/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Contents of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 27 - (show annotations) (download)
Thu Jan 1 23:46:41 2004 UTC (20 years, 3 months ago) by schoenebeck
File size: 64188 byte(s)
* src/gig.cpp: attributes 'LoopStart', 'LoopEnd' and 'LoopSize' in class
  'Sample' reflected wrong values
* updated Make files (autoconf 2.58, automake 1.6.3)

1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file loader library *
4 * *
5 * Copyright (C) 2003 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #include "gig.h"
25
26 namespace gig {
27
28 // *************** Sample ***************
29 // *
30
31 unsigned int Sample::Instances = 0;
32 void* Sample::pDecompressionBuffer = NULL;
33 unsigned long Sample::DecompressionBufferSize = 0;
34
35 Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
36 Instances++;
37
38 RIFF::Chunk* _3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
39 if (!_3gix) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");
40 SampleGroup = _3gix->ReadInt16();
41
42 RIFF::Chunk* smpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
43 if (!smpl) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");
44 Manufacturer = smpl->ReadInt32();
45 Product = smpl->ReadInt32();
46 SamplePeriod = smpl->ReadInt32();
47 MIDIUnityNote = smpl->ReadInt32();
48 FineTune = smpl->ReadInt32();
49 smpl->Read(&SMPTEFormat, 1, 4);
50 SMPTEOffset = smpl->ReadInt32();
51 Loops = smpl->ReadInt32();
52 uint32_t manufByt = smpl->ReadInt32();
53 LoopID = smpl->ReadInt32();
54 smpl->Read(&LoopType, 1, 4);
55 LoopStart = smpl->ReadInt32();
56 LoopEnd = smpl->ReadInt32();
57 LoopFraction = smpl->ReadInt32();
58 LoopPlayCount = smpl->ReadInt32();
59
60 FrameTable = NULL;
61 SamplePos = 0;
62 RAMCache.Size = 0;
63 RAMCache.pStart = NULL;
64 RAMCache.NullExtensionSize = 0;
65
66 Compressed = (waveList->GetSubChunk(CHUNK_ID_EWAV));
67 if (Compressed) {
68 ScanCompressedSample();
69 if (!pDecompressionBuffer) {
70 pDecompressionBuffer = new int8_t[INITIAL_SAMPLE_BUFFER_SIZE];
71 DecompressionBufferSize = INITIAL_SAMPLE_BUFFER_SIZE;
72 }
73 }
74 FrameOffset = 0; // just for streaming compressed samples
75
76 LoopSize = LoopEnd - LoopStart;
77 }
78
79 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
80 void Sample::ScanCompressedSample() {
81 //TODO: we have to add some more scans here (e.g. determine compression rate)
82 this->SamplesTotal = 0;
83 std::list<unsigned long> frameOffsets;
84
85 // Scanning
86 pCkData->SetPos(0);
87 while (pCkData->GetState() == RIFF::stream_ready) {
88 frameOffsets.push_back(pCkData->GetPos());
89 int16_t compressionmode = pCkData->ReadInt16();
90 this->SamplesTotal += 2048;
91 switch (compressionmode) {
92 case 1: // left channel compressed
93 case 256: // right channel compressed
94 pCkData->SetPos(6148, RIFF::stream_curpos);
95 break;
96 case 257: // both channels compressed
97 pCkData->SetPos(4104, RIFF::stream_curpos);
98 break;
99 default: // both channels uncompressed
100 pCkData->SetPos(8192, RIFF::stream_curpos);
101 }
102 }
103 pCkData->SetPos(0);
104
105 //FIXME: only seen compressed samples with 16 bit stereo so far
106 this->FrameSize = 4;
107 this->BitDepth = 16;
108
109 // Build the frames table (which is used for fast resolving of a frame's chunk offset)
110 if (FrameTable) delete[] FrameTable;
111 FrameTable = new unsigned long[frameOffsets.size()];
112 std::list<unsigned long>::iterator end = frameOffsets.end();
113 std::list<unsigned long>::iterator iter = frameOffsets.begin();
114 for (int i = 0; iter != end; i++, iter++) {
115 FrameTable[i] = *iter;
116 }
117 }
118
119 /**
120 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
121 * ReleaseSampleData() to free the memory if you don't need the cached
122 * sample data anymore.
123 *
124 * @returns buffer_t structure with start address and size of the buffer
125 * in bytes
126 * @see ReleaseSampleData(), Read(), SetPos()
127 */
128 buffer_t Sample::LoadSampleData() {
129 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
130 }
131
132 /**
133 * Reads (uncompresses if needed) and caches the first \a SampleCount
134 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
135 * memory space if you don't need the cached samples anymore. There is no
136 * guarantee that exactly \a SampleCount samples will be cached; this is
137 * not an error. The size will be eventually truncated e.g. to the
138 * beginning of a frame of a compressed sample. This is done for
139 * efficiency reasons while streaming the wave by your sampler engine
140 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
141 * that will be returned to determine the actual cached samples, but note
142 * that the size is given in bytes! You get the number of actually cached
143 * samples by dividing it by the frame size of the sample:
144 *
145 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
146 * long cachedsamples = buf.Size / pSample->FrameSize;
147 *
148 * @param SampleCount - number of sample points to load into RAM
149 * @returns buffer_t structure with start address and size of
150 * the cached sample data in bytes
151 * @see ReleaseSampleData(), Read(), SetPos()
152 */
153 buffer_t Sample::LoadSampleData(unsigned long SampleCount) {
154 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
155 }
156
157 /**
158 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
159 * ReleaseSampleData() to free the memory if you don't need the cached
160 * sample data anymore.
161 * The method will add \a NullSamplesCount silence samples past the
162 * official buffer end (this won't affect the 'Size' member of the
163 * buffer_t structure, that means 'Size' always reflects the size of the
164 * actual sample data, the buffer might be bigger though). Silence
165 * samples past the official buffer are needed for differential
166 * algorithms that always have to take subsequent samples into account
167 * (resampling/interpolation would be an important example) and avoids
168 * memory access faults in such cases.
169 *
170 * @param NullSamplesCount - number of silence samples the buffer should
171 * be extended past it's data end
172 * @returns buffer_t structure with start address and
173 * size of the buffer in bytes
174 * @see ReleaseSampleData(), Read(), SetPos()
175 */
176 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
177 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
178 }
179
180 /**
181 * Reads (uncompresses if needed) and caches the first \a SampleCount
182 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
183 * memory space if you don't need the cached samples anymore. There is no
184 * guarantee that exactly \a SampleCount samples will be cached; this is
185 * not an error. The size will be eventually truncated e.g. to the
186 * beginning of a frame of a compressed sample. This is done for
187 * efficiency reasons while streaming the wave by your sampler engine
188 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
189 * that will be returned to determine the actual cached samples, but note
190 * that the size is given in bytes! You get the number of actually cached
191 * samples by dividing it by the frame size of the sample:
192 *
193 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
194 * long cachedsamples = buf.Size / pSample->FrameSize;
195 *
196 * The method will add \a NullSamplesCount silence samples past the
197 * official buffer end (this won't affect the 'Size' member of the
198 * buffer_t structure, that means 'Size' always reflects the size of the
199 * actual sample data, the buffer might be bigger though). Silence
200 * samples past the official buffer are needed for differential
201 * algorithms that always have to take subsequent samples into account
202 * (resampling/interpolation would be an important example) and avoids
203 * memory access faults in such cases.
204 *
205 * @param SampleCount - number of sample points to load into RAM
206 * @param NullSamplesCount - number of silence samples the buffer should
207 * be extended past it's data end
208 * @returns buffer_t structure with start address and
209 * size of the cached sample data in bytes
210 * @see ReleaseSampleData(), Read(), SetPos()
211 */
212 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {
213 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
214 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
215 unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
216 RAMCache.pStart = new int8_t[allocationsize];
217 RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
218 RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
219 // fill the remaining buffer space with silence samples
220 memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
221 return GetCache();
222 }
223
224 /**
225 * Returns current cached sample points. A buffer_t structure will be
226 * returned which contains address pointer to the begin of the cache and
227 * the size of the cached sample data in bytes. Use
228 * <i>LoadSampleData()</i> to cache a specific amount of sample points in
229 * RAM.
230 *
231 * @returns buffer_t structure with current cached sample points
232 * @see LoadSampleData();
233 */
234 buffer_t Sample::GetCache() {
235 // return a copy of the buffer_t structure
236 buffer_t result;
237 result.Size = this->RAMCache.Size;
238 result.pStart = this->RAMCache.pStart;
239 result.NullExtensionSize = this->RAMCache.NullExtensionSize;
240 return result;
241 }
242
243 /**
244 * Frees the cached sample from RAM if loaded with
245 * <i>LoadSampleData()</i> previously.
246 *
247 * @see LoadSampleData();
248 */
249 void Sample::ReleaseSampleData() {
250 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
251 RAMCache.pStart = NULL;
252 RAMCache.Size = 0;
253 }
254
255 /**
256 * Sets the position within the sample (in sample points, not in
257 * bytes). Use this method and <i>Read()</i> if you don't want to load
258 * the sample into RAM, thus for disk streaming.
259 *
260 * Although the original Gigasampler engine doesn't allow positioning
261 * within compressed samples, I decided to implement it. Even though
262 * the Gigasampler format doesn't allow to define loops for compressed
263 * samples at the moment, positioning within compressed samples might be
264 * interesting for some sampler engines though. The only drawback about
265 * my decision is that it takes longer to load compressed gig Files on
266 * startup, because it's neccessary to scan the samples for some
267 * mandatory informations. But I think as it doesn't affect the runtime
268 * efficiency, nobody will have a problem with that.
269 *
270 * @param SampleCount number of sample points to jump
271 * @param Whence optional: to which relation \a SampleCount refers
272 * to, if omited <i>RIFF::stream_start</i> is assumed
273 * @returns the new sample position
274 * @see Read()
275 */
276 unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {
277 if (Compressed) {
278 switch (Whence) {
279 case RIFF::stream_curpos:
280 this->SamplePos += SampleCount;
281 break;
282 case RIFF::stream_end:
283 this->SamplePos = this->SamplesTotal - 1 - SampleCount;
284 break;
285 case RIFF::stream_backward:
286 this->SamplePos -= SampleCount;
287 break;
288 case RIFF::stream_start: default:
289 this->SamplePos = SampleCount;
290 break;
291 }
292 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
293
294 unsigned long frame = this->SamplePos / 2048; // to which frame to jump
295 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
296 pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
297 return this->SamplePos;
298 }
299 else { // not compressed
300 unsigned long orderedBytes = SampleCount * this->FrameSize;
301 unsigned long result = pCkData->SetPos(orderedBytes, Whence);
302 return (result == orderedBytes) ? SampleCount
303 : result / this->FrameSize;
304 }
305 }
306
307 /**
308 * Returns the current position in the sample (in sample points).
309 */
310 unsigned long Sample::GetPos() {
311 if (Compressed) return SamplePos;
312 else return pCkData->GetPos() / FrameSize;
313 }
314
315 /**
316 * Reads \a SampleCount number of sample points from the position stored
317 * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
318 * the position within the sample respectively, this method honors the
319 * looping informations of the sample (if any). The sample wave stream
320 * will be decompressed on the fly if using a compressed sample. Use this
321 * method if you don't want to load the sample into RAM, thus for disk
322 * streaming. All this methods needs to know to proceed with streaming
323 * for the next time you call this method is stored in \a pPlaybackState.
324 * You have to allocate and initialize the playback_state_t structure by
325 * yourself before you use it to stream a sample:
326 *
327 * <i>
328 * gig::playback_state_t playbackstate; <br>
329 * playbackstate.position = 0; <br>
330 * playbackstate.reverse = false; <br>
331 * playbackstate.loop_cycles_left = pSample->LoopPlayCount; <br>
332 * </i>
333 *
334 * You don't have to take care of things like if there is actually a loop
335 * defined or if the current read position is located within a loop area.
336 * The method already handles such cases by itself.
337 *
338 * @param pBuffer destination buffer
339 * @param SampleCount number of sample points to read
340 * @param pPlaybackState will be used to store and reload the playback
341 * state for the next ReadAndLoop() call
342 * @returns number of successfully read sample points
343 */
344 unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState) {
345 unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
346 uint8_t* pDst = (uint8_t*) pBuffer;
347
348 SetPos(pPlaybackState->position); // recover position from the last time
349
350 if (this->Loops && GetPos() <= this->LoopEnd) { // honor looping if there are loop points defined
351
352 switch (this->LoopType) {
353
354 case loop_type_bidirectional: { //TODO: not tested yet!
355 do {
356 // if not endless loop check if max. number of loop cycles have been passed
357 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
358
359 if (!pPlaybackState->reverse) { // forward playback
360 do {
361 samplestoloopend = this->LoopEnd - GetPos();
362 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend));
363 samplestoread -= readsamples;
364 totalreadsamples += readsamples;
365 if (readsamples == samplestoloopend) {
366 pPlaybackState->reverse = true;
367 break;
368 }
369 } while (samplestoread && readsamples);
370 }
371 else { // backward playback
372
373 // as we can only read forward from disk, we have to
374 // determine the end position within the loop first,
375 // read forward from that 'end' and finally after
376 // reading, swap all sample frames so it reflects
377 // backward playback
378
379 unsigned long swapareastart = totalreadsamples;
380 unsigned long loopoffset = GetPos() - this->LoopStart;
381 unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
382 unsigned long reverseplaybackend = GetPos() - samplestoreadinloop;
383
384 SetPos(reverseplaybackend);
385
386 // read samples for backward playback
387 do {
388 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop);
389 samplestoreadinloop -= readsamples;
390 samplestoread -= readsamples;
391 totalreadsamples += readsamples;
392 } while (samplestoreadinloop && readsamples);
393
394 SetPos(reverseplaybackend); // pretend we really read backwards
395
396 if (reverseplaybackend == this->LoopStart) {
397 pPlaybackState->loop_cycles_left--;
398 pPlaybackState->reverse = false;
399 }
400
401 // reverse the sample frames for backward playback
402 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
403 }
404 } while (samplestoread && readsamples);
405 break;
406 }
407
408 case loop_type_backward: { // TODO: not tested yet!
409 // forward playback (not entered the loop yet)
410 if (!pPlaybackState->reverse) do {
411 samplestoloopend = this->LoopEnd - GetPos();
412 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend));
413 samplestoread -= readsamples;
414 totalreadsamples += readsamples;
415 if (readsamples == samplestoloopend) {
416 pPlaybackState->reverse = true;
417 break;
418 }
419 } while (samplestoread && readsamples);
420
421 if (!samplestoread) break;
422
423 // as we can only read forward from disk, we have to
424 // determine the end position within the loop first,
425 // read forward from that 'end' and finally after
426 // reading, swap all sample frames so it reflects
427 // backward playback
428
429 unsigned long swapareastart = totalreadsamples;
430 unsigned long loopoffset = GetPos() - this->LoopStart;
431 unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * LoopSize - loopoffset)
432 : samplestoread;
433 unsigned long reverseplaybackend = this->LoopStart + Abs((loopoffset - samplestoreadinloop) % this->LoopSize);
434
435 SetPos(reverseplaybackend);
436
437 // read samples for backward playback
438 do {
439 // if not endless loop check if max. number of loop cycles have been passed
440 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
441 samplestoloopend = this->LoopEnd - GetPos();
442 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend));
443 samplestoreadinloop -= readsamples;
444 samplestoread -= readsamples;
445 totalreadsamples += readsamples;
446 if (readsamples == samplestoloopend) {
447 pPlaybackState->loop_cycles_left--;
448 SetPos(this->LoopStart);
449 }
450 } while (samplestoreadinloop && readsamples);
451
452 SetPos(reverseplaybackend); // pretend we really read backwards
453
454 // reverse the sample frames for backward playback
455 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
456 break;
457 }
458
459 default: case loop_type_normal: {
460 do {
461 // if not endless loop check if max. number of loop cycles have been passed
462 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
463 samplestoloopend = this->LoopEnd - GetPos();
464 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend));
465 samplestoread -= readsamples;
466 totalreadsamples += readsamples;
467 if (readsamples == samplestoloopend) {
468 pPlaybackState->loop_cycles_left--;
469 SetPos(this->LoopStart);
470 }
471 } while (samplestoread && readsamples);
472 break;
473 }
474 }
475 }
476
477 // read on without looping
478 if (samplestoread) do {
479 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread);
480 samplestoread -= readsamples;
481 totalreadsamples += readsamples;
482 } while (readsamples && samplestoread);
483
484 // store current position
485 pPlaybackState->position = GetPos();
486
487 return totalreadsamples;
488 }
489
490 /**
491 * Reads \a SampleCount number of sample points from the current
492 * position into the buffer pointed by \a pBuffer and increments the
493 * position within the sample. The sample wave stream will be
494 * decompressed on the fly if using a compressed sample. Use this method
495 * and <i>SetPos()</i> if you don't want to load the sample into RAM,
496 * thus for disk streaming.
497 *
498 * @param pBuffer destination buffer
499 * @param SampleCount number of sample points to read
500 * @returns number of successfully read sample points
501 * @see SetPos()
502 */
503 unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount) {
504 if (SampleCount == 0) return 0;
505 if (!Compressed) return pCkData->Read(pBuffer, SampleCount, FrameSize); //FIXME: channel inversion due to endian correction?
506 else { //FIXME: no support for mono compressed samples yet, are there any?
507 if (this->SamplePos >= this->SamplesTotal) return 0;
508 //TODO: efficiency: we simply assume here that all frames are compressed, maybe we should test for an average compression rate
509 // best case needed buffer size (all frames compressed)
510 unsigned long assumedsize = (SampleCount << 1) + // *2 (16 Bit, stereo, but assume all frames compressed)
511 (SampleCount >> 10) + // 10 bytes header per 2048 sample points
512 8194, // at least one worst case sample frame
513 remainingbytes = 0, // remaining bytes in the local buffer
514 remainingsamples = SampleCount,
515 copysamples;
516 int currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
517 this->FrameOffset = 0;
518
519 if (assumedsize > this->DecompressionBufferSize) {
520 // local buffer reallocation - hope this won't happen
521 if (this->pDecompressionBuffer) delete[] (int8_t*) this->pDecompressionBuffer;
522 this->pDecompressionBuffer = new int8_t[assumedsize << 1]; // double of current needed size
523 this->DecompressionBufferSize = assumedsize;
524 }
525
526 int16_t compressionmode, left, dleft, right, dright;
527 int8_t* pSrc = (int8_t*) this->pDecompressionBuffer;
528 int16_t* pDst = (int16_t*) pBuffer;
529 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
530
531 while (remainingsamples) {
532
533 // reload from disk to local buffer if needed
534 if (remainingbytes < 8194) {
535 if (pCkData->GetState() != RIFF::stream_ready) {
536 this->SamplePos = this->SamplesTotal;
537 return (SampleCount - remainingsamples);
538 }
539 assumedsize = remainingsamples;
540 assumedsize = (assumedsize << 1) + // *2 (16 Bit, stereo, but assume all frames compressed)
541 (assumedsize >> 10) + // 10 bytes header per 2048 sample points
542 8194; // at least one worst case sample frame
543 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
544 if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
545 remainingbytes = pCkData->Read(this->pDecompressionBuffer, assumedsize, 1);
546 pSrc = (int8_t*) this->pDecompressionBuffer;
547 }
548
549 // determine how many samples in this frame to skip and read
550 if (remainingsamples >= 2048) {
551 copysamples = 2048 - currentframeoffset;
552 remainingsamples -= copysamples;
553 }
554 else {
555 copysamples = remainingsamples;
556 if (currentframeoffset + copysamples > 2048) {
557 copysamples = 2048 - currentframeoffset;
558 remainingsamples -= copysamples;
559 }
560 else {
561 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
562 remainingsamples = 0;
563 this->FrameOffset = currentframeoffset + copysamples;
564 }
565 }
566
567 // decompress and copy current frame from local buffer to destination buffer
568 compressionmode = *(int16_t*)pSrc; pSrc+=2;
569 switch (compressionmode) {
570 case 1: // left channel compressed
571 remainingbytes -= 6150; // (left 8 bit, right 16 bit, +6 byte header)
572 if (!remainingsamples && copysamples == 2048)
573 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
574
575 left = *(int16_t*)pSrc; pSrc+=2;
576 dleft = *(int16_t*)pSrc; pSrc+=2;
577 while (currentframeoffset) {
578 dleft -= *pSrc;
579 left -= dleft;
580 pSrc+=3; // 8 bit left channel, skip uncompressed right channel (16 bit)
581 currentframeoffset--;
582 }
583 while (copysamples) {
584 dleft -= *pSrc; pSrc++;
585 left -= dleft;
586 *pDst = left; pDst++;
587 *pDst = *(int16_t*)pSrc; pDst++; pSrc+=2;
588 copysamples--;
589 }
590 break;
591 case 256: // right channel compressed
592 remainingbytes -= 6150; // (left 16 bit, right 8 bit, +6 byte header)
593 if (!remainingsamples && copysamples == 2048)
594 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
595
596 right = *(int16_t*)pSrc; pSrc+=2;
597 dright = *(int16_t*)pSrc; pSrc+=2;
598 if (currentframeoffset) {
599 pSrc+=2; // skip uncompressed left channel, now we can increment by 3
600 while (currentframeoffset) {
601 dright -= *pSrc;
602 right -= dright;
603 pSrc+=3; // 8 bit right channel, skip uncompressed left channel (16 bit)
604 currentframeoffset--;
605 }
606 pSrc-=2; // back aligned to left channel
607 }
608 while (copysamples) {
609 *pDst = *(int16_t*)pSrc; pDst++; pSrc+=2;
610 dright -= *pSrc; pSrc++;
611 right -= dright;
612 *pDst = right; pDst++;
613 copysamples--;
614 }
615 break;
616 case 257: // both channels compressed
617 remainingbytes -= 4106; // (left 8 bit, right 8 bit, +10 byte header)
618 if (!remainingsamples && copysamples == 2048)
619 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
620
621 left = *(int16_t*)pSrc; pSrc+=2;
622 dleft = *(int16_t*)pSrc; pSrc+=2;
623 right = *(int16_t*)pSrc; pSrc+=2;
624 dright = *(int16_t*)pSrc; pSrc+=2;
625 while (currentframeoffset) {
626 dleft -= *pSrc; pSrc++;
627 left -= dleft;
628 dright -= *pSrc; pSrc++;
629 right -= dright;
630 currentframeoffset--;
631 }
632 while (copysamples) {
633 dleft -= *pSrc; pSrc++;
634 left -= dleft;
635 dright -= *pSrc; pSrc++;
636 right -= dright;
637 *pDst = left; pDst++;
638 *pDst = right; pDst++;
639 copysamples--;
640 }
641 break;
642 default: // both channels uncompressed
643 remainingbytes -= 8194; // (left 16 bit, right 16 bit, +2 byte header)
644 if (!remainingsamples && copysamples == 2048)
645 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
646
647 pSrc += currentframeoffset << 2;
648 currentframeoffset = 0;
649 memcpy(pDst, pSrc, copysamples << 2);
650 pDst += copysamples << 1;
651 pSrc += copysamples << 2;
652 break;
653 }
654 }
655 this->SamplePos += (SampleCount - remainingsamples);
656 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
657 return (SampleCount - remainingsamples);
658 }
659 }
660
661 Sample::~Sample() {
662 Instances--;
663 if (!Instances && pDecompressionBuffer) delete[] (int8_t*) pDecompressionBuffer;
664 if (FrameTable) delete[] FrameTable;
665 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
666 }
667
668
669
670 // *************** DimensionRegion ***************
671 // *
672
673 uint DimensionRegion::Instances = 0;
674 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
675
676 DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
677 Instances++;
678
679 memcpy(&Crossfade, &SamplerOptions, 4);
680 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
681
682 RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
683 _3ewa->ReadInt32(); // unknown, allways 0x0000008C ?
684 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
685 EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
686 _3ewa->ReadInt16(); // unknown
687 LFO1InternalDepth = _3ewa->ReadUint16();
688 _3ewa->ReadInt16(); // unknown
689 LFO3InternalDepth = _3ewa->ReadInt16();
690 _3ewa->ReadInt16(); // unknown
691 LFO1ControlDepth = _3ewa->ReadUint16();
692 _3ewa->ReadInt16(); // unknown
693 LFO3ControlDepth = _3ewa->ReadInt16();
694 EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
695 EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
696 _3ewa->ReadInt16(); // unknown
697 EG1Sustain = _3ewa->ReadUint16();
698 EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
699 EG1Controller = static_cast<eg1_ctrl_t>(_3ewa->ReadUint8());
700 uint8_t eg1ctrloptions = _3ewa->ReadUint8();
701 EG1ControllerInvert = eg1ctrloptions & 0x01;
702 EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
703 EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
704 EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
705 EG2Controller = static_cast<eg2_ctrl_t>(_3ewa->ReadUint8());
706 uint8_t eg2ctrloptions = _3ewa->ReadUint8();
707 EG2ControllerInvert = eg2ctrloptions & 0x01;
708 EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
709 EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
710 EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
711 LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
712 EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
713 EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
714 _3ewa->ReadInt16(); // unknown
715 EG2Sustain = _3ewa->ReadUint16();
716 EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
717 _3ewa->ReadInt16(); // unknown
718 LFO2ControlDepth = _3ewa->ReadUint16();
719 LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
720 _3ewa->ReadInt16(); // unknown
721 LFO2InternalDepth = _3ewa->ReadUint16();
722 int32_t eg1decay2 = _3ewa->ReadInt32();
723 EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
724 EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
725 _3ewa->ReadInt16(); // unknown
726 EG1PreAttack = _3ewa->ReadUint16();
727 int32_t eg2decay2 = _3ewa->ReadInt32();
728 EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
729 EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
730 _3ewa->ReadInt16(); // unknown
731 EG2PreAttack = _3ewa->ReadUint16();
732 uint8_t velocityresponse = _3ewa->ReadUint8();
733 if (velocityresponse < 5) {
734 VelocityResponseCurve = curve_type_nonlinear;
735 VelocityResponseDepth = velocityresponse;
736 }
737 else if (velocityresponse < 10) {
738 VelocityResponseCurve = curve_type_linear;
739 VelocityResponseDepth = velocityresponse - 5;
740 }
741 else if (velocityresponse < 15) {
742 VelocityResponseCurve = curve_type_special;
743 VelocityResponseDepth = velocityresponse - 10;
744 }
745 else {
746 VelocityResponseCurve = curve_type_unknown;
747 VelocityResponseDepth = 0;
748 }
749 uint8_t releasevelocityresponse = _3ewa->ReadUint8();
750 if (releasevelocityresponse < 5) {
751 ReleaseVelocityResponseCurve = curve_type_nonlinear;
752 ReleaseVelocityResponseDepth = releasevelocityresponse;
753 }
754 else if (releasevelocityresponse < 10) {
755 ReleaseVelocityResponseCurve = curve_type_linear;
756 ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
757 }
758 else if (releasevelocityresponse < 15) {
759 ReleaseVelocityResponseCurve = curve_type_special;
760 ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
761 }
762 else {
763 ReleaseVelocityResponseCurve = curve_type_unknown;
764 ReleaseVelocityResponseDepth = 0;
765 }
766 VelocityResponseCurveScaling = _3ewa->ReadUint8();
767 AttenuationControlTreshold = _3ewa->ReadInt8();
768 _3ewa->ReadInt32(); // unknown
769 SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
770 _3ewa->ReadInt16(); // unknown
771 uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
772 PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
773 if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
774 else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
775 else DimensionBypass = dim_bypass_ctrl_none;
776 uint8_t pan = _3ewa->ReadUint8();
777 Pan = (pan < 64) ? pan : (-1) * (int8_t)pan - 63;
778 SelfMask = _3ewa->ReadInt8() & 0x01;
779 _3ewa->ReadInt8(); // unknown
780 uint8_t lfo3ctrl = _3ewa->ReadUint8();
781 LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
782 LFO3Sync = lfo3ctrl & 0x20; // bit 5
783 InvertAttenuationControl = lfo3ctrl & 0x80; // bit 7
784 if (VCFType == vcf_type_lowpass) {
785 if (lfo3ctrl & 0x40) // bit 6
786 VCFType = vcf_type_lowpassturbo;
787 }
788 AttenuationControl = static_cast<attenuation_ctrl_t>(_3ewa->ReadUint8());
789 uint8_t lfo2ctrl = _3ewa->ReadUint8();
790 LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
791 LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
792 LFO2Sync = lfo2ctrl & 0x20; // bit 5
793 bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
794 uint8_t lfo1ctrl = _3ewa->ReadUint8();
795 LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
796 LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
797 LFO1Sync = lfo1ctrl & 0x40; // bit 6
798 VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
799 : vcf_res_ctrl_none;
800 uint16_t eg3depth = _3ewa->ReadUint16();
801 EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
802 : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */
803 _3ewa->ReadInt16(); // unknown
804 ChannelOffset = _3ewa->ReadUint8() / 4;
805 uint8_t regoptions = _3ewa->ReadUint8();
806 MSDecode = regoptions & 0x01; // bit 0
807 SustainDefeat = regoptions & 0x02; // bit 1
808 _3ewa->ReadInt16(); // unknown
809 VelocityUpperLimit = _3ewa->ReadInt8();
810 _3ewa->ReadInt8(); // unknown
811 _3ewa->ReadInt16(); // unknown
812 ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
813 _3ewa->ReadInt8(); // unknown
814 _3ewa->ReadInt8(); // unknown
815 EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
816 uint8_t vcfcutoff = _3ewa->ReadUint8();
817 VCFEnabled = vcfcutoff & 0x80; // bit 7
818 VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
819 VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
820 VCFVelocityScale = _3ewa->ReadUint8();
821 _3ewa->ReadInt8(); // unknown
822 uint8_t vcfresonance = _3ewa->ReadUint8();
823 VCFResonance = vcfresonance & 0x7f; // lower 7 bits
824 VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
825 uint8_t vcfbreakpoint = _3ewa->ReadUint8();
826 VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
827 VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
828 uint8_t vcfvelocity = _3ewa->ReadUint8();
829 VCFVelocityDynamicRange = vcfvelocity % 5;
830 VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
831 VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
832
833 // get the corresponding velocity->volume table from the table map or create & calculate that table if it doesn't exist yet
834 uint32_t tableKey = (VelocityResponseCurve<<16) | (VelocityResponseDepth<<8) | VelocityResponseCurveScaling;
835 if (pVelocityTables->count(tableKey)) { // if key exists
836 pVelocityAttenuationTable = (*pVelocityTables)[tableKey];
837 }
838 else {
839 pVelocityAttenuationTable = new double[128];
840 switch (VelocityResponseCurve) { // calculate the new table
841 case curve_type_nonlinear:
842 for (int velocity = 0; velocity < 128; velocity++) {
843 pVelocityAttenuationTable[velocity] =
844 GIG_VELOCITY_TRANSFORM_NONLINEAR((double)(velocity+1),(double)(VelocityResponseDepth+1),(double)VelocityResponseCurveScaling);
845 if (pVelocityAttenuationTable[velocity] > 1.0) pVelocityAttenuationTable[velocity] = 1.0;
846 else if (pVelocityAttenuationTable[velocity] < 0.0) pVelocityAttenuationTable[velocity] = 0.0;
847 }
848 break;
849 case curve_type_linear:
850 for (int velocity = 0; velocity < 128; velocity++) {
851 pVelocityAttenuationTable[velocity] =
852 GIG_VELOCITY_TRANSFORM_LINEAR((double)velocity,(double)(VelocityResponseDepth+1),(double)VelocityResponseCurveScaling);
853 if (pVelocityAttenuationTable[velocity] > 1.0) pVelocityAttenuationTable[velocity] = 1.0;
854 else if (pVelocityAttenuationTable[velocity] < 0.0) pVelocityAttenuationTable[velocity] = 0.0;
855 }
856 break;
857 case curve_type_special:
858 for (int velocity = 0; velocity < 128; velocity++) {
859 pVelocityAttenuationTable[velocity] =
860 GIG_VELOCITY_TRANSFORM_SPECIAL((double)(velocity+1),(double)(VelocityResponseDepth+1),(double)VelocityResponseCurveScaling);
861 if (pVelocityAttenuationTable[velocity] > 1.0) pVelocityAttenuationTable[velocity] = 1.0;
862 else if (pVelocityAttenuationTable[velocity] < 0.0) pVelocityAttenuationTable[velocity] = 0.0;
863 }
864 break;
865 case curve_type_unknown:
866 default:
867 throw gig::Exception("Unknown transform curve type.");
868 }
869 (*pVelocityTables)[tableKey] = pVelocityAttenuationTable; // put the new table into the tables map
870 }
871 }
872
873 DimensionRegion::~DimensionRegion() {
874 Instances--;
875 if (!Instances) {
876 // delete the velocity->volume tables
877 VelocityTableMap::iterator iter;
878 for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
879 double* pTable = iter->second;
880 if (pTable) delete[] pTable;
881 }
882 pVelocityTables->clear();
883 delete pVelocityTables;
884 pVelocityTables = NULL;
885 }
886 }
887
888 /**
889 * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
890 * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
891 * and VelocityResponseCurveScaling) involved are taken into account to
892 * calculate the amplitude factor. Use this method when a key was
893 * triggered to get the volume with which the sample should be played
894 * back.
895 *
896 * @param MIDI velocity value of the triggered key (between 0 and 127)
897 * @returns amplitude factor (between 0.0 and 1.0)
898 */
899 double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
900 return pVelocityAttenuationTable[MIDIKeyVelocity];
901 }
902
903
904
905 // *************** Region ***************
906 // *
907
908 Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
909 // Initialization
910 Dimensions = 0;
911 for (int i = 0; i < 32; i++) {
912 pDimensionRegions[i] = NULL;
913 }
914
915 // Actual Loading
916
917 LoadDimensionRegions(rgnList);
918
919 RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
920 if (_3lnk) {
921 DimensionRegions = _3lnk->ReadUint32();
922 for (int i = 0; i < 5; i++) {
923 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
924 uint8_t bits = _3lnk->ReadUint8();
925 if (dimension == dimension_none) { // inactive dimension
926 pDimensionDefinitions[i].dimension = dimension_none;
927 pDimensionDefinitions[i].bits = 0;
928 pDimensionDefinitions[i].zones = 0;
929 pDimensionDefinitions[i].split_type = split_type_bit;
930 pDimensionDefinitions[i].ranges = NULL;
931 pDimensionDefinitions[i].zone_size = 0;
932 }
933 else { // active dimension
934 pDimensionDefinitions[i].dimension = dimension;
935 pDimensionDefinitions[i].bits = bits;
936 pDimensionDefinitions[i].zones = 0x01 << bits; // = pow(2,bits)
937 pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||
938 dimension == dimension_samplechannel) ? split_type_bit
939 : split_type_normal;
940 pDimensionDefinitions[i].ranges = NULL; // it's not possible to check velocity dimensions for custom defined ranges at this point
941 pDimensionDefinitions[i].zone_size =
942 (pDimensionDefinitions[i].split_type == split_type_normal) ? 128 / pDimensionDefinitions[i].zones
943 : 0;
944 Dimensions++;
945 }
946 _3lnk->SetPos(6, RIFF::stream_curpos); // jump forward to next dimension definition
947 }
948
949 // check velocity dimension (if there is one) for custom defined zone ranges
950 for (uint i = 0; i < Dimensions; i++) {
951 dimension_def_t* pDimDef = pDimensionDefinitions + i;
952 if (pDimDef->dimension == dimension_velocity) {
953 if (pDimensionRegions[0]->VelocityUpperLimit == 0) {
954 // no custom defined ranges
955 pDimDef->split_type = split_type_normal;
956 pDimDef->ranges = NULL;
957 }
958 else { // custom defined ranges
959 pDimDef->split_type = split_type_customvelocity;
960 pDimDef->ranges = new range_t[pDimDef->zones];
961 unsigned int bits[5] = {0,0,0,0,0};
962 int previousUpperLimit = -1;
963 for (int velocityZone = 0; velocityZone < pDimDef->zones; velocityZone++) {
964 bits[i] = velocityZone;
965 DimensionRegion* pDimRegion = GetDimensionRegionByBit(bits[4],bits[3],bits[2],bits[1],bits[0]);
966
967 pDimDef->ranges[velocityZone].low = previousUpperLimit + 1;
968 pDimDef->ranges[velocityZone].high = pDimRegion->VelocityUpperLimit;
969 previousUpperLimit = pDimDef->ranges[velocityZone].high;
970 // fill velocity table
971 for (int i = pDimDef->ranges[velocityZone].low; i <= pDimDef->ranges[velocityZone].high; i++) {
972 VelocityTable[i] = velocityZone;
973 }
974 }
975 }
976 }
977 }
978
979 // load sample references
980 _3lnk->SetPos(44); // jump to start of the wave pool indices (if not already there)
981 for (uint i = 0; i < DimensionRegions; i++) {
982 uint32_t wavepoolindex = _3lnk->ReadUint32();
983 pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
984 }
985 }
986 else throw gig::Exception("Mandatory <3lnk> chunk not found.");
987 }
988
989 void Region::LoadDimensionRegions(RIFF::List* rgn) {
990 RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
991 if (_3prg) {
992 int dimensionRegionNr = 0;
993 RIFF::List* _3ewl = _3prg->GetFirstSubList();
994 while (_3ewl) {
995 if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
996 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);
997 dimensionRegionNr++;
998 }
999 _3ewl = _3prg->GetNextSubList();
1000 }
1001 if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
1002 }
1003 }
1004
1005 Region::~Region() {
1006 for (uint i = 0; i < Dimensions; i++) {
1007 if (pDimensionDefinitions[i].ranges) delete[] pDimensionDefinitions[i].ranges;
1008 }
1009 for (int i = 0; i < 32; i++) {
1010 if (pDimensionRegions[i]) delete pDimensionRegions[i];
1011 }
1012 }
1013
1014 /**
1015 * Use this method in your audio engine to get the appropriate dimension
1016 * region with it's articulation data for the current situation. Just
1017 * call the method with the current MIDI controller values and you'll get
1018 * the DimensionRegion with the appropriate articulation data for the
1019 * current situation (for this Region of course only). To do that you'll
1020 * first have to look which dimensions with which controllers and in
1021 * which order are defined for this Region when you load the .gig file.
1022 * Special cases are e.g. layer or channel dimensions where you just put
1023 * in the index numbers instead of a MIDI controller value (means 0 for
1024 * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
1025 * etc.).
1026 *
1027 * @param Dim4Val MIDI controller value (0-127) for dimension 4
1028 * @param Dim3Val MIDI controller value (0-127) for dimension 3
1029 * @param Dim2Val MIDI controller value (0-127) for dimension 2
1030 * @param Dim1Val MIDI controller value (0-127) for dimension 1
1031 * @param Dim0Val MIDI controller value (0-127) for dimension 0
1032 * @returns adress to the DimensionRegion for the given situation
1033 * @see pDimensionDefinitions
1034 * @see Dimensions
1035 */
1036 DimensionRegion* Region::GetDimensionRegionByValue(uint Dim4Val, uint Dim3Val, uint Dim2Val, uint Dim1Val, uint Dim0Val) {
1037 unsigned int bits[5] = {Dim0Val,Dim1Val,Dim2Val,Dim3Val,Dim4Val};
1038 for (uint i = 0; i < Dimensions; i++) {
1039 switch (pDimensionDefinitions[i].split_type) {
1040 case split_type_normal:
1041 bits[i] /= pDimensionDefinitions[i].zone_size;
1042 break;
1043 case split_type_customvelocity:
1044 bits[i] = VelocityTable[bits[i]];
1045 break;
1046 // else the value is already the sought dimension bit number
1047 }
1048 }
1049 return GetDimensionRegionByBit(bits[4],bits[3],bits[2],bits[1],bits[0]);
1050 }
1051
1052 /**
1053 * Returns the appropriate DimensionRegion for the given dimension bit
1054 * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
1055 * instead of calling this method directly!
1056 *
1057 * @param Dim4Bit Bit number for dimension 4
1058 * @param Dim3Bit Bit number for dimension 3
1059 * @param Dim2Bit Bit number for dimension 2
1060 * @param Dim1Bit Bit number for dimension 1
1061 * @param Dim0Bit Bit number for dimension 0
1062 * @returns adress to the DimensionRegion for the given dimension
1063 * bit numbers
1064 * @see GetDimensionRegionByValue()
1065 */
1066 DimensionRegion* Region::GetDimensionRegionByBit(uint8_t Dim4Bit, uint8_t Dim3Bit, uint8_t Dim2Bit, uint8_t Dim1Bit, uint8_t Dim0Bit) {
1067 return *(pDimensionRegions + ((((((((Dim4Bit << pDimensionDefinitions[3].bits) | Dim3Bit)
1068 << pDimensionDefinitions[2].bits) | Dim2Bit)
1069 << pDimensionDefinitions[1].bits) | Dim1Bit)
1070 << pDimensionDefinitions[0].bits) | Dim0Bit) );
1071 }
1072
1073 /**
1074 * Returns pointer address to the Sample referenced with this region.
1075 * This is the global Sample for the entire Region (not sure if this is
1076 * actually used by the Gigasampler engine - I would only use the Sample
1077 * referenced by the appropriate DimensionRegion instead of this sample).
1078 *
1079 * @returns address to Sample or NULL if there is no reference to a
1080 * sample saved in the .gig file
1081 */
1082 Sample* Region::GetSample() {
1083 if (pSample) return static_cast<gig::Sample*>(pSample);
1084 else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
1085 }
1086
1087 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex) {
1088 File* file = (File*) GetParent()->GetParent();
1089 unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
1090 Sample* sample = file->GetFirstSample();
1091 while (sample) {
1092 if (sample->ulWavePoolOffset == soughtoffset) return static_cast<gig::Sample*>(pSample = sample);
1093 sample = file->GetNextSample();
1094 }
1095 return NULL;
1096 }
1097
1098
1099
1100 // *************** Instrument ***************
1101 // *
1102
1103 Instrument::Instrument(File* pFile, RIFF::List* insList) : DLS::Instrument((DLS::File*)pFile, insList) {
1104 // Initialization
1105 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
1106 RegionIndex = -1;
1107
1108 // Loading
1109 RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
1110 if (lart) {
1111 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
1112 if (_3ewg) {
1113 EffectSend = _3ewg->ReadUint16();
1114 Attenuation = _3ewg->ReadInt32();
1115 FineTune = _3ewg->ReadInt16();
1116 PitchbendRange = _3ewg->ReadInt16();
1117 uint8_t dimkeystart = _3ewg->ReadUint8();
1118 PianoReleaseMode = dimkeystart & 0x01;
1119 DimensionKeyRange.low = dimkeystart >> 1;
1120 DimensionKeyRange.high = _3ewg->ReadUint8();
1121 }
1122 else throw gig::Exception("Mandatory <3ewg> chunk not found.");
1123 }
1124 else throw gig::Exception("Mandatory <lart> list chunk not found.");
1125
1126 RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
1127 if (!lrgn) throw gig::Exception("Mandatory chunks in <ins > chunk not found.");
1128 pRegions = new Region*[Regions];
1129 RIFF::List* rgn = lrgn->GetFirstSubList();
1130 unsigned int iRegion = 0;
1131 while (rgn) {
1132 if (rgn->GetListType() == LIST_TYPE_RGN) {
1133 pRegions[iRegion] = new Region(this, rgn);
1134 iRegion++;
1135 }
1136 rgn = lrgn->GetNextSubList();
1137 }
1138
1139 // Creating Region Key Table for fast lookup
1140 for (uint iReg = 0; iReg < Regions; iReg++) {
1141 for (int iKey = pRegions[iReg]->KeyRange.low; iKey <= pRegions[iReg]->KeyRange.high; iKey++) {
1142 RegionKeyTable[iKey] = pRegions[iReg];
1143 }
1144 }
1145 }
1146
1147 Instrument::~Instrument() {
1148 for (uint i = 0; i < Regions; i++) {
1149 if (pRegions) {
1150 if (pRegions[i]) delete (pRegions[i]);
1151 }
1152 delete[] pRegions;
1153 }
1154 }
1155
1156 /**
1157 * Returns the appropriate Region for a triggered note.
1158 *
1159 * @param Key MIDI Key number of triggered note / key (0 - 127)
1160 * @returns pointer adress to the appropriate Region or NULL if there
1161 * there is no Region defined for the given \a Key
1162 */
1163 Region* Instrument::GetRegion(unsigned int Key) {
1164 if (!pRegions || Key > 127) return NULL;
1165 return RegionKeyTable[Key];
1166 /*for (int i = 0; i < Regions; i++) {
1167 if (Key <= pRegions[i]->KeyRange.high &&
1168 Key >= pRegions[i]->KeyRange.low) return pRegions[i];
1169 }
1170 return NULL;*/
1171 }
1172
1173 /**
1174 * Returns the first Region of the instrument. You have to call this
1175 * method once before you use GetNextRegion().
1176 *
1177 * @returns pointer address to first region or NULL if there is none
1178 * @see GetNextRegion()
1179 */
1180 Region* Instrument::GetFirstRegion() {
1181 if (!Regions) return NULL;
1182 RegionIndex = 1;
1183 return pRegions[0];
1184 }
1185
1186 /**
1187 * Returns the next Region of the instrument. You have to call
1188 * GetFirstRegion() once before you can use this method. By calling this
1189 * method multiple times it iterates through the available Regions.
1190 *
1191 * @returns pointer address to the next region or NULL if end reached
1192 * @see GetFirstRegion()
1193 */
1194 Region* Instrument::GetNextRegion() {
1195 if (RegionIndex < 0 || RegionIndex >= Regions) return NULL;
1196 return pRegions[RegionIndex++];
1197 }
1198
1199
1200
1201 // *************** File ***************
1202 // *
1203
1204 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
1205 pSamples = NULL;
1206 pInstruments = NULL;
1207 }
1208
1209 Sample* File::GetFirstSample() {
1210 if (!pSamples) LoadSamples();
1211 if (!pSamples) return NULL;
1212 SamplesIterator = pSamples->begin();
1213 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
1214 }
1215
1216 Sample* File::GetNextSample() {
1217 if (!pSamples) return NULL;
1218 SamplesIterator++;
1219 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
1220 }
1221
1222 void File::LoadSamples() {
1223 RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
1224 if (wvpl) {
1225 unsigned long wvplFileOffset = wvpl->GetFilePos();
1226 RIFF::List* wave = wvpl->GetFirstSubList();
1227 while (wave) {
1228 if (wave->GetListType() == LIST_TYPE_WAVE) {
1229 if (!pSamples) pSamples = new SampleList;
1230 unsigned long waveFileOffset = wave->GetFilePos();
1231 pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset));
1232 }
1233 wave = wvpl->GetNextSubList();
1234 }
1235 }
1236 else throw gig::Exception("Mandatory <wvpl> chunk not found.");
1237 }
1238
1239 Instrument* File::GetFirstInstrument() {
1240 if (!pInstruments) LoadInstruments();
1241 if (!pInstruments) return NULL;
1242 InstrumentsIterator = pInstruments->begin();
1243 return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;
1244 }
1245
1246 Instrument* File::GetNextInstrument() {
1247 if (!pInstruments) return NULL;
1248 InstrumentsIterator++;
1249 return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;
1250 }
1251
1252 /**
1253 * Returns the instrument with the given index.
1254 *
1255 * @returns sought instrument or NULL if there's no such instrument
1256 */
1257 Instrument* File::GetInstrument(uint index) {
1258 if (!pInstruments) LoadInstruments();
1259 if (!pInstruments) return NULL;
1260 InstrumentsIterator = pInstruments->begin();
1261 for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
1262 if (i == index) return *InstrumentsIterator;
1263 InstrumentsIterator++;
1264 }
1265 return NULL;
1266 }
1267
1268 void File::LoadInstruments() {
1269 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
1270 if (lstInstruments) {
1271 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
1272 while (lstInstr) {
1273 if (lstInstr->GetListType() == LIST_TYPE_INS) {
1274 if (!pInstruments) pInstruments = new InstrumentList;
1275 pInstruments->push_back(new Instrument(this, lstInstr));
1276 }
1277 lstInstr = lstInstruments->GetNextSubList();
1278 }
1279 }
1280 else throw gig::Exception("Mandatory <lins> list chunk not found.");
1281 }
1282
1283
1284
1285 // *************** Exception ***************
1286 // *
1287
1288 Exception::Exception(String Message) : DLS::Exception(Message) {
1289 }
1290
1291 void Exception::PrintMessage() {
1292 std::cout << "gig::Exception: " << Message << std::endl;
1293 }
1294
1295 } // namespace gig

  ViewVC Help
Powered by ViewVC