0x01 : 0x00) |
1810 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1811 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1812 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1813 pData[45] = eg1ctrloptions;
1814
1815 const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1816 pData[46] = eg2ctl;
1817
1818 const uint8_t eg2ctrloptions =
1819 (EG2ControllerInvert ? 0x01 : 0x00) |
1820 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1821 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1822 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1823 pData[47] = eg2ctrloptions;
1824
1825 const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1826 store32(&pData[48], lfo1freq);
1827
1828 const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1829 store32(&pData[52], eg2attack);
1830
1831 const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1832 store32(&pData[56], eg2decay1);
1833
1834 // next 2 bytes unknown
1835
1836 store16(&pData[62], EG2Sustain);
1837
1838 const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1839 store32(&pData[64], eg2release);
1840
1841 // next 2 bytes unknown
1842
1843 store16(&pData[70], LFO2ControlDepth);
1844
1845 const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1846 store32(&pData[72], lfo2freq);
1847
1848 // next 2 bytes unknown
1849
1850 store16(&pData[78], LFO2InternalDepth);
1851
1852 const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1853 store32(&pData[80], eg1decay2);
1854
1855 // next 2 bytes unknown
1856
1857 store16(&pData[86], EG1PreAttack);
1858
1859 const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1860 store32(&pData[88], eg2decay2);
1861
1862 // next 2 bytes unknown
1863
1864 store16(&pData[94], EG2PreAttack);
1865
1866 {
1867 if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1868 uint8_t velocityresponse = VelocityResponseDepth;
1869 switch (VelocityResponseCurve) {
1870 case curve_type_nonlinear:
1871 break;
1872 case curve_type_linear:
1873 velocityresponse += 5;
1874 break;
1875 case curve_type_special:
1876 velocityresponse += 10;
1877 break;
1878 case curve_type_unknown:
1879 default:
1880 throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1881 }
1882 pData[96] = velocityresponse;
1883 }
1884
1885 {
1886 if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1887 uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1888 switch (ReleaseVelocityResponseCurve) {
1889 case curve_type_nonlinear:
1890 break;
1891 case curve_type_linear:
1892 releasevelocityresponse += 5;
1893 break;
1894 case curve_type_special:
1895 releasevelocityresponse += 10;
1896 break;
1897 case curve_type_unknown:
1898 default:
1899 throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1900 }
1901 pData[97] = releasevelocityresponse;
1902 }
1903
1904 pData[98] = VelocityResponseCurveScaling;
1905
1906 pData[99] = AttenuationControllerThreshold;
1907
1908 // next 4 bytes unknown
1909
1910 store16(&pData[104], SampleStartOffset);
1911
1912 // next 2 bytes unknown
1913
1914 {
1915 uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1916 switch (DimensionBypass) {
1917 case dim_bypass_ctrl_94:
1918 pitchTrackDimensionBypass |= 0x10;
1919 break;
1920 case dim_bypass_ctrl_95:
1921 pitchTrackDimensionBypass |= 0x20;
1922 break;
1923 case dim_bypass_ctrl_none:
1924 //FIXME: should we set anything here?
1925 break;
1926 default:
1927 throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1928 }
1929 pData[108] = pitchTrackDimensionBypass;
1930 }
1931
1932 const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1933 pData[109] = pan;
1934
1935 const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1936 pData[110] = selfmask;
1937
1938 // next byte unknown
1939
1940 {
1941 uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1942 if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1943 if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1944 if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1945 pData[112] = lfo3ctrl;
1946 }
1947
1948 const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1949 pData[113] = attenctl;
1950
1951 {
1952 uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1953 if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1954 if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
1955 if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1956 pData[114] = lfo2ctrl;
1957 }
1958
1959 {
1960 uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1961 if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1962 if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
1963 if (VCFResonanceController != vcf_res_ctrl_none)
1964 lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1965 pData[115] = lfo1ctrl;
1966 }
1967
1968 const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1969 : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
1970 store16(&pData[116], eg3depth);
1971
1972 // next 2 bytes unknown
1973
1974 const uint8_t channeloffset = ChannelOffset * 4;
1975 pData[120] = channeloffset;
1976
1977 {
1978 uint8_t regoptions = 0;
1979 if (MSDecode) regoptions |= 0x01; // bit 0
1980 if (SustainDefeat) regoptions |= 0x02; // bit 1
1981 pData[121] = regoptions;
1982 }
1983
1984 // next 2 bytes unknown
1985
1986 pData[124] = VelocityUpperLimit;
1987
1988 // next 3 bytes unknown
1989
1990 pData[128] = ReleaseTriggerDecay;
1991
1992 // next 2 bytes unknown
1993
1994 const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1995 pData[131] = eg1hold;
1996
1997 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
1998 (VCFCutoff & 0x7f); /* lower 7 bits */
1999 pData[132] = vcfcutoff;
2000
2001 pData[133] = VCFCutoffController;
2002
2003 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2004 (VCFVelocityScale & 0x7f); /* lower 7 bits */
2005 pData[134] = vcfvelscale;
2006
2007 // next byte unknown
2008
2009 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2010 (VCFResonance & 0x7f); /* lower 7 bits */
2011 pData[136] = vcfresonance;
2012
2013 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2014 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2015 pData[137] = vcfbreakpoint;
2016
2017 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2018 VCFVelocityCurve * 5;
2019 pData[138] = vcfvelocity;
2020
2021 const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2022 pData[139] = vcftype;
2023
2024 if (chunksize >= 148) {
2025 memcpy(&pData[140], DimensionUpperLimits, 8);
2026 }
2027 }
2028
2029 double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2030 curve_type_t curveType = releaseVelocityResponseCurve;
2031 uint8_t depth = releaseVelocityResponseDepth;
2032 // this models a strange behaviour or bug in GSt: two of the
2033 // velocity response curves for release time are not used even
2034 // if specified, instead another curve is chosen.
2035 if ((curveType == curve_type_nonlinear && depth == 0) ||
2036 (curveType == curve_type_special && depth == 4)) {
2037 curveType = curve_type_nonlinear;
2038 depth = 3;
2039 }
2040 return GetVelocityTable(curveType, depth, 0);
2041 }
2042
2043 double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2044 uint8_t vcfVelocityDynamicRange,
2045 uint8_t vcfVelocityScale,
2046 vcf_cutoff_ctrl_t vcfCutoffController)
2047 {
2048 curve_type_t curveType = vcfVelocityCurve;
2049 uint8_t depth = vcfVelocityDynamicRange;
2050 // even stranger GSt: two of the velocity response curves for
2051 // filter cutoff are not used, instead another special curve
2052 // is chosen. This curve is not used anywhere else.
2053 if ((curveType == curve_type_nonlinear && depth == 0) ||
2054 (curveType == curve_type_special && depth == 4)) {
2055 curveType = curve_type_special;
2056 depth = 5;
2057 }
2058 return GetVelocityTable(curveType, depth,
2059 (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2060 ? vcfVelocityScale : 0);
2061 }
2062
2063 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2064 double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2065 {
2066 double* table;
2067 uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2068 if (pVelocityTables->count(tableKey)) { // if key exists
2069 table = (*pVelocityTables)[tableKey];
2070 }
2071 else {
2072 table = CreateVelocityTable(curveType, depth, scaling);
2073 (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
2074 }
2075 return table;
2076 }
2077
2078 Region* DimensionRegion::GetParent() const {
2079 return pRegion;
2080 }
2081
2082 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2083 leverage_ctrl_t decodedcontroller;
2084 switch (EncodedController) {
2085 // special controller
2086 case _lev_ctrl_none:
2087 decodedcontroller.type = leverage_ctrl_t::type_none;
2088 decodedcontroller.controller_number = 0;
2089 break;
2090 case _lev_ctrl_velocity:
2091 decodedcontroller.type = leverage_ctrl_t::type_velocity;
2092 decodedcontroller.controller_number = 0;
2093 break;
2094 case _lev_ctrl_channelaftertouch:
2095 decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
2096 decodedcontroller.controller_number = 0;
2097 break;
2098
2099 // ordinary MIDI control change controller
2100 case _lev_ctrl_modwheel:
2101 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2102 decodedcontroller.controller_number = 1;
2103 break;
2104 case _lev_ctrl_breath:
2105 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2106 decodedcontroller.controller_number = 2;
2107 break;
2108 case _lev_ctrl_foot:
2109 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2110 decodedcontroller.controller_number = 4;
2111 break;
2112 case _lev_ctrl_effect1:
2113 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2114 decodedcontroller.controller_number = 12;
2115 break;
2116 case _lev_ctrl_effect2:
2117 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2118 decodedcontroller.controller_number = 13;
2119 break;
2120 case _lev_ctrl_genpurpose1:
2121 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2122 decodedcontroller.controller_number = 16;
2123 break;
2124 case _lev_ctrl_genpurpose2:
2125 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2126 decodedcontroller.controller_number = 17;
2127 break;
2128 case _lev_ctrl_genpurpose3:
2129 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2130 decodedcontroller.controller_number = 18;
2131 break;
2132 case _lev_ctrl_genpurpose4:
2133 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2134 decodedcontroller.controller_number = 19;
2135 break;
2136 case _lev_ctrl_portamentotime:
2137 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2138 decodedcontroller.controller_number = 5;
2139 break;
2140 case _lev_ctrl_sustainpedal:
2141 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2142 decodedcontroller.controller_number = 64;
2143 break;
2144 case _lev_ctrl_portamento:
2145 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2146 decodedcontroller.controller_number = 65;
2147 break;
2148 case _lev_ctrl_sostenutopedal:
2149 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2150 decodedcontroller.controller_number = 66;
2151 break;
2152 case _lev_ctrl_softpedal:
2153 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2154 decodedcontroller.controller_number = 67;
2155 break;
2156 case _lev_ctrl_genpurpose5:
2157 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2158 decodedcontroller.controller_number = 80;
2159 break;
2160 case _lev_ctrl_genpurpose6:
2161 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2162 decodedcontroller.controller_number = 81;
2163 break;
2164 case _lev_ctrl_genpurpose7:
2165 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2166 decodedcontroller.controller_number = 82;
2167 break;
2168 case _lev_ctrl_genpurpose8:
2169 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2170 decodedcontroller.controller_number = 83;
2171 break;
2172 case _lev_ctrl_effect1depth:
2173 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2174 decodedcontroller.controller_number = 91;
2175 break;
2176 case _lev_ctrl_effect2depth:
2177 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2178 decodedcontroller.controller_number = 92;
2179 break;
2180 case _lev_ctrl_effect3depth:
2181 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2182 decodedcontroller.controller_number = 93;
2183 break;
2184 case _lev_ctrl_effect4depth:
2185 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2186 decodedcontroller.controller_number = 94;
2187 break;
2188 case _lev_ctrl_effect5depth:
2189 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2190 decodedcontroller.controller_number = 95;
2191 break;
2192
2193 // unknown controller type
2194 default:
2195 throw gig::Exception("Unknown leverage controller type.");
2196 }
2197 return decodedcontroller;
2198 }
2199
2200 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2201 _lev_ctrl_t encodedcontroller;
2202 switch (DecodedController.type) {
2203 // special controller
2204 case leverage_ctrl_t::type_none:
2205 encodedcontroller = _lev_ctrl_none;
2206 break;
2207 case leverage_ctrl_t::type_velocity:
2208 encodedcontroller = _lev_ctrl_velocity;
2209 break;
2210 case leverage_ctrl_t::type_channelaftertouch:
2211 encodedcontroller = _lev_ctrl_channelaftertouch;
2212 break;
2213
2214 // ordinary MIDI control change controller
2215 case leverage_ctrl_t::type_controlchange:
2216 switch (DecodedController.controller_number) {
2217 case 1:
2218 encodedcontroller = _lev_ctrl_modwheel;
2219 break;
2220 case 2:
2221 encodedcontroller = _lev_ctrl_breath;
2222 break;
2223 case 4:
2224 encodedcontroller = _lev_ctrl_foot;
2225 break;
2226 case 12:
2227 encodedcontroller = _lev_ctrl_effect1;
2228 break;
2229 case 13:
2230 encodedcontroller = _lev_ctrl_effect2;
2231 break;
2232 case 16:
2233 encodedcontroller = _lev_ctrl_genpurpose1;
2234 break;
2235 case 17:
2236 encodedcontroller = _lev_ctrl_genpurpose2;
2237 break;
2238 case 18:
2239 encodedcontroller = _lev_ctrl_genpurpose3;
2240 break;
2241 case 19:
2242 encodedcontroller = _lev_ctrl_genpurpose4;
2243 break;
2244 case 5:
2245 encodedcontroller = _lev_ctrl_portamentotime;
2246 break;
2247 case 64:
2248 encodedcontroller = _lev_ctrl_sustainpedal;
2249 break;
2250 case 65:
2251 encodedcontroller = _lev_ctrl_portamento;
2252 break;
2253 case 66:
2254 encodedcontroller = _lev_ctrl_sostenutopedal;
2255 break;
2256 case 67:
2257 encodedcontroller = _lev_ctrl_softpedal;
2258 break;
2259 case 80:
2260 encodedcontroller = _lev_ctrl_genpurpose5;
2261 break;
2262 case 81:
2263 encodedcontroller = _lev_ctrl_genpurpose6;
2264 break;
2265 case 82:
2266 encodedcontroller = _lev_ctrl_genpurpose7;
2267 break;
2268 case 83:
2269 encodedcontroller = _lev_ctrl_genpurpose8;
2270 break;
2271 case 91:
2272 encodedcontroller = _lev_ctrl_effect1depth;
2273 break;
2274 case 92:
2275 encodedcontroller = _lev_ctrl_effect2depth;
2276 break;
2277 case 93:
2278 encodedcontroller = _lev_ctrl_effect3depth;
2279 break;
2280 case 94:
2281 encodedcontroller = _lev_ctrl_effect4depth;
2282 break;
2283 case 95:
2284 encodedcontroller = _lev_ctrl_effect5depth;
2285 break;
2286 default:
2287 throw gig::Exception("leverage controller number is not supported by the gig format");
2288 }
2289 break;
2290 default:
2291 throw gig::Exception("Unknown leverage controller type.");
2292 }
2293 return encodedcontroller;
2294 }
2295
2296 DimensionRegion::~DimensionRegion() {
2297 Instances--;
2298 if (!Instances) {
2299 // delete the velocity->volume tables
2300 VelocityTableMap::iterator iter;
2301 for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
2302 double* pTable = iter->second;
2303 if (pTable) delete[] pTable;
2304 }
2305 pVelocityTables->clear();
2306 delete pVelocityTables;
2307 pVelocityTables = NULL;
2308 }
2309 if (VelocityTable) delete[] VelocityTable;
2310 }
2311
2312 /**
2313 * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
2314 * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
2315 * and VelocityResponseCurveScaling) involved are taken into account to
2316 * calculate the amplitude factor. Use this method when a key was
2317 * triggered to get the volume with which the sample should be played
2318 * back.
2319 *
2320 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
2321 * @returns amplitude factor (between 0.0 and 1.0)
2322 */
2323 double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2324 return pVelocityAttenuationTable[MIDIKeyVelocity];
2325 }
2326
2327 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2328 return pVelocityReleaseTable[MIDIKeyVelocity];
2329 }
2330
2331 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2332 return pVelocityCutoffTable[MIDIKeyVelocity];
2333 }
2334
2335 /**
2336 * Updates the respective member variable and the lookup table / cache
2337 * that depends on this value.
2338 */
2339 void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
2340 pVelocityAttenuationTable =
2341 GetVelocityTable(
2342 curve, VelocityResponseDepth, VelocityResponseCurveScaling
2343 );
2344 VelocityResponseCurve = curve;
2345 }
2346
2347 /**
2348 * Updates the respective member variable and the lookup table / cache
2349 * that depends on this value.
2350 */
2351 void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
2352 pVelocityAttenuationTable =
2353 GetVelocityTable(
2354 VelocityResponseCurve, depth, VelocityResponseCurveScaling
2355 );
2356 VelocityResponseDepth = depth;
2357 }
2358
2359 /**
2360 * Updates the respective member variable and the lookup table / cache
2361 * that depends on this value.
2362 */
2363 void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
2364 pVelocityAttenuationTable =
2365 GetVelocityTable(
2366 VelocityResponseCurve, VelocityResponseDepth, scaling
2367 );
2368 VelocityResponseCurveScaling = scaling;
2369 }
2370
2371 /**
2372 * Updates the respective member variable and the lookup table / cache
2373 * that depends on this value.
2374 */
2375 void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
2376 pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
2377 ReleaseVelocityResponseCurve = curve;
2378 }
2379
2380 /**
2381 * Updates the respective member variable and the lookup table / cache
2382 * that depends on this value.
2383 */
2384 void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
2385 pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
2386 ReleaseVelocityResponseDepth = depth;
2387 }
2388
2389 /**
2390 * Updates the respective member variable and the lookup table / cache
2391 * that depends on this value.
2392 */
2393 void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
2394 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
2395 VCFCutoffController = controller;
2396 }
2397
2398 /**
2399 * Updates the respective member variable and the lookup table / cache
2400 * that depends on this value.
2401 */
2402 void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
2403 pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
2404 VCFVelocityCurve = curve;
2405 }
2406
2407 /**
2408 * Updates the respective member variable and the lookup table / cache
2409 * that depends on this value.
2410 */
2411 void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
2412 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
2413 VCFVelocityDynamicRange = range;
2414 }
2415
2416 /**
2417 * Updates the respective member variable and the lookup table / cache
2418 * that depends on this value.
2419 */
2420 void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
2421 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
2422 VCFVelocityScale = scaling;
2423 }
2424
2425 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2426
2427 // line-segment approximations of the 15 velocity curves
2428
2429 // linear
2430 const int lin0[] = { 1, 1, 127, 127 };
2431 const int lin1[] = { 1, 21, 127, 127 };
2432 const int lin2[] = { 1, 45, 127, 127 };
2433 const int lin3[] = { 1, 74, 127, 127 };
2434 const int lin4[] = { 1, 127, 127, 127 };
2435
2436 // non-linear
2437 const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2438 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2439 127, 127 };
2440 const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2441 127, 127 };
2442 const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2443 127, 127 };
2444 const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2445
2446 // special
2447 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2448 113, 127, 127, 127 };
2449 const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2450 118, 127, 127, 127 };
2451 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2452 85, 90, 91, 127, 127, 127 };
2453 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2454 117, 127, 127, 127 };
2455 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2456 127, 127 };
2457
2458 // this is only used by the VCF velocity curve
2459 const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2460 91, 127, 127, 127 };
2461
2462 const int* const curves[] = { non0, non1, non2, non3, non4,
2463 lin0, lin1, lin2, lin3, lin4,
2464 spe0, spe1, spe2, spe3, spe4, spe5 };
2465
2466 double* const table = new double[128];
2467
2468 const int* curve = curves[curveType * 5 + depth];
2469 const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2470
2471 table[0] = 0;
2472 for (int x = 1 ; x < 128 ; x++) {
2473
2474 if (x > curve[2]) curve += 2;
2475 double y = curve[1] + (x - curve[0]) *
2476 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2477 y = y / 127;
2478
2479 // Scale up for s > 20, down for s < 20. When
2480 // down-scaling, the curve still ends at 1.0.
2481 if (s < 20 && y >= 0.5)
2482 y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2483 else
2484 y = y * (s / 20.0);
2485 if (y > 1) y = 1;
2486
2487 table[x] = y;
2488 }
2489 return table;
2490 }
2491
2492
2493 // *************** Region ***************
2494 // *
2495
2496 Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2497 // Initialization
2498 Dimensions = 0;
2499 for (int i = 0; i < 256; i++) {
2500 pDimensionRegions[i] = NULL;
2501 }
2502 Layers = 1;
2503 File* file = (File*) GetParent()->GetParent();
2504 int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2505
2506 // Actual Loading
2507
2508 if (!file->GetAutoLoad()) return;
2509
2510 LoadDimensionRegions(rgnList);
2511
2512 RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
2513 if (_3lnk) {
2514 DimensionRegions = _3lnk->ReadUint32();
2515 for (int i = 0; i < dimensionBits; i++) {
2516 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2517 uint8_t bits = _3lnk->ReadUint8();
2518 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
2519 _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
2520 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2521 if (dimension == dimension_none) { // inactive dimension
2522 pDimensionDefinitions[i].dimension = dimension_none;
2523 pDimensionDefinitions[i].bits = 0;
2524 pDimensionDefinitions[i].zones = 0;
2525 pDimensionDefinitions[i].split_type = split_type_bit;
2526 pDimensionDefinitions[i].zone_size = 0;
2527 }
2528 else { // active dimension
2529 pDimensionDefinitions[i].dimension = dimension;
2530 pDimensionDefinitions[i].bits = bits;
2531 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
2532 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2533 pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
2534 Dimensions++;
2535
2536 // if this is a layer dimension, remember the amount of layers
2537 if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
2538 }
2539 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2540 }
2541 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2542
2543 // if there's a velocity dimension and custom velocity zone splits are used,
2544 // update the VelocityTables in the dimension regions
2545 UpdateVelocityTable();
2546
2547 // jump to start of the wave pool indices (if not already there)
2548 if (file->pVersion && file->pVersion->major == 3)
2549 _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2550 else
2551 _3lnk->SetPos(44);
2552
2553 // load sample references (if auto loading is enabled)
2554 if (file->GetAutoLoad()) {
2555 for (uint i = 0; i < DimensionRegions; i++) {
2556 uint32_t wavepoolindex = _3lnk->ReadUint32();
2557 if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2558 }
2559 GetSample(); // load global region sample reference
2560 }
2561 } else {
2562 DimensionRegions = 0;
2563 for (int i = 0 ; i < 8 ; i++) {
2564 pDimensionDefinitions[i].dimension = dimension_none;
2565 pDimensionDefinitions[i].bits = 0;
2566 pDimensionDefinitions[i].zones = 0;
2567 }
2568 }
2569
2570 // make sure there is at least one dimension region
2571 if (!DimensionRegions) {
2572 RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
2573 if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
2574 RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
2575 pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
2576 DimensionRegions = 1;
2577 }
2578 }
2579
2580 /**
2581 * Apply Region settings and all its DimensionRegions to the respective
2582 * RIFF chunks. You have to call File::Save() to make changes persistent.
2583 *
2584 * Usually there is absolutely no need to call this method explicitly.
2585 * It will be called automatically when File::Save() was called.
2586 *
2587 * @throws gig::Exception if samples cannot be dereferenced
2588 */
2589 void Region::UpdateChunks() {
2590 // in the gig format we don't care about the Region's sample reference
2591 // but we still have to provide some existing one to not corrupt the
2592 // file, so to avoid the latter we simply always assign the sample of
2593 // the first dimension region of this region
2594 pSample = pDimensionRegions[0]->pSample;
2595
2596 // first update base class's chunks
2597 DLS::Region::UpdateChunks();
2598
2599 // update dimension region's chunks
2600 for (int i = 0; i < DimensionRegions; i++) {
2601 pDimensionRegions[i]->UpdateChunks();
2602 }
2603
2604 File* pFile = (File*) GetParent()->GetParent();
2605 bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
2606 const int iMaxDimensions = version3 ? 8 : 5;
2607 const int iMaxDimensionRegions = version3 ? 256 : 32;
2608
2609 // make sure '3lnk' chunk exists
2610 RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
2611 if (!_3lnk) {
2612 const int _3lnkChunkSize = version3 ? 1092 : 172;
2613 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
2614 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
2615
2616 // move 3prg to last position
2617 pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), 0);
2618 }
2619
2620 // update dimension definitions in '3lnk' chunk
2621 uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2622 store32(&pData[0], DimensionRegions);
2623 int shift = 0;
2624 for (int i = 0; i < iMaxDimensions; i++) {
2625 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
2626 pData[5 + i * 8] = pDimensionDefinitions[i].bits;
2627 pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
2628 pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
2629 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
2630 // next 3 bytes unknown, always zero?
2631
2632 shift += pDimensionDefinitions[i].bits;
2633 }
2634
2635 // update wave pool table in '3lnk' chunk
2636 const int iWavePoolOffset = version3 ? 68 : 44;
2637 for (uint i = 0; i < iMaxDimensionRegions; i++) {
2638 int iWaveIndex = -1;
2639 if (i < DimensionRegions) {
2640 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
2641 File::SampleList::iterator iter = pFile->pSamples->begin();
2642 File::SampleList::iterator end = pFile->pSamples->end();
2643 for (int index = 0; iter != end; ++iter, ++index) {
2644 if (*iter == pDimensionRegions[i]->pSample) {
2645 iWaveIndex = index;
2646 break;
2647 }
2648 }
2649 }
2650 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
2651 }
2652 }
2653
2654 void Region::LoadDimensionRegions(RIFF::List* rgn) {
2655 RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
2656 if (_3prg) {
2657 int dimensionRegionNr = 0;
2658 RIFF::List* _3ewl = _3prg->GetFirstSubList();
2659 while (_3ewl) {
2660 if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
2661 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
2662 dimensionRegionNr++;
2663 }
2664 _3ewl = _3prg->GetNextSubList();
2665 }
2666 if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
2667 }
2668 }
2669
2670 void Region::SetKeyRange(uint16_t Low, uint16_t High) {
2671 // update KeyRange struct and make sure regions are in correct order
2672 DLS::Region::SetKeyRange(Low, High);
2673 // update Region key table for fast lookup
2674 ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
2675 }
2676
2677 void Region::UpdateVelocityTable() {
2678 // get velocity dimension's index
2679 int veldim = -1;
2680 for (int i = 0 ; i < Dimensions ; i++) {
2681 if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
2682 veldim = i;
2683 break;
2684 }
2685 }
2686 if (veldim == -1) return;
2687
2688 int step = 1;
2689 for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
2690 int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
2691 int end = step * pDimensionDefinitions[veldim].zones;
2692
2693 // loop through all dimension regions for all dimensions except the velocity dimension
2694 int dim[8] = { 0 };
2695 for (int i = 0 ; i < DimensionRegions ; i++) {
2696
2697 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
2698 pDimensionRegions[i]->VelocityUpperLimit) {
2699 // create the velocity table
2700 uint8_t* table = pDimensionRegions[i]->VelocityTable;
2701 if (!table) {
2702 table = new uint8_t[128];
2703 pDimensionRegions[i]->VelocityTable = table;
2704 }
2705 int tableidx = 0;
2706 int velocityZone = 0;
2707 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
2708 for (int k = i ; k < end ; k += step) {
2709 DimensionRegion *d = pDimensionRegions[k];
2710 for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
2711 velocityZone++;
2712 }
2713 } else { // gig2
2714 for (int k = i ; k < end ; k += step) {
2715 DimensionRegion *d = pDimensionRegions[k];
2716 for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
2717 velocityZone++;
2718 }
2719 }
2720 } else {
2721 if (pDimensionRegions[i]->VelocityTable) {
2722 delete[] pDimensionRegions[i]->VelocityTable;
2723 pDimensionRegions[i]->VelocityTable = 0;
2724 }
2725 }
2726
2727 int j;
2728 int shift = 0;
2729 for (j = 0 ; j < Dimensions ; j++) {
2730 if (j == veldim) i += skipveldim; // skip velocity dimension
2731 else {
2732 dim[j]++;
2733 if (dim[j] < pDimensionDefinitions[j].zones) break;
2734 else {
2735 // skip unused dimension regions
2736 dim[j] = 0;
2737 i += ((1 << pDimensionDefinitions[j].bits) -
2738 pDimensionDefinitions[j].zones) << shift;
2739 }
2740 }
2741 shift += pDimensionDefinitions[j].bits;
2742 }
2743 if (j == Dimensions) break;
2744 }
2745 }
2746
2747 /** @brief Einstein would have dreamed of it - create a new dimension.
2748 *
2749 * Creates a new dimension with the dimension definition given by
2750 * \a pDimDef. The appropriate amount of DimensionRegions will be created.
2751 * There is a hard limit of dimensions and total amount of "bits" all
2752 * dimensions can have. This limit is dependant to what gig file format
2753 * version this file refers to. The gig v2 (and lower) format has a
2754 * dimension limit and total amount of bits limit of 5, whereas the gig v3
2755 * format has a limit of 8.
2756 *
2757 * @param pDimDef - defintion of the new dimension
2758 * @throws gig::Exception if dimension of the same type exists already
2759 * @throws gig::Exception if amount of dimensions or total amount of
2760 * dimension bits limit is violated
2761 */
2762 void Region::AddDimension(dimension_def_t* pDimDef) {
2763 // check if max. amount of dimensions reached
2764 File* file = (File*) GetParent()->GetParent();
2765 const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2766 if (Dimensions >= iMaxDimensions)
2767 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
2768 // check if max. amount of dimension bits reached
2769 int iCurrentBits = 0;
2770 for (int i = 0; i < Dimensions; i++)
2771 iCurrentBits += pDimensionDefinitions[i].bits;
2772 if (iCurrentBits >= iMaxDimensions)
2773 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
2774 const int iNewBits = iCurrentBits + pDimDef->bits;
2775 if (iNewBits > iMaxDimensions)
2776 throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
2777 // check if there's already a dimensions of the same type
2778 for (int i = 0; i < Dimensions; i++)
2779 if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
2780 throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
2781
2782 // pos is where the new dimension should be placed, normally
2783 // last in list, except for the samplechannel dimension which
2784 // has to be first in list
2785 int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
2786 int bitpos = 0;
2787 for (int i = 0 ; i < pos ; i++)
2788 bitpos += pDimensionDefinitions[i].bits;
2789
2790 // make room for the new dimension
2791 for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
2792 for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
2793 for (int j = Dimensions ; j > pos ; j--) {
2794 pDimensionRegions[i]->DimensionUpperLimits[j] =
2795 pDimensionRegions[i]->DimensionUpperLimits[j - 1];
2796 }
2797 }
2798
2799 // assign definition of new dimension
2800 pDimensionDefinitions[pos] = *pDimDef;
2801
2802 // auto correct certain dimension definition fields (where possible)
2803 pDimensionDefinitions[pos].split_type =
2804 __resolveSplitType(pDimensionDefinitions[pos].dimension);
2805 pDimensionDefinitions[pos].zone_size =
2806 __resolveZoneSize(pDimensionDefinitions[pos]);
2807
2808 // create new dimension region(s) for this new dimension, and make
2809 // sure that the dimension regions are placed correctly in both the
2810 // RIFF list and the pDimensionRegions array
2811 RIFF::Chunk* moveTo = NULL;
2812 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2813 for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
2814 for (int k = 0 ; k < (1 << bitpos) ; k++) {
2815 pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
2816 }
2817 for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
2818 for (int k = 0 ; k < (1 << bitpos) ; k++) {
2819 RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
2820 if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
2821 // create a new dimension region and copy all parameter values from
2822 // an existing dimension region
2823 pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
2824 new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
2825
2826 DimensionRegions++;
2827 }
2828 }
2829 moveTo = pDimensionRegions[i]->pParentList;
2830 }
2831
2832 // initialize the upper limits for this dimension
2833 int mask = (1 << bitpos) - 1;
2834 for (int z = 0 ; z < pDimDef->zones ; z++) {
2835 uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
2836 for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
2837 pDimensionRegions[((i & ~mask) << pDimDef->bits) |
2838 (z << bitpos) |
2839 (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
2840 }
2841 }
2842
2843 Dimensions++;
2844
2845 // if this is a layer dimension, update 'Layers' attribute
2846 if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
2847
2848 UpdateVelocityTable();
2849 }
2850
2851 /** @brief Delete an existing dimension.
2852 *
2853 * Deletes the dimension given by \a pDimDef and deletes all respective
2854 * dimension regions, that is all dimension regions where the dimension's
2855 * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
2856 * for example this would delete all dimension regions for the case(s)
2857 * where the sustain pedal is pressed down.
2858 *
2859 * @param pDimDef - dimension to delete
2860 * @throws gig::Exception if given dimension cannot be found
2861 */
2862 void Region::DeleteDimension(dimension_def_t* pDimDef) {
2863 // get dimension's index
2864 int iDimensionNr = -1;
2865 for (int i = 0; i < Dimensions; i++) {
2866 if (&pDimensionDefinitions[i] == pDimDef) {
2867 iDimensionNr = i;
2868 break;
2869 }
2870 }
2871 if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
2872
2873 // get amount of bits below the dimension to delete
2874 int iLowerBits = 0;
2875 for (int i = 0; i < iDimensionNr; i++)
2876 iLowerBits += pDimensionDefinitions[i].bits;
2877
2878 // get amount ot bits above the dimension to delete
2879 int iUpperBits = 0;
2880 for (int i = iDimensionNr + 1; i < Dimensions; i++)
2881 iUpperBits += pDimensionDefinitions[i].bits;
2882
2883 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
2884
2885 // delete dimension regions which belong to the given dimension
2886 // (that is where the dimension's bit > 0)
2887 for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
2888 for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
2889 for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
2890 int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
2891 iObsoleteBit << iLowerBits |
2892 iLowerBit;
2893
2894 _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
2895 delete pDimensionRegions[iToDelete];
2896 pDimensionRegions[iToDelete] = NULL;
2897 DimensionRegions--;
2898 }
2899 }
2900 }
2901
2902 // defrag pDimensionRegions array
2903 // (that is remove the NULL spaces within the pDimensionRegions array)
2904 for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
2905 if (!pDimensionRegions[iTo]) {
2906 if (iFrom <= iTo) iFrom = iTo + 1;
2907 while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
2908 if (iFrom < 256 && pDimensionRegions[iFrom]) {
2909 pDimensionRegions[iTo] = pDimensionRegions[iFrom];
2910 pDimensionRegions[iFrom] = NULL;
2911 }
2912 }
2913 }
2914
2915 // remove the this dimension from the upper limits arrays
2916 for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
2917 DimensionRegion* d = pDimensionRegions[j];
2918 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2919 d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
2920 }
2921 d->DimensionUpperLimits[Dimensions - 1] = 127;
2922 }
2923
2924 // 'remove' dimension definition
2925 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2926 pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
2927 }
2928 pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
2929 pDimensionDefinitions[Dimensions - 1].bits = 0;
2930 pDimensionDefinitions[Dimensions - 1].zones = 0;
2931
2932 Dimensions--;
2933
2934 // if this was a layer dimension, update 'Layers' attribute
2935 if (pDimDef->dimension == dimension_layer) Layers = 1;
2936 }
2937
2938 Region::~Region() {
2939 for (int i = 0; i < 256; i++) {
2940 if (pDimensionRegions[i]) delete pDimensionRegions[i];
2941 }
2942 }
2943
2944 /**
2945 * Use this method in your audio engine to get the appropriate dimension
2946 * region with it's articulation data for the current situation. Just
2947 * call the method with the current MIDI controller values and you'll get
2948 * the DimensionRegion with the appropriate articulation data for the
2949 * current situation (for this Region of course only). To do that you'll
2950 * first have to look which dimensions with which controllers and in
2951 * which order are defined for this Region when you load the .gig file.
2952 * Special cases are e.g. layer or channel dimensions where you just put
2953 * in the index numbers instead of a MIDI controller value (means 0 for
2954 * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
2955 * etc.).
2956 *
2957 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
2958 * @returns adress to the DimensionRegion for the given situation
2959 * @see pDimensionDefinitions
2960 * @see Dimensions
2961 */
2962 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
2963 uint8_t bits;
2964 int veldim = -1;
2965 int velbitpos;
2966 int bitpos = 0;
2967 int dimregidx = 0;
2968 for (uint i = 0; i < Dimensions; i++) {
2969 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
2970 // the velocity dimension must be handled after the other dimensions
2971 veldim = i;
2972 velbitpos = bitpos;
2973 } else {
2974 switch (pDimensionDefinitions[i].split_type) {
2975 case split_type_normal:
2976 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
2977 // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
2978 for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
2979 if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
2980 }
2981 } else {
2982 // gig2: evenly sized zones
2983 bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
2984 }
2985 break;
2986 case split_type_bit: // the value is already the sought dimension bit number
2987 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
2988 bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
2989 break;
2990 }
2991 dimregidx |= bits << bitpos;
2992 }
2993 bitpos += pDimensionDefinitions[i].bits;
2994 }
2995 DimensionRegion* dimreg = pDimensionRegions[dimregidx];
2996 if (veldim != -1) {
2997 // (dimreg is now the dimension region for the lowest velocity)
2998 if (dimreg->VelocityTable) // custom defined zone ranges
2999 bits = dimreg->VelocityTable[DimValues[veldim]];
3000 else // normal split type
3001 bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);
3002
3003 dimregidx |= bits << velbitpos;
3004 dimreg = pDimensionRegions[dimregidx];
3005 }
3006 return dimreg;
3007 }
3008
3009 /**
3010 * Returns the appropriate DimensionRegion for the given dimension bit
3011 * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
3012 * instead of calling this method directly!
3013 *
3014 * @param DimBits Bit numbers for dimension 0 to 7
3015 * @returns adress to the DimensionRegion for the given dimension
3016 * bit numbers
3017 * @see GetDimensionRegionByValue()
3018 */
3019 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
3020 return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
3021 << pDimensionDefinitions[5].bits | DimBits[5])
3022 << pDimensionDefinitions[4].bits | DimBits[4])
3023 << pDimensionDefinitions[3].bits | DimBits[3])
3024 << pDimensionDefinitions[2].bits | DimBits[2])
3025 << pDimensionDefinitions[1].bits | DimBits[1])
3026 << pDimensionDefinitions[0].bits | DimBits[0]];
3027 }
3028
3029 /**
3030 * Returns pointer address to the Sample referenced with this region.
3031 * This is the global Sample for the entire Region (not sure if this is
3032 * actually used by the Gigasampler engine - I would only use the Sample
3033 * referenced by the appropriate DimensionRegion instead of this sample).
3034 *
3035 * @returns address to Sample or NULL if there is no reference to a
3036 * sample saved in the .gig file
3037 */
3038 Sample* Region::GetSample() {
3039 if (pSample) return static_cast<gig::Sample*>(pSample);
3040 else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
3041 }
3042
3043 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
3044 if ((int32_t)WavePoolTableIndex == -1) return NULL;
3045 File* file = (File*) GetParent()->GetParent();
3046 if (!file->pWavePoolTable) return NULL;
3047 unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
3048 unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
3049 Sample* sample = file->GetFirstSample(pProgress);
3050 while (sample) {
3051 if (sample->ulWavePoolOffset == soughtoffset &&
3052 sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
3053 sample = file->GetNextSample();
3054 }
3055 return NULL;
3056 }
3057
3058 /**
3059 * Make a (semi) deep copy of the Region object given by @a orig
3060 * and assign it to this object.
3061 *
3062 * Note that all sample pointers referenced by @a orig are simply copied as
3063 * memory address. Thus the respective samples are shared, not duplicated!
3064 *
3065 * @param orig - original Region object to be copied from
3066 */
3067 void Region::CopyAssign(const Region* orig) {
3068 CopyAssign(orig, NULL);
3069 }
3070
3071 /**
3072 * Make a (semi) deep copy of the Region object given by @a orig and
3073 * assign it to this object
3074 *
3075 * @param mSamples - crosslink map between the foreign file's samples and
3076 * this file's samples
3077 */
3078 void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
3079 // handle base classes
3080 DLS::Region::CopyAssign(orig);
3081
3082 if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
3083 pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
3084 }
3085
3086 // handle own member variables
3087 for (int i = Dimensions - 1; i >= 0; --i) {
3088 DeleteDimension(&pDimensionDefinitions[i]);
3089 }
3090 Layers = 0; // just to be sure
3091 for (int i = 0; i < orig->Dimensions; i++) {
3092 // we need to copy the dim definition here, to avoid the compiler
3093 // complaining about const-ness issue
3094 dimension_def_t def = orig->pDimensionDefinitions[i];
3095 AddDimension(&def);
3096 }
3097 for (int i = 0; i < 256; i++) {
3098 if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
3099 pDimensionRegions[i]->CopyAssign(
3100 orig->pDimensionRegions[i],
3101 mSamples
3102 );
3103 }
3104 }
3105 Layers = orig->Layers;
3106 }
3107
3108
3109 // *************** MidiRule ***************
3110 // *
3111
3112 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
3113 _3ewg->SetPos(36);
3114 Triggers = _3ewg->ReadUint8();
3115 _3ewg->SetPos(40);
3116 ControllerNumber = _3ewg->ReadUint8();
3117 _3ewg->SetPos(46);
3118 for (int i = 0 ; i < Triggers ; i++) {
3119 pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
3120 pTriggers[i].Descending = _3ewg->ReadUint8();
3121 pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
3122 pTriggers[i].Key = _3ewg->ReadUint8();
3123 pTriggers[i].NoteOff = _3ewg->ReadUint8();
3124 pTriggers[i].Velocity = _3ewg->ReadUint8();
3125 pTriggers[i].OverridePedal = _3ewg->ReadUint8();
3126 _3ewg->ReadUint8();
3127 }
3128 }
3129
3130 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
3131 ControllerNumber(0),
3132 Triggers(0) {
3133 }
3134
3135 void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
3136 pData[32] = 4;
3137 pData[33] = 16;
3138 pData[36] = Triggers;
3139 pData[40] = ControllerNumber;
3140 for (int i = 0 ; i < Triggers ; i++) {
3141 pData[46 + i * 8] = pTriggers[i].TriggerPoint;
3142 pData[47 + i * 8] = pTriggers[i].Descending;
3143 pData[48 + i * 8] = pTriggers[i].VelSensitivity;
3144 pData[49 + i * 8] = pTriggers[i].Key;
3145 pData[50 + i * 8] = pTriggers[i].NoteOff;
3146 pData[51 + i * 8] = pTriggers[i].Velocity;
3147 pData[52 + i * 8] = pTriggers[i].OverridePedal;
3148 }
3149 }
3150
3151 MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
3152 _3ewg->SetPos(36);
3153 LegatoSamples = _3ewg->ReadUint8(); // always 12
3154 _3ewg->SetPos(40);
3155 BypassUseController = _3ewg->ReadUint8();
3156 BypassKey = _3ewg->ReadUint8();
3157 BypassController = _3ewg->ReadUint8();
3158 ThresholdTime = _3ewg->ReadUint16();
3159 _3ewg->ReadInt16();
3160 ReleaseTime = _3ewg->ReadUint16();
3161 _3ewg->ReadInt16();
3162 KeyRange.low = _3ewg->ReadUint8();
3163 KeyRange.high = _3ewg->ReadUint8();
3164 _3ewg->SetPos(64);
3165 ReleaseTriggerKey = _3ewg->ReadUint8();
3166 AltSustain1Key = _3ewg->ReadUint8();
3167 AltSustain2Key = _3ewg->ReadUint8();
3168 }
3169
3170 MidiRuleLegato::MidiRuleLegato() :
3171 LegatoSamples(12),
3172 BypassUseController(false),
3173 BypassKey(0),
3174 BypassController(1),
3175 ThresholdTime(20),
3176 ReleaseTime(20),
3177 ReleaseTriggerKey(0),
3178 AltSustain1Key(0),
3179 AltSustain2Key(0)
3180 {
3181 KeyRange.low = KeyRange.high = 0;
3182 }
3183
3184 void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
3185 pData[32] = 0;
3186 pData[33] = 16;
3187 pData[36] = LegatoSamples;
3188 pData[40] = BypassUseController;
3189 pData[41] = BypassKey;
3190 pData[42] = BypassController;
3191 store16(&pData[43], ThresholdTime);
3192 store16(&pData[47], ReleaseTime);
3193 pData[51] = KeyRange.low;
3194 pData[52] = KeyRange.high;
3195 pData[64] = ReleaseTriggerKey;
3196 pData[65] = AltSustain1Key;
3197 pData[66] = AltSustain2Key;
3198 }
3199
3200 MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
3201 _3ewg->SetPos(36);
3202 Articulations = _3ewg->ReadUint8();
3203 int flags = _3ewg->ReadUint8();
3204 Polyphonic = flags & 8;
3205 Chained = flags & 4;
3206 Selector = (flags & 2) ? selector_controller :
3207 (flags & 1) ? selector_key_switch : selector_none;
3208 Patterns = _3ewg->ReadUint8();
3209 _3ewg->ReadUint8(); // chosen row
3210 _3ewg->ReadUint8(); // unknown
3211 _3ewg->ReadUint8(); // unknown
3212 _3ewg->ReadUint8(); // unknown
3213 KeySwitchRange.low = _3ewg->ReadUint8();
3214 KeySwitchRange.high = _3ewg->ReadUint8();
3215 Controller = _3ewg->ReadUint8();
3216 PlayRange.low = _3ewg->ReadUint8();
3217 PlayRange.high = _3ewg->ReadUint8();
3218
3219 int n = std::min(int(Articulations), 32);
3220 for (int i = 0 ; i < n ; i++) {
3221 _3ewg->ReadString(pArticulations[i], 32);
3222 }
3223 _3ewg->SetPos(1072);
3224 n = std::min(int(Patterns), 32);
3225 for (int i = 0 ; i < n ; i++) {
3226 _3ewg->ReadString(pPatterns[i].Name, 16);
3227 pPatterns[i].Size = _3ewg->ReadUint8();
3228 _3ewg->Read(&pPatterns[i][0], 1, 32);
3229 }
3230 }
3231
3232 MidiRuleAlternator::MidiRuleAlternator() :
3233 Articulations(0),
3234 Patterns(0),
3235 Selector(selector_none),
3236 Controller(0),
3237 Polyphonic(false),
3238 Chained(false)
3239 {
3240 PlayRange.low = PlayRange.high = 0;
3241 KeySwitchRange.low = KeySwitchRange.high = 0;
3242 }
3243
3244 void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
3245 pData[32] = 3;
3246 pData[33] = 16;
3247 pData[36] = Articulations;
3248 pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
3249 (Selector == selector_controller ? 2 :
3250 (Selector == selector_key_switch ? 1 : 0));
3251 pData[38] = Patterns;
3252
3253 pData[43] = KeySwitchRange.low;
3254 pData[44] = KeySwitchRange.high;
3255 pData[45] = Controller;
3256 pData[46] = PlayRange.low;
3257 pData[47] = PlayRange.high;
3258
3259 char* str = reinterpret_cast<char*>(pData);
3260 int pos = 48;
3261 int n = std::min(int(Articulations), 32);
3262 for (int i = 0 ; i < n ; i++, pos += 32) {
3263 strncpy(&str[pos], pArticulations[i].c_str(), 32);
3264 }
3265
3266 pos = 1072;
3267 n = std::min(int(Patterns), 32);
3268 for (int i = 0 ; i < n ; i++, pos += 49) {
3269 strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
3270 pData[pos + 16] = pPatterns[i].Size;
3271 memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
3272 }
3273 }
3274
3275 // *************** Instrument ***************
3276 // *
3277
3278 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
3279 static const DLS::Info::string_length_t fixedStringLengths[] = {
3280 { CHUNK_ID_INAM, 64 },
3281 { CHUNK_ID_ISFT, 12 },
3282 { 0, 0 }
3283 };
3284 pInfo->SetFixedStringLengths(fixedStringLengths);
3285
3286 // Initialization
3287 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
3288 EffectSend = 0;
3289 Attenuation = 0;
3290 FineTune = 0;
3291 PitchbendRange = 0;
3292 PianoReleaseMode = false;
3293 DimensionKeyRange.low = 0;
3294 DimensionKeyRange.high = 0;
3295 pMidiRules = new MidiRule*[3];
3296 pMidiRules[0] = NULL;
3297
3298 // Loading
3299 RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
3300 if (lart) {
3301 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
3302 if (_3ewg) {
3303 EffectSend = _3ewg->ReadUint16();
3304 Attenuation = _3ewg->ReadInt32();
3305 FineTune = _3ewg->ReadInt16();
3306 PitchbendRange = _3ewg->ReadInt16();
3307 uint8_t dimkeystart = _3ewg->ReadUint8();
3308 PianoReleaseMode = dimkeystart & 0x01;
3309 DimensionKeyRange.low = dimkeystart >> 1;
3310 DimensionKeyRange.high = _3ewg->ReadUint8();
3311
3312 if (_3ewg->GetSize() > 32) {
3313 // read MIDI rules
3314 int i = 0;
3315 _3ewg->SetPos(32);
3316 uint8_t id1 = _3ewg->ReadUint8();
3317 uint8_t id2 = _3ewg->ReadUint8();
3318
3319 if (id2 == 16) {
3320 if (id1 == 4) {
3321 pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
3322 } else if (id1 == 0) {
3323 pMidiRules[i++] = new MidiRuleLegato(_3ewg);
3324 } else if (id1 == 3) {
3325 pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
3326 } else {
3327 pMidiRules[i++] = new MidiRuleUnknown;
3328 }
3329 }
3330 else if (id1 != 0 || id2 != 0) {
3331 pMidiRules[i++] = new MidiRuleUnknown;
3332 }
3333 //TODO: all the other types of rules
3334
3335 pMidiRules[i] = NULL;
3336 }
3337 }
3338 }
3339
3340 if (pFile->GetAutoLoad()) {
3341 if (!pRegions) pRegions = new RegionList;
3342 RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
3343 if (lrgn) {
3344 RIFF::List* rgn = lrgn->GetFirstSubList();
3345 while (rgn) {
3346 if (rgn->GetListType() == LIST_TYPE_RGN) {
3347 __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
3348 pRegions->push_back(new Region(this, rgn));
3349 }
3350 rgn = lrgn->GetNextSubList();
3351 }
3352 // Creating Region Key Table for fast lookup
3353 UpdateRegionKeyTable();
3354 }
3355 }
3356
3357 __notify_progress(pProgress, 1.0f); // notify done
3358 }
3359
3360 void Instrument::UpdateRegionKeyTable() {
3361 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
3362 RegionList::iterator iter = pRegions->begin();
3363 RegionList::iterator end = pRegions->end();
3364 for (; iter != end; ++iter) {
3365 gig::Region* pRegion = static_cast<gig::Region*>(*iter);
3366 for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
3367 RegionKeyTable[iKey] = pRegion;
3368 }
3369 }
3370 }
3371
3372 Instrument::~Instrument() {
3373 for (int i = 0 ; pMidiRules[i] ; i++) {
3374 delete pMidiRules[i];
3375 }
3376 delete[] pMidiRules;
3377 }
3378
3379 /**
3380 * Apply Instrument with all its Regions to the respective RIFF chunks.
3381 * You have to call File::Save() to make changes persistent.
3382 *
3383 * Usually there is absolutely no need to call this method explicitly.
3384 * It will be called automatically when File::Save() was called.
3385 *
3386 * @throws gig::Exception if samples cannot be dereferenced
3387 */
3388 void Instrument::UpdateChunks() {
3389 // first update base classes' chunks
3390 DLS::Instrument::UpdateChunks();
3391
3392 // update Regions' chunks
3393 {
3394 RegionList::iterator iter = pRegions->begin();
3395 RegionList::iterator end = pRegions->end();
3396 for (; iter != end; ++iter)
3397 (*iter)->UpdateChunks();
3398 }
3399
3400 // make sure 'lart' RIFF list chunk exists
3401 RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
3402 if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
3403 // make sure '3ewg' RIFF chunk exists
3404 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
3405 if (!_3ewg) {
3406 File* pFile = (File*) GetParent();
3407
3408 // 3ewg is bigger in gig3, as it includes the iMIDI rules
3409 int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
3410 _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
3411 memset(_3ewg->LoadChunkData(), 0, size);
3412 }
3413 // update '3ewg' RIFF chunk
3414 uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
3415 store16(&pData[0], EffectSend);
3416 store32(&pData[2], Attenuation);
3417 store16(&pData[6], FineTune);
3418 store16(&pData[8], PitchbendRange);
3419 const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
3420 DimensionKeyRange.low << 1;
3421 pData[10] = dimkeystart;
3422 pData[11] = DimensionKeyRange.high;
3423
3424 if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
3425 pData[32] = 0;
3426 pData[33] = 0;
3427 } else {
3428 for (int i = 0 ; pMidiRules[i] ; i++) {
3429 pMidiRules[i]->UpdateChunks(pData);
3430 }
3431 }
3432 }
3433
3434 /**
3435 * Returns the appropriate Region for a triggered note.
3436 *
3437 * @param Key MIDI Key number of triggered note / key (0 - 127)
3438 * @returns pointer adress to the appropriate Region or NULL if there
3439 * there is no Region defined for the given \a Key
3440 */
3441 Region* Instrument::GetRegion(unsigned int Key) {
3442 if (!pRegions || pRegions->empty() || Key > 127) return NULL;
3443 return RegionKeyTable[Key];
3444
3445 /*for (int i = 0; i < Regions; i++) {
3446 if (Key <= pRegions[i]->KeyRange.high &&
3447 Key >= pRegions[i]->KeyRange.low) return pRegions[i];
3448 }
3449 return NULL;*/
3450 }
3451
3452 /**
3453 * Returns the first Region of the instrument. You have to call this
3454 * method once before you use GetNextRegion().
3455 *
3456 * @returns pointer address to first region or NULL if there is none
3457 * @see GetNextRegion()
3458 */
3459 Region* Instrument::GetFirstRegion() {
3460 if (!pRegions) return NULL;
3461 RegionsIterator = pRegions->begin();
3462 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
3463 }
3464
3465 /**
3466 * Returns the next Region of the instrument. You have to call
3467 * GetFirstRegion() once before you can use this method. By calling this
3468 * method multiple times it iterates through the available Regions.
3469 *
3470 * @returns pointer address to the next region or NULL if end reached
3471 * @see GetFirstRegion()
3472 */
3473 Region* Instrument::GetNextRegion() {
3474 if (!pRegions) return NULL;
3475 RegionsIterator++;
3476 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
3477 }
3478
3479 Region* Instrument::AddRegion() {
3480 // create new Region object (and its RIFF chunks)
3481 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3482 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3483 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3484 Region* pNewRegion = new Region(this, rgn);
3485 pRegions->push_back(pNewRegion);
3486 Regions = pRegions->size();
3487 // update Region key table for fast lookup
3488 UpdateRegionKeyTable();
3489 // done
3490 return pNewRegion;
3491 }
3492
3493 void Instrument::DeleteRegion(Region* pRegion) {
3494 if (!pRegions) return;
3495 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
3496 // update Region key table for fast lookup
3497 UpdateRegionKeyTable();
3498 }
3499
3500 /**
3501 * Returns a MIDI rule of the instrument.
3502 *
3503 * The list of MIDI rules, at least in gig v3, always contains at
3504 * most two rules. The second rule can only be the DEF filter
3505 * (which currently isn't supported by libgig).
3506 *
3507 * @param i - MIDI rule number
3508 * @returns pointer address to MIDI rule number i or NULL if there is none
3509 */
3510 MidiRule* Instrument::GetMidiRule(int i) {
3511 return pMidiRules[i];
3512 }
3513
3514 /**
3515 * Adds the "controller trigger" MIDI rule to the instrument.
3516 *
3517 * @returns the new MIDI rule
3518 */
3519 MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
3520 delete pMidiRules[0];
3521 MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
3522 pMidiRules[0] = r;
3523 pMidiRules[1] = 0;
3524 return r;
3525 }
3526
3527 /**
3528 * Adds the legato MIDI rule to the instrument.
3529 *
3530 * @returns the new MIDI rule
3531 */
3532 MidiRuleLegato* Instrument::AddMidiRuleLegato() {
3533 delete pMidiRules[0];
3534 MidiRuleLegato* r = new MidiRuleLegato;
3535 pMidiRules[0] = r;
3536 pMidiRules[1] = 0;
3537 return r;
3538 }
3539
3540 /**
3541 * Adds the alternator MIDI rule to the instrument.
3542 *
3543 * @returns the new MIDI rule
3544 */
3545 MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
3546 delete pMidiRules[0];
3547 MidiRuleAlternator* r = new MidiRuleAlternator;
3548 pMidiRules[0] = r;
3549 pMidiRules[1] = 0;
3550 return r;
3551 }
3552
3553 /**
3554 * Deletes a MIDI rule from the instrument.
3555 *
3556 * @param i - MIDI rule number
3557 */
3558 void Instrument::DeleteMidiRule(int i) {
3559 delete pMidiRules[i];
3560 pMidiRules[i] = 0;
3561 }
3562
3563 /**
3564 * Make a (semi) deep copy of the Instrument object given by @a orig
3565 * and assign it to this object.
3566 *
3567 * Note that all sample pointers referenced by @a orig are simply copied as
3568 * memory address. Thus the respective samples are shared, not duplicated!
3569 *
3570 * @param orig - original Instrument object to be copied from
3571 */
3572 void Instrument::CopyAssign(const Instrument* orig) {
3573 CopyAssign(orig, NULL);
3574 }
3575
3576 /**
3577 * Make a (semi) deep copy of the Instrument object given by @a orig
3578 * and assign it to this object.
3579 *
3580 * @param orig - original Instrument object to be copied from
3581 * @param mSamples - crosslink map between the foreign file's samples and
3582 * this file's samples
3583 */
3584 void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
3585 // handle base class
3586 // (without copying DLS region stuff)
3587 DLS::Instrument::CopyAssignCore(orig);
3588
3589 // handle own member variables
3590 Attenuation = orig->Attenuation;
3591 EffectSend = orig->EffectSend;
3592 FineTune = orig->FineTune;
3593 PitchbendRange = orig->PitchbendRange;
3594 PianoReleaseMode = orig->PianoReleaseMode;
3595 DimensionKeyRange = orig->DimensionKeyRange;
3596
3597 // free old midi rules
3598 for (int i = 0 ; pMidiRules[i] ; i++) {
3599 delete pMidiRules[i];
3600 }
3601 //TODO: MIDI rule copying
3602 pMidiRules[0] = NULL;
3603
3604 // delete all old regions
3605 while (Regions) DeleteRegion(GetFirstRegion());
3606 // create new regions and copy them from original
3607 {
3608 RegionList::const_iterator it = orig->pRegions->begin();
3609 for (int i = 0; i < orig->Regions; ++i, ++it) {
3610 Region* dstRgn = AddRegion();
3611 //NOTE: Region does semi-deep copy !
3612 dstRgn->CopyAssign(
3613 static_cast<gig::Region*>(*it),
3614 mSamples
3615 );
3616 }
3617 }
3618
3619 UpdateRegionKeyTable();
3620 }
3621
3622
3623 // *************** Group ***************
3624 // *
3625
3626 /** @brief Constructor.
3627 *
3628 * @param file - pointer to the gig::File object
3629 * @param ck3gnm - pointer to 3gnm chunk associated with this group or
3630 * NULL if this is a new Group
3631 */
3632 Group::Group(File* file, RIFF::Chunk* ck3gnm) {
3633 pFile = file;
3634 pNameChunk = ck3gnm;
3635 ::LoadString(pNameChunk, Name);
3636 }
3637
3638 Group::~Group() {
3639 // remove the chunk associated with this group (if any)
3640 if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
3641 }
3642
3643 /** @brief Update chunks with current group settings.
3644 *
3645 * Apply current Group field values to the respective chunks. You have
3646 * to call File::Save() to make changes persistent.
3647 *
3648 * Usually there is absolutely no need to call this method explicitly.
3649 * It will be called automatically when File::Save() was called.
3650 */
3651 void Group::UpdateChunks() {
3652 // make sure <3gri> and <3gnl> list chunks exist
3653 RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
3654 if (!_3gri) {
3655 _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
3656 pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
3657 }
3658 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
3659 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
3660
3661 if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
3662 // v3 has a fixed list of 128 strings, find a free one
3663 for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
3664 if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
3665 pNameChunk = ck;
3666 break;
3667 }
3668 }
3669 }
3670
3671 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
3672 ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
3673 }
3674
3675 /**
3676 * Returns the first Sample of this Group. You have to call this method
3677 * once before you use GetNextSample().
3678 *
3679 * <b>Notice:</b> this method might block for a long time, in case the
3680 * samples of this .gig file were not scanned yet
3681 *
3682 * @returns pointer address to first Sample or NULL if there is none
3683 * applied to this Group
3684 * @see GetNextSample()
3685 */
3686 Sample* Group::GetFirstSample() {
3687 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
3688 for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
3689 if (pSample->GetGroup() == this) return pSample;
3690 }
3691 return NULL;
3692 }
3693
3694 /**
3695 * Returns the next Sample of the Group. You have to call
3696 * GetFirstSample() once before you can use this method. By calling this
3697 * method multiple times it iterates through the Samples assigned to
3698 * this Group.
3699 *
3700 * @returns pointer address to the next Sample of this Group or NULL if
3701 * end reached
3702 * @see GetFirstSample()
3703 */
3704 Sample* Group::GetNextSample() {
3705 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
3706 for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
3707 if (pSample->GetGroup() == this) return pSample;
3708 }
3709 return NULL;
3710 }
3711
3712 /**
3713 * Move Sample given by \a pSample from another Group to this Group.
3714 */
3715 void Group::AddSample(Sample* pSample) {
3716 pSample->pGroup = this;
3717 }
3718
3719 /**
3720 * Move all members of this group to another group (preferably the 1st
3721 * one except this). This method is called explicitly by
3722 * File::DeleteGroup() thus when a Group was deleted. This code was
3723 * intentionally not placed in the destructor!
3724 */
3725 void Group::MoveAll() {
3726 // get "that" other group first
3727 Group* pOtherGroup = NULL;
3728 for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
3729 if (pOtherGroup != this) break;
3730 }
3731 if (!pOtherGroup) throw Exception(
3732 "Could not move samples to another group, since there is no "
3733 "other Group. This is a bug, report it!"
3734 );
3735 // now move all samples of this group to the other group
3736 for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
3737 pOtherGroup->AddSample(pSample);
3738 }
3739 }
3740
3741
3742
3743 // *************** File ***************
3744 // *
3745
3746 /// Reflects Gigasampler file format version 2.0 (1998-06-28).
3747 const DLS::version_t File::VERSION_2 = {
3748 0, 2, 19980628 & 0xffff, 19980628 >> 16
3749 };
3750
3751 /// Reflects Gigasampler file format version 3.0 (2003-03-31).
3752 const DLS::version_t File::VERSION_3 = {
3753 0, 3, 20030331 & 0xffff, 20030331 >> 16
3754 };
3755
3756 static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
3757 { CHUNK_ID_IARL, 256 },
3758 { CHUNK_ID_IART, 128 },
3759 { CHUNK_ID_ICMS, 128 },
3760 { CHUNK_ID_ICMT, 1024 },
3761 { CHUNK_ID_ICOP, 128 },
3762 { CHUNK_ID_ICRD, 128 },
3763 { CHUNK_ID_IENG, 128 },
3764 { CHUNK_ID_IGNR, 128 },
3765 { CHUNK_ID_IKEY, 128 },
3766 { CHUNK_ID_IMED, 128 },
3767 { CHUNK_ID_INAM, 128 },
3768 { CHUNK_ID_IPRD, 128 },
3769 { CHUNK_ID_ISBJ, 128 },
3770 { CHUNK_ID_ISFT, 128 },
3771 { CHUNK_ID_ISRC, 128 },
3772 { CHUNK_ID_ISRF, 128 },
3773 { CHUNK_ID_ITCH, 128 },
3774 { 0, 0 }
3775 };
3776
3777 File::File() : DLS::File() {
3778 bAutoLoad = true;
3779 *pVersion = VERSION_3;
3780 pGroups = NULL;
3781 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
3782 pInfo->ArchivalLocation = String(256, ' ');
3783
3784 // add some mandatory chunks to get the file chunks in right
3785 // order (INFO chunk will be moved to first position later)
3786 pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
3787 pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
3788 pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
3789
3790 GenerateDLSID();
3791 }
3792
3793 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
3794 bAutoLoad = true;
3795 pGroups = NULL;
3796 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
3797 }
3798
3799 File::~File() {
3800 if (pGroups) {
3801 std::list<Group*>::iterator iter = pGroups->begin();
3802 std::list<Group*>::iterator end = pGroups->end();
3803 while (iter != end) {
3804 delete *iter;
3805 ++iter;
3806 }
3807 delete pGroups;
3808 }
3809 }
3810
3811 Sample* File::GetFirstSample(progress_t* pProgress) {
3812 if (!pSamples) LoadSamples(pProgress);
3813 if (!pSamples) return NULL;
3814 SamplesIterator = pSamples->begin();
3815 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
3816 }
3817
3818 Sample* File::GetNextSample() {
3819 if (!pSamples) return NULL;
3820 SamplesIterator++;
3821 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
3822 }
3823
3824 /**
3825 * Returns Sample object of @a index.
3826 *
3827 * @returns sample object or NULL if index is out of bounds
3828 */
3829 Sample* File::GetSample(uint index) {
3830 if (!pSamples) LoadSamples();
3831 if (!pSamples) return NULL;
3832 DLS::File::SampleList::iterator it = pSamples->begin();
3833 for (int i = 0; i < index; ++i) {
3834 ++it;
3835 if (it == pSamples->end()) return NULL;
3836 }
3837 if (it == pSamples->end()) return NULL;
3838 return static_cast<gig::Sample*>( *it );
3839 }
3840
3841 /** @brief Add a new sample.
3842 *
3843 * This will create a new Sample object for the gig file. You have to
3844 * call Save() to make this persistent to the file.
3845 *
3846 * @returns pointer to new Sample object
3847 */
3848 Sample* File::AddSample() {
3849 if (!pSamples) LoadSamples();
3850 __ensureMandatoryChunksExist();
3851 RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
3852 // create new Sample object and its respective 'wave' list chunk
3853 RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
3854 Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
3855
3856 // add mandatory chunks to get the chunks in right order
3857 wave->AddSubChunk(CHUNK_ID_FMT, 16);
3858 wave->AddSubList(LIST_TYPE_INFO);
3859
3860 pSamples->push_back(pSample);
3861 return pSample;
3862 }
3863
3864 /** @brief Delete a sample.
3865 *
3866 * This will delete the given Sample object from the gig file. Any
3867 * references to this sample from Regions and DimensionRegions will be
3868 * removed. You have to call Save() to make this persistent to the file.
3869 *
3870 * @param pSample - sample to delete
3871 * @throws gig::Exception if given sample could not be found
3872 */
3873 void File::DeleteSample(Sample* pSample) {
3874 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
3875 SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
3876 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
3877 if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
3878 pSamples->erase(iter);
3879 delete pSample;
3880
3881 SampleList::iterator tmp = SamplesIterator;
3882 // remove all references to the sample
3883 for (Instrument* instrument = GetFirstInstrument() ; instrument ;
3884 instrument = GetNextInstrument()) {
3885 for (Region* region = instrument->GetFirstRegion() ; region ;
3886 region = instrument->GetNextRegion()) {
3887
3888 if (region->GetSample() == pSample) region->SetSample(NULL);
3889
3890 for (int i = 0 ; i < region->DimensionRegions ; i++) {
3891 gig::DimensionRegion *d = region->pDimensionRegions[i];
3892 if (d->pSample == pSample) d->pSample = NULL;
3893 }
3894 }
3895 }
3896 SamplesIterator = tmp; // restore iterator
3897 }
3898
3899 void File::LoadSamples() {
3900 LoadSamples(NULL);
3901 }
3902
3903 void File::LoadSamples(progress_t* pProgress) {
3904 // Groups must be loaded before samples, because samples will try
3905 // to resolve the group they belong to
3906 if (!pGroups) LoadGroups();
3907
3908 if (!pSamples) pSamples = new SampleList;
3909
3910 RIFF::File* file = pRIFF;
3911
3912 // just for progress calculation
3913 int iSampleIndex = 0;
3914 int iTotalSamples = WavePoolCount;
3915
3916 // check if samples should be loaded from extension files
3917 int lastFileNo = 0;
3918 for (int i = 0 ; i < WavePoolCount ; i++) {
3919 if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
3920 }
3921 String name(pRIFF->GetFileName());
3922 int nameLen = name.length();
3923 char suffix[6];
3924 if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
3925
3926 for (int fileNo = 0 ; ; ) {
3927 RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
3928 if (wvpl) {
3929 unsigned long wvplFileOffset = wvpl->GetFilePos();
3930 RIFF::List* wave = wvpl->GetFirstSubList();
3931 while (wave) {
3932 if (wave->GetListType() == LIST_TYPE_WAVE) {
3933 // notify current progress
3934 const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
3935 __notify_progress(pProgress, subprogress);
3936
3937 unsigned long waveFileOffset = wave->GetFilePos();
3938 pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));
3939
3940 iSampleIndex++;
3941 }
3942 wave = wvpl->GetNextSubList();
3943 }
3944
3945 if (fileNo == lastFileNo) break;
3946
3947 // open extension file (*.gx01, *.gx02, ...)
3948 fileNo++;
3949 sprintf(suffix, ".gx%02d", fileNo);
3950 name.replace(nameLen, 5, suffix);
3951 file = new RIFF::File(name);
3952 ExtensionFiles.push_back(file);
3953 } else break;
3954 }
3955
3956 __notify_progress(pProgress, 1.0); // notify done
3957 }
3958
3959 Instrument* File::GetFirstInstrument() {
3960 if (!pInstruments) LoadInstruments();
3961 if (!pInstruments) return NULL;
3962 InstrumentsIterator = pInstruments->begin();
3963 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
3964 }
3965
3966 Instrument* File::GetNextInstrument() {
3967 if (!pInstruments) return NULL;
3968 InstrumentsIterator++;
3969 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
3970 }
3971
3972 /**
3973 * Returns the instrument with the given index.
3974 *
3975 * @param index - number of the sought instrument (0..n)
3976 * @param pProgress - optional: callback function for progress notification
3977 * @returns sought instrument or NULL if there's no such instrument
3978 */
3979 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
3980 if (!pInstruments) {
3981 // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
3982
3983 // sample loading subtask
3984 progress_t subprogress;
3985 __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
3986 __notify_progress(&subprogress, 0.0f);
3987 if (GetAutoLoad())
3988 GetFirstSample(&subprogress); // now force all samples to be loaded
3989 __notify_progress(&subprogress, 1.0f);
3990
3991 // instrument loading subtask
3992 if (pProgress && pProgress->callback) {
3993 subprogress.__range_min = subprogress.__range_max;
3994 subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
3995 }
3996 __notify_progress(&subprogress, 0.0f);
3997 LoadInstruments(&subprogress);
3998 __notify_progress(&subprogress, 1.0f);
3999 }
4000 if (!pInstruments) return NULL;
4001 InstrumentsIterator = pInstruments->begin();
4002 for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
4003 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
4004 InstrumentsIterator++;
4005 }
4006 return NULL;
4007 }
4008
4009 /** @brief Add a new instrument definition.
4010 *
4011 * This will create a new Instrument object for the gig file. You have
4012 * to call Save() to make this persistent to the file.
4013 *
4014 * @returns pointer to new Instrument object
4015 */
4016 Instrument* File::AddInstrument() {
4017 if (!pInstruments) LoadInstruments();
4018 __ensureMandatoryChunksExist();
4019 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
4020 RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
4021
4022 // add mandatory chunks to get the chunks in right order
4023 lstInstr->AddSubList(LIST_TYPE_INFO);
4024 lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
4025
4026 Instrument* pInstrument = new Instrument(this, lstInstr);
4027 pInstrument->GenerateDLSID();
4028
4029 lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
4030
4031 // this string is needed for the gig to be loadable in GSt:
4032 pInstrument->pInfo->Software = "Endless Wave";
4033
4034 pInstruments->push_back(pInstrument);
4035 return pInstrument;
4036 }
4037
4038 /** @brief Add a duplicate of an existing instrument.
4039 *
4040 * Duplicates the instrument definition given by @a orig and adds it
4041 * to this file. This allows in an instrument editor application to
4042 * easily create variations of an instrument, which will be stored in
4043 * the same .gig file, sharing i.e. the same samples.
4044 *
4045 * Note that all sample pointers referenced by @a orig are simply copied as
4046 * memory address. Thus the respective samples are shared, not duplicated!
4047 *
4048 * You have to call Save() to make this persistent to the file.
4049 *
4050 * @param orig - original instrument to be copied
4051 * @returns duplicated copy of the given instrument
4052 */
4053 Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
4054 Instrument* instr = AddInstrument();
4055 instr->CopyAssign(orig);
4056 return instr;
4057 }
4058
4059 /** @brief Add content of another existing file.
4060 *
4061 * Duplicates the samples, groups and instruments of the original file
4062 * given by @a pFile and adds them to @c this File. In case @c this File is
4063 * a new one that you haven't saved before, then you have to call
4064 * SetFileName() before calling AddContentOf(), because this method will
4065 * automatically save this file during operation, which is required for
4066 * writing the sample waveform data by disk streaming.
4067 *
4068 * @param pFile - original file whose's content shall be copied from
4069 */
4070 void File::AddContentOf(File* pFile) {
4071 static int iCallCount = -1;
4072 iCallCount++;
4073 std::map<Group*,Group*> mGroups;
4074 std::map<Sample*,Sample*> mSamples;
4075
4076 // clone sample groups
4077 for (int i = 0; pFile->GetGroup(i); ++i) {
4078 Group* g = AddGroup();
4079 g->Name =
4080 "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
4081 mGroups[pFile->GetGroup(i)] = g;
4082 }
4083
4084 // clone samples (not waveform data here yet)
4085 for (int i = 0; pFile->GetSample(i); ++i) {
4086 Sample* s = AddSample();
4087 s->CopyAssignMeta(pFile->GetSample(i));
4088 mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
4089 mSamples[pFile->GetSample(i)] = s;
4090 }
4091
4092 //BUG: For some reason this method only works with this additional
4093 // Save() call in between here.
4094 //
4095 // Important: The correct one of the 2 Save() methods has to be called
4096 // here, depending on whether the file is completely new or has been
4097 // saved to disk already, otherwise it will result in data corruption.
4098 if (pRIFF->IsNew())
4099 Save(GetFileName());
4100 else
4101 Save();
4102
4103 // clone instruments
4104 // (passing the crosslink table here for the cloned samples)
4105 for (int i = 0; pFile->GetInstrument(i); ++i) {
4106 Instrument* instr = AddInstrument();
4107 instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
4108 }
4109
4110 // Mandatory: file needs to be saved to disk at this point, so this
4111 // file has the correct size and data layout for writing the samples'
4112 // waveform data to disk.
4113 Save();
4114
4115 // clone samples' waveform data
4116 // (using direct read & write disk streaming)
4117 for (int i = 0; pFile->GetSample(i); ++i) {
4118 mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
4119 }
4120 }
4121
4122 /** @brief Delete an instrument.
4123 *
4124 * This will delete the given Instrument object from the gig file. You
4125 * have to call Save() to make this persistent to the file.
4126 *
4127 * @param pInstrument - instrument to delete
4128 * @throws gig::Exception if given instrument could not be found
4129 */
4130 void File::DeleteInstrument(Instrument* pInstrument) {
4131 if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
4132 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
4133 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
4134 pInstruments->erase(iter);
4135 delete pInstrument;
4136 }
4137
4138 void File::LoadInstruments() {
4139 LoadInstruments(NULL);
4140 }
4141
4142 void File::LoadInstruments(progress_t* pProgress) {
4143 if (!pInstruments) pInstruments = new InstrumentList;
4144 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
4145 if (lstInstruments) {
4146 int iInstrumentIndex = 0;
4147 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
4148 while (lstInstr) {
4149 if (lstInstr->GetListType() == LIST_TYPE_INS) {
4150 // notify current progress
4151 const float localProgress = (float) iInstrumentIndex / (float) Instruments;
4152 __notify_progress(pProgress, localProgress);
4153
4154 // divide local progress into subprogress for loading current Instrument
4155 progress_t subprogress;
4156 __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
4157
4158 pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
4159
4160 iInstrumentIndex++;
4161 }
4162 lstInstr = lstInstruments->GetNextSubList();
4163 }
4164 __notify_progress(pProgress, 1.0); // notify done
4165 }
4166 }
4167
4168 /// Updates the 3crc chunk with the checksum of a sample. The
4169 /// update is done directly to disk, as this method is called
4170 /// after File::Save()
4171 void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
4172 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
4173 if (!_3crc) return;
4174
4175 // get the index of the sample
4176 int iWaveIndex = -1;
4177 File::SampleList::iterator iter = pSamples->begin();
4178 File::SampleList::iterator end = pSamples->end();
4179 for (int index = 0; iter != end; ++iter, ++index) {
4180 if (*iter == pSample) {
4181 iWaveIndex = index;
4182 break;
4183 }
4184 }
4185 if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
4186
4187 // write the CRC-32 checksum to disk
4188 _3crc->SetPos(iWaveIndex * 8);
4189 uint32_t tmp = 1;
4190 _3crc->WriteUint32(&tmp); // unknown, always 1?
4191 _3crc->WriteUint32(&crc);
4192 }
4193
4194 Group* File::GetFirstGroup() {
4195 if (!pGroups) LoadGroups();
4196 // there must always be at least one group
4197 GroupsIterator = pGroups->begin();
4198 return *GroupsIterator;
4199 }
4200
4201 Group* File::GetNextGroup() {
4202 if (!pGroups) return NULL;
4203 ++GroupsIterator;
4204 return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
4205 }
4206
4207 /**
4208 * Returns the group with the given index.
4209 *
4210 * @param index - number of the sought group (0..n)
4211 * @returns sought group or NULL if there's no such group
4212 */
4213 Group* File::GetGroup(uint index) {
4214 if (!pGroups) LoadGroups();
4215 GroupsIterator = pGroups->begin();
4216 for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
4217 if (i == index) return *GroupsIterator;
4218 ++GroupsIterator;
4219 }
4220 return NULL;
4221 }
4222
4223 Group* File::AddGroup() {
4224 if (!pGroups) LoadGroups();
4225 // there must always be at least one group
4226 __ensureMandatoryChunksExist();
4227 Group* pGroup = new Group(this, NULL);
4228 pGroups->push_back(pGroup);
4229 return pGroup;
4230 }
4231
4232 /** @brief Delete a group and its samples.
4233 *
4234 * This will delete the given Group object and all the samples that
4235 * belong to this group from the gig file. You have to call Save() to
4236 * make this persistent to the file.
4237 *
4238 * @param pGroup - group to delete
4239 * @throws gig::Exception if given group could not be found
4240 */
4241 void File::DeleteGroup(Group* pGroup) {
4242 if (!pGroups) LoadGroups();
4243 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
4244 if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
4245 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
4246 // delete all members of this group
4247 for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
4248 DeleteSample(pSample);
4249 }
4250 // now delete this group object
4251 pGroups->erase(iter);
4252 delete pGroup;
4253 }
4254
4255 /** @brief Delete a group.
4256 *
4257 * This will delete the given Group object from the gig file. All the
4258 * samples that belong to this group will not be deleted, but instead
4259 * be moved to another group. You have to call Save() to make this
4260 * persistent to the file.
4261 *
4262 * @param pGroup - group to delete
4263 * @throws gig::Exception if given group could not be found
4264 */
4265 void File::DeleteGroupOnly(Group* pGroup) {
4266 if (!pGroups) LoadGroups();
4267 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
4268 if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
4269 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
4270 // move all members of this group to another group
4271 pGroup->MoveAll();
4272 pGroups->erase(iter);
4273 delete pGroup;
4274 }
4275
4276 void File::LoadGroups() {
4277 if (!pGroups) pGroups = new std::list<Group*>;
4278 // try to read defined groups from file
4279 RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
4280 if (lst3gri) {
4281 RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
4282 if (lst3gnl) {
4283 RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
4284 while (ck) {
4285 if (ck->GetChunkID() == CHUNK_ID_3GNM) {
4286 if (pVersion && pVersion->major == 3 &&
4287 strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
4288
4289 pGroups->push_back(new Group(this, ck));
4290 }
4291 ck = lst3gnl->GetNextSubChunk();
4292 }
4293 }
4294 }
4295 // if there were no group(s), create at least the mandatory default group
4296 if (!pGroups->size()) {
4297 Group* pGroup = new Group(this, NULL);
4298 pGroup->Name = "Default Group";
4299 pGroups->push_back(pGroup);
4300 }
4301 }
4302
4303 /**
4304 * Apply all the gig file's current instruments, samples, groups and settings
4305 * to the respective RIFF chunks. You have to call Save() to make changes
4306 * persistent.
4307 *
4308 * Usually there is absolutely no need to call this method explicitly.
4309 * It will be called automatically when File::Save() was called.
4310 *
4311 * @throws Exception - on errors
4312 */
4313 void File::UpdateChunks() {
4314 bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
4315
4316 b64BitWavePoolOffsets = pVersion && pVersion->major == 3;
4317
4318 // first update base class's chunks
4319 DLS::File::UpdateChunks();
4320
4321 if (newFile) {
4322 // INFO was added by Resource::UpdateChunks - make sure it
4323 // is placed first in file
4324 RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
4325 RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
4326 if (first != info) {
4327 pRIFF->MoveSubChunk(info, first);
4328 }
4329 }
4330
4331 // update group's chunks
4332 if (pGroups) {
4333 // make sure '3gri' and '3gnl' list chunks exist
4334 // (before updating the Group chunks)
4335 RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
4336 if (!_3gri) {
4337 _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
4338 pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
4339 }
4340 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
4341 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
4342
4343 // v3: make sure the file has 128 3gnm chunks
4344 // (before updating the Group chunks)
4345 if (pVersion && pVersion->major == 3) {
4346 RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
4347 for (int i = 0 ; i < 128 ; i++) {
4348 if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
4349 if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
4350 }
4351 }
4352
4353 std::list<Group*>::iterator iter = pGroups->begin();
4354 std::list<Group*>::iterator end = pGroups->end();
4355 for (; iter != end; ++iter) {
4356 (*iter)->UpdateChunks();
4357 }
4358 }
4359
4360 // update einf chunk
4361
4362 // The einf chunk contains statistics about the gig file, such
4363 // as the number of regions and samples used by each
4364 // instrument. It is divided in equally sized parts, where the
4365 // first part contains information about the whole gig file,
4366 // and the rest of the parts map to each instrument in the
4367 // file.
4368 //
4369 // At the end of each part there is a bit map of each sample
4370 // in the file, where a set bit means that the sample is used
4371 // by the file/instrument.
4372 //
4373 // Note that there are several fields with unknown use. These
4374 // are set to zero.
4375
4376 int sublen = pSamples->size() / 8 + 49;
4377 int einfSize = (Instruments + 1) * sublen;
4378
4379 RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
4380 if (einf) {
4381 if (einf->GetSize() != einfSize) {
4382 einf->Resize(einfSize);
4383 memset(einf->LoadChunkData(), 0, einfSize);
4384 }
4385 } else if (newFile) {
4386 einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
4387 }
4388 if (einf) {
4389 uint8_t* pData = (uint8_t*) einf->LoadChunkData();
4390
4391 std::map<gig::Sample*,int> sampleMap;
4392 int sampleIdx = 0;
4393 for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
4394 sampleMap[pSample] = sampleIdx++;
4395 }
4396
4397 int totnbusedsamples = 0;
4398 int totnbusedchannels = 0;
4399 int totnbregions = 0;
4400 int totnbdimregions = 0;
4401 int totnbloops = 0;
4402 int instrumentIdx = 0;
4403
4404 memset(&pData[48], 0, sublen - 48);
4405
4406 for (Instrument* instrument = GetFirstInstrument() ; instrument ;
4407 instrument = GetNextInstrument()) {
4408 int nbusedsamples = 0;
4409 int nbusedchannels = 0;
4410 int nbdimregions = 0;
4411 int nbloops = 0;
4412
4413 memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
4414
4415 for (Region* region = instrument->GetFirstRegion() ; region ;
4416 region = instrument->GetNextRegion()) {
4417 for (int i = 0 ; i < region->DimensionRegions ; i++) {
4418 gig::DimensionRegion *d = region->pDimensionRegions[i];
4419 if (d->pSample) {
4420 int sampleIdx = sampleMap[d->pSample];
4421 int byte = 48 + sampleIdx / 8;
4422 int bit = 1 << (sampleIdx & 7);
4423 if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
4424 pData[(instrumentIdx + 1) * sublen + byte] |= bit;
4425 nbusedsamples++;
4426 nbusedchannels += d->pSample->Channels;
4427
4428 if ((pData[byte] & bit) == 0) {
4429 pData[byte] |= bit;
4430 totnbusedsamples++;
4431 totnbusedchannels += d->pSample->Channels;
4432 }
4433 }
4434 }
4435 if (d->SampleLoops) nbloops++;
4436 }
4437 nbdimregions += region->DimensionRegions;
4438 }
4439 // first 4 bytes unknown - sometimes 0, sometimes length of einf part
4440 // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
4441 store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
4442 store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
4443 store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
4444 store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
4445 store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
4446 store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
4447 // next 8 bytes unknown
4448 store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
4449 store32(&pData[(instrumentIdx + 1) * sublen + 40], pSamples->size());
4450 // next 4 bytes unknown
4451
4452 totnbregions += instrument->Regions;
4453 totnbdimregions += nbdimregions;
4454 totnbloops += nbloops;
4455 instrumentIdx++;
4456 }
4457 // first 4 bytes unknown - sometimes 0, sometimes length of einf part
4458 // store32(&pData[0], sublen);
4459 store32(&pData[4], totnbusedchannels);
4460 store32(&pData[8], totnbusedsamples);
4461 store32(&pData[12], Instruments);
4462 store32(&pData[16], totnbregions);
4463 store32(&pData[20], totnbdimregions);
4464 store32(&pData[24], totnbloops);
4465 // next 8 bytes unknown
4466 // next 4 bytes unknown, not always 0
4467 store32(&pData[40], pSamples->size());
4468 // next 4 bytes unknown
4469 }
4470
4471 // update 3crc chunk
4472
4473 // The 3crc chunk contains CRC-32 checksums for the
4474 // samples. The actual checksum values will be filled in
4475 // later, by Sample::Write.
4476
4477 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
4478 if (_3crc) {
4479 _3crc->Resize(pSamples->size() * 8);
4480 } else if (newFile) {
4481 _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
4482 _3crc->LoadChunkData();
4483
4484 // the order of einf and 3crc is not the same in v2 and v3
4485 if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
4486 }
4487 }
4488
4489 /**
4490 * Enable / disable automatic loading. By default this properyt is
4491 * enabled and all informations are loaded automatically. However
4492 * loading all Regions, DimensionRegions and especially samples might
4493 * take a long time for large .gig files, and sometimes one might only
4494 * be interested in retrieving very superficial informations like the
4495 * amount of instruments and their names. In this case one might disable
4496 * automatic loading to avoid very slow response times.
4497 *
4498 * @e CAUTION: by disabling this property many pointers (i.e. sample
4499 * references) and informations will have invalid or even undefined
4500 * data! This feature is currently only intended for retrieving very
4501 * superficial informations in a very fast way. Don't use it to retrieve
4502 * details like synthesis informations or even to modify .gig files!
4503 */
4504 void File::SetAutoLoad(bool b) {
4505 bAutoLoad = b;
4506 }
4507
4508 /**
4509 * Returns whether automatic loading is enabled.
4510 * @see SetAutoLoad()
4511 */
4512 bool File::GetAutoLoad() {
4513 return bAutoLoad;
4514 }
4515
4516
4517
4518 // *************** Exception ***************
4519 // *
4520
4521 Exception::Exception(String Message) : DLS::Exception(Message) {
4522 }
4523
4524 void Exception::PrintMessage() {
4525 std::cout << "gig::Exception: " << Message << std::endl;
4526 }
4527
4528
4529 // *************** functions ***************
4530 // *
4531
4532 /**
4533 * Returns the name of this C++ library. This is usually "libgig" of
4534 * course. This call is equivalent to RIFF::libraryName() and
4535 * DLS::libraryName().
4536 */
4537 String libraryName() {
4538 return PACKAGE;
4539 }
4540
4541 /**
4542 * Returns version of this C++ library. This call is equivalent to
4543 * RIFF::libraryVersion() and DLS::libraryVersion().
4544 */
4545 String libraryVersion() {
4546 return VERSION;
4547 }
4548
4549 } // namespace gig

  ViewVC Help
Powered by ViewVC