/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Contents of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3115 - (show annotations) (download)
Sat Apr 15 20:17:05 2017 UTC (6 years, 11 months ago) by schoenebeck
File size: 277249 byte(s)
* src/gig.cpp: Fixed CRC checksums being wrong sometimes.
* src/tools/gig2stereo.cpp: Also merge mono sample pairs
  with non matching loop information if argument
  "--incompatible" was given.
* Bumped version (4.0.0.svn13).

1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file access library *
4 * *
5 * Copyright (C) 2003-2016 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #include "gig.h"
25
26 #include "helper.h"
27
28 #include <algorithm>
29 #include <math.h>
30 #include <iostream>
31 #include <assert.h>
32
33 /// libgig's current file format version (for extending the original Giga file
34 /// format with libgig's own custom data / custom features).
35 #define GIG_FILE_EXT_VERSION 2
36
37 /// Initial size of the sample buffer which is used for decompression of
38 /// compressed sample wave streams - this value should always be bigger than
39 /// the biggest sample piece expected to be read by the sampler engine,
40 /// otherwise the buffer size will be raised at runtime and thus the buffer
41 /// reallocated which is time consuming and unefficient.
42 #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
43
44 /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
45 #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
46 #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
47 #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
48 #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
49 #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
50 #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
51 #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
52 #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
53 #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
54 #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
55 #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
56 #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
57
58 namespace gig {
59
60 // *************** Internal functions for sample decompression ***************
61 // *
62
63 namespace {
64
65 inline int get12lo(const unsigned char* pSrc)
66 {
67 const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
68 return x & 0x800 ? x - 0x1000 : x;
69 }
70
71 inline int get12hi(const unsigned char* pSrc)
72 {
73 const int x = pSrc[1] >> 4 | pSrc[2] << 4;
74 return x & 0x800 ? x - 0x1000 : x;
75 }
76
77 inline int16_t get16(const unsigned char* pSrc)
78 {
79 return int16_t(pSrc[0] | pSrc[1] << 8);
80 }
81
82 inline int get24(const unsigned char* pSrc)
83 {
84 const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
85 return x & 0x800000 ? x - 0x1000000 : x;
86 }
87
88 inline void store24(unsigned char* pDst, int x)
89 {
90 pDst[0] = x;
91 pDst[1] = x >> 8;
92 pDst[2] = x >> 16;
93 }
94
95 void Decompress16(int compressionmode, const unsigned char* params,
96 int srcStep, int dstStep,
97 const unsigned char* pSrc, int16_t* pDst,
98 file_offset_t currentframeoffset,
99 file_offset_t copysamples)
100 {
101 switch (compressionmode) {
102 case 0: // 16 bit uncompressed
103 pSrc += currentframeoffset * srcStep;
104 while (copysamples) {
105 *pDst = get16(pSrc);
106 pDst += dstStep;
107 pSrc += srcStep;
108 copysamples--;
109 }
110 break;
111
112 case 1: // 16 bit compressed to 8 bit
113 int y = get16(params);
114 int dy = get16(params + 2);
115 while (currentframeoffset) {
116 dy -= int8_t(*pSrc);
117 y -= dy;
118 pSrc += srcStep;
119 currentframeoffset--;
120 }
121 while (copysamples) {
122 dy -= int8_t(*pSrc);
123 y -= dy;
124 *pDst = y;
125 pDst += dstStep;
126 pSrc += srcStep;
127 copysamples--;
128 }
129 break;
130 }
131 }
132
133 void Decompress24(int compressionmode, const unsigned char* params,
134 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
135 file_offset_t currentframeoffset,
136 file_offset_t copysamples, int truncatedBits)
137 {
138 int y, dy, ddy, dddy;
139
140 #define GET_PARAMS(params) \
141 y = get24(params); \
142 dy = y - get24((params) + 3); \
143 ddy = get24((params) + 6); \
144 dddy = get24((params) + 9)
145
146 #define SKIP_ONE(x) \
147 dddy -= (x); \
148 ddy -= dddy; \
149 dy = -dy - ddy; \
150 y += dy
151
152 #define COPY_ONE(x) \
153 SKIP_ONE(x); \
154 store24(pDst, y << truncatedBits); \
155 pDst += dstStep
156
157 switch (compressionmode) {
158 case 2: // 24 bit uncompressed
159 pSrc += currentframeoffset * 3;
160 while (copysamples) {
161 store24(pDst, get24(pSrc) << truncatedBits);
162 pDst += dstStep;
163 pSrc += 3;
164 copysamples--;
165 }
166 break;
167
168 case 3: // 24 bit compressed to 16 bit
169 GET_PARAMS(params);
170 while (currentframeoffset) {
171 SKIP_ONE(get16(pSrc));
172 pSrc += 2;
173 currentframeoffset--;
174 }
175 while (copysamples) {
176 COPY_ONE(get16(pSrc));
177 pSrc += 2;
178 copysamples--;
179 }
180 break;
181
182 case 4: // 24 bit compressed to 12 bit
183 GET_PARAMS(params);
184 while (currentframeoffset > 1) {
185 SKIP_ONE(get12lo(pSrc));
186 SKIP_ONE(get12hi(pSrc));
187 pSrc += 3;
188 currentframeoffset -= 2;
189 }
190 if (currentframeoffset) {
191 SKIP_ONE(get12lo(pSrc));
192 currentframeoffset--;
193 if (copysamples) {
194 COPY_ONE(get12hi(pSrc));
195 pSrc += 3;
196 copysamples--;
197 }
198 }
199 while (copysamples > 1) {
200 COPY_ONE(get12lo(pSrc));
201 COPY_ONE(get12hi(pSrc));
202 pSrc += 3;
203 copysamples -= 2;
204 }
205 if (copysamples) {
206 COPY_ONE(get12lo(pSrc));
207 }
208 break;
209
210 case 5: // 24 bit compressed to 8 bit
211 GET_PARAMS(params);
212 while (currentframeoffset) {
213 SKIP_ONE(int8_t(*pSrc++));
214 currentframeoffset--;
215 }
216 while (copysamples) {
217 COPY_ONE(int8_t(*pSrc++));
218 copysamples--;
219 }
220 break;
221 }
222 }
223
224 const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
225 const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
226 const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
227 const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
228 }
229
230
231
232 // *************** Internal CRC-32 (Cyclic Redundancy Check) functions ***************
233 // *
234
235 static uint32_t* __initCRCTable() {
236 static uint32_t res[256];
237
238 for (int i = 0 ; i < 256 ; i++) {
239 uint32_t c = i;
240 for (int j = 0 ; j < 8 ; j++) {
241 c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
242 }
243 res[i] = c;
244 }
245 return res;
246 }
247
248 static const uint32_t* __CRCTable = __initCRCTable();
249
250 /**
251 * Initialize a CRC variable.
252 *
253 * @param crc - variable to be initialized
254 */
255 inline static void __resetCRC(uint32_t& crc) {
256 crc = 0xffffffff;
257 }
258
259 /**
260 * Used to calculate checksums of the sample data in a gig file. The
261 * checksums are stored in the 3crc chunk of the gig file and
262 * automatically updated when a sample is written with Sample::Write().
263 *
264 * One should call __resetCRC() to initialize the CRC variable to be
265 * used before calling this function the first time.
266 *
267 * After initializing the CRC variable one can call this function
268 * arbitrary times, i.e. to split the overall CRC calculation into
269 * steps.
270 *
271 * Once the whole data was processed by __calculateCRC(), one should
272 * call __finalizeCRC() to get the final CRC result.
273 *
274 * @param buf - pointer to data the CRC shall be calculated of
275 * @param bufSize - size of the data to be processed
276 * @param crc - variable the CRC sum shall be stored to
277 */
278 static void __calculateCRC(unsigned char* buf, size_t bufSize, uint32_t& crc) {
279 for (size_t i = 0 ; i < bufSize ; i++) {
280 crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
281 }
282 }
283
284 /**
285 * Returns the final CRC result.
286 *
287 * @param crc - variable previously passed to __calculateCRC()
288 */
289 inline static void __finalizeCRC(uint32_t& crc) {
290 crc ^= 0xffffffff;
291 }
292
293
294
295 // *************** Other Internal functions ***************
296 // *
297
298 static split_type_t __resolveSplitType(dimension_t dimension) {
299 return (
300 dimension == dimension_layer ||
301 dimension == dimension_samplechannel ||
302 dimension == dimension_releasetrigger ||
303 dimension == dimension_keyboard ||
304 dimension == dimension_roundrobin ||
305 dimension == dimension_random ||
306 dimension == dimension_smartmidi ||
307 dimension == dimension_roundrobinkeyboard
308 ) ? split_type_bit : split_type_normal;
309 }
310
311 static int __resolveZoneSize(dimension_def_t& dimension_definition) {
312 return (dimension_definition.split_type == split_type_normal)
313 ? int(128.0 / dimension_definition.zones) : 0;
314 }
315
316
317
318 // *************** Sample ***************
319 // *
320
321 size_t Sample::Instances = 0;
322 buffer_t Sample::InternalDecompressionBuffer;
323
324 /** @brief Constructor.
325 *
326 * Load an existing sample or create a new one. A 'wave' list chunk must
327 * be given to this constructor. In case the given 'wave' list chunk
328 * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
329 * format and sample data will be loaded from there, otherwise default
330 * values will be used and those chunks will be created when
331 * File::Save() will be called later on.
332 *
333 * @param pFile - pointer to gig::File where this sample is
334 * located (or will be located)
335 * @param waveList - pointer to 'wave' list chunk which is (or
336 * will be) associated with this sample
337 * @param WavePoolOffset - offset of this sample data from wave pool
338 * ('wvpl') list chunk
339 * @param fileNo - number of an extension file where this sample
340 * is located, 0 otherwise
341 * @param index - wave pool index of sample (may be -1 on new sample)
342 */
343 Sample::Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo, int index)
344 : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset)
345 {
346 static const DLS::Info::string_length_t fixedStringLengths[] = {
347 { CHUNK_ID_INAM, 64 },
348 { 0, 0 }
349 };
350 pInfo->SetFixedStringLengths(fixedStringLengths);
351 Instances++;
352 FileNo = fileNo;
353
354 __resetCRC(crc);
355 // if this is not a new sample, try to get the sample's already existing
356 // CRC32 checksum from disk, this checksum will reflect the sample's CRC32
357 // checksum of the time when the sample was consciously modified by the
358 // user for the last time (by calling Sample::Write() that is).
359 if (index >= 0) { // not a new file ...
360 try {
361 uint32_t crc = pFile->GetSampleChecksumByIndex(index);
362 this->crc = crc;
363 } catch (...) {}
364 }
365
366 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
367 if (pCk3gix) {
368 uint16_t iSampleGroup = pCk3gix->ReadInt16();
369 pGroup = pFile->GetGroup(iSampleGroup);
370 } else { // '3gix' chunk missing
371 // by default assigned to that mandatory "Default Group"
372 pGroup = pFile->GetGroup(0);
373 }
374
375 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
376 if (pCkSmpl) {
377 Manufacturer = pCkSmpl->ReadInt32();
378 Product = pCkSmpl->ReadInt32();
379 SamplePeriod = pCkSmpl->ReadInt32();
380 MIDIUnityNote = pCkSmpl->ReadInt32();
381 FineTune = pCkSmpl->ReadInt32();
382 pCkSmpl->Read(&SMPTEFormat, 1, 4);
383 SMPTEOffset = pCkSmpl->ReadInt32();
384 Loops = pCkSmpl->ReadInt32();
385 pCkSmpl->ReadInt32(); // manufByt
386 LoopID = pCkSmpl->ReadInt32();
387 pCkSmpl->Read(&LoopType, 1, 4);
388 LoopStart = pCkSmpl->ReadInt32();
389 LoopEnd = pCkSmpl->ReadInt32();
390 LoopFraction = pCkSmpl->ReadInt32();
391 LoopPlayCount = pCkSmpl->ReadInt32();
392 } else { // 'smpl' chunk missing
393 // use default values
394 Manufacturer = 0;
395 Product = 0;
396 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
397 MIDIUnityNote = 60;
398 FineTune = 0;
399 SMPTEFormat = smpte_format_no_offset;
400 SMPTEOffset = 0;
401 Loops = 0;
402 LoopID = 0;
403 LoopType = loop_type_normal;
404 LoopStart = 0;
405 LoopEnd = 0;
406 LoopFraction = 0;
407 LoopPlayCount = 0;
408 }
409
410 FrameTable = NULL;
411 SamplePos = 0;
412 RAMCache.Size = 0;
413 RAMCache.pStart = NULL;
414 RAMCache.NullExtensionSize = 0;
415
416 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
417
418 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
419 Compressed = ewav;
420 Dithered = false;
421 TruncatedBits = 0;
422 if (Compressed) {
423 uint32_t version = ewav->ReadInt32();
424 if (version == 3 && BitDepth == 24) {
425 Dithered = ewav->ReadInt32();
426 ewav->SetPos(Channels == 2 ? 84 : 64);
427 TruncatedBits = ewav->ReadInt32();
428 }
429 ScanCompressedSample();
430 }
431
432 // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
433 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
434 InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
435 InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
436 }
437 FrameOffset = 0; // just for streaming compressed samples
438
439 LoopSize = LoopEnd - LoopStart + 1;
440 }
441
442 /**
443 * Make a (semi) deep copy of the Sample object given by @a orig (without
444 * the actual waveform data) and assign it to this object.
445 *
446 * Discussion: copying .gig samples is a bit tricky. It requires three
447 * steps:
448 * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
449 * its new sample waveform data size.
450 * 2. Saving the file (done by File::Save()) so that it gains correct size
451 * and layout for writing the actual wave form data directly to disc
452 * in next step.
453 * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
454 *
455 * @param orig - original Sample object to be copied from
456 */
457 void Sample::CopyAssignMeta(const Sample* orig) {
458 // handle base classes
459 DLS::Sample::CopyAssignCore(orig);
460
461 // handle actual own attributes of this class
462 Manufacturer = orig->Manufacturer;
463 Product = orig->Product;
464 SamplePeriod = orig->SamplePeriod;
465 MIDIUnityNote = orig->MIDIUnityNote;
466 FineTune = orig->FineTune;
467 SMPTEFormat = orig->SMPTEFormat;
468 SMPTEOffset = orig->SMPTEOffset;
469 Loops = orig->Loops;
470 LoopID = orig->LoopID;
471 LoopType = orig->LoopType;
472 LoopStart = orig->LoopStart;
473 LoopEnd = orig->LoopEnd;
474 LoopSize = orig->LoopSize;
475 LoopFraction = orig->LoopFraction;
476 LoopPlayCount = orig->LoopPlayCount;
477
478 // schedule resizing this sample to the given sample's size
479 Resize(orig->GetSize());
480 }
481
482 /**
483 * Should be called after CopyAssignMeta() and File::Save() sequence.
484 * Read more about it in the discussion of CopyAssignMeta(). This method
485 * copies the actual waveform data by disk streaming.
486 *
487 * @e CAUTION: this method is currently not thread safe! During this
488 * operation the sample must not be used for other purposes by other
489 * threads!
490 *
491 * @param orig - original Sample object to be copied from
492 */
493 void Sample::CopyAssignWave(const Sample* orig) {
494 const int iReadAtOnce = 32*1024;
495 char* buf = new char[iReadAtOnce * orig->FrameSize];
496 Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
497 file_offset_t restorePos = pOrig->GetPos();
498 pOrig->SetPos(0);
499 SetPos(0);
500 for (file_offset_t n = pOrig->Read(buf, iReadAtOnce); n;
501 n = pOrig->Read(buf, iReadAtOnce))
502 {
503 Write(buf, n);
504 }
505 pOrig->SetPos(restorePos);
506 delete [] buf;
507 }
508
509 /**
510 * Apply sample and its settings to the respective RIFF chunks. You have
511 * to call File::Save() to make changes persistent.
512 *
513 * Usually there is absolutely no need to call this method explicitly.
514 * It will be called automatically when File::Save() was called.
515 *
516 * @param pProgress - callback function for progress notification
517 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
518 * was provided yet
519 * @throws gig::Exception if there is any invalid sample setting
520 */
521 void Sample::UpdateChunks(progress_t* pProgress) {
522 // first update base class's chunks
523 DLS::Sample::UpdateChunks(pProgress);
524
525 // make sure 'smpl' chunk exists
526 pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
527 if (!pCkSmpl) {
528 pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
529 memset(pCkSmpl->LoadChunkData(), 0, 60);
530 }
531 // update 'smpl' chunk
532 uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
533 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
534 store32(&pData[0], Manufacturer);
535 store32(&pData[4], Product);
536 store32(&pData[8], SamplePeriod);
537 store32(&pData[12], MIDIUnityNote);
538 store32(&pData[16], FineTune);
539 store32(&pData[20], SMPTEFormat);
540 store32(&pData[24], SMPTEOffset);
541 store32(&pData[28], Loops);
542
543 // we skip 'manufByt' for now (4 bytes)
544
545 store32(&pData[36], LoopID);
546 store32(&pData[40], LoopType);
547 store32(&pData[44], LoopStart);
548 store32(&pData[48], LoopEnd);
549 store32(&pData[52], LoopFraction);
550 store32(&pData[56], LoopPlayCount);
551
552 // make sure '3gix' chunk exists
553 pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
554 if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
555 // determine appropriate sample group index (to be stored in chunk)
556 uint16_t iSampleGroup = 0; // 0 refers to default sample group
557 File* pFile = static_cast<File*>(pParent);
558 if (pFile->pGroups) {
559 std::list<Group*>::iterator iter = pFile->pGroups->begin();
560 std::list<Group*>::iterator end = pFile->pGroups->end();
561 for (int i = 0; iter != end; i++, iter++) {
562 if (*iter == pGroup) {
563 iSampleGroup = i;
564 break; // found
565 }
566 }
567 }
568 // update '3gix' chunk
569 pData = (uint8_t*) pCk3gix->LoadChunkData();
570 store16(&pData[0], iSampleGroup);
571
572 // if the library user toggled the "Compressed" attribute from true to
573 // false, then the EWAV chunk associated with compressed samples needs
574 // to be deleted
575 RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
576 if (ewav && !Compressed) {
577 pWaveList->DeleteSubChunk(ewav);
578 }
579 }
580
581 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
582 void Sample::ScanCompressedSample() {
583 //TODO: we have to add some more scans here (e.g. determine compression rate)
584 this->SamplesTotal = 0;
585 std::list<file_offset_t> frameOffsets;
586
587 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
588 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
589
590 // Scanning
591 pCkData->SetPos(0);
592 if (Channels == 2) { // Stereo
593 for (int i = 0 ; ; i++) {
594 // for 24 bit samples every 8:th frame offset is
595 // stored, to save some memory
596 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
597
598 const int mode_l = pCkData->ReadUint8();
599 const int mode_r = pCkData->ReadUint8();
600 if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
601 const file_offset_t frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
602
603 if (pCkData->RemainingBytes() <= frameSize) {
604 SamplesInLastFrame =
605 ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
606 (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
607 SamplesTotal += SamplesInLastFrame;
608 break;
609 }
610 SamplesTotal += SamplesPerFrame;
611 pCkData->SetPos(frameSize, RIFF::stream_curpos);
612 }
613 }
614 else { // Mono
615 for (int i = 0 ; ; i++) {
616 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
617
618 const int mode = pCkData->ReadUint8();
619 if (mode > 5) throw gig::Exception("Unknown compression mode");
620 const file_offset_t frameSize = bytesPerFrame[mode];
621
622 if (pCkData->RemainingBytes() <= frameSize) {
623 SamplesInLastFrame =
624 ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
625 SamplesTotal += SamplesInLastFrame;
626 break;
627 }
628 SamplesTotal += SamplesPerFrame;
629 pCkData->SetPos(frameSize, RIFF::stream_curpos);
630 }
631 }
632 pCkData->SetPos(0);
633
634 // Build the frames table (which is used for fast resolving of a frame's chunk offset)
635 if (FrameTable) delete[] FrameTable;
636 FrameTable = new file_offset_t[frameOffsets.size()];
637 std::list<file_offset_t>::iterator end = frameOffsets.end();
638 std::list<file_offset_t>::iterator iter = frameOffsets.begin();
639 for (int i = 0; iter != end; i++, iter++) {
640 FrameTable[i] = *iter;
641 }
642 }
643
644 /**
645 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
646 * ReleaseSampleData() to free the memory if you don't need the cached
647 * sample data anymore.
648 *
649 * @returns buffer_t structure with start address and size of the buffer
650 * in bytes
651 * @see ReleaseSampleData(), Read(), SetPos()
652 */
653 buffer_t Sample::LoadSampleData() {
654 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
655 }
656
657 /**
658 * Reads (uncompresses if needed) and caches the first \a SampleCount
659 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
660 * memory space if you don't need the cached samples anymore. There is no
661 * guarantee that exactly \a SampleCount samples will be cached; this is
662 * not an error. The size will be eventually truncated e.g. to the
663 * beginning of a frame of a compressed sample. This is done for
664 * efficiency reasons while streaming the wave by your sampler engine
665 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
666 * that will be returned to determine the actual cached samples, but note
667 * that the size is given in bytes! You get the number of actually cached
668 * samples by dividing it by the frame size of the sample:
669 * @code
670 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
671 * long cachedsamples = buf.Size / pSample->FrameSize;
672 * @endcode
673 *
674 * @param SampleCount - number of sample points to load into RAM
675 * @returns buffer_t structure with start address and size of
676 * the cached sample data in bytes
677 * @see ReleaseSampleData(), Read(), SetPos()
678 */
679 buffer_t Sample::LoadSampleData(file_offset_t SampleCount) {
680 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
681 }
682
683 /**
684 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
685 * ReleaseSampleData() to free the memory if you don't need the cached
686 * sample data anymore.
687 * The method will add \a NullSamplesCount silence samples past the
688 * official buffer end (this won't affect the 'Size' member of the
689 * buffer_t structure, that means 'Size' always reflects the size of the
690 * actual sample data, the buffer might be bigger though). Silence
691 * samples past the official buffer are needed for differential
692 * algorithms that always have to take subsequent samples into account
693 * (resampling/interpolation would be an important example) and avoids
694 * memory access faults in such cases.
695 *
696 * @param NullSamplesCount - number of silence samples the buffer should
697 * be extended past it's data end
698 * @returns buffer_t structure with start address and
699 * size of the buffer in bytes
700 * @see ReleaseSampleData(), Read(), SetPos()
701 */
702 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
703 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
704 }
705
706 /**
707 * Reads (uncompresses if needed) and caches the first \a SampleCount
708 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
709 * memory space if you don't need the cached samples anymore. There is no
710 * guarantee that exactly \a SampleCount samples will be cached; this is
711 * not an error. The size will be eventually truncated e.g. to the
712 * beginning of a frame of a compressed sample. This is done for
713 * efficiency reasons while streaming the wave by your sampler engine
714 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
715 * that will be returned to determine the actual cached samples, but note
716 * that the size is given in bytes! You get the number of actually cached
717 * samples by dividing it by the frame size of the sample:
718 * @code
719 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
720 * long cachedsamples = buf.Size / pSample->FrameSize;
721 * @endcode
722 * The method will add \a NullSamplesCount silence samples past the
723 * official buffer end (this won't affect the 'Size' member of the
724 * buffer_t structure, that means 'Size' always reflects the size of the
725 * actual sample data, the buffer might be bigger though). Silence
726 * samples past the official buffer are needed for differential
727 * algorithms that always have to take subsequent samples into account
728 * (resampling/interpolation would be an important example) and avoids
729 * memory access faults in such cases.
730 *
731 * @param SampleCount - number of sample points to load into RAM
732 * @param NullSamplesCount - number of silence samples the buffer should
733 * be extended past it's data end
734 * @returns buffer_t structure with start address and
735 * size of the cached sample data in bytes
736 * @see ReleaseSampleData(), Read(), SetPos()
737 */
738 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount) {
739 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
740 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
741 file_offset_t allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
742 SetPos(0); // reset read position to begin of sample
743 RAMCache.pStart = new int8_t[allocationsize];
744 RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
745 RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
746 // fill the remaining buffer space with silence samples
747 memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
748 return GetCache();
749 }
750
751 /**
752 * Returns current cached sample points. A buffer_t structure will be
753 * returned which contains address pointer to the begin of the cache and
754 * the size of the cached sample data in bytes. Use
755 * <i>LoadSampleData()</i> to cache a specific amount of sample points in
756 * RAM.
757 *
758 * @returns buffer_t structure with current cached sample points
759 * @see LoadSampleData();
760 */
761 buffer_t Sample::GetCache() {
762 // return a copy of the buffer_t structure
763 buffer_t result;
764 result.Size = this->RAMCache.Size;
765 result.pStart = this->RAMCache.pStart;
766 result.NullExtensionSize = this->RAMCache.NullExtensionSize;
767 return result;
768 }
769
770 /**
771 * Frees the cached sample from RAM if loaded with
772 * <i>LoadSampleData()</i> previously.
773 *
774 * @see LoadSampleData();
775 */
776 void Sample::ReleaseSampleData() {
777 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
778 RAMCache.pStart = NULL;
779 RAMCache.Size = 0;
780 RAMCache.NullExtensionSize = 0;
781 }
782
783 /** @brief Resize sample.
784 *
785 * Resizes the sample's wave form data, that is the actual size of
786 * sample wave data possible to be written for this sample. This call
787 * will return immediately and just schedule the resize operation. You
788 * should call File::Save() to actually perform the resize operation(s)
789 * "physically" to the file. As this can take a while on large files, it
790 * is recommended to call Resize() first on all samples which have to be
791 * resized and finally to call File::Save() to perform all those resize
792 * operations in one rush.
793 *
794 * The actual size (in bytes) is dependant to the current FrameSize
795 * value. You may want to set FrameSize before calling Resize().
796 *
797 * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
798 * enlarged samples before calling File::Save() as this might exceed the
799 * current sample's boundary!
800 *
801 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
802 * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
803 * other formats will fail!
804 *
805 * @param NewSize - new sample wave data size in sample points (must be
806 * greater than zero)
807 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
808 * @throws DLS::Exception if \a NewSize is less than 1 or unrealistic large
809 * @throws gig::Exception if existing sample is compressed
810 * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
811 * DLS::Sample::FormatTag, File::Save()
812 */
813 void Sample::Resize(file_offset_t NewSize) {
814 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
815 DLS::Sample::Resize(NewSize);
816 }
817
818 /**
819 * Sets the position within the sample (in sample points, not in
820 * bytes). Use this method and <i>Read()</i> if you don't want to load
821 * the sample into RAM, thus for disk streaming.
822 *
823 * Although the original Gigasampler engine doesn't allow positioning
824 * within compressed samples, I decided to implement it. Even though
825 * the Gigasampler format doesn't allow to define loops for compressed
826 * samples at the moment, positioning within compressed samples might be
827 * interesting for some sampler engines though. The only drawback about
828 * my decision is that it takes longer to load compressed gig Files on
829 * startup, because it's neccessary to scan the samples for some
830 * mandatory informations. But I think as it doesn't affect the runtime
831 * efficiency, nobody will have a problem with that.
832 *
833 * @param SampleCount number of sample points to jump
834 * @param Whence optional: to which relation \a SampleCount refers
835 * to, if omited <i>RIFF::stream_start</i> is assumed
836 * @returns the new sample position
837 * @see Read()
838 */
839 file_offset_t Sample::SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence) {
840 if (Compressed) {
841 switch (Whence) {
842 case RIFF::stream_curpos:
843 this->SamplePos += SampleCount;
844 break;
845 case RIFF::stream_end:
846 this->SamplePos = this->SamplesTotal - 1 - SampleCount;
847 break;
848 case RIFF::stream_backward:
849 this->SamplePos -= SampleCount;
850 break;
851 case RIFF::stream_start: default:
852 this->SamplePos = SampleCount;
853 break;
854 }
855 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
856
857 file_offset_t frame = this->SamplePos / 2048; // to which frame to jump
858 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
859 pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
860 return this->SamplePos;
861 }
862 else { // not compressed
863 file_offset_t orderedBytes = SampleCount * this->FrameSize;
864 file_offset_t result = pCkData->SetPos(orderedBytes, Whence);
865 return (result == orderedBytes) ? SampleCount
866 : result / this->FrameSize;
867 }
868 }
869
870 /**
871 * Returns the current position in the sample (in sample points).
872 */
873 file_offset_t Sample::GetPos() const {
874 if (Compressed) return SamplePos;
875 else return pCkData->GetPos() / FrameSize;
876 }
877
878 /**
879 * Reads \a SampleCount number of sample points from the position stored
880 * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
881 * the position within the sample respectively, this method honors the
882 * looping informations of the sample (if any). The sample wave stream
883 * will be decompressed on the fly if using a compressed sample. Use this
884 * method if you don't want to load the sample into RAM, thus for disk
885 * streaming. All this methods needs to know to proceed with streaming
886 * for the next time you call this method is stored in \a pPlaybackState.
887 * You have to allocate and initialize the playback_state_t structure by
888 * yourself before you use it to stream a sample:
889 * @code
890 * gig::playback_state_t playbackstate;
891 * playbackstate.position = 0;
892 * playbackstate.reverse = false;
893 * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
894 * @endcode
895 * You don't have to take care of things like if there is actually a loop
896 * defined or if the current read position is located within a loop area.
897 * The method already handles such cases by itself.
898 *
899 * <b>Caution:</b> If you are using more than one streaming thread, you
900 * have to use an external decompression buffer for <b>EACH</b>
901 * streaming thread to avoid race conditions and crashes!
902 *
903 * @param pBuffer destination buffer
904 * @param SampleCount number of sample points to read
905 * @param pPlaybackState will be used to store and reload the playback
906 * state for the next ReadAndLoop() call
907 * @param pDimRgn dimension region with looping information
908 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
909 * @returns number of successfully read sample points
910 * @see CreateDecompressionBuffer()
911 */
912 file_offset_t Sample::ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState,
913 DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
914 file_offset_t samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
915 uint8_t* pDst = (uint8_t*) pBuffer;
916
917 SetPos(pPlaybackState->position); // recover position from the last time
918
919 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
920
921 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
922 const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
923
924 if (GetPos() <= loopEnd) {
925 switch (loop.LoopType) {
926
927 case loop_type_bidirectional: { //TODO: not tested yet!
928 do {
929 // if not endless loop check if max. number of loop cycles have been passed
930 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
931
932 if (!pPlaybackState->reverse) { // forward playback
933 do {
934 samplestoloopend = loopEnd - GetPos();
935 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
936 samplestoread -= readsamples;
937 totalreadsamples += readsamples;
938 if (readsamples == samplestoloopend) {
939 pPlaybackState->reverse = true;
940 break;
941 }
942 } while (samplestoread && readsamples);
943 }
944 else { // backward playback
945
946 // as we can only read forward from disk, we have to
947 // determine the end position within the loop first,
948 // read forward from that 'end' and finally after
949 // reading, swap all sample frames so it reflects
950 // backward playback
951
952 file_offset_t swapareastart = totalreadsamples;
953 file_offset_t loopoffset = GetPos() - loop.LoopStart;
954 file_offset_t samplestoreadinloop = Min(samplestoread, loopoffset);
955 file_offset_t reverseplaybackend = GetPos() - samplestoreadinloop;
956
957 SetPos(reverseplaybackend);
958
959 // read samples for backward playback
960 do {
961 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
962 samplestoreadinloop -= readsamples;
963 samplestoread -= readsamples;
964 totalreadsamples += readsamples;
965 } while (samplestoreadinloop && readsamples);
966
967 SetPos(reverseplaybackend); // pretend we really read backwards
968
969 if (reverseplaybackend == loop.LoopStart) {
970 pPlaybackState->loop_cycles_left--;
971 pPlaybackState->reverse = false;
972 }
973
974 // reverse the sample frames for backward playback
975 if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
976 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
977 }
978 } while (samplestoread && readsamples);
979 break;
980 }
981
982 case loop_type_backward: { // TODO: not tested yet!
983 // forward playback (not entered the loop yet)
984 if (!pPlaybackState->reverse) do {
985 samplestoloopend = loopEnd - GetPos();
986 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
987 samplestoread -= readsamples;
988 totalreadsamples += readsamples;
989 if (readsamples == samplestoloopend) {
990 pPlaybackState->reverse = true;
991 break;
992 }
993 } while (samplestoread && readsamples);
994
995 if (!samplestoread) break;
996
997 // as we can only read forward from disk, we have to
998 // determine the end position within the loop first,
999 // read forward from that 'end' and finally after
1000 // reading, swap all sample frames so it reflects
1001 // backward playback
1002
1003 file_offset_t swapareastart = totalreadsamples;
1004 file_offset_t loopoffset = GetPos() - loop.LoopStart;
1005 file_offset_t samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1006 : samplestoread;
1007 file_offset_t reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1008
1009 SetPos(reverseplaybackend);
1010
1011 // read samples for backward playback
1012 do {
1013 // if not endless loop check if max. number of loop cycles have been passed
1014 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1015 samplestoloopend = loopEnd - GetPos();
1016 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1017 samplestoreadinloop -= readsamples;
1018 samplestoread -= readsamples;
1019 totalreadsamples += readsamples;
1020 if (readsamples == samplestoloopend) {
1021 pPlaybackState->loop_cycles_left--;
1022 SetPos(loop.LoopStart);
1023 }
1024 } while (samplestoreadinloop && readsamples);
1025
1026 SetPos(reverseplaybackend); // pretend we really read backwards
1027
1028 // reverse the sample frames for backward playback
1029 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1030 break;
1031 }
1032
1033 default: case loop_type_normal: {
1034 do {
1035 // if not endless loop check if max. number of loop cycles have been passed
1036 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1037 samplestoloopend = loopEnd - GetPos();
1038 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1039 samplestoread -= readsamples;
1040 totalreadsamples += readsamples;
1041 if (readsamples == samplestoloopend) {
1042 pPlaybackState->loop_cycles_left--;
1043 SetPos(loop.LoopStart);
1044 }
1045 } while (samplestoread && readsamples);
1046 break;
1047 }
1048 }
1049 }
1050 }
1051
1052 // read on without looping
1053 if (samplestoread) do {
1054 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
1055 samplestoread -= readsamples;
1056 totalreadsamples += readsamples;
1057 } while (readsamples && samplestoread);
1058
1059 // store current position
1060 pPlaybackState->position = GetPos();
1061
1062 return totalreadsamples;
1063 }
1064
1065 /**
1066 * Reads \a SampleCount number of sample points from the current
1067 * position into the buffer pointed by \a pBuffer and increments the
1068 * position within the sample. The sample wave stream will be
1069 * decompressed on the fly if using a compressed sample. Use this method
1070 * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1071 * thus for disk streaming.
1072 *
1073 * <b>Caution:</b> If you are using more than one streaming thread, you
1074 * have to use an external decompression buffer for <b>EACH</b>
1075 * streaming thread to avoid race conditions and crashes!
1076 *
1077 * For 16 bit samples, the data in the buffer will be int16_t
1078 * (using native endianness). For 24 bit, the buffer will
1079 * contain three bytes per sample, little-endian.
1080 *
1081 * @param pBuffer destination buffer
1082 * @param SampleCount number of sample points to read
1083 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
1084 * @returns number of successfully read sample points
1085 * @see SetPos(), CreateDecompressionBuffer()
1086 */
1087 file_offset_t Sample::Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer) {
1088 if (SampleCount == 0) return 0;
1089 if (!Compressed) {
1090 if (BitDepth == 24) {
1091 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1092 }
1093 else { // 16 bit
1094 // (pCkData->Read does endian correction)
1095 return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1096 : pCkData->Read(pBuffer, SampleCount, 2);
1097 }
1098 }
1099 else {
1100 if (this->SamplePos >= this->SamplesTotal) return 0;
1101 //TODO: efficiency: maybe we should test for an average compression rate
1102 file_offset_t assumedsize = GuessSize(SampleCount),
1103 remainingbytes = 0, // remaining bytes in the local buffer
1104 remainingsamples = SampleCount,
1105 copysamples, skipsamples,
1106 currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
1107 this->FrameOffset = 0;
1108
1109 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1110
1111 // if decompression buffer too small, then reduce amount of samples to read
1112 if (pDecompressionBuffer->Size < assumedsize) {
1113 std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1114 SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1115 remainingsamples = SampleCount;
1116 assumedsize = GuessSize(SampleCount);
1117 }
1118
1119 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1120 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1121 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1122 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1123
1124 while (remainingsamples && remainingbytes) {
1125 file_offset_t framesamples = SamplesPerFrame;
1126 file_offset_t framebytes, rightChannelOffset = 0, nextFrameOffset;
1127
1128 int mode_l = *pSrc++, mode_r = 0;
1129
1130 if (Channels == 2) {
1131 mode_r = *pSrc++;
1132 framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1133 rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1134 nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1135 if (remainingbytes < framebytes) { // last frame in sample
1136 framesamples = SamplesInLastFrame;
1137 if (mode_l == 4 && (framesamples & 1)) {
1138 rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1139 }
1140 else {
1141 rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1142 }
1143 }
1144 }
1145 else {
1146 framebytes = bytesPerFrame[mode_l] + 1;
1147 nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1148 if (remainingbytes < framebytes) {
1149 framesamples = SamplesInLastFrame;
1150 }
1151 }
1152
1153 // determine how many samples in this frame to skip and read
1154 if (currentframeoffset + remainingsamples >= framesamples) {
1155 if (currentframeoffset <= framesamples) {
1156 copysamples = framesamples - currentframeoffset;
1157 skipsamples = currentframeoffset;
1158 }
1159 else {
1160 copysamples = 0;
1161 skipsamples = framesamples;
1162 }
1163 }
1164 else {
1165 // This frame has enough data for pBuffer, but not
1166 // all of the frame is needed. Set file position
1167 // to start of this frame for next call to Read.
1168 copysamples = remainingsamples;
1169 skipsamples = currentframeoffset;
1170 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1171 this->FrameOffset = currentframeoffset + copysamples;
1172 }
1173 remainingsamples -= copysamples;
1174
1175 if (remainingbytes > framebytes) {
1176 remainingbytes -= framebytes;
1177 if (remainingsamples == 0 &&
1178 currentframeoffset + copysamples == framesamples) {
1179 // This frame has enough data for pBuffer, and
1180 // all of the frame is needed. Set file
1181 // position to start of next frame for next
1182 // call to Read. FrameOffset is 0.
1183 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1184 }
1185 }
1186 else remainingbytes = 0;
1187
1188 currentframeoffset -= skipsamples;
1189
1190 if (copysamples == 0) {
1191 // skip this frame
1192 pSrc += framebytes - Channels;
1193 }
1194 else {
1195 const unsigned char* const param_l = pSrc;
1196 if (BitDepth == 24) {
1197 if (mode_l != 2) pSrc += 12;
1198
1199 if (Channels == 2) { // Stereo
1200 const unsigned char* const param_r = pSrc;
1201 if (mode_r != 2) pSrc += 12;
1202
1203 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1204 skipsamples, copysamples, TruncatedBits);
1205 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1206 skipsamples, copysamples, TruncatedBits);
1207 pDst24 += copysamples * 6;
1208 }
1209 else { // Mono
1210 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1211 skipsamples, copysamples, TruncatedBits);
1212 pDst24 += copysamples * 3;
1213 }
1214 }
1215 else { // 16 bit
1216 if (mode_l) pSrc += 4;
1217
1218 int step;
1219 if (Channels == 2) { // Stereo
1220 const unsigned char* const param_r = pSrc;
1221 if (mode_r) pSrc += 4;
1222
1223 step = (2 - mode_l) + (2 - mode_r);
1224 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1225 Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1226 skipsamples, copysamples);
1227 pDst += copysamples << 1;
1228 }
1229 else { // Mono
1230 step = 2 - mode_l;
1231 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1232 pDst += copysamples;
1233 }
1234 }
1235 pSrc += nextFrameOffset;
1236 }
1237
1238 // reload from disk to local buffer if needed
1239 if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1240 assumedsize = GuessSize(remainingsamples);
1241 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1242 if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1243 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1244 pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1245 }
1246 } // while
1247
1248 this->SamplePos += (SampleCount - remainingsamples);
1249 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1250 return (SampleCount - remainingsamples);
1251 }
1252 }
1253
1254 /** @brief Write sample wave data.
1255 *
1256 * Writes \a SampleCount number of sample points from the buffer pointed
1257 * by \a pBuffer and increments the position within the sample. Use this
1258 * method to directly write the sample data to disk, i.e. if you don't
1259 * want or cannot load the whole sample data into RAM.
1260 *
1261 * You have to Resize() the sample to the desired size and call
1262 * File::Save() <b>before</b> using Write().
1263 *
1264 * Note: there is currently no support for writing compressed samples.
1265 *
1266 * For 16 bit samples, the data in the source buffer should be
1267 * int16_t (using native endianness). For 24 bit, the buffer
1268 * should contain three bytes per sample, little-endian.
1269 *
1270 * @param pBuffer - source buffer
1271 * @param SampleCount - number of sample points to write
1272 * @throws DLS::Exception if current sample size is too small
1273 * @throws gig::Exception if sample is compressed
1274 * @see DLS::LoadSampleData()
1275 */
1276 file_offset_t Sample::Write(void* pBuffer, file_offset_t SampleCount) {
1277 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1278
1279 // if this is the first write in this sample, reset the
1280 // checksum calculator
1281 if (pCkData->GetPos() == 0) {
1282 __resetCRC(crc);
1283 }
1284 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1285 file_offset_t res;
1286 if (BitDepth == 24) {
1287 res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1288 } else { // 16 bit
1289 res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1290 : pCkData->Write(pBuffer, SampleCount, 2);
1291 }
1292 __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1293
1294 // if this is the last write, update the checksum chunk in the
1295 // file
1296 if (pCkData->GetPos() == pCkData->GetSize()) {
1297 __finalizeCRC(crc);
1298 File* pFile = static_cast<File*>(GetParent());
1299 pFile->SetSampleChecksum(this, crc);
1300 }
1301 return res;
1302 }
1303
1304 /**
1305 * Allocates a decompression buffer for streaming (compressed) samples
1306 * with Sample::Read(). If you are using more than one streaming thread
1307 * in your application you <b>HAVE</b> to create a decompression buffer
1308 * for <b>EACH</b> of your streaming threads and provide it with the
1309 * Sample::Read() call in order to avoid race conditions and crashes.
1310 *
1311 * You should free the memory occupied by the allocated buffer(s) once
1312 * you don't need one of your streaming threads anymore by calling
1313 * DestroyDecompressionBuffer().
1314 *
1315 * @param MaxReadSize - the maximum size (in sample points) you ever
1316 * expect to read with one Read() call
1317 * @returns allocated decompression buffer
1318 * @see DestroyDecompressionBuffer()
1319 */
1320 buffer_t Sample::CreateDecompressionBuffer(file_offset_t MaxReadSize) {
1321 buffer_t result;
1322 const double worstCaseHeaderOverhead =
1323 (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1324 result.Size = (file_offset_t) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1325 result.pStart = new int8_t[result.Size];
1326 result.NullExtensionSize = 0;
1327 return result;
1328 }
1329
1330 /**
1331 * Free decompression buffer, previously created with
1332 * CreateDecompressionBuffer().
1333 *
1334 * @param DecompressionBuffer - previously allocated decompression
1335 * buffer to free
1336 */
1337 void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1338 if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1339 delete[] (int8_t*) DecompressionBuffer.pStart;
1340 DecompressionBuffer.pStart = NULL;
1341 DecompressionBuffer.Size = 0;
1342 DecompressionBuffer.NullExtensionSize = 0;
1343 }
1344 }
1345
1346 /**
1347 * Returns pointer to the Group this Sample belongs to. In the .gig
1348 * format a sample always belongs to one group. If it wasn't explicitly
1349 * assigned to a certain group, it will be automatically assigned to a
1350 * default group.
1351 *
1352 * @returns Sample's Group (never NULL)
1353 */
1354 Group* Sample::GetGroup() const {
1355 return pGroup;
1356 }
1357
1358 /**
1359 * Returns the CRC-32 checksum of the sample's raw wave form data at the
1360 * time when this sample's wave form data was modified for the last time
1361 * by calling Write(). This checksum only covers the raw wave form data,
1362 * not any meta informations like i.e. bit depth or loop points. Since
1363 * this method just returns the checksum stored for this sample i.e. when
1364 * the gig file was loaded, this method returns immediately. So it does no
1365 * recalcuation of the checksum with the currently available sample wave
1366 * form data.
1367 *
1368 * @see VerifyWaveData()
1369 */
1370 uint32_t Sample::GetWaveDataCRC32Checksum() {
1371 return crc;
1372 }
1373
1374 /**
1375 * Checks the integrity of this sample's raw audio wave data. Whenever a
1376 * Sample's raw wave data is intentionally modified (i.e. by calling
1377 * Write() and supplying the new raw audio wave form data) a CRC32 checksum
1378 * is calculated and stored/updated for this sample, along to the sample's
1379 * meta informations.
1380 *
1381 * Now by calling this method the current raw audio wave data is checked
1382 * against the already stored CRC32 check sum in order to check whether the
1383 * sample data had been damaged unintentionally for some reason. Since by
1384 * calling this method always the entire raw audio wave data has to be
1385 * read, verifying all samples this way may take a long time accordingly.
1386 * And that's also the reason why the sample integrity is not checked by
1387 * default whenever a gig file is loaded. So this method must be called
1388 * explicitly to fulfill this task.
1389 *
1390 * @param pActually - (optional) if provided, will be set to the actually
1391 * calculated checksum of the current raw wave form data,
1392 * you can get the expected checksum instead by calling
1393 * GetWaveDataCRC32Checksum()
1394 * @returns true if sample is OK or false if the sample is damaged
1395 * @throws Exception if no checksum had been stored to disk for this
1396 * sample yet, or on I/O issues
1397 * @see GetWaveDataCRC32Checksum()
1398 */
1399 bool Sample::VerifyWaveData(uint32_t* pActually) {
1400 //File* pFile = static_cast<File*>(GetParent());
1401 uint32_t crc = CalculateWaveDataChecksum();
1402 if (pActually) *pActually = crc;
1403 return crc == this->crc;
1404 }
1405
1406 uint32_t Sample::CalculateWaveDataChecksum() {
1407 const size_t sz = 20*1024; // 20kB buffer size
1408 std::vector<uint8_t> buffer(sz);
1409 buffer.resize(sz);
1410
1411 const size_t n = sz / FrameSize;
1412 SetPos(0);
1413 uint32_t crc = 0;
1414 __resetCRC(crc);
1415 while (true) {
1416 file_offset_t nRead = Read(&buffer[0], n);
1417 if (nRead <= 0) break;
1418 __calculateCRC(&buffer[0], nRead * FrameSize, crc);
1419 }
1420 __finalizeCRC(crc);
1421 return crc;
1422 }
1423
1424 Sample::~Sample() {
1425 Instances--;
1426 if (!Instances && InternalDecompressionBuffer.Size) {
1427 delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1428 InternalDecompressionBuffer.pStart = NULL;
1429 InternalDecompressionBuffer.Size = 0;
1430 }
1431 if (FrameTable) delete[] FrameTable;
1432 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1433 }
1434
1435
1436
1437 // *************** DimensionRegion ***************
1438 // *
1439
1440 size_t DimensionRegion::Instances = 0;
1441 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1442
1443 DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1444 Instances++;
1445
1446 pSample = NULL;
1447 pRegion = pParent;
1448
1449 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1450 else memset(&Crossfade, 0, 4);
1451
1452 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1453
1454 RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1455 if (_3ewa) { // if '3ewa' chunk exists
1456 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1457 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1458 EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1459 _3ewa->ReadInt16(); // unknown
1460 LFO1InternalDepth = _3ewa->ReadUint16();
1461 _3ewa->ReadInt16(); // unknown
1462 LFO3InternalDepth = _3ewa->ReadInt16();
1463 _3ewa->ReadInt16(); // unknown
1464 LFO1ControlDepth = _3ewa->ReadUint16();
1465 _3ewa->ReadInt16(); // unknown
1466 LFO3ControlDepth = _3ewa->ReadInt16();
1467 EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1468 EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1469 _3ewa->ReadInt16(); // unknown
1470 EG1Sustain = _3ewa->ReadUint16();
1471 EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1472 EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1473 uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1474 EG1ControllerInvert = eg1ctrloptions & 0x01;
1475 EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1476 EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1477 EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1478 EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1479 uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1480 EG2ControllerInvert = eg2ctrloptions & 0x01;
1481 EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1482 EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1483 EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1484 LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1485 EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1486 EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1487 _3ewa->ReadInt16(); // unknown
1488 EG2Sustain = _3ewa->ReadUint16();
1489 EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1490 _3ewa->ReadInt16(); // unknown
1491 LFO2ControlDepth = _3ewa->ReadUint16();
1492 LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1493 _3ewa->ReadInt16(); // unknown
1494 LFO2InternalDepth = _3ewa->ReadUint16();
1495 int32_t eg1decay2 = _3ewa->ReadInt32();
1496 EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1497 EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1498 _3ewa->ReadInt16(); // unknown
1499 EG1PreAttack = _3ewa->ReadUint16();
1500 int32_t eg2decay2 = _3ewa->ReadInt32();
1501 EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1502 EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1503 _3ewa->ReadInt16(); // unknown
1504 EG2PreAttack = _3ewa->ReadUint16();
1505 uint8_t velocityresponse = _3ewa->ReadUint8();
1506 if (velocityresponse < 5) {
1507 VelocityResponseCurve = curve_type_nonlinear;
1508 VelocityResponseDepth = velocityresponse;
1509 } else if (velocityresponse < 10) {
1510 VelocityResponseCurve = curve_type_linear;
1511 VelocityResponseDepth = velocityresponse - 5;
1512 } else if (velocityresponse < 15) {
1513 VelocityResponseCurve = curve_type_special;
1514 VelocityResponseDepth = velocityresponse - 10;
1515 } else {
1516 VelocityResponseCurve = curve_type_unknown;
1517 VelocityResponseDepth = 0;
1518 }
1519 uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1520 if (releasevelocityresponse < 5) {
1521 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1522 ReleaseVelocityResponseDepth = releasevelocityresponse;
1523 } else if (releasevelocityresponse < 10) {
1524 ReleaseVelocityResponseCurve = curve_type_linear;
1525 ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1526 } else if (releasevelocityresponse < 15) {
1527 ReleaseVelocityResponseCurve = curve_type_special;
1528 ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1529 } else {
1530 ReleaseVelocityResponseCurve = curve_type_unknown;
1531 ReleaseVelocityResponseDepth = 0;
1532 }
1533 VelocityResponseCurveScaling = _3ewa->ReadUint8();
1534 AttenuationControllerThreshold = _3ewa->ReadInt8();
1535 _3ewa->ReadInt32(); // unknown
1536 SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1537 _3ewa->ReadInt16(); // unknown
1538 uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1539 PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1540 if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1541 else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1542 else DimensionBypass = dim_bypass_ctrl_none;
1543 uint8_t pan = _3ewa->ReadUint8();
1544 Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1545 SelfMask = _3ewa->ReadInt8() & 0x01;
1546 _3ewa->ReadInt8(); // unknown
1547 uint8_t lfo3ctrl = _3ewa->ReadUint8();
1548 LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1549 LFO3Sync = lfo3ctrl & 0x20; // bit 5
1550 InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1551 AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1552 uint8_t lfo2ctrl = _3ewa->ReadUint8();
1553 LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1554 LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1555 LFO2Sync = lfo2ctrl & 0x20; // bit 5
1556 bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1557 uint8_t lfo1ctrl = _3ewa->ReadUint8();
1558 LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1559 LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1560 LFO1Sync = lfo1ctrl & 0x40; // bit 6
1561 VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1562 : vcf_res_ctrl_none;
1563 uint16_t eg3depth = _3ewa->ReadUint16();
1564 EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1565 : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1566 _3ewa->ReadInt16(); // unknown
1567 ChannelOffset = _3ewa->ReadUint8() / 4;
1568 uint8_t regoptions = _3ewa->ReadUint8();
1569 MSDecode = regoptions & 0x01; // bit 0
1570 SustainDefeat = regoptions & 0x02; // bit 1
1571 _3ewa->ReadInt16(); // unknown
1572 VelocityUpperLimit = _3ewa->ReadInt8();
1573 _3ewa->ReadInt8(); // unknown
1574 _3ewa->ReadInt16(); // unknown
1575 ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1576 _3ewa->ReadInt8(); // unknown
1577 _3ewa->ReadInt8(); // unknown
1578 EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1579 uint8_t vcfcutoff = _3ewa->ReadUint8();
1580 VCFEnabled = vcfcutoff & 0x80; // bit 7
1581 VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1582 VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1583 uint8_t vcfvelscale = _3ewa->ReadUint8();
1584 VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1585 VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1586 _3ewa->ReadInt8(); // unknown
1587 uint8_t vcfresonance = _3ewa->ReadUint8();
1588 VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1589 VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1590 uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1591 VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1592 VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1593 uint8_t vcfvelocity = _3ewa->ReadUint8();
1594 VCFVelocityDynamicRange = vcfvelocity % 5;
1595 VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1596 VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1597 if (VCFType == vcf_type_lowpass) {
1598 if (lfo3ctrl & 0x40) // bit 6
1599 VCFType = vcf_type_lowpassturbo;
1600 }
1601 if (_3ewa->RemainingBytes() >= 8) {
1602 _3ewa->Read(DimensionUpperLimits, 1, 8);
1603 } else {
1604 memset(DimensionUpperLimits, 0, 8);
1605 }
1606 } else { // '3ewa' chunk does not exist yet
1607 // use default values
1608 LFO3Frequency = 1.0;
1609 EG3Attack = 0.0;
1610 LFO1InternalDepth = 0;
1611 LFO3InternalDepth = 0;
1612 LFO1ControlDepth = 0;
1613 LFO3ControlDepth = 0;
1614 EG1Attack = 0.0;
1615 EG1Decay1 = 0.005;
1616 EG1Sustain = 1000;
1617 EG1Release = 0.3;
1618 EG1Controller.type = eg1_ctrl_t::type_none;
1619 EG1Controller.controller_number = 0;
1620 EG1ControllerInvert = false;
1621 EG1ControllerAttackInfluence = 0;
1622 EG1ControllerDecayInfluence = 0;
1623 EG1ControllerReleaseInfluence = 0;
1624 EG2Controller.type = eg2_ctrl_t::type_none;
1625 EG2Controller.controller_number = 0;
1626 EG2ControllerInvert = false;
1627 EG2ControllerAttackInfluence = 0;
1628 EG2ControllerDecayInfluence = 0;
1629 EG2ControllerReleaseInfluence = 0;
1630 LFO1Frequency = 1.0;
1631 EG2Attack = 0.0;
1632 EG2Decay1 = 0.005;
1633 EG2Sustain = 1000;
1634 EG2Release = 60;
1635 LFO2ControlDepth = 0;
1636 LFO2Frequency = 1.0;
1637 LFO2InternalDepth = 0;
1638 EG1Decay2 = 0.0;
1639 EG1InfiniteSustain = true;
1640 EG1PreAttack = 0;
1641 EG2Decay2 = 0.0;
1642 EG2InfiniteSustain = true;
1643 EG2PreAttack = 0;
1644 VelocityResponseCurve = curve_type_nonlinear;
1645 VelocityResponseDepth = 3;
1646 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1647 ReleaseVelocityResponseDepth = 3;
1648 VelocityResponseCurveScaling = 32;
1649 AttenuationControllerThreshold = 0;
1650 SampleStartOffset = 0;
1651 PitchTrack = true;
1652 DimensionBypass = dim_bypass_ctrl_none;
1653 Pan = 0;
1654 SelfMask = true;
1655 LFO3Controller = lfo3_ctrl_modwheel;
1656 LFO3Sync = false;
1657 InvertAttenuationController = false;
1658 AttenuationController.type = attenuation_ctrl_t::type_none;
1659 AttenuationController.controller_number = 0;
1660 LFO2Controller = lfo2_ctrl_internal;
1661 LFO2FlipPhase = false;
1662 LFO2Sync = false;
1663 LFO1Controller = lfo1_ctrl_internal;
1664 LFO1FlipPhase = false;
1665 LFO1Sync = false;
1666 VCFResonanceController = vcf_res_ctrl_none;
1667 EG3Depth = 0;
1668 ChannelOffset = 0;
1669 MSDecode = false;
1670 SustainDefeat = false;
1671 VelocityUpperLimit = 0;
1672 ReleaseTriggerDecay = 0;
1673 EG1Hold = false;
1674 VCFEnabled = false;
1675 VCFCutoff = 0;
1676 VCFCutoffController = vcf_cutoff_ctrl_none;
1677 VCFCutoffControllerInvert = false;
1678 VCFVelocityScale = 0;
1679 VCFResonance = 0;
1680 VCFResonanceDynamic = false;
1681 VCFKeyboardTracking = false;
1682 VCFKeyboardTrackingBreakpoint = 0;
1683 VCFVelocityDynamicRange = 0x04;
1684 VCFVelocityCurve = curve_type_linear;
1685 VCFType = vcf_type_lowpass;
1686 memset(DimensionUpperLimits, 127, 8);
1687 }
1688
1689 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1690 VelocityResponseDepth,
1691 VelocityResponseCurveScaling);
1692
1693 pVelocityReleaseTable = GetReleaseVelocityTable(
1694 ReleaseVelocityResponseCurve,
1695 ReleaseVelocityResponseDepth
1696 );
1697
1698 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1699 VCFVelocityDynamicRange,
1700 VCFVelocityScale,
1701 VCFCutoffController);
1702
1703 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1704 VelocityTable = 0;
1705 }
1706
1707 /*
1708 * Constructs a DimensionRegion by copying all parameters from
1709 * another DimensionRegion
1710 */
1711 DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1712 Instances++;
1713 //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1714 *this = src; // default memberwise shallow copy of all parameters
1715 pParentList = _3ewl; // restore the chunk pointer
1716
1717 // deep copy of owned structures
1718 if (src.VelocityTable) {
1719 VelocityTable = new uint8_t[128];
1720 for (int k = 0 ; k < 128 ; k++)
1721 VelocityTable[k] = src.VelocityTable[k];
1722 }
1723 if (src.pSampleLoops) {
1724 pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1725 for (int k = 0 ; k < src.SampleLoops ; k++)
1726 pSampleLoops[k] = src.pSampleLoops[k];
1727 }
1728 }
1729
1730 /**
1731 * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1732 * and assign it to this object.
1733 *
1734 * Note that all sample pointers referenced by @a orig are simply copied as
1735 * memory address. Thus the respective samples are shared, not duplicated!
1736 *
1737 * @param orig - original DimensionRegion object to be copied from
1738 */
1739 void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1740 CopyAssign(orig, NULL);
1741 }
1742
1743 /**
1744 * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1745 * and assign it to this object.
1746 *
1747 * @param orig - original DimensionRegion object to be copied from
1748 * @param mSamples - crosslink map between the foreign file's samples and
1749 * this file's samples
1750 */
1751 void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1752 // delete all allocated data first
1753 if (VelocityTable) delete [] VelocityTable;
1754 if (pSampleLoops) delete [] pSampleLoops;
1755
1756 // backup parent list pointer
1757 RIFF::List* p = pParentList;
1758
1759 gig::Sample* pOriginalSample = pSample;
1760 gig::Region* pOriginalRegion = pRegion;
1761
1762 //NOTE: copy code copied from assignment constructor above, see comment there as well
1763
1764 *this = *orig; // default memberwise shallow copy of all parameters
1765
1766 // restore members that shall not be altered
1767 pParentList = p; // restore the chunk pointer
1768 pRegion = pOriginalRegion;
1769
1770 // only take the raw sample reference reference if the
1771 // two DimensionRegion objects are part of the same file
1772 if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1773 pSample = pOriginalSample;
1774 }
1775
1776 if (mSamples && mSamples->count(orig->pSample)) {
1777 pSample = mSamples->find(orig->pSample)->second;
1778 }
1779
1780 // deep copy of owned structures
1781 if (orig->VelocityTable) {
1782 VelocityTable = new uint8_t[128];
1783 for (int k = 0 ; k < 128 ; k++)
1784 VelocityTable[k] = orig->VelocityTable[k];
1785 }
1786 if (orig->pSampleLoops) {
1787 pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1788 for (int k = 0 ; k < orig->SampleLoops ; k++)
1789 pSampleLoops[k] = orig->pSampleLoops[k];
1790 }
1791 }
1792
1793 /**
1794 * Updates the respective member variable and updates @c SampleAttenuation
1795 * which depends on this value.
1796 */
1797 void DimensionRegion::SetGain(int32_t gain) {
1798 DLS::Sampler::SetGain(gain);
1799 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1800 }
1801
1802 /**
1803 * Apply dimension region settings to the respective RIFF chunks. You
1804 * have to call File::Save() to make changes persistent.
1805 *
1806 * Usually there is absolutely no need to call this method explicitly.
1807 * It will be called automatically when File::Save() was called.
1808 *
1809 * @param pProgress - callback function for progress notification
1810 */
1811 void DimensionRegion::UpdateChunks(progress_t* pProgress) {
1812 // first update base class's chunk
1813 DLS::Sampler::UpdateChunks(pProgress);
1814
1815 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1816 uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1817 pData[12] = Crossfade.in_start;
1818 pData[13] = Crossfade.in_end;
1819 pData[14] = Crossfade.out_start;
1820 pData[15] = Crossfade.out_end;
1821
1822 // make sure '3ewa' chunk exists
1823 RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1824 if (!_3ewa) {
1825 File* pFile = (File*) GetParent()->GetParent()->GetParent();
1826 bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1827 _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1828 }
1829 pData = (uint8_t*) _3ewa->LoadChunkData();
1830
1831 // update '3ewa' chunk with DimensionRegion's current settings
1832
1833 const uint32_t chunksize = (uint32_t) _3ewa->GetNewSize();
1834 store32(&pData[0], chunksize); // unknown, always chunk size?
1835
1836 const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1837 store32(&pData[4], lfo3freq);
1838
1839 const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1840 store32(&pData[8], eg3attack);
1841
1842 // next 2 bytes unknown
1843
1844 store16(&pData[14], LFO1InternalDepth);
1845
1846 // next 2 bytes unknown
1847
1848 store16(&pData[18], LFO3InternalDepth);
1849
1850 // next 2 bytes unknown
1851
1852 store16(&pData[22], LFO1ControlDepth);
1853
1854 // next 2 bytes unknown
1855
1856 store16(&pData[26], LFO3ControlDepth);
1857
1858 const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1859 store32(&pData[28], eg1attack);
1860
1861 const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1862 store32(&pData[32], eg1decay1);
1863
1864 // next 2 bytes unknown
1865
1866 store16(&pData[38], EG1Sustain);
1867
1868 const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1869 store32(&pData[40], eg1release);
1870
1871 const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1872 pData[44] = eg1ctl;
1873
1874 const uint8_t eg1ctrloptions =
1875 (EG1ControllerInvert ? 0x01 : 0x00) |
1876 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1877 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1878 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1879 pData[45] = eg1ctrloptions;
1880
1881 const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1882 pData[46] = eg2ctl;
1883
1884 const uint8_t eg2ctrloptions =
1885 (EG2ControllerInvert ? 0x01 : 0x00) |
1886 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1887 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1888 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1889 pData[47] = eg2ctrloptions;
1890
1891 const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1892 store32(&pData[48], lfo1freq);
1893
1894 const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1895 store32(&pData[52], eg2attack);
1896
1897 const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1898 store32(&pData[56], eg2decay1);
1899
1900 // next 2 bytes unknown
1901
1902 store16(&pData[62], EG2Sustain);
1903
1904 const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1905 store32(&pData[64], eg2release);
1906
1907 // next 2 bytes unknown
1908
1909 store16(&pData[70], LFO2ControlDepth);
1910
1911 const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1912 store32(&pData[72], lfo2freq);
1913
1914 // next 2 bytes unknown
1915
1916 store16(&pData[78], LFO2InternalDepth);
1917
1918 const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1919 store32(&pData[80], eg1decay2);
1920
1921 // next 2 bytes unknown
1922
1923 store16(&pData[86], EG1PreAttack);
1924
1925 const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1926 store32(&pData[88], eg2decay2);
1927
1928 // next 2 bytes unknown
1929
1930 store16(&pData[94], EG2PreAttack);
1931
1932 {
1933 if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1934 uint8_t velocityresponse = VelocityResponseDepth;
1935 switch (VelocityResponseCurve) {
1936 case curve_type_nonlinear:
1937 break;
1938 case curve_type_linear:
1939 velocityresponse += 5;
1940 break;
1941 case curve_type_special:
1942 velocityresponse += 10;
1943 break;
1944 case curve_type_unknown:
1945 default:
1946 throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1947 }
1948 pData[96] = velocityresponse;
1949 }
1950
1951 {
1952 if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1953 uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1954 switch (ReleaseVelocityResponseCurve) {
1955 case curve_type_nonlinear:
1956 break;
1957 case curve_type_linear:
1958 releasevelocityresponse += 5;
1959 break;
1960 case curve_type_special:
1961 releasevelocityresponse += 10;
1962 break;
1963 case curve_type_unknown:
1964 default:
1965 throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1966 }
1967 pData[97] = releasevelocityresponse;
1968 }
1969
1970 pData[98] = VelocityResponseCurveScaling;
1971
1972 pData[99] = AttenuationControllerThreshold;
1973
1974 // next 4 bytes unknown
1975
1976 store16(&pData[104], SampleStartOffset);
1977
1978 // next 2 bytes unknown
1979
1980 {
1981 uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1982 switch (DimensionBypass) {
1983 case dim_bypass_ctrl_94:
1984 pitchTrackDimensionBypass |= 0x10;
1985 break;
1986 case dim_bypass_ctrl_95:
1987 pitchTrackDimensionBypass |= 0x20;
1988 break;
1989 case dim_bypass_ctrl_none:
1990 //FIXME: should we set anything here?
1991 break;
1992 default:
1993 throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1994 }
1995 pData[108] = pitchTrackDimensionBypass;
1996 }
1997
1998 const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1999 pData[109] = pan;
2000
2001 const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
2002 pData[110] = selfmask;
2003
2004 // next byte unknown
2005
2006 {
2007 uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
2008 if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
2009 if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
2010 if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
2011 pData[112] = lfo3ctrl;
2012 }
2013
2014 const uint8_t attenctl = EncodeLeverageController(AttenuationController);
2015 pData[113] = attenctl;
2016
2017 {
2018 uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
2019 if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
2020 if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
2021 if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
2022 pData[114] = lfo2ctrl;
2023 }
2024
2025 {
2026 uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
2027 if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
2028 if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
2029 if (VCFResonanceController != vcf_res_ctrl_none)
2030 lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
2031 pData[115] = lfo1ctrl;
2032 }
2033
2034 const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
2035 : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
2036 store16(&pData[116], eg3depth);
2037
2038 // next 2 bytes unknown
2039
2040 const uint8_t channeloffset = ChannelOffset * 4;
2041 pData[120] = channeloffset;
2042
2043 {
2044 uint8_t regoptions = 0;
2045 if (MSDecode) regoptions |= 0x01; // bit 0
2046 if (SustainDefeat) regoptions |= 0x02; // bit 1
2047 pData[121] = regoptions;
2048 }
2049
2050 // next 2 bytes unknown
2051
2052 pData[124] = VelocityUpperLimit;
2053
2054 // next 3 bytes unknown
2055
2056 pData[128] = ReleaseTriggerDecay;
2057
2058 // next 2 bytes unknown
2059
2060 const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2061 pData[131] = eg1hold;
2062
2063 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
2064 (VCFCutoff & 0x7f); /* lower 7 bits */
2065 pData[132] = vcfcutoff;
2066
2067 pData[133] = VCFCutoffController;
2068
2069 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2070 (VCFVelocityScale & 0x7f); /* lower 7 bits */
2071 pData[134] = vcfvelscale;
2072
2073 // next byte unknown
2074
2075 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2076 (VCFResonance & 0x7f); /* lower 7 bits */
2077 pData[136] = vcfresonance;
2078
2079 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2080 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2081 pData[137] = vcfbreakpoint;
2082
2083 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2084 VCFVelocityCurve * 5;
2085 pData[138] = vcfvelocity;
2086
2087 const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2088 pData[139] = vcftype;
2089
2090 if (chunksize >= 148) {
2091 memcpy(&pData[140], DimensionUpperLimits, 8);
2092 }
2093 }
2094
2095 double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2096 curve_type_t curveType = releaseVelocityResponseCurve;
2097 uint8_t depth = releaseVelocityResponseDepth;
2098 // this models a strange behaviour or bug in GSt: two of the
2099 // velocity response curves for release time are not used even
2100 // if specified, instead another curve is chosen.
2101 if ((curveType == curve_type_nonlinear && depth == 0) ||
2102 (curveType == curve_type_special && depth == 4)) {
2103 curveType = curve_type_nonlinear;
2104 depth = 3;
2105 }
2106 return GetVelocityTable(curveType, depth, 0);
2107 }
2108
2109 double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2110 uint8_t vcfVelocityDynamicRange,
2111 uint8_t vcfVelocityScale,
2112 vcf_cutoff_ctrl_t vcfCutoffController)
2113 {
2114 curve_type_t curveType = vcfVelocityCurve;
2115 uint8_t depth = vcfVelocityDynamicRange;
2116 // even stranger GSt: two of the velocity response curves for
2117 // filter cutoff are not used, instead another special curve
2118 // is chosen. This curve is not used anywhere else.
2119 if ((curveType == curve_type_nonlinear && depth == 0) ||
2120 (curveType == curve_type_special && depth == 4)) {
2121 curveType = curve_type_special;
2122 depth = 5;
2123 }
2124 return GetVelocityTable(curveType, depth,
2125 (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2126 ? vcfVelocityScale : 0);
2127 }
2128
2129 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2130 double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2131 {
2132 double* table;
2133 uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2134 if (pVelocityTables->count(tableKey)) { // if key exists
2135 table = (*pVelocityTables)[tableKey];
2136 }
2137 else {
2138 table = CreateVelocityTable(curveType, depth, scaling);
2139 (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
2140 }
2141 return table;
2142 }
2143
2144 Region* DimensionRegion::GetParent() const {
2145 return pRegion;
2146 }
2147
2148 // show error if some _lev_ctrl_* enum entry is not listed in the following function
2149 // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2150 // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2151 //#pragma GCC diagnostic push
2152 //#pragma GCC diagnostic error "-Wswitch"
2153
2154 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2155 leverage_ctrl_t decodedcontroller;
2156 switch (EncodedController) {
2157 // special controller
2158 case _lev_ctrl_none:
2159 decodedcontroller.type = leverage_ctrl_t::type_none;
2160 decodedcontroller.controller_number = 0;
2161 break;
2162 case _lev_ctrl_velocity:
2163 decodedcontroller.type = leverage_ctrl_t::type_velocity;
2164 decodedcontroller.controller_number = 0;
2165 break;
2166 case _lev_ctrl_channelaftertouch:
2167 decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
2168 decodedcontroller.controller_number = 0;
2169 break;
2170
2171 // ordinary MIDI control change controller
2172 case _lev_ctrl_modwheel:
2173 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2174 decodedcontroller.controller_number = 1;
2175 break;
2176 case _lev_ctrl_breath:
2177 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2178 decodedcontroller.controller_number = 2;
2179 break;
2180 case _lev_ctrl_foot:
2181 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2182 decodedcontroller.controller_number = 4;
2183 break;
2184 case _lev_ctrl_effect1:
2185 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2186 decodedcontroller.controller_number = 12;
2187 break;
2188 case _lev_ctrl_effect2:
2189 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2190 decodedcontroller.controller_number = 13;
2191 break;
2192 case _lev_ctrl_genpurpose1:
2193 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2194 decodedcontroller.controller_number = 16;
2195 break;
2196 case _lev_ctrl_genpurpose2:
2197 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2198 decodedcontroller.controller_number = 17;
2199 break;
2200 case _lev_ctrl_genpurpose3:
2201 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2202 decodedcontroller.controller_number = 18;
2203 break;
2204 case _lev_ctrl_genpurpose4:
2205 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2206 decodedcontroller.controller_number = 19;
2207 break;
2208 case _lev_ctrl_portamentotime:
2209 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2210 decodedcontroller.controller_number = 5;
2211 break;
2212 case _lev_ctrl_sustainpedal:
2213 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2214 decodedcontroller.controller_number = 64;
2215 break;
2216 case _lev_ctrl_portamento:
2217 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2218 decodedcontroller.controller_number = 65;
2219 break;
2220 case _lev_ctrl_sostenutopedal:
2221 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2222 decodedcontroller.controller_number = 66;
2223 break;
2224 case _lev_ctrl_softpedal:
2225 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2226 decodedcontroller.controller_number = 67;
2227 break;
2228 case _lev_ctrl_genpurpose5:
2229 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2230 decodedcontroller.controller_number = 80;
2231 break;
2232 case _lev_ctrl_genpurpose6:
2233 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2234 decodedcontroller.controller_number = 81;
2235 break;
2236 case _lev_ctrl_genpurpose7:
2237 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2238 decodedcontroller.controller_number = 82;
2239 break;
2240 case _lev_ctrl_genpurpose8:
2241 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2242 decodedcontroller.controller_number = 83;
2243 break;
2244 case _lev_ctrl_effect1depth:
2245 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2246 decodedcontroller.controller_number = 91;
2247 break;
2248 case _lev_ctrl_effect2depth:
2249 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2250 decodedcontroller.controller_number = 92;
2251 break;
2252 case _lev_ctrl_effect3depth:
2253 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2254 decodedcontroller.controller_number = 93;
2255 break;
2256 case _lev_ctrl_effect4depth:
2257 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2258 decodedcontroller.controller_number = 94;
2259 break;
2260 case _lev_ctrl_effect5depth:
2261 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2262 decodedcontroller.controller_number = 95;
2263 break;
2264
2265 // format extension (these controllers are so far only supported by
2266 // LinuxSampler & gigedit) they will *NOT* work with
2267 // Gigasampler/GigaStudio !
2268 case _lev_ctrl_CC3_EXT:
2269 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2270 decodedcontroller.controller_number = 3;
2271 break;
2272 case _lev_ctrl_CC6_EXT:
2273 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2274 decodedcontroller.controller_number = 6;
2275 break;
2276 case _lev_ctrl_CC7_EXT:
2277 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2278 decodedcontroller.controller_number = 7;
2279 break;
2280 case _lev_ctrl_CC8_EXT:
2281 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2282 decodedcontroller.controller_number = 8;
2283 break;
2284 case _lev_ctrl_CC9_EXT:
2285 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2286 decodedcontroller.controller_number = 9;
2287 break;
2288 case _lev_ctrl_CC10_EXT:
2289 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2290 decodedcontroller.controller_number = 10;
2291 break;
2292 case _lev_ctrl_CC11_EXT:
2293 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2294 decodedcontroller.controller_number = 11;
2295 break;
2296 case _lev_ctrl_CC14_EXT:
2297 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2298 decodedcontroller.controller_number = 14;
2299 break;
2300 case _lev_ctrl_CC15_EXT:
2301 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2302 decodedcontroller.controller_number = 15;
2303 break;
2304 case _lev_ctrl_CC20_EXT:
2305 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2306 decodedcontroller.controller_number = 20;
2307 break;
2308 case _lev_ctrl_CC21_EXT:
2309 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2310 decodedcontroller.controller_number = 21;
2311 break;
2312 case _lev_ctrl_CC22_EXT:
2313 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2314 decodedcontroller.controller_number = 22;
2315 break;
2316 case _lev_ctrl_CC23_EXT:
2317 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2318 decodedcontroller.controller_number = 23;
2319 break;
2320 case _lev_ctrl_CC24_EXT:
2321 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2322 decodedcontroller.controller_number = 24;
2323 break;
2324 case _lev_ctrl_CC25_EXT:
2325 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2326 decodedcontroller.controller_number = 25;
2327 break;
2328 case _lev_ctrl_CC26_EXT:
2329 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2330 decodedcontroller.controller_number = 26;
2331 break;
2332 case _lev_ctrl_CC27_EXT:
2333 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2334 decodedcontroller.controller_number = 27;
2335 break;
2336 case _lev_ctrl_CC28_EXT:
2337 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2338 decodedcontroller.controller_number = 28;
2339 break;
2340 case _lev_ctrl_CC29_EXT:
2341 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2342 decodedcontroller.controller_number = 29;
2343 break;
2344 case _lev_ctrl_CC30_EXT:
2345 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2346 decodedcontroller.controller_number = 30;
2347 break;
2348 case _lev_ctrl_CC31_EXT:
2349 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2350 decodedcontroller.controller_number = 31;
2351 break;
2352 case _lev_ctrl_CC68_EXT:
2353 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2354 decodedcontroller.controller_number = 68;
2355 break;
2356 case _lev_ctrl_CC69_EXT:
2357 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2358 decodedcontroller.controller_number = 69;
2359 break;
2360 case _lev_ctrl_CC70_EXT:
2361 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2362 decodedcontroller.controller_number = 70;
2363 break;
2364 case _lev_ctrl_CC71_EXT:
2365 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2366 decodedcontroller.controller_number = 71;
2367 break;
2368 case _lev_ctrl_CC72_EXT:
2369 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2370 decodedcontroller.controller_number = 72;
2371 break;
2372 case _lev_ctrl_CC73_EXT:
2373 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2374 decodedcontroller.controller_number = 73;
2375 break;
2376 case _lev_ctrl_CC74_EXT:
2377 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2378 decodedcontroller.controller_number = 74;
2379 break;
2380 case _lev_ctrl_CC75_EXT:
2381 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2382 decodedcontroller.controller_number = 75;
2383 break;
2384 case _lev_ctrl_CC76_EXT:
2385 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2386 decodedcontroller.controller_number = 76;
2387 break;
2388 case _lev_ctrl_CC77_EXT:
2389 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2390 decodedcontroller.controller_number = 77;
2391 break;
2392 case _lev_ctrl_CC78_EXT:
2393 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2394 decodedcontroller.controller_number = 78;
2395 break;
2396 case _lev_ctrl_CC79_EXT:
2397 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2398 decodedcontroller.controller_number = 79;
2399 break;
2400 case _lev_ctrl_CC84_EXT:
2401 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2402 decodedcontroller.controller_number = 84;
2403 break;
2404 case _lev_ctrl_CC85_EXT:
2405 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2406 decodedcontroller.controller_number = 85;
2407 break;
2408 case _lev_ctrl_CC86_EXT:
2409 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2410 decodedcontroller.controller_number = 86;
2411 break;
2412 case _lev_ctrl_CC87_EXT:
2413 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2414 decodedcontroller.controller_number = 87;
2415 break;
2416 case _lev_ctrl_CC89_EXT:
2417 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2418 decodedcontroller.controller_number = 89;
2419 break;
2420 case _lev_ctrl_CC90_EXT:
2421 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2422 decodedcontroller.controller_number = 90;
2423 break;
2424 case _lev_ctrl_CC96_EXT:
2425 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2426 decodedcontroller.controller_number = 96;
2427 break;
2428 case _lev_ctrl_CC97_EXT:
2429 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2430 decodedcontroller.controller_number = 97;
2431 break;
2432 case _lev_ctrl_CC102_EXT:
2433 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2434 decodedcontroller.controller_number = 102;
2435 break;
2436 case _lev_ctrl_CC103_EXT:
2437 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2438 decodedcontroller.controller_number = 103;
2439 break;
2440 case _lev_ctrl_CC104_EXT:
2441 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2442 decodedcontroller.controller_number = 104;
2443 break;
2444 case _lev_ctrl_CC105_EXT:
2445 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2446 decodedcontroller.controller_number = 105;
2447 break;
2448 case _lev_ctrl_CC106_EXT:
2449 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2450 decodedcontroller.controller_number = 106;
2451 break;
2452 case _lev_ctrl_CC107_EXT:
2453 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2454 decodedcontroller.controller_number = 107;
2455 break;
2456 case _lev_ctrl_CC108_EXT:
2457 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2458 decodedcontroller.controller_number = 108;
2459 break;
2460 case _lev_ctrl_CC109_EXT:
2461 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2462 decodedcontroller.controller_number = 109;
2463 break;
2464 case _lev_ctrl_CC110_EXT:
2465 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2466 decodedcontroller.controller_number = 110;
2467 break;
2468 case _lev_ctrl_CC111_EXT:
2469 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2470 decodedcontroller.controller_number = 111;
2471 break;
2472 case _lev_ctrl_CC112_EXT:
2473 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2474 decodedcontroller.controller_number = 112;
2475 break;
2476 case _lev_ctrl_CC113_EXT:
2477 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2478 decodedcontroller.controller_number = 113;
2479 break;
2480 case _lev_ctrl_CC114_EXT:
2481 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2482 decodedcontroller.controller_number = 114;
2483 break;
2484 case _lev_ctrl_CC115_EXT:
2485 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2486 decodedcontroller.controller_number = 115;
2487 break;
2488 case _lev_ctrl_CC116_EXT:
2489 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2490 decodedcontroller.controller_number = 116;
2491 break;
2492 case _lev_ctrl_CC117_EXT:
2493 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2494 decodedcontroller.controller_number = 117;
2495 break;
2496 case _lev_ctrl_CC118_EXT:
2497 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2498 decodedcontroller.controller_number = 118;
2499 break;
2500 case _lev_ctrl_CC119_EXT:
2501 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2502 decodedcontroller.controller_number = 119;
2503 break;
2504
2505 // unknown controller type
2506 default:
2507 throw gig::Exception("Unknown leverage controller type.");
2508 }
2509 return decodedcontroller;
2510 }
2511
2512 // see above (diagnostic push not supported prior GCC 4.6)
2513 //#pragma GCC diagnostic pop
2514
2515 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2516 _lev_ctrl_t encodedcontroller;
2517 switch (DecodedController.type) {
2518 // special controller
2519 case leverage_ctrl_t::type_none:
2520 encodedcontroller = _lev_ctrl_none;
2521 break;
2522 case leverage_ctrl_t::type_velocity:
2523 encodedcontroller = _lev_ctrl_velocity;
2524 break;
2525 case leverage_ctrl_t::type_channelaftertouch:
2526 encodedcontroller = _lev_ctrl_channelaftertouch;
2527 break;
2528
2529 // ordinary MIDI control change controller
2530 case leverage_ctrl_t::type_controlchange:
2531 switch (DecodedController.controller_number) {
2532 case 1:
2533 encodedcontroller = _lev_ctrl_modwheel;
2534 break;
2535 case 2:
2536 encodedcontroller = _lev_ctrl_breath;
2537 break;
2538 case 4:
2539 encodedcontroller = _lev_ctrl_foot;
2540 break;
2541 case 12:
2542 encodedcontroller = _lev_ctrl_effect1;
2543 break;
2544 case 13:
2545 encodedcontroller = _lev_ctrl_effect2;
2546 break;
2547 case 16:
2548 encodedcontroller = _lev_ctrl_genpurpose1;
2549 break;
2550 case 17:
2551 encodedcontroller = _lev_ctrl_genpurpose2;
2552 break;
2553 case 18:
2554 encodedcontroller = _lev_ctrl_genpurpose3;
2555 break;
2556 case 19:
2557 encodedcontroller = _lev_ctrl_genpurpose4;
2558 break;
2559 case 5:
2560 encodedcontroller = _lev_ctrl_portamentotime;
2561 break;
2562 case 64:
2563 encodedcontroller = _lev_ctrl_sustainpedal;
2564 break;
2565 case 65:
2566 encodedcontroller = _lev_ctrl_portamento;
2567 break;
2568 case 66:
2569 encodedcontroller = _lev_ctrl_sostenutopedal;
2570 break;
2571 case 67:
2572 encodedcontroller = _lev_ctrl_softpedal;
2573 break;
2574 case 80:
2575 encodedcontroller = _lev_ctrl_genpurpose5;
2576 break;
2577 case 81:
2578 encodedcontroller = _lev_ctrl_genpurpose6;
2579 break;
2580 case 82:
2581 encodedcontroller = _lev_ctrl_genpurpose7;
2582 break;
2583 case 83:
2584 encodedcontroller = _lev_ctrl_genpurpose8;
2585 break;
2586 case 91:
2587 encodedcontroller = _lev_ctrl_effect1depth;
2588 break;
2589 case 92:
2590 encodedcontroller = _lev_ctrl_effect2depth;
2591 break;
2592 case 93:
2593 encodedcontroller = _lev_ctrl_effect3depth;
2594 break;
2595 case 94:
2596 encodedcontroller = _lev_ctrl_effect4depth;
2597 break;
2598 case 95:
2599 encodedcontroller = _lev_ctrl_effect5depth;
2600 break;
2601
2602 // format extension (these controllers are so far only
2603 // supported by LinuxSampler & gigedit) they will *NOT*
2604 // work with Gigasampler/GigaStudio !
2605 case 3:
2606 encodedcontroller = _lev_ctrl_CC3_EXT;
2607 break;
2608 case 6:
2609 encodedcontroller = _lev_ctrl_CC6_EXT;
2610 break;
2611 case 7:
2612 encodedcontroller = _lev_ctrl_CC7_EXT;
2613 break;
2614 case 8:
2615 encodedcontroller = _lev_ctrl_CC8_EXT;
2616 break;
2617 case 9:
2618 encodedcontroller = _lev_ctrl_CC9_EXT;
2619 break;
2620 case 10:
2621 encodedcontroller = _lev_ctrl_CC10_EXT;
2622 break;
2623 case 11:
2624 encodedcontroller = _lev_ctrl_CC11_EXT;
2625 break;
2626 case 14:
2627 encodedcontroller = _lev_ctrl_CC14_EXT;
2628 break;
2629 case 15:
2630 encodedcontroller = _lev_ctrl_CC15_EXT;
2631 break;
2632 case 20:
2633 encodedcontroller = _lev_ctrl_CC20_EXT;
2634 break;
2635 case 21:
2636 encodedcontroller = _lev_ctrl_CC21_EXT;
2637 break;
2638 case 22:
2639 encodedcontroller = _lev_ctrl_CC22_EXT;
2640 break;
2641 case 23:
2642 encodedcontroller = _lev_ctrl_CC23_EXT;
2643 break;
2644 case 24:
2645 encodedcontroller = _lev_ctrl_CC24_EXT;
2646 break;
2647 case 25:
2648 encodedcontroller = _lev_ctrl_CC25_EXT;
2649 break;
2650 case 26:
2651 encodedcontroller = _lev_ctrl_CC26_EXT;
2652 break;
2653 case 27:
2654 encodedcontroller = _lev_ctrl_CC27_EXT;
2655 break;
2656 case 28:
2657 encodedcontroller = _lev_ctrl_CC28_EXT;
2658 break;
2659 case 29:
2660 encodedcontroller = _lev_ctrl_CC29_EXT;
2661 break;
2662 case 30:
2663 encodedcontroller = _lev_ctrl_CC30_EXT;
2664 break;
2665 case 31:
2666 encodedcontroller = _lev_ctrl_CC31_EXT;
2667 break;
2668 case 68:
2669 encodedcontroller = _lev_ctrl_CC68_EXT;
2670 break;
2671 case 69:
2672 encodedcontroller = _lev_ctrl_CC69_EXT;
2673 break;
2674 case 70:
2675 encodedcontroller = _lev_ctrl_CC70_EXT;
2676 break;
2677 case 71:
2678 encodedcontroller = _lev_ctrl_CC71_EXT;
2679 break;
2680 case 72:
2681 encodedcontroller = _lev_ctrl_CC72_EXT;
2682 break;
2683 case 73:
2684 encodedcontroller = _lev_ctrl_CC73_EXT;
2685 break;
2686 case 74:
2687 encodedcontroller = _lev_ctrl_CC74_EXT;
2688 break;
2689 case 75:
2690 encodedcontroller = _lev_ctrl_CC75_EXT;
2691 break;
2692 case 76:
2693 encodedcontroller = _lev_ctrl_CC76_EXT;
2694 break;
2695 case 77:
2696 encodedcontroller = _lev_ctrl_CC77_EXT;
2697 break;
2698 case 78:
2699 encodedcontroller = _lev_ctrl_CC78_EXT;
2700 break;
2701 case 79:
2702 encodedcontroller = _lev_ctrl_CC79_EXT;
2703 break;
2704 case 84:
2705 encodedcontroller = _lev_ctrl_CC84_EXT;
2706 break;
2707 case 85:
2708 encodedcontroller = _lev_ctrl_CC85_EXT;
2709 break;
2710 case 86:
2711 encodedcontroller = _lev_ctrl_CC86_EXT;
2712 break;
2713 case 87:
2714 encodedcontroller = _lev_ctrl_CC87_EXT;
2715 break;
2716 case 89:
2717 encodedcontroller = _lev_ctrl_CC89_EXT;
2718 break;
2719 case 90:
2720 encodedcontroller = _lev_ctrl_CC90_EXT;
2721 break;
2722 case 96:
2723 encodedcontroller = _lev_ctrl_CC96_EXT;
2724 break;
2725 case 97:
2726 encodedcontroller = _lev_ctrl_CC97_EXT;
2727 break;
2728 case 102:
2729 encodedcontroller = _lev_ctrl_CC102_EXT;
2730 break;
2731 case 103:
2732 encodedcontroller = _lev_ctrl_CC103_EXT;
2733 break;
2734 case 104:
2735 encodedcontroller = _lev_ctrl_CC104_EXT;
2736 break;
2737 case 105:
2738 encodedcontroller = _lev_ctrl_CC105_EXT;
2739 break;
2740 case 106:
2741 encodedcontroller = _lev_ctrl_CC106_EXT;
2742 break;
2743 case 107:
2744 encodedcontroller = _lev_ctrl_CC107_EXT;
2745 break;
2746 case 108:
2747 encodedcontroller = _lev_ctrl_CC108_EXT;
2748 break;
2749 case 109:
2750 encodedcontroller = _lev_ctrl_CC109_EXT;
2751 break;
2752 case 110:
2753 encodedcontroller = _lev_ctrl_CC110_EXT;
2754 break;
2755 case 111:
2756 encodedcontroller = _lev_ctrl_CC111_EXT;
2757 break;
2758 case 112:
2759 encodedcontroller = _lev_ctrl_CC112_EXT;
2760 break;
2761 case 113:
2762 encodedcontroller = _lev_ctrl_CC113_EXT;
2763 break;
2764 case 114:
2765 encodedcontroller = _lev_ctrl_CC114_EXT;
2766 break;
2767 case 115:
2768 encodedcontroller = _lev_ctrl_CC115_EXT;
2769 break;
2770 case 116:
2771 encodedcontroller = _lev_ctrl_CC116_EXT;
2772 break;
2773 case 117:
2774 encodedcontroller = _lev_ctrl_CC117_EXT;
2775 break;
2776 case 118:
2777 encodedcontroller = _lev_ctrl_CC118_EXT;
2778 break;
2779 case 119:
2780 encodedcontroller = _lev_ctrl_CC119_EXT;
2781 break;
2782
2783 default:
2784 throw gig::Exception("leverage controller number is not supported by the gig format");
2785 }
2786 break;
2787 default:
2788 throw gig::Exception("Unknown leverage controller type.");
2789 }
2790 return encodedcontroller;
2791 }
2792
2793 DimensionRegion::~DimensionRegion() {
2794 Instances--;
2795 if (!Instances) {
2796 // delete the velocity->volume tables
2797 VelocityTableMap::iterator iter;
2798 for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
2799 double* pTable = iter->second;
2800 if (pTable) delete[] pTable;
2801 }
2802 pVelocityTables->clear();
2803 delete pVelocityTables;
2804 pVelocityTables = NULL;
2805 }
2806 if (VelocityTable) delete[] VelocityTable;
2807 }
2808
2809 /**
2810 * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
2811 * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
2812 * and VelocityResponseCurveScaling) involved are taken into account to
2813 * calculate the amplitude factor. Use this method when a key was
2814 * triggered to get the volume with which the sample should be played
2815 * back.
2816 *
2817 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
2818 * @returns amplitude factor (between 0.0 and 1.0)
2819 */
2820 double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2821 return pVelocityAttenuationTable[MIDIKeyVelocity];
2822 }
2823
2824 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2825 return pVelocityReleaseTable[MIDIKeyVelocity];
2826 }
2827
2828 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2829 return pVelocityCutoffTable[MIDIKeyVelocity];
2830 }
2831
2832 /**
2833 * Updates the respective member variable and the lookup table / cache
2834 * that depends on this value.
2835 */
2836 void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
2837 pVelocityAttenuationTable =
2838 GetVelocityTable(
2839 curve, VelocityResponseDepth, VelocityResponseCurveScaling
2840 );
2841 VelocityResponseCurve = curve;
2842 }
2843
2844 /**
2845 * Updates the respective member variable and the lookup table / cache
2846 * that depends on this value.
2847 */
2848 void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
2849 pVelocityAttenuationTable =
2850 GetVelocityTable(
2851 VelocityResponseCurve, depth, VelocityResponseCurveScaling
2852 );
2853 VelocityResponseDepth = depth;
2854 }
2855
2856 /**
2857 * Updates the respective member variable and the lookup table / cache
2858 * that depends on this value.
2859 */
2860 void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
2861 pVelocityAttenuationTable =
2862 GetVelocityTable(
2863 VelocityResponseCurve, VelocityResponseDepth, scaling
2864 );
2865 VelocityResponseCurveScaling = scaling;
2866 }
2867
2868 /**
2869 * Updates the respective member variable and the lookup table / cache
2870 * that depends on this value.
2871 */
2872 void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
2873 pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
2874 ReleaseVelocityResponseCurve = curve;
2875 }
2876
2877 /**
2878 * Updates the respective member variable and the lookup table / cache
2879 * that depends on this value.
2880 */
2881 void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
2882 pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
2883 ReleaseVelocityResponseDepth = depth;
2884 }
2885
2886 /**
2887 * Updates the respective member variable and the lookup table / cache
2888 * that depends on this value.
2889 */
2890 void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
2891 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
2892 VCFCutoffController = controller;
2893 }
2894
2895 /**
2896 * Updates the respective member variable and the lookup table / cache
2897 * that depends on this value.
2898 */
2899 void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
2900 pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
2901 VCFVelocityCurve = curve;
2902 }
2903
2904 /**
2905 * Updates the respective member variable and the lookup table / cache
2906 * that depends on this value.
2907 */
2908 void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
2909 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
2910 VCFVelocityDynamicRange = range;
2911 }
2912
2913 /**
2914 * Updates the respective member variable and the lookup table / cache
2915 * that depends on this value.
2916 */
2917 void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
2918 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
2919 VCFVelocityScale = scaling;
2920 }
2921
2922 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2923
2924 // line-segment approximations of the 15 velocity curves
2925
2926 // linear
2927 const int lin0[] = { 1, 1, 127, 127 };
2928 const int lin1[] = { 1, 21, 127, 127 };
2929 const int lin2[] = { 1, 45, 127, 127 };
2930 const int lin3[] = { 1, 74, 127, 127 };
2931 const int lin4[] = { 1, 127, 127, 127 };
2932
2933 // non-linear
2934 const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2935 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2936 127, 127 };
2937 const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2938 127, 127 };
2939 const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2940 127, 127 };
2941 const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2942
2943 // special
2944 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2945 113, 127, 127, 127 };
2946 const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2947 118, 127, 127, 127 };
2948 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2949 85, 90, 91, 127, 127, 127 };
2950 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2951 117, 127, 127, 127 };
2952 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2953 127, 127 };
2954
2955 // this is only used by the VCF velocity curve
2956 const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2957 91, 127, 127, 127 };
2958
2959 const int* const curves[] = { non0, non1, non2, non3, non4,
2960 lin0, lin1, lin2, lin3, lin4,
2961 spe0, spe1, spe2, spe3, spe4, spe5 };
2962
2963 double* const table = new double[128];
2964
2965 const int* curve = curves[curveType * 5 + depth];
2966 const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2967
2968 table[0] = 0;
2969 for (int x = 1 ; x < 128 ; x++) {
2970
2971 if (x > curve[2]) curve += 2;
2972 double y = curve[1] + (x - curve[0]) *
2973 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2974 y = y / 127;
2975
2976 // Scale up for s > 20, down for s < 20. When
2977 // down-scaling, the curve still ends at 1.0.
2978 if (s < 20 && y >= 0.5)
2979 y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2980 else
2981 y = y * (s / 20.0);
2982 if (y > 1) y = 1;
2983
2984 table[x] = y;
2985 }
2986 return table;
2987 }
2988
2989
2990 // *************** Region ***************
2991 // *
2992
2993 Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2994 // Initialization
2995 Dimensions = 0;
2996 for (int i = 0; i < 256; i++) {
2997 pDimensionRegions[i] = NULL;
2998 }
2999 Layers = 1;
3000 File* file = (File*) GetParent()->GetParent();
3001 int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
3002
3003 // Actual Loading
3004
3005 if (!file->GetAutoLoad()) return;
3006
3007 LoadDimensionRegions(rgnList);
3008
3009 RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
3010 if (_3lnk) {
3011 DimensionRegions = _3lnk->ReadUint32();
3012 for (int i = 0; i < dimensionBits; i++) {
3013 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
3014 uint8_t bits = _3lnk->ReadUint8();
3015 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
3016 _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
3017 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
3018 if (dimension == dimension_none) { // inactive dimension
3019 pDimensionDefinitions[i].dimension = dimension_none;
3020 pDimensionDefinitions[i].bits = 0;
3021 pDimensionDefinitions[i].zones = 0;
3022 pDimensionDefinitions[i].split_type = split_type_bit;
3023 pDimensionDefinitions[i].zone_size = 0;
3024 }
3025 else { // active dimension
3026 pDimensionDefinitions[i].dimension = dimension;
3027 pDimensionDefinitions[i].bits = bits;
3028 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
3029 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
3030 pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
3031 Dimensions++;
3032
3033 // if this is a layer dimension, remember the amount of layers
3034 if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
3035 }
3036 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
3037 }
3038 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
3039
3040 // if there's a velocity dimension and custom velocity zone splits are used,
3041 // update the VelocityTables in the dimension regions
3042 UpdateVelocityTable();
3043
3044 // jump to start of the wave pool indices (if not already there)
3045 if (file->pVersion && file->pVersion->major == 3)
3046 _3lnk->SetPos(68); // version 3 has a different 3lnk structure
3047 else
3048 _3lnk->SetPos(44);
3049
3050 // load sample references (if auto loading is enabled)
3051 if (file->GetAutoLoad()) {
3052 for (uint i = 0; i < DimensionRegions; i++) {
3053 uint32_t wavepoolindex = _3lnk->ReadUint32();
3054 if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
3055 }
3056 GetSample(); // load global region sample reference
3057 }
3058 } else {
3059 DimensionRegions = 0;
3060 for (int i = 0 ; i < 8 ; i++) {
3061 pDimensionDefinitions[i].dimension = dimension_none;
3062 pDimensionDefinitions[i].bits = 0;
3063 pDimensionDefinitions[i].zones = 0;
3064 }
3065 }
3066
3067 // make sure there is at least one dimension region
3068 if (!DimensionRegions) {
3069 RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
3070 if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
3071 RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
3072 pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
3073 DimensionRegions = 1;
3074 }
3075 }
3076
3077 /**
3078 * Apply Region settings and all its DimensionRegions to the respective
3079 * RIFF chunks. You have to call File::Save() to make changes persistent.
3080 *
3081 * Usually there is absolutely no need to call this method explicitly.
3082 * It will be called automatically when File::Save() was called.
3083 *
3084 * @param pProgress - callback function for progress notification
3085 * @throws gig::Exception if samples cannot be dereferenced
3086 */
3087 void Region::UpdateChunks(progress_t* pProgress) {
3088 // in the gig format we don't care about the Region's sample reference
3089 // but we still have to provide some existing one to not corrupt the
3090 // file, so to avoid the latter we simply always assign the sample of
3091 // the first dimension region of this region
3092 pSample = pDimensionRegions[0]->pSample;
3093
3094 // first update base class's chunks
3095 DLS::Region::UpdateChunks(pProgress);
3096
3097 // update dimension region's chunks
3098 for (int i = 0; i < DimensionRegions; i++) {
3099 pDimensionRegions[i]->UpdateChunks(pProgress);
3100 }
3101
3102 File* pFile = (File*) GetParent()->GetParent();
3103 bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
3104 const int iMaxDimensions = version3 ? 8 : 5;
3105 const int iMaxDimensionRegions = version3 ? 256 : 32;
3106
3107 // make sure '3lnk' chunk exists
3108 RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3109 if (!_3lnk) {
3110 const int _3lnkChunkSize = version3 ? 1092 : 172;
3111 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3112 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3113
3114 // move 3prg to last position
3115 pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), (RIFF::Chunk*)NULL);
3116 }
3117
3118 // update dimension definitions in '3lnk' chunk
3119 uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3120 store32(&pData[0], DimensionRegions);
3121 int shift = 0;
3122 for (int i = 0; i < iMaxDimensions; i++) {
3123 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3124 pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3125 pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3126 pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3127 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3128 // next 3 bytes unknown, always zero?
3129
3130 shift += pDimensionDefinitions[i].bits;
3131 }
3132
3133 // update wave pool table in '3lnk' chunk
3134 const int iWavePoolOffset = version3 ? 68 : 44;
3135 for (uint i = 0; i < iMaxDimensionRegions; i++) {
3136 int iWaveIndex = -1;
3137 if (i < DimensionRegions) {
3138 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
3139 File::SampleList::iterator iter = pFile->pSamples->begin();
3140 File::SampleList::iterator end = pFile->pSamples->end();
3141 for (int index = 0; iter != end; ++iter, ++index) {
3142 if (*iter == pDimensionRegions[i]->pSample) {
3143 iWaveIndex = index;
3144 break;
3145 }
3146 }
3147 }
3148 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3149 }
3150 }
3151
3152 void Region::LoadDimensionRegions(RIFF::List* rgn) {
3153 RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
3154 if (_3prg) {
3155 int dimensionRegionNr = 0;
3156 RIFF::List* _3ewl = _3prg->GetFirstSubList();
3157 while (_3ewl) {
3158 if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3159 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3160 dimensionRegionNr++;
3161 }
3162 _3ewl = _3prg->GetNextSubList();
3163 }
3164 if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
3165 }
3166 }
3167
3168 void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3169 // update KeyRange struct and make sure regions are in correct order
3170 DLS::Region::SetKeyRange(Low, High);
3171 // update Region key table for fast lookup
3172 ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3173 }
3174
3175 void Region::UpdateVelocityTable() {
3176 // get velocity dimension's index
3177 int veldim = -1;
3178 for (int i = 0 ; i < Dimensions ; i++) {
3179 if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
3180 veldim = i;
3181 break;
3182 }
3183 }
3184 if (veldim == -1) return;
3185
3186 int step = 1;
3187 for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3188 int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
3189
3190 // loop through all dimension regions for all dimensions except the velocity dimension
3191 int dim[8] = { 0 };
3192 for (int i = 0 ; i < DimensionRegions ; i++) {
3193 const int end = i + step * pDimensionDefinitions[veldim].zones;
3194
3195 // create a velocity table for all cases where the velocity zone is zero
3196 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3197 pDimensionRegions[i]->VelocityUpperLimit) {
3198 // create the velocity table
3199 uint8_t* table = pDimensionRegions[i]->VelocityTable;
3200 if (!table) {
3201 table = new uint8_t[128];
3202 pDimensionRegions[i]->VelocityTable = table;
3203 }
3204 int tableidx = 0;
3205 int velocityZone = 0;
3206 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
3207 for (int k = i ; k < end ; k += step) {
3208 DimensionRegion *d = pDimensionRegions[k];
3209 for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
3210 velocityZone++;
3211 }
3212 } else { // gig2
3213 for (int k = i ; k < end ; k += step) {
3214 DimensionRegion *d = pDimensionRegions[k];
3215 for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
3216 velocityZone++;
3217 }
3218 }
3219 } else {
3220 if (pDimensionRegions[i]->VelocityTable) {
3221 delete[] pDimensionRegions[i]->VelocityTable;
3222 pDimensionRegions[i]->VelocityTable = 0;
3223 }
3224 }
3225
3226 // jump to the next case where the velocity zone is zero
3227 int j;
3228 int shift = 0;
3229 for (j = 0 ; j < Dimensions ; j++) {
3230 if (j == veldim) i += skipveldim; // skip velocity dimension
3231 else {
3232 dim[j]++;
3233 if (dim[j] < pDimensionDefinitions[j].zones) break;
3234 else {
3235 // skip unused dimension regions
3236 dim[j] = 0;
3237 i += ((1 << pDimensionDefinitions[j].bits) -
3238 pDimensionDefinitions[j].zones) << shift;
3239 }
3240 }
3241 shift += pDimensionDefinitions[j].bits;
3242 }
3243 if (j == Dimensions) break;
3244 }
3245 }
3246
3247 /** @brief Einstein would have dreamed of it - create a new dimension.
3248 *
3249 * Creates a new dimension with the dimension definition given by
3250 * \a pDimDef. The appropriate amount of DimensionRegions will be created.
3251 * There is a hard limit of dimensions and total amount of "bits" all
3252 * dimensions can have. This limit is dependant to what gig file format
3253 * version this file refers to. The gig v2 (and lower) format has a
3254 * dimension limit and total amount of bits limit of 5, whereas the gig v3
3255 * format has a limit of 8.
3256 *
3257 * @param pDimDef - defintion of the new dimension
3258 * @throws gig::Exception if dimension of the same type exists already
3259 * @throws gig::Exception if amount of dimensions or total amount of
3260 * dimension bits limit is violated
3261 */
3262 void Region::AddDimension(dimension_def_t* pDimDef) {
3263 // some initial sanity checks of the given dimension definition
3264 if (pDimDef->zones < 2)
3265 throw gig::Exception("Could not add new dimension, amount of requested zones must always be at least two");
3266 if (pDimDef->bits < 1)
3267 throw gig::Exception("Could not add new dimension, amount of requested requested zone bits must always be at least one");
3268 if (pDimDef->dimension == dimension_samplechannel) {
3269 if (pDimDef->zones != 2)
3270 throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zones must always be 2 for this dimension type");
3271 if (pDimDef->bits != 1)
3272 throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zone bits must always be 1 for this dimension type");
3273 }
3274
3275 // check if max. amount of dimensions reached
3276 File* file = (File*) GetParent()->GetParent();
3277 const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
3278 if (Dimensions >= iMaxDimensions)
3279 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
3280 // check if max. amount of dimension bits reached
3281 int iCurrentBits = 0;
3282 for (int i = 0; i < Dimensions; i++)
3283 iCurrentBits += pDimensionDefinitions[i].bits;
3284 if (iCurrentBits >= iMaxDimensions)
3285 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
3286 const int iNewBits = iCurrentBits + pDimDef->bits;
3287 if (iNewBits > iMaxDimensions)
3288 throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
3289 // check if there's already a dimensions of the same type
3290 for (int i = 0; i < Dimensions; i++)
3291 if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3292 throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3293
3294 // pos is where the new dimension should be placed, normally
3295 // last in list, except for the samplechannel dimension which
3296 // has to be first in list
3297 int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3298 int bitpos = 0;
3299 for (int i = 0 ; i < pos ; i++)
3300 bitpos += pDimensionDefinitions[i].bits;
3301
3302 // make room for the new dimension
3303 for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3304 for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3305 for (int j = Dimensions ; j > pos ; j--) {
3306 pDimensionRegions[i]->DimensionUpperLimits[j] =
3307 pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3308 }
3309 }
3310
3311 // assign definition of new dimension
3312 pDimensionDefinitions[pos] = *pDimDef;
3313
3314 // auto correct certain dimension definition fields (where possible)
3315 pDimensionDefinitions[pos].split_type =
3316 __resolveSplitType(pDimensionDefinitions[pos].dimension);
3317 pDimensionDefinitions[pos].zone_size =
3318 __resolveZoneSize(pDimensionDefinitions[pos]);
3319
3320 // create new dimension region(s) for this new dimension, and make
3321 // sure that the dimension regions are placed correctly in both the
3322 // RIFF list and the pDimensionRegions array
3323 RIFF::Chunk* moveTo = NULL;
3324 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3325 for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3326 for (int k = 0 ; k < (1 << bitpos) ; k++) {
3327 pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3328 }
3329 for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3330 for (int k = 0 ; k < (1 << bitpos) ; k++) {
3331 RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3332 if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3333 // create a new dimension region and copy all parameter values from
3334 // an existing dimension region
3335 pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3336 new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3337
3338 DimensionRegions++;
3339 }
3340 }
3341 moveTo = pDimensionRegions[i]->pParentList;
3342 }
3343
3344 // initialize the upper limits for this dimension
3345 int mask = (1 << bitpos) - 1;
3346 for (int z = 0 ; z < pDimDef->zones ; z++) {
3347 uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3348 for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3349 pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3350 (z << bitpos) |
3351 (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3352 }
3353 }
3354
3355 Dimensions++;
3356
3357 // if this is a layer dimension, update 'Layers' attribute
3358 if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
3359
3360 UpdateVelocityTable();
3361 }
3362
3363 /** @brief Delete an existing dimension.
3364 *
3365 * Deletes the dimension given by \a pDimDef and deletes all respective
3366 * dimension regions, that is all dimension regions where the dimension's
3367 * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
3368 * for example this would delete all dimension regions for the case(s)
3369 * where the sustain pedal is pressed down.
3370 *
3371 * @param pDimDef - dimension to delete
3372 * @throws gig::Exception if given dimension cannot be found
3373 */
3374 void Region::DeleteDimension(dimension_def_t* pDimDef) {
3375 // get dimension's index
3376 int iDimensionNr = -1;
3377 for (int i = 0; i < Dimensions; i++) {
3378 if (&pDimensionDefinitions[i] == pDimDef) {
3379 iDimensionNr = i;
3380 break;
3381 }
3382 }
3383 if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
3384
3385 // get amount of bits below the dimension to delete
3386 int iLowerBits = 0;
3387 for (int i = 0; i < iDimensionNr; i++)
3388 iLowerBits += pDimensionDefinitions[i].bits;
3389
3390 // get amount ot bits above the dimension to delete
3391 int iUpperBits = 0;
3392 for (int i = iDimensionNr + 1; i < Dimensions; i++)
3393 iUpperBits += pDimensionDefinitions[i].bits;
3394
3395 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3396
3397 // delete dimension regions which belong to the given dimension
3398 // (that is where the dimension's bit > 0)
3399 for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
3400 for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
3401 for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
3402 int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3403 iObsoleteBit << iLowerBits |
3404 iLowerBit;
3405
3406 _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3407 delete pDimensionRegions[iToDelete];
3408 pDimensionRegions[iToDelete] = NULL;
3409 DimensionRegions--;
3410 }
3411 }
3412 }
3413
3414 // defrag pDimensionRegions array
3415 // (that is remove the NULL spaces within the pDimensionRegions array)
3416 for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
3417 if (!pDimensionRegions[iTo]) {
3418 if (iFrom <= iTo) iFrom = iTo + 1;
3419 while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
3420 if (iFrom < 256 && pDimensionRegions[iFrom]) {
3421 pDimensionRegions[iTo] = pDimensionRegions[iFrom];
3422 pDimensionRegions[iFrom] = NULL;
3423 }
3424 }
3425 }
3426
3427 // remove the this dimension from the upper limits arrays
3428 for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3429 DimensionRegion* d = pDimensionRegions[j];
3430 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3431 d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3432 }
3433 d->DimensionUpperLimits[Dimensions - 1] = 127;
3434 }
3435
3436 // 'remove' dimension definition
3437 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3438 pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
3439 }
3440 pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
3441 pDimensionDefinitions[Dimensions - 1].bits = 0;
3442 pDimensionDefinitions[Dimensions - 1].zones = 0;
3443
3444 Dimensions--;
3445
3446 // if this was a layer dimension, update 'Layers' attribute
3447 if (pDimDef->dimension == dimension_layer) Layers = 1;
3448 }
3449
3450 /** @brief Delete one split zone of a dimension (decrement zone amount).
3451 *
3452 * Instead of deleting an entire dimensions, this method will only delete
3453 * one particular split zone given by @a zone of the Region's dimension
3454 * given by @a type. So this method will simply decrement the amount of
3455 * zones by one of the dimension in question. To be able to do that, the
3456 * respective dimension must exist on this Region and it must have at least
3457 * 3 zones. All DimensionRegion objects associated with the zone will be
3458 * deleted.
3459 *
3460 * @param type - identifies the dimension where a zone shall be deleted
3461 * @param zone - index of the dimension split zone that shall be deleted
3462 * @throws gig::Exception if requested zone could not be deleted
3463 */
3464 void Region::DeleteDimensionZone(dimension_t type, int zone) {
3465 dimension_def_t* oldDef = GetDimensionDefinition(type);
3466 if (!oldDef)
3467 throw gig::Exception("Could not delete dimension zone, no such dimension of given type");
3468 if (oldDef->zones <= 2)
3469 throw gig::Exception("Could not delete dimension zone, because it would end up with only one zone.");
3470 if (zone < 0 || zone >= oldDef->zones)
3471 throw gig::Exception("Could not delete dimension zone, requested zone index out of bounds.");
3472
3473 const int newZoneSize = oldDef->zones - 1;
3474
3475 // create a temporary Region which just acts as a temporary copy
3476 // container and will be deleted at the end of this function and will
3477 // also not be visible through the API during this process
3478 gig::Region* tempRgn = NULL;
3479 {
3480 // adding these temporary chunks is probably not even necessary
3481 Instrument* instr = static_cast<Instrument*>(GetParent());
3482 RIFF::List* pCkInstrument = instr->pCkInstrument;
3483 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3484 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3485 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3486 tempRgn = new Region(instr, rgn);
3487 }
3488
3489 // copy this region's dimensions (with already the dimension split size
3490 // requested by the arguments of this method call) to the temporary
3491 // region, and don't use Region::CopyAssign() here for this task, since
3492 // it would also alter fast lookup helper variables here and there
3493 dimension_def_t newDef;
3494 for (int i = 0; i < Dimensions; ++i) {
3495 dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3496 // is this the dimension requested by the method arguments? ...
3497 if (def.dimension == type) { // ... if yes, decrement zone amount by one
3498 def.zones = newZoneSize;
3499 if ((1 << (def.bits - 1)) == def.zones) def.bits--;
3500 newDef = def;
3501 }
3502 tempRgn->AddDimension(&def);
3503 }
3504
3505 // find the dimension index in the tempRegion which is the dimension
3506 // type passed to this method (paranoidly expecting different order)
3507 int tempReducedDimensionIndex = -1;
3508 for (int d = 0; d < tempRgn->Dimensions; ++d) {
3509 if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3510 tempReducedDimensionIndex = d;
3511 break;
3512 }
3513 }
3514
3515 // copy dimension regions from this region to the temporary region
3516 for (int iDst = 0; iDst < 256; ++iDst) {
3517 DimensionRegion* dstDimRgn = tempRgn->pDimensionRegions[iDst];
3518 if (!dstDimRgn) continue;
3519 std::map<dimension_t,int> dimCase;
3520 bool isValidZone = true;
3521 for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3522 const int dstBits = tempRgn->pDimensionDefinitions[d].bits;
3523 dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3524 (iDst >> baseBits) & ((1 << dstBits) - 1);
3525 baseBits += dstBits;
3526 // there are also DimensionRegion objects of unused zones, skip them
3527 if (dimCase[tempRgn->pDimensionDefinitions[d].dimension] >= tempRgn->pDimensionDefinitions[d].zones) {
3528 isValidZone = false;
3529 break;
3530 }
3531 }
3532 if (!isValidZone) continue;
3533 // a bit paranoid: cope with the chance that the dimensions would
3534 // have different order in source and destination regions
3535 const bool isLastZone = (dimCase[type] == newZoneSize - 1);
3536 if (dimCase[type] >= zone) dimCase[type]++;
3537 DimensionRegion* srcDimRgn = GetDimensionRegionByBit(dimCase);
3538 dstDimRgn->CopyAssign(srcDimRgn);
3539 // if this is the upper most zone of the dimension passed to this
3540 // method, then correct (raise) its upper limit to 127
3541 if (newDef.split_type == split_type_normal && isLastZone)
3542 dstDimRgn->DimensionUpperLimits[tempReducedDimensionIndex] = 127;
3543 }
3544
3545 // now tempRegion's dimensions and DimensionRegions basically reflect
3546 // what we wanted to get for this actual Region here, so we now just
3547 // delete and recreate the dimension in question with the new amount
3548 // zones and then copy back from tempRegion
3549 DeleteDimension(oldDef);
3550 AddDimension(&newDef);
3551 for (int iSrc = 0; iSrc < 256; ++iSrc) {
3552 DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3553 if (!srcDimRgn) continue;
3554 std::map<dimension_t,int> dimCase;
3555 for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3556 const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3557 dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3558 (iSrc >> baseBits) & ((1 << srcBits) - 1);
3559 baseBits += srcBits;
3560 }
3561 // a bit paranoid: cope with the chance that the dimensions would
3562 // have different order in source and destination regions
3563 DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3564 if (!dstDimRgn) continue;
3565 dstDimRgn->CopyAssign(srcDimRgn);
3566 }
3567
3568 // delete temporary region
3569 delete tempRgn;
3570
3571 UpdateVelocityTable();
3572 }
3573
3574 /** @brief Divide split zone of a dimension in two (increment zone amount).
3575 *
3576 * This will increment the amount of zones for the dimension (given by
3577 * @a type) by one. It will do so by dividing the zone (given by @a zone)
3578 * in the middle of its zone range in two. So the two zones resulting from
3579 * the zone being splitted, will be an equivalent copy regarding all their
3580 * articulation informations and sample reference. The two zones will only
3581 * differ in their zone's upper limit
3582 * (DimensionRegion::DimensionUpperLimits).
3583 *
3584 * @param type - identifies the dimension where a zone shall be splitted
3585 * @param zone - index of the dimension split zone that shall be splitted
3586 * @throws gig::Exception if requested zone could not be splitted
3587 */
3588 void Region::SplitDimensionZone(dimension_t type, int zone) {
3589 dimension_def_t* oldDef = GetDimensionDefinition(type);
3590 if (!oldDef)
3591 throw gig::Exception("Could not split dimension zone, no such dimension of given type");
3592 if (zone < 0 || zone >= oldDef->zones)
3593 throw gig::Exception("Could not split dimension zone, requested zone index out of bounds.");
3594
3595 const int newZoneSize = oldDef->zones + 1;
3596
3597 // create a temporary Region which just acts as a temporary copy
3598 // container and will be deleted at the end of this function and will
3599 // also not be visible through the API during this process
3600 gig::Region* tempRgn = NULL;
3601 {
3602 // adding these temporary chunks is probably not even necessary
3603 Instrument* instr = static_cast<Instrument*>(GetParent());
3604 RIFF::List* pCkInstrument = instr->pCkInstrument;
3605 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3606 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3607 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3608 tempRgn = new Region(instr, rgn);
3609 }
3610
3611 // copy this region's dimensions (with already the dimension split size
3612 // requested by the arguments of this method call) to the temporary
3613 // region, and don't use Region::CopyAssign() here for this task, since
3614 // it would also alter fast lookup helper variables here and there
3615 dimension_def_t newDef;
3616 for (int i = 0; i < Dimensions; ++i) {
3617 dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3618 // is this the dimension requested by the method arguments? ...
3619 if (def.dimension == type) { // ... if yes, increment zone amount by one
3620 def.zones = newZoneSize;
3621 if ((1 << oldDef->bits) < newZoneSize) def.bits++;
3622 newDef = def;
3623 }
3624 tempRgn->AddDimension(&def);
3625 }
3626
3627 // find the dimension index in the tempRegion which is the dimension
3628 // type passed to this method (paranoidly expecting different order)
3629 int tempIncreasedDimensionIndex = -1;
3630 for (int d = 0; d < tempRgn->Dimensions; ++d) {
3631 if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3632 tempIncreasedDimensionIndex = d;
3633 break;
3634 }
3635 }
3636
3637 // copy dimension regions from this region to the temporary region
3638 for (int iSrc = 0; iSrc < 256; ++iSrc) {
3639 DimensionRegion* srcDimRgn = pDimensionRegions[iSrc];
3640 if (!srcDimRgn) continue;
3641 std::map<dimension_t,int> dimCase;
3642 bool isValidZone = true;
3643 for (int d = 0, baseBits = 0; d < Dimensions; ++d) {
3644 const int srcBits = pDimensionDefinitions[d].bits;
3645 dimCase[pDimensionDefinitions[d].dimension] =
3646 (iSrc >> baseBits) & ((1 << srcBits) - 1);
3647 // there are also DimensionRegion objects for unused zones, skip them
3648 if (dimCase[pDimensionDefinitions[d].dimension] >= pDimensionDefinitions[d].zones) {
3649 isValidZone = false;
3650 break;
3651 }
3652 baseBits += srcBits;
3653 }
3654 if (!isValidZone) continue;
3655 // a bit paranoid: cope with the chance that the dimensions would
3656 // have different order in source and destination regions
3657 if (dimCase[type] > zone) dimCase[type]++;
3658 DimensionRegion* dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3659 dstDimRgn->CopyAssign(srcDimRgn);
3660 // if this is the requested zone to be splitted, then also copy
3661 // the source DimensionRegion to the newly created target zone
3662 // and set the old zones upper limit lower
3663 if (dimCase[type] == zone) {
3664 // lower old zones upper limit
3665 if (newDef.split_type == split_type_normal) {
3666 const int high =
3667 dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex];
3668 int low = 0;
3669 if (zone > 0) {
3670 std::map<dimension_t,int> lowerCase = dimCase;
3671 lowerCase[type]--;
3672 DimensionRegion* dstDimRgnLow = tempRgn->GetDimensionRegionByBit(lowerCase);
3673 low = dstDimRgnLow->DimensionUpperLimits[tempIncreasedDimensionIndex];
3674 }
3675 dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex] = low + (high - low) / 2;
3676 }
3677 // fill the newly created zone of the divided zone as well
3678 dimCase[type]++;
3679 dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3680 dstDimRgn->CopyAssign(srcDimRgn);
3681 }
3682 }
3683
3684 // now tempRegion's dimensions and DimensionRegions basically reflect
3685 // what we wanted to get for this actual Region here, so we now just
3686 // delete and recreate the dimension in question with the new amount
3687 // zones and then copy back from tempRegion
3688 DeleteDimension(oldDef);
3689 AddDimension(&newDef);
3690 for (int iSrc = 0; iSrc < 256; ++iSrc) {
3691 DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3692 if (!srcDimRgn) continue;
3693 std::map<dimension_t,int> dimCase;
3694 for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3695 const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3696 dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3697 (iSrc >> baseBits) & ((1 << srcBits) - 1);
3698 baseBits += srcBits;
3699 }
3700 // a bit paranoid: cope with the chance that the dimensions would
3701 // have different order in source and destination regions
3702 DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3703 if (!dstDimRgn) continue;
3704 dstDimRgn->CopyAssign(srcDimRgn);
3705 }
3706
3707 // delete temporary region
3708 delete tempRgn;
3709
3710 UpdateVelocityTable();
3711 }
3712
3713 /** @brief Change type of an existing dimension.
3714 *
3715 * Alters the dimension type of a dimension already existing on this
3716 * region. If there is currently no dimension on this Region with type
3717 * @a oldType, then this call with throw an Exception. Likewise there are
3718 * cases where the requested dimension type cannot be performed. For example
3719 * if the new dimension type shall be gig::dimension_samplechannel, and the
3720 * current dimension has more than 2 zones. In such cases an Exception is
3721 * thrown as well.
3722 *
3723 * @param oldType - identifies the existing dimension to be changed
3724 * @param newType - to which dimension type it should be changed to
3725 * @throws gig::Exception if requested change cannot be performed
3726 */
3727 void Region::SetDimensionType(dimension_t oldType, dimension_t newType) {
3728 if (oldType == newType) return;
3729 dimension_def_t* def = GetDimensionDefinition(oldType);
3730 if (!def)
3731 throw gig::Exception("No dimension with provided old dimension type exists on this region");
3732 if (newType == dimension_samplechannel && def->zones != 2)
3733 throw gig::Exception("Cannot change to dimension type 'sample channel', because existing dimension does not have 2 zones");
3734 if (GetDimensionDefinition(newType))
3735 throw gig::Exception("There is already a dimension with requested new dimension type on this region");
3736 def->dimension = newType;
3737 def->split_type = __resolveSplitType(newType);
3738 }
3739
3740 DimensionRegion* Region::GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase) {
3741 uint8_t bits[8] = {};
3742 for (std::map<dimension_t,int>::const_iterator it = DimCase.begin();
3743 it != DimCase.end(); ++it)
3744 {
3745 for (int d = 0; d < Dimensions; ++d) {
3746 if (pDimensionDefinitions[d].dimension == it->first) {
3747 bits[d] = it->second;
3748 goto nextDimCaseSlice;
3749 }
3750 }
3751 assert(false); // do crash ... too harsh maybe ? ignore it instead ?
3752 nextDimCaseSlice:
3753 ; // noop
3754 }
3755 return GetDimensionRegionByBit(bits);
3756 }
3757
3758 /**
3759 * Searches in the current Region for a dimension of the given dimension
3760 * type and returns the precise configuration of that dimension in this
3761 * Region.
3762 *
3763 * @param type - dimension type of the sought dimension
3764 * @returns dimension definition or NULL if there is no dimension with
3765 * sought type in this Region.
3766 */
3767 dimension_def_t* Region::GetDimensionDefinition(dimension_t type) {
3768 for (int i = 0; i < Dimensions; ++i)
3769 if (pDimensionDefinitions[i].dimension == type)
3770 return &pDimensionDefinitions[i];
3771 return NULL;
3772 }
3773
3774 Region::~Region() {
3775 for (int i = 0; i < 256; i++) {
3776 if (pDimensionRegions[i]) delete pDimensionRegions[i];
3777 }
3778 }
3779
3780 /**
3781 * Use this method in your audio engine to get the appropriate dimension
3782 * region with it's articulation data for the current situation. Just
3783 * call the method with the current MIDI controller values and you'll get
3784 * the DimensionRegion with the appropriate articulation data for the
3785 * current situation (for this Region of course only). To do that you'll
3786 * first have to look which dimensions with which controllers and in
3787 * which order are defined for this Region when you load the .gig file.
3788 * Special cases are e.g. layer or channel dimensions where you just put
3789 * in the index numbers instead of a MIDI controller value (means 0 for
3790 * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
3791 * etc.).
3792 *
3793 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
3794 * @returns adress to the DimensionRegion for the given situation
3795 * @see pDimensionDefinitions
3796 * @see Dimensions
3797 */
3798 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
3799 uint8_t bits;
3800 int veldim = -1;
3801 int velbitpos = 0;
3802 int bitpos = 0;
3803 int dimregidx = 0;
3804 for (uint i = 0; i < Dimensions; i++) {
3805 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
3806 // the velocity dimension must be handled after the other dimensions
3807 veldim = i;
3808 velbitpos = bitpos;
3809 } else {
3810 switch (pDimensionDefinitions[i].split_type) {
3811 case split_type_normal:
3812 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
3813 // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
3814 for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
3815 if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
3816 }
3817 } else {
3818 // gig2: evenly sized zones
3819 bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
3820 }
3821 break;
3822 case split_type_bit: // the value is already the sought dimension bit number
3823 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
3824 bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
3825 break;
3826 }
3827 dimregidx |= bits << bitpos;
3828 }
3829 bitpos += pDimensionDefinitions[i].bits;
3830 }
3831 DimensionRegion* dimreg = pDimensionRegions[dimregidx & 255];
3832 if (!dimreg) return NULL;
3833 if (veldim != -1) {
3834 // (dimreg is now the dimension region for the lowest velocity)
3835 if (dimreg->VelocityTable) // custom defined zone ranges
3836 bits = dimreg->VelocityTable[DimValues[veldim] & 127];
3837 else // normal split type
3838 bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
3839
3840 const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
3841 dimregidx |= (bits & limiter_mask) << velbitpos;
3842 dimreg = pDimensionRegions[dimregidx & 255];
3843 }
3844 return dimreg;
3845 }
3846
3847 int Region::GetDimensionRegionIndexByValue(const uint DimValues[8]) {
3848 uint8_t bits;
3849 int veldim = -1;
3850 int velbitpos = 0;
3851 int bitpos = 0;
3852 int dimregidx = 0;
3853 for (uint i = 0; i < Dimensions; i++) {
3854 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
3855 // the velocity dimension must be handled after the other dimensions
3856 veldim = i;
3857 velbitpos = bitpos;
3858 } else {
3859 switch (pDimensionDefinitions[i].split_type) {
3860 case split_type_normal:
3861 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
3862 // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
3863 for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
3864 if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
3865 }
3866 } else {
3867 // gig2: evenly sized zones
3868 bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
3869 }
3870 break;
3871 case split_type_bit: // the value is already the sought dimension bit number
3872 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
3873 bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
3874 break;
3875 }
3876 dimregidx |= bits << bitpos;
3877 }
3878 bitpos += pDimensionDefinitions[i].bits;
3879 }
3880 dimregidx &= 255;
3881 DimensionRegion* dimreg = pDimensionRegions[dimregidx];
3882 if (!dimreg) return -1;
3883 if (veldim != -1) {
3884 // (dimreg is now the dimension region for the lowest velocity)
3885 if (dimreg->VelocityTable) // custom defined zone ranges
3886 bits = dimreg->VelocityTable[DimValues[veldim] & 127];
3887 else // normal split type
3888 bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
3889
3890 const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
3891 dimregidx |= (bits & limiter_mask) << velbitpos;
3892 dimregidx &= 255;
3893 }
3894 return dimregidx;
3895 }
3896
3897 /**
3898 * Returns the appropriate DimensionRegion for the given dimension bit
3899 * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
3900 * instead of calling this method directly!
3901 *
3902 * @param DimBits Bit numbers for dimension 0 to 7
3903 * @returns adress to the DimensionRegion for the given dimension
3904 * bit numbers
3905 * @see GetDimensionRegionByValue()
3906 */
3907 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
3908 return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
3909 << pDimensionDefinitions[5].bits | DimBits[5])
3910 << pDimensionDefinitions[4].bits | DimBits[4])
3911 << pDimensionDefinitions[3].bits | DimBits[3])
3912 << pDimensionDefinitions[2].bits | DimBits[2])
3913 << pDimensionDefinitions[1].bits | DimBits[1])
3914 << pDimensionDefinitions[0].bits | DimBits[0]];
3915 }
3916
3917 /**
3918 * Returns pointer address to the Sample referenced with this region.
3919 * This is the global Sample for the entire Region (not sure if this is
3920 * actually used by the Gigasampler engine - I would only use the Sample
3921 * referenced by the appropriate DimensionRegion instead of this sample).
3922 *
3923 * @returns address to Sample or NULL if there is no reference to a
3924 * sample saved in the .gig file
3925 */
3926 Sample* Region::GetSample() {
3927 if (pSample) return static_cast<gig::Sample*>(pSample);
3928 else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
3929 }
3930
3931 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
3932 if ((int32_t)WavePoolTableIndex == -1) return NULL;
3933 File* file = (File*) GetParent()->GetParent();
3934 if (!file->pWavePoolTable) return NULL;
3935 // for new files or files >= 2 GB use 64 bit wave pool offsets
3936 if (file->pRIFF->IsNew() || (file->pRIFF->GetCurrentFileSize() >> 31)) {
3937 // use 64 bit wave pool offsets (treating this as large file)
3938 uint64_t soughtoffset =
3939 uint64_t(file->pWavePoolTable[WavePoolTableIndex]) |
3940 uint64_t(file->pWavePoolTableHi[WavePoolTableIndex]) << 32;
3941 Sample* sample = file->GetFirstSample(pProgress);
3942 while (sample) {
3943 if (sample->ullWavePoolOffset == soughtoffset)
3944 return static_cast<gig::Sample*>(sample);
3945 sample = file->GetNextSample();
3946 }
3947 } else {
3948 // use extension files and 32 bit wave pool offsets
3949 file_offset_t soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
3950 file_offset_t soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
3951 Sample* sample = file->GetFirstSample(pProgress);
3952 while (sample) {
3953 if (sample->ullWavePoolOffset == soughtoffset &&
3954 sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
3955 sample = file->GetNextSample();
3956 }
3957 }
3958 return NULL;
3959 }
3960
3961 /**
3962 * Make a (semi) deep copy of the Region object given by @a orig
3963 * and assign it to this object.
3964 *
3965 * Note that all sample pointers referenced by @a orig are simply copied as
3966 * memory address. Thus the respective samples are shared, not duplicated!
3967 *
3968 * @param orig - original Region object to be copied from
3969 */
3970 void Region::CopyAssign(const Region* orig) {
3971 CopyAssign(orig, NULL);
3972 }
3973
3974 /**
3975 * Make a (semi) deep copy of the Region object given by @a orig and
3976 * assign it to this object
3977 *
3978 * @param mSamples - crosslink map between the foreign file's samples and
3979 * this file's samples
3980 */
3981 void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
3982 // handle base classes
3983 DLS::Region::CopyAssign(orig);
3984
3985 if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
3986 pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
3987 }
3988
3989 // handle own member variables
3990 for (int i = Dimensions - 1; i >= 0; --i) {
3991 DeleteDimension(&pDimensionDefinitions[i]);
3992 }
3993 Layers = 0; // just to be sure
3994 for (int i = 0; i < orig->Dimensions; i++) {
3995 // we need to copy the dim definition here, to avoid the compiler
3996 // complaining about const-ness issue
3997 dimension_def_t def = orig->pDimensionDefinitions[i];
3998 AddDimension(&def);
3999 }
4000 for (int i = 0; i < 256; i++) {
4001 if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
4002 pDimensionRegions[i]->CopyAssign(
4003 orig->pDimensionRegions[i],
4004 mSamples
4005 );
4006 }
4007 }
4008 Layers = orig->Layers;
4009 }
4010
4011
4012 // *************** MidiRule ***************
4013 // *
4014
4015 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
4016 _3ewg->SetPos(36);
4017 Triggers = _3ewg->ReadUint8();
4018 _3ewg->SetPos(40);
4019 ControllerNumber = _3ewg->ReadUint8();
4020 _3ewg->SetPos(46);
4021 for (int i = 0 ; i < Triggers ; i++) {
4022 pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
4023 pTriggers[i].Descending = _3ewg->ReadUint8();
4024 pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
4025 pTriggers[i].Key = _3ewg->ReadUint8();
4026 pTriggers[i].NoteOff = _3ewg->ReadUint8();
4027 pTriggers[i].Velocity = _3ewg->ReadUint8();
4028 pTriggers[i].OverridePedal = _3ewg->ReadUint8();
4029 _3ewg->ReadUint8();
4030 }
4031 }
4032
4033 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
4034 ControllerNumber(0),
4035 Triggers(0) {
4036 }
4037
4038 void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
4039 pData[32] = 4;
4040 pData[33] = 16;
4041 pData[36] = Triggers;
4042 pData[40] = ControllerNumber;
4043 for (int i = 0 ; i < Triggers ; i++) {
4044 pData[46 + i * 8] = pTriggers[i].TriggerPoint;
4045 pData[47 + i * 8] = pTriggers[i].Descending;
4046 pData[48 + i * 8] = pTriggers[i].VelSensitivity;
4047 pData[49 + i * 8] = pTriggers[i].Key;
4048 pData[50 + i * 8] = pTriggers[i].NoteOff;
4049 pData[51 + i * 8] = pTriggers[i].Velocity;
4050 pData[52 + i * 8] = pTriggers[i].OverridePedal;
4051 }
4052 }
4053
4054 MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
4055 _3ewg->SetPos(36);
4056 LegatoSamples = _3ewg->ReadUint8(); // always 12
4057 _3ewg->SetPos(40);
4058 BypassUseController = _3ewg->ReadUint8();
4059 BypassKey = _3ewg->ReadUint8();
4060 BypassController = _3ewg->ReadUint8();
4061 ThresholdTime = _3ewg->ReadUint16();
4062 _3ewg->ReadInt16();
4063 ReleaseTime = _3ewg->ReadUint16();
4064 _3ewg->ReadInt16();
4065 KeyRange.low = _3ewg->ReadUint8();
4066 KeyRange.high = _3ewg->ReadUint8();
4067 _3ewg->SetPos(64);
4068 ReleaseTriggerKey = _3ewg->ReadUint8();
4069 AltSustain1Key = _3ewg->ReadUint8();
4070 AltSustain2Key = _3ewg->ReadUint8();
4071 }
4072
4073 MidiRuleLegato::MidiRuleLegato() :
4074 LegatoSamples(12),
4075 BypassUseController(false),
4076 BypassKey(0),
4077 BypassController(1),
4078 ThresholdTime(20),
4079 ReleaseTime(20),
4080 ReleaseTriggerKey(0),
4081 AltSustain1Key(0),
4082 AltSustain2Key(0)
4083 {
4084 KeyRange.low = KeyRange.high = 0;
4085 }
4086
4087 void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
4088 pData[32] = 0;
4089 pData[33] = 16;
4090 pData[36] = LegatoSamples;
4091 pData[40] = BypassUseController;
4092 pData[41] = BypassKey;
4093 pData[42] = BypassController;
4094 store16(&pData[43], ThresholdTime);
4095 store16(&pData[47], ReleaseTime);
4096 pData[51] = KeyRange.low;
4097 pData[52] = KeyRange.high;
4098 pData[64] = ReleaseTriggerKey;
4099 pData[65] = AltSustain1Key;
4100 pData[66] = AltSustain2Key;
4101 }
4102
4103 MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
4104 _3ewg->SetPos(36);
4105 Articulations = _3ewg->ReadUint8();
4106 int flags = _3ewg->ReadUint8();
4107 Polyphonic = flags & 8;
4108 Chained = flags & 4;
4109 Selector = (flags & 2) ? selector_controller :
4110 (flags & 1) ? selector_key_switch : selector_none;
4111 Patterns = _3ewg->ReadUint8();
4112 _3ewg->ReadUint8(); // chosen row
4113 _3ewg->ReadUint8(); // unknown
4114 _3ewg->ReadUint8(); // unknown
4115 _3ewg->ReadUint8(); // unknown
4116 KeySwitchRange.low = _3ewg->ReadUint8();
4117 KeySwitchRange.high = _3ewg->ReadUint8();
4118 Controller = _3ewg->ReadUint8();
4119 PlayRange.low = _3ewg->ReadUint8();
4120 PlayRange.high = _3ewg->ReadUint8();
4121
4122 int n = std::min(int(Articulations), 32);
4123 for (int i = 0 ; i < n ; i++) {
4124 _3ewg->ReadString(pArticulations[i], 32);
4125 }
4126 _3ewg->SetPos(1072);
4127 n = std::min(int(Patterns), 32);
4128 for (int i = 0 ; i < n ; i++) {
4129 _3ewg->ReadString(pPatterns[i].Name, 16);
4130 pPatterns[i].Size = _3ewg->ReadUint8();
4131 _3ewg->Read(&pPatterns[i][0], 1, 32);
4132 }
4133 }
4134
4135 MidiRuleAlternator::MidiRuleAlternator() :
4136 Articulations(0),
4137 Patterns(0),
4138 Selector(selector_none),
4139 Controller(0),
4140 Polyphonic(false),
4141 Chained(false)
4142 {
4143 PlayRange.low = PlayRange.high = 0;
4144 KeySwitchRange.low = KeySwitchRange.high = 0;
4145 }
4146
4147 void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
4148 pData[32] = 3;
4149 pData[33] = 16;
4150 pData[36] = Articulations;
4151 pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
4152 (Selector == selector_controller ? 2 :
4153 (Selector == selector_key_switch ? 1 : 0));
4154 pData[38] = Patterns;
4155
4156 pData[43] = KeySwitchRange.low;
4157 pData[44] = KeySwitchRange.high;
4158 pData[45] = Controller;
4159 pData[46] = PlayRange.low;
4160 pData[47] = PlayRange.high;
4161
4162 char* str = reinterpret_cast<char*>(pData);
4163 int pos = 48;
4164 int n = std::min(int(Articulations), 32);
4165 for (int i = 0 ; i < n ; i++, pos += 32) {
4166 strncpy(&str[pos], pArticulations[i].c_str(), 32);
4167 }
4168
4169 pos = 1072;
4170 n = std::min(int(Patterns), 32);
4171 for (int i = 0 ; i < n ; i++, pos += 49) {
4172 strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
4173 pData[pos + 16] = pPatterns[i].Size;
4174 memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
4175 }
4176 }
4177
4178 // *************** Script ***************
4179 // *
4180
4181 Script::Script(ScriptGroup* group, RIFF::Chunk* ckScri) {
4182 pGroup = group;
4183 pChunk = ckScri;
4184 if (ckScri) { // object is loaded from file ...
4185 // read header
4186 uint32_t headerSize = ckScri->ReadUint32();
4187 Compression = (Compression_t) ckScri->ReadUint32();
4188 Encoding = (Encoding_t) ckScri->ReadUint32();
4189 Language = (Language_t) ckScri->ReadUint32();
4190 Bypass = (Language_t) ckScri->ReadUint32() & 1;
4191 crc = ckScri->ReadUint32();
4192 uint32_t nameSize = ckScri->ReadUint32();
4193 Name.resize(nameSize, ' ');
4194 for (int i = 0; i < nameSize; ++i)
4195 Name[i] = ckScri->ReadUint8();
4196 // to handle potential future extensions of the header
4197 ckScri->SetPos(sizeof(int32_t) + headerSize);
4198 // read actual script data
4199 uint32_t scriptSize = uint32_t(ckScri->GetSize() - ckScri->GetPos());
4200 data.resize(scriptSize);
4201 for (int i = 0; i < scriptSize; ++i)
4202 data[i] = ckScri->ReadUint8();
4203 } else { // this is a new script object, so just initialize it as such ...
4204 Compression = COMPRESSION_NONE;
4205 Encoding = ENCODING_ASCII;
4206 Language = LANGUAGE_NKSP;
4207 Bypass = false;
4208 crc = 0;
4209 Name = "Unnamed Script";
4210 }
4211 }
4212
4213 Script::~Script() {
4214 }
4215
4216 /**
4217 * Returns the current script (i.e. as source code) in text format.
4218 */
4219 String Script::GetScriptAsText() {
4220 String s;
4221 s.resize(data.size(), ' ');
4222 memcpy(&s[0], &data[0], data.size());
4223 return s;
4224 }
4225
4226 /**
4227 * Replaces the current script with the new script source code text given
4228 * by @a text.
4229 *
4230 * @param text - new script source code
4231 */
4232 void Script::SetScriptAsText(const String& text) {
4233 data.resize(text.size());
4234 memcpy(&data[0], &text[0], text.size());
4235 }
4236
4237 /**
4238 * Apply this script to the respective RIFF chunks. You have to call
4239 * File::Save() to make changes persistent.
4240 *
4241 * Usually there is absolutely no need to call this method explicitly.
4242 * It will be called automatically when File::Save() was called.
4243 *
4244 * @param pProgress - callback function for progress notification
4245 */
4246 void Script::UpdateChunks(progress_t* pProgress) {
4247 // recalculate CRC32 check sum
4248 __resetCRC(crc);
4249 __calculateCRC(&data[0], data.size(), crc);
4250 __finalizeCRC(crc);
4251 // make sure chunk exists and has the required size
4252 const file_offset_t chunkSize = (file_offset_t) 7*sizeof(int32_t) + Name.size() + data.size();
4253 if (!pChunk) pChunk = pGroup->pList->AddSubChunk(CHUNK_ID_SCRI, chunkSize);
4254 else pChunk->Resize(chunkSize);
4255 // fill the chunk data to be written to disk
4256 uint8_t* pData = (uint8_t*) pChunk->LoadChunkData();
4257 int pos = 0;
4258 store32(&pData[pos], uint32_t(6*sizeof(int32_t) + Name.size())); // total header size
4259 pos += sizeof(int32_t);
4260 store32(&pData[pos], Compression);
4261 pos += sizeof(int32_t);
4262 store32(&pData[pos], Encoding);
4263 pos += sizeof(int32_t);
4264 store32(&pData[pos], Language);
4265 pos += sizeof(int32_t);
4266 store32(&pData[pos], Bypass ? 1 : 0);
4267 pos += sizeof(int32_t);
4268 store32(&pData[pos], crc);
4269 pos += sizeof(int32_t);
4270 store32(&pData[pos], (uint32_t) Name.size());
4271 pos += sizeof(int32_t);
4272 for (int i = 0; i < Name.size(); ++i, ++pos)
4273 pData[pos] = Name[i];
4274 for (int i = 0; i < data.size(); ++i, ++pos)
4275 pData[pos] = data[i];
4276 }
4277
4278 /**
4279 * Move this script from its current ScriptGroup to another ScriptGroup
4280 * given by @a pGroup.
4281 *
4282 * @param pGroup - script's new group
4283 */
4284 void Script::SetGroup(ScriptGroup* pGroup) {
4285 if (this->pGroup == pGroup) return;
4286 if (pChunk)
4287 pChunk->GetParent()->MoveSubChunk(pChunk, pGroup->pList);
4288 this->pGroup = pGroup;
4289 }
4290
4291 /**
4292 * Returns the script group this script currently belongs to. Each script
4293 * is a member of exactly one ScriptGroup.
4294 *
4295 * @returns current script group
4296 */
4297 ScriptGroup* Script::GetGroup() const {
4298 return pGroup;
4299 }
4300
4301 void Script::RemoveAllScriptReferences() {
4302 File* pFile = pGroup->pFile;
4303 for (int i = 0; pFile->GetInstrument(i); ++i) {
4304 Instrument* instr = pFile->GetInstrument(i);
4305 instr->RemoveScript(this);
4306 }
4307 }
4308
4309 // *************** ScriptGroup ***************
4310 // *
4311
4312 ScriptGroup::ScriptGroup(File* file, RIFF::List* lstRTIS) {
4313 pFile = file;
4314 pList = lstRTIS;
4315 pScripts = NULL;
4316 if (lstRTIS) {
4317 RIFF::Chunk* ckName = lstRTIS->GetSubChunk(CHUNK_ID_LSNM);
4318 ::LoadString(ckName, Name);
4319 } else {
4320 Name = "Default Group";
4321 }
4322 }
4323
4324 ScriptGroup::~ScriptGroup() {
4325 if (pScripts) {
4326 std::list<Script*>::iterator iter = pScripts->begin();
4327 std::list<Script*>::iterator end = pScripts->end();
4328 while (iter != end) {
4329 delete *iter;
4330 ++iter;
4331 }
4332 delete pScripts;
4333 }
4334 }
4335
4336 /**
4337 * Apply this script group to the respective RIFF chunks. You have to call
4338 * File::Save() to make changes persistent.
4339 *
4340 * Usually there is absolutely no need to call this method explicitly.
4341 * It will be called automatically when File::Save() was called.
4342 *
4343 * @param pProgress - callback function for progress notification
4344 */
4345 void ScriptGroup::UpdateChunks(progress_t* pProgress) {
4346 if (pScripts) {
4347 if (!pList)
4348 pList = pFile->pRIFF->GetSubList(LIST_TYPE_3LS)->AddSubList(LIST_TYPE_RTIS);
4349
4350 // now store the name of this group as <LSNM> chunk as subchunk of the <RTIS> list chunk
4351 ::SaveString(CHUNK_ID_LSNM, NULL, pList, Name, String("Unnamed Group"), true, 64);
4352
4353 for (std::list<Script*>::iterator it = pScripts->begin();
4354 it != pScripts->end(); ++it)
4355 {
4356 (*it)->UpdateChunks(pProgress);
4357 }
4358 }
4359 }
4360
4361 /** @brief Get instrument script.
4362 *
4363 * Returns the real-time instrument script with the given index.
4364 *
4365 * @param index - number of the sought script (0..n)
4366 * @returns sought script or NULL if there's no such script
4367 */
4368 Script* ScriptGroup::GetScript(uint index) {
4369 if (!pScripts) LoadScripts();
4370 std::list<Script*>::iterator it = pScripts->begin();
4371 for (uint i = 0; it != pScripts->end(); ++i, ++it)
4372 if (i == index) return *it;
4373 return NULL;
4374 }
4375
4376 /** @brief Add new instrument script.
4377 *
4378 * Adds a new real-time instrument script to the file. The script is not
4379 * actually used / executed unless it is referenced by an instrument to be
4380 * used. This is similar to samples, which you can add to a file, without
4381 * an instrument necessarily actually using it.
4382 *
4383 * You have to call Save() to make this persistent to the file.
4384 *
4385 * @return new empty script object
4386 */
4387 Script* ScriptGroup::AddScript() {
4388 if (!pScripts) LoadScripts();
4389 Script* pScript = new Script(this, NULL);
4390 pScripts->push_back(pScript);
4391 return pScript;
4392 }
4393
4394 /** @brief Delete an instrument script.
4395 *
4396 * This will delete the given real-time instrument script. References of
4397 * instruments that are using that script will be removed accordingly.
4398 *
4399 * You have to call Save() to make this persistent to the file.
4400 *
4401 * @param pScript - script to delete
4402 * @throws gig::Exception if given script could not be found
4403 */
4404 void ScriptGroup::DeleteScript(Script* pScript) {
4405 if (!pScripts) LoadScripts();
4406 std::list<Script*>::iterator iter =
4407 find(pScripts->begin(), pScripts->end(), pScript);
4408 if (iter == pScripts->end())
4409 throw gig::Exception("Could not delete script, could not find given script");
4410 pScripts->erase(iter);
4411 pScript->RemoveAllScriptReferences();
4412 if (pScript->pChunk)
4413 pScript->pChunk->GetParent()->DeleteSubChunk(pScript->pChunk);
4414 delete pScript;
4415 }
4416
4417 void ScriptGroup::LoadScripts() {
4418 if (pScripts) return;
4419 pScripts = new std::list<Script*>;
4420 if (!pList) return;
4421
4422 for (RIFF::Chunk* ck = pList->GetFirstSubChunk(); ck;
4423 ck = pList->GetNextSubChunk())
4424 {
4425 if (ck->GetChunkID() == CHUNK_ID_SCRI) {
4426 pScripts->push_back(new Script(this, ck));
4427 }
4428 }
4429 }
4430
4431 // *************** Instrument ***************
4432 // *
4433
4434 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
4435 static const DLS::Info::string_length_t fixedStringLengths[] = {
4436 { CHUNK_ID_INAM, 64 },
4437 { CHUNK_ID_ISFT, 12 },
4438 { 0, 0 }
4439 };
4440 pInfo->SetFixedStringLengths(fixedStringLengths);
4441
4442 // Initialization
4443 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4444 EffectSend = 0;
4445 Attenuation = 0;
4446 FineTune = 0;
4447 PitchbendRange = 2;
4448 PianoReleaseMode = false;
4449 DimensionKeyRange.low = 0;
4450 DimensionKeyRange.high = 0;
4451 pMidiRules = new MidiRule*[3];
4452 pMidiRules[0] = NULL;
4453 pScriptRefs = NULL;
4454
4455 // Loading
4456 RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
4457 if (lart) {
4458 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4459 if (_3ewg) {
4460 EffectSend = _3ewg->ReadUint16();
4461 Attenuation = _3ewg->ReadInt32();
4462 FineTune = _3ewg->ReadInt16();
4463 PitchbendRange = _3ewg->ReadInt16();
4464 uint8_t dimkeystart = _3ewg->ReadUint8();
4465 PianoReleaseMode = dimkeystart & 0x01;
4466 DimensionKeyRange.low = dimkeystart >> 1;
4467 DimensionKeyRange.high = _3ewg->ReadUint8();
4468
4469 if (_3ewg->GetSize() > 32) {
4470 // read MIDI rules
4471 int i = 0;
4472 _3ewg->SetPos(32);
4473 uint8_t id1 = _3ewg->ReadUint8();
4474 uint8_t id2 = _3ewg->ReadUint8();
4475
4476 if (id2 == 16) {
4477 if (id1 == 4) {
4478 pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
4479 } else if (id1 == 0) {
4480 pMidiRules[i++] = new MidiRuleLegato(_3ewg);
4481 } else if (id1 == 3) {
4482 pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
4483 } else {
4484 pMidiRules[i++] = new MidiRuleUnknown;
4485 }
4486 }
4487 else if (id1 != 0 || id2 != 0) {
4488 pMidiRules[i++] = new MidiRuleUnknown;
4489 }
4490 //TODO: all the other types of rules
4491
4492 pMidiRules[i] = NULL;
4493 }
4494 }
4495 }
4496
4497 if (pFile->GetAutoLoad()) {
4498 if (!pRegions) pRegions = new RegionList;
4499 RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
4500 if (lrgn) {
4501 RIFF::List* rgn = lrgn->GetFirstSubList();
4502 while (rgn) {
4503 if (rgn->GetListType() == LIST_TYPE_RGN) {
4504 __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
4505 pRegions->push_back(new Region(this, rgn));
4506 }
4507 rgn = lrgn->GetNextSubList();
4508 }
4509 // Creating Region Key Table for fast lookup
4510 UpdateRegionKeyTable();
4511 }
4512 }
4513
4514 // own gig format extensions
4515 RIFF::List* lst3LS = insList->GetSubList(LIST_TYPE_3LS);
4516 if (lst3LS) {
4517 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4518 if (ckSCSL) {
4519 int headerSize = ckSCSL->ReadUint32();
4520 int slotCount = ckSCSL->ReadUint32();
4521 if (slotCount) {
4522 int slotSize = ckSCSL->ReadUint32();
4523 ckSCSL->SetPos(headerSize); // in case of future header extensions
4524 int unknownSpace = slotSize - 2*sizeof(uint32_t); // in case of future slot extensions
4525 for (int i = 0; i < slotCount; ++i) {
4526 _ScriptPooolEntry e;
4527 e.fileOffset = ckSCSL->ReadUint32();
4528 e.bypass = ckSCSL->ReadUint32() & 1;
4529 if (unknownSpace) ckSCSL->SetPos(unknownSpace, RIFF::stream_curpos); // in case of future extensions
4530 scriptPoolFileOffsets.push_back(e);
4531 }
4532 }
4533 }
4534 }
4535
4536 __notify_progress(pProgress, 1.0f); // notify done
4537 }
4538
4539 void Instrument::UpdateRegionKeyTable() {
4540 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4541 RegionList::iterator iter = pRegions->begin();
4542 RegionList::iterator end = pRegions->end();
4543 for (; iter != end; ++iter) {
4544 gig::Region* pRegion = static_cast<gig::Region*>(*iter);
4545 for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
4546 RegionKeyTable[iKey] = pRegion;
4547 }
4548 }
4549 }
4550
4551 Instrument::~Instrument() {
4552 for (int i = 0 ; pMidiRules[i] ; i++) {
4553 delete pMidiRules[i];
4554 }
4555 delete[] pMidiRules;
4556 if (pScriptRefs) delete pScriptRefs;
4557 }
4558
4559 /**
4560 * Apply Instrument with all its Regions to the respective RIFF chunks.
4561 * You have to call File::Save() to make changes persistent.
4562 *
4563 * Usually there is absolutely no need to call this method explicitly.
4564 * It will be called automatically when File::Save() was called.
4565 *
4566 * @param pProgress - callback function for progress notification
4567 * @throws gig::Exception if samples cannot be dereferenced
4568 */
4569 void Instrument::UpdateChunks(progress_t* pProgress) {
4570 // first update base classes' chunks
4571 DLS::Instrument::UpdateChunks(pProgress);
4572
4573 // update Regions' chunks
4574 {
4575 RegionList::iterator iter = pRegions->begin();
4576 RegionList::iterator end = pRegions->end();
4577 for (; iter != end; ++iter)
4578 (*iter)->UpdateChunks(pProgress);
4579 }
4580
4581 // make sure 'lart' RIFF list chunk exists
4582 RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
4583 if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
4584 // make sure '3ewg' RIFF chunk exists
4585 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4586 if (!_3ewg) {
4587 File* pFile = (File*) GetParent();
4588
4589 // 3ewg is bigger in gig3, as it includes the iMIDI rules
4590 int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
4591 _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
4592 memset(_3ewg->LoadChunkData(), 0, size);
4593 }
4594 // update '3ewg' RIFF chunk
4595 uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
4596 store16(&pData[0], EffectSend);
4597 store32(&pData[2], Attenuation);
4598 store16(&pData[6], FineTune);
4599 store16(&pData[8], PitchbendRange);
4600 const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
4601 DimensionKeyRange.low << 1;
4602 pData[10] = dimkeystart;
4603 pData[11] = DimensionKeyRange.high;
4604
4605 if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
4606 pData[32] = 0;
4607 pData[33] = 0;
4608 } else {
4609 for (int i = 0 ; pMidiRules[i] ; i++) {
4610 pMidiRules[i]->UpdateChunks(pData);
4611 }
4612 }
4613
4614 // own gig format extensions
4615 if (ScriptSlotCount()) {
4616 // make sure we have converted the original loaded script file
4617 // offsets into valid Script object pointers
4618 LoadScripts();
4619
4620 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4621 if (!lst3LS) lst3LS = pCkInstrument->AddSubList(LIST_TYPE_3LS);
4622 const int slotCount = (int) pScriptRefs->size();
4623 const int headerSize = 3 * sizeof(uint32_t);
4624 const int slotSize = 2 * sizeof(uint32_t);
4625 const int totalChunkSize = headerSize + slotCount * slotSize;
4626 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4627 if (!ckSCSL) ckSCSL = lst3LS->AddSubChunk(CHUNK_ID_SCSL, totalChunkSize);
4628 else ckSCSL->Resize(totalChunkSize);
4629 uint8_t* pData = (uint8_t*) ckSCSL->LoadChunkData();
4630 int pos = 0;
4631 store32(&pData[pos], headerSize);
4632 pos += sizeof(uint32_t);
4633 store32(&pData[pos], slotCount);
4634 pos += sizeof(uint32_t);
4635 store32(&pData[pos], slotSize);
4636 pos += sizeof(uint32_t);
4637 for (int i = 0; i < slotCount; ++i) {
4638 // arbitrary value, the actual file offset will be updated in
4639 // UpdateScriptFileOffsets() after the file has been resized
4640 int bogusFileOffset = 0;
4641 store32(&pData[pos], bogusFileOffset);
4642 pos += sizeof(uint32_t);
4643 store32(&pData[pos], (*pScriptRefs)[i].bypass ? 1 : 0);
4644 pos += sizeof(uint32_t);
4645 }
4646 } else {
4647 // no script slots, so get rid of any LS custom RIFF chunks (if any)
4648 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4649 if (lst3LS) pCkInstrument->DeleteSubChunk(lst3LS);
4650 }
4651 }
4652
4653 void Instrument::UpdateScriptFileOffsets() {
4654 // own gig format extensions
4655 if (pScriptRefs && pScriptRefs->size() > 0) {
4656 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4657 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4658 const int slotCount = (int) pScriptRefs->size();
4659 const int headerSize = 3 * sizeof(uint32_t);
4660 ckSCSL->SetPos(headerSize);
4661 for (int i = 0; i < slotCount; ++i) {
4662 uint32_t fileOffset = uint32_t(
4663 (*pScriptRefs)[i].script->pChunk->GetFilePos() -
4664 (*pScriptRefs)[i].script->pChunk->GetPos() -
4665 CHUNK_HEADER_SIZE(ckSCSL->GetFile()->GetFileOffsetSize())
4666 );
4667 ckSCSL->WriteUint32(&fileOffset);
4668 // jump over flags entry (containing the bypass flag)
4669 ckSCSL->SetPos(sizeof(uint32_t), RIFF::stream_curpos);
4670 }
4671 }
4672 }
4673
4674 /**
4675 * Returns the appropriate Region for a triggered note.
4676 *
4677 * @param Key MIDI Key number of triggered note / key (0 - 127)
4678 * @returns pointer adress to the appropriate Region or NULL if there
4679 * there is no Region defined for the given \a Key
4680 */
4681 Region* Instrument::GetRegion(unsigned int Key) {
4682 if (!pRegions || pRegions->empty() || Key > 127) return NULL;
4683 return RegionKeyTable[Key];
4684
4685 /*for (int i = 0; i < Regions; i++) {
4686 if (Key <= pRegions[i]->KeyRange.high &&
4687 Key >= pRegions[i]->KeyRange.low) return pRegions[i];
4688 }
4689 return NULL;*/
4690 }
4691
4692 /**
4693 * Returns the first Region of the instrument. You have to call this
4694 * method once before you use GetNextRegion().
4695 *
4696 * @returns pointer address to first region or NULL if there is none
4697 * @see GetNextRegion()
4698 */
4699 Region* Instrument::GetFirstRegion() {
4700 if (!pRegions) return NULL;
4701 RegionsIterator = pRegions->begin();
4702 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4703 }
4704
4705 /**
4706 * Returns the next Region of the instrument. You have to call
4707 * GetFirstRegion() once before you can use this method. By calling this
4708 * method multiple times it iterates through the available Regions.
4709 *
4710 * @returns pointer address to the next region or NULL if end reached
4711 * @see GetFirstRegion()
4712 */
4713 Region* Instrument::GetNextRegion() {
4714 if (!pRegions) return NULL;
4715 RegionsIterator++;
4716 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4717 }
4718
4719 Region* Instrument::AddRegion() {
4720 // create new Region object (and its RIFF chunks)
4721 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
4722 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
4723 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
4724 Region* pNewRegion = new Region(this, rgn);
4725 pRegions->push_back(pNewRegion);
4726 Regions = (uint32_t) pRegions->size();
4727 // update Region key table for fast lookup
4728 UpdateRegionKeyTable();
4729 // done
4730 return pNewRegion;
4731 }
4732
4733 void Instrument::DeleteRegion(Region* pRegion) {
4734 if (!pRegions) return;
4735 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
4736 // update Region key table for fast lookup
4737 UpdateRegionKeyTable();
4738 }
4739
4740 /**
4741 * Move this instrument at the position before @arg dst.
4742 *
4743 * This method can be used to reorder the sequence of instruments in a
4744 * .gig file. This might be helpful especially on large .gig files which
4745 * contain a large number of instruments within the same .gig file. So
4746 * grouping such instruments to similar ones, can help to keep track of them
4747 * when working with such complex .gig files.
4748 *
4749 * When calling this method, this instrument will be removed from in its
4750 * current position in the instruments list and moved to the requested
4751 * target position provided by @param dst. You may also pass NULL as
4752 * argument to this method, in that case this intrument will be moved to the
4753 * very end of the .gig file's instrument list.
4754 *
4755 * You have to call Save() to make the order change persistent to the .gig
4756 * file.
4757 *
4758 * Currently this method is limited to moving the instrument within the same
4759 * .gig file. Trying to move it to another .gig file by calling this method
4760 * will throw an exception.
4761 *
4762 * @param dst - destination instrument at which this instrument will be
4763 * moved to, or pass NULL for moving to end of list
4764 * @throw gig::Exception if this instrument and target instrument are not
4765 * part of the same file
4766 */
4767 void Instrument::MoveTo(Instrument* dst) {
4768 if (dst && GetParent() != dst->GetParent())
4769 throw Exception(
4770 "gig::Instrument::MoveTo() can only be used for moving within "
4771 "the same gig file."
4772 );
4773
4774 File* pFile = (File*) GetParent();
4775
4776 // move this instrument within the instrument list
4777 {
4778 File::InstrumentList& list = *pFile->pInstruments;
4779
4780 File::InstrumentList::iterator itFrom =
4781 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(this));
4782
4783 File::InstrumentList::iterator itTo =
4784 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(dst));
4785
4786 list.splice(itTo, list, itFrom);
4787 }
4788
4789 // move the instrument's actual list RIFF chunk appropriately
4790 RIFF::List* lstCkInstruments = pFile->pRIFF->GetSubList(LIST_TYPE_LINS);
4791 lstCkInstruments->MoveSubChunk(
4792 this->pCkInstrument,
4793 (RIFF::Chunk*) ((dst) ? dst->pCkInstrument : NULL)
4794 );
4795 }
4796
4797 /**
4798 * Returns a MIDI rule of the instrument.
4799 *
4800 * The list of MIDI rules, at least in gig v3, always contains at
4801 * most two rules. The second rule can only be the DEF filter
4802 * (which currently isn't supported by libgig).
4803 *
4804 * @param i - MIDI rule number
4805 * @returns pointer address to MIDI rule number i or NULL if there is none
4806 */
4807 MidiRule* Instrument::GetMidiRule(int i) {
4808 return pMidiRules[i];
4809 }
4810
4811 /**
4812 * Adds the "controller trigger" MIDI rule to the instrument.
4813 *
4814 * @returns the new MIDI rule
4815 */
4816 MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
4817 delete pMidiRules[0];
4818 MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
4819 pMidiRules[0] = r;
4820 pMidiRules[1] = 0;
4821 return r;
4822 }
4823
4824 /**
4825 * Adds the legato MIDI rule to the instrument.
4826 *
4827 * @returns the new MIDI rule
4828 */
4829 MidiRuleLegato* Instrument::AddMidiRuleLegato() {
4830 delete pMidiRules[0];
4831 MidiRuleLegato* r = new MidiRuleLegato;
4832 pMidiRules[0] = r;
4833 pMidiRules[1] = 0;
4834 return r;
4835 }
4836
4837 /**
4838 * Adds the alternator MIDI rule to the instrument.
4839 *
4840 * @returns the new MIDI rule
4841 */
4842 MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
4843 delete pMidiRules[0];
4844 MidiRuleAlternator* r = new MidiRuleAlternator;
4845 pMidiRules[0] = r;
4846 pMidiRules[1] = 0;
4847 return r;
4848 }
4849
4850 /**
4851 * Deletes a MIDI rule from the instrument.
4852 *
4853 * @param i - MIDI rule number
4854 */
4855 void Instrument::DeleteMidiRule(int i) {
4856 delete pMidiRules[i];
4857 pMidiRules[i] = 0;
4858 }
4859
4860 void Instrument::LoadScripts() {
4861 if (pScriptRefs) return;
4862 pScriptRefs = new std::vector<_ScriptPooolRef>;
4863 if (scriptPoolFileOffsets.empty()) return;
4864 File* pFile = (File*) GetParent();
4865 for (uint k = 0; k < scriptPoolFileOffsets.size(); ++k) {
4866 uint32_t soughtOffset = scriptPoolFileOffsets[k].fileOffset;
4867 for (uint i = 0; pFile->GetScriptGroup(i); ++i) {
4868 ScriptGroup* group = pFile->GetScriptGroup(i);
4869 for (uint s = 0; group->GetScript(s); ++s) {
4870 Script* script = group->GetScript(s);
4871 if (script->pChunk) {
4872 uint32_t offset = uint32_t(
4873 script->pChunk->GetFilePos() -
4874 script->pChunk->GetPos() -
4875 CHUNK_HEADER_SIZE(script->pChunk->GetFile()->GetFileOffsetSize())
4876 );
4877 if (offset == soughtOffset)
4878 {
4879 _ScriptPooolRef ref;
4880 ref.script = script;
4881 ref.bypass = scriptPoolFileOffsets[k].bypass;
4882 pScriptRefs->push_back(ref);
4883 break;
4884 }
4885 }
4886 }
4887 }
4888 }
4889 // we don't need that anymore
4890 scriptPoolFileOffsets.clear();
4891 }
4892
4893 /** @brief Get instrument script (gig format extension).
4894 *
4895 * Returns the real-time instrument script of instrument script slot
4896 * @a index.
4897 *
4898 * @note This is an own format extension which did not exist i.e. in the
4899 * GigaStudio 4 software. It will currently only work with LinuxSampler and
4900 * gigedit.
4901 *
4902 * @param index - instrument script slot index
4903 * @returns script or NULL if index is out of bounds
4904 */
4905 Script* Instrument::GetScriptOfSlot(uint index) {
4906 LoadScripts();
4907 if (index >= pScriptRefs->size()) return NULL;
4908 return pScriptRefs->at(index).script;
4909 }
4910
4911 /** @brief Add new instrument script slot (gig format extension).
4912 *
4913 * Add the given real-time instrument script reference to this instrument,
4914 * which shall be executed by the sampler for for this instrument. The
4915 * script will be added to the end of the script list of this instrument.
4916 * The positions of the scripts in the Instrument's Script list are
4917 * relevant, because they define in which order they shall be executed by
4918 * the sampler. For this reason it is also legal to add the same script
4919 * twice to an instrument, for example you might have a script called
4920 * "MyFilter" which performs an event filter task, and you might have
4921 * another script called "MyNoteTrigger" which triggers new notes, then you
4922 * might for example have the following list of scripts on the instrument:
4923 *
4924 * 1. Script "MyFilter"
4925 * 2. Script "MyNoteTrigger"
4926 * 3. Script "MyFilter"
4927 *
4928 * Which would make sense, because the 2nd script launched new events, which
4929 * you might need to filter as well.
4930 *
4931 * There are two ways to disable / "bypass" scripts. You can either disable
4932 * a script locally for the respective script slot on an instrument (i.e. by
4933 * passing @c false to the 2nd argument of this method, or by calling
4934 * SetScriptBypassed()). Or you can disable a script globally for all slots
4935 * and all instruments by setting Script::Bypass.
4936 *
4937 * @note This is an own format extension which did not exist i.e. in the
4938 * GigaStudio 4 software. It will currently only work with LinuxSampler and
4939 * gigedit.
4940 *
4941 * @param pScript - script that shall be executed for this instrument
4942 * @param bypass - if enabled, the sampler shall skip executing this
4943 * script (in the respective list position)
4944 * @see SetScriptBypassed()
4945 */
4946 void Instrument::AddScriptSlot(Script* pScript, bool bypass) {
4947 LoadScripts();
4948 _ScriptPooolRef ref = { pScript, bypass };
4949 pScriptRefs->push_back(ref);
4950 }
4951
4952 /** @brief Flip two script slots with each other (gig format extension).
4953 *
4954 * Swaps the position of the two given scripts in the Instrument's Script
4955 * list. The positions of the scripts in the Instrument's Script list are
4956 * relevant, because they define in which order they shall be executed by
4957 * the sampler.
4958 *
4959 * @note This is an own format extension which did not exist i.e. in the
4960 * GigaStudio 4 software. It will currently only work with LinuxSampler and
4961 * gigedit.
4962 *
4963 * @param index1 - index of the first script slot to swap
4964 * @param index2 - index of the second script slot to swap
4965 */
4966 void Instrument::SwapScriptSlots(uint index1, uint index2) {
4967 LoadScripts();
4968 if (index1 >= pScriptRefs->size() || index2 >= pScriptRefs->size())
4969 return;
4970 _ScriptPooolRef tmp = (*pScriptRefs)[index1];
4971 (*pScriptRefs)[index1] = (*pScriptRefs)[index2];
4972 (*pScriptRefs)[index2] = tmp;
4973 }
4974
4975 /** @brief Remove script slot.
4976 *
4977 * Removes the script slot with the given slot index.
4978 *
4979 * @param index - index of script slot to remove
4980 */
4981 void Instrument::RemoveScriptSlot(uint index) {
4982 LoadScripts();
4983 if (index >= pScriptRefs->size()) return;
4984 pScriptRefs->erase( pScriptRefs->begin() + index );
4985 }
4986
4987 /** @brief Remove reference to given Script (gig format extension).
4988 *
4989 * This will remove all script slots on the instrument which are referencing
4990 * the given script.
4991 *
4992 * @note This is an own format extension which did not exist i.e. in the
4993 * GigaStudio 4 software. It will currently only work with LinuxSampler and
4994 * gigedit.
4995 *
4996 * @param pScript - script reference to remove from this instrument
4997 * @see RemoveScriptSlot()
4998 */
4999 void Instrument::RemoveScript(Script* pScript) {
5000 LoadScripts();
5001 for (ssize_t i = pScriptRefs->size() - 1; i >= 0; --i) {
5002 if ((*pScriptRefs)[i].script == pScript) {
5003 pScriptRefs->erase( pScriptRefs->begin() + i );
5004 }
5005 }
5006 }
5007
5008 /** @brief Instrument's amount of script slots.
5009 *
5010 * This method returns the amount of script slots this instrument currently
5011 * uses.
5012 *
5013 * A script slot is a reference of a real-time instrument script to be
5014 * executed by the sampler. The scripts will be executed by the sampler in
5015 * sequence of the slots. One (same) script may be referenced multiple
5016 * times in different slots.
5017 *
5018 * @note This is an own format extension which did not exist i.e. in the
5019 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5020 * gigedit.
5021 */
5022 uint Instrument::ScriptSlotCount() const {
5023 return uint(pScriptRefs ? pScriptRefs->size() : scriptPoolFileOffsets.size());
5024 }
5025
5026 /** @brief Whether script execution shall be skipped.
5027 *
5028 * Defines locally for the Script reference slot in the Instrument's Script
5029 * list, whether the script shall be skipped by the sampler regarding
5030 * execution.
5031 *
5032 * It is also possible to ignore exeuction of the script globally, for all
5033 * slots and for all instruments by setting Script::Bypass.
5034 *
5035 * @note This is an own format extension which did not exist i.e. in the
5036 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5037 * gigedit.
5038 *
5039 * @param index - index of the script slot on this instrument
5040 * @see Script::Bypass
5041 */
5042 bool Instrument::IsScriptSlotBypassed(uint index) {
5043 if (index >= ScriptSlotCount()) return false;
5044 return pScriptRefs ? pScriptRefs->at(index).bypass
5045 : scriptPoolFileOffsets.at(index).bypass;
5046
5047 }
5048
5049 /** @brief Defines whether execution shall be skipped.
5050 *
5051 * You can call this method to define locally whether or whether not the
5052 * given script slot shall be executed by the sampler.
5053 *
5054 * @note This is an own format extension which did not exist i.e. in the
5055 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5056 * gigedit.
5057 *
5058 * @param index - script slot index on this instrument
5059 * @param bBypass - if true, the script slot will be skipped by the sampler
5060 * @see Script::Bypass
5061 */
5062 void Instrument::SetScriptSlotBypassed(uint index, bool bBypass) {
5063 if (index >= ScriptSlotCount()) return;
5064 if (pScriptRefs)
5065 pScriptRefs->at(index).bypass = bBypass;
5066 else
5067 scriptPoolFileOffsets.at(index).bypass = bBypass;
5068 }
5069
5070 /**
5071 * Make a (semi) deep copy of the Instrument object given by @a orig
5072 * and assign it to this object.
5073 *
5074 * Note that all sample pointers referenced by @a orig are simply copied as
5075 * memory address. Thus the respective samples are shared, not duplicated!
5076 *
5077 * @param orig - original Instrument object to be copied from
5078 */
5079 void Instrument::CopyAssign(const Instrument* orig) {
5080 CopyAssign(orig, NULL);
5081 }
5082
5083 /**
5084 * Make a (semi) deep copy of the Instrument object given by @a orig
5085 * and assign it to this object.
5086 *
5087 * @param orig - original Instrument object to be copied from
5088 * @param mSamples - crosslink map between the foreign file's samples and
5089 * this file's samples
5090 */
5091 void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
5092 // handle base class
5093 // (without copying DLS region stuff)
5094 DLS::Instrument::CopyAssignCore(orig);
5095
5096 // handle own member variables
5097 Attenuation = orig->Attenuation;
5098 EffectSend = orig->EffectSend;
5099 FineTune = orig->FineTune;
5100 PitchbendRange = orig->PitchbendRange;
5101 PianoReleaseMode = orig->PianoReleaseMode;
5102 DimensionKeyRange = orig->DimensionKeyRange;
5103 scriptPoolFileOffsets = orig->scriptPoolFileOffsets;
5104 pScriptRefs = orig->pScriptRefs;
5105
5106 // free old midi rules
5107 for (int i = 0 ; pMidiRules[i] ; i++) {
5108 delete pMidiRules[i];
5109 }
5110 //TODO: MIDI rule copying
5111 pMidiRules[0] = NULL;
5112
5113 // delete all old regions
5114 while (Regions) DeleteRegion(GetFirstRegion());
5115 // create new regions and copy them from original
5116 {
5117 RegionList::const_iterator it = orig->pRegions->begin();
5118 for (int i = 0; i < orig->Regions; ++i, ++it) {
5119 Region* dstRgn = AddRegion();
5120 //NOTE: Region does semi-deep copy !
5121 dstRgn->CopyAssign(
5122 static_cast<gig::Region*>(*it),
5123 mSamples
5124 );
5125 }
5126 }
5127
5128 UpdateRegionKeyTable();
5129 }
5130
5131
5132 // *************** Group ***************
5133 // *
5134
5135 /** @brief Constructor.
5136 *
5137 * @param file - pointer to the gig::File object
5138 * @param ck3gnm - pointer to 3gnm chunk associated with this group or
5139 * NULL if this is a new Group
5140 */
5141 Group::Group(File* file, RIFF::Chunk* ck3gnm) {
5142 pFile = file;
5143 pNameChunk = ck3gnm;
5144 ::LoadString(pNameChunk, Name);
5145 }
5146
5147 Group::~Group() {
5148 // remove the chunk associated with this group (if any)
5149 if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
5150 }
5151
5152 /** @brief Update chunks with current group settings.
5153 *
5154 * Apply current Group field values to the respective chunks. You have
5155 * to call File::Save() to make changes persistent.
5156 *
5157 * Usually there is absolutely no need to call this method explicitly.
5158 * It will be called automatically when File::Save() was called.
5159 *
5160 * @param pProgress - callback function for progress notification
5161 */
5162 void Group::UpdateChunks(progress_t* pProgress) {
5163 // make sure <3gri> and <3gnl> list chunks exist
5164 RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
5165 if (!_3gri) {
5166 _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
5167 pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
5168 }
5169 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
5170 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
5171
5172 if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
5173 // v3 has a fixed list of 128 strings, find a free one
5174 for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
5175 if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
5176 pNameChunk = ck;
5177 break;
5178 }
5179 }
5180 }
5181
5182 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
5183 ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
5184 }
5185
5186 /**
5187 * Returns the first Sample of this Group. You have to call this method
5188 * once before you use GetNextSample().
5189 *
5190 * <b>Notice:</b> this method might block for a long time, in case the
5191 * samples of this .gig file were not scanned yet
5192 *
5193 * @returns pointer address to first Sample or NULL if there is none
5194 * applied to this Group
5195 * @see GetNextSample()
5196 */
5197 Sample* Group::GetFirstSample() {
5198 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5199 for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
5200 if (pSample->GetGroup() == this) return pSample;
5201 }
5202 return NULL;
5203 }
5204
5205 /**
5206 * Returns the next Sample of the Group. You have to call
5207 * GetFirstSample() once before you can use this method. By calling this
5208 * method multiple times it iterates through the Samples assigned to
5209 * this Group.
5210 *
5211 * @returns pointer address to the next Sample of this Group or NULL if
5212 * end reached
5213 * @see GetFirstSample()
5214 */
5215 Sample* Group::GetNextSample() {
5216 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5217 for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
5218 if (pSample->GetGroup() == this) return pSample;
5219 }
5220 return NULL;
5221 }
5222
5223 /**
5224 * Move Sample given by \a pSample from another Group to this Group.
5225 */
5226 void Group::AddSample(Sample* pSample) {
5227 pSample->pGroup = this;
5228 }
5229
5230 /**
5231 * Move all members of this group to another group (preferably the 1st
5232 * one except this). This method is called explicitly by
5233 * File::DeleteGroup() thus when a Group was deleted. This code was
5234 * intentionally not placed in the destructor!
5235 */
5236 void Group::MoveAll() {
5237 // get "that" other group first
5238 Group* pOtherGroup = NULL;
5239 for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
5240 if (pOtherGroup != this) break;
5241 }
5242 if (!pOtherGroup) throw Exception(
5243 "Could not move samples to another group, since there is no "
5244 "other Group. This is a bug, report it!"
5245 );
5246 // now move all samples of this group to the other group
5247 for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
5248 pOtherGroup->AddSample(pSample);
5249 }
5250 }
5251
5252
5253
5254 // *************** File ***************
5255 // *
5256
5257 /// Reflects Gigasampler file format version 2.0 (1998-06-28).
5258 const DLS::version_t File::VERSION_2 = {
5259 0, 2, 19980628 & 0xffff, 19980628 >> 16
5260 };
5261
5262 /// Reflects Gigasampler file format version 3.0 (2003-03-31).
5263 const DLS::version_t File::VERSION_3 = {
5264 0, 3, 20030331 & 0xffff, 20030331 >> 16
5265 };
5266
5267 static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
5268 { CHUNK_ID_IARL, 256 },
5269 { CHUNK_ID_IART, 128 },
5270 { CHUNK_ID_ICMS, 128 },
5271 { CHUNK_ID_ICMT, 1024 },
5272 { CHUNK_ID_ICOP, 128 },
5273 { CHUNK_ID_ICRD, 128 },
5274 { CHUNK_ID_IENG, 128 },
5275 { CHUNK_ID_IGNR, 128 },
5276 { CHUNK_ID_IKEY, 128 },
5277 { CHUNK_ID_IMED, 128 },
5278 { CHUNK_ID_INAM, 128 },
5279 { CHUNK_ID_IPRD, 128 },
5280 { CHUNK_ID_ISBJ, 128 },
5281 { CHUNK_ID_ISFT, 128 },
5282 { CHUNK_ID_ISRC, 128 },
5283 { CHUNK_ID_ISRF, 128 },
5284 { CHUNK_ID_ITCH, 128 },
5285 { 0, 0 }
5286 };
5287
5288 File::File() : DLS::File() {
5289 bAutoLoad = true;
5290 *pVersion = VERSION_3;
5291 pGroups = NULL;
5292 pScriptGroups = NULL;
5293 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5294 pInfo->ArchivalLocation = String(256, ' ');
5295
5296 // add some mandatory chunks to get the file chunks in right
5297 // order (INFO chunk will be moved to first position later)
5298 pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
5299 pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
5300 pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
5301
5302 GenerateDLSID();
5303 }
5304
5305 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
5306 bAutoLoad = true;
5307 pGroups = NULL;
5308 pScriptGroups = NULL;
5309 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5310 }
5311
5312 File::~File() {
5313 if (pGroups) {
5314 std::list<Group*>::iterator iter = pGroups->begin();
5315 std::list<Group*>::iterator end = pGroups->end();
5316 while (iter != end) {
5317 delete *iter;
5318 ++iter;
5319 }
5320 delete pGroups;
5321 }
5322 if (pScriptGroups) {
5323 std::list<ScriptGroup*>::iterator iter = pScriptGroups->begin();
5324 std::list<ScriptGroup*>::iterator end = pScriptGroups->end();
5325 while (iter != end) {
5326 delete *iter;
5327 ++iter;
5328 }
5329 delete pScriptGroups;
5330 }
5331 }
5332
5333 Sample* File::GetFirstSample(progress_t* pProgress) {
5334 if (!pSamples) LoadSamples(pProgress);
5335 if (!pSamples) return NULL;
5336 SamplesIterator = pSamples->begin();
5337 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5338 }
5339
5340 Sample* File::GetNextSample() {
5341 if (!pSamples) return NULL;
5342 SamplesIterator++;
5343 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5344 }
5345
5346 /**
5347 * Returns Sample object of @a index.
5348 *
5349 * @returns sample object or NULL if index is out of bounds
5350 */
5351 Sample* File::GetSample(uint index) {
5352 if (!pSamples) LoadSamples();
5353 if (!pSamples) return NULL;
5354 DLS::File::SampleList::iterator it = pSamples->begin();
5355 for (int i = 0; i < index; ++i) {
5356 ++it;
5357 if (it == pSamples->end()) return NULL;
5358 }
5359 if (it == pSamples->end()) return NULL;
5360 return static_cast<gig::Sample*>( *it );
5361 }
5362
5363 /** @brief Add a new sample.
5364 *
5365 * This will create a new Sample object for the gig file. You have to
5366 * call Save() to make this persistent to the file.
5367 *
5368 * @returns pointer to new Sample object
5369 */
5370 Sample* File::AddSample() {
5371 if (!pSamples) LoadSamples();
5372 __ensureMandatoryChunksExist();
5373 RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
5374 // create new Sample object and its respective 'wave' list chunk
5375 RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
5376 Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
5377
5378 // add mandatory chunks to get the chunks in right order
5379 wave->AddSubChunk(CHUNK_ID_FMT, 16);
5380 wave->AddSubList(LIST_TYPE_INFO);
5381
5382 pSamples->push_back(pSample);
5383 return pSample;
5384 }
5385
5386 /** @brief Delete a sample.
5387 *
5388 * This will delete the given Sample object from the gig file. Any
5389 * references to this sample from Regions and DimensionRegions will be
5390 * removed. You have to call Save() to make this persistent to the file.
5391 *
5392 * @param pSample - sample to delete
5393 * @throws gig::Exception if given sample could not be found
5394 */
5395 void File::DeleteSample(Sample* pSample) {
5396 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
5397 SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
5398 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
5399 if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
5400 pSamples->erase(iter);
5401 delete pSample;
5402
5403 SampleList::iterator tmp = SamplesIterator;
5404 // remove all references to the sample
5405 for (Instrument* instrument = GetFirstInstrument() ; instrument ;
5406 instrument = GetNextInstrument()) {
5407 for (Region* region = instrument->GetFirstRegion() ; region ;
5408 region = instrument->GetNextRegion()) {
5409
5410 if (region->GetSample() == pSample) region->SetSample(NULL);
5411
5412 for (int i = 0 ; i < region->DimensionRegions ; i++) {
5413 gig::DimensionRegion *d = region->pDimensionRegions[i];
5414 if (d->pSample == pSample) d->pSample = NULL;
5415 }
5416 }
5417 }
5418 SamplesIterator = tmp; // restore iterator
5419 }
5420
5421 void File::LoadSamples() {
5422 LoadSamples(NULL);
5423 }
5424
5425 void File::LoadSamples(progress_t* pProgress) {
5426 // Groups must be loaded before samples, because samples will try
5427 // to resolve the group they belong to
5428 if (!pGroups) LoadGroups();
5429
5430 if (!pSamples) pSamples = new SampleList;
5431
5432 RIFF::File* file = pRIFF;
5433
5434 // just for progress calculation
5435 int iSampleIndex = 0;
5436 int iTotalSamples = WavePoolCount;
5437
5438 // check if samples should be loaded from extension files
5439 // (only for old gig files < 2 GB)
5440 int lastFileNo = 0;
5441 if (!file->IsNew() && !(file->GetCurrentFileSize() >> 31)) {
5442 for (int i = 0 ; i < WavePoolCount ; i++) {
5443 if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
5444 }
5445 }
5446 String name(pRIFF->GetFileName());
5447 int nameLen = (int) name.length();
5448 char suffix[6];
5449 if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
5450
5451 for (int fileNo = 0 ; ; ) {
5452 RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
5453 if (wvpl) {
5454 file_offset_t wvplFileOffset = wvpl->GetFilePos();
5455 RIFF::List* wave = wvpl->GetFirstSubList();
5456 while (wave) {
5457 if (wave->GetListType() == LIST_TYPE_WAVE) {
5458 // notify current progress
5459 const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
5460 __notify_progress(pProgress, subprogress);
5461
5462 file_offset_t waveFileOffset = wave->GetFilePos();
5463 pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo, iSampleIndex));
5464
5465 iSampleIndex++;
5466 }
5467 wave = wvpl->GetNextSubList();
5468 }
5469
5470 if (fileNo == lastFileNo) break;
5471
5472 // open extension file (*.gx01, *.gx02, ...)
5473 fileNo++;
5474 sprintf(suffix, ".gx%02d", fileNo);
5475 name.replace(nameLen, 5, suffix);
5476 file = new RIFF::File(name);
5477 ExtensionFiles.push_back(file);
5478 } else break;
5479 }
5480
5481 __notify_progress(pProgress, 1.0); // notify done
5482 }
5483
5484 Instrument* File::GetFirstInstrument() {
5485 if (!pInstruments) LoadInstruments();
5486 if (!pInstruments) return NULL;
5487 InstrumentsIterator = pInstruments->begin();
5488 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5489 }
5490
5491 Instrument* File::GetNextInstrument() {
5492 if (!pInstruments) return NULL;
5493 InstrumentsIterator++;
5494 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5495 }
5496
5497 /**
5498 * Returns the instrument with the given index.
5499 *
5500 * @param index - number of the sought instrument (0..n)
5501 * @param pProgress - optional: callback function for progress notification
5502 * @returns sought instrument or NULL if there's no such instrument
5503 */
5504 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
5505 if (!pInstruments) {
5506 // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
5507
5508 // sample loading subtask
5509 progress_t subprogress;
5510 __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
5511 __notify_progress(&subprogress, 0.0f);
5512 if (GetAutoLoad())
5513 GetFirstSample(&subprogress); // now force all samples to be loaded
5514 __notify_progress(&subprogress, 1.0f);
5515
5516 // instrument loading subtask
5517 if (pProgress && pProgress->callback) {
5518 subprogress.__range_min = subprogress.__range_max;
5519 subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
5520 }
5521 __notify_progress(&subprogress, 0.0f);
5522 LoadInstruments(&subprogress);
5523 __notify_progress(&subprogress, 1.0f);
5524 }
5525 if (!pInstruments) return NULL;
5526 InstrumentsIterator = pInstruments->begin();
5527 for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
5528 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
5529 InstrumentsIterator++;
5530 }
5531 return NULL;
5532 }
5533
5534 /** @brief Add a new instrument definition.
5535 *
5536 * This will create a new Instrument object for the gig file. You have
5537 * to call Save() to make this persistent to the file.
5538 *
5539 * @returns pointer to new Instrument object
5540 */
5541 Instrument* File::AddInstrument() {
5542 if (!pInstruments) LoadInstruments();
5543 __ensureMandatoryChunksExist();
5544 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5545 RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
5546
5547 // add mandatory chunks to get the chunks in right order
5548 lstInstr->AddSubList(LIST_TYPE_INFO);
5549 lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
5550
5551 Instrument* pInstrument = new Instrument(this, lstInstr);
5552 pInstrument->GenerateDLSID();
5553
5554 lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
5555
5556 // this string is needed for the gig to be loadable in GSt:
5557 pInstrument->pInfo->Software = "Endless Wave";
5558
5559 pInstruments->push_back(pInstrument);
5560 return pInstrument;
5561 }
5562
5563 /** @brief Add a duplicate of an existing instrument.
5564 *
5565 * Duplicates the instrument definition given by @a orig and adds it
5566 * to this file. This allows in an instrument editor application to
5567 * easily create variations of an instrument, which will be stored in
5568 * the same .gig file, sharing i.e. the same samples.
5569 *
5570 * Note that all sample pointers referenced by @a orig are simply copied as
5571 * memory address. Thus the respective samples are shared, not duplicated!
5572 *
5573 * You have to call Save() to make this persistent to the file.
5574 *
5575 * @param orig - original instrument to be copied
5576 * @returns duplicated copy of the given instrument
5577 */
5578 Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
5579 Instrument* instr = AddInstrument();
5580 instr->CopyAssign(orig);
5581 return instr;
5582 }
5583
5584 /** @brief Add content of another existing file.
5585 *
5586 * Duplicates the samples, groups and instruments of the original file
5587 * given by @a pFile and adds them to @c this File. In case @c this File is
5588 * a new one that you haven't saved before, then you have to call
5589 * SetFileName() before calling AddContentOf(), because this method will
5590 * automatically save this file during operation, which is required for
5591 * writing the sample waveform data by disk streaming.
5592 *
5593 * @param pFile - original file whose's content shall be copied from
5594 */
5595 void File::AddContentOf(File* pFile) {
5596 static int iCallCount = -1;
5597 iCallCount++;
5598 std::map<Group*,Group*> mGroups;
5599 std::map<Sample*,Sample*> mSamples;
5600
5601 // clone sample groups
5602 for (int i = 0; pFile->GetGroup(i); ++i) {
5603 Group* g = AddGroup();
5604 g->Name =
5605 "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
5606 mGroups[pFile->GetGroup(i)] = g;
5607 }
5608
5609 // clone samples (not waveform data here yet)
5610 for (int i = 0; pFile->GetSample(i); ++i) {
5611 Sample* s = AddSample();
5612 s->CopyAssignMeta(pFile->GetSample(i));
5613 mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
5614 mSamples[pFile->GetSample(i)] = s;
5615 }
5616
5617 //BUG: For some reason this method only works with this additional
5618 // Save() call in between here.
5619 //
5620 // Important: The correct one of the 2 Save() methods has to be called
5621 // here, depending on whether the file is completely new or has been
5622 // saved to disk already, otherwise it will result in data corruption.
5623 if (pRIFF->IsNew())
5624 Save(GetFileName());
5625 else
5626 Save();
5627
5628 // clone instruments
5629 // (passing the crosslink table here for the cloned samples)
5630 for (int i = 0; pFile->GetInstrument(i); ++i) {
5631 Instrument* instr = AddInstrument();
5632 instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
5633 }
5634
5635 // Mandatory: file needs to be saved to disk at this point, so this
5636 // file has the correct size and data layout for writing the samples'
5637 // waveform data to disk.
5638 Save();
5639
5640 // clone samples' waveform data
5641 // (using direct read & write disk streaming)
5642 for (int i = 0; pFile->GetSample(i); ++i) {
5643 mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
5644 }
5645 }
5646
5647 /** @brief Delete an instrument.
5648 *
5649 * This will delete the given Instrument object from the gig file. You
5650 * have to call Save() to make this persistent to the file.
5651 *
5652 * @param pInstrument - instrument to delete
5653 * @throws gig::Exception if given instrument could not be found
5654 */
5655 void File::DeleteInstrument(Instrument* pInstrument) {
5656 if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
5657 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
5658 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
5659 pInstruments->erase(iter);
5660 delete pInstrument;
5661 }
5662
5663 void File::LoadInstruments() {
5664 LoadInstruments(NULL);
5665 }
5666
5667 void File::LoadInstruments(progress_t* pProgress) {
5668 if (!pInstruments) pInstruments = new InstrumentList;
5669 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5670 if (lstInstruments) {
5671 int iInstrumentIndex = 0;
5672 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
5673 while (lstInstr) {
5674 if (lstInstr->GetListType() == LIST_TYPE_INS) {
5675 // notify current progress
5676 const float localProgress = (float) iInstrumentIndex / (float) Instruments;
5677 __notify_progress(pProgress, localProgress);
5678
5679 // divide local progress into subprogress for loading current Instrument
5680 progress_t subprogress;
5681 __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
5682
5683 pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
5684
5685 iInstrumentIndex++;
5686 }
5687 lstInstr = lstInstruments->GetNextSubList();
5688 }
5689 __notify_progress(pProgress, 1.0); // notify done
5690 }
5691 }
5692
5693 /// Updates the 3crc chunk with the checksum of a sample. The
5694 /// update is done directly to disk, as this method is called
5695 /// after File::Save()
5696 void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
5697 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5698 if (!_3crc) return;
5699
5700 // get the index of the sample
5701 int iWaveIndex = GetWaveTableIndexOf(pSample);
5702 if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
5703
5704 // write the CRC-32 checksum to disk
5705 _3crc->SetPos(iWaveIndex * 8);
5706 uint32_t one = 1;
5707 _3crc->WriteUint32(&one); // always 1
5708 _3crc->WriteUint32(&crc);
5709 }
5710
5711 uint32_t File::GetSampleChecksum(Sample* pSample) {
5712 // get the index of the sample
5713 int iWaveIndex = GetWaveTableIndexOf(pSample);
5714 if (iWaveIndex < 0) throw gig::Exception("Could not retrieve reference crc of sample, could not resolve sample's wave table index");
5715
5716 return GetSampleChecksumByIndex(iWaveIndex);
5717 }
5718
5719 uint32_t File::GetSampleChecksumByIndex(int index) {
5720 if (index < 0) throw gig::Exception("Could not retrieve reference crc of sample, invalid wave pool index of sample");
5721
5722 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5723 if (!_3crc) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
5724 uint8_t* pData = (uint8_t*) _3crc->LoadChunkData();
5725 if (!pData) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
5726
5727 // read the CRC-32 checksum directly from disk
5728 size_t pos = index * 8;
5729 if (pos + 8 > _3crc->GetNewSize())
5730 throw gig::Exception("Could not retrieve reference crc of sample, could not seek to required position in crc chunk");
5731
5732 uint32_t one = load32(&pData[pos]); // always 1
5733 if (one != 1)
5734 throw gig::Exception("Could not retrieve reference crc of sample, because reference checksum table is damaged");
5735
5736 return load32(&pData[pos+4]);
5737 }
5738
5739 int File::GetWaveTableIndexOf(gig::Sample* pSample) {
5740 if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
5741 File::SampleList::iterator iter = pSamples->begin();
5742 File::SampleList::iterator end = pSamples->end();
5743 for (int index = 0; iter != end; ++iter, ++index)
5744 if (*iter == pSample)
5745 return index;
5746 return -1;
5747 }
5748
5749 /**
5750 * Checks whether the file's "3CRC" chunk was damaged. This chunk contains
5751 * the CRC32 check sums of all samples' raw wave data.
5752 *
5753 * @return true if 3CRC chunk is OK, or false if 3CRC chunk is damaged
5754 */
5755 bool File::VerifySampleChecksumTable() {
5756 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5757 if (!_3crc) return false;
5758 if (_3crc->GetNewSize() <= 0) return false;
5759 if (_3crc->GetNewSize() % 8) return false;
5760 if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
5761 if (_3crc->GetNewSize() != pSamples->size() * 8) return false;
5762
5763 const file_offset_t n = _3crc->GetNewSize() / 8;
5764
5765 uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
5766 if (!pData) return false;
5767
5768 for (file_offset_t i = 0; i < n; ++i) {
5769 uint32_t one = pData[i*2];
5770 if (one != 1) return false;
5771 }
5772
5773 return true;
5774 }
5775
5776 /**
5777 * Recalculates CRC32 checksums for all samples and rebuilds this gig
5778 * file's checksum table with those new checksums. This might usually
5779 * just be necessary if the checksum table was damaged.
5780 *
5781 * @e IMPORTANT: The current implementation of this method only works
5782 * with files that have not been modified since it was loaded, because
5783 * it expects that no externally caused file structure changes are
5784 * required!
5785 *
5786 * Due to the expectation above, this method is currently protected
5787 * and actually only used by the command line tool "gigdump" yet.
5788 *
5789 * @returns true if Save() is required to be called after this call,
5790 * false if no further action is required
5791 */
5792 bool File::RebuildSampleChecksumTable() {
5793 // make sure sample chunks were scanned
5794 if (!pSamples) GetFirstSample();
5795
5796 bool bRequiresSave = false;
5797
5798 // make sure "3CRC" chunk exists with required size
5799 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5800 if (!_3crc) {
5801 _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
5802 // the order of einf and 3crc is not the same in v2 and v3
5803 RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
5804 if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
5805 bRequiresSave = true;
5806 } else if (_3crc->GetNewSize() != pSamples->size() * 8) {
5807 _3crc->Resize(pSamples->size() * 8);
5808 bRequiresSave = true;
5809 }
5810
5811 if (bRequiresSave) { // refill CRC table for all samples in RAM ...
5812 uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
5813 {
5814 File::SampleList::iterator iter = pSamples->begin();
5815 File::SampleList::iterator end = pSamples->end();
5816 for (; iter != end; ++iter) {
5817 gig::Sample* pSample = (gig::Sample*) *iter;
5818 int index = GetWaveTableIndexOf(pSample);
5819 if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
5820 pData[index*2] = 1; // always 1
5821 pData[index*2+1] = pSample->CalculateWaveDataChecksum();
5822 }
5823 }
5824 } else { // no file structure changes necessary, so directly write to disk and we are done ...
5825 // make sure file is in write mode
5826 pRIFF->SetMode(RIFF::stream_mode_read_write);
5827 {
5828 File::SampleList::iterator iter = pSamples->begin();
5829 File::SampleList::iterator end = pSamples->end();
5830 for (; iter != end; ++iter) {
5831 gig::Sample* pSample = (gig::Sample*) *iter;
5832 int index = GetWaveTableIndexOf(pSample);
5833 if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
5834 pSample->crc = pSample->CalculateWaveDataChecksum();
5835 SetSampleChecksum(pSample, pSample->crc);
5836 }
5837 }
5838 }
5839
5840 return bRequiresSave;
5841 }
5842
5843 Group* File::GetFirstGroup() {
5844 if (!pGroups) LoadGroups();
5845 // there must always be at least one group
5846 GroupsIterator = pGroups->begin();
5847 return *GroupsIterator;
5848 }
5849
5850 Group* File::GetNextGroup() {
5851 if (!pGroups) return NULL;
5852 ++GroupsIterator;
5853 return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
5854 }
5855
5856 /**
5857 * Returns the group with the given index.
5858 *
5859 * @param index - number of the sought group (0..n)
5860 * @returns sought group or NULL if there's no such group
5861 */
5862 Group* File::GetGroup(uint index) {
5863 if (!pGroups) LoadGroups();
5864 GroupsIterator = pGroups->begin();
5865 for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
5866 if (i == index) return *GroupsIterator;
5867 ++GroupsIterator;
5868 }
5869 return NULL;
5870 }
5871
5872 /**
5873 * Returns the group with the given group name.
5874 *
5875 * Note: group names don't have to be unique in the gig format! So there
5876 * can be multiple groups with the same name. This method will simply
5877 * return the first group found with the given name.
5878 *
5879 * @param name - name of the sought group
5880 * @returns sought group or NULL if there's no group with that name
5881 */
5882 Group* File::GetGroup(String name) {
5883 if (!pGroups) LoadGroups();
5884 GroupsIterator = pGroups->begin();
5885 for (uint i = 0; GroupsIterator != pGroups->end(); ++GroupsIterator, ++i)
5886 if ((*GroupsIterator)->Name == name) return *GroupsIterator;
5887 return NULL;
5888 }
5889
5890 Group* File::AddGroup() {
5891 if (!pGroups) LoadGroups();
5892 // there must always be at least one group
5893 __ensureMandatoryChunksExist();
5894 Group* pGroup = new Group(this, NULL);
5895 pGroups->push_back(pGroup);
5896 return pGroup;
5897 }
5898
5899 /** @brief Delete a group and its samples.
5900 *
5901 * This will delete the given Group object and all the samples that
5902 * belong to this group from the gig file. You have to call Save() to
5903 * make this persistent to the file.
5904 *
5905 * @param pGroup - group to delete
5906 * @throws gig::Exception if given group could not be found
5907 */
5908 void File::DeleteGroup(Group* pGroup) {
5909 if (!pGroups) LoadGroups();
5910 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
5911 if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
5912 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
5913 // delete all members of this group
5914 for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
5915 DeleteSample(pSample);
5916 }
5917 // now delete this group object
5918 pGroups->erase(iter);
5919 delete pGroup;
5920 }
5921
5922 /** @brief Delete a group.
5923 *
5924 * This will delete the given Group object from the gig file. All the
5925 * samples that belong to this group will not be deleted, but instead
5926 * be moved to another group. You have to call Save() to make this
5927 * persistent to the file.
5928 *
5929 * @param pGroup - group to delete
5930 * @throws gig::Exception if given group could not be found
5931 */
5932 void File::DeleteGroupOnly(Group* pGroup) {
5933 if (!pGroups) LoadGroups();
5934 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
5935 if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
5936 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
5937 // move all members of this group to another group
5938 pGroup->MoveAll();
5939 pGroups->erase(iter);
5940 delete pGroup;
5941 }
5942
5943 void File::LoadGroups() {
5944 if (!pGroups) pGroups = new std::list<Group*>;
5945 // try to read defined groups from file
5946 RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
5947 if (lst3gri) {
5948 RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
5949 if (lst3gnl) {
5950 RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
5951 while (ck) {
5952 if (ck->GetChunkID() == CHUNK_ID_3GNM) {
5953 if (pVersion && pVersion->major == 3 &&
5954 strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
5955
5956 pGroups->push_back(new Group(this, ck));
5957 }
5958 ck = lst3gnl->GetNextSubChunk();
5959 }
5960 }
5961 }
5962 // if there were no group(s), create at least the mandatory default group
5963 if (!pGroups->size()) {
5964 Group* pGroup = new Group(this, NULL);
5965 pGroup->Name = "Default Group";
5966 pGroups->push_back(pGroup);
5967 }
5968 }
5969
5970 /** @brief Get instrument script group (by index).
5971 *
5972 * Returns the real-time instrument script group with the given index.
5973 *
5974 * @param index - number of the sought group (0..n)
5975 * @returns sought script group or NULL if there's no such group
5976 */
5977 ScriptGroup* File::GetScriptGroup(uint index) {
5978 if (!pScriptGroups) LoadScriptGroups();
5979 std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
5980 for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
5981 if (i == index) return *it;
5982 return NULL;
5983 }
5984
5985 /** @brief Get instrument script group (by name).
5986 *
5987 * Returns the first real-time instrument script group found with the given
5988 * group name. Note that group names may not necessarily be unique.
5989 *
5990 * @param name - name of the sought script group
5991 * @returns sought script group or NULL if there's no such group
5992 */
5993 ScriptGroup* File::GetScriptGroup(const String& name) {
5994 if (!pScriptGroups) LoadScriptGroups();
5995 std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
5996 for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
5997 if ((*it)->Name == name) return *it;
5998 return NULL;
5999 }
6000
6001 /** @brief Add new instrument script group.
6002 *
6003 * Adds a new, empty real-time instrument script group to the file.
6004 *
6005 * You have to call Save() to make this persistent to the file.
6006 *
6007 * @return new empty script group
6008 */
6009 ScriptGroup* File::AddScriptGroup() {
6010 if (!pScriptGroups) LoadScriptGroups();
6011 ScriptGroup* pScriptGroup = new ScriptGroup(this, NULL);
6012 pScriptGroups->push_back(pScriptGroup);
6013 return pScriptGroup;
6014 }
6015
6016 /** @brief Delete an instrument script group.
6017 *
6018 * This will delete the given real-time instrument script group and all its
6019 * instrument scripts it contains. References inside instruments that are
6020 * using the deleted scripts will be removed from the respective instruments
6021 * accordingly.
6022 *
6023 * You have to call Save() to make this persistent to the file.
6024 *
6025 * @param pScriptGroup - script group to delete
6026 * @throws gig::Exception if given script group could not be found
6027 */
6028 void File::DeleteScriptGroup(ScriptGroup* pScriptGroup) {
6029 if (!pScriptGroups) LoadScriptGroups();
6030 std::list<ScriptGroup*>::iterator iter =
6031 find(pScriptGroups->begin(), pScriptGroups->end(), pScriptGroup);
6032 if (iter == pScriptGroups->end())
6033 throw gig::Exception("Could not delete script group, could not find given script group");
6034 pScriptGroups->erase(iter);
6035 for (int i = 0; pScriptGroup->GetScript(i); ++i)
6036 pScriptGroup->DeleteScript(pScriptGroup->GetScript(i));
6037 if (pScriptGroup->pList)
6038 pScriptGroup->pList->GetParent()->DeleteSubChunk(pScriptGroup->pList);
6039 delete pScriptGroup;
6040 }
6041
6042 void File::LoadScriptGroups() {
6043 if (pScriptGroups) return;
6044 pScriptGroups = new std::list<ScriptGroup*>;
6045 RIFF::List* lstLS = pRIFF->GetSubList(LIST_TYPE_3LS);
6046 if (lstLS) {
6047 for (RIFF::List* lst = lstLS->GetFirstSubList(); lst;
6048 lst = lstLS->GetNextSubList())
6049 {
6050 if (lst->GetListType() == LIST_TYPE_RTIS) {
6051 pScriptGroups->push_back(new ScriptGroup(this, lst));
6052 }
6053 }
6054 }
6055 }
6056
6057 /**
6058 * Apply all the gig file's current instruments, samples, groups and settings
6059 * to the respective RIFF chunks. You have to call Save() to make changes
6060 * persistent.
6061 *
6062 * Usually there is absolutely no need to call this method explicitly.
6063 * It will be called automatically when File::Save() was called.
6064 *
6065 * @param pProgress - callback function for progress notification
6066 * @throws Exception - on errors
6067 */
6068 void File::UpdateChunks(progress_t* pProgress) {
6069 bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
6070
6071 // update own gig format extension chunks
6072 // (not part of the GigaStudio 4 format)
6073 RIFF::List* lst3LS = pRIFF->GetSubList(LIST_TYPE_3LS);
6074 if (!lst3LS) {
6075 lst3LS = pRIFF->AddSubList(LIST_TYPE_3LS);
6076 }
6077 // Make sure <3LS > chunk is placed before <ptbl> chunk. The precise
6078 // location of <3LS > is irrelevant, however it should be located
6079 // before the actual wave data
6080 RIFF::Chunk* ckPTBL = pRIFF->GetSubChunk(CHUNK_ID_PTBL);
6081 pRIFF->MoveSubChunk(lst3LS, ckPTBL);
6082
6083 // This must be performed before writing the chunks for instruments,
6084 // because the instruments' script slots will write the file offsets
6085 // of the respective instrument script chunk as reference.
6086 if (pScriptGroups) {
6087 // Update instrument script (group) chunks.
6088 for (std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6089 it != pScriptGroups->end(); ++it)
6090 {
6091 (*it)->UpdateChunks(pProgress);
6092 }
6093 }
6094
6095 // in case no libgig custom format data was added, then remove the
6096 // custom "3LS " chunk again
6097 if (!lst3LS->CountSubChunks()) {
6098 pRIFF->DeleteSubChunk(lst3LS);
6099 lst3LS = NULL;
6100 }
6101
6102 // first update base class's chunks
6103 DLS::File::UpdateChunks(pProgress);
6104
6105 if (newFile) {
6106 // INFO was added by Resource::UpdateChunks - make sure it
6107 // is placed first in file
6108 RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
6109 RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
6110 if (first != info) {
6111 pRIFF->MoveSubChunk(info, first);
6112 }
6113 }
6114
6115 // update group's chunks
6116 if (pGroups) {
6117 // make sure '3gri' and '3gnl' list chunks exist
6118 // (before updating the Group chunks)
6119 RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6120 if (!_3gri) {
6121 _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
6122 pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
6123 }
6124 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
6125 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
6126
6127 // v3: make sure the file has 128 3gnm chunks
6128 // (before updating the Group chunks)
6129 if (pVersion && pVersion->major == 3) {
6130 RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
6131 for (int i = 0 ; i < 128 ; i++) {
6132 if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
6133 if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
6134 }
6135 }
6136
6137 std::list<Group*>::iterator iter = pGroups->begin();
6138 std::list<Group*>::iterator end = pGroups->end();
6139 for (; iter != end; ++iter) {
6140 (*iter)->UpdateChunks(pProgress);
6141 }
6142 }
6143
6144 // update einf chunk
6145
6146 // The einf chunk contains statistics about the gig file, such
6147 // as the number of regions and samples used by each
6148 // instrument. It is divided in equally sized parts, where the
6149 // first part contains information about the whole gig file,
6150 // and the rest of the parts map to each instrument in the
6151 // file.
6152 //
6153 // At the end of each part there is a bit map of each sample
6154 // in the file, where a set bit means that the sample is used
6155 // by the file/instrument.
6156 //
6157 // Note that there are several fields with unknown use. These
6158 // are set to zero.
6159
6160 int sublen = int(pSamples->size() / 8 + 49);
6161 int einfSize = (Instruments + 1) * sublen;
6162
6163 RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6164 if (einf) {
6165 if (einf->GetSize() != einfSize) {
6166 einf->Resize(einfSize);
6167 memset(einf->LoadChunkData(), 0, einfSize);
6168 }
6169 } else if (newFile) {
6170 einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
6171 }
6172 if (einf) {
6173 uint8_t* pData = (uint8_t*) einf->LoadChunkData();
6174
6175 std::map<gig::Sample*,int> sampleMap;
6176 int sampleIdx = 0;
6177 for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
6178 sampleMap[pSample] = sampleIdx++;
6179 }
6180
6181 int totnbusedsamples = 0;
6182 int totnbusedchannels = 0;
6183 int totnbregions = 0;
6184 int totnbdimregions = 0;
6185 int totnbloops = 0;
6186 int instrumentIdx = 0;
6187
6188 memset(&pData[48], 0, sublen - 48);
6189
6190 for (Instrument* instrument = GetFirstInstrument() ; instrument ;
6191 instrument = GetNextInstrument()) {
6192 int nbusedsamples = 0;
6193 int nbusedchannels = 0;
6194 int nbdimregions = 0;
6195 int nbloops = 0;
6196
6197 memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
6198
6199 for (Region* region = instrument->GetFirstRegion() ; region ;
6200 region = instrument->GetNextRegion()) {
6201 for (int i = 0 ; i < region->DimensionRegions ; i++) {
6202 gig::DimensionRegion *d = region->pDimensionRegions[i];
6203 if (d->pSample) {
6204 int sampleIdx = sampleMap[d->pSample];
6205 int byte = 48 + sampleIdx / 8;
6206 int bit = 1 << (sampleIdx & 7);
6207 if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
6208 pData[(instrumentIdx + 1) * sublen + byte] |= bit;
6209 nbusedsamples++;
6210 nbusedchannels += d->pSample->Channels;
6211
6212 if ((pData[byte] & bit) == 0) {
6213 pData[byte] |= bit;
6214 totnbusedsamples++;
6215 totnbusedchannels += d->pSample->Channels;
6216 }
6217 }
6218 }
6219 if (d->SampleLoops) nbloops++;
6220 }
6221 nbdimregions += region->DimensionRegions;
6222 }
6223 // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6224 // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
6225 store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
6226 store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
6227 store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
6228 store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
6229 store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
6230 store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
6231 // next 8 bytes unknown
6232 store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
6233 store32(&pData[(instrumentIdx + 1) * sublen + 40], (uint32_t) pSamples->size());
6234 // next 4 bytes unknown
6235
6236 totnbregions += instrument->Regions;
6237 totnbdimregions += nbdimregions;
6238 totnbloops += nbloops;
6239 instrumentIdx++;
6240 }
6241 // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6242 // store32(&pData[0], sublen);
6243 store32(&pData[4], totnbusedchannels);
6244 store32(&pData[8], totnbusedsamples);
6245 store32(&pData[12], Instruments);
6246 store32(&pData[16], totnbregions);
6247 store32(&pData[20], totnbdimregions);
6248 store32(&pData[24], totnbloops);
6249 // next 8 bytes unknown
6250 // next 4 bytes unknown, not always 0
6251 store32(&pData[40], (uint32_t) pSamples->size());
6252 // next 4 bytes unknown
6253 }
6254
6255 // update 3crc chunk
6256
6257 // The 3crc chunk contains CRC-32 checksums for the
6258 // samples. When saving a gig file to disk, we first update the 3CRC
6259 // chunk here (in RAM) with the old crc values which we read from the
6260 // 3CRC chunk when we opened the file (available with gig::Sample::crc
6261 // member variable). This step is required, because samples might have
6262 // been deleted by the user since the file was opened, which in turn
6263 // changes the order of the (i.e. old) checksums within the 3crc chunk.
6264 // If a sample was conciously modified by the user (that is if
6265 // Sample::Write() was called later on) then Sample::Write() will just
6266 // update the respective individual checksum(s) directly on disk and
6267 // leaves all other sample checksums untouched.
6268
6269 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6270 if (_3crc) {
6271 _3crc->Resize(pSamples->size() * 8);
6272 } else /*if (newFile)*/ {
6273 _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6274 // the order of einf and 3crc is not the same in v2 and v3
6275 if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
6276 }
6277 { // must be performed in RAM here ...
6278 uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6279 if (pData) {
6280 File::SampleList::iterator iter = pSamples->begin();
6281 File::SampleList::iterator end = pSamples->end();
6282 for (int index = 0; iter != end; ++iter, ++index) {
6283 gig::Sample* pSample = (gig::Sample*) *iter;
6284 pData[index*2] = 1; // always 1
6285 pData[index*2+1] = pSample->crc;
6286 }
6287 }
6288 }
6289 }
6290
6291 void File::UpdateFileOffsets() {
6292 DLS::File::UpdateFileOffsets();
6293
6294 for (Instrument* instrument = GetFirstInstrument(); instrument;
6295 instrument = GetNextInstrument())
6296 {
6297 instrument->UpdateScriptFileOffsets();
6298 }
6299 }
6300
6301 /**
6302 * Enable / disable automatic loading. By default this properyt is
6303 * enabled and all informations are loaded automatically. However
6304 * loading all Regions, DimensionRegions and especially samples might
6305 * take a long time for large .gig files, and sometimes one might only
6306 * be interested in retrieving very superficial informations like the
6307 * amount of instruments and their names. In this case one might disable
6308 * automatic loading to avoid very slow response times.
6309 *
6310 * @e CAUTION: by disabling this property many pointers (i.e. sample
6311 * references) and informations will have invalid or even undefined
6312 * data! This feature is currently only intended for retrieving very
6313 * superficial informations in a very fast way. Don't use it to retrieve
6314 * details like synthesis informations or even to modify .gig files!
6315 */
6316 void File::SetAutoLoad(bool b) {
6317 bAutoLoad = b;
6318 }
6319
6320 /**
6321 * Returns whether automatic loading is enabled.
6322 * @see SetAutoLoad()
6323 */
6324 bool File::GetAutoLoad() {
6325 return bAutoLoad;
6326 }
6327
6328
6329
6330 // *************** Exception ***************
6331 // *
6332
6333 Exception::Exception(String Message) : DLS::Exception(Message) {
6334 }
6335
6336 void Exception::PrintMessage() {
6337 std::cout << "gig::Exception: " << Message << std::endl;
6338 }
6339
6340
6341 // *************** functions ***************
6342 // *
6343
6344 /**
6345 * Returns the name of this C++ library. This is usually "libgig" of
6346 * course. This call is equivalent to RIFF::libraryName() and
6347 * DLS::libraryName().
6348 */
6349 String libraryName() {
6350 return PACKAGE;
6351 }
6352
6353 /**
6354 * Returns version of this C++ library. This call is equivalent to
6355 * RIFF::libraryVersion() and DLS::libraryVersion().
6356 */
6357 String libraryVersion() {
6358 return VERSION;
6359 }
6360
6361 } // namespace gig

  ViewVC Help
Powered by ViewVC