/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Contents of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 2540 - (show annotations) (download)
Wed Apr 23 16:39:43 2014 UTC (9 years, 11 months ago) by schoenebeck
File size: 215771 byte(s)
* GIG SOUND FORMAT EXTENSION: added additional MIDI controllers for
  leverage controller types (only works with LinuxSampler & gigedit,
  will not work with Gigasampler/GigaStudio).
* Bumped version (3.3.0.svn8).

1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file access library *
4 * *
5 * Copyright (C) 2003-2014 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #include "gig.h"
25
26 #include "helper.h"
27
28 #include <algorithm>
29 #include <math.h>
30 #include <iostream>
31
32 /// Initial size of the sample buffer which is used for decompression of
33 /// compressed sample wave streams - this value should always be bigger than
34 /// the biggest sample piece expected to be read by the sampler engine,
35 /// otherwise the buffer size will be raised at runtime and thus the buffer
36 /// reallocated which is time consuming and unefficient.
37 #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
38
39 /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
40 #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
41 #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
42 #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
43 #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
44 #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
45 #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
46 #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
47 #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
48 #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
49 #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
50 #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
51 #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
52
53 namespace gig {
54
55 // *************** progress_t ***************
56 // *
57
58 progress_t::progress_t() {
59 callback = NULL;
60 custom = NULL;
61 __range_min = 0.0f;
62 __range_max = 1.0f;
63 }
64
65 // private helper function to convert progress of a subprocess into the global progress
66 static void __notify_progress(progress_t* pProgress, float subprogress) {
67 if (pProgress && pProgress->callback) {
68 const float totalrange = pProgress->__range_max - pProgress->__range_min;
69 const float totalprogress = pProgress->__range_min + subprogress * totalrange;
70 pProgress->factor = totalprogress;
71 pProgress->callback(pProgress); // now actually notify about the progress
72 }
73 }
74
75 // private helper function to divide a progress into subprogresses
76 static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
77 if (pParentProgress && pParentProgress->callback) {
78 const float totalrange = pParentProgress->__range_max - pParentProgress->__range_min;
79 pSubProgress->callback = pParentProgress->callback;
80 pSubProgress->custom = pParentProgress->custom;
81 pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
82 pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
83 }
84 }
85
86
87 // *************** Internal functions for sample decompression ***************
88 // *
89
90 namespace {
91
92 inline int get12lo(const unsigned char* pSrc)
93 {
94 const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
95 return x & 0x800 ? x - 0x1000 : x;
96 }
97
98 inline int get12hi(const unsigned char* pSrc)
99 {
100 const int x = pSrc[1] >> 4 | pSrc[2] << 4;
101 return x & 0x800 ? x - 0x1000 : x;
102 }
103
104 inline int16_t get16(const unsigned char* pSrc)
105 {
106 return int16_t(pSrc[0] | pSrc[1] << 8);
107 }
108
109 inline int get24(const unsigned char* pSrc)
110 {
111 const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
112 return x & 0x800000 ? x - 0x1000000 : x;
113 }
114
115 inline void store24(unsigned char* pDst, int x)
116 {
117 pDst[0] = x;
118 pDst[1] = x >> 8;
119 pDst[2] = x >> 16;
120 }
121
122 void Decompress16(int compressionmode, const unsigned char* params,
123 int srcStep, int dstStep,
124 const unsigned char* pSrc, int16_t* pDst,
125 unsigned long currentframeoffset,
126 unsigned long copysamples)
127 {
128 switch (compressionmode) {
129 case 0: // 16 bit uncompressed
130 pSrc += currentframeoffset * srcStep;
131 while (copysamples) {
132 *pDst = get16(pSrc);
133 pDst += dstStep;
134 pSrc += srcStep;
135 copysamples--;
136 }
137 break;
138
139 case 1: // 16 bit compressed to 8 bit
140 int y = get16(params);
141 int dy = get16(params + 2);
142 while (currentframeoffset) {
143 dy -= int8_t(*pSrc);
144 y -= dy;
145 pSrc += srcStep;
146 currentframeoffset--;
147 }
148 while (copysamples) {
149 dy -= int8_t(*pSrc);
150 y -= dy;
151 *pDst = y;
152 pDst += dstStep;
153 pSrc += srcStep;
154 copysamples--;
155 }
156 break;
157 }
158 }
159
160 void Decompress24(int compressionmode, const unsigned char* params,
161 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
162 unsigned long currentframeoffset,
163 unsigned long copysamples, int truncatedBits)
164 {
165 int y, dy, ddy, dddy;
166
167 #define GET_PARAMS(params) \
168 y = get24(params); \
169 dy = y - get24((params) + 3); \
170 ddy = get24((params) + 6); \
171 dddy = get24((params) + 9)
172
173 #define SKIP_ONE(x) \
174 dddy -= (x); \
175 ddy -= dddy; \
176 dy = -dy - ddy; \
177 y += dy
178
179 #define COPY_ONE(x) \
180 SKIP_ONE(x); \
181 store24(pDst, y << truncatedBits); \
182 pDst += dstStep
183
184 switch (compressionmode) {
185 case 2: // 24 bit uncompressed
186 pSrc += currentframeoffset * 3;
187 while (copysamples) {
188 store24(pDst, get24(pSrc) << truncatedBits);
189 pDst += dstStep;
190 pSrc += 3;
191 copysamples--;
192 }
193 break;
194
195 case 3: // 24 bit compressed to 16 bit
196 GET_PARAMS(params);
197 while (currentframeoffset) {
198 SKIP_ONE(get16(pSrc));
199 pSrc += 2;
200 currentframeoffset--;
201 }
202 while (copysamples) {
203 COPY_ONE(get16(pSrc));
204 pSrc += 2;
205 copysamples--;
206 }
207 break;
208
209 case 4: // 24 bit compressed to 12 bit
210 GET_PARAMS(params);
211 while (currentframeoffset > 1) {
212 SKIP_ONE(get12lo(pSrc));
213 SKIP_ONE(get12hi(pSrc));
214 pSrc += 3;
215 currentframeoffset -= 2;
216 }
217 if (currentframeoffset) {
218 SKIP_ONE(get12lo(pSrc));
219 currentframeoffset--;
220 if (copysamples) {
221 COPY_ONE(get12hi(pSrc));
222 pSrc += 3;
223 copysamples--;
224 }
225 }
226 while (copysamples > 1) {
227 COPY_ONE(get12lo(pSrc));
228 COPY_ONE(get12hi(pSrc));
229 pSrc += 3;
230 copysamples -= 2;
231 }
232 if (copysamples) {
233 COPY_ONE(get12lo(pSrc));
234 }
235 break;
236
237 case 5: // 24 bit compressed to 8 bit
238 GET_PARAMS(params);
239 while (currentframeoffset) {
240 SKIP_ONE(int8_t(*pSrc++));
241 currentframeoffset--;
242 }
243 while (copysamples) {
244 COPY_ONE(int8_t(*pSrc++));
245 copysamples--;
246 }
247 break;
248 }
249 }
250
251 const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
252 const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
253 const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
254 const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
255 }
256
257
258
259 // *************** Internal CRC-32 (Cyclic Redundancy Check) functions ***************
260 // *
261
262 static uint32_t* __initCRCTable() {
263 static uint32_t res[256];
264
265 for (int i = 0 ; i < 256 ; i++) {
266 uint32_t c = i;
267 for (int j = 0 ; j < 8 ; j++) {
268 c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
269 }
270 res[i] = c;
271 }
272 return res;
273 }
274
275 static const uint32_t* __CRCTable = __initCRCTable();
276
277 /**
278 * Initialize a CRC variable.
279 *
280 * @param crc - variable to be initialized
281 */
282 inline static void __resetCRC(uint32_t& crc) {
283 crc = 0xffffffff;
284 }
285
286 /**
287 * Used to calculate checksums of the sample data in a gig file. The
288 * checksums are stored in the 3crc chunk of the gig file and
289 * automatically updated when a sample is written with Sample::Write().
290 *
291 * One should call __resetCRC() to initialize the CRC variable to be
292 * used before calling this function the first time.
293 *
294 * After initializing the CRC variable one can call this function
295 * arbitrary times, i.e. to split the overall CRC calculation into
296 * steps.
297 *
298 * Once the whole data was processed by __calculateCRC(), one should
299 * call __encodeCRC() to get the final CRC result.
300 *
301 * @param buf - pointer to data the CRC shall be calculated of
302 * @param bufSize - size of the data to be processed
303 * @param crc - variable the CRC sum shall be stored to
304 */
305 static void __calculateCRC(unsigned char* buf, int bufSize, uint32_t& crc) {
306 for (int i = 0 ; i < bufSize ; i++) {
307 crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
308 }
309 }
310
311 /**
312 * Returns the final CRC result.
313 *
314 * @param crc - variable previously passed to __calculateCRC()
315 */
316 inline static uint32_t __encodeCRC(const uint32_t& crc) {
317 return crc ^ 0xffffffff;
318 }
319
320
321
322 // *************** Other Internal functions ***************
323 // *
324
325 static split_type_t __resolveSplitType(dimension_t dimension) {
326 return (
327 dimension == dimension_layer ||
328 dimension == dimension_samplechannel ||
329 dimension == dimension_releasetrigger ||
330 dimension == dimension_keyboard ||
331 dimension == dimension_roundrobin ||
332 dimension == dimension_random ||
333 dimension == dimension_smartmidi ||
334 dimension == dimension_roundrobinkeyboard
335 ) ? split_type_bit : split_type_normal;
336 }
337
338 static int __resolveZoneSize(dimension_def_t& dimension_definition) {
339 return (dimension_definition.split_type == split_type_normal)
340 ? int(128.0 / dimension_definition.zones) : 0;
341 }
342
343
344
345 // *************** Sample ***************
346 // *
347
348 unsigned int Sample::Instances = 0;
349 buffer_t Sample::InternalDecompressionBuffer;
350
351 /** @brief Constructor.
352 *
353 * Load an existing sample or create a new one. A 'wave' list chunk must
354 * be given to this constructor. In case the given 'wave' list chunk
355 * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
356 * format and sample data will be loaded from there, otherwise default
357 * values will be used and those chunks will be created when
358 * File::Save() will be called later on.
359 *
360 * @param pFile - pointer to gig::File where this sample is
361 * located (or will be located)
362 * @param waveList - pointer to 'wave' list chunk which is (or
363 * will be) associated with this sample
364 * @param WavePoolOffset - offset of this sample data from wave pool
365 * ('wvpl') list chunk
366 * @param fileNo - number of an extension file where this sample
367 * is located, 0 otherwise
368 */
369 Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
370 static const DLS::Info::string_length_t fixedStringLengths[] = {
371 { CHUNK_ID_INAM, 64 },
372 { 0, 0 }
373 };
374 pInfo->SetFixedStringLengths(fixedStringLengths);
375 Instances++;
376 FileNo = fileNo;
377
378 __resetCRC(crc);
379
380 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
381 if (pCk3gix) {
382 uint16_t iSampleGroup = pCk3gix->ReadInt16();
383 pGroup = pFile->GetGroup(iSampleGroup);
384 } else { // '3gix' chunk missing
385 // by default assigned to that mandatory "Default Group"
386 pGroup = pFile->GetGroup(0);
387 }
388
389 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
390 if (pCkSmpl) {
391 Manufacturer = pCkSmpl->ReadInt32();
392 Product = pCkSmpl->ReadInt32();
393 SamplePeriod = pCkSmpl->ReadInt32();
394 MIDIUnityNote = pCkSmpl->ReadInt32();
395 FineTune = pCkSmpl->ReadInt32();
396 pCkSmpl->Read(&SMPTEFormat, 1, 4);
397 SMPTEOffset = pCkSmpl->ReadInt32();
398 Loops = pCkSmpl->ReadInt32();
399 pCkSmpl->ReadInt32(); // manufByt
400 LoopID = pCkSmpl->ReadInt32();
401 pCkSmpl->Read(&LoopType, 1, 4);
402 LoopStart = pCkSmpl->ReadInt32();
403 LoopEnd = pCkSmpl->ReadInt32();
404 LoopFraction = pCkSmpl->ReadInt32();
405 LoopPlayCount = pCkSmpl->ReadInt32();
406 } else { // 'smpl' chunk missing
407 // use default values
408 Manufacturer = 0;
409 Product = 0;
410 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
411 MIDIUnityNote = 60;
412 FineTune = 0;
413 SMPTEFormat = smpte_format_no_offset;
414 SMPTEOffset = 0;
415 Loops = 0;
416 LoopID = 0;
417 LoopType = loop_type_normal;
418 LoopStart = 0;
419 LoopEnd = 0;
420 LoopFraction = 0;
421 LoopPlayCount = 0;
422 }
423
424 FrameTable = NULL;
425 SamplePos = 0;
426 RAMCache.Size = 0;
427 RAMCache.pStart = NULL;
428 RAMCache.NullExtensionSize = 0;
429
430 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
431
432 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
433 Compressed = ewav;
434 Dithered = false;
435 TruncatedBits = 0;
436 if (Compressed) {
437 uint32_t version = ewav->ReadInt32();
438 if (version == 3 && BitDepth == 24) {
439 Dithered = ewav->ReadInt32();
440 ewav->SetPos(Channels == 2 ? 84 : 64);
441 TruncatedBits = ewav->ReadInt32();
442 }
443 ScanCompressedSample();
444 }
445
446 // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
447 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
448 InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
449 InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
450 }
451 FrameOffset = 0; // just for streaming compressed samples
452
453 LoopSize = LoopEnd - LoopStart + 1;
454 }
455
456 /**
457 * Make a (semi) deep copy of the Sample object given by @a orig (without
458 * the actual waveform data) and assign it to this object.
459 *
460 * Discussion: copying .gig samples is a bit tricky. It requires three
461 * steps:
462 * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
463 * its new sample waveform data size.
464 * 2. Saving the file (done by File::Save()) so that it gains correct size
465 * and layout for writing the actual wave form data directly to disc
466 * in next step.
467 * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
468 *
469 * @param orig - original Sample object to be copied from
470 */
471 void Sample::CopyAssignMeta(const Sample* orig) {
472 // handle base classes
473 DLS::Sample::CopyAssignCore(orig);
474
475 // handle actual own attributes of this class
476 Manufacturer = orig->Manufacturer;
477 Product = orig->Product;
478 SamplePeriod = orig->SamplePeriod;
479 MIDIUnityNote = orig->MIDIUnityNote;
480 FineTune = orig->FineTune;
481 SMPTEFormat = orig->SMPTEFormat;
482 SMPTEOffset = orig->SMPTEOffset;
483 Loops = orig->Loops;
484 LoopID = orig->LoopID;
485 LoopType = orig->LoopType;
486 LoopStart = orig->LoopStart;
487 LoopEnd = orig->LoopEnd;
488 LoopSize = orig->LoopSize;
489 LoopFraction = orig->LoopFraction;
490 LoopPlayCount = orig->LoopPlayCount;
491
492 // schedule resizing this sample to the given sample's size
493 Resize(orig->GetSize());
494 }
495
496 /**
497 * Should be called after CopyAssignMeta() and File::Save() sequence.
498 * Read more about it in the discussion of CopyAssignMeta(). This method
499 * copies the actual waveform data by disk streaming.
500 *
501 * @e CAUTION: this method is currently not thread safe! During this
502 * operation the sample must not be used for other purposes by other
503 * threads!
504 *
505 * @param orig - original Sample object to be copied from
506 */
507 void Sample::CopyAssignWave(const Sample* orig) {
508 const int iReadAtOnce = 32*1024;
509 char* buf = new char[iReadAtOnce * orig->FrameSize];
510 Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
511 unsigned long restorePos = pOrig->GetPos();
512 pOrig->SetPos(0);
513 SetPos(0);
514 for (unsigned long n = pOrig->Read(buf, iReadAtOnce); n;
515 n = pOrig->Read(buf, iReadAtOnce))
516 {
517 Write(buf, n);
518 }
519 pOrig->SetPos(restorePos);
520 delete [] buf;
521 }
522
523 /**
524 * Apply sample and its settings to the respective RIFF chunks. You have
525 * to call File::Save() to make changes persistent.
526 *
527 * Usually there is absolutely no need to call this method explicitly.
528 * It will be called automatically when File::Save() was called.
529 *
530 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
531 * was provided yet
532 * @throws gig::Exception if there is any invalid sample setting
533 */
534 void Sample::UpdateChunks() {
535 // first update base class's chunks
536 DLS::Sample::UpdateChunks();
537
538 // make sure 'smpl' chunk exists
539 pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
540 if (!pCkSmpl) {
541 pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
542 memset(pCkSmpl->LoadChunkData(), 0, 60);
543 }
544 // update 'smpl' chunk
545 uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
546 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
547 store32(&pData[0], Manufacturer);
548 store32(&pData[4], Product);
549 store32(&pData[8], SamplePeriod);
550 store32(&pData[12], MIDIUnityNote);
551 store32(&pData[16], FineTune);
552 store32(&pData[20], SMPTEFormat);
553 store32(&pData[24], SMPTEOffset);
554 store32(&pData[28], Loops);
555
556 // we skip 'manufByt' for now (4 bytes)
557
558 store32(&pData[36], LoopID);
559 store32(&pData[40], LoopType);
560 store32(&pData[44], LoopStart);
561 store32(&pData[48], LoopEnd);
562 store32(&pData[52], LoopFraction);
563 store32(&pData[56], LoopPlayCount);
564
565 // make sure '3gix' chunk exists
566 pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
567 if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
568 // determine appropriate sample group index (to be stored in chunk)
569 uint16_t iSampleGroup = 0; // 0 refers to default sample group
570 File* pFile = static_cast<File*>(pParent);
571 if (pFile->pGroups) {
572 std::list<Group*>::iterator iter = pFile->pGroups->begin();
573 std::list<Group*>::iterator end = pFile->pGroups->end();
574 for (int i = 0; iter != end; i++, iter++) {
575 if (*iter == pGroup) {
576 iSampleGroup = i;
577 break; // found
578 }
579 }
580 }
581 // update '3gix' chunk
582 pData = (uint8_t*) pCk3gix->LoadChunkData();
583 store16(&pData[0], iSampleGroup);
584
585 // if the library user toggled the "Compressed" attribute from true to
586 // false, then the EWAV chunk associated with compressed samples needs
587 // to be deleted
588 RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
589 if (ewav && !Compressed) {
590 pWaveList->DeleteSubChunk(ewav);
591 }
592 }
593
594 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
595 void Sample::ScanCompressedSample() {
596 //TODO: we have to add some more scans here (e.g. determine compression rate)
597 this->SamplesTotal = 0;
598 std::list<unsigned long> frameOffsets;
599
600 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
601 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
602
603 // Scanning
604 pCkData->SetPos(0);
605 if (Channels == 2) { // Stereo
606 for (int i = 0 ; ; i++) {
607 // for 24 bit samples every 8:th frame offset is
608 // stored, to save some memory
609 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
610
611 const int mode_l = pCkData->ReadUint8();
612 const int mode_r = pCkData->ReadUint8();
613 if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
614 const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
615
616 if (pCkData->RemainingBytes() <= frameSize) {
617 SamplesInLastFrame =
618 ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
619 (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
620 SamplesTotal += SamplesInLastFrame;
621 break;
622 }
623 SamplesTotal += SamplesPerFrame;
624 pCkData->SetPos(frameSize, RIFF::stream_curpos);
625 }
626 }
627 else { // Mono
628 for (int i = 0 ; ; i++) {
629 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
630
631 const int mode = pCkData->ReadUint8();
632 if (mode > 5) throw gig::Exception("Unknown compression mode");
633 const unsigned long frameSize = bytesPerFrame[mode];
634
635 if (pCkData->RemainingBytes() <= frameSize) {
636 SamplesInLastFrame =
637 ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
638 SamplesTotal += SamplesInLastFrame;
639 break;
640 }
641 SamplesTotal += SamplesPerFrame;
642 pCkData->SetPos(frameSize, RIFF::stream_curpos);
643 }
644 }
645 pCkData->SetPos(0);
646
647 // Build the frames table (which is used for fast resolving of a frame's chunk offset)
648 if (FrameTable) delete[] FrameTable;
649 FrameTable = new unsigned long[frameOffsets.size()];
650 std::list<unsigned long>::iterator end = frameOffsets.end();
651 std::list<unsigned long>::iterator iter = frameOffsets.begin();
652 for (int i = 0; iter != end; i++, iter++) {
653 FrameTable[i] = *iter;
654 }
655 }
656
657 /**
658 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
659 * ReleaseSampleData() to free the memory if you don't need the cached
660 * sample data anymore.
661 *
662 * @returns buffer_t structure with start address and size of the buffer
663 * in bytes
664 * @see ReleaseSampleData(), Read(), SetPos()
665 */
666 buffer_t Sample::LoadSampleData() {
667 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
668 }
669
670 /**
671 * Reads (uncompresses if needed) and caches the first \a SampleCount
672 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
673 * memory space if you don't need the cached samples anymore. There is no
674 * guarantee that exactly \a SampleCount samples will be cached; this is
675 * not an error. The size will be eventually truncated e.g. to the
676 * beginning of a frame of a compressed sample. This is done for
677 * efficiency reasons while streaming the wave by your sampler engine
678 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
679 * that will be returned to determine the actual cached samples, but note
680 * that the size is given in bytes! You get the number of actually cached
681 * samples by dividing it by the frame size of the sample:
682 * @code
683 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
684 * long cachedsamples = buf.Size / pSample->FrameSize;
685 * @endcode
686 *
687 * @param SampleCount - number of sample points to load into RAM
688 * @returns buffer_t structure with start address and size of
689 * the cached sample data in bytes
690 * @see ReleaseSampleData(), Read(), SetPos()
691 */
692 buffer_t Sample::LoadSampleData(unsigned long SampleCount) {
693 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
694 }
695
696 /**
697 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
698 * ReleaseSampleData() to free the memory if you don't need the cached
699 * sample data anymore.
700 * The method will add \a NullSamplesCount silence samples past the
701 * official buffer end (this won't affect the 'Size' member of the
702 * buffer_t structure, that means 'Size' always reflects the size of the
703 * actual sample data, the buffer might be bigger though). Silence
704 * samples past the official buffer are needed for differential
705 * algorithms that always have to take subsequent samples into account
706 * (resampling/interpolation would be an important example) and avoids
707 * memory access faults in such cases.
708 *
709 * @param NullSamplesCount - number of silence samples the buffer should
710 * be extended past it's data end
711 * @returns buffer_t structure with start address and
712 * size of the buffer in bytes
713 * @see ReleaseSampleData(), Read(), SetPos()
714 */
715 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
716 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
717 }
718
719 /**
720 * Reads (uncompresses if needed) and caches the first \a SampleCount
721 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
722 * memory space if you don't need the cached samples anymore. There is no
723 * guarantee that exactly \a SampleCount samples will be cached; this is
724 * not an error. The size will be eventually truncated e.g. to the
725 * beginning of a frame of a compressed sample. This is done for
726 * efficiency reasons while streaming the wave by your sampler engine
727 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
728 * that will be returned to determine the actual cached samples, but note
729 * that the size is given in bytes! You get the number of actually cached
730 * samples by dividing it by the frame size of the sample:
731 * @code
732 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
733 * long cachedsamples = buf.Size / pSample->FrameSize;
734 * @endcode
735 * The method will add \a NullSamplesCount silence samples past the
736 * official buffer end (this won't affect the 'Size' member of the
737 * buffer_t structure, that means 'Size' always reflects the size of the
738 * actual sample data, the buffer might be bigger though). Silence
739 * samples past the official buffer are needed for differential
740 * algorithms that always have to take subsequent samples into account
741 * (resampling/interpolation would be an important example) and avoids
742 * memory access faults in such cases.
743 *
744 * @param SampleCount - number of sample points to load into RAM
745 * @param NullSamplesCount - number of silence samples the buffer should
746 * be extended past it's data end
747 * @returns buffer_t structure with start address and
748 * size of the cached sample data in bytes
749 * @see ReleaseSampleData(), Read(), SetPos()
750 */
751 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {
752 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
753 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
754 unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
755 SetPos(0); // reset read position to begin of sample
756 RAMCache.pStart = new int8_t[allocationsize];
757 RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
758 RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
759 // fill the remaining buffer space with silence samples
760 memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
761 return GetCache();
762 }
763
764 /**
765 * Returns current cached sample points. A buffer_t structure will be
766 * returned which contains address pointer to the begin of the cache and
767 * the size of the cached sample data in bytes. Use
768 * <i>LoadSampleData()</i> to cache a specific amount of sample points in
769 * RAM.
770 *
771 * @returns buffer_t structure with current cached sample points
772 * @see LoadSampleData();
773 */
774 buffer_t Sample::GetCache() {
775 // return a copy of the buffer_t structure
776 buffer_t result;
777 result.Size = this->RAMCache.Size;
778 result.pStart = this->RAMCache.pStart;
779 result.NullExtensionSize = this->RAMCache.NullExtensionSize;
780 return result;
781 }
782
783 /**
784 * Frees the cached sample from RAM if loaded with
785 * <i>LoadSampleData()</i> previously.
786 *
787 * @see LoadSampleData();
788 */
789 void Sample::ReleaseSampleData() {
790 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
791 RAMCache.pStart = NULL;
792 RAMCache.Size = 0;
793 RAMCache.NullExtensionSize = 0;
794 }
795
796 /** @brief Resize sample.
797 *
798 * Resizes the sample's wave form data, that is the actual size of
799 * sample wave data possible to be written for this sample. This call
800 * will return immediately and just schedule the resize operation. You
801 * should call File::Save() to actually perform the resize operation(s)
802 * "physically" to the file. As this can take a while on large files, it
803 * is recommended to call Resize() first on all samples which have to be
804 * resized and finally to call File::Save() to perform all those resize
805 * operations in one rush.
806 *
807 * The actual size (in bytes) is dependant to the current FrameSize
808 * value. You may want to set FrameSize before calling Resize().
809 *
810 * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
811 * enlarged samples before calling File::Save() as this might exceed the
812 * current sample's boundary!
813 *
814 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
815 * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
816 * other formats will fail!
817 *
818 * @param iNewSize - new sample wave data size in sample points (must be
819 * greater than zero)
820 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
821 * or if \a iNewSize is less than 1
822 * @throws gig::Exception if existing sample is compressed
823 * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
824 * DLS::Sample::FormatTag, File::Save()
825 */
826 void Sample::Resize(int iNewSize) {
827 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
828 DLS::Sample::Resize(iNewSize);
829 }
830
831 /**
832 * Sets the position within the sample (in sample points, not in
833 * bytes). Use this method and <i>Read()</i> if you don't want to load
834 * the sample into RAM, thus for disk streaming.
835 *
836 * Although the original Gigasampler engine doesn't allow positioning
837 * within compressed samples, I decided to implement it. Even though
838 * the Gigasampler format doesn't allow to define loops for compressed
839 * samples at the moment, positioning within compressed samples might be
840 * interesting for some sampler engines though. The only drawback about
841 * my decision is that it takes longer to load compressed gig Files on
842 * startup, because it's neccessary to scan the samples for some
843 * mandatory informations. But I think as it doesn't affect the runtime
844 * efficiency, nobody will have a problem with that.
845 *
846 * @param SampleCount number of sample points to jump
847 * @param Whence optional: to which relation \a SampleCount refers
848 * to, if omited <i>RIFF::stream_start</i> is assumed
849 * @returns the new sample position
850 * @see Read()
851 */
852 unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {
853 if (Compressed) {
854 switch (Whence) {
855 case RIFF::stream_curpos:
856 this->SamplePos += SampleCount;
857 break;
858 case RIFF::stream_end:
859 this->SamplePos = this->SamplesTotal - 1 - SampleCount;
860 break;
861 case RIFF::stream_backward:
862 this->SamplePos -= SampleCount;
863 break;
864 case RIFF::stream_start: default:
865 this->SamplePos = SampleCount;
866 break;
867 }
868 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
869
870 unsigned long frame = this->SamplePos / 2048; // to which frame to jump
871 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
872 pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
873 return this->SamplePos;
874 }
875 else { // not compressed
876 unsigned long orderedBytes = SampleCount * this->FrameSize;
877 unsigned long result = pCkData->SetPos(orderedBytes, Whence);
878 return (result == orderedBytes) ? SampleCount
879 : result / this->FrameSize;
880 }
881 }
882
883 /**
884 * Returns the current position in the sample (in sample points).
885 */
886 unsigned long Sample::GetPos() const {
887 if (Compressed) return SamplePos;
888 else return pCkData->GetPos() / FrameSize;
889 }
890
891 /**
892 * Reads \a SampleCount number of sample points from the position stored
893 * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
894 * the position within the sample respectively, this method honors the
895 * looping informations of the sample (if any). The sample wave stream
896 * will be decompressed on the fly if using a compressed sample. Use this
897 * method if you don't want to load the sample into RAM, thus for disk
898 * streaming. All this methods needs to know to proceed with streaming
899 * for the next time you call this method is stored in \a pPlaybackState.
900 * You have to allocate and initialize the playback_state_t structure by
901 * yourself before you use it to stream a sample:
902 * @code
903 * gig::playback_state_t playbackstate;
904 * playbackstate.position = 0;
905 * playbackstate.reverse = false;
906 * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
907 * @endcode
908 * You don't have to take care of things like if there is actually a loop
909 * defined or if the current read position is located within a loop area.
910 * The method already handles such cases by itself.
911 *
912 * <b>Caution:</b> If you are using more than one streaming thread, you
913 * have to use an external decompression buffer for <b>EACH</b>
914 * streaming thread to avoid race conditions and crashes!
915 *
916 * @param pBuffer destination buffer
917 * @param SampleCount number of sample points to read
918 * @param pPlaybackState will be used to store and reload the playback
919 * state for the next ReadAndLoop() call
920 * @param pDimRgn dimension region with looping information
921 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
922 * @returns number of successfully read sample points
923 * @see CreateDecompressionBuffer()
924 */
925 unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,
926 DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
927 unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
928 uint8_t* pDst = (uint8_t*) pBuffer;
929
930 SetPos(pPlaybackState->position); // recover position from the last time
931
932 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
933
934 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
935 const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
936
937 if (GetPos() <= loopEnd) {
938 switch (loop.LoopType) {
939
940 case loop_type_bidirectional: { //TODO: not tested yet!
941 do {
942 // if not endless loop check if max. number of loop cycles have been passed
943 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
944
945 if (!pPlaybackState->reverse) { // forward playback
946 do {
947 samplestoloopend = loopEnd - GetPos();
948 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
949 samplestoread -= readsamples;
950 totalreadsamples += readsamples;
951 if (readsamples == samplestoloopend) {
952 pPlaybackState->reverse = true;
953 break;
954 }
955 } while (samplestoread && readsamples);
956 }
957 else { // backward playback
958
959 // as we can only read forward from disk, we have to
960 // determine the end position within the loop first,
961 // read forward from that 'end' and finally after
962 // reading, swap all sample frames so it reflects
963 // backward playback
964
965 unsigned long swapareastart = totalreadsamples;
966 unsigned long loopoffset = GetPos() - loop.LoopStart;
967 unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
968 unsigned long reverseplaybackend = GetPos() - samplestoreadinloop;
969
970 SetPos(reverseplaybackend);
971
972 // read samples for backward playback
973 do {
974 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
975 samplestoreadinloop -= readsamples;
976 samplestoread -= readsamples;
977 totalreadsamples += readsamples;
978 } while (samplestoreadinloop && readsamples);
979
980 SetPos(reverseplaybackend); // pretend we really read backwards
981
982 if (reverseplaybackend == loop.LoopStart) {
983 pPlaybackState->loop_cycles_left--;
984 pPlaybackState->reverse = false;
985 }
986
987 // reverse the sample frames for backward playback
988 if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
989 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
990 }
991 } while (samplestoread && readsamples);
992 break;
993 }
994
995 case loop_type_backward: { // TODO: not tested yet!
996 // forward playback (not entered the loop yet)
997 if (!pPlaybackState->reverse) do {
998 samplestoloopend = loopEnd - GetPos();
999 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1000 samplestoread -= readsamples;
1001 totalreadsamples += readsamples;
1002 if (readsamples == samplestoloopend) {
1003 pPlaybackState->reverse = true;
1004 break;
1005 }
1006 } while (samplestoread && readsamples);
1007
1008 if (!samplestoread) break;
1009
1010 // as we can only read forward from disk, we have to
1011 // determine the end position within the loop first,
1012 // read forward from that 'end' and finally after
1013 // reading, swap all sample frames so it reflects
1014 // backward playback
1015
1016 unsigned long swapareastart = totalreadsamples;
1017 unsigned long loopoffset = GetPos() - loop.LoopStart;
1018 unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1019 : samplestoread;
1020 unsigned long reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1021
1022 SetPos(reverseplaybackend);
1023
1024 // read samples for backward playback
1025 do {
1026 // if not endless loop check if max. number of loop cycles have been passed
1027 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1028 samplestoloopend = loopEnd - GetPos();
1029 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1030 samplestoreadinloop -= readsamples;
1031 samplestoread -= readsamples;
1032 totalreadsamples += readsamples;
1033 if (readsamples == samplestoloopend) {
1034 pPlaybackState->loop_cycles_left--;
1035 SetPos(loop.LoopStart);
1036 }
1037 } while (samplestoreadinloop && readsamples);
1038
1039 SetPos(reverseplaybackend); // pretend we really read backwards
1040
1041 // reverse the sample frames for backward playback
1042 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1043 break;
1044 }
1045
1046 default: case loop_type_normal: {
1047 do {
1048 // if not endless loop check if max. number of loop cycles have been passed
1049 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1050 samplestoloopend = loopEnd - GetPos();
1051 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1052 samplestoread -= readsamples;
1053 totalreadsamples += readsamples;
1054 if (readsamples == samplestoloopend) {
1055 pPlaybackState->loop_cycles_left--;
1056 SetPos(loop.LoopStart);
1057 }
1058 } while (samplestoread && readsamples);
1059 break;
1060 }
1061 }
1062 }
1063 }
1064
1065 // read on without looping
1066 if (samplestoread) do {
1067 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
1068 samplestoread -= readsamples;
1069 totalreadsamples += readsamples;
1070 } while (readsamples && samplestoread);
1071
1072 // store current position
1073 pPlaybackState->position = GetPos();
1074
1075 return totalreadsamples;
1076 }
1077
1078 /**
1079 * Reads \a SampleCount number of sample points from the current
1080 * position into the buffer pointed by \a pBuffer and increments the
1081 * position within the sample. The sample wave stream will be
1082 * decompressed on the fly if using a compressed sample. Use this method
1083 * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1084 * thus for disk streaming.
1085 *
1086 * <b>Caution:</b> If you are using more than one streaming thread, you
1087 * have to use an external decompression buffer for <b>EACH</b>
1088 * streaming thread to avoid race conditions and crashes!
1089 *
1090 * For 16 bit samples, the data in the buffer will be int16_t
1091 * (using native endianness). For 24 bit, the buffer will
1092 * contain three bytes per sample, little-endian.
1093 *
1094 * @param pBuffer destination buffer
1095 * @param SampleCount number of sample points to read
1096 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
1097 * @returns number of successfully read sample points
1098 * @see SetPos(), CreateDecompressionBuffer()
1099 */
1100 unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
1101 if (SampleCount == 0) return 0;
1102 if (!Compressed) {
1103 if (BitDepth == 24) {
1104 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1105 }
1106 else { // 16 bit
1107 // (pCkData->Read does endian correction)
1108 return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1109 : pCkData->Read(pBuffer, SampleCount, 2);
1110 }
1111 }
1112 else {
1113 if (this->SamplePos >= this->SamplesTotal) return 0;
1114 //TODO: efficiency: maybe we should test for an average compression rate
1115 unsigned long assumedsize = GuessSize(SampleCount),
1116 remainingbytes = 0, // remaining bytes in the local buffer
1117 remainingsamples = SampleCount,
1118 copysamples, skipsamples,
1119 currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
1120 this->FrameOffset = 0;
1121
1122 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1123
1124 // if decompression buffer too small, then reduce amount of samples to read
1125 if (pDecompressionBuffer->Size < assumedsize) {
1126 std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1127 SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1128 remainingsamples = SampleCount;
1129 assumedsize = GuessSize(SampleCount);
1130 }
1131
1132 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1133 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1134 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1135 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1136
1137 while (remainingsamples && remainingbytes) {
1138 unsigned long framesamples = SamplesPerFrame;
1139 unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
1140
1141 int mode_l = *pSrc++, mode_r = 0;
1142
1143 if (Channels == 2) {
1144 mode_r = *pSrc++;
1145 framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1146 rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1147 nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1148 if (remainingbytes < framebytes) { // last frame in sample
1149 framesamples = SamplesInLastFrame;
1150 if (mode_l == 4 && (framesamples & 1)) {
1151 rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1152 }
1153 else {
1154 rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1155 }
1156 }
1157 }
1158 else {
1159 framebytes = bytesPerFrame[mode_l] + 1;
1160 nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1161 if (remainingbytes < framebytes) {
1162 framesamples = SamplesInLastFrame;
1163 }
1164 }
1165
1166 // determine how many samples in this frame to skip and read
1167 if (currentframeoffset + remainingsamples >= framesamples) {
1168 if (currentframeoffset <= framesamples) {
1169 copysamples = framesamples - currentframeoffset;
1170 skipsamples = currentframeoffset;
1171 }
1172 else {
1173 copysamples = 0;
1174 skipsamples = framesamples;
1175 }
1176 }
1177 else {
1178 // This frame has enough data for pBuffer, but not
1179 // all of the frame is needed. Set file position
1180 // to start of this frame for next call to Read.
1181 copysamples = remainingsamples;
1182 skipsamples = currentframeoffset;
1183 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1184 this->FrameOffset = currentframeoffset + copysamples;
1185 }
1186 remainingsamples -= copysamples;
1187
1188 if (remainingbytes > framebytes) {
1189 remainingbytes -= framebytes;
1190 if (remainingsamples == 0 &&
1191 currentframeoffset + copysamples == framesamples) {
1192 // This frame has enough data for pBuffer, and
1193 // all of the frame is needed. Set file
1194 // position to start of next frame for next
1195 // call to Read. FrameOffset is 0.
1196 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1197 }
1198 }
1199 else remainingbytes = 0;
1200
1201 currentframeoffset -= skipsamples;
1202
1203 if (copysamples == 0) {
1204 // skip this frame
1205 pSrc += framebytes - Channels;
1206 }
1207 else {
1208 const unsigned char* const param_l = pSrc;
1209 if (BitDepth == 24) {
1210 if (mode_l != 2) pSrc += 12;
1211
1212 if (Channels == 2) { // Stereo
1213 const unsigned char* const param_r = pSrc;
1214 if (mode_r != 2) pSrc += 12;
1215
1216 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1217 skipsamples, copysamples, TruncatedBits);
1218 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1219 skipsamples, copysamples, TruncatedBits);
1220 pDst24 += copysamples * 6;
1221 }
1222 else { // Mono
1223 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1224 skipsamples, copysamples, TruncatedBits);
1225 pDst24 += copysamples * 3;
1226 }
1227 }
1228 else { // 16 bit
1229 if (mode_l) pSrc += 4;
1230
1231 int step;
1232 if (Channels == 2) { // Stereo
1233 const unsigned char* const param_r = pSrc;
1234 if (mode_r) pSrc += 4;
1235
1236 step = (2 - mode_l) + (2 - mode_r);
1237 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1238 Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1239 skipsamples, copysamples);
1240 pDst += copysamples << 1;
1241 }
1242 else { // Mono
1243 step = 2 - mode_l;
1244 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1245 pDst += copysamples;
1246 }
1247 }
1248 pSrc += nextFrameOffset;
1249 }
1250
1251 // reload from disk to local buffer if needed
1252 if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1253 assumedsize = GuessSize(remainingsamples);
1254 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1255 if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1256 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1257 pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1258 }
1259 } // while
1260
1261 this->SamplePos += (SampleCount - remainingsamples);
1262 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1263 return (SampleCount - remainingsamples);
1264 }
1265 }
1266
1267 /** @brief Write sample wave data.
1268 *
1269 * Writes \a SampleCount number of sample points from the buffer pointed
1270 * by \a pBuffer and increments the position within the sample. Use this
1271 * method to directly write the sample data to disk, i.e. if you don't
1272 * want or cannot load the whole sample data into RAM.
1273 *
1274 * You have to Resize() the sample to the desired size and call
1275 * File::Save() <b>before</b> using Write().
1276 *
1277 * Note: there is currently no support for writing compressed samples.
1278 *
1279 * For 16 bit samples, the data in the source buffer should be
1280 * int16_t (using native endianness). For 24 bit, the buffer
1281 * should contain three bytes per sample, little-endian.
1282 *
1283 * @param pBuffer - source buffer
1284 * @param SampleCount - number of sample points to write
1285 * @throws DLS::Exception if current sample size is too small
1286 * @throws gig::Exception if sample is compressed
1287 * @see DLS::LoadSampleData()
1288 */
1289 unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1290 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1291
1292 // if this is the first write in this sample, reset the
1293 // checksum calculator
1294 if (pCkData->GetPos() == 0) {
1295 __resetCRC(crc);
1296 }
1297 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1298 unsigned long res;
1299 if (BitDepth == 24) {
1300 res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1301 } else { // 16 bit
1302 res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1303 : pCkData->Write(pBuffer, SampleCount, 2);
1304 }
1305 __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1306
1307 // if this is the last write, update the checksum chunk in the
1308 // file
1309 if (pCkData->GetPos() == pCkData->GetSize()) {
1310 File* pFile = static_cast<File*>(GetParent());
1311 pFile->SetSampleChecksum(this, __encodeCRC(crc));
1312 }
1313 return res;
1314 }
1315
1316 /**
1317 * Allocates a decompression buffer for streaming (compressed) samples
1318 * with Sample::Read(). If you are using more than one streaming thread
1319 * in your application you <b>HAVE</b> to create a decompression buffer
1320 * for <b>EACH</b> of your streaming threads and provide it with the
1321 * Sample::Read() call in order to avoid race conditions and crashes.
1322 *
1323 * You should free the memory occupied by the allocated buffer(s) once
1324 * you don't need one of your streaming threads anymore by calling
1325 * DestroyDecompressionBuffer().
1326 *
1327 * @param MaxReadSize - the maximum size (in sample points) you ever
1328 * expect to read with one Read() call
1329 * @returns allocated decompression buffer
1330 * @see DestroyDecompressionBuffer()
1331 */
1332 buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
1333 buffer_t result;
1334 const double worstCaseHeaderOverhead =
1335 (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1336 result.Size = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1337 result.pStart = new int8_t[result.Size];
1338 result.NullExtensionSize = 0;
1339 return result;
1340 }
1341
1342 /**
1343 * Free decompression buffer, previously created with
1344 * CreateDecompressionBuffer().
1345 *
1346 * @param DecompressionBuffer - previously allocated decompression
1347 * buffer to free
1348 */
1349 void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1350 if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1351 delete[] (int8_t*) DecompressionBuffer.pStart;
1352 DecompressionBuffer.pStart = NULL;
1353 DecompressionBuffer.Size = 0;
1354 DecompressionBuffer.NullExtensionSize = 0;
1355 }
1356 }
1357
1358 /**
1359 * Returns pointer to the Group this Sample belongs to. In the .gig
1360 * format a sample always belongs to one group. If it wasn't explicitly
1361 * assigned to a certain group, it will be automatically assigned to a
1362 * default group.
1363 *
1364 * @returns Sample's Group (never NULL)
1365 */
1366 Group* Sample::GetGroup() const {
1367 return pGroup;
1368 }
1369
1370 Sample::~Sample() {
1371 Instances--;
1372 if (!Instances && InternalDecompressionBuffer.Size) {
1373 delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1374 InternalDecompressionBuffer.pStart = NULL;
1375 InternalDecompressionBuffer.Size = 0;
1376 }
1377 if (FrameTable) delete[] FrameTable;
1378 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1379 }
1380
1381
1382
1383 // *************** DimensionRegion ***************
1384 // *
1385
1386 uint DimensionRegion::Instances = 0;
1387 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1388
1389 DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1390 Instances++;
1391
1392 pSample = NULL;
1393 pRegion = pParent;
1394
1395 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1396 else memset(&Crossfade, 0, 4);
1397
1398 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1399
1400 RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1401 if (_3ewa) { // if '3ewa' chunk exists
1402 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1403 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1404 EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1405 _3ewa->ReadInt16(); // unknown
1406 LFO1InternalDepth = _3ewa->ReadUint16();
1407 _3ewa->ReadInt16(); // unknown
1408 LFO3InternalDepth = _3ewa->ReadInt16();
1409 _3ewa->ReadInt16(); // unknown
1410 LFO1ControlDepth = _3ewa->ReadUint16();
1411 _3ewa->ReadInt16(); // unknown
1412 LFO3ControlDepth = _3ewa->ReadInt16();
1413 EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1414 EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1415 _3ewa->ReadInt16(); // unknown
1416 EG1Sustain = _3ewa->ReadUint16();
1417 EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1418 EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1419 uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1420 EG1ControllerInvert = eg1ctrloptions & 0x01;
1421 EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1422 EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1423 EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1424 EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1425 uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1426 EG2ControllerInvert = eg2ctrloptions & 0x01;
1427 EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1428 EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1429 EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1430 LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1431 EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1432 EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1433 _3ewa->ReadInt16(); // unknown
1434 EG2Sustain = _3ewa->ReadUint16();
1435 EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1436 _3ewa->ReadInt16(); // unknown
1437 LFO2ControlDepth = _3ewa->ReadUint16();
1438 LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1439 _3ewa->ReadInt16(); // unknown
1440 LFO2InternalDepth = _3ewa->ReadUint16();
1441 int32_t eg1decay2 = _3ewa->ReadInt32();
1442 EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1443 EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1444 _3ewa->ReadInt16(); // unknown
1445 EG1PreAttack = _3ewa->ReadUint16();
1446 int32_t eg2decay2 = _3ewa->ReadInt32();
1447 EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1448 EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1449 _3ewa->ReadInt16(); // unknown
1450 EG2PreAttack = _3ewa->ReadUint16();
1451 uint8_t velocityresponse = _3ewa->ReadUint8();
1452 if (velocityresponse < 5) {
1453 VelocityResponseCurve = curve_type_nonlinear;
1454 VelocityResponseDepth = velocityresponse;
1455 } else if (velocityresponse < 10) {
1456 VelocityResponseCurve = curve_type_linear;
1457 VelocityResponseDepth = velocityresponse - 5;
1458 } else if (velocityresponse < 15) {
1459 VelocityResponseCurve = curve_type_special;
1460 VelocityResponseDepth = velocityresponse - 10;
1461 } else {
1462 VelocityResponseCurve = curve_type_unknown;
1463 VelocityResponseDepth = 0;
1464 }
1465 uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1466 if (releasevelocityresponse < 5) {
1467 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1468 ReleaseVelocityResponseDepth = releasevelocityresponse;
1469 } else if (releasevelocityresponse < 10) {
1470 ReleaseVelocityResponseCurve = curve_type_linear;
1471 ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1472 } else if (releasevelocityresponse < 15) {
1473 ReleaseVelocityResponseCurve = curve_type_special;
1474 ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1475 } else {
1476 ReleaseVelocityResponseCurve = curve_type_unknown;
1477 ReleaseVelocityResponseDepth = 0;
1478 }
1479 VelocityResponseCurveScaling = _3ewa->ReadUint8();
1480 AttenuationControllerThreshold = _3ewa->ReadInt8();
1481 _3ewa->ReadInt32(); // unknown
1482 SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1483 _3ewa->ReadInt16(); // unknown
1484 uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1485 PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1486 if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1487 else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1488 else DimensionBypass = dim_bypass_ctrl_none;
1489 uint8_t pan = _3ewa->ReadUint8();
1490 Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1491 SelfMask = _3ewa->ReadInt8() & 0x01;
1492 _3ewa->ReadInt8(); // unknown
1493 uint8_t lfo3ctrl = _3ewa->ReadUint8();
1494 LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1495 LFO3Sync = lfo3ctrl & 0x20; // bit 5
1496 InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1497 AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1498 uint8_t lfo2ctrl = _3ewa->ReadUint8();
1499 LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1500 LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1501 LFO2Sync = lfo2ctrl & 0x20; // bit 5
1502 bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1503 uint8_t lfo1ctrl = _3ewa->ReadUint8();
1504 LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1505 LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1506 LFO1Sync = lfo1ctrl & 0x40; // bit 6
1507 VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1508 : vcf_res_ctrl_none;
1509 uint16_t eg3depth = _3ewa->ReadUint16();
1510 EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1511 : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1512 _3ewa->ReadInt16(); // unknown
1513 ChannelOffset = _3ewa->ReadUint8() / 4;
1514 uint8_t regoptions = _3ewa->ReadUint8();
1515 MSDecode = regoptions & 0x01; // bit 0
1516 SustainDefeat = regoptions & 0x02; // bit 1
1517 _3ewa->ReadInt16(); // unknown
1518 VelocityUpperLimit = _3ewa->ReadInt8();
1519 _3ewa->ReadInt8(); // unknown
1520 _3ewa->ReadInt16(); // unknown
1521 ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1522 _3ewa->ReadInt8(); // unknown
1523 _3ewa->ReadInt8(); // unknown
1524 EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1525 uint8_t vcfcutoff = _3ewa->ReadUint8();
1526 VCFEnabled = vcfcutoff & 0x80; // bit 7
1527 VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1528 VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1529 uint8_t vcfvelscale = _3ewa->ReadUint8();
1530 VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1531 VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1532 _3ewa->ReadInt8(); // unknown
1533 uint8_t vcfresonance = _3ewa->ReadUint8();
1534 VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1535 VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1536 uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1537 VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1538 VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1539 uint8_t vcfvelocity = _3ewa->ReadUint8();
1540 VCFVelocityDynamicRange = vcfvelocity % 5;
1541 VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1542 VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1543 if (VCFType == vcf_type_lowpass) {
1544 if (lfo3ctrl & 0x40) // bit 6
1545 VCFType = vcf_type_lowpassturbo;
1546 }
1547 if (_3ewa->RemainingBytes() >= 8) {
1548 _3ewa->Read(DimensionUpperLimits, 1, 8);
1549 } else {
1550 memset(DimensionUpperLimits, 0, 8);
1551 }
1552 } else { // '3ewa' chunk does not exist yet
1553 // use default values
1554 LFO3Frequency = 1.0;
1555 EG3Attack = 0.0;
1556 LFO1InternalDepth = 0;
1557 LFO3InternalDepth = 0;
1558 LFO1ControlDepth = 0;
1559 LFO3ControlDepth = 0;
1560 EG1Attack = 0.0;
1561 EG1Decay1 = 0.005;
1562 EG1Sustain = 1000;
1563 EG1Release = 0.3;
1564 EG1Controller.type = eg1_ctrl_t::type_none;
1565 EG1Controller.controller_number = 0;
1566 EG1ControllerInvert = false;
1567 EG1ControllerAttackInfluence = 0;
1568 EG1ControllerDecayInfluence = 0;
1569 EG1ControllerReleaseInfluence = 0;
1570 EG2Controller.type = eg2_ctrl_t::type_none;
1571 EG2Controller.controller_number = 0;
1572 EG2ControllerInvert = false;
1573 EG2ControllerAttackInfluence = 0;
1574 EG2ControllerDecayInfluence = 0;
1575 EG2ControllerReleaseInfluence = 0;
1576 LFO1Frequency = 1.0;
1577 EG2Attack = 0.0;
1578 EG2Decay1 = 0.005;
1579 EG2Sustain = 1000;
1580 EG2Release = 0.3;
1581 LFO2ControlDepth = 0;
1582 LFO2Frequency = 1.0;
1583 LFO2InternalDepth = 0;
1584 EG1Decay2 = 0.0;
1585 EG1InfiniteSustain = true;
1586 EG1PreAttack = 0;
1587 EG2Decay2 = 0.0;
1588 EG2InfiniteSustain = true;
1589 EG2PreAttack = 0;
1590 VelocityResponseCurve = curve_type_nonlinear;
1591 VelocityResponseDepth = 3;
1592 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1593 ReleaseVelocityResponseDepth = 3;
1594 VelocityResponseCurveScaling = 32;
1595 AttenuationControllerThreshold = 0;
1596 SampleStartOffset = 0;
1597 PitchTrack = true;
1598 DimensionBypass = dim_bypass_ctrl_none;
1599 Pan = 0;
1600 SelfMask = true;
1601 LFO3Controller = lfo3_ctrl_modwheel;
1602 LFO3Sync = false;
1603 InvertAttenuationController = false;
1604 AttenuationController.type = attenuation_ctrl_t::type_none;
1605 AttenuationController.controller_number = 0;
1606 LFO2Controller = lfo2_ctrl_internal;
1607 LFO2FlipPhase = false;
1608 LFO2Sync = false;
1609 LFO1Controller = lfo1_ctrl_internal;
1610 LFO1FlipPhase = false;
1611 LFO1Sync = false;
1612 VCFResonanceController = vcf_res_ctrl_none;
1613 EG3Depth = 0;
1614 ChannelOffset = 0;
1615 MSDecode = false;
1616 SustainDefeat = false;
1617 VelocityUpperLimit = 0;
1618 ReleaseTriggerDecay = 0;
1619 EG1Hold = false;
1620 VCFEnabled = false;
1621 VCFCutoff = 0;
1622 VCFCutoffController = vcf_cutoff_ctrl_none;
1623 VCFCutoffControllerInvert = false;
1624 VCFVelocityScale = 0;
1625 VCFResonance = 0;
1626 VCFResonanceDynamic = false;
1627 VCFKeyboardTracking = false;
1628 VCFKeyboardTrackingBreakpoint = 0;
1629 VCFVelocityDynamicRange = 0x04;
1630 VCFVelocityCurve = curve_type_linear;
1631 VCFType = vcf_type_lowpass;
1632 memset(DimensionUpperLimits, 127, 8);
1633 }
1634
1635 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1636 VelocityResponseDepth,
1637 VelocityResponseCurveScaling);
1638
1639 pVelocityReleaseTable = GetReleaseVelocityTable(
1640 ReleaseVelocityResponseCurve,
1641 ReleaseVelocityResponseDepth
1642 );
1643
1644 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1645 VCFVelocityDynamicRange,
1646 VCFVelocityScale,
1647 VCFCutoffController);
1648
1649 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1650 VelocityTable = 0;
1651 }
1652
1653 /*
1654 * Constructs a DimensionRegion by copying all parameters from
1655 * another DimensionRegion
1656 */
1657 DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1658 Instances++;
1659 //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1660 *this = src; // default memberwise shallow copy of all parameters
1661 pParentList = _3ewl; // restore the chunk pointer
1662
1663 // deep copy of owned structures
1664 if (src.VelocityTable) {
1665 VelocityTable = new uint8_t[128];
1666 for (int k = 0 ; k < 128 ; k++)
1667 VelocityTable[k] = src.VelocityTable[k];
1668 }
1669 if (src.pSampleLoops) {
1670 pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1671 for (int k = 0 ; k < src.SampleLoops ; k++)
1672 pSampleLoops[k] = src.pSampleLoops[k];
1673 }
1674 }
1675
1676 /**
1677 * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1678 * and assign it to this object.
1679 *
1680 * Note that all sample pointers referenced by @a orig are simply copied as
1681 * memory address. Thus the respective samples are shared, not duplicated!
1682 *
1683 * @param orig - original DimensionRegion object to be copied from
1684 */
1685 void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1686 CopyAssign(orig, NULL);
1687 }
1688
1689 /**
1690 * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1691 * and assign it to this object.
1692 *
1693 * @param orig - original DimensionRegion object to be copied from
1694 * @param mSamples - crosslink map between the foreign file's samples and
1695 * this file's samples
1696 */
1697 void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1698 // delete all allocated data first
1699 if (VelocityTable) delete [] VelocityTable;
1700 if (pSampleLoops) delete [] pSampleLoops;
1701
1702 // backup parent list pointer
1703 RIFF::List* p = pParentList;
1704
1705 gig::Sample* pOriginalSample = pSample;
1706 gig::Region* pOriginalRegion = pRegion;
1707
1708 //NOTE: copy code copied from assignment constructor above, see comment there as well
1709
1710 *this = *orig; // default memberwise shallow copy of all parameters
1711 pParentList = p; // restore the chunk pointer
1712
1713 // only take the raw sample reference & parent region reference if the
1714 // two DimensionRegion objects are part of the same file
1715 if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1716 pRegion = pOriginalRegion;
1717 pSample = pOriginalSample;
1718 }
1719
1720 if (mSamples && mSamples->count(orig->pSample)) {
1721 pSample = mSamples->find(orig->pSample)->second;
1722 }
1723
1724 // deep copy of owned structures
1725 if (orig->VelocityTable) {
1726 VelocityTable = new uint8_t[128];
1727 for (int k = 0 ; k < 128 ; k++)
1728 VelocityTable[k] = orig->VelocityTable[k];
1729 }
1730 if (orig->pSampleLoops) {
1731 pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1732 for (int k = 0 ; k < orig->SampleLoops ; k++)
1733 pSampleLoops[k] = orig->pSampleLoops[k];
1734 }
1735 }
1736
1737 /**
1738 * Updates the respective member variable and updates @c SampleAttenuation
1739 * which depends on this value.
1740 */
1741 void DimensionRegion::SetGain(int32_t gain) {
1742 DLS::Sampler::SetGain(gain);
1743 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1744 }
1745
1746 /**
1747 * Apply dimension region settings to the respective RIFF chunks. You
1748 * have to call File::Save() to make changes persistent.
1749 *
1750 * Usually there is absolutely no need to call this method explicitly.
1751 * It will be called automatically when File::Save() was called.
1752 */
1753 void DimensionRegion::UpdateChunks() {
1754 // first update base class's chunk
1755 DLS::Sampler::UpdateChunks();
1756
1757 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1758 uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1759 pData[12] = Crossfade.in_start;
1760 pData[13] = Crossfade.in_end;
1761 pData[14] = Crossfade.out_start;
1762 pData[15] = Crossfade.out_end;
1763
1764 // make sure '3ewa' chunk exists
1765 RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1766 if (!_3ewa) {
1767 File* pFile = (File*) GetParent()->GetParent()->GetParent();
1768 bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1769 _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1770 }
1771 pData = (uint8_t*) _3ewa->LoadChunkData();
1772
1773 // update '3ewa' chunk with DimensionRegion's current settings
1774
1775 const uint32_t chunksize = _3ewa->GetNewSize();
1776 store32(&pData[0], chunksize); // unknown, always chunk size?
1777
1778 const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1779 store32(&pData[4], lfo3freq);
1780
1781 const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1782 store32(&pData[8], eg3attack);
1783
1784 // next 2 bytes unknown
1785
1786 store16(&pData[14], LFO1InternalDepth);
1787
1788 // next 2 bytes unknown
1789
1790 store16(&pData[18], LFO3InternalDepth);
1791
1792 // next 2 bytes unknown
1793
1794 store16(&pData[22], LFO1ControlDepth);
1795
1796 // next 2 bytes unknown
1797
1798 store16(&pData[26], LFO3ControlDepth);
1799
1800 const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1801 store32(&pData[28], eg1attack);
1802
1803 const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1804 store32(&pData[32], eg1decay1);
1805
1806 // next 2 bytes unknown
1807
1808 store16(&pData[38], EG1Sustain);
1809
1810 const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1811 store32(&pData[40], eg1release);
1812
1813 const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1814 pData[44] = eg1ctl;
1815
1816 const uint8_t eg1ctrloptions =
1817 (EG1ControllerInvert ? 0x01 : 0x00) |
1818 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1819 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1820 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1821 pData[45] = eg1ctrloptions;
1822
1823 const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1824 pData[46] = eg2ctl;
1825
1826 const uint8_t eg2ctrloptions =
1827 (EG2ControllerInvert ? 0x01 : 0x00) |
1828 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1829 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1830 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1831 pData[47] = eg2ctrloptions;
1832
1833 const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1834 store32(&pData[48], lfo1freq);
1835
1836 const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1837 store32(&pData[52], eg2attack);
1838
1839 const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1840 store32(&pData[56], eg2decay1);
1841
1842 // next 2 bytes unknown
1843
1844 store16(&pData[62], EG2Sustain);
1845
1846 const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1847 store32(&pData[64], eg2release);
1848
1849 // next 2 bytes unknown
1850
1851 store16(&pData[70], LFO2ControlDepth);
1852
1853 const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1854 store32(&pData[72], lfo2freq);
1855
1856 // next 2 bytes unknown
1857
1858 store16(&pData[78], LFO2InternalDepth);
1859
1860 const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1861 store32(&pData[80], eg1decay2);
1862
1863 // next 2 bytes unknown
1864
1865 store16(&pData[86], EG1PreAttack);
1866
1867 const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1868 store32(&pData[88], eg2decay2);
1869
1870 // next 2 bytes unknown
1871
1872 store16(&pData[94], EG2PreAttack);
1873
1874 {
1875 if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1876 uint8_t velocityresponse = VelocityResponseDepth;
1877 switch (VelocityResponseCurve) {
1878 case curve_type_nonlinear:
1879 break;
1880 case curve_type_linear:
1881 velocityresponse += 5;
1882 break;
1883 case curve_type_special:
1884 velocityresponse += 10;
1885 break;
1886 case curve_type_unknown:
1887 default:
1888 throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1889 }
1890 pData[96] = velocityresponse;
1891 }
1892
1893 {
1894 if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1895 uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1896 switch (ReleaseVelocityResponseCurve) {
1897 case curve_type_nonlinear:
1898 break;
1899 case curve_type_linear:
1900 releasevelocityresponse += 5;
1901 break;
1902 case curve_type_special:
1903 releasevelocityresponse += 10;
1904 break;
1905 case curve_type_unknown:
1906 default:
1907 throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1908 }
1909 pData[97] = releasevelocityresponse;
1910 }
1911
1912 pData[98] = VelocityResponseCurveScaling;
1913
1914 pData[99] = AttenuationControllerThreshold;
1915
1916 // next 4 bytes unknown
1917
1918 store16(&pData[104], SampleStartOffset);
1919
1920 // next 2 bytes unknown
1921
1922 {
1923 uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1924 switch (DimensionBypass) {
1925 case dim_bypass_ctrl_94:
1926 pitchTrackDimensionBypass |= 0x10;
1927 break;
1928 case dim_bypass_ctrl_95:
1929 pitchTrackDimensionBypass |= 0x20;
1930 break;
1931 case dim_bypass_ctrl_none:
1932 //FIXME: should we set anything here?
1933 break;
1934 default:
1935 throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1936 }
1937 pData[108] = pitchTrackDimensionBypass;
1938 }
1939
1940 const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1941 pData[109] = pan;
1942
1943 const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1944 pData[110] = selfmask;
1945
1946 // next byte unknown
1947
1948 {
1949 uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1950 if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1951 if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1952 if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1953 pData[112] = lfo3ctrl;
1954 }
1955
1956 const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1957 pData[113] = attenctl;
1958
1959 {
1960 uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1961 if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1962 if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
1963 if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1964 pData[114] = lfo2ctrl;
1965 }
1966
1967 {
1968 uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1969 if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1970 if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
1971 if (VCFResonanceController != vcf_res_ctrl_none)
1972 lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1973 pData[115] = lfo1ctrl;
1974 }
1975
1976 const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1977 : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
1978 store16(&pData[116], eg3depth);
1979
1980 // next 2 bytes unknown
1981
1982 const uint8_t channeloffset = ChannelOffset * 4;
1983 pData[120] = channeloffset;
1984
1985 {
1986 uint8_t regoptions = 0;
1987 if (MSDecode) regoptions |= 0x01; // bit 0
1988 if (SustainDefeat) regoptions |= 0x02; // bit 1
1989 pData[121] = regoptions;
1990 }
1991
1992 // next 2 bytes unknown
1993
1994 pData[124] = VelocityUpperLimit;
1995
1996 // next 3 bytes unknown
1997
1998 pData[128] = ReleaseTriggerDecay;
1999
2000 // next 2 bytes unknown
2001
2002 const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2003 pData[131] = eg1hold;
2004
2005 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
2006 (VCFCutoff & 0x7f); /* lower 7 bits */
2007 pData[132] = vcfcutoff;
2008
2009 pData[133] = VCFCutoffController;
2010
2011 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2012 (VCFVelocityScale & 0x7f); /* lower 7 bits */
2013 pData[134] = vcfvelscale;
2014
2015 // next byte unknown
2016
2017 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2018 (VCFResonance & 0x7f); /* lower 7 bits */
2019 pData[136] = vcfresonance;
2020
2021 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2022 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2023 pData[137] = vcfbreakpoint;
2024
2025 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2026 VCFVelocityCurve * 5;
2027 pData[138] = vcfvelocity;
2028
2029 const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2030 pData[139] = vcftype;
2031
2032 if (chunksize >= 148) {
2033 memcpy(&pData[140], DimensionUpperLimits, 8);
2034 }
2035 }
2036
2037 double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2038 curve_type_t curveType = releaseVelocityResponseCurve;
2039 uint8_t depth = releaseVelocityResponseDepth;
2040 // this models a strange behaviour or bug in GSt: two of the
2041 // velocity response curves for release time are not used even
2042 // if specified, instead another curve is chosen.
2043 if ((curveType == curve_type_nonlinear && depth == 0) ||
2044 (curveType == curve_type_special && depth == 4)) {
2045 curveType = curve_type_nonlinear;
2046 depth = 3;
2047 }
2048 return GetVelocityTable(curveType, depth, 0);
2049 }
2050
2051 double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2052 uint8_t vcfVelocityDynamicRange,
2053 uint8_t vcfVelocityScale,
2054 vcf_cutoff_ctrl_t vcfCutoffController)
2055 {
2056 curve_type_t curveType = vcfVelocityCurve;
2057 uint8_t depth = vcfVelocityDynamicRange;
2058 // even stranger GSt: two of the velocity response curves for
2059 // filter cutoff are not used, instead another special curve
2060 // is chosen. This curve is not used anywhere else.
2061 if ((curveType == curve_type_nonlinear && depth == 0) ||
2062 (curveType == curve_type_special && depth == 4)) {
2063 curveType = curve_type_special;
2064 depth = 5;
2065 }
2066 return GetVelocityTable(curveType, depth,
2067 (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2068 ? vcfVelocityScale : 0);
2069 }
2070
2071 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2072 double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2073 {
2074 double* table;
2075 uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2076 if (pVelocityTables->count(tableKey)) { // if key exists
2077 table = (*pVelocityTables)[tableKey];
2078 }
2079 else {
2080 table = CreateVelocityTable(curveType, depth, scaling);
2081 (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
2082 }
2083 return table;
2084 }
2085
2086 Region* DimensionRegion::GetParent() const {
2087 return pRegion;
2088 }
2089
2090 // show error if some _lev_ctrl_* enum entry is not listed in the following function
2091 // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2092 // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2093 //#pragma GCC diagnostic push
2094 //#pragma GCC diagnostic error "-Wswitch"
2095
2096 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2097 leverage_ctrl_t decodedcontroller;
2098 switch (EncodedController) {
2099 // special controller
2100 case _lev_ctrl_none:
2101 decodedcontroller.type = leverage_ctrl_t::type_none;
2102 decodedcontroller.controller_number = 0;
2103 break;
2104 case _lev_ctrl_velocity:
2105 decodedcontroller.type = leverage_ctrl_t::type_velocity;
2106 decodedcontroller.controller_number = 0;
2107 break;
2108 case _lev_ctrl_channelaftertouch:
2109 decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
2110 decodedcontroller.controller_number = 0;
2111 break;
2112
2113 // ordinary MIDI control change controller
2114 case _lev_ctrl_modwheel:
2115 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2116 decodedcontroller.controller_number = 1;
2117 break;
2118 case _lev_ctrl_breath:
2119 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2120 decodedcontroller.controller_number = 2;
2121 break;
2122 case _lev_ctrl_foot:
2123 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2124 decodedcontroller.controller_number = 4;
2125 break;
2126 case _lev_ctrl_effect1:
2127 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2128 decodedcontroller.controller_number = 12;
2129 break;
2130 case _lev_ctrl_effect2:
2131 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2132 decodedcontroller.controller_number = 13;
2133 break;
2134 case _lev_ctrl_genpurpose1:
2135 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2136 decodedcontroller.controller_number = 16;
2137 break;
2138 case _lev_ctrl_genpurpose2:
2139 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2140 decodedcontroller.controller_number = 17;
2141 break;
2142 case _lev_ctrl_genpurpose3:
2143 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2144 decodedcontroller.controller_number = 18;
2145 break;
2146 case _lev_ctrl_genpurpose4:
2147 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2148 decodedcontroller.controller_number = 19;
2149 break;
2150 case _lev_ctrl_portamentotime:
2151 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2152 decodedcontroller.controller_number = 5;
2153 break;
2154 case _lev_ctrl_sustainpedal:
2155 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2156 decodedcontroller.controller_number = 64;
2157 break;
2158 case _lev_ctrl_portamento:
2159 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2160 decodedcontroller.controller_number = 65;
2161 break;
2162 case _lev_ctrl_sostenutopedal:
2163 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2164 decodedcontroller.controller_number = 66;
2165 break;
2166 case _lev_ctrl_softpedal:
2167 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2168 decodedcontroller.controller_number = 67;
2169 break;
2170 case _lev_ctrl_genpurpose5:
2171 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2172 decodedcontroller.controller_number = 80;
2173 break;
2174 case _lev_ctrl_genpurpose6:
2175 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2176 decodedcontroller.controller_number = 81;
2177 break;
2178 case _lev_ctrl_genpurpose7:
2179 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2180 decodedcontroller.controller_number = 82;
2181 break;
2182 case _lev_ctrl_genpurpose8:
2183 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2184 decodedcontroller.controller_number = 83;
2185 break;
2186 case _lev_ctrl_effect1depth:
2187 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2188 decodedcontroller.controller_number = 91;
2189 break;
2190 case _lev_ctrl_effect2depth:
2191 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2192 decodedcontroller.controller_number = 92;
2193 break;
2194 case _lev_ctrl_effect3depth:
2195 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2196 decodedcontroller.controller_number = 93;
2197 break;
2198 case _lev_ctrl_effect4depth:
2199 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2200 decodedcontroller.controller_number = 94;
2201 break;
2202 case _lev_ctrl_effect5depth:
2203 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2204 decodedcontroller.controller_number = 95;
2205 break;
2206
2207 // format extension (these controllers are so far only supported by
2208 // LinuxSampler & gigedit) they will *NOT* work with
2209 // Gigasampler/GigaStudio !
2210 case _lev_ctrl_CC3_EXT:
2211 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2212 decodedcontroller.controller_number = 3;
2213 break;
2214 case _lev_ctrl_CC6_EXT:
2215 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2216 decodedcontroller.controller_number = 6;
2217 break;
2218 case _lev_ctrl_CC7_EXT:
2219 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2220 decodedcontroller.controller_number = 7;
2221 break;
2222 case _lev_ctrl_CC8_EXT:
2223 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2224 decodedcontroller.controller_number = 8;
2225 break;
2226 case _lev_ctrl_CC9_EXT:
2227 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2228 decodedcontroller.controller_number = 9;
2229 break;
2230 case _lev_ctrl_CC10_EXT:
2231 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2232 decodedcontroller.controller_number = 10;
2233 break;
2234 case _lev_ctrl_CC11_EXT:
2235 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2236 decodedcontroller.controller_number = 11;
2237 break;
2238 case _lev_ctrl_CC14_EXT:
2239 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2240 decodedcontroller.controller_number = 14;
2241 break;
2242 case _lev_ctrl_CC15_EXT:
2243 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2244 decodedcontroller.controller_number = 15;
2245 break;
2246 case _lev_ctrl_CC20_EXT:
2247 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2248 decodedcontroller.controller_number = 20;
2249 break;
2250 case _lev_ctrl_CC21_EXT:
2251 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2252 decodedcontroller.controller_number = 21;
2253 break;
2254 case _lev_ctrl_CC22_EXT:
2255 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2256 decodedcontroller.controller_number = 22;
2257 break;
2258 case _lev_ctrl_CC23_EXT:
2259 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2260 decodedcontroller.controller_number = 23;
2261 break;
2262 case _lev_ctrl_CC24_EXT:
2263 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2264 decodedcontroller.controller_number = 24;
2265 break;
2266 case _lev_ctrl_CC25_EXT:
2267 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2268 decodedcontroller.controller_number = 25;
2269 break;
2270 case _lev_ctrl_CC26_EXT:
2271 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2272 decodedcontroller.controller_number = 26;
2273 break;
2274 case _lev_ctrl_CC27_EXT:
2275 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2276 decodedcontroller.controller_number = 27;
2277 break;
2278 case _lev_ctrl_CC28_EXT:
2279 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2280 decodedcontroller.controller_number = 28;
2281 break;
2282 case _lev_ctrl_CC29_EXT:
2283 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2284 decodedcontroller.controller_number = 29;
2285 break;
2286 case _lev_ctrl_CC30_EXT:
2287 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2288 decodedcontroller.controller_number = 30;
2289 break;
2290 case _lev_ctrl_CC31_EXT:
2291 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2292 decodedcontroller.controller_number = 31;
2293 break;
2294 case _lev_ctrl_CC68_EXT:
2295 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2296 decodedcontroller.controller_number = 68;
2297 break;
2298 case _lev_ctrl_CC69_EXT:
2299 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2300 decodedcontroller.controller_number = 69;
2301 break;
2302 case _lev_ctrl_CC70_EXT:
2303 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2304 decodedcontroller.controller_number = 70;
2305 break;
2306 case _lev_ctrl_CC71_EXT:
2307 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2308 decodedcontroller.controller_number = 71;
2309 break;
2310 case _lev_ctrl_CC72_EXT:
2311 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2312 decodedcontroller.controller_number = 72;
2313 break;
2314 case _lev_ctrl_CC73_EXT:
2315 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2316 decodedcontroller.controller_number = 73;
2317 break;
2318 case _lev_ctrl_CC74_EXT:
2319 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2320 decodedcontroller.controller_number = 74;
2321 break;
2322 case _lev_ctrl_CC75_EXT:
2323 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2324 decodedcontroller.controller_number = 75;
2325 break;
2326 case _lev_ctrl_CC76_EXT:
2327 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2328 decodedcontroller.controller_number = 76;
2329 break;
2330 case _lev_ctrl_CC77_EXT:
2331 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2332 decodedcontroller.controller_number = 77;
2333 break;
2334 case _lev_ctrl_CC78_EXT:
2335 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2336 decodedcontroller.controller_number = 78;
2337 break;
2338 case _lev_ctrl_CC79_EXT:
2339 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2340 decodedcontroller.controller_number = 79;
2341 break;
2342 case _lev_ctrl_CC84_EXT:
2343 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2344 decodedcontroller.controller_number = 84;
2345 break;
2346 case _lev_ctrl_CC85_EXT:
2347 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2348 decodedcontroller.controller_number = 85;
2349 break;
2350 case _lev_ctrl_CC86_EXT:
2351 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2352 decodedcontroller.controller_number = 86;
2353 break;
2354 case _lev_ctrl_CC87_EXT:
2355 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2356 decodedcontroller.controller_number = 87;
2357 break;
2358 case _lev_ctrl_CC89_EXT:
2359 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2360 decodedcontroller.controller_number = 89;
2361 break;
2362 case _lev_ctrl_CC90_EXT:
2363 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2364 decodedcontroller.controller_number = 90;
2365 break;
2366 case _lev_ctrl_CC96_EXT:
2367 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2368 decodedcontroller.controller_number = 96;
2369 break;
2370 case _lev_ctrl_CC97_EXT:
2371 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2372 decodedcontroller.controller_number = 97;
2373 break;
2374 case _lev_ctrl_CC102_EXT:
2375 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2376 decodedcontroller.controller_number = 102;
2377 break;
2378 case _lev_ctrl_CC103_EXT:
2379 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2380 decodedcontroller.controller_number = 103;
2381 break;
2382 case _lev_ctrl_CC104_EXT:
2383 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2384 decodedcontroller.controller_number = 104;
2385 break;
2386 case _lev_ctrl_CC105_EXT:
2387 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2388 decodedcontroller.controller_number = 105;
2389 break;
2390 case _lev_ctrl_CC106_EXT:
2391 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2392 decodedcontroller.controller_number = 106;
2393 break;
2394 case _lev_ctrl_CC107_EXT:
2395 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2396 decodedcontroller.controller_number = 107;
2397 break;
2398 case _lev_ctrl_CC108_EXT:
2399 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2400 decodedcontroller.controller_number = 108;
2401 break;
2402 case _lev_ctrl_CC109_EXT:
2403 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2404 decodedcontroller.controller_number = 109;
2405 break;
2406 case _lev_ctrl_CC110_EXT:
2407 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2408 decodedcontroller.controller_number = 110;
2409 break;
2410 case _lev_ctrl_CC111_EXT:
2411 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2412 decodedcontroller.controller_number = 111;
2413 break;
2414 case _lev_ctrl_CC112_EXT:
2415 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2416 decodedcontroller.controller_number = 112;
2417 break;
2418 case _lev_ctrl_CC113_EXT:
2419 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2420 decodedcontroller.controller_number = 113;
2421 break;
2422 case _lev_ctrl_CC114_EXT:
2423 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2424 decodedcontroller.controller_number = 114;
2425 break;
2426 case _lev_ctrl_CC115_EXT:
2427 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2428 decodedcontroller.controller_number = 115;
2429 break;
2430 case _lev_ctrl_CC116_EXT:
2431 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2432 decodedcontroller.controller_number = 116;
2433 break;
2434 case _lev_ctrl_CC117_EXT:
2435 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2436 decodedcontroller.controller_number = 117;
2437 break;
2438 case _lev_ctrl_CC118_EXT:
2439 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2440 decodedcontroller.controller_number = 118;
2441 break;
2442 case _lev_ctrl_CC119_EXT:
2443 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2444 decodedcontroller.controller_number = 119;
2445 break;
2446
2447 // unknown controller type
2448 default:
2449 throw gig::Exception("Unknown leverage controller type.");
2450 }
2451 return decodedcontroller;
2452 }
2453
2454 // see above (diagnostic push not supported prior GCC 4.6)
2455 //#pragma GCC diagnostic pop
2456
2457 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2458 _lev_ctrl_t encodedcontroller;
2459 switch (DecodedController.type) {
2460 // special controller
2461 case leverage_ctrl_t::type_none:
2462 encodedcontroller = _lev_ctrl_none;
2463 break;
2464 case leverage_ctrl_t::type_velocity:
2465 encodedcontroller = _lev_ctrl_velocity;
2466 break;
2467 case leverage_ctrl_t::type_channelaftertouch:
2468 encodedcontroller = _lev_ctrl_channelaftertouch;
2469 break;
2470
2471 // ordinary MIDI control change controller
2472 case leverage_ctrl_t::type_controlchange:
2473 switch (DecodedController.controller_number) {
2474 case 1:
2475 encodedcontroller = _lev_ctrl_modwheel;
2476 break;
2477 case 2:
2478 encodedcontroller = _lev_ctrl_breath;
2479 break;
2480 case 4:
2481 encodedcontroller = _lev_ctrl_foot;
2482 break;
2483 case 12:
2484 encodedcontroller = _lev_ctrl_effect1;
2485 break;
2486 case 13:
2487 encodedcontroller = _lev_ctrl_effect2;
2488 break;
2489 case 16:
2490 encodedcontroller = _lev_ctrl_genpurpose1;
2491 break;
2492 case 17:
2493 encodedcontroller = _lev_ctrl_genpurpose2;
2494 break;
2495 case 18:
2496 encodedcontroller = _lev_ctrl_genpurpose3;
2497 break;
2498 case 19:
2499 encodedcontroller = _lev_ctrl_genpurpose4;
2500 break;
2501 case 5:
2502 encodedcontroller = _lev_ctrl_portamentotime;
2503 break;
2504 case 64:
2505 encodedcontroller = _lev_ctrl_sustainpedal;
2506 break;
2507 case 65:
2508 encodedcontroller = _lev_ctrl_portamento;
2509 break;
2510 case 66:
2511 encodedcontroller = _lev_ctrl_sostenutopedal;
2512 break;
2513 case 67:
2514 encodedcontroller = _lev_ctrl_softpedal;
2515 break;
2516 case 80:
2517 encodedcontroller = _lev_ctrl_genpurpose5;
2518 break;
2519 case 81:
2520 encodedcontroller = _lev_ctrl_genpurpose6;
2521 break;
2522 case 82:
2523 encodedcontroller = _lev_ctrl_genpurpose7;
2524 break;
2525 case 83:
2526 encodedcontroller = _lev_ctrl_genpurpose8;
2527 break;
2528 case 91:
2529 encodedcontroller = _lev_ctrl_effect1depth;
2530 break;
2531 case 92:
2532 encodedcontroller = _lev_ctrl_effect2depth;
2533 break;
2534 case 93:
2535 encodedcontroller = _lev_ctrl_effect3depth;
2536 break;
2537 case 94:
2538 encodedcontroller = _lev_ctrl_effect4depth;
2539 break;
2540 case 95:
2541 encodedcontroller = _lev_ctrl_effect5depth;
2542 break;
2543
2544 // format extension (these controllers are so far only
2545 // supported by LinuxSampler & gigedit) they will *NOT*
2546 // work with Gigasampler/GigaStudio !
2547 case 3:
2548 encodedcontroller = _lev_ctrl_CC3_EXT;
2549 break;
2550 case 6:
2551 encodedcontroller = _lev_ctrl_CC6_EXT;
2552 break;
2553 case 7:
2554 encodedcontroller = _lev_ctrl_CC7_EXT;
2555 break;
2556 case 8:
2557 encodedcontroller = _lev_ctrl_CC8_EXT;
2558 break;
2559 case 9:
2560 encodedcontroller = _lev_ctrl_CC9_EXT;
2561 break;
2562 case 10:
2563 encodedcontroller = _lev_ctrl_CC10_EXT;
2564 break;
2565 case 11:
2566 encodedcontroller = _lev_ctrl_CC11_EXT;
2567 break;
2568 case 14:
2569 encodedcontroller = _lev_ctrl_CC14_EXT;
2570 break;
2571 case 15:
2572 encodedcontroller = _lev_ctrl_CC15_EXT;
2573 break;
2574 case 20:
2575 encodedcontroller = _lev_ctrl_CC20_EXT;
2576 break;
2577 case 21:
2578 encodedcontroller = _lev_ctrl_CC21_EXT;
2579 break;
2580 case 22:
2581 encodedcontroller = _lev_ctrl_CC22_EXT;
2582 break;
2583 case 23:
2584 encodedcontroller = _lev_ctrl_CC23_EXT;
2585 break;
2586 case 24:
2587 encodedcontroller = _lev_ctrl_CC24_EXT;
2588 break;
2589 case 25:
2590 encodedcontroller = _lev_ctrl_CC25_EXT;
2591 break;
2592 case 26:
2593 encodedcontroller = _lev_ctrl_CC26_EXT;
2594 break;
2595 case 27:
2596 encodedcontroller = _lev_ctrl_CC27_EXT;
2597 break;
2598 case 28:
2599 encodedcontroller = _lev_ctrl_CC28_EXT;
2600 break;
2601 case 29:
2602 encodedcontroller = _lev_ctrl_CC29_EXT;
2603 break;
2604 case 30:
2605 encodedcontroller = _lev_ctrl_CC30_EXT;
2606 break;
2607 case 31:
2608 encodedcontroller = _lev_ctrl_CC31_EXT;
2609 break;
2610 case 68:
2611 encodedcontroller = _lev_ctrl_CC68_EXT;
2612 break;
2613 case 69:
2614 encodedcontroller = _lev_ctrl_CC69_EXT;
2615 break;
2616 case 70:
2617 encodedcontroller = _lev_ctrl_CC70_EXT;
2618 break;
2619 case 71:
2620 encodedcontroller = _lev_ctrl_CC71_EXT;
2621 break;
2622 case 72:
2623 encodedcontroller = _lev_ctrl_CC72_EXT;
2624 break;
2625 case 73:
2626 encodedcontroller = _lev_ctrl_CC73_EXT;
2627 break;
2628 case 74:
2629 encodedcontroller = _lev_ctrl_CC74_EXT;
2630 break;
2631 case 75:
2632 encodedcontroller = _lev_ctrl_CC75_EXT;
2633 break;
2634 case 76:
2635 encodedcontroller = _lev_ctrl_CC76_EXT;
2636 break;
2637 case 77:
2638 encodedcontroller = _lev_ctrl_CC77_EXT;
2639 break;
2640 case 78:
2641 encodedcontroller = _lev_ctrl_CC78_EXT;
2642 break;
2643 case 79:
2644 encodedcontroller = _lev_ctrl_CC79_EXT;
2645 break;
2646 case 84:
2647 encodedcontroller = _lev_ctrl_CC84_EXT;
2648 break;
2649 case 85:
2650 encodedcontroller = _lev_ctrl_CC85_EXT;
2651 break;
2652 case 86:
2653 encodedcontroller = _lev_ctrl_CC86_EXT;
2654 break;
2655 case 87:
2656 encodedcontroller = _lev_ctrl_CC87_EXT;
2657 break;
2658 case 89:
2659 encodedcontroller = _lev_ctrl_CC89_EXT;
2660 break;
2661 case 90:
2662 encodedcontroller = _lev_ctrl_CC90_EXT;
2663 break;
2664 case 96:
2665 encodedcontroller = _lev_ctrl_CC96_EXT;
2666 break;
2667 case 97:
2668 encodedcontroller = _lev_ctrl_CC97_EXT;
2669 break;
2670 case 102:
2671 encodedcontroller = _lev_ctrl_CC102_EXT;
2672 break;
2673 case 103:
2674 encodedcontroller = _lev_ctrl_CC103_EXT;
2675 break;
2676 case 104:
2677 encodedcontroller = _lev_ctrl_CC104_EXT;
2678 break;
2679 case 105:
2680 encodedcontroller = _lev_ctrl_CC105_EXT;
2681 break;
2682 case 106:
2683 encodedcontroller = _lev_ctrl_CC106_EXT;
2684 break;
2685 case 107:
2686 encodedcontroller = _lev_ctrl_CC107_EXT;
2687 break;
2688 case 108:
2689 encodedcontroller = _lev_ctrl_CC108_EXT;
2690 break;
2691 case 109:
2692 encodedcontroller = _lev_ctrl_CC109_EXT;
2693 break;
2694 case 110:
2695 encodedcontroller = _lev_ctrl_CC110_EXT;
2696 break;
2697 case 111:
2698 encodedcontroller = _lev_ctrl_CC111_EXT;
2699 break;
2700 case 112:
2701 encodedcontroller = _lev_ctrl_CC112_EXT;
2702 break;
2703 case 113:
2704 encodedcontroller = _lev_ctrl_CC113_EXT;
2705 break;
2706 case 114:
2707 encodedcontroller = _lev_ctrl_CC114_EXT;
2708 break;
2709 case 115:
2710 encodedcontroller = _lev_ctrl_CC115_EXT;
2711 break;
2712 case 116:
2713 encodedcontroller = _lev_ctrl_CC116_EXT;
2714 break;
2715 case 117:
2716 encodedcontroller = _lev_ctrl_CC117_EXT;
2717 break;
2718 case 118:
2719 encodedcontroller = _lev_ctrl_CC118_EXT;
2720 break;
2721 case 119:
2722 encodedcontroller = _lev_ctrl_CC119_EXT;
2723 break;
2724
2725 default:
2726 throw gig::Exception("leverage controller number is not supported by the gig format");
2727 }
2728 break;
2729 default:
2730 throw gig::Exception("Unknown leverage controller type.");
2731 }
2732 return encodedcontroller;
2733 }
2734
2735 DimensionRegion::~DimensionRegion() {
2736 Instances--;
2737 if (!Instances) {
2738 // delete the velocity->volume tables
2739 VelocityTableMap::iterator iter;
2740 for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
2741 double* pTable = iter->second;
2742 if (pTable) delete[] pTable;
2743 }
2744 pVelocityTables->clear();
2745 delete pVelocityTables;
2746 pVelocityTables = NULL;
2747 }
2748 if (VelocityTable) delete[] VelocityTable;
2749 }
2750
2751 /**
2752 * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
2753 * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
2754 * and VelocityResponseCurveScaling) involved are taken into account to
2755 * calculate the amplitude factor. Use this method when a key was
2756 * triggered to get the volume with which the sample should be played
2757 * back.
2758 *
2759 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
2760 * @returns amplitude factor (between 0.0 and 1.0)
2761 */
2762 double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2763 return pVelocityAttenuationTable[MIDIKeyVelocity];
2764 }
2765
2766 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2767 return pVelocityReleaseTable[MIDIKeyVelocity];
2768 }
2769
2770 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2771 return pVelocityCutoffTable[MIDIKeyVelocity];
2772 }
2773
2774 /**
2775 * Updates the respective member variable and the lookup table / cache
2776 * that depends on this value.
2777 */
2778 void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
2779 pVelocityAttenuationTable =
2780 GetVelocityTable(
2781 curve, VelocityResponseDepth, VelocityResponseCurveScaling
2782 );
2783 VelocityResponseCurve = curve;
2784 }
2785
2786 /**
2787 * Updates the respective member variable and the lookup table / cache
2788 * that depends on this value.
2789 */
2790 void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
2791 pVelocityAttenuationTable =
2792 GetVelocityTable(
2793 VelocityResponseCurve, depth, VelocityResponseCurveScaling
2794 );
2795 VelocityResponseDepth = depth;
2796 }
2797
2798 /**
2799 * Updates the respective member variable and the lookup table / cache
2800 * that depends on this value.
2801 */
2802 void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
2803 pVelocityAttenuationTable =
2804 GetVelocityTable(
2805 VelocityResponseCurve, VelocityResponseDepth, scaling
2806 );
2807 VelocityResponseCurveScaling = scaling;
2808 }
2809
2810 /**
2811 * Updates the respective member variable and the lookup table / cache
2812 * that depends on this value.
2813 */
2814 void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
2815 pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
2816 ReleaseVelocityResponseCurve = curve;
2817 }
2818
2819 /**
2820 * Updates the respective member variable and the lookup table / cache
2821 * that depends on this value.
2822 */
2823 void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
2824 pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
2825 ReleaseVelocityResponseDepth = depth;
2826 }
2827
2828 /**
2829 * Updates the respective member variable and the lookup table / cache
2830 * that depends on this value.
2831 */
2832 void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
2833 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
2834 VCFCutoffController = controller;
2835 }
2836
2837 /**
2838 * Updates the respective member variable and the lookup table / cache
2839 * that depends on this value.
2840 */
2841 void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
2842 pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
2843 VCFVelocityCurve = curve;
2844 }
2845
2846 /**
2847 * Updates the respective member variable and the lookup table / cache
2848 * that depends on this value.
2849 */
2850 void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
2851 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
2852 VCFVelocityDynamicRange = range;
2853 }
2854
2855 /**
2856 * Updates the respective member variable and the lookup table / cache
2857 * that depends on this value.
2858 */
2859 void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
2860 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
2861 VCFVelocityScale = scaling;
2862 }
2863
2864 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2865
2866 // line-segment approximations of the 15 velocity curves
2867
2868 // linear
2869 const int lin0[] = { 1, 1, 127, 127 };
2870 const int lin1[] = { 1, 21, 127, 127 };
2871 const int lin2[] = { 1, 45, 127, 127 };
2872 const int lin3[] = { 1, 74, 127, 127 };
2873 const int lin4[] = { 1, 127, 127, 127 };
2874
2875 // non-linear
2876 const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2877 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2878 127, 127 };
2879 const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2880 127, 127 };
2881 const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2882 127, 127 };
2883 const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2884
2885 // special
2886 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2887 113, 127, 127, 127 };
2888 const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2889 118, 127, 127, 127 };
2890 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2891 85, 90, 91, 127, 127, 127 };
2892 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2893 117, 127, 127, 127 };
2894 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2895 127, 127 };
2896
2897 // this is only used by the VCF velocity curve
2898 const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2899 91, 127, 127, 127 };
2900
2901 const int* const curves[] = { non0, non1, non2, non3, non4,
2902 lin0, lin1, lin2, lin3, lin4,
2903 spe0, spe1, spe2, spe3, spe4, spe5 };
2904
2905 double* const table = new double[128];
2906
2907 const int* curve = curves[curveType * 5 + depth];
2908 const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2909
2910 table[0] = 0;
2911 for (int x = 1 ; x < 128 ; x++) {
2912
2913 if (x > curve[2]) curve += 2;
2914 double y = curve[1] + (x - curve[0]) *
2915 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2916 y = y / 127;
2917
2918 // Scale up for s > 20, down for s < 20. When
2919 // down-scaling, the curve still ends at 1.0.
2920 if (s < 20 && y >= 0.5)
2921 y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2922 else
2923 y = y * (s / 20.0);
2924 if (y > 1) y = 1;
2925
2926 table[x] = y;
2927 }
2928 return table;
2929 }
2930
2931
2932 // *************** Region ***************
2933 // *
2934
2935 Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2936 // Initialization
2937 Dimensions = 0;
2938 for (int i = 0; i < 256; i++) {
2939 pDimensionRegions[i] = NULL;
2940 }
2941 Layers = 1;
2942 File* file = (File*) GetParent()->GetParent();
2943 int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2944
2945 // Actual Loading
2946
2947 if (!file->GetAutoLoad()) return;
2948
2949 LoadDimensionRegions(rgnList);
2950
2951 RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
2952 if (_3lnk) {
2953 DimensionRegions = _3lnk->ReadUint32();
2954 for (int i = 0; i < dimensionBits; i++) {
2955 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2956 uint8_t bits = _3lnk->ReadUint8();
2957 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
2958 _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
2959 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2960 if (dimension == dimension_none) { // inactive dimension
2961 pDimensionDefinitions[i].dimension = dimension_none;
2962 pDimensionDefinitions[i].bits = 0;
2963 pDimensionDefinitions[i].zones = 0;
2964 pDimensionDefinitions[i].split_type = split_type_bit;
2965 pDimensionDefinitions[i].zone_size = 0;
2966 }
2967 else { // active dimension
2968 pDimensionDefinitions[i].dimension = dimension;
2969 pDimensionDefinitions[i].bits = bits;
2970 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
2971 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2972 pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
2973 Dimensions++;
2974
2975 // if this is a layer dimension, remember the amount of layers
2976 if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
2977 }
2978 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2979 }
2980 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2981
2982 // if there's a velocity dimension and custom velocity zone splits are used,
2983 // update the VelocityTables in the dimension regions
2984 UpdateVelocityTable();
2985
2986 // jump to start of the wave pool indices (if not already there)
2987 if (file->pVersion && file->pVersion->major == 3)
2988 _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2989 else
2990 _3lnk->SetPos(44);
2991
2992 // load sample references (if auto loading is enabled)
2993 if (file->GetAutoLoad()) {
2994 for (uint i = 0; i < DimensionRegions; i++) {
2995 uint32_t wavepoolindex = _3lnk->ReadUint32();
2996 if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2997 }
2998 GetSample(); // load global region sample reference
2999 }
3000 } else {
3001 DimensionRegions = 0;
3002 for (int i = 0 ; i < 8 ; i++) {
3003 pDimensionDefinitions[i].dimension = dimension_none;
3004 pDimensionDefinitions[i].bits = 0;
3005 pDimensionDefinitions[i].zones = 0;
3006 }
3007 }
3008
3009 // make sure there is at least one dimension region
3010 if (!DimensionRegions) {
3011 RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
3012 if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
3013 RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
3014 pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
3015 DimensionRegions = 1;
3016 }
3017 }
3018
3019 /**
3020 * Apply Region settings and all its DimensionRegions to the respective
3021 * RIFF chunks. You have to call File::Save() to make changes persistent.
3022 *
3023 * Usually there is absolutely no need to call this method explicitly.
3024 * It will be called automatically when File::Save() was called.
3025 *
3026 * @throws gig::Exception if samples cannot be dereferenced
3027 */
3028 void Region::UpdateChunks() {
3029 // in the gig format we don't care about the Region's sample reference
3030 // but we still have to provide some existing one to not corrupt the
3031 // file, so to avoid the latter we simply always assign the sample of
3032 // the first dimension region of this region
3033 pSample = pDimensionRegions[0]->pSample;
3034
3035 // first update base class's chunks
3036 DLS::Region::UpdateChunks();
3037
3038 // update dimension region's chunks
3039 for (int i = 0; i < DimensionRegions; i++) {
3040 pDimensionRegions[i]->UpdateChunks();
3041 }
3042
3043 File* pFile = (File*) GetParent()->GetParent();
3044 bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
3045 const int iMaxDimensions = version3 ? 8 : 5;
3046 const int iMaxDimensionRegions = version3 ? 256 : 32;
3047
3048 // make sure '3lnk' chunk exists
3049 RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3050 if (!_3lnk) {
3051 const int _3lnkChunkSize = version3 ? 1092 : 172;
3052 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3053 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3054
3055 // move 3prg to last position
3056 pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), 0);
3057 }
3058
3059 // update dimension definitions in '3lnk' chunk
3060 uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3061 store32(&pData[0], DimensionRegions);
3062 int shift = 0;
3063 for (int i = 0; i < iMaxDimensions; i++) {
3064 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3065 pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3066 pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3067 pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3068 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3069 // next 3 bytes unknown, always zero?
3070
3071 shift += pDimensionDefinitions[i].bits;
3072 }
3073
3074 // update wave pool table in '3lnk' chunk
3075 const int iWavePoolOffset = version3 ? 68 : 44;
3076 for (uint i = 0; i < iMaxDimensionRegions; i++) {
3077 int iWaveIndex = -1;
3078 if (i < DimensionRegions) {
3079 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
3080 File::SampleList::iterator iter = pFile->pSamples->begin();
3081 File::SampleList::iterator end = pFile->pSamples->end();
3082 for (int index = 0; iter != end; ++iter, ++index) {
3083 if (*iter == pDimensionRegions[i]->pSample) {
3084 iWaveIndex = index;
3085 break;
3086 }
3087 }
3088 }
3089 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3090 }
3091 }
3092
3093 void Region::LoadDimensionRegions(RIFF::List* rgn) {
3094 RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
3095 if (_3prg) {
3096 int dimensionRegionNr = 0;
3097 RIFF::List* _3ewl = _3prg->GetFirstSubList();
3098 while (_3ewl) {
3099 if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3100 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3101 dimensionRegionNr++;
3102 }
3103 _3ewl = _3prg->GetNextSubList();
3104 }
3105 if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
3106 }
3107 }
3108
3109 void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3110 // update KeyRange struct and make sure regions are in correct order
3111 DLS::Region::SetKeyRange(Low, High);
3112 // update Region key table for fast lookup
3113 ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3114 }
3115
3116 void Region::UpdateVelocityTable() {
3117 // get velocity dimension's index
3118 int veldim = -1;
3119 for (int i = 0 ; i < Dimensions ; i++) {
3120 if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
3121 veldim = i;
3122 break;
3123 }
3124 }
3125 if (veldim == -1) return;
3126
3127 int step = 1;
3128 for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3129 int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
3130 int end = step * pDimensionDefinitions[veldim].zones;
3131
3132 // loop through all dimension regions for all dimensions except the velocity dimension
3133 int dim[8] = { 0 };
3134 for (int i = 0 ; i < DimensionRegions ; i++) {
3135
3136 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3137 pDimensionRegions[i]->VelocityUpperLimit) {
3138 // create the velocity table
3139 uint8_t* table = pDimensionRegions[i]->VelocityTable;
3140 if (!table) {
3141 table = new uint8_t[128];
3142 pDimensionRegions[i]->VelocityTable = table;
3143 }
3144 int tableidx = 0;
3145 int velocityZone = 0;
3146 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
3147 for (int k = i ; k < end ; k += step) {
3148 DimensionRegion *d = pDimensionRegions[k];
3149 for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
3150 velocityZone++;
3151 }
3152 } else { // gig2
3153 for (int k = i ; k < end ; k += step) {
3154 DimensionRegion *d = pDimensionRegions[k];
3155 for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
3156 velocityZone++;
3157 }
3158 }
3159 } else {
3160 if (pDimensionRegions[i]->VelocityTable) {
3161 delete[] pDimensionRegions[i]->VelocityTable;
3162 pDimensionRegions[i]->VelocityTable = 0;
3163 }
3164 }
3165
3166 int j;
3167 int shift = 0;
3168 for (j = 0 ; j < Dimensions ; j++) {
3169 if (j == veldim) i += skipveldim; // skip velocity dimension
3170 else {
3171 dim[j]++;
3172 if (dim[j] < pDimensionDefinitions[j].zones) break;
3173 else {
3174 // skip unused dimension regions
3175 dim[j] = 0;
3176 i += ((1 << pDimensionDefinitions[j].bits) -
3177 pDimensionDefinitions[j].zones) << shift;
3178 }
3179 }
3180 shift += pDimensionDefinitions[j].bits;
3181 }
3182 if (j == Dimensions) break;
3183 }
3184 }
3185
3186 /** @brief Einstein would have dreamed of it - create a new dimension.
3187 *
3188 * Creates a new dimension with the dimension definition given by
3189 * \a pDimDef. The appropriate amount of DimensionRegions will be created.
3190 * There is a hard limit of dimensions and total amount of "bits" all
3191 * dimensions can have. This limit is dependant to what gig file format
3192 * version this file refers to. The gig v2 (and lower) format has a
3193 * dimension limit and total amount of bits limit of 5, whereas the gig v3
3194 * format has a limit of 8.
3195 *
3196 * @param pDimDef - defintion of the new dimension
3197 * @throws gig::Exception if dimension of the same type exists already
3198 * @throws gig::Exception if amount of dimensions or total amount of
3199 * dimension bits limit is violated
3200 */
3201 void Region::AddDimension(dimension_def_t* pDimDef) {
3202 // check if max. amount of dimensions reached
3203 File* file = (File*) GetParent()->GetParent();
3204 const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
3205 if (Dimensions >= iMaxDimensions)
3206 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
3207 // check if max. amount of dimension bits reached
3208 int iCurrentBits = 0;
3209 for (int i = 0; i < Dimensions; i++)
3210 iCurrentBits += pDimensionDefinitions[i].bits;
3211 if (iCurrentBits >= iMaxDimensions)
3212 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
3213 const int iNewBits = iCurrentBits + pDimDef->bits;
3214 if (iNewBits > iMaxDimensions)
3215 throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
3216 // check if there's already a dimensions of the same type
3217 for (int i = 0; i < Dimensions; i++)
3218 if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3219 throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3220
3221 // pos is where the new dimension should be placed, normally
3222 // last in list, except for the samplechannel dimension which
3223 // has to be first in list
3224 int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3225 int bitpos = 0;
3226 for (int i = 0 ; i < pos ; i++)
3227 bitpos += pDimensionDefinitions[i].bits;
3228
3229 // make room for the new dimension
3230 for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3231 for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3232 for (int j = Dimensions ; j > pos ; j--) {
3233 pDimensionRegions[i]->DimensionUpperLimits[j] =
3234 pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3235 }
3236 }
3237
3238 // assign definition of new dimension
3239 pDimensionDefinitions[pos] = *pDimDef;
3240
3241 // auto correct certain dimension definition fields (where possible)
3242 pDimensionDefinitions[pos].split_type =
3243 __resolveSplitType(pDimensionDefinitions[pos].dimension);
3244 pDimensionDefinitions[pos].zone_size =
3245 __resolveZoneSize(pDimensionDefinitions[pos]);
3246
3247 // create new dimension region(s) for this new dimension, and make
3248 // sure that the dimension regions are placed correctly in both the
3249 // RIFF list and the pDimensionRegions array
3250 RIFF::Chunk* moveTo = NULL;
3251 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3252 for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3253 for (int k = 0 ; k < (1 << bitpos) ; k++) {
3254 pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3255 }
3256 for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3257 for (int k = 0 ; k < (1 << bitpos) ; k++) {
3258 RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3259 if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3260 // create a new dimension region and copy all parameter values from
3261 // an existing dimension region
3262 pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3263 new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3264
3265 DimensionRegions++;
3266 }
3267 }
3268 moveTo = pDimensionRegions[i]->pParentList;
3269 }
3270
3271 // initialize the upper limits for this dimension
3272 int mask = (1 << bitpos) - 1;
3273 for (int z = 0 ; z < pDimDef->zones ; z++) {
3274 uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3275 for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3276 pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3277 (z << bitpos) |
3278 (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3279 }
3280 }
3281
3282 Dimensions++;
3283
3284 // if this is a layer dimension, update 'Layers' attribute
3285 if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
3286
3287 UpdateVelocityTable();
3288 }
3289
3290 /** @brief Delete an existing dimension.
3291 *
3292 * Deletes the dimension given by \a pDimDef and deletes all respective
3293 * dimension regions, that is all dimension regions where the dimension's
3294 * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
3295 * for example this would delete all dimension regions for the case(s)
3296 * where the sustain pedal is pressed down.
3297 *
3298 * @param pDimDef - dimension to delete
3299 * @throws gig::Exception if given dimension cannot be found
3300 */
3301 void Region::DeleteDimension(dimension_def_t* pDimDef) {
3302 // get dimension's index
3303 int iDimensionNr = -1;
3304 for (int i = 0; i < Dimensions; i++) {
3305 if (&pDimensionDefinitions[i] == pDimDef) {
3306 iDimensionNr = i;
3307 break;
3308 }
3309 }
3310 if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
3311
3312 // get amount of bits below the dimension to delete
3313 int iLowerBits = 0;
3314 for (int i = 0; i < iDimensionNr; i++)
3315 iLowerBits += pDimensionDefinitions[i].bits;
3316
3317 // get amount ot bits above the dimension to delete
3318 int iUpperBits = 0;
3319 for (int i = iDimensionNr + 1; i < Dimensions; i++)
3320 iUpperBits += pDimensionDefinitions[i].bits;
3321
3322 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3323
3324 // delete dimension regions which belong to the given dimension
3325 // (that is where the dimension's bit > 0)
3326 for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
3327 for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
3328 for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
3329 int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3330 iObsoleteBit << iLowerBits |
3331 iLowerBit;
3332
3333 _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3334 delete pDimensionRegions[iToDelete];
3335 pDimensionRegions[iToDelete] = NULL;
3336 DimensionRegions--;
3337 }
3338 }
3339 }
3340
3341 // defrag pDimensionRegions array
3342 // (that is remove the NULL spaces within the pDimensionRegions array)
3343 for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
3344 if (!pDimensionRegions[iTo]) {
3345 if (iFrom <= iTo) iFrom = iTo + 1;
3346 while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
3347 if (iFrom < 256 && pDimensionRegions[iFrom]) {
3348 pDimensionRegions[iTo] = pDimensionRegions[iFrom];
3349 pDimensionRegions[iFrom] = NULL;
3350 }
3351 }
3352 }
3353
3354 // remove the this dimension from the upper limits arrays
3355 for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3356 DimensionRegion* d = pDimensionRegions[j];
3357 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3358 d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3359 }
3360 d->DimensionUpperLimits[Dimensions - 1] = 127;
3361 }
3362
3363 // 'remove' dimension definition
3364 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3365 pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
3366 }
3367 pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
3368 pDimensionDefinitions[Dimensions - 1].bits = 0;
3369 pDimensionDefinitions[Dimensions - 1].zones = 0;
3370
3371 Dimensions--;
3372
3373 // if this was a layer dimension, update 'Layers' attribute
3374 if (pDimDef->dimension == dimension_layer) Layers = 1;
3375 }
3376
3377 Region::~Region() {
3378 for (int i = 0; i < 256; i++) {
3379 if (pDimensionRegions[i]) delete pDimensionRegions[i];
3380 }
3381 }
3382
3383 /**
3384 * Use this method in your audio engine to get the appropriate dimension
3385 * region with it's articulation data for the current situation. Just
3386 * call the method with the current MIDI controller values and you'll get
3387 * the DimensionRegion with the appropriate articulation data for the
3388 * current situation (for this Region of course only). To do that you'll
3389 * first have to look which dimensions with which controllers and in
3390 * which order are defined for this Region when you load the .gig file.
3391 * Special cases are e.g. layer or channel dimensions where you just put
3392 * in the index numbers instead of a MIDI controller value (means 0 for
3393 * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
3394 * etc.).
3395 *
3396 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
3397 * @returns adress to the DimensionRegion for the given situation
3398 * @see pDimensionDefinitions
3399 * @see Dimensions
3400 */
3401 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
3402 uint8_t bits;
3403 int veldim = -1;
3404 int velbitpos;
3405 int bitpos = 0;
3406 int dimregidx = 0;
3407 for (uint i = 0; i < Dimensions; i++) {
3408 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
3409 // the velocity dimension must be handled after the other dimensions
3410 veldim = i;
3411 velbitpos = bitpos;
3412 } else {
3413 switch (pDimensionDefinitions[i].split_type) {
3414 case split_type_normal:
3415 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
3416 // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
3417 for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
3418 if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
3419 }
3420 } else {
3421 // gig2: evenly sized zones
3422 bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
3423 }
3424 break;
3425 case split_type_bit: // the value is already the sought dimension bit number
3426 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
3427 bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
3428 break;
3429 }
3430 dimregidx |= bits << bitpos;
3431 }
3432 bitpos += pDimensionDefinitions[i].bits;
3433 }
3434 DimensionRegion* dimreg = pDimensionRegions[dimregidx];
3435 if (veldim != -1) {
3436 // (dimreg is now the dimension region for the lowest velocity)
3437 if (dimreg->VelocityTable) // custom defined zone ranges
3438 bits = dimreg->VelocityTable[DimValues[veldim]];
3439 else // normal split type
3440 bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);
3441
3442 dimregidx |= bits << velbitpos;
3443 dimreg = pDimensionRegions[dimregidx];
3444 }
3445 return dimreg;
3446 }
3447
3448 /**
3449 * Returns the appropriate DimensionRegion for the given dimension bit
3450 * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
3451 * instead of calling this method directly!
3452 *
3453 * @param DimBits Bit numbers for dimension 0 to 7
3454 * @returns adress to the DimensionRegion for the given dimension
3455 * bit numbers
3456 * @see GetDimensionRegionByValue()
3457 */
3458 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
3459 return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
3460 << pDimensionDefinitions[5].bits | DimBits[5])
3461 << pDimensionDefinitions[4].bits | DimBits[4])
3462 << pDimensionDefinitions[3].bits | DimBits[3])
3463 << pDimensionDefinitions[2].bits | DimBits[2])
3464 << pDimensionDefinitions[1].bits | DimBits[1])
3465 << pDimensionDefinitions[0].bits | DimBits[0]];
3466 }
3467
3468 /**
3469 * Returns pointer address to the Sample referenced with this region.
3470 * This is the global Sample for the entire Region (not sure if this is
3471 * actually used by the Gigasampler engine - I would only use the Sample
3472 * referenced by the appropriate DimensionRegion instead of this sample).
3473 *
3474 * @returns address to Sample or NULL if there is no reference to a
3475 * sample saved in the .gig file
3476 */
3477 Sample* Region::GetSample() {
3478 if (pSample) return static_cast<gig::Sample*>(pSample);
3479 else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
3480 }
3481
3482 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
3483 if ((int32_t)WavePoolTableIndex == -1) return NULL;
3484 File* file = (File*) GetParent()->GetParent();
3485 if (!file->pWavePoolTable) return NULL;
3486 unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
3487 unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
3488 Sample* sample = file->GetFirstSample(pProgress);
3489 while (sample) {
3490 if (sample->ulWavePoolOffset == soughtoffset &&
3491 sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
3492 sample = file->GetNextSample();
3493 }
3494 return NULL;
3495 }
3496
3497 /**
3498 * Make a (semi) deep copy of the Region object given by @a orig
3499 * and assign it to this object.
3500 *
3501 * Note that all sample pointers referenced by @a orig are simply copied as
3502 * memory address. Thus the respective samples are shared, not duplicated!
3503 *
3504 * @param orig - original Region object to be copied from
3505 */
3506 void Region::CopyAssign(const Region* orig) {
3507 CopyAssign(orig, NULL);
3508 }
3509
3510 /**
3511 * Make a (semi) deep copy of the Region object given by @a orig and
3512 * assign it to this object
3513 *
3514 * @param mSamples - crosslink map between the foreign file's samples and
3515 * this file's samples
3516 */
3517 void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
3518 // handle base classes
3519 DLS::Region::CopyAssign(orig);
3520
3521 if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
3522 pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
3523 }
3524
3525 // handle own member variables
3526 for (int i = Dimensions - 1; i >= 0; --i) {
3527 DeleteDimension(&pDimensionDefinitions[i]);
3528 }
3529 Layers = 0; // just to be sure
3530 for (int i = 0; i < orig->Dimensions; i++) {
3531 // we need to copy the dim definition here, to avoid the compiler
3532 // complaining about const-ness issue
3533 dimension_def_t def = orig->pDimensionDefinitions[i];
3534 AddDimension(&def);
3535 }
3536 for (int i = 0; i < 256; i++) {
3537 if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
3538 pDimensionRegions[i]->CopyAssign(
3539 orig->pDimensionRegions[i],
3540 mSamples
3541 );
3542 }
3543 }
3544 Layers = orig->Layers;
3545 }
3546
3547
3548 // *************** MidiRule ***************
3549 // *
3550
3551 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
3552 _3ewg->SetPos(36);
3553 Triggers = _3ewg->ReadUint8();
3554 _3ewg->SetPos(40);
3555 ControllerNumber = _3ewg->ReadUint8();
3556 _3ewg->SetPos(46);
3557 for (int i = 0 ; i < Triggers ; i++) {
3558 pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
3559 pTriggers[i].Descending = _3ewg->ReadUint8();
3560 pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
3561 pTriggers[i].Key = _3ewg->ReadUint8();
3562 pTriggers[i].NoteOff = _3ewg->ReadUint8();
3563 pTriggers[i].Velocity = _3ewg->ReadUint8();
3564 pTriggers[i].OverridePedal = _3ewg->ReadUint8();
3565 _3ewg->ReadUint8();
3566 }
3567 }
3568
3569 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
3570 ControllerNumber(0),
3571 Triggers(0) {
3572 }
3573
3574 void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
3575 pData[32] = 4;
3576 pData[33] = 16;
3577 pData[36] = Triggers;
3578 pData[40] = ControllerNumber;
3579 for (int i = 0 ; i < Triggers ; i++) {
3580 pData[46 + i * 8] = pTriggers[i].TriggerPoint;
3581 pData[47 + i * 8] = pTriggers[i].Descending;
3582 pData[48 + i * 8] = pTriggers[i].VelSensitivity;
3583 pData[49 + i * 8] = pTriggers[i].Key;
3584 pData[50 + i * 8] = pTriggers[i].NoteOff;
3585 pData[51 + i * 8] = pTriggers[i].Velocity;
3586 pData[52 + i * 8] = pTriggers[i].OverridePedal;
3587 }
3588 }
3589
3590 MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
3591 _3ewg->SetPos(36);
3592 LegatoSamples = _3ewg->ReadUint8(); // always 12
3593 _3ewg->SetPos(40);
3594 BypassUseController = _3ewg->ReadUint8();
3595 BypassKey = _3ewg->ReadUint8();
3596 BypassController = _3ewg->ReadUint8();
3597 ThresholdTime = _3ewg->ReadUint16();
3598 _3ewg->ReadInt16();
3599 ReleaseTime = _3ewg->ReadUint16();
3600 _3ewg->ReadInt16();
3601 KeyRange.low = _3ewg->ReadUint8();
3602 KeyRange.high = _3ewg->ReadUint8();
3603 _3ewg->SetPos(64);
3604 ReleaseTriggerKey = _3ewg->ReadUint8();
3605 AltSustain1Key = _3ewg->ReadUint8();
3606 AltSustain2Key = _3ewg->ReadUint8();
3607 }
3608
3609 MidiRuleLegato::MidiRuleLegato() :
3610 LegatoSamples(12),
3611 BypassUseController(false),
3612 BypassKey(0),
3613 BypassController(1),
3614 ThresholdTime(20),
3615 ReleaseTime(20),
3616 ReleaseTriggerKey(0),
3617 AltSustain1Key(0),
3618 AltSustain2Key(0)
3619 {
3620 KeyRange.low = KeyRange.high = 0;
3621 }
3622
3623 void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
3624 pData[32] = 0;
3625 pData[33] = 16;
3626 pData[36] = LegatoSamples;
3627 pData[40] = BypassUseController;
3628 pData[41] = BypassKey;
3629 pData[42] = BypassController;
3630 store16(&pData[43], ThresholdTime);
3631 store16(&pData[47], ReleaseTime);
3632 pData[51] = KeyRange.low;
3633 pData[52] = KeyRange.high;
3634 pData[64] = ReleaseTriggerKey;
3635 pData[65] = AltSustain1Key;
3636 pData[66] = AltSustain2Key;
3637 }
3638
3639 MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
3640 _3ewg->SetPos(36);
3641 Articulations = _3ewg->ReadUint8();
3642 int flags = _3ewg->ReadUint8();
3643 Polyphonic = flags & 8;
3644 Chained = flags & 4;
3645 Selector = (flags & 2) ? selector_controller :
3646 (flags & 1) ? selector_key_switch : selector_none;
3647 Patterns = _3ewg->ReadUint8();
3648 _3ewg->ReadUint8(); // chosen row
3649 _3ewg->ReadUint8(); // unknown
3650 _3ewg->ReadUint8(); // unknown
3651 _3ewg->ReadUint8(); // unknown
3652 KeySwitchRange.low = _3ewg->ReadUint8();
3653 KeySwitchRange.high = _3ewg->ReadUint8();
3654 Controller = _3ewg->ReadUint8();
3655 PlayRange.low = _3ewg->ReadUint8();
3656 PlayRange.high = _3ewg->ReadUint8();
3657
3658 int n = std::min(int(Articulations), 32);
3659 for (int i = 0 ; i < n ; i++) {
3660 _3ewg->ReadString(pArticulations[i], 32);
3661 }
3662 _3ewg->SetPos(1072);
3663 n = std::min(int(Patterns), 32);
3664 for (int i = 0 ; i < n ; i++) {
3665 _3ewg->ReadString(pPatterns[i].Name, 16);
3666 pPatterns[i].Size = _3ewg->ReadUint8();
3667 _3ewg->Read(&pPatterns[i][0], 1, 32);
3668 }
3669 }
3670
3671 MidiRuleAlternator::MidiRuleAlternator() :
3672 Articulations(0),
3673 Patterns(0),
3674 Selector(selector_none),
3675 Controller(0),
3676 Polyphonic(false),
3677 Chained(false)
3678 {
3679 PlayRange.low = PlayRange.high = 0;
3680 KeySwitchRange.low = KeySwitchRange.high = 0;
3681 }
3682
3683 void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
3684 pData[32] = 3;
3685 pData[33] = 16;
3686 pData[36] = Articulations;
3687 pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
3688 (Selector == selector_controller ? 2 :
3689 (Selector == selector_key_switch ? 1 : 0));
3690 pData[38] = Patterns;
3691
3692 pData[43] = KeySwitchRange.low;
3693 pData[44] = KeySwitchRange.high;
3694 pData[45] = Controller;
3695 pData[46] = PlayRange.low;
3696 pData[47] = PlayRange.high;
3697
3698 char* str = reinterpret_cast<char*>(pData);
3699 int pos = 48;
3700 int n = std::min(int(Articulations), 32);
3701 for (int i = 0 ; i < n ; i++, pos += 32) {
3702 strncpy(&str[pos], pArticulations[i].c_str(), 32);
3703 }
3704
3705 pos = 1072;
3706 n = std::min(int(Patterns), 32);
3707 for (int i = 0 ; i < n ; i++, pos += 49) {
3708 strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
3709 pData[pos + 16] = pPatterns[i].Size;
3710 memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
3711 }
3712 }
3713
3714 // *************** Instrument ***************
3715 // *
3716
3717 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
3718 static const DLS::Info::string_length_t fixedStringLengths[] = {
3719 { CHUNK_ID_INAM, 64 },
3720 { CHUNK_ID_ISFT, 12 },
3721 { 0, 0 }
3722 };
3723 pInfo->SetFixedStringLengths(fixedStringLengths);
3724
3725 // Initialization
3726 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
3727 EffectSend = 0;
3728 Attenuation = 0;
3729 FineTune = 0;
3730 PitchbendRange = 0;
3731 PianoReleaseMode = false;
3732 DimensionKeyRange.low = 0;
3733 DimensionKeyRange.high = 0;
3734 pMidiRules = new MidiRule*[3];
3735 pMidiRules[0] = NULL;
3736
3737 // Loading
3738 RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
3739 if (lart) {
3740 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
3741 if (_3ewg) {
3742 EffectSend = _3ewg->ReadUint16();
3743 Attenuation = _3ewg->ReadInt32();
3744 FineTune = _3ewg->ReadInt16();
3745 PitchbendRange = _3ewg->ReadInt16();
3746 uint8_t dimkeystart = _3ewg->ReadUint8();
3747 PianoReleaseMode = dimkeystart & 0x01;
3748 DimensionKeyRange.low = dimkeystart >> 1;
3749 DimensionKeyRange.high = _3ewg->ReadUint8();
3750
3751 if (_3ewg->GetSize() > 32) {
3752 // read MIDI rules
3753 int i = 0;
3754 _3ewg->SetPos(32);
3755 uint8_t id1 = _3ewg->ReadUint8();
3756 uint8_t id2 = _3ewg->ReadUint8();
3757
3758 if (id2 == 16) {
3759 if (id1 == 4) {
3760 pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
3761 } else if (id1 == 0) {
3762 pMidiRules[i++] = new MidiRuleLegato(_3ewg);
3763 } else if (id1 == 3) {
3764 pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
3765 } else {
3766 pMidiRules[i++] = new MidiRuleUnknown;
3767 }
3768 }
3769 else if (id1 != 0 || id2 != 0) {
3770 pMidiRules[i++] = new MidiRuleUnknown;
3771 }
3772 //TODO: all the other types of rules
3773
3774 pMidiRules[i] = NULL;
3775 }
3776 }
3777 }
3778
3779 if (pFile->GetAutoLoad()) {
3780 if (!pRegions) pRegions = new RegionList;
3781 RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
3782 if (lrgn) {
3783 RIFF::List* rgn = lrgn->GetFirstSubList();
3784 while (rgn) {
3785 if (rgn->GetListType() == LIST_TYPE_RGN) {
3786 __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
3787 pRegions->push_back(new Region(this, rgn));
3788 }
3789 rgn = lrgn->GetNextSubList();
3790 }
3791 // Creating Region Key Table for fast lookup
3792 UpdateRegionKeyTable();
3793 }
3794 }
3795
3796 __notify_progress(pProgress, 1.0f); // notify done
3797 }
3798
3799 void Instrument::UpdateRegionKeyTable() {
3800 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
3801 RegionList::iterator iter = pRegions->begin();
3802 RegionList::iterator end = pRegions->end();
3803 for (; iter != end; ++iter) {
3804 gig::Region* pRegion = static_cast<gig::Region*>(*iter);
3805 for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
3806 RegionKeyTable[iKey] = pRegion;
3807 }
3808 }
3809 }
3810
3811 Instrument::~Instrument() {
3812 for (int i = 0 ; pMidiRules[i] ; i++) {
3813 delete pMidiRules[i];
3814 }
3815 delete[] pMidiRules;
3816 }
3817
3818 /**
3819 * Apply Instrument with all its Regions to the respective RIFF chunks.
3820 * You have to call File::Save() to make changes persistent.
3821 *
3822 * Usually there is absolutely no need to call this method explicitly.
3823 * It will be called automatically when File::Save() was called.
3824 *
3825 * @throws gig::Exception if samples cannot be dereferenced
3826 */
3827 void Instrument::UpdateChunks() {
3828 // first update base classes' chunks
3829 DLS::Instrument::UpdateChunks();
3830
3831 // update Regions' chunks
3832 {
3833 RegionList::iterator iter = pRegions->begin();
3834 RegionList::iterator end = pRegions->end();
3835 for (; iter != end; ++iter)
3836 (*iter)->UpdateChunks();
3837 }
3838
3839 // make sure 'lart' RIFF list chunk exists
3840 RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
3841 if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
3842 // make sure '3ewg' RIFF chunk exists
3843 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
3844 if (!_3ewg) {
3845 File* pFile = (File*) GetParent();
3846
3847 // 3ewg is bigger in gig3, as it includes the iMIDI rules
3848 int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
3849 _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
3850 memset(_3ewg->LoadChunkData(), 0, size);
3851 }
3852 // update '3ewg' RIFF chunk
3853 uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
3854 store16(&pData[0], EffectSend);
3855 store32(&pData[2], Attenuation);
3856 store16(&pData[6], FineTune);
3857 store16(&pData[8], PitchbendRange);
3858 const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
3859 DimensionKeyRange.low << 1;
3860 pData[10] = dimkeystart;
3861 pData[11] = DimensionKeyRange.high;
3862
3863 if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
3864 pData[32] = 0;
3865 pData[33] = 0;
3866 } else {
3867 for (int i = 0 ; pMidiRules[i] ; i++) {
3868 pMidiRules[i]->UpdateChunks(pData);
3869 }
3870 }
3871 }
3872
3873 /**
3874 * Returns the appropriate Region for a triggered note.
3875 *
3876 * @param Key MIDI Key number of triggered note / key (0 - 127)
3877 * @returns pointer adress to the appropriate Region or NULL if there
3878 * there is no Region defined for the given \a Key
3879 */
3880 Region* Instrument::GetRegion(unsigned int Key) {
3881 if (!pRegions || pRegions->empty() || Key > 127) return NULL;
3882 return RegionKeyTable[Key];
3883
3884 /*for (int i = 0; i < Regions; i++) {
3885 if (Key <= pRegions[i]->KeyRange.high &&
3886 Key >= pRegions[i]->KeyRange.low) return pRegions[i];
3887 }
3888 return NULL;*/
3889 }
3890
3891 /**
3892 * Returns the first Region of the instrument. You have to call this
3893 * method once before you use GetNextRegion().
3894 *
3895 * @returns pointer address to first region or NULL if there is none
3896 * @see GetNextRegion()
3897 */
3898 Region* Instrument::GetFirstRegion() {
3899 if (!pRegions) return NULL;
3900 RegionsIterator = pRegions->begin();
3901 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
3902 }
3903
3904 /**
3905 * Returns the next Region of the instrument. You have to call
3906 * GetFirstRegion() once before you can use this method. By calling this
3907 * method multiple times it iterates through the available Regions.
3908 *
3909 * @returns pointer address to the next region or NULL if end reached
3910 * @see GetFirstRegion()
3911 */
3912 Region* Instrument::GetNextRegion() {
3913 if (!pRegions) return NULL;
3914 RegionsIterator++;
3915 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
3916 }
3917
3918 Region* Instrument::AddRegion() {
3919 // create new Region object (and its RIFF chunks)
3920 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3921 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3922 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3923 Region* pNewRegion = new Region(this, rgn);
3924 pRegions->push_back(pNewRegion);
3925 Regions = pRegions->size();
3926 // update Region key table for fast lookup
3927 UpdateRegionKeyTable();
3928 // done
3929 return pNewRegion;
3930 }
3931
3932 void Instrument::DeleteRegion(Region* pRegion) {
3933 if (!pRegions) return;
3934 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
3935 // update Region key table for fast lookup
3936 UpdateRegionKeyTable();
3937 }
3938
3939 /**
3940 * Returns a MIDI rule of the instrument.
3941 *
3942 * The list of MIDI rules, at least in gig v3, always contains at
3943 * most two rules. The second rule can only be the DEF filter
3944 * (which currently isn't supported by libgig).
3945 *
3946 * @param i - MIDI rule number
3947 * @returns pointer address to MIDI rule number i or NULL if there is none
3948 */
3949 MidiRule* Instrument::GetMidiRule(int i) {
3950 return pMidiRules[i];
3951 }
3952
3953 /**
3954 * Adds the "controller trigger" MIDI rule to the instrument.
3955 *
3956 * @returns the new MIDI rule
3957 */
3958 MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
3959 delete pMidiRules[0];
3960 MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
3961 pMidiRules[0] = r;
3962 pMidiRules[1] = 0;
3963 return r;
3964 }
3965
3966 /**
3967 * Adds the legato MIDI rule to the instrument.
3968 *
3969 * @returns the new MIDI rule
3970 */
3971 MidiRuleLegato* Instrument::AddMidiRuleLegato() {
3972 delete pMidiRules[0];
3973 MidiRuleLegato* r = new MidiRuleLegato;
3974 pMidiRules[0] = r;
3975 pMidiRules[1] = 0;
3976 return r;
3977 }
3978
3979 /**
3980 * Adds the alternator MIDI rule to the instrument.
3981 *
3982 * @returns the new MIDI rule
3983 */
3984 MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
3985 delete pMidiRules[0];
3986 MidiRuleAlternator* r = new MidiRuleAlternator;
3987 pMidiRules[0] = r;
3988 pMidiRules[1] = 0;
3989 return r;
3990 }
3991
3992 /**
3993 * Deletes a MIDI rule from the instrument.
3994 *
3995 * @param i - MIDI rule number
3996 */
3997 void Instrument::DeleteMidiRule(int i) {
3998 delete pMidiRules[i];
3999 pMidiRules[i] = 0;
4000 }
4001
4002 /**
4003 * Make a (semi) deep copy of the Instrument object given by @a orig
4004 * and assign it to this object.
4005 *
4006 * Note that all sample pointers referenced by @a orig are simply copied as
4007 * memory address. Thus the respective samples are shared, not duplicated!
4008 *
4009 * @param orig - original Instrument object to be copied from
4010 */
4011 void Instrument::CopyAssign(const Instrument* orig) {
4012 CopyAssign(orig, NULL);
4013 }
4014
4015 /**
4016 * Make a (semi) deep copy of the Instrument object given by @a orig
4017 * and assign it to this object.
4018 *
4019 * @param orig - original Instrument object to be copied from
4020 * @param mSamples - crosslink map between the foreign file's samples and
4021 * this file's samples
4022 */
4023 void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
4024 // handle base class
4025 // (without copying DLS region stuff)
4026 DLS::Instrument::CopyAssignCore(orig);
4027
4028 // handle own member variables
4029 Attenuation = orig->Attenuation;
4030 EffectSend = orig->EffectSend;
4031 FineTune = orig->FineTune;
4032 PitchbendRange = orig->PitchbendRange;
4033 PianoReleaseMode = orig->PianoReleaseMode;
4034 DimensionKeyRange = orig->DimensionKeyRange;
4035
4036 // free old midi rules
4037 for (int i = 0 ; pMidiRules[i] ; i++) {
4038 delete pMidiRules[i];
4039 }
4040 //TODO: MIDI rule copying
4041 pMidiRules[0] = NULL;
4042
4043 // delete all old regions
4044 while (Regions) DeleteRegion(GetFirstRegion());
4045 // create new regions and copy them from original
4046 {
4047 RegionList::const_iterator it = orig->pRegions->begin();
4048 for (int i = 0; i < orig->Regions; ++i, ++it) {
4049 Region* dstRgn = AddRegion();
4050 //NOTE: Region does semi-deep copy !
4051 dstRgn->CopyAssign(
4052 static_cast<gig::Region*>(*it),
4053 mSamples
4054 );
4055 }
4056 }
4057
4058 UpdateRegionKeyTable();
4059 }
4060
4061
4062 // *************** Group ***************
4063 // *
4064
4065 /** @brief Constructor.
4066 *
4067 * @param file - pointer to the gig::File object
4068 * @param ck3gnm - pointer to 3gnm chunk associated with this group or
4069 * NULL if this is a new Group
4070 */
4071 Group::Group(File* file, RIFF::Chunk* ck3gnm) {
4072 pFile = file;
4073 pNameChunk = ck3gnm;
4074 ::LoadString(pNameChunk, Name);
4075 }
4076
4077 Group::~Group() {
4078 // remove the chunk associated with this group (if any)
4079 if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
4080 }
4081
4082 /** @brief Update chunks with current group settings.
4083 *
4084 * Apply current Group field values to the respective chunks. You have
4085 * to call File::Save() to make changes persistent.
4086 *
4087 * Usually there is absolutely no need to call this method explicitly.
4088 * It will be called automatically when File::Save() was called.
4089 */
4090 void Group::UpdateChunks() {
4091 // make sure <3gri> and <3gnl> list chunks exist
4092 RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
4093 if (!_3gri) {
4094 _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
4095 pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
4096 }
4097 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
4098 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
4099
4100 if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
4101 // v3 has a fixed list of 128 strings, find a free one
4102 for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
4103 if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
4104 pNameChunk = ck;
4105 break;
4106 }
4107 }
4108 }
4109
4110 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
4111 ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
4112 }
4113
4114 /**
4115 * Returns the first Sample of this Group. You have to call this method
4116 * once before you use GetNextSample().
4117 *
4118 * <b>Notice:</b> this method might block for a long time, in case the
4119 * samples of this .gig file were not scanned yet
4120 *
4121 * @returns pointer address to first Sample or NULL if there is none
4122 * applied to this Group
4123 * @see GetNextSample()
4124 */
4125 Sample* Group::GetFirstSample() {
4126 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
4127 for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
4128 if (pSample->GetGroup() == this) return pSample;
4129 }
4130 return NULL;
4131 }
4132
4133 /**
4134 * Returns the next Sample of the Group. You have to call
4135 * GetFirstSample() once before you can use this method. By calling this
4136 * method multiple times it iterates through the Samples assigned to
4137 * this Group.
4138 *
4139 * @returns pointer address to the next Sample of this Group or NULL if
4140 * end reached
4141 * @see GetFirstSample()
4142 */
4143 Sample* Group::GetNextSample() {
4144 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
4145 for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
4146 if (pSample->GetGroup() == this) return pSample;
4147 }
4148 return NULL;
4149 }
4150
4151 /**
4152 * Move Sample given by \a pSample from another Group to this Group.
4153 */
4154 void Group::AddSample(Sample* pSample) {
4155 pSample->pGroup = this;
4156 }
4157
4158 /**
4159 * Move all members of this group to another group (preferably the 1st
4160 * one except this). This method is called explicitly by
4161 * File::DeleteGroup() thus when a Group was deleted. This code was
4162 * intentionally not placed in the destructor!
4163 */
4164 void Group::MoveAll() {
4165 // get "that" other group first
4166 Group* pOtherGroup = NULL;
4167 for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
4168 if (pOtherGroup != this) break;
4169 }
4170 if (!pOtherGroup) throw Exception(
4171 "Could not move samples to another group, since there is no "
4172 "other Group. This is a bug, report it!"
4173 );
4174 // now move all samples of this group to the other group
4175 for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
4176 pOtherGroup->AddSample(pSample);
4177 }
4178 }
4179
4180
4181
4182 // *************** File ***************
4183 // *
4184
4185 /// Reflects Gigasampler file format version 2.0 (1998-06-28).
4186 const DLS::version_t File::VERSION_2 = {
4187 0, 2, 19980628 & 0xffff, 19980628 >> 16
4188 };
4189
4190 /// Reflects Gigasampler file format version 3.0 (2003-03-31).
4191 const DLS::version_t File::VERSION_3 = {
4192 0, 3, 20030331 & 0xffff, 20030331 >> 16
4193 };
4194
4195 static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
4196 { CHUNK_ID_IARL, 256 },
4197 { CHUNK_ID_IART, 128 },
4198 { CHUNK_ID_ICMS, 128 },
4199 { CHUNK_ID_ICMT, 1024 },
4200 { CHUNK_ID_ICOP, 128 },
4201 { CHUNK_ID_ICRD, 128 },
4202 { CHUNK_ID_IENG, 128 },
4203 { CHUNK_ID_IGNR, 128 },
4204 { CHUNK_ID_IKEY, 128 },
4205 { CHUNK_ID_IMED, 128 },
4206 { CHUNK_ID_INAM, 128 },
4207 { CHUNK_ID_IPRD, 128 },
4208 { CHUNK_ID_ISBJ, 128 },
4209 { CHUNK_ID_ISFT, 128 },
4210 { CHUNK_ID_ISRC, 128 },
4211 { CHUNK_ID_ISRF, 128 },
4212 { CHUNK_ID_ITCH, 128 },
4213 { 0, 0 }
4214 };
4215
4216 File::File() : DLS::File() {
4217 bAutoLoad = true;
4218 *pVersion = VERSION_3;
4219 pGroups = NULL;
4220 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
4221 pInfo->ArchivalLocation = String(256, ' ');
4222
4223 // add some mandatory chunks to get the file chunks in right
4224 // order (INFO chunk will be moved to first position later)
4225 pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
4226 pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
4227 pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
4228
4229 GenerateDLSID();
4230 }
4231
4232 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
4233 bAutoLoad = true;
4234 pGroups = NULL;
4235 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
4236 }
4237
4238 File::~File() {
4239 if (pGroups) {
4240 std::list<Group*>::iterator iter = pGroups->begin();
4241 std::list<Group*>::iterator end = pGroups->end();
4242 while (iter != end) {
4243 delete *iter;
4244 ++iter;
4245 }
4246 delete pGroups;
4247 }
4248 }
4249
4250 Sample* File::GetFirstSample(progress_t* pProgress) {
4251 if (!pSamples) LoadSamples(pProgress);
4252 if (!pSamples) return NULL;
4253 SamplesIterator = pSamples->begin();
4254 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
4255 }
4256
4257 Sample* File::GetNextSample() {
4258 if (!pSamples) return NULL;
4259 SamplesIterator++;
4260 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
4261 }
4262
4263 /**
4264 * Returns Sample object of @a index.
4265 *
4266 * @returns sample object or NULL if index is out of bounds
4267 */
4268 Sample* File::GetSample(uint index) {
4269 if (!pSamples) LoadSamples();
4270 if (!pSamples) return NULL;
4271 DLS::File::SampleList::iterator it = pSamples->begin();
4272 for (int i = 0; i < index; ++i) {
4273 ++it;
4274 if (it == pSamples->end()) return NULL;
4275 }
4276 if (it == pSamples->end()) return NULL;
4277 return static_cast<gig::Sample*>( *it );
4278 }
4279
4280 /** @brief Add a new sample.
4281 *
4282 * This will create a new Sample object for the gig file. You have to
4283 * call Save() to make this persistent to the file.
4284 *
4285 * @returns pointer to new Sample object
4286 */
4287 Sample* File::AddSample() {
4288 if (!pSamples) LoadSamples();
4289 __ensureMandatoryChunksExist();
4290 RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
4291 // create new Sample object and its respective 'wave' list chunk
4292 RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
4293 Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
4294
4295 // add mandatory chunks to get the chunks in right order
4296 wave->AddSubChunk(CHUNK_ID_FMT, 16);
4297 wave->AddSubList(LIST_TYPE_INFO);
4298
4299 pSamples->push_back(pSample);
4300 return pSample;
4301 }
4302
4303 /** @brief Delete a sample.
4304 *
4305 * This will delete the given Sample object from the gig file. Any
4306 * references to this sample from Regions and DimensionRegions will be
4307 * removed. You have to call Save() to make this persistent to the file.
4308 *
4309 * @param pSample - sample to delete
4310 * @throws gig::Exception if given sample could not be found
4311 */
4312 void File::DeleteSample(Sample* pSample) {
4313 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
4314 SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
4315 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
4316 if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
4317 pSamples->erase(iter);
4318 delete pSample;
4319
4320 SampleList::iterator tmp = SamplesIterator;
4321 // remove all references to the sample
4322 for (Instrument* instrument = GetFirstInstrument() ; instrument ;
4323 instrument = GetNextInstrument()) {
4324 for (Region* region = instrument->GetFirstRegion() ; region ;
4325 region = instrument->GetNextRegion()) {
4326
4327 if (region->GetSample() == pSample) region->SetSample(NULL);
4328
4329 for (int i = 0 ; i < region->DimensionRegions ; i++) {
4330 gig::DimensionRegion *d = region->pDimensionRegions[i];
4331 if (d->pSample == pSample) d->pSample = NULL;
4332 }
4333 }
4334 }
4335 SamplesIterator = tmp; // restore iterator
4336 }
4337
4338 void File::LoadSamples() {
4339 LoadSamples(NULL);
4340 }
4341
4342 void File::LoadSamples(progress_t* pProgress) {
4343 // Groups must be loaded before samples, because samples will try
4344 // to resolve the group they belong to
4345 if (!pGroups) LoadGroups();
4346
4347 if (!pSamples) pSamples = new SampleList;
4348
4349 RIFF::File* file = pRIFF;
4350
4351 // just for progress calculation
4352 int iSampleIndex = 0;
4353 int iTotalSamples = WavePoolCount;
4354
4355 // check if samples should be loaded from extension files
4356 int lastFileNo = 0;
4357 for (int i = 0 ; i < WavePoolCount ; i++) {
4358 if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
4359 }
4360 String name(pRIFF->GetFileName());
4361 int nameLen = name.length();
4362 char suffix[6];
4363 if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
4364
4365 for (int fileNo = 0 ; ; ) {
4366 RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
4367 if (wvpl) {
4368 unsigned long wvplFileOffset = wvpl->GetFilePos();
4369 RIFF::List* wave = wvpl->GetFirstSubList();
4370 while (wave) {
4371 if (wave->GetListType() == LIST_TYPE_WAVE) {
4372 // notify current progress
4373 const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
4374 __notify_progress(pProgress, subprogress);
4375
4376 unsigned long waveFileOffset = wave->GetFilePos();
4377 pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));
4378
4379 iSampleIndex++;
4380 }
4381 wave = wvpl->GetNextSubList();
4382 }
4383
4384 if (fileNo == lastFileNo) break;
4385
4386 // open extension file (*.gx01, *.gx02, ...)
4387 fileNo++;
4388 sprintf(suffix, ".gx%02d", fileNo);
4389 name.replace(nameLen, 5, suffix);
4390 file = new RIFF::File(name);
4391 ExtensionFiles.push_back(file);
4392 } else break;
4393 }
4394
4395 __notify_progress(pProgress, 1.0); // notify done
4396 }
4397
4398 Instrument* File::GetFirstInstrument() {
4399 if (!pInstruments) LoadInstruments();
4400 if (!pInstruments) return NULL;
4401 InstrumentsIterator = pInstruments->begin();
4402 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
4403 }
4404
4405 Instrument* File::GetNextInstrument() {
4406 if (!pInstruments) return NULL;
4407 InstrumentsIterator++;
4408 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
4409 }
4410
4411 /**
4412 * Returns the instrument with the given index.
4413 *
4414 * @param index - number of the sought instrument (0..n)
4415 * @param pProgress - optional: callback function for progress notification
4416 * @returns sought instrument or NULL if there's no such instrument
4417 */
4418 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
4419 if (!pInstruments) {
4420 // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
4421
4422 // sample loading subtask
4423 progress_t subprogress;
4424 __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
4425 __notify_progress(&subprogress, 0.0f);
4426 if (GetAutoLoad())
4427 GetFirstSample(&subprogress); // now force all samples to be loaded
4428 __notify_progress(&subprogress, 1.0f);
4429
4430 // instrument loading subtask
4431 if (pProgress && pProgress->callback) {
4432 subprogress.__range_min = subprogress.__range_max;
4433 subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
4434 }
4435 __notify_progress(&subprogress, 0.0f);
4436 LoadInstruments(&subprogress);
4437 __notify_progress(&subprogress, 1.0f);
4438 }
4439 if (!pInstruments) return NULL;
4440 InstrumentsIterator = pInstruments->begin();
4441 for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
4442 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
4443 InstrumentsIterator++;
4444 }
4445 return NULL;
4446 }
4447
4448 /** @brief Add a new instrument definition.
4449 *
4450 * This will create a new Instrument object for the gig file. You have
4451 * to call Save() to make this persistent to the file.
4452 *
4453 * @returns pointer to new Instrument object
4454 */
4455 Instrument* File::AddInstrument() {
4456 if (!pInstruments) LoadInstruments();
4457 __ensureMandatoryChunksExist();
4458 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
4459 RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
4460
4461 // add mandatory chunks to get the chunks in right order
4462 lstInstr->AddSubList(LIST_TYPE_INFO);
4463 lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
4464
4465 Instrument* pInstrument = new Instrument(this, lstInstr);
4466 pInstrument->GenerateDLSID();
4467
4468 lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
4469
4470 // this string is needed for the gig to be loadable in GSt:
4471 pInstrument->pInfo->Software = "Endless Wave";
4472
4473 pInstruments->push_back(pInstrument);
4474 return pInstrument;
4475 }
4476
4477 /** @brief Add a duplicate of an existing instrument.
4478 *
4479 * Duplicates the instrument definition given by @a orig and adds it
4480 * to this file. This allows in an instrument editor application to
4481 * easily create variations of an instrument, which will be stored in
4482 * the same .gig file, sharing i.e. the same samples.
4483 *
4484 * Note that all sample pointers referenced by @a orig are simply copied as
4485 * memory address. Thus the respective samples are shared, not duplicated!
4486 *
4487 * You have to call Save() to make this persistent to the file.
4488 *
4489 * @param orig - original instrument to be copied
4490 * @returns duplicated copy of the given instrument
4491 */
4492 Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
4493 Instrument* instr = AddInstrument();
4494 instr->CopyAssign(orig);
4495 return instr;
4496 }
4497
4498 /** @brief Add content of another existing file.
4499 *
4500 * Duplicates the samples, groups and instruments of the original file
4501 * given by @a pFile and adds them to @c this File. In case @c this File is
4502 * a new one that you haven't saved before, then you have to call
4503 * SetFileName() before calling AddContentOf(), because this method will
4504 * automatically save this file during operation, which is required for
4505 * writing the sample waveform data by disk streaming.
4506 *
4507 * @param pFile - original file whose's content shall be copied from
4508 */
4509 void File::AddContentOf(File* pFile) {
4510 static int iCallCount = -1;
4511 iCallCount++;
4512 std::map<Group*,Group*> mGroups;
4513 std::map<Sample*,Sample*> mSamples;
4514
4515 // clone sample groups
4516 for (int i = 0; pFile->GetGroup(i); ++i) {
4517 Group* g = AddGroup();
4518 g->Name =
4519 "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
4520 mGroups[pFile->GetGroup(i)] = g;
4521 }
4522
4523 // clone samples (not waveform data here yet)
4524 for (int i = 0; pFile->GetSample(i); ++i) {
4525 Sample* s = AddSample();
4526 s->CopyAssignMeta(pFile->GetSample(i));
4527 mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
4528 mSamples[pFile->GetSample(i)] = s;
4529 }
4530
4531 //BUG: For some reason this method only works with this additional
4532 // Save() call in between here.
4533 //
4534 // Important: The correct one of the 2 Save() methods has to be called
4535 // here, depending on whether the file is completely new or has been
4536 // saved to disk already, otherwise it will result in data corruption.
4537 if (pRIFF->IsNew())
4538 Save(GetFileName());
4539 else
4540 Save();
4541
4542 // clone instruments
4543 // (passing the crosslink table here for the cloned samples)
4544 for (int i = 0; pFile->GetInstrument(i); ++i) {
4545 Instrument* instr = AddInstrument();
4546 instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
4547 }
4548
4549 // Mandatory: file needs to be saved to disk at this point, so this
4550 // file has the correct size and data layout for writing the samples'
4551 // waveform data to disk.
4552 Save();
4553
4554 // clone samples' waveform data
4555 // (using direct read & write disk streaming)
4556 for (int i = 0; pFile->GetSample(i); ++i) {
4557 mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
4558 }
4559 }
4560
4561 /** @brief Delete an instrument.
4562 *
4563 * This will delete the given Instrument object from the gig file. You
4564 * have to call Save() to make this persistent to the file.
4565 *
4566 * @param pInstrument - instrument to delete
4567 * @throws gig::Exception if given instrument could not be found
4568 */
4569 void File::DeleteInstrument(Instrument* pInstrument) {
4570 if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
4571 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
4572 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
4573 pInstruments->erase(iter);
4574 delete pInstrument;
4575 }
4576
4577 void File::LoadInstruments() {
4578 LoadInstruments(NULL);
4579 }
4580
4581 void File::LoadInstruments(progress_t* pProgress) {
4582 if (!pInstruments) pInstruments = new InstrumentList;
4583 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
4584 if (lstInstruments) {
4585 int iInstrumentIndex = 0;
4586 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
4587 while (lstInstr) {
4588 if (lstInstr->GetListType() == LIST_TYPE_INS) {
4589 // notify current progress
4590 const float localProgress = (float) iInstrumentIndex / (float) Instruments;
4591 __notify_progress(pProgress, localProgress);
4592
4593 // divide local progress into subprogress for loading current Instrument
4594 progress_t subprogress;
4595 __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
4596
4597 pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
4598
4599 iInstrumentIndex++;
4600 }
4601 lstInstr = lstInstruments->GetNextSubList();
4602 }
4603 __notify_progress(pProgress, 1.0); // notify done
4604 }
4605 }
4606
4607 /// Updates the 3crc chunk with the checksum of a sample. The
4608 /// update is done directly to disk, as this method is called
4609 /// after File::Save()
4610 void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
4611 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
4612 if (!_3crc) return;
4613
4614 // get the index of the sample
4615 int iWaveIndex = -1;
4616 File::SampleList::iterator iter = pSamples->begin();
4617 File::SampleList::iterator end = pSamples->end();
4618 for (int index = 0; iter != end; ++iter, ++index) {
4619 if (*iter == pSample) {
4620 iWaveIndex = index;
4621 break;
4622 }
4623 }
4624 if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
4625
4626 // write the CRC-32 checksum to disk
4627 _3crc->SetPos(iWaveIndex * 8);
4628 uint32_t tmp = 1;
4629 _3crc->WriteUint32(&tmp); // unknown, always 1?
4630 _3crc->WriteUint32(&crc);
4631 }
4632
4633 Group* File::GetFirstGroup() {
4634 if (!pGroups) LoadGroups();
4635 // there must always be at least one group
4636 GroupsIterator = pGroups->begin();
4637 return *GroupsIterator;
4638 }
4639
4640 Group* File::GetNextGroup() {
4641 if (!pGroups) return NULL;
4642 ++GroupsIterator;
4643 return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
4644 }
4645
4646 /**
4647 * Returns the group with the given index.
4648 *
4649 * @param index - number of the sought group (0..n)
4650 * @returns sought group or NULL if there's no such group
4651 */
4652 Group* File::GetGroup(uint index) {
4653 if (!pGroups) LoadGroups();
4654 GroupsIterator = pGroups->begin();
4655 for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
4656 if (i == index) return *GroupsIterator;
4657 ++GroupsIterator;
4658 }
4659 return NULL;
4660 }
4661
4662 Group* File::AddGroup() {
4663 if (!pGroups) LoadGroups();
4664 // there must always be at least one group
4665 __ensureMandatoryChunksExist();
4666 Group* pGroup = new Group(this, NULL);
4667 pGroups->push_back(pGroup);
4668 return pGroup;
4669 }
4670
4671 /** @brief Delete a group and its samples.
4672 *
4673 * This will delete the given Group object and all the samples that
4674 * belong to this group from the gig file. You have to call Save() to
4675 * make this persistent to the file.
4676 *
4677 * @param pGroup - group to delete
4678 * @throws gig::Exception if given group could not be found
4679 */
4680 void File::DeleteGroup(Group* pGroup) {
4681 if (!pGroups) LoadGroups();
4682 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
4683 if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
4684 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
4685 // delete all members of this group
4686 for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
4687 DeleteSample(pSample);
4688 }
4689 // now delete this group object
4690 pGroups->erase(iter);
4691 delete pGroup;
4692 }
4693
4694 /** @brief Delete a group.
4695 *
4696 * This will delete the given Group object from the gig file. All the
4697 * samples that belong to this group will not be deleted, but instead
4698 * be moved to another group. You have to call Save() to make this
4699 * persistent to the file.
4700 *
4701 * @param pGroup - group to delete
4702 * @throws gig::Exception if given group could not be found
4703 */
4704 void File::DeleteGroupOnly(Group* pGroup) {
4705 if (!pGroups) LoadGroups();
4706 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
4707 if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
4708 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
4709 // move all members of this group to another group
4710 pGroup->MoveAll();
4711 pGroups->erase(iter);
4712 delete pGroup;
4713 }
4714
4715 void File::LoadGroups() {
4716 if (!pGroups) pGroups = new std::list<Group*>;
4717 // try to read defined groups from file
4718 RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
4719 if (lst3gri) {
4720 RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
4721 if (lst3gnl) {
4722 RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
4723 while (ck) {
4724 if (ck->GetChunkID() == CHUNK_ID_3GNM) {
4725 if (pVersion && pVersion->major == 3 &&
4726 strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
4727
4728 pGroups->push_back(new Group(this, ck));
4729 }
4730 ck = lst3gnl->GetNextSubChunk();
4731 }
4732 }
4733 }
4734 // if there were no group(s), create at least the mandatory default group
4735 if (!pGroups->size()) {
4736 Group* pGroup = new Group(this, NULL);
4737 pGroup->Name = "Default Group";
4738 pGroups->push_back(pGroup);
4739 }
4740 }
4741
4742 /**
4743 * Apply all the gig file's current instruments, samples, groups and settings
4744 * to the respective RIFF chunks. You have to call Save() to make changes
4745 * persistent.
4746 *
4747 * Usually there is absolutely no need to call this method explicitly.
4748 * It will be called automatically when File::Save() was called.
4749 *
4750 * @throws Exception - on errors
4751 */
4752 void File::UpdateChunks() {
4753 bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
4754
4755 b64BitWavePoolOffsets = pVersion && pVersion->major == 3;
4756
4757 // first update base class's chunks
4758 DLS::File::UpdateChunks();
4759
4760 if (newFile) {
4761 // INFO was added by Resource::UpdateChunks - make sure it
4762 // is placed first in file
4763 RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
4764 RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
4765 if (first != info) {
4766 pRIFF->MoveSubChunk(info, first);
4767 }
4768 }
4769
4770 // update group's chunks
4771 if (pGroups) {
4772 // make sure '3gri' and '3gnl' list chunks exist
4773 // (before updating the Group chunks)
4774 RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
4775 if (!_3gri) {
4776 _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
4777 pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
4778 }
4779 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
4780 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
4781
4782 // v3: make sure the file has 128 3gnm chunks
4783 // (before updating the Group chunks)
4784 if (pVersion && pVersion->major == 3) {
4785 RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
4786 for (int i = 0 ; i < 128 ; i++) {
4787 if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
4788 if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
4789 }
4790 }
4791
4792 std::list<Group*>::iterator iter = pGroups->begin();
4793 std::list<Group*>::iterator end = pGroups->end();
4794 for (; iter != end; ++iter) {
4795 (*iter)->UpdateChunks();
4796 }
4797 }
4798
4799 // update einf chunk
4800
4801 // The einf chunk contains statistics about the gig file, such
4802 // as the number of regions and samples used by each
4803 // instrument. It is divided in equally sized parts, where the
4804 // first part contains information about the whole gig file,
4805 // and the rest of the parts map to each instrument in the
4806 // file.
4807 //
4808 // At the end of each part there is a bit map of each sample
4809 // in the file, where a set bit means that the sample is used
4810 // by the file/instrument.
4811 //
4812 // Note that there are several fields with unknown use. These
4813 // are set to zero.
4814
4815 int sublen = pSamples->size() / 8 + 49;
4816 int einfSize = (Instruments + 1) * sublen;
4817
4818 RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
4819 if (einf) {
4820 if (einf->GetSize() != einfSize) {
4821 einf->Resize(einfSize);
4822 memset(einf->LoadChunkData(), 0, einfSize);
4823 }
4824 } else if (newFile) {
4825 einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
4826 }
4827 if (einf) {
4828 uint8_t* pData = (uint8_t*) einf->LoadChunkData();
4829
4830 std::map<gig::Sample*,int> sampleMap;
4831 int sampleIdx = 0;
4832 for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
4833 sampleMap[pSample] = sampleIdx++;
4834 }
4835
4836 int totnbusedsamples = 0;
4837 int totnbusedchannels = 0;
4838 int totnbregions = 0;
4839 int totnbdimregions = 0;
4840 int totnbloops = 0;
4841 int instrumentIdx = 0;
4842
4843 memset(&pData[48], 0, sublen - 48);
4844
4845 for (Instrument* instrument = GetFirstInstrument() ; instrument ;
4846 instrument = GetNextInstrument()) {
4847 int nbusedsamples = 0;
4848 int nbusedchannels = 0;
4849 int nbdimregions = 0;
4850 int nbloops = 0;
4851
4852 memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
4853
4854 for (Region* region = instrument->GetFirstRegion() ; region ;
4855 region = instrument->GetNextRegion()) {
4856 for (int i = 0 ; i < region->DimensionRegions ; i++) {
4857 gig::DimensionRegion *d = region->pDimensionRegions[i];
4858 if (d->pSample) {
4859 int sampleIdx = sampleMap[d->pSample];
4860 int byte = 48 + sampleIdx / 8;
4861 int bit = 1 << (sampleIdx & 7);
4862 if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
4863 pData[(instrumentIdx + 1) * sublen + byte] |= bit;
4864 nbusedsamples++;
4865 nbusedchannels += d->pSample->Channels;
4866
4867 if ((pData[byte] & bit) == 0) {
4868 pData[byte] |= bit;
4869 totnbusedsamples++;
4870 totnbusedchannels += d->pSample->Channels;
4871 }
4872 }
4873 }
4874 if (d->SampleLoops) nbloops++;
4875 }
4876 nbdimregions += region->DimensionRegions;
4877 }
4878 // first 4 bytes unknown - sometimes 0, sometimes length of einf part
4879 // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
4880 store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
4881 store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
4882 store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
4883 store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
4884 store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
4885 store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
4886 // next 8 bytes unknown
4887 store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
4888 store32(&pData[(instrumentIdx + 1) * sublen + 40], pSamples->size());
4889 // next 4 bytes unknown
4890
4891 totnbregions += instrument->Regions;
4892 totnbdimregions += nbdimregions;
4893 totnbloops += nbloops;
4894 instrumentIdx++;
4895 }
4896 // first 4 bytes unknown - sometimes 0, sometimes length of einf part
4897 // store32(&pData[0], sublen);
4898 store32(&pData[4], totnbusedchannels);
4899 store32(&pData[8], totnbusedsamples);
4900 store32(&pData[12], Instruments);
4901 store32(&pData[16], totnbregions);
4902 store32(&pData[20], totnbdimregions);
4903 store32(&pData[24], totnbloops);
4904 // next 8 bytes unknown
4905 // next 4 bytes unknown, not always 0
4906 store32(&pData[40], pSamples->size());
4907 // next 4 bytes unknown
4908 }
4909
4910 // update 3crc chunk
4911
4912 // The 3crc chunk contains CRC-32 checksums for the
4913 // samples. The actual checksum values will be filled in
4914 // later, by Sample::Write.
4915
4916 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
4917 if (_3crc) {
4918 _3crc->Resize(pSamples->size() * 8);
4919 } else if (newFile) {
4920 _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
4921 _3crc->LoadChunkData();
4922
4923 // the order of einf and 3crc is not the same in v2 and v3
4924 if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
4925 }
4926 }
4927
4928 /**
4929 * Enable / disable automatic loading. By default this properyt is
4930 * enabled and all informations are loaded automatically. However
4931 * loading all Regions, DimensionRegions and especially samples might
4932 * take a long time for large .gig files, and sometimes one might only
4933 * be interested in retrieving very superficial informations like the
4934 * amount of instruments and their names. In this case one might disable
4935 * automatic loading to avoid very slow response times.
4936 *
4937 * @e CAUTION: by disabling this property many pointers (i.e. sample
4938 * references) and informations will have invalid or even undefined
4939 * data! This feature is currently only intended for retrieving very
4940 * superficial informations in a very fast way. Don't use it to retrieve
4941 * details like synthesis informations or even to modify .gig files!
4942 */
4943 void File::SetAutoLoad(bool b) {
4944 bAutoLoad = b;
4945 }
4946
4947 /**
4948 * Returns whether automatic loading is enabled.
4949 * @see SetAutoLoad()
4950 */
4951 bool File::GetAutoLoad() {
4952 return bAutoLoad;
4953 }
4954
4955
4956
4957 // *************** Exception ***************
4958 // *
4959
4960 Exception::Exception(String Message) : DLS::Exception(Message) {
4961 }
4962
4963 void Exception::PrintMessage() {
4964 std::cout << "gig::Exception: " << Message << std::endl;
4965 }
4966
4967
4968 // *************** functions ***************
4969 // *
4970
4971 /**
4972 * Returns the name of this C++ library. This is usually "libgig" of
4973 * course. This call is equivalent to RIFF::libraryName() and
4974 * DLS::libraryName().
4975 */
4976 String libraryName() {
4977 return PACKAGE;
4978 }
4979
4980 /**
4981 * Returns version of this C++ library. This call is equivalent to
4982 * RIFF::libraryVersion() and DLS::libraryVersion().
4983 */
4984 String libraryVersion() {
4985 return VERSION;
4986 }
4987
4988 } // namespace gig

  ViewVC Help
Powered by ViewVC