/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Contents of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3117 - (show annotations) (download)
Sun Apr 16 23:20:30 2017 UTC (6 years, 11 months ago) by schoenebeck
File size: 278333 byte(s)
* src/gig.cpp: Fixed method File::AddContentOf() which did
  not clone script groups and scripts of passed original file.
* Bumped version (4.0.0.svn14).

1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file access library *
4 * *
5 * Copyright (C) 2003-2017 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #include "gig.h"
25
26 #include "helper.h"
27
28 #include <algorithm>
29 #include <math.h>
30 #include <iostream>
31 #include <assert.h>
32
33 /// libgig's current file format version (for extending the original Giga file
34 /// format with libgig's own custom data / custom features).
35 #define GIG_FILE_EXT_VERSION 2
36
37 /// Initial size of the sample buffer which is used for decompression of
38 /// compressed sample wave streams - this value should always be bigger than
39 /// the biggest sample piece expected to be read by the sampler engine,
40 /// otherwise the buffer size will be raised at runtime and thus the buffer
41 /// reallocated which is time consuming and unefficient.
42 #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
43
44 /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
45 #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
46 #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
47 #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
48 #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
49 #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
50 #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
51 #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
52 #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
53 #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
54 #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
55 #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
56 #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
57
58 namespace gig {
59
60 // *************** Internal functions for sample decompression ***************
61 // *
62
63 namespace {
64
65 inline int get12lo(const unsigned char* pSrc)
66 {
67 const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
68 return x & 0x800 ? x - 0x1000 : x;
69 }
70
71 inline int get12hi(const unsigned char* pSrc)
72 {
73 const int x = pSrc[1] >> 4 | pSrc[2] << 4;
74 return x & 0x800 ? x - 0x1000 : x;
75 }
76
77 inline int16_t get16(const unsigned char* pSrc)
78 {
79 return int16_t(pSrc[0] | pSrc[1] << 8);
80 }
81
82 inline int get24(const unsigned char* pSrc)
83 {
84 const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
85 return x & 0x800000 ? x - 0x1000000 : x;
86 }
87
88 inline void store24(unsigned char* pDst, int x)
89 {
90 pDst[0] = x;
91 pDst[1] = x >> 8;
92 pDst[2] = x >> 16;
93 }
94
95 void Decompress16(int compressionmode, const unsigned char* params,
96 int srcStep, int dstStep,
97 const unsigned char* pSrc, int16_t* pDst,
98 file_offset_t currentframeoffset,
99 file_offset_t copysamples)
100 {
101 switch (compressionmode) {
102 case 0: // 16 bit uncompressed
103 pSrc += currentframeoffset * srcStep;
104 while (copysamples) {
105 *pDst = get16(pSrc);
106 pDst += dstStep;
107 pSrc += srcStep;
108 copysamples--;
109 }
110 break;
111
112 case 1: // 16 bit compressed to 8 bit
113 int y = get16(params);
114 int dy = get16(params + 2);
115 while (currentframeoffset) {
116 dy -= int8_t(*pSrc);
117 y -= dy;
118 pSrc += srcStep;
119 currentframeoffset--;
120 }
121 while (copysamples) {
122 dy -= int8_t(*pSrc);
123 y -= dy;
124 *pDst = y;
125 pDst += dstStep;
126 pSrc += srcStep;
127 copysamples--;
128 }
129 break;
130 }
131 }
132
133 void Decompress24(int compressionmode, const unsigned char* params,
134 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
135 file_offset_t currentframeoffset,
136 file_offset_t copysamples, int truncatedBits)
137 {
138 int y, dy, ddy, dddy;
139
140 #define GET_PARAMS(params) \
141 y = get24(params); \
142 dy = y - get24((params) + 3); \
143 ddy = get24((params) + 6); \
144 dddy = get24((params) + 9)
145
146 #define SKIP_ONE(x) \
147 dddy -= (x); \
148 ddy -= dddy; \
149 dy = -dy - ddy; \
150 y += dy
151
152 #define COPY_ONE(x) \
153 SKIP_ONE(x); \
154 store24(pDst, y << truncatedBits); \
155 pDst += dstStep
156
157 switch (compressionmode) {
158 case 2: // 24 bit uncompressed
159 pSrc += currentframeoffset * 3;
160 while (copysamples) {
161 store24(pDst, get24(pSrc) << truncatedBits);
162 pDst += dstStep;
163 pSrc += 3;
164 copysamples--;
165 }
166 break;
167
168 case 3: // 24 bit compressed to 16 bit
169 GET_PARAMS(params);
170 while (currentframeoffset) {
171 SKIP_ONE(get16(pSrc));
172 pSrc += 2;
173 currentframeoffset--;
174 }
175 while (copysamples) {
176 COPY_ONE(get16(pSrc));
177 pSrc += 2;
178 copysamples--;
179 }
180 break;
181
182 case 4: // 24 bit compressed to 12 bit
183 GET_PARAMS(params);
184 while (currentframeoffset > 1) {
185 SKIP_ONE(get12lo(pSrc));
186 SKIP_ONE(get12hi(pSrc));
187 pSrc += 3;
188 currentframeoffset -= 2;
189 }
190 if (currentframeoffset) {
191 SKIP_ONE(get12lo(pSrc));
192 currentframeoffset--;
193 if (copysamples) {
194 COPY_ONE(get12hi(pSrc));
195 pSrc += 3;
196 copysamples--;
197 }
198 }
199 while (copysamples > 1) {
200 COPY_ONE(get12lo(pSrc));
201 COPY_ONE(get12hi(pSrc));
202 pSrc += 3;
203 copysamples -= 2;
204 }
205 if (copysamples) {
206 COPY_ONE(get12lo(pSrc));
207 }
208 break;
209
210 case 5: // 24 bit compressed to 8 bit
211 GET_PARAMS(params);
212 while (currentframeoffset) {
213 SKIP_ONE(int8_t(*pSrc++));
214 currentframeoffset--;
215 }
216 while (copysamples) {
217 COPY_ONE(int8_t(*pSrc++));
218 copysamples--;
219 }
220 break;
221 }
222 }
223
224 const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
225 const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
226 const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
227 const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
228 }
229
230
231
232 // *************** Internal CRC-32 (Cyclic Redundancy Check) functions ***************
233 // *
234
235 static uint32_t* __initCRCTable() {
236 static uint32_t res[256];
237
238 for (int i = 0 ; i < 256 ; i++) {
239 uint32_t c = i;
240 for (int j = 0 ; j < 8 ; j++) {
241 c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
242 }
243 res[i] = c;
244 }
245 return res;
246 }
247
248 static const uint32_t* __CRCTable = __initCRCTable();
249
250 /**
251 * Initialize a CRC variable.
252 *
253 * @param crc - variable to be initialized
254 */
255 inline static void __resetCRC(uint32_t& crc) {
256 crc = 0xffffffff;
257 }
258
259 /**
260 * Used to calculate checksums of the sample data in a gig file. The
261 * checksums are stored in the 3crc chunk of the gig file and
262 * automatically updated when a sample is written with Sample::Write().
263 *
264 * One should call __resetCRC() to initialize the CRC variable to be
265 * used before calling this function the first time.
266 *
267 * After initializing the CRC variable one can call this function
268 * arbitrary times, i.e. to split the overall CRC calculation into
269 * steps.
270 *
271 * Once the whole data was processed by __calculateCRC(), one should
272 * call __finalizeCRC() to get the final CRC result.
273 *
274 * @param buf - pointer to data the CRC shall be calculated of
275 * @param bufSize - size of the data to be processed
276 * @param crc - variable the CRC sum shall be stored to
277 */
278 static void __calculateCRC(unsigned char* buf, size_t bufSize, uint32_t& crc) {
279 for (size_t i = 0 ; i < bufSize ; i++) {
280 crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
281 }
282 }
283
284 /**
285 * Returns the final CRC result.
286 *
287 * @param crc - variable previously passed to __calculateCRC()
288 */
289 inline static void __finalizeCRC(uint32_t& crc) {
290 crc ^= 0xffffffff;
291 }
292
293
294
295 // *************** Other Internal functions ***************
296 // *
297
298 static split_type_t __resolveSplitType(dimension_t dimension) {
299 return (
300 dimension == dimension_layer ||
301 dimension == dimension_samplechannel ||
302 dimension == dimension_releasetrigger ||
303 dimension == dimension_keyboard ||
304 dimension == dimension_roundrobin ||
305 dimension == dimension_random ||
306 dimension == dimension_smartmidi ||
307 dimension == dimension_roundrobinkeyboard
308 ) ? split_type_bit : split_type_normal;
309 }
310
311 static int __resolveZoneSize(dimension_def_t& dimension_definition) {
312 return (dimension_definition.split_type == split_type_normal)
313 ? int(128.0 / dimension_definition.zones) : 0;
314 }
315
316
317
318 // *************** Sample ***************
319 // *
320
321 size_t Sample::Instances = 0;
322 buffer_t Sample::InternalDecompressionBuffer;
323
324 /** @brief Constructor.
325 *
326 * Load an existing sample or create a new one. A 'wave' list chunk must
327 * be given to this constructor. In case the given 'wave' list chunk
328 * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
329 * format and sample data will be loaded from there, otherwise default
330 * values will be used and those chunks will be created when
331 * File::Save() will be called later on.
332 *
333 * @param pFile - pointer to gig::File where this sample is
334 * located (or will be located)
335 * @param waveList - pointer to 'wave' list chunk which is (or
336 * will be) associated with this sample
337 * @param WavePoolOffset - offset of this sample data from wave pool
338 * ('wvpl') list chunk
339 * @param fileNo - number of an extension file where this sample
340 * is located, 0 otherwise
341 * @param index - wave pool index of sample (may be -1 on new sample)
342 */
343 Sample::Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo, int index)
344 : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset)
345 {
346 static const DLS::Info::string_length_t fixedStringLengths[] = {
347 { CHUNK_ID_INAM, 64 },
348 { 0, 0 }
349 };
350 pInfo->SetFixedStringLengths(fixedStringLengths);
351 Instances++;
352 FileNo = fileNo;
353
354 __resetCRC(crc);
355 // if this is not a new sample, try to get the sample's already existing
356 // CRC32 checksum from disk, this checksum will reflect the sample's CRC32
357 // checksum of the time when the sample was consciously modified by the
358 // user for the last time (by calling Sample::Write() that is).
359 if (index >= 0) { // not a new file ...
360 try {
361 uint32_t crc = pFile->GetSampleChecksumByIndex(index);
362 this->crc = crc;
363 } catch (...) {}
364 }
365
366 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
367 if (pCk3gix) {
368 uint16_t iSampleGroup = pCk3gix->ReadInt16();
369 pGroup = pFile->GetGroup(iSampleGroup);
370 } else { // '3gix' chunk missing
371 // by default assigned to that mandatory "Default Group"
372 pGroup = pFile->GetGroup(0);
373 }
374
375 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
376 if (pCkSmpl) {
377 Manufacturer = pCkSmpl->ReadInt32();
378 Product = pCkSmpl->ReadInt32();
379 SamplePeriod = pCkSmpl->ReadInt32();
380 MIDIUnityNote = pCkSmpl->ReadInt32();
381 FineTune = pCkSmpl->ReadInt32();
382 pCkSmpl->Read(&SMPTEFormat, 1, 4);
383 SMPTEOffset = pCkSmpl->ReadInt32();
384 Loops = pCkSmpl->ReadInt32();
385 pCkSmpl->ReadInt32(); // manufByt
386 LoopID = pCkSmpl->ReadInt32();
387 pCkSmpl->Read(&LoopType, 1, 4);
388 LoopStart = pCkSmpl->ReadInt32();
389 LoopEnd = pCkSmpl->ReadInt32();
390 LoopFraction = pCkSmpl->ReadInt32();
391 LoopPlayCount = pCkSmpl->ReadInt32();
392 } else { // 'smpl' chunk missing
393 // use default values
394 Manufacturer = 0;
395 Product = 0;
396 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
397 MIDIUnityNote = 60;
398 FineTune = 0;
399 SMPTEFormat = smpte_format_no_offset;
400 SMPTEOffset = 0;
401 Loops = 0;
402 LoopID = 0;
403 LoopType = loop_type_normal;
404 LoopStart = 0;
405 LoopEnd = 0;
406 LoopFraction = 0;
407 LoopPlayCount = 0;
408 }
409
410 FrameTable = NULL;
411 SamplePos = 0;
412 RAMCache.Size = 0;
413 RAMCache.pStart = NULL;
414 RAMCache.NullExtensionSize = 0;
415
416 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
417
418 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
419 Compressed = ewav;
420 Dithered = false;
421 TruncatedBits = 0;
422 if (Compressed) {
423 uint32_t version = ewav->ReadInt32();
424 if (version == 3 && BitDepth == 24) {
425 Dithered = ewav->ReadInt32();
426 ewav->SetPos(Channels == 2 ? 84 : 64);
427 TruncatedBits = ewav->ReadInt32();
428 }
429 ScanCompressedSample();
430 }
431
432 // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
433 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
434 InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
435 InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
436 }
437 FrameOffset = 0; // just for streaming compressed samples
438
439 LoopSize = LoopEnd - LoopStart + 1;
440 }
441
442 /**
443 * Make a (semi) deep copy of the Sample object given by @a orig (without
444 * the actual waveform data) and assign it to this object.
445 *
446 * Discussion: copying .gig samples is a bit tricky. It requires three
447 * steps:
448 * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
449 * its new sample waveform data size.
450 * 2. Saving the file (done by File::Save()) so that it gains correct size
451 * and layout for writing the actual wave form data directly to disc
452 * in next step.
453 * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
454 *
455 * @param orig - original Sample object to be copied from
456 */
457 void Sample::CopyAssignMeta(const Sample* orig) {
458 // handle base classes
459 DLS::Sample::CopyAssignCore(orig);
460
461 // handle actual own attributes of this class
462 Manufacturer = orig->Manufacturer;
463 Product = orig->Product;
464 SamplePeriod = orig->SamplePeriod;
465 MIDIUnityNote = orig->MIDIUnityNote;
466 FineTune = orig->FineTune;
467 SMPTEFormat = orig->SMPTEFormat;
468 SMPTEOffset = orig->SMPTEOffset;
469 Loops = orig->Loops;
470 LoopID = orig->LoopID;
471 LoopType = orig->LoopType;
472 LoopStart = orig->LoopStart;
473 LoopEnd = orig->LoopEnd;
474 LoopSize = orig->LoopSize;
475 LoopFraction = orig->LoopFraction;
476 LoopPlayCount = orig->LoopPlayCount;
477
478 // schedule resizing this sample to the given sample's size
479 Resize(orig->GetSize());
480 }
481
482 /**
483 * Should be called after CopyAssignMeta() and File::Save() sequence.
484 * Read more about it in the discussion of CopyAssignMeta(). This method
485 * copies the actual waveform data by disk streaming.
486 *
487 * @e CAUTION: this method is currently not thread safe! During this
488 * operation the sample must not be used for other purposes by other
489 * threads!
490 *
491 * @param orig - original Sample object to be copied from
492 */
493 void Sample::CopyAssignWave(const Sample* orig) {
494 const int iReadAtOnce = 32*1024;
495 char* buf = new char[iReadAtOnce * orig->FrameSize];
496 Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
497 file_offset_t restorePos = pOrig->GetPos();
498 pOrig->SetPos(0);
499 SetPos(0);
500 for (file_offset_t n = pOrig->Read(buf, iReadAtOnce); n;
501 n = pOrig->Read(buf, iReadAtOnce))
502 {
503 Write(buf, n);
504 }
505 pOrig->SetPos(restorePos);
506 delete [] buf;
507 }
508
509 /**
510 * Apply sample and its settings to the respective RIFF chunks. You have
511 * to call File::Save() to make changes persistent.
512 *
513 * Usually there is absolutely no need to call this method explicitly.
514 * It will be called automatically when File::Save() was called.
515 *
516 * @param pProgress - callback function for progress notification
517 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
518 * was provided yet
519 * @throws gig::Exception if there is any invalid sample setting
520 */
521 void Sample::UpdateChunks(progress_t* pProgress) {
522 // first update base class's chunks
523 DLS::Sample::UpdateChunks(pProgress);
524
525 // make sure 'smpl' chunk exists
526 pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
527 if (!pCkSmpl) {
528 pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
529 memset(pCkSmpl->LoadChunkData(), 0, 60);
530 }
531 // update 'smpl' chunk
532 uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
533 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
534 store32(&pData[0], Manufacturer);
535 store32(&pData[4], Product);
536 store32(&pData[8], SamplePeriod);
537 store32(&pData[12], MIDIUnityNote);
538 store32(&pData[16], FineTune);
539 store32(&pData[20], SMPTEFormat);
540 store32(&pData[24], SMPTEOffset);
541 store32(&pData[28], Loops);
542
543 // we skip 'manufByt' for now (4 bytes)
544
545 store32(&pData[36], LoopID);
546 store32(&pData[40], LoopType);
547 store32(&pData[44], LoopStart);
548 store32(&pData[48], LoopEnd);
549 store32(&pData[52], LoopFraction);
550 store32(&pData[56], LoopPlayCount);
551
552 // make sure '3gix' chunk exists
553 pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
554 if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
555 // determine appropriate sample group index (to be stored in chunk)
556 uint16_t iSampleGroup = 0; // 0 refers to default sample group
557 File* pFile = static_cast<File*>(pParent);
558 if (pFile->pGroups) {
559 std::list<Group*>::iterator iter = pFile->pGroups->begin();
560 std::list<Group*>::iterator end = pFile->pGroups->end();
561 for (int i = 0; iter != end; i++, iter++) {
562 if (*iter == pGroup) {
563 iSampleGroup = i;
564 break; // found
565 }
566 }
567 }
568 // update '3gix' chunk
569 pData = (uint8_t*) pCk3gix->LoadChunkData();
570 store16(&pData[0], iSampleGroup);
571
572 // if the library user toggled the "Compressed" attribute from true to
573 // false, then the EWAV chunk associated with compressed samples needs
574 // to be deleted
575 RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
576 if (ewav && !Compressed) {
577 pWaveList->DeleteSubChunk(ewav);
578 }
579 }
580
581 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
582 void Sample::ScanCompressedSample() {
583 //TODO: we have to add some more scans here (e.g. determine compression rate)
584 this->SamplesTotal = 0;
585 std::list<file_offset_t> frameOffsets;
586
587 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
588 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
589
590 // Scanning
591 pCkData->SetPos(0);
592 if (Channels == 2) { // Stereo
593 for (int i = 0 ; ; i++) {
594 // for 24 bit samples every 8:th frame offset is
595 // stored, to save some memory
596 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
597
598 const int mode_l = pCkData->ReadUint8();
599 const int mode_r = pCkData->ReadUint8();
600 if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
601 const file_offset_t frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
602
603 if (pCkData->RemainingBytes() <= frameSize) {
604 SamplesInLastFrame =
605 ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
606 (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
607 SamplesTotal += SamplesInLastFrame;
608 break;
609 }
610 SamplesTotal += SamplesPerFrame;
611 pCkData->SetPos(frameSize, RIFF::stream_curpos);
612 }
613 }
614 else { // Mono
615 for (int i = 0 ; ; i++) {
616 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
617
618 const int mode = pCkData->ReadUint8();
619 if (mode > 5) throw gig::Exception("Unknown compression mode");
620 const file_offset_t frameSize = bytesPerFrame[mode];
621
622 if (pCkData->RemainingBytes() <= frameSize) {
623 SamplesInLastFrame =
624 ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
625 SamplesTotal += SamplesInLastFrame;
626 break;
627 }
628 SamplesTotal += SamplesPerFrame;
629 pCkData->SetPos(frameSize, RIFF::stream_curpos);
630 }
631 }
632 pCkData->SetPos(0);
633
634 // Build the frames table (which is used for fast resolving of a frame's chunk offset)
635 if (FrameTable) delete[] FrameTable;
636 FrameTable = new file_offset_t[frameOffsets.size()];
637 std::list<file_offset_t>::iterator end = frameOffsets.end();
638 std::list<file_offset_t>::iterator iter = frameOffsets.begin();
639 for (int i = 0; iter != end; i++, iter++) {
640 FrameTable[i] = *iter;
641 }
642 }
643
644 /**
645 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
646 * ReleaseSampleData() to free the memory if you don't need the cached
647 * sample data anymore.
648 *
649 * @returns buffer_t structure with start address and size of the buffer
650 * in bytes
651 * @see ReleaseSampleData(), Read(), SetPos()
652 */
653 buffer_t Sample::LoadSampleData() {
654 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
655 }
656
657 /**
658 * Reads (uncompresses if needed) and caches the first \a SampleCount
659 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
660 * memory space if you don't need the cached samples anymore. There is no
661 * guarantee that exactly \a SampleCount samples will be cached; this is
662 * not an error. The size will be eventually truncated e.g. to the
663 * beginning of a frame of a compressed sample. This is done for
664 * efficiency reasons while streaming the wave by your sampler engine
665 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
666 * that will be returned to determine the actual cached samples, but note
667 * that the size is given in bytes! You get the number of actually cached
668 * samples by dividing it by the frame size of the sample:
669 * @code
670 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
671 * long cachedsamples = buf.Size / pSample->FrameSize;
672 * @endcode
673 *
674 * @param SampleCount - number of sample points to load into RAM
675 * @returns buffer_t structure with start address and size of
676 * the cached sample data in bytes
677 * @see ReleaseSampleData(), Read(), SetPos()
678 */
679 buffer_t Sample::LoadSampleData(file_offset_t SampleCount) {
680 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
681 }
682
683 /**
684 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
685 * ReleaseSampleData() to free the memory if you don't need the cached
686 * sample data anymore.
687 * The method will add \a NullSamplesCount silence samples past the
688 * official buffer end (this won't affect the 'Size' member of the
689 * buffer_t structure, that means 'Size' always reflects the size of the
690 * actual sample data, the buffer might be bigger though). Silence
691 * samples past the official buffer are needed for differential
692 * algorithms that always have to take subsequent samples into account
693 * (resampling/interpolation would be an important example) and avoids
694 * memory access faults in such cases.
695 *
696 * @param NullSamplesCount - number of silence samples the buffer should
697 * be extended past it's data end
698 * @returns buffer_t structure with start address and
699 * size of the buffer in bytes
700 * @see ReleaseSampleData(), Read(), SetPos()
701 */
702 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
703 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
704 }
705
706 /**
707 * Reads (uncompresses if needed) and caches the first \a SampleCount
708 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
709 * memory space if you don't need the cached samples anymore. There is no
710 * guarantee that exactly \a SampleCount samples will be cached; this is
711 * not an error. The size will be eventually truncated e.g. to the
712 * beginning of a frame of a compressed sample. This is done for
713 * efficiency reasons while streaming the wave by your sampler engine
714 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
715 * that will be returned to determine the actual cached samples, but note
716 * that the size is given in bytes! You get the number of actually cached
717 * samples by dividing it by the frame size of the sample:
718 * @code
719 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
720 * long cachedsamples = buf.Size / pSample->FrameSize;
721 * @endcode
722 * The method will add \a NullSamplesCount silence samples past the
723 * official buffer end (this won't affect the 'Size' member of the
724 * buffer_t structure, that means 'Size' always reflects the size of the
725 * actual sample data, the buffer might be bigger though). Silence
726 * samples past the official buffer are needed for differential
727 * algorithms that always have to take subsequent samples into account
728 * (resampling/interpolation would be an important example) and avoids
729 * memory access faults in such cases.
730 *
731 * @param SampleCount - number of sample points to load into RAM
732 * @param NullSamplesCount - number of silence samples the buffer should
733 * be extended past it's data end
734 * @returns buffer_t structure with start address and
735 * size of the cached sample data in bytes
736 * @see ReleaseSampleData(), Read(), SetPos()
737 */
738 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount) {
739 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
740 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
741 file_offset_t allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
742 SetPos(0); // reset read position to begin of sample
743 RAMCache.pStart = new int8_t[allocationsize];
744 RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
745 RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
746 // fill the remaining buffer space with silence samples
747 memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
748 return GetCache();
749 }
750
751 /**
752 * Returns current cached sample points. A buffer_t structure will be
753 * returned which contains address pointer to the begin of the cache and
754 * the size of the cached sample data in bytes. Use
755 * <i>LoadSampleData()</i> to cache a specific amount of sample points in
756 * RAM.
757 *
758 * @returns buffer_t structure with current cached sample points
759 * @see LoadSampleData();
760 */
761 buffer_t Sample::GetCache() {
762 // return a copy of the buffer_t structure
763 buffer_t result;
764 result.Size = this->RAMCache.Size;
765 result.pStart = this->RAMCache.pStart;
766 result.NullExtensionSize = this->RAMCache.NullExtensionSize;
767 return result;
768 }
769
770 /**
771 * Frees the cached sample from RAM if loaded with
772 * <i>LoadSampleData()</i> previously.
773 *
774 * @see LoadSampleData();
775 */
776 void Sample::ReleaseSampleData() {
777 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
778 RAMCache.pStart = NULL;
779 RAMCache.Size = 0;
780 RAMCache.NullExtensionSize = 0;
781 }
782
783 /** @brief Resize sample.
784 *
785 * Resizes the sample's wave form data, that is the actual size of
786 * sample wave data possible to be written for this sample. This call
787 * will return immediately and just schedule the resize operation. You
788 * should call File::Save() to actually perform the resize operation(s)
789 * "physically" to the file. As this can take a while on large files, it
790 * is recommended to call Resize() first on all samples which have to be
791 * resized and finally to call File::Save() to perform all those resize
792 * operations in one rush.
793 *
794 * The actual size (in bytes) is dependant to the current FrameSize
795 * value. You may want to set FrameSize before calling Resize().
796 *
797 * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
798 * enlarged samples before calling File::Save() as this might exceed the
799 * current sample's boundary!
800 *
801 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
802 * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
803 * other formats will fail!
804 *
805 * @param NewSize - new sample wave data size in sample points (must be
806 * greater than zero)
807 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
808 * @throws DLS::Exception if \a NewSize is less than 1 or unrealistic large
809 * @throws gig::Exception if existing sample is compressed
810 * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
811 * DLS::Sample::FormatTag, File::Save()
812 */
813 void Sample::Resize(file_offset_t NewSize) {
814 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
815 DLS::Sample::Resize(NewSize);
816 }
817
818 /**
819 * Sets the position within the sample (in sample points, not in
820 * bytes). Use this method and <i>Read()</i> if you don't want to load
821 * the sample into RAM, thus for disk streaming.
822 *
823 * Although the original Gigasampler engine doesn't allow positioning
824 * within compressed samples, I decided to implement it. Even though
825 * the Gigasampler format doesn't allow to define loops for compressed
826 * samples at the moment, positioning within compressed samples might be
827 * interesting for some sampler engines though. The only drawback about
828 * my decision is that it takes longer to load compressed gig Files on
829 * startup, because it's neccessary to scan the samples for some
830 * mandatory informations. But I think as it doesn't affect the runtime
831 * efficiency, nobody will have a problem with that.
832 *
833 * @param SampleCount number of sample points to jump
834 * @param Whence optional: to which relation \a SampleCount refers
835 * to, if omited <i>RIFF::stream_start</i> is assumed
836 * @returns the new sample position
837 * @see Read()
838 */
839 file_offset_t Sample::SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence) {
840 if (Compressed) {
841 switch (Whence) {
842 case RIFF::stream_curpos:
843 this->SamplePos += SampleCount;
844 break;
845 case RIFF::stream_end:
846 this->SamplePos = this->SamplesTotal - 1 - SampleCount;
847 break;
848 case RIFF::stream_backward:
849 this->SamplePos -= SampleCount;
850 break;
851 case RIFF::stream_start: default:
852 this->SamplePos = SampleCount;
853 break;
854 }
855 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
856
857 file_offset_t frame = this->SamplePos / 2048; // to which frame to jump
858 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
859 pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
860 return this->SamplePos;
861 }
862 else { // not compressed
863 file_offset_t orderedBytes = SampleCount * this->FrameSize;
864 file_offset_t result = pCkData->SetPos(orderedBytes, Whence);
865 return (result == orderedBytes) ? SampleCount
866 : result / this->FrameSize;
867 }
868 }
869
870 /**
871 * Returns the current position in the sample (in sample points).
872 */
873 file_offset_t Sample::GetPos() const {
874 if (Compressed) return SamplePos;
875 else return pCkData->GetPos() / FrameSize;
876 }
877
878 /**
879 * Reads \a SampleCount number of sample points from the position stored
880 * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
881 * the position within the sample respectively, this method honors the
882 * looping informations of the sample (if any). The sample wave stream
883 * will be decompressed on the fly if using a compressed sample. Use this
884 * method if you don't want to load the sample into RAM, thus for disk
885 * streaming. All this methods needs to know to proceed with streaming
886 * for the next time you call this method is stored in \a pPlaybackState.
887 * You have to allocate and initialize the playback_state_t structure by
888 * yourself before you use it to stream a sample:
889 * @code
890 * gig::playback_state_t playbackstate;
891 * playbackstate.position = 0;
892 * playbackstate.reverse = false;
893 * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
894 * @endcode
895 * You don't have to take care of things like if there is actually a loop
896 * defined or if the current read position is located within a loop area.
897 * The method already handles such cases by itself.
898 *
899 * <b>Caution:</b> If you are using more than one streaming thread, you
900 * have to use an external decompression buffer for <b>EACH</b>
901 * streaming thread to avoid race conditions and crashes!
902 *
903 * @param pBuffer destination buffer
904 * @param SampleCount number of sample points to read
905 * @param pPlaybackState will be used to store and reload the playback
906 * state for the next ReadAndLoop() call
907 * @param pDimRgn dimension region with looping information
908 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
909 * @returns number of successfully read sample points
910 * @see CreateDecompressionBuffer()
911 */
912 file_offset_t Sample::ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState,
913 DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
914 file_offset_t samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
915 uint8_t* pDst = (uint8_t*) pBuffer;
916
917 SetPos(pPlaybackState->position); // recover position from the last time
918
919 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
920
921 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
922 const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
923
924 if (GetPos() <= loopEnd) {
925 switch (loop.LoopType) {
926
927 case loop_type_bidirectional: { //TODO: not tested yet!
928 do {
929 // if not endless loop check if max. number of loop cycles have been passed
930 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
931
932 if (!pPlaybackState->reverse) { // forward playback
933 do {
934 samplestoloopend = loopEnd - GetPos();
935 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
936 samplestoread -= readsamples;
937 totalreadsamples += readsamples;
938 if (readsamples == samplestoloopend) {
939 pPlaybackState->reverse = true;
940 break;
941 }
942 } while (samplestoread && readsamples);
943 }
944 else { // backward playback
945
946 // as we can only read forward from disk, we have to
947 // determine the end position within the loop first,
948 // read forward from that 'end' and finally after
949 // reading, swap all sample frames so it reflects
950 // backward playback
951
952 file_offset_t swapareastart = totalreadsamples;
953 file_offset_t loopoffset = GetPos() - loop.LoopStart;
954 file_offset_t samplestoreadinloop = Min(samplestoread, loopoffset);
955 file_offset_t reverseplaybackend = GetPos() - samplestoreadinloop;
956
957 SetPos(reverseplaybackend);
958
959 // read samples for backward playback
960 do {
961 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
962 samplestoreadinloop -= readsamples;
963 samplestoread -= readsamples;
964 totalreadsamples += readsamples;
965 } while (samplestoreadinloop && readsamples);
966
967 SetPos(reverseplaybackend); // pretend we really read backwards
968
969 if (reverseplaybackend == loop.LoopStart) {
970 pPlaybackState->loop_cycles_left--;
971 pPlaybackState->reverse = false;
972 }
973
974 // reverse the sample frames for backward playback
975 if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
976 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
977 }
978 } while (samplestoread && readsamples);
979 break;
980 }
981
982 case loop_type_backward: { // TODO: not tested yet!
983 // forward playback (not entered the loop yet)
984 if (!pPlaybackState->reverse) do {
985 samplestoloopend = loopEnd - GetPos();
986 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
987 samplestoread -= readsamples;
988 totalreadsamples += readsamples;
989 if (readsamples == samplestoloopend) {
990 pPlaybackState->reverse = true;
991 break;
992 }
993 } while (samplestoread && readsamples);
994
995 if (!samplestoread) break;
996
997 // as we can only read forward from disk, we have to
998 // determine the end position within the loop first,
999 // read forward from that 'end' and finally after
1000 // reading, swap all sample frames so it reflects
1001 // backward playback
1002
1003 file_offset_t swapareastart = totalreadsamples;
1004 file_offset_t loopoffset = GetPos() - loop.LoopStart;
1005 file_offset_t samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1006 : samplestoread;
1007 file_offset_t reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1008
1009 SetPos(reverseplaybackend);
1010
1011 // read samples for backward playback
1012 do {
1013 // if not endless loop check if max. number of loop cycles have been passed
1014 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1015 samplestoloopend = loopEnd - GetPos();
1016 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1017 samplestoreadinloop -= readsamples;
1018 samplestoread -= readsamples;
1019 totalreadsamples += readsamples;
1020 if (readsamples == samplestoloopend) {
1021 pPlaybackState->loop_cycles_left--;
1022 SetPos(loop.LoopStart);
1023 }
1024 } while (samplestoreadinloop && readsamples);
1025
1026 SetPos(reverseplaybackend); // pretend we really read backwards
1027
1028 // reverse the sample frames for backward playback
1029 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1030 break;
1031 }
1032
1033 default: case loop_type_normal: {
1034 do {
1035 // if not endless loop check if max. number of loop cycles have been passed
1036 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1037 samplestoloopend = loopEnd - GetPos();
1038 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1039 samplestoread -= readsamples;
1040 totalreadsamples += readsamples;
1041 if (readsamples == samplestoloopend) {
1042 pPlaybackState->loop_cycles_left--;
1043 SetPos(loop.LoopStart);
1044 }
1045 } while (samplestoread && readsamples);
1046 break;
1047 }
1048 }
1049 }
1050 }
1051
1052 // read on without looping
1053 if (samplestoread) do {
1054 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
1055 samplestoread -= readsamples;
1056 totalreadsamples += readsamples;
1057 } while (readsamples && samplestoread);
1058
1059 // store current position
1060 pPlaybackState->position = GetPos();
1061
1062 return totalreadsamples;
1063 }
1064
1065 /**
1066 * Reads \a SampleCount number of sample points from the current
1067 * position into the buffer pointed by \a pBuffer and increments the
1068 * position within the sample. The sample wave stream will be
1069 * decompressed on the fly if using a compressed sample. Use this method
1070 * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1071 * thus for disk streaming.
1072 *
1073 * <b>Caution:</b> If you are using more than one streaming thread, you
1074 * have to use an external decompression buffer for <b>EACH</b>
1075 * streaming thread to avoid race conditions and crashes!
1076 *
1077 * For 16 bit samples, the data in the buffer will be int16_t
1078 * (using native endianness). For 24 bit, the buffer will
1079 * contain three bytes per sample, little-endian.
1080 *
1081 * @param pBuffer destination buffer
1082 * @param SampleCount number of sample points to read
1083 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
1084 * @returns number of successfully read sample points
1085 * @see SetPos(), CreateDecompressionBuffer()
1086 */
1087 file_offset_t Sample::Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer) {
1088 if (SampleCount == 0) return 0;
1089 if (!Compressed) {
1090 if (BitDepth == 24) {
1091 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1092 }
1093 else { // 16 bit
1094 // (pCkData->Read does endian correction)
1095 return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1096 : pCkData->Read(pBuffer, SampleCount, 2);
1097 }
1098 }
1099 else {
1100 if (this->SamplePos >= this->SamplesTotal) return 0;
1101 //TODO: efficiency: maybe we should test for an average compression rate
1102 file_offset_t assumedsize = GuessSize(SampleCount),
1103 remainingbytes = 0, // remaining bytes in the local buffer
1104 remainingsamples = SampleCount,
1105 copysamples, skipsamples,
1106 currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
1107 this->FrameOffset = 0;
1108
1109 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1110
1111 // if decompression buffer too small, then reduce amount of samples to read
1112 if (pDecompressionBuffer->Size < assumedsize) {
1113 std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1114 SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1115 remainingsamples = SampleCount;
1116 assumedsize = GuessSize(SampleCount);
1117 }
1118
1119 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1120 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1121 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1122 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1123
1124 while (remainingsamples && remainingbytes) {
1125 file_offset_t framesamples = SamplesPerFrame;
1126 file_offset_t framebytes, rightChannelOffset = 0, nextFrameOffset;
1127
1128 int mode_l = *pSrc++, mode_r = 0;
1129
1130 if (Channels == 2) {
1131 mode_r = *pSrc++;
1132 framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1133 rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1134 nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1135 if (remainingbytes < framebytes) { // last frame in sample
1136 framesamples = SamplesInLastFrame;
1137 if (mode_l == 4 && (framesamples & 1)) {
1138 rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1139 }
1140 else {
1141 rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1142 }
1143 }
1144 }
1145 else {
1146 framebytes = bytesPerFrame[mode_l] + 1;
1147 nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1148 if (remainingbytes < framebytes) {
1149 framesamples = SamplesInLastFrame;
1150 }
1151 }
1152
1153 // determine how many samples in this frame to skip and read
1154 if (currentframeoffset + remainingsamples >= framesamples) {
1155 if (currentframeoffset <= framesamples) {
1156 copysamples = framesamples - currentframeoffset;
1157 skipsamples = currentframeoffset;
1158 }
1159 else {
1160 copysamples = 0;
1161 skipsamples = framesamples;
1162 }
1163 }
1164 else {
1165 // This frame has enough data for pBuffer, but not
1166 // all of the frame is needed. Set file position
1167 // to start of this frame for next call to Read.
1168 copysamples = remainingsamples;
1169 skipsamples = currentframeoffset;
1170 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1171 this->FrameOffset = currentframeoffset + copysamples;
1172 }
1173 remainingsamples -= copysamples;
1174
1175 if (remainingbytes > framebytes) {
1176 remainingbytes -= framebytes;
1177 if (remainingsamples == 0 &&
1178 currentframeoffset + copysamples == framesamples) {
1179 // This frame has enough data for pBuffer, and
1180 // all of the frame is needed. Set file
1181 // position to start of next frame for next
1182 // call to Read. FrameOffset is 0.
1183 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1184 }
1185 }
1186 else remainingbytes = 0;
1187
1188 currentframeoffset -= skipsamples;
1189
1190 if (copysamples == 0) {
1191 // skip this frame
1192 pSrc += framebytes - Channels;
1193 }
1194 else {
1195 const unsigned char* const param_l = pSrc;
1196 if (BitDepth == 24) {
1197 if (mode_l != 2) pSrc += 12;
1198
1199 if (Channels == 2) { // Stereo
1200 const unsigned char* const param_r = pSrc;
1201 if (mode_r != 2) pSrc += 12;
1202
1203 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1204 skipsamples, copysamples, TruncatedBits);
1205 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1206 skipsamples, copysamples, TruncatedBits);
1207 pDst24 += copysamples * 6;
1208 }
1209 else { // Mono
1210 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1211 skipsamples, copysamples, TruncatedBits);
1212 pDst24 += copysamples * 3;
1213 }
1214 }
1215 else { // 16 bit
1216 if (mode_l) pSrc += 4;
1217
1218 int step;
1219 if (Channels == 2) { // Stereo
1220 const unsigned char* const param_r = pSrc;
1221 if (mode_r) pSrc += 4;
1222
1223 step = (2 - mode_l) + (2 - mode_r);
1224 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1225 Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1226 skipsamples, copysamples);
1227 pDst += copysamples << 1;
1228 }
1229 else { // Mono
1230 step = 2 - mode_l;
1231 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1232 pDst += copysamples;
1233 }
1234 }
1235 pSrc += nextFrameOffset;
1236 }
1237
1238 // reload from disk to local buffer if needed
1239 if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1240 assumedsize = GuessSize(remainingsamples);
1241 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1242 if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1243 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1244 pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1245 }
1246 } // while
1247
1248 this->SamplePos += (SampleCount - remainingsamples);
1249 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1250 return (SampleCount - remainingsamples);
1251 }
1252 }
1253
1254 /** @brief Write sample wave data.
1255 *
1256 * Writes \a SampleCount number of sample points from the buffer pointed
1257 * by \a pBuffer and increments the position within the sample. Use this
1258 * method to directly write the sample data to disk, i.e. if you don't
1259 * want or cannot load the whole sample data into RAM.
1260 *
1261 * You have to Resize() the sample to the desired size and call
1262 * File::Save() <b>before</b> using Write().
1263 *
1264 * Note: there is currently no support for writing compressed samples.
1265 *
1266 * For 16 bit samples, the data in the source buffer should be
1267 * int16_t (using native endianness). For 24 bit, the buffer
1268 * should contain three bytes per sample, little-endian.
1269 *
1270 * @param pBuffer - source buffer
1271 * @param SampleCount - number of sample points to write
1272 * @throws DLS::Exception if current sample size is too small
1273 * @throws gig::Exception if sample is compressed
1274 * @see DLS::LoadSampleData()
1275 */
1276 file_offset_t Sample::Write(void* pBuffer, file_offset_t SampleCount) {
1277 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1278
1279 // if this is the first write in this sample, reset the
1280 // checksum calculator
1281 if (pCkData->GetPos() == 0) {
1282 __resetCRC(crc);
1283 }
1284 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1285 file_offset_t res;
1286 if (BitDepth == 24) {
1287 res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1288 } else { // 16 bit
1289 res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1290 : pCkData->Write(pBuffer, SampleCount, 2);
1291 }
1292 __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1293
1294 // if this is the last write, update the checksum chunk in the
1295 // file
1296 if (pCkData->GetPos() == pCkData->GetSize()) {
1297 __finalizeCRC(crc);
1298 File* pFile = static_cast<File*>(GetParent());
1299 pFile->SetSampleChecksum(this, crc);
1300 }
1301 return res;
1302 }
1303
1304 /**
1305 * Allocates a decompression buffer for streaming (compressed) samples
1306 * with Sample::Read(). If you are using more than one streaming thread
1307 * in your application you <b>HAVE</b> to create a decompression buffer
1308 * for <b>EACH</b> of your streaming threads and provide it with the
1309 * Sample::Read() call in order to avoid race conditions and crashes.
1310 *
1311 * You should free the memory occupied by the allocated buffer(s) once
1312 * you don't need one of your streaming threads anymore by calling
1313 * DestroyDecompressionBuffer().
1314 *
1315 * @param MaxReadSize - the maximum size (in sample points) you ever
1316 * expect to read with one Read() call
1317 * @returns allocated decompression buffer
1318 * @see DestroyDecompressionBuffer()
1319 */
1320 buffer_t Sample::CreateDecompressionBuffer(file_offset_t MaxReadSize) {
1321 buffer_t result;
1322 const double worstCaseHeaderOverhead =
1323 (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1324 result.Size = (file_offset_t) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1325 result.pStart = new int8_t[result.Size];
1326 result.NullExtensionSize = 0;
1327 return result;
1328 }
1329
1330 /**
1331 * Free decompression buffer, previously created with
1332 * CreateDecompressionBuffer().
1333 *
1334 * @param DecompressionBuffer - previously allocated decompression
1335 * buffer to free
1336 */
1337 void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1338 if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1339 delete[] (int8_t*) DecompressionBuffer.pStart;
1340 DecompressionBuffer.pStart = NULL;
1341 DecompressionBuffer.Size = 0;
1342 DecompressionBuffer.NullExtensionSize = 0;
1343 }
1344 }
1345
1346 /**
1347 * Returns pointer to the Group this Sample belongs to. In the .gig
1348 * format a sample always belongs to one group. If it wasn't explicitly
1349 * assigned to a certain group, it will be automatically assigned to a
1350 * default group.
1351 *
1352 * @returns Sample's Group (never NULL)
1353 */
1354 Group* Sample::GetGroup() const {
1355 return pGroup;
1356 }
1357
1358 /**
1359 * Returns the CRC-32 checksum of the sample's raw wave form data at the
1360 * time when this sample's wave form data was modified for the last time
1361 * by calling Write(). This checksum only covers the raw wave form data,
1362 * not any meta informations like i.e. bit depth or loop points. Since
1363 * this method just returns the checksum stored for this sample i.e. when
1364 * the gig file was loaded, this method returns immediately. So it does no
1365 * recalcuation of the checksum with the currently available sample wave
1366 * form data.
1367 *
1368 * @see VerifyWaveData()
1369 */
1370 uint32_t Sample::GetWaveDataCRC32Checksum() {
1371 return crc;
1372 }
1373
1374 /**
1375 * Checks the integrity of this sample's raw audio wave data. Whenever a
1376 * Sample's raw wave data is intentionally modified (i.e. by calling
1377 * Write() and supplying the new raw audio wave form data) a CRC32 checksum
1378 * is calculated and stored/updated for this sample, along to the sample's
1379 * meta informations.
1380 *
1381 * Now by calling this method the current raw audio wave data is checked
1382 * against the already stored CRC32 check sum in order to check whether the
1383 * sample data had been damaged unintentionally for some reason. Since by
1384 * calling this method always the entire raw audio wave data has to be
1385 * read, verifying all samples this way may take a long time accordingly.
1386 * And that's also the reason why the sample integrity is not checked by
1387 * default whenever a gig file is loaded. So this method must be called
1388 * explicitly to fulfill this task.
1389 *
1390 * @param pActually - (optional) if provided, will be set to the actually
1391 * calculated checksum of the current raw wave form data,
1392 * you can get the expected checksum instead by calling
1393 * GetWaveDataCRC32Checksum()
1394 * @returns true if sample is OK or false if the sample is damaged
1395 * @throws Exception if no checksum had been stored to disk for this
1396 * sample yet, or on I/O issues
1397 * @see GetWaveDataCRC32Checksum()
1398 */
1399 bool Sample::VerifyWaveData(uint32_t* pActually) {
1400 //File* pFile = static_cast<File*>(GetParent());
1401 uint32_t crc = CalculateWaveDataChecksum();
1402 if (pActually) *pActually = crc;
1403 return crc == this->crc;
1404 }
1405
1406 uint32_t Sample::CalculateWaveDataChecksum() {
1407 const size_t sz = 20*1024; // 20kB buffer size
1408 std::vector<uint8_t> buffer(sz);
1409 buffer.resize(sz);
1410
1411 const size_t n = sz / FrameSize;
1412 SetPos(0);
1413 uint32_t crc = 0;
1414 __resetCRC(crc);
1415 while (true) {
1416 file_offset_t nRead = Read(&buffer[0], n);
1417 if (nRead <= 0) break;
1418 __calculateCRC(&buffer[0], nRead * FrameSize, crc);
1419 }
1420 __finalizeCRC(crc);
1421 return crc;
1422 }
1423
1424 Sample::~Sample() {
1425 Instances--;
1426 if (!Instances && InternalDecompressionBuffer.Size) {
1427 delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1428 InternalDecompressionBuffer.pStart = NULL;
1429 InternalDecompressionBuffer.Size = 0;
1430 }
1431 if (FrameTable) delete[] FrameTable;
1432 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1433 }
1434
1435
1436
1437 // *************** DimensionRegion ***************
1438 // *
1439
1440 size_t DimensionRegion::Instances = 0;
1441 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1442
1443 DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1444 Instances++;
1445
1446 pSample = NULL;
1447 pRegion = pParent;
1448
1449 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1450 else memset(&Crossfade, 0, 4);
1451
1452 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1453
1454 RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1455 if (_3ewa) { // if '3ewa' chunk exists
1456 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1457 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1458 EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1459 _3ewa->ReadInt16(); // unknown
1460 LFO1InternalDepth = _3ewa->ReadUint16();
1461 _3ewa->ReadInt16(); // unknown
1462 LFO3InternalDepth = _3ewa->ReadInt16();
1463 _3ewa->ReadInt16(); // unknown
1464 LFO1ControlDepth = _3ewa->ReadUint16();
1465 _3ewa->ReadInt16(); // unknown
1466 LFO3ControlDepth = _3ewa->ReadInt16();
1467 EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1468 EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1469 _3ewa->ReadInt16(); // unknown
1470 EG1Sustain = _3ewa->ReadUint16();
1471 EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1472 EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1473 uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1474 EG1ControllerInvert = eg1ctrloptions & 0x01;
1475 EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1476 EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1477 EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1478 EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1479 uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1480 EG2ControllerInvert = eg2ctrloptions & 0x01;
1481 EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1482 EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1483 EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1484 LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1485 EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1486 EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1487 _3ewa->ReadInt16(); // unknown
1488 EG2Sustain = _3ewa->ReadUint16();
1489 EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1490 _3ewa->ReadInt16(); // unknown
1491 LFO2ControlDepth = _3ewa->ReadUint16();
1492 LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1493 _3ewa->ReadInt16(); // unknown
1494 LFO2InternalDepth = _3ewa->ReadUint16();
1495 int32_t eg1decay2 = _3ewa->ReadInt32();
1496 EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1497 EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1498 _3ewa->ReadInt16(); // unknown
1499 EG1PreAttack = _3ewa->ReadUint16();
1500 int32_t eg2decay2 = _3ewa->ReadInt32();
1501 EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1502 EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1503 _3ewa->ReadInt16(); // unknown
1504 EG2PreAttack = _3ewa->ReadUint16();
1505 uint8_t velocityresponse = _3ewa->ReadUint8();
1506 if (velocityresponse < 5) {
1507 VelocityResponseCurve = curve_type_nonlinear;
1508 VelocityResponseDepth = velocityresponse;
1509 } else if (velocityresponse < 10) {
1510 VelocityResponseCurve = curve_type_linear;
1511 VelocityResponseDepth = velocityresponse - 5;
1512 } else if (velocityresponse < 15) {
1513 VelocityResponseCurve = curve_type_special;
1514 VelocityResponseDepth = velocityresponse - 10;
1515 } else {
1516 VelocityResponseCurve = curve_type_unknown;
1517 VelocityResponseDepth = 0;
1518 }
1519 uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1520 if (releasevelocityresponse < 5) {
1521 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1522 ReleaseVelocityResponseDepth = releasevelocityresponse;
1523 } else if (releasevelocityresponse < 10) {
1524 ReleaseVelocityResponseCurve = curve_type_linear;
1525 ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1526 } else if (releasevelocityresponse < 15) {
1527 ReleaseVelocityResponseCurve = curve_type_special;
1528 ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1529 } else {
1530 ReleaseVelocityResponseCurve = curve_type_unknown;
1531 ReleaseVelocityResponseDepth = 0;
1532 }
1533 VelocityResponseCurveScaling = _3ewa->ReadUint8();
1534 AttenuationControllerThreshold = _3ewa->ReadInt8();
1535 _3ewa->ReadInt32(); // unknown
1536 SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1537 _3ewa->ReadInt16(); // unknown
1538 uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1539 PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1540 if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1541 else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1542 else DimensionBypass = dim_bypass_ctrl_none;
1543 uint8_t pan = _3ewa->ReadUint8();
1544 Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1545 SelfMask = _3ewa->ReadInt8() & 0x01;
1546 _3ewa->ReadInt8(); // unknown
1547 uint8_t lfo3ctrl = _3ewa->ReadUint8();
1548 LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1549 LFO3Sync = lfo3ctrl & 0x20; // bit 5
1550 InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1551 AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1552 uint8_t lfo2ctrl = _3ewa->ReadUint8();
1553 LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1554 LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1555 LFO2Sync = lfo2ctrl & 0x20; // bit 5
1556 bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1557 uint8_t lfo1ctrl = _3ewa->ReadUint8();
1558 LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1559 LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1560 LFO1Sync = lfo1ctrl & 0x40; // bit 6
1561 VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1562 : vcf_res_ctrl_none;
1563 uint16_t eg3depth = _3ewa->ReadUint16();
1564 EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1565 : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1566 _3ewa->ReadInt16(); // unknown
1567 ChannelOffset = _3ewa->ReadUint8() / 4;
1568 uint8_t regoptions = _3ewa->ReadUint8();
1569 MSDecode = regoptions & 0x01; // bit 0
1570 SustainDefeat = regoptions & 0x02; // bit 1
1571 _3ewa->ReadInt16(); // unknown
1572 VelocityUpperLimit = _3ewa->ReadInt8();
1573 _3ewa->ReadInt8(); // unknown
1574 _3ewa->ReadInt16(); // unknown
1575 ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1576 _3ewa->ReadInt8(); // unknown
1577 _3ewa->ReadInt8(); // unknown
1578 EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1579 uint8_t vcfcutoff = _3ewa->ReadUint8();
1580 VCFEnabled = vcfcutoff & 0x80; // bit 7
1581 VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1582 VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1583 uint8_t vcfvelscale = _3ewa->ReadUint8();
1584 VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1585 VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1586 _3ewa->ReadInt8(); // unknown
1587 uint8_t vcfresonance = _3ewa->ReadUint8();
1588 VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1589 VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1590 uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1591 VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1592 VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1593 uint8_t vcfvelocity = _3ewa->ReadUint8();
1594 VCFVelocityDynamicRange = vcfvelocity % 5;
1595 VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1596 VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1597 if (VCFType == vcf_type_lowpass) {
1598 if (lfo3ctrl & 0x40) // bit 6
1599 VCFType = vcf_type_lowpassturbo;
1600 }
1601 if (_3ewa->RemainingBytes() >= 8) {
1602 _3ewa->Read(DimensionUpperLimits, 1, 8);
1603 } else {
1604 memset(DimensionUpperLimits, 0, 8);
1605 }
1606 } else { // '3ewa' chunk does not exist yet
1607 // use default values
1608 LFO3Frequency = 1.0;
1609 EG3Attack = 0.0;
1610 LFO1InternalDepth = 0;
1611 LFO3InternalDepth = 0;
1612 LFO1ControlDepth = 0;
1613 LFO3ControlDepth = 0;
1614 EG1Attack = 0.0;
1615 EG1Decay1 = 0.005;
1616 EG1Sustain = 1000;
1617 EG1Release = 0.3;
1618 EG1Controller.type = eg1_ctrl_t::type_none;
1619 EG1Controller.controller_number = 0;
1620 EG1ControllerInvert = false;
1621 EG1ControllerAttackInfluence = 0;
1622 EG1ControllerDecayInfluence = 0;
1623 EG1ControllerReleaseInfluence = 0;
1624 EG2Controller.type = eg2_ctrl_t::type_none;
1625 EG2Controller.controller_number = 0;
1626 EG2ControllerInvert = false;
1627 EG2ControllerAttackInfluence = 0;
1628 EG2ControllerDecayInfluence = 0;
1629 EG2ControllerReleaseInfluence = 0;
1630 LFO1Frequency = 1.0;
1631 EG2Attack = 0.0;
1632 EG2Decay1 = 0.005;
1633 EG2Sustain = 1000;
1634 EG2Release = 60;
1635 LFO2ControlDepth = 0;
1636 LFO2Frequency = 1.0;
1637 LFO2InternalDepth = 0;
1638 EG1Decay2 = 0.0;
1639 EG1InfiniteSustain = true;
1640 EG1PreAttack = 0;
1641 EG2Decay2 = 0.0;
1642 EG2InfiniteSustain = true;
1643 EG2PreAttack = 0;
1644 VelocityResponseCurve = curve_type_nonlinear;
1645 VelocityResponseDepth = 3;
1646 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1647 ReleaseVelocityResponseDepth = 3;
1648 VelocityResponseCurveScaling = 32;
1649 AttenuationControllerThreshold = 0;
1650 SampleStartOffset = 0;
1651 PitchTrack = true;
1652 DimensionBypass = dim_bypass_ctrl_none;
1653 Pan = 0;
1654 SelfMask = true;
1655 LFO3Controller = lfo3_ctrl_modwheel;
1656 LFO3Sync = false;
1657 InvertAttenuationController = false;
1658 AttenuationController.type = attenuation_ctrl_t::type_none;
1659 AttenuationController.controller_number = 0;
1660 LFO2Controller = lfo2_ctrl_internal;
1661 LFO2FlipPhase = false;
1662 LFO2Sync = false;
1663 LFO1Controller = lfo1_ctrl_internal;
1664 LFO1FlipPhase = false;
1665 LFO1Sync = false;
1666 VCFResonanceController = vcf_res_ctrl_none;
1667 EG3Depth = 0;
1668 ChannelOffset = 0;
1669 MSDecode = false;
1670 SustainDefeat = false;
1671 VelocityUpperLimit = 0;
1672 ReleaseTriggerDecay = 0;
1673 EG1Hold = false;
1674 VCFEnabled = false;
1675 VCFCutoff = 0;
1676 VCFCutoffController = vcf_cutoff_ctrl_none;
1677 VCFCutoffControllerInvert = false;
1678 VCFVelocityScale = 0;
1679 VCFResonance = 0;
1680 VCFResonanceDynamic = false;
1681 VCFKeyboardTracking = false;
1682 VCFKeyboardTrackingBreakpoint = 0;
1683 VCFVelocityDynamicRange = 0x04;
1684 VCFVelocityCurve = curve_type_linear;
1685 VCFType = vcf_type_lowpass;
1686 memset(DimensionUpperLimits, 127, 8);
1687 }
1688
1689 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1690 VelocityResponseDepth,
1691 VelocityResponseCurveScaling);
1692
1693 pVelocityReleaseTable = GetReleaseVelocityTable(
1694 ReleaseVelocityResponseCurve,
1695 ReleaseVelocityResponseDepth
1696 );
1697
1698 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1699 VCFVelocityDynamicRange,
1700 VCFVelocityScale,
1701 VCFCutoffController);
1702
1703 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1704 VelocityTable = 0;
1705 }
1706
1707 /*
1708 * Constructs a DimensionRegion by copying all parameters from
1709 * another DimensionRegion
1710 */
1711 DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1712 Instances++;
1713 //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1714 *this = src; // default memberwise shallow copy of all parameters
1715 pParentList = _3ewl; // restore the chunk pointer
1716
1717 // deep copy of owned structures
1718 if (src.VelocityTable) {
1719 VelocityTable = new uint8_t[128];
1720 for (int k = 0 ; k < 128 ; k++)
1721 VelocityTable[k] = src.VelocityTable[k];
1722 }
1723 if (src.pSampleLoops) {
1724 pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1725 for (int k = 0 ; k < src.SampleLoops ; k++)
1726 pSampleLoops[k] = src.pSampleLoops[k];
1727 }
1728 }
1729
1730 /**
1731 * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1732 * and assign it to this object.
1733 *
1734 * Note that all sample pointers referenced by @a orig are simply copied as
1735 * memory address. Thus the respective samples are shared, not duplicated!
1736 *
1737 * @param orig - original DimensionRegion object to be copied from
1738 */
1739 void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1740 CopyAssign(orig, NULL);
1741 }
1742
1743 /**
1744 * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1745 * and assign it to this object.
1746 *
1747 * @param orig - original DimensionRegion object to be copied from
1748 * @param mSamples - crosslink map between the foreign file's samples and
1749 * this file's samples
1750 */
1751 void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1752 // delete all allocated data first
1753 if (VelocityTable) delete [] VelocityTable;
1754 if (pSampleLoops) delete [] pSampleLoops;
1755
1756 // backup parent list pointer
1757 RIFF::List* p = pParentList;
1758
1759 gig::Sample* pOriginalSample = pSample;
1760 gig::Region* pOriginalRegion = pRegion;
1761
1762 //NOTE: copy code copied from assignment constructor above, see comment there as well
1763
1764 *this = *orig; // default memberwise shallow copy of all parameters
1765
1766 // restore members that shall not be altered
1767 pParentList = p; // restore the chunk pointer
1768 pRegion = pOriginalRegion;
1769
1770 // only take the raw sample reference reference if the
1771 // two DimensionRegion objects are part of the same file
1772 if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1773 pSample = pOriginalSample;
1774 }
1775
1776 if (mSamples && mSamples->count(orig->pSample)) {
1777 pSample = mSamples->find(orig->pSample)->second;
1778 }
1779
1780 // deep copy of owned structures
1781 if (orig->VelocityTable) {
1782 VelocityTable = new uint8_t[128];
1783 for (int k = 0 ; k < 128 ; k++)
1784 VelocityTable[k] = orig->VelocityTable[k];
1785 }
1786 if (orig->pSampleLoops) {
1787 pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1788 for (int k = 0 ; k < orig->SampleLoops ; k++)
1789 pSampleLoops[k] = orig->pSampleLoops[k];
1790 }
1791 }
1792
1793 /**
1794 * Updates the respective member variable and updates @c SampleAttenuation
1795 * which depends on this value.
1796 */
1797 void DimensionRegion::SetGain(int32_t gain) {
1798 DLS::Sampler::SetGain(gain);
1799 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1800 }
1801
1802 /**
1803 * Apply dimension region settings to the respective RIFF chunks. You
1804 * have to call File::Save() to make changes persistent.
1805 *
1806 * Usually there is absolutely no need to call this method explicitly.
1807 * It will be called automatically when File::Save() was called.
1808 *
1809 * @param pProgress - callback function for progress notification
1810 */
1811 void DimensionRegion::UpdateChunks(progress_t* pProgress) {
1812 // first update base class's chunk
1813 DLS::Sampler::UpdateChunks(pProgress);
1814
1815 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1816 uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1817 pData[12] = Crossfade.in_start;
1818 pData[13] = Crossfade.in_end;
1819 pData[14] = Crossfade.out_start;
1820 pData[15] = Crossfade.out_end;
1821
1822 // make sure '3ewa' chunk exists
1823 RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1824 if (!_3ewa) {
1825 File* pFile = (File*) GetParent()->GetParent()->GetParent();
1826 bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1827 _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1828 }
1829 pData = (uint8_t*) _3ewa->LoadChunkData();
1830
1831 // update '3ewa' chunk with DimensionRegion's current settings
1832
1833 const uint32_t chunksize = (uint32_t) _3ewa->GetNewSize();
1834 store32(&pData[0], chunksize); // unknown, always chunk size?
1835
1836 const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1837 store32(&pData[4], lfo3freq);
1838
1839 const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1840 store32(&pData[8], eg3attack);
1841
1842 // next 2 bytes unknown
1843
1844 store16(&pData[14], LFO1InternalDepth);
1845
1846 // next 2 bytes unknown
1847
1848 store16(&pData[18], LFO3InternalDepth);
1849
1850 // next 2 bytes unknown
1851
1852 store16(&pData[22], LFO1ControlDepth);
1853
1854 // next 2 bytes unknown
1855
1856 store16(&pData[26], LFO3ControlDepth);
1857
1858 const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1859 store32(&pData[28], eg1attack);
1860
1861 const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1862 store32(&pData[32], eg1decay1);
1863
1864 // next 2 bytes unknown
1865
1866 store16(&pData[38], EG1Sustain);
1867
1868 const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1869 store32(&pData[40], eg1release);
1870
1871 const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1872 pData[44] = eg1ctl;
1873
1874 const uint8_t eg1ctrloptions =
1875 (EG1ControllerInvert ? 0x01 : 0x00) |
1876 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1877 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1878 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1879 pData[45] = eg1ctrloptions;
1880
1881 const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1882 pData[46] = eg2ctl;
1883
1884 const uint8_t eg2ctrloptions =
1885 (EG2ControllerInvert ? 0x01 : 0x00) |
1886 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1887 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1888 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1889 pData[47] = eg2ctrloptions;
1890
1891 const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1892 store32(&pData[48], lfo1freq);
1893
1894 const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1895 store32(&pData[52], eg2attack);
1896
1897 const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1898 store32(&pData[56], eg2decay1);
1899
1900 // next 2 bytes unknown
1901
1902 store16(&pData[62], EG2Sustain);
1903
1904 const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1905 store32(&pData[64], eg2release);
1906
1907 // next 2 bytes unknown
1908
1909 store16(&pData[70], LFO2ControlDepth);
1910
1911 const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1912 store32(&pData[72], lfo2freq);
1913
1914 // next 2 bytes unknown
1915
1916 store16(&pData[78], LFO2InternalDepth);
1917
1918 const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1919 store32(&pData[80], eg1decay2);
1920
1921 // next 2 bytes unknown
1922
1923 store16(&pData[86], EG1PreAttack);
1924
1925 const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1926 store32(&pData[88], eg2decay2);
1927
1928 // next 2 bytes unknown
1929
1930 store16(&pData[94], EG2PreAttack);
1931
1932 {
1933 if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1934 uint8_t velocityresponse = VelocityResponseDepth;
1935 switch (VelocityResponseCurve) {
1936 case curve_type_nonlinear:
1937 break;
1938 case curve_type_linear:
1939 velocityresponse += 5;
1940 break;
1941 case curve_type_special:
1942 velocityresponse += 10;
1943 break;
1944 case curve_type_unknown:
1945 default:
1946 throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1947 }
1948 pData[96] = velocityresponse;
1949 }
1950
1951 {
1952 if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1953 uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1954 switch (ReleaseVelocityResponseCurve) {
1955 case curve_type_nonlinear:
1956 break;
1957 case curve_type_linear:
1958 releasevelocityresponse += 5;
1959 break;
1960 case curve_type_special:
1961 releasevelocityresponse += 10;
1962 break;
1963 case curve_type_unknown:
1964 default:
1965 throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1966 }
1967 pData[97] = releasevelocityresponse;
1968 }
1969
1970 pData[98] = VelocityResponseCurveScaling;
1971
1972 pData[99] = AttenuationControllerThreshold;
1973
1974 // next 4 bytes unknown
1975
1976 store16(&pData[104], SampleStartOffset);
1977
1978 // next 2 bytes unknown
1979
1980 {
1981 uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1982 switch (DimensionBypass) {
1983 case dim_bypass_ctrl_94:
1984 pitchTrackDimensionBypass |= 0x10;
1985 break;
1986 case dim_bypass_ctrl_95:
1987 pitchTrackDimensionBypass |= 0x20;
1988 break;
1989 case dim_bypass_ctrl_none:
1990 //FIXME: should we set anything here?
1991 break;
1992 default:
1993 throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1994 }
1995 pData[108] = pitchTrackDimensionBypass;
1996 }
1997
1998 const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1999 pData[109] = pan;
2000
2001 const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
2002 pData[110] = selfmask;
2003
2004 // next byte unknown
2005
2006 {
2007 uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
2008 if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
2009 if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
2010 if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
2011 pData[112] = lfo3ctrl;
2012 }
2013
2014 const uint8_t attenctl = EncodeLeverageController(AttenuationController);
2015 pData[113] = attenctl;
2016
2017 {
2018 uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
2019 if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
2020 if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
2021 if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
2022 pData[114] = lfo2ctrl;
2023 }
2024
2025 {
2026 uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
2027 if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
2028 if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
2029 if (VCFResonanceController != vcf_res_ctrl_none)
2030 lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
2031 pData[115] = lfo1ctrl;
2032 }
2033
2034 const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
2035 : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
2036 store16(&pData[116], eg3depth);
2037
2038 // next 2 bytes unknown
2039
2040 const uint8_t channeloffset = ChannelOffset * 4;
2041 pData[120] = channeloffset;
2042
2043 {
2044 uint8_t regoptions = 0;
2045 if (MSDecode) regoptions |= 0x01; // bit 0
2046 if (SustainDefeat) regoptions |= 0x02; // bit 1
2047 pData[121] = regoptions;
2048 }
2049
2050 // next 2 bytes unknown
2051
2052 pData[124] = VelocityUpperLimit;
2053
2054 // next 3 bytes unknown
2055
2056 pData[128] = ReleaseTriggerDecay;
2057
2058 // next 2 bytes unknown
2059
2060 const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2061 pData[131] = eg1hold;
2062
2063 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
2064 (VCFCutoff & 0x7f); /* lower 7 bits */
2065 pData[132] = vcfcutoff;
2066
2067 pData[133] = VCFCutoffController;
2068
2069 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2070 (VCFVelocityScale & 0x7f); /* lower 7 bits */
2071 pData[134] = vcfvelscale;
2072
2073 // next byte unknown
2074
2075 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2076 (VCFResonance & 0x7f); /* lower 7 bits */
2077 pData[136] = vcfresonance;
2078
2079 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2080 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2081 pData[137] = vcfbreakpoint;
2082
2083 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2084 VCFVelocityCurve * 5;
2085 pData[138] = vcfvelocity;
2086
2087 const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2088 pData[139] = vcftype;
2089
2090 if (chunksize >= 148) {
2091 memcpy(&pData[140], DimensionUpperLimits, 8);
2092 }
2093 }
2094
2095 double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2096 curve_type_t curveType = releaseVelocityResponseCurve;
2097 uint8_t depth = releaseVelocityResponseDepth;
2098 // this models a strange behaviour or bug in GSt: two of the
2099 // velocity response curves for release time are not used even
2100 // if specified, instead another curve is chosen.
2101 if ((curveType == curve_type_nonlinear && depth == 0) ||
2102 (curveType == curve_type_special && depth == 4)) {
2103 curveType = curve_type_nonlinear;
2104 depth = 3;
2105 }
2106 return GetVelocityTable(curveType, depth, 0);
2107 }
2108
2109 double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2110 uint8_t vcfVelocityDynamicRange,
2111 uint8_t vcfVelocityScale,
2112 vcf_cutoff_ctrl_t vcfCutoffController)
2113 {
2114 curve_type_t curveType = vcfVelocityCurve;
2115 uint8_t depth = vcfVelocityDynamicRange;
2116 // even stranger GSt: two of the velocity response curves for
2117 // filter cutoff are not used, instead another special curve
2118 // is chosen. This curve is not used anywhere else.
2119 if ((curveType == curve_type_nonlinear && depth == 0) ||
2120 (curveType == curve_type_special && depth == 4)) {
2121 curveType = curve_type_special;
2122 depth = 5;
2123 }
2124 return GetVelocityTable(curveType, depth,
2125 (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2126 ? vcfVelocityScale : 0);
2127 }
2128
2129 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2130 double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2131 {
2132 double* table;
2133 uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2134 if (pVelocityTables->count(tableKey)) { // if key exists
2135 table = (*pVelocityTables)[tableKey];
2136 }
2137 else {
2138 table = CreateVelocityTable(curveType, depth, scaling);
2139 (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
2140 }
2141 return table;
2142 }
2143
2144 Region* DimensionRegion::GetParent() const {
2145 return pRegion;
2146 }
2147
2148 // show error if some _lev_ctrl_* enum entry is not listed in the following function
2149 // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2150 // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2151 //#pragma GCC diagnostic push
2152 //#pragma GCC diagnostic error "-Wswitch"
2153
2154 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2155 leverage_ctrl_t decodedcontroller;
2156 switch (EncodedController) {
2157 // special controller
2158 case _lev_ctrl_none:
2159 decodedcontroller.type = leverage_ctrl_t::type_none;
2160 decodedcontroller.controller_number = 0;
2161 break;
2162 case _lev_ctrl_velocity:
2163 decodedcontroller.type = leverage_ctrl_t::type_velocity;
2164 decodedcontroller.controller_number = 0;
2165 break;
2166 case _lev_ctrl_channelaftertouch:
2167 decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
2168 decodedcontroller.controller_number = 0;
2169 break;
2170
2171 // ordinary MIDI control change controller
2172 case _lev_ctrl_modwheel:
2173 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2174 decodedcontroller.controller_number = 1;
2175 break;
2176 case _lev_ctrl_breath:
2177 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2178 decodedcontroller.controller_number = 2;
2179 break;
2180 case _lev_ctrl_foot:
2181 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2182 decodedcontroller.controller_number = 4;
2183 break;
2184 case _lev_ctrl_effect1:
2185 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2186 decodedcontroller.controller_number = 12;
2187 break;
2188 case _lev_ctrl_effect2:
2189 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2190 decodedcontroller.controller_number = 13;
2191 break;
2192 case _lev_ctrl_genpurpose1:
2193 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2194 decodedcontroller.controller_number = 16;
2195 break;
2196 case _lev_ctrl_genpurpose2:
2197 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2198 decodedcontroller.controller_number = 17;
2199 break;
2200 case _lev_ctrl_genpurpose3:
2201 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2202 decodedcontroller.controller_number = 18;
2203 break;
2204 case _lev_ctrl_genpurpose4:
2205 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2206 decodedcontroller.controller_number = 19;
2207 break;
2208 case _lev_ctrl_portamentotime:
2209 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2210 decodedcontroller.controller_number = 5;
2211 break;
2212 case _lev_ctrl_sustainpedal:
2213 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2214 decodedcontroller.controller_number = 64;
2215 break;
2216 case _lev_ctrl_portamento:
2217 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2218 decodedcontroller.controller_number = 65;
2219 break;
2220 case _lev_ctrl_sostenutopedal:
2221 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2222 decodedcontroller.controller_number = 66;
2223 break;
2224 case _lev_ctrl_softpedal:
2225 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2226 decodedcontroller.controller_number = 67;
2227 break;
2228 case _lev_ctrl_genpurpose5:
2229 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2230 decodedcontroller.controller_number = 80;
2231 break;
2232 case _lev_ctrl_genpurpose6:
2233 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2234 decodedcontroller.controller_number = 81;
2235 break;
2236 case _lev_ctrl_genpurpose7:
2237 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2238 decodedcontroller.controller_number = 82;
2239 break;
2240 case _lev_ctrl_genpurpose8:
2241 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2242 decodedcontroller.controller_number = 83;
2243 break;
2244 case _lev_ctrl_effect1depth:
2245 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2246 decodedcontroller.controller_number = 91;
2247 break;
2248 case _lev_ctrl_effect2depth:
2249 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2250 decodedcontroller.controller_number = 92;
2251 break;
2252 case _lev_ctrl_effect3depth:
2253 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2254 decodedcontroller.controller_number = 93;
2255 break;
2256 case _lev_ctrl_effect4depth:
2257 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2258 decodedcontroller.controller_number = 94;
2259 break;
2260 case _lev_ctrl_effect5depth:
2261 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2262 decodedcontroller.controller_number = 95;
2263 break;
2264
2265 // format extension (these controllers are so far only supported by
2266 // LinuxSampler & gigedit) they will *NOT* work with
2267 // Gigasampler/GigaStudio !
2268 case _lev_ctrl_CC3_EXT:
2269 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2270 decodedcontroller.controller_number = 3;
2271 break;
2272 case _lev_ctrl_CC6_EXT:
2273 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2274 decodedcontroller.controller_number = 6;
2275 break;
2276 case _lev_ctrl_CC7_EXT:
2277 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2278 decodedcontroller.controller_number = 7;
2279 break;
2280 case _lev_ctrl_CC8_EXT:
2281 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2282 decodedcontroller.controller_number = 8;
2283 break;
2284 case _lev_ctrl_CC9_EXT:
2285 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2286 decodedcontroller.controller_number = 9;
2287 break;
2288 case _lev_ctrl_CC10_EXT:
2289 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2290 decodedcontroller.controller_number = 10;
2291 break;
2292 case _lev_ctrl_CC11_EXT:
2293 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2294 decodedcontroller.controller_number = 11;
2295 break;
2296 case _lev_ctrl_CC14_EXT:
2297 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2298 decodedcontroller.controller_number = 14;
2299 break;
2300 case _lev_ctrl_CC15_EXT:
2301 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2302 decodedcontroller.controller_number = 15;
2303 break;
2304 case _lev_ctrl_CC20_EXT:
2305 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2306 decodedcontroller.controller_number = 20;
2307 break;
2308 case _lev_ctrl_CC21_EXT:
2309 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2310 decodedcontroller.controller_number = 21;
2311 break;
2312 case _lev_ctrl_CC22_EXT:
2313 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2314 decodedcontroller.controller_number = 22;
2315 break;
2316 case _lev_ctrl_CC23_EXT:
2317 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2318 decodedcontroller.controller_number = 23;
2319 break;
2320 case _lev_ctrl_CC24_EXT:
2321 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2322 decodedcontroller.controller_number = 24;
2323 break;
2324 case _lev_ctrl_CC25_EXT:
2325 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2326 decodedcontroller.controller_number = 25;
2327 break;
2328 case _lev_ctrl_CC26_EXT:
2329 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2330 decodedcontroller.controller_number = 26;
2331 break;
2332 case _lev_ctrl_CC27_EXT:
2333 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2334 decodedcontroller.controller_number = 27;
2335 break;
2336 case _lev_ctrl_CC28_EXT:
2337 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2338 decodedcontroller.controller_number = 28;
2339 break;
2340 case _lev_ctrl_CC29_EXT:
2341 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2342 decodedcontroller.controller_number = 29;
2343 break;
2344 case _lev_ctrl_CC30_EXT:
2345 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2346 decodedcontroller.controller_number = 30;
2347 break;
2348 case _lev_ctrl_CC31_EXT:
2349 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2350 decodedcontroller.controller_number = 31;
2351 break;
2352 case _lev_ctrl_CC68_EXT:
2353 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2354 decodedcontroller.controller_number = 68;
2355 break;
2356 case _lev_ctrl_CC69_EXT:
2357 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2358 decodedcontroller.controller_number = 69;
2359 break;
2360 case _lev_ctrl_CC70_EXT:
2361 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2362 decodedcontroller.controller_number = 70;
2363 break;
2364 case _lev_ctrl_CC71_EXT:
2365 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2366 decodedcontroller.controller_number = 71;
2367 break;
2368 case _lev_ctrl_CC72_EXT:
2369 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2370 decodedcontroller.controller_number = 72;
2371 break;
2372 case _lev_ctrl_CC73_EXT:
2373 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2374 decodedcontroller.controller_number = 73;
2375 break;
2376 case _lev_ctrl_CC74_EXT:
2377 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2378 decodedcontroller.controller_number = 74;
2379 break;
2380 case _lev_ctrl_CC75_EXT:
2381 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2382 decodedcontroller.controller_number = 75;
2383 break;
2384 case _lev_ctrl_CC76_EXT:
2385 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2386 decodedcontroller.controller_number = 76;
2387 break;
2388 case _lev_ctrl_CC77_EXT:
2389 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2390 decodedcontroller.controller_number = 77;
2391 break;
2392 case _lev_ctrl_CC78_EXT:
2393 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2394 decodedcontroller.controller_number = 78;
2395 break;
2396 case _lev_ctrl_CC79_EXT:
2397 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2398 decodedcontroller.controller_number = 79;
2399 break;
2400 case _lev_ctrl_CC84_EXT:
2401 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2402 decodedcontroller.controller_number = 84;
2403 break;
2404 case _lev_ctrl_CC85_EXT:
2405 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2406 decodedcontroller.controller_number = 85;
2407 break;
2408 case _lev_ctrl_CC86_EXT:
2409 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2410 decodedcontroller.controller_number = 86;
2411 break;
2412 case _lev_ctrl_CC87_EXT:
2413 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2414 decodedcontroller.controller_number = 87;
2415 break;
2416 case _lev_ctrl_CC89_EXT:
2417 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2418 decodedcontroller.controller_number = 89;
2419 break;
2420 case _lev_ctrl_CC90_EXT:
2421 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2422 decodedcontroller.controller_number = 90;
2423 break;
2424 case _lev_ctrl_CC96_EXT:
2425 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2426 decodedcontroller.controller_number = 96;
2427 break;
2428 case _lev_ctrl_CC97_EXT:
2429 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2430 decodedcontroller.controller_number = 97;
2431 break;
2432 case _lev_ctrl_CC102_EXT:
2433 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2434 decodedcontroller.controller_number = 102;
2435 break;
2436 case _lev_ctrl_CC103_EXT:
2437 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2438 decodedcontroller.controller_number = 103;
2439 break;
2440 case _lev_ctrl_CC104_EXT:
2441 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2442 decodedcontroller.controller_number = 104;
2443 break;
2444 case _lev_ctrl_CC105_EXT:
2445 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2446 decodedcontroller.controller_number = 105;
2447 break;
2448 case _lev_ctrl_CC106_EXT:
2449 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2450 decodedcontroller.controller_number = 106;
2451 break;
2452 case _lev_ctrl_CC107_EXT:
2453 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2454 decodedcontroller.controller_number = 107;
2455 break;
2456 case _lev_ctrl_CC108_EXT:
2457 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2458 decodedcontroller.controller_number = 108;
2459 break;
2460 case _lev_ctrl_CC109_EXT:
2461 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2462 decodedcontroller.controller_number = 109;
2463 break;
2464 case _lev_ctrl_CC110_EXT:
2465 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2466 decodedcontroller.controller_number = 110;
2467 break;
2468 case _lev_ctrl_CC111_EXT:
2469 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2470 decodedcontroller.controller_number = 111;
2471 break;
2472 case _lev_ctrl_CC112_EXT:
2473 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2474 decodedcontroller.controller_number = 112;
2475 break;
2476 case _lev_ctrl_CC113_EXT:
2477 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2478 decodedcontroller.controller_number = 113;
2479 break;
2480 case _lev_ctrl_CC114_EXT:
2481 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2482 decodedcontroller.controller_number = 114;
2483 break;
2484 case _lev_ctrl_CC115_EXT:
2485 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2486 decodedcontroller.controller_number = 115;
2487 break;
2488 case _lev_ctrl_CC116_EXT:
2489 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2490 decodedcontroller.controller_number = 116;
2491 break;
2492 case _lev_ctrl_CC117_EXT:
2493 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2494 decodedcontroller.controller_number = 117;
2495 break;
2496 case _lev_ctrl_CC118_EXT:
2497 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2498 decodedcontroller.controller_number = 118;
2499 break;
2500 case _lev_ctrl_CC119_EXT:
2501 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2502 decodedcontroller.controller_number = 119;
2503 break;
2504
2505 // unknown controller type
2506 default:
2507 throw gig::Exception("Unknown leverage controller type.");
2508 }
2509 return decodedcontroller;
2510 }
2511
2512 // see above (diagnostic push not supported prior GCC 4.6)
2513 //#pragma GCC diagnostic pop
2514
2515 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2516 _lev_ctrl_t encodedcontroller;
2517 switch (DecodedController.type) {
2518 // special controller
2519 case leverage_ctrl_t::type_none:
2520 encodedcontroller = _lev_ctrl_none;
2521 break;
2522 case leverage_ctrl_t::type_velocity:
2523 encodedcontroller = _lev_ctrl_velocity;
2524 break;
2525 case leverage_ctrl_t::type_channelaftertouch:
2526 encodedcontroller = _lev_ctrl_channelaftertouch;
2527 break;
2528
2529 // ordinary MIDI control change controller
2530 case leverage_ctrl_t::type_controlchange:
2531 switch (DecodedController.controller_number) {
2532 case 1:
2533 encodedcontroller = _lev_ctrl_modwheel;
2534 break;
2535 case 2:
2536 encodedcontroller = _lev_ctrl_breath;
2537 break;
2538 case 4:
2539 encodedcontroller = _lev_ctrl_foot;
2540 break;
2541 case 12:
2542 encodedcontroller = _lev_ctrl_effect1;
2543 break;
2544 case 13:
2545 encodedcontroller = _lev_ctrl_effect2;
2546 break;
2547 case 16:
2548 encodedcontroller = _lev_ctrl_genpurpose1;
2549 break;
2550 case 17:
2551 encodedcontroller = _lev_ctrl_genpurpose2;
2552 break;
2553 case 18:
2554 encodedcontroller = _lev_ctrl_genpurpose3;
2555 break;
2556 case 19:
2557 encodedcontroller = _lev_ctrl_genpurpose4;
2558 break;
2559 case 5:
2560 encodedcontroller = _lev_ctrl_portamentotime;
2561 break;
2562 case 64:
2563 encodedcontroller = _lev_ctrl_sustainpedal;
2564 break;
2565 case 65:
2566 encodedcontroller = _lev_ctrl_portamento;
2567 break;
2568 case 66:
2569 encodedcontroller = _lev_ctrl_sostenutopedal;
2570 break;
2571 case 67:
2572 encodedcontroller = _lev_ctrl_softpedal;
2573 break;
2574 case 80:
2575 encodedcontroller = _lev_ctrl_genpurpose5;
2576 break;
2577 case 81:
2578 encodedcontroller = _lev_ctrl_genpurpose6;
2579 break;
2580 case 82:
2581 encodedcontroller = _lev_ctrl_genpurpose7;
2582 break;
2583 case 83:
2584 encodedcontroller = _lev_ctrl_genpurpose8;
2585 break;
2586 case 91:
2587 encodedcontroller = _lev_ctrl_effect1depth;
2588 break;
2589 case 92:
2590 encodedcontroller = _lev_ctrl_effect2depth;
2591 break;
2592 case 93:
2593 encodedcontroller = _lev_ctrl_effect3depth;
2594 break;
2595 case 94:
2596 encodedcontroller = _lev_ctrl_effect4depth;
2597 break;
2598 case 95:
2599 encodedcontroller = _lev_ctrl_effect5depth;
2600 break;
2601
2602 // format extension (these controllers are so far only
2603 // supported by LinuxSampler & gigedit) they will *NOT*
2604 // work with Gigasampler/GigaStudio !
2605 case 3:
2606 encodedcontroller = _lev_ctrl_CC3_EXT;
2607 break;
2608 case 6:
2609 encodedcontroller = _lev_ctrl_CC6_EXT;
2610 break;
2611 case 7:
2612 encodedcontroller = _lev_ctrl_CC7_EXT;
2613 break;
2614 case 8:
2615 encodedcontroller = _lev_ctrl_CC8_EXT;
2616 break;
2617 case 9:
2618 encodedcontroller = _lev_ctrl_CC9_EXT;
2619 break;
2620 case 10:
2621 encodedcontroller = _lev_ctrl_CC10_EXT;
2622 break;
2623 case 11:
2624 encodedcontroller = _lev_ctrl_CC11_EXT;
2625 break;
2626 case 14:
2627 encodedcontroller = _lev_ctrl_CC14_EXT;
2628 break;
2629 case 15:
2630 encodedcontroller = _lev_ctrl_CC15_EXT;
2631 break;
2632 case 20:
2633 encodedcontroller = _lev_ctrl_CC20_EXT;
2634 break;
2635 case 21:
2636 encodedcontroller = _lev_ctrl_CC21_EXT;
2637 break;
2638 case 22:
2639 encodedcontroller = _lev_ctrl_CC22_EXT;
2640 break;
2641 case 23:
2642 encodedcontroller = _lev_ctrl_CC23_EXT;
2643 break;
2644 case 24:
2645 encodedcontroller = _lev_ctrl_CC24_EXT;
2646 break;
2647 case 25:
2648 encodedcontroller = _lev_ctrl_CC25_EXT;
2649 break;
2650 case 26:
2651 encodedcontroller = _lev_ctrl_CC26_EXT;
2652 break;
2653 case 27:
2654 encodedcontroller = _lev_ctrl_CC27_EXT;
2655 break;
2656 case 28:
2657 encodedcontroller = _lev_ctrl_CC28_EXT;
2658 break;
2659 case 29:
2660 encodedcontroller = _lev_ctrl_CC29_EXT;
2661 break;
2662 case 30:
2663 encodedcontroller = _lev_ctrl_CC30_EXT;
2664 break;
2665 case 31:
2666 encodedcontroller = _lev_ctrl_CC31_EXT;
2667 break;
2668 case 68:
2669 encodedcontroller = _lev_ctrl_CC68_EXT;
2670 break;
2671 case 69:
2672 encodedcontroller = _lev_ctrl_CC69_EXT;
2673 break;
2674 case 70:
2675 encodedcontroller = _lev_ctrl_CC70_EXT;
2676 break;
2677 case 71:
2678 encodedcontroller = _lev_ctrl_CC71_EXT;
2679 break;
2680 case 72:
2681 encodedcontroller = _lev_ctrl_CC72_EXT;
2682 break;
2683 case 73:
2684 encodedcontroller = _lev_ctrl_CC73_EXT;
2685 break;
2686 case 74:
2687 encodedcontroller = _lev_ctrl_CC74_EXT;
2688 break;
2689 case 75:
2690 encodedcontroller = _lev_ctrl_CC75_EXT;
2691 break;
2692 case 76:
2693 encodedcontroller = _lev_ctrl_CC76_EXT;
2694 break;
2695 case 77:
2696 encodedcontroller = _lev_ctrl_CC77_EXT;
2697 break;
2698 case 78:
2699 encodedcontroller = _lev_ctrl_CC78_EXT;
2700 break;
2701 case 79:
2702 encodedcontroller = _lev_ctrl_CC79_EXT;
2703 break;
2704 case 84:
2705 encodedcontroller = _lev_ctrl_CC84_EXT;
2706 break;
2707 case 85:
2708 encodedcontroller = _lev_ctrl_CC85_EXT;
2709 break;
2710 case 86:
2711 encodedcontroller = _lev_ctrl_CC86_EXT;
2712 break;
2713 case 87:
2714 encodedcontroller = _lev_ctrl_CC87_EXT;
2715 break;
2716 case 89:
2717 encodedcontroller = _lev_ctrl_CC89_EXT;
2718 break;
2719 case 90:
2720 encodedcontroller = _lev_ctrl_CC90_EXT;
2721 break;
2722 case 96:
2723 encodedcontroller = _lev_ctrl_CC96_EXT;
2724 break;
2725 case 97:
2726 encodedcontroller = _lev_ctrl_CC97_EXT;
2727 break;
2728 case 102:
2729 encodedcontroller = _lev_ctrl_CC102_EXT;
2730 break;
2731 case 103:
2732 encodedcontroller = _lev_ctrl_CC103_EXT;
2733 break;
2734 case 104:
2735 encodedcontroller = _lev_ctrl_CC104_EXT;
2736 break;
2737 case 105:
2738 encodedcontroller = _lev_ctrl_CC105_EXT;
2739 break;
2740 case 106:
2741 encodedcontroller = _lev_ctrl_CC106_EXT;
2742 break;
2743 case 107:
2744 encodedcontroller = _lev_ctrl_CC107_EXT;
2745 break;
2746 case 108:
2747 encodedcontroller = _lev_ctrl_CC108_EXT;
2748 break;
2749 case 109:
2750 encodedcontroller = _lev_ctrl_CC109_EXT;
2751 break;
2752 case 110:
2753 encodedcontroller = _lev_ctrl_CC110_EXT;
2754 break;
2755 case 111:
2756 encodedcontroller = _lev_ctrl_CC111_EXT;
2757 break;
2758 case 112:
2759 encodedcontroller = _lev_ctrl_CC112_EXT;
2760 break;
2761 case 113:
2762 encodedcontroller = _lev_ctrl_CC113_EXT;
2763 break;
2764 case 114:
2765 encodedcontroller = _lev_ctrl_CC114_EXT;
2766 break;
2767 case 115:
2768 encodedcontroller = _lev_ctrl_CC115_EXT;
2769 break;
2770 case 116:
2771 encodedcontroller = _lev_ctrl_CC116_EXT;
2772 break;
2773 case 117:
2774 encodedcontroller = _lev_ctrl_CC117_EXT;
2775 break;
2776 case 118:
2777 encodedcontroller = _lev_ctrl_CC118_EXT;
2778 break;
2779 case 119:
2780 encodedcontroller = _lev_ctrl_CC119_EXT;
2781 break;
2782
2783 default:
2784 throw gig::Exception("leverage controller number is not supported by the gig format");
2785 }
2786 break;
2787 default:
2788 throw gig::Exception("Unknown leverage controller type.");
2789 }
2790 return encodedcontroller;
2791 }
2792
2793 DimensionRegion::~DimensionRegion() {
2794 Instances--;
2795 if (!Instances) {
2796 // delete the velocity->volume tables
2797 VelocityTableMap::iterator iter;
2798 for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
2799 double* pTable = iter->second;
2800 if (pTable) delete[] pTable;
2801 }
2802 pVelocityTables->clear();
2803 delete pVelocityTables;
2804 pVelocityTables = NULL;
2805 }
2806 if (VelocityTable) delete[] VelocityTable;
2807 }
2808
2809 /**
2810 * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
2811 * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
2812 * and VelocityResponseCurveScaling) involved are taken into account to
2813 * calculate the amplitude factor. Use this method when a key was
2814 * triggered to get the volume with which the sample should be played
2815 * back.
2816 *
2817 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
2818 * @returns amplitude factor (between 0.0 and 1.0)
2819 */
2820 double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2821 return pVelocityAttenuationTable[MIDIKeyVelocity];
2822 }
2823
2824 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2825 return pVelocityReleaseTable[MIDIKeyVelocity];
2826 }
2827
2828 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2829 return pVelocityCutoffTable[MIDIKeyVelocity];
2830 }
2831
2832 /**
2833 * Updates the respective member variable and the lookup table / cache
2834 * that depends on this value.
2835 */
2836 void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
2837 pVelocityAttenuationTable =
2838 GetVelocityTable(
2839 curve, VelocityResponseDepth, VelocityResponseCurveScaling
2840 );
2841 VelocityResponseCurve = curve;
2842 }
2843
2844 /**
2845 * Updates the respective member variable and the lookup table / cache
2846 * that depends on this value.
2847 */
2848 void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
2849 pVelocityAttenuationTable =
2850 GetVelocityTable(
2851 VelocityResponseCurve, depth, VelocityResponseCurveScaling
2852 );
2853 VelocityResponseDepth = depth;
2854 }
2855
2856 /**
2857 * Updates the respective member variable and the lookup table / cache
2858 * that depends on this value.
2859 */
2860 void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
2861 pVelocityAttenuationTable =
2862 GetVelocityTable(
2863 VelocityResponseCurve, VelocityResponseDepth, scaling
2864 );
2865 VelocityResponseCurveScaling = scaling;
2866 }
2867
2868 /**
2869 * Updates the respective member variable and the lookup table / cache
2870 * that depends on this value.
2871 */
2872 void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
2873 pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
2874 ReleaseVelocityResponseCurve = curve;
2875 }
2876
2877 /**
2878 * Updates the respective member variable and the lookup table / cache
2879 * that depends on this value.
2880 */
2881 void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
2882 pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
2883 ReleaseVelocityResponseDepth = depth;
2884 }
2885
2886 /**
2887 * Updates the respective member variable and the lookup table / cache
2888 * that depends on this value.
2889 */
2890 void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
2891 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
2892 VCFCutoffController = controller;
2893 }
2894
2895 /**
2896 * Updates the respective member variable and the lookup table / cache
2897 * that depends on this value.
2898 */
2899 void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
2900 pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
2901 VCFVelocityCurve = curve;
2902 }
2903
2904 /**
2905 * Updates the respective member variable and the lookup table / cache
2906 * that depends on this value.
2907 */
2908 void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
2909 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
2910 VCFVelocityDynamicRange = range;
2911 }
2912
2913 /**
2914 * Updates the respective member variable and the lookup table / cache
2915 * that depends on this value.
2916 */
2917 void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
2918 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
2919 VCFVelocityScale = scaling;
2920 }
2921
2922 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2923
2924 // line-segment approximations of the 15 velocity curves
2925
2926 // linear
2927 const int lin0[] = { 1, 1, 127, 127 };
2928 const int lin1[] = { 1, 21, 127, 127 };
2929 const int lin2[] = { 1, 45, 127, 127 };
2930 const int lin3[] = { 1, 74, 127, 127 };
2931 const int lin4[] = { 1, 127, 127, 127 };
2932
2933 // non-linear
2934 const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2935 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2936 127, 127 };
2937 const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2938 127, 127 };
2939 const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2940 127, 127 };
2941 const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2942
2943 // special
2944 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2945 113, 127, 127, 127 };
2946 const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2947 118, 127, 127, 127 };
2948 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2949 85, 90, 91, 127, 127, 127 };
2950 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2951 117, 127, 127, 127 };
2952 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2953 127, 127 };
2954
2955 // this is only used by the VCF velocity curve
2956 const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2957 91, 127, 127, 127 };
2958
2959 const int* const curves[] = { non0, non1, non2, non3, non4,
2960 lin0, lin1, lin2, lin3, lin4,
2961 spe0, spe1, spe2, spe3, spe4, spe5 };
2962
2963 double* const table = new double[128];
2964
2965 const int* curve = curves[curveType * 5 + depth];
2966 const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2967
2968 table[0] = 0;
2969 for (int x = 1 ; x < 128 ; x++) {
2970
2971 if (x > curve[2]) curve += 2;
2972 double y = curve[1] + (x - curve[0]) *
2973 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2974 y = y / 127;
2975
2976 // Scale up for s > 20, down for s < 20. When
2977 // down-scaling, the curve still ends at 1.0.
2978 if (s < 20 && y >= 0.5)
2979 y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2980 else
2981 y = y * (s / 20.0);
2982 if (y > 1) y = 1;
2983
2984 table[x] = y;
2985 }
2986 return table;
2987 }
2988
2989
2990 // *************** Region ***************
2991 // *
2992
2993 Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2994 // Initialization
2995 Dimensions = 0;
2996 for (int i = 0; i < 256; i++) {
2997 pDimensionRegions[i] = NULL;
2998 }
2999 Layers = 1;
3000 File* file = (File*) GetParent()->GetParent();
3001 int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
3002
3003 // Actual Loading
3004
3005 if (!file->GetAutoLoad()) return;
3006
3007 LoadDimensionRegions(rgnList);
3008
3009 RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
3010 if (_3lnk) {
3011 DimensionRegions = _3lnk->ReadUint32();
3012 for (int i = 0; i < dimensionBits; i++) {
3013 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
3014 uint8_t bits = _3lnk->ReadUint8();
3015 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
3016 _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
3017 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
3018 if (dimension == dimension_none) { // inactive dimension
3019 pDimensionDefinitions[i].dimension = dimension_none;
3020 pDimensionDefinitions[i].bits = 0;
3021 pDimensionDefinitions[i].zones = 0;
3022 pDimensionDefinitions[i].split_type = split_type_bit;
3023 pDimensionDefinitions[i].zone_size = 0;
3024 }
3025 else { // active dimension
3026 pDimensionDefinitions[i].dimension = dimension;
3027 pDimensionDefinitions[i].bits = bits;
3028 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
3029 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
3030 pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
3031 Dimensions++;
3032
3033 // if this is a layer dimension, remember the amount of layers
3034 if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
3035 }
3036 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
3037 }
3038 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
3039
3040 // if there's a velocity dimension and custom velocity zone splits are used,
3041 // update the VelocityTables in the dimension regions
3042 UpdateVelocityTable();
3043
3044 // jump to start of the wave pool indices (if not already there)
3045 if (file->pVersion && file->pVersion->major == 3)
3046 _3lnk->SetPos(68); // version 3 has a different 3lnk structure
3047 else
3048 _3lnk->SetPos(44);
3049
3050 // load sample references (if auto loading is enabled)
3051 if (file->GetAutoLoad()) {
3052 for (uint i = 0; i < DimensionRegions; i++) {
3053 uint32_t wavepoolindex = _3lnk->ReadUint32();
3054 if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
3055 }
3056 GetSample(); // load global region sample reference
3057 }
3058 } else {
3059 DimensionRegions = 0;
3060 for (int i = 0 ; i < 8 ; i++) {
3061 pDimensionDefinitions[i].dimension = dimension_none;
3062 pDimensionDefinitions[i].bits = 0;
3063 pDimensionDefinitions[i].zones = 0;
3064 }
3065 }
3066
3067 // make sure there is at least one dimension region
3068 if (!DimensionRegions) {
3069 RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
3070 if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
3071 RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
3072 pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
3073 DimensionRegions = 1;
3074 }
3075 }
3076
3077 /**
3078 * Apply Region settings and all its DimensionRegions to the respective
3079 * RIFF chunks. You have to call File::Save() to make changes persistent.
3080 *
3081 * Usually there is absolutely no need to call this method explicitly.
3082 * It will be called automatically when File::Save() was called.
3083 *
3084 * @param pProgress - callback function for progress notification
3085 * @throws gig::Exception if samples cannot be dereferenced
3086 */
3087 void Region::UpdateChunks(progress_t* pProgress) {
3088 // in the gig format we don't care about the Region's sample reference
3089 // but we still have to provide some existing one to not corrupt the
3090 // file, so to avoid the latter we simply always assign the sample of
3091 // the first dimension region of this region
3092 pSample = pDimensionRegions[0]->pSample;
3093
3094 // first update base class's chunks
3095 DLS::Region::UpdateChunks(pProgress);
3096
3097 // update dimension region's chunks
3098 for (int i = 0; i < DimensionRegions; i++) {
3099 pDimensionRegions[i]->UpdateChunks(pProgress);
3100 }
3101
3102 File* pFile = (File*) GetParent()->GetParent();
3103 bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
3104 const int iMaxDimensions = version3 ? 8 : 5;
3105 const int iMaxDimensionRegions = version3 ? 256 : 32;
3106
3107 // make sure '3lnk' chunk exists
3108 RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3109 if (!_3lnk) {
3110 const int _3lnkChunkSize = version3 ? 1092 : 172;
3111 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3112 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3113
3114 // move 3prg to last position
3115 pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), (RIFF::Chunk*)NULL);
3116 }
3117
3118 // update dimension definitions in '3lnk' chunk
3119 uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3120 store32(&pData[0], DimensionRegions);
3121 int shift = 0;
3122 for (int i = 0; i < iMaxDimensions; i++) {
3123 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3124 pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3125 pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3126 pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3127 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3128 // next 3 bytes unknown, always zero?
3129
3130 shift += pDimensionDefinitions[i].bits;
3131 }
3132
3133 // update wave pool table in '3lnk' chunk
3134 const int iWavePoolOffset = version3 ? 68 : 44;
3135 for (uint i = 0; i < iMaxDimensionRegions; i++) {
3136 int iWaveIndex = -1;
3137 if (i < DimensionRegions) {
3138 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
3139 File::SampleList::iterator iter = pFile->pSamples->begin();
3140 File::SampleList::iterator end = pFile->pSamples->end();
3141 for (int index = 0; iter != end; ++iter, ++index) {
3142 if (*iter == pDimensionRegions[i]->pSample) {
3143 iWaveIndex = index;
3144 break;
3145 }
3146 }
3147 }
3148 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3149 }
3150 }
3151
3152 void Region::LoadDimensionRegions(RIFF::List* rgn) {
3153 RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
3154 if (_3prg) {
3155 int dimensionRegionNr = 0;
3156 RIFF::List* _3ewl = _3prg->GetFirstSubList();
3157 while (_3ewl) {
3158 if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3159 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3160 dimensionRegionNr++;
3161 }
3162 _3ewl = _3prg->GetNextSubList();
3163 }
3164 if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
3165 }
3166 }
3167
3168 void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3169 // update KeyRange struct and make sure regions are in correct order
3170 DLS::Region::SetKeyRange(Low, High);
3171 // update Region key table for fast lookup
3172 ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3173 }
3174
3175 void Region::UpdateVelocityTable() {
3176 // get velocity dimension's index
3177 int veldim = -1;
3178 for (int i = 0 ; i < Dimensions ; i++) {
3179 if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
3180 veldim = i;
3181 break;
3182 }
3183 }
3184 if (veldim == -1) return;
3185
3186 int step = 1;
3187 for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3188 int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
3189
3190 // loop through all dimension regions for all dimensions except the velocity dimension
3191 int dim[8] = { 0 };
3192 for (int i = 0 ; i < DimensionRegions ; i++) {
3193 const int end = i + step * pDimensionDefinitions[veldim].zones;
3194
3195 // create a velocity table for all cases where the velocity zone is zero
3196 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3197 pDimensionRegions[i]->VelocityUpperLimit) {
3198 // create the velocity table
3199 uint8_t* table = pDimensionRegions[i]->VelocityTable;
3200 if (!table) {
3201 table = new uint8_t[128];
3202 pDimensionRegions[i]->VelocityTable = table;
3203 }
3204 int tableidx = 0;
3205 int velocityZone = 0;
3206 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
3207 for (int k = i ; k < end ; k += step) {
3208 DimensionRegion *d = pDimensionRegions[k];
3209 for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
3210 velocityZone++;
3211 }
3212 } else { // gig2
3213 for (int k = i ; k < end ; k += step) {
3214 DimensionRegion *d = pDimensionRegions[k];
3215 for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
3216 velocityZone++;
3217 }
3218 }
3219 } else {
3220 if (pDimensionRegions[i]->VelocityTable) {
3221 delete[] pDimensionRegions[i]->VelocityTable;
3222 pDimensionRegions[i]->VelocityTable = 0;
3223 }
3224 }
3225
3226 // jump to the next case where the velocity zone is zero
3227 int j;
3228 int shift = 0;
3229 for (j = 0 ; j < Dimensions ; j++) {
3230 if (j == veldim) i += skipveldim; // skip velocity dimension
3231 else {
3232 dim[j]++;
3233 if (dim[j] < pDimensionDefinitions[j].zones) break;
3234 else {
3235 // skip unused dimension regions
3236 dim[j] = 0;
3237 i += ((1 << pDimensionDefinitions[j].bits) -
3238 pDimensionDefinitions[j].zones) << shift;
3239 }
3240 }
3241 shift += pDimensionDefinitions[j].bits;
3242 }
3243 if (j == Dimensions) break;
3244 }
3245 }
3246
3247 /** @brief Einstein would have dreamed of it - create a new dimension.
3248 *
3249 * Creates a new dimension with the dimension definition given by
3250 * \a pDimDef. The appropriate amount of DimensionRegions will be created.
3251 * There is a hard limit of dimensions and total amount of "bits" all
3252 * dimensions can have. This limit is dependant to what gig file format
3253 * version this file refers to. The gig v2 (and lower) format has a
3254 * dimension limit and total amount of bits limit of 5, whereas the gig v3
3255 * format has a limit of 8.
3256 *
3257 * @param pDimDef - defintion of the new dimension
3258 * @throws gig::Exception if dimension of the same type exists already
3259 * @throws gig::Exception if amount of dimensions or total amount of
3260 * dimension bits limit is violated
3261 */
3262 void Region::AddDimension(dimension_def_t* pDimDef) {
3263 // some initial sanity checks of the given dimension definition
3264 if (pDimDef->zones < 2)
3265 throw gig::Exception("Could not add new dimension, amount of requested zones must always be at least two");
3266 if (pDimDef->bits < 1)
3267 throw gig::Exception("Could not add new dimension, amount of requested requested zone bits must always be at least one");
3268 if (pDimDef->dimension == dimension_samplechannel) {
3269 if (pDimDef->zones != 2)
3270 throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zones must always be 2 for this dimension type");
3271 if (pDimDef->bits != 1)
3272 throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zone bits must always be 1 for this dimension type");
3273 }
3274
3275 // check if max. amount of dimensions reached
3276 File* file = (File*) GetParent()->GetParent();
3277 const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
3278 if (Dimensions >= iMaxDimensions)
3279 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
3280 // check if max. amount of dimension bits reached
3281 int iCurrentBits = 0;
3282 for (int i = 0; i < Dimensions; i++)
3283 iCurrentBits += pDimensionDefinitions[i].bits;
3284 if (iCurrentBits >= iMaxDimensions)
3285 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
3286 const int iNewBits = iCurrentBits + pDimDef->bits;
3287 if (iNewBits > iMaxDimensions)
3288 throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
3289 // check if there's already a dimensions of the same type
3290 for (int i = 0; i < Dimensions; i++)
3291 if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3292 throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3293
3294 // pos is where the new dimension should be placed, normally
3295 // last in list, except for the samplechannel dimension which
3296 // has to be first in list
3297 int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3298 int bitpos = 0;
3299 for (int i = 0 ; i < pos ; i++)
3300 bitpos += pDimensionDefinitions[i].bits;
3301
3302 // make room for the new dimension
3303 for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3304 for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3305 for (int j = Dimensions ; j > pos ; j--) {
3306 pDimensionRegions[i]->DimensionUpperLimits[j] =
3307 pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3308 }
3309 }
3310
3311 // assign definition of new dimension
3312 pDimensionDefinitions[pos] = *pDimDef;
3313
3314 // auto correct certain dimension definition fields (where possible)
3315 pDimensionDefinitions[pos].split_type =
3316 __resolveSplitType(pDimensionDefinitions[pos].dimension);
3317 pDimensionDefinitions[pos].zone_size =
3318 __resolveZoneSize(pDimensionDefinitions[pos]);
3319
3320 // create new dimension region(s) for this new dimension, and make
3321 // sure that the dimension regions are placed correctly in both the
3322 // RIFF list and the pDimensionRegions array
3323 RIFF::Chunk* moveTo = NULL;
3324 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3325 for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3326 for (int k = 0 ; k < (1 << bitpos) ; k++) {
3327 pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3328 }
3329 for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3330 for (int k = 0 ; k < (1 << bitpos) ; k++) {
3331 RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3332 if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3333 // create a new dimension region and copy all parameter values from
3334 // an existing dimension region
3335 pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3336 new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3337
3338 DimensionRegions++;
3339 }
3340 }
3341 moveTo = pDimensionRegions[i]->pParentList;
3342 }
3343
3344 // initialize the upper limits for this dimension
3345 int mask = (1 << bitpos) - 1;
3346 for (int z = 0 ; z < pDimDef->zones ; z++) {
3347 uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3348 for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3349 pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3350 (z << bitpos) |
3351 (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3352 }
3353 }
3354
3355 Dimensions++;
3356
3357 // if this is a layer dimension, update 'Layers' attribute
3358 if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
3359
3360 UpdateVelocityTable();
3361 }
3362
3363 /** @brief Delete an existing dimension.
3364 *
3365 * Deletes the dimension given by \a pDimDef and deletes all respective
3366 * dimension regions, that is all dimension regions where the dimension's
3367 * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
3368 * for example this would delete all dimension regions for the case(s)
3369 * where the sustain pedal is pressed down.
3370 *
3371 * @param pDimDef - dimension to delete
3372 * @throws gig::Exception if given dimension cannot be found
3373 */
3374 void Region::DeleteDimension(dimension_def_t* pDimDef) {
3375 // get dimension's index
3376 int iDimensionNr = -1;
3377 for (int i = 0; i < Dimensions; i++) {
3378 if (&pDimensionDefinitions[i] == pDimDef) {
3379 iDimensionNr = i;
3380 break;
3381 }
3382 }
3383 if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
3384
3385 // get amount of bits below the dimension to delete
3386 int iLowerBits = 0;
3387 for (int i = 0; i < iDimensionNr; i++)
3388 iLowerBits += pDimensionDefinitions[i].bits;
3389
3390 // get amount ot bits above the dimension to delete
3391 int iUpperBits = 0;
3392 for (int i = iDimensionNr + 1; i < Dimensions; i++)
3393 iUpperBits += pDimensionDefinitions[i].bits;
3394
3395 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3396
3397 // delete dimension regions which belong to the given dimension
3398 // (that is where the dimension's bit > 0)
3399 for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
3400 for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
3401 for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
3402 int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3403 iObsoleteBit << iLowerBits |
3404 iLowerBit;
3405
3406 _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3407 delete pDimensionRegions[iToDelete];
3408 pDimensionRegions[iToDelete] = NULL;
3409 DimensionRegions--;
3410 }
3411 }
3412 }
3413
3414 // defrag pDimensionRegions array
3415 // (that is remove the NULL spaces within the pDimensionRegions array)
3416 for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
3417 if (!pDimensionRegions[iTo]) {
3418 if (iFrom <= iTo) iFrom = iTo + 1;
3419 while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
3420 if (iFrom < 256 && pDimensionRegions[iFrom]) {
3421 pDimensionRegions[iTo] = pDimensionRegions[iFrom];
3422 pDimensionRegions[iFrom] = NULL;
3423 }
3424 }
3425 }
3426
3427 // remove the this dimension from the upper limits arrays
3428 for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3429 DimensionRegion* d = pDimensionRegions[j];
3430 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3431 d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3432 }
3433 d->DimensionUpperLimits[Dimensions - 1] = 127;
3434 }
3435
3436 // 'remove' dimension definition
3437 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3438 pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
3439 }
3440 pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
3441 pDimensionDefinitions[Dimensions - 1].bits = 0;
3442 pDimensionDefinitions[Dimensions - 1].zones = 0;
3443
3444 Dimensions--;
3445
3446 // if this was a layer dimension, update 'Layers' attribute
3447 if (pDimDef->dimension == dimension_layer) Layers = 1;
3448 }
3449
3450 /** @brief Delete one split zone of a dimension (decrement zone amount).
3451 *
3452 * Instead of deleting an entire dimensions, this method will only delete
3453 * one particular split zone given by @a zone of the Region's dimension
3454 * given by @a type. So this method will simply decrement the amount of
3455 * zones by one of the dimension in question. To be able to do that, the
3456 * respective dimension must exist on this Region and it must have at least
3457 * 3 zones. All DimensionRegion objects associated with the zone will be
3458 * deleted.
3459 *
3460 * @param type - identifies the dimension where a zone shall be deleted
3461 * @param zone - index of the dimension split zone that shall be deleted
3462 * @throws gig::Exception if requested zone could not be deleted
3463 */
3464 void Region::DeleteDimensionZone(dimension_t type, int zone) {
3465 dimension_def_t* oldDef = GetDimensionDefinition(type);
3466 if (!oldDef)
3467 throw gig::Exception("Could not delete dimension zone, no such dimension of given type");
3468 if (oldDef->zones <= 2)
3469 throw gig::Exception("Could not delete dimension zone, because it would end up with only one zone.");
3470 if (zone < 0 || zone >= oldDef->zones)
3471 throw gig::Exception("Could not delete dimension zone, requested zone index out of bounds.");
3472
3473 const int newZoneSize = oldDef->zones - 1;
3474
3475 // create a temporary Region which just acts as a temporary copy
3476 // container and will be deleted at the end of this function and will
3477 // also not be visible through the API during this process
3478 gig::Region* tempRgn = NULL;
3479 {
3480 // adding these temporary chunks is probably not even necessary
3481 Instrument* instr = static_cast<Instrument*>(GetParent());
3482 RIFF::List* pCkInstrument = instr->pCkInstrument;
3483 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3484 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3485 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3486 tempRgn = new Region(instr, rgn);
3487 }
3488
3489 // copy this region's dimensions (with already the dimension split size
3490 // requested by the arguments of this method call) to the temporary
3491 // region, and don't use Region::CopyAssign() here for this task, since
3492 // it would also alter fast lookup helper variables here and there
3493 dimension_def_t newDef;
3494 for (int i = 0; i < Dimensions; ++i) {
3495 dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3496 // is this the dimension requested by the method arguments? ...
3497 if (def.dimension == type) { // ... if yes, decrement zone amount by one
3498 def.zones = newZoneSize;
3499 if ((1 << (def.bits - 1)) == def.zones) def.bits--;
3500 newDef = def;
3501 }
3502 tempRgn->AddDimension(&def);
3503 }
3504
3505 // find the dimension index in the tempRegion which is the dimension
3506 // type passed to this method (paranoidly expecting different order)
3507 int tempReducedDimensionIndex = -1;
3508 for (int d = 0; d < tempRgn->Dimensions; ++d) {
3509 if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3510 tempReducedDimensionIndex = d;
3511 break;
3512 }
3513 }
3514
3515 // copy dimension regions from this region to the temporary region
3516 for (int iDst = 0; iDst < 256; ++iDst) {
3517 DimensionRegion* dstDimRgn = tempRgn->pDimensionRegions[iDst];
3518 if (!dstDimRgn) continue;
3519 std::map<dimension_t,int> dimCase;
3520 bool isValidZone = true;
3521 for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3522 const int dstBits = tempRgn->pDimensionDefinitions[d].bits;
3523 dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3524 (iDst >> baseBits) & ((1 << dstBits) - 1);
3525 baseBits += dstBits;
3526 // there are also DimensionRegion objects of unused zones, skip them
3527 if (dimCase[tempRgn->pDimensionDefinitions[d].dimension] >= tempRgn->pDimensionDefinitions[d].zones) {
3528 isValidZone = false;
3529 break;
3530 }
3531 }
3532 if (!isValidZone) continue;
3533 // a bit paranoid: cope with the chance that the dimensions would
3534 // have different order in source and destination regions
3535 const bool isLastZone = (dimCase[type] == newZoneSize - 1);
3536 if (dimCase[type] >= zone) dimCase[type]++;
3537 DimensionRegion* srcDimRgn = GetDimensionRegionByBit(dimCase);
3538 dstDimRgn->CopyAssign(srcDimRgn);
3539 // if this is the upper most zone of the dimension passed to this
3540 // method, then correct (raise) its upper limit to 127
3541 if (newDef.split_type == split_type_normal && isLastZone)
3542 dstDimRgn->DimensionUpperLimits[tempReducedDimensionIndex] = 127;
3543 }
3544
3545 // now tempRegion's dimensions and DimensionRegions basically reflect
3546 // what we wanted to get for this actual Region here, so we now just
3547 // delete and recreate the dimension in question with the new amount
3548 // zones and then copy back from tempRegion
3549 DeleteDimension(oldDef);
3550 AddDimension(&newDef);
3551 for (int iSrc = 0; iSrc < 256; ++iSrc) {
3552 DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3553 if (!srcDimRgn) continue;
3554 std::map<dimension_t,int> dimCase;
3555 for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3556 const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3557 dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3558 (iSrc >> baseBits) & ((1 << srcBits) - 1);
3559 baseBits += srcBits;
3560 }
3561 // a bit paranoid: cope with the chance that the dimensions would
3562 // have different order in source and destination regions
3563 DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3564 if (!dstDimRgn) continue;
3565 dstDimRgn->CopyAssign(srcDimRgn);
3566 }
3567
3568 // delete temporary region
3569 delete tempRgn;
3570
3571 UpdateVelocityTable();
3572 }
3573
3574 /** @brief Divide split zone of a dimension in two (increment zone amount).
3575 *
3576 * This will increment the amount of zones for the dimension (given by
3577 * @a type) by one. It will do so by dividing the zone (given by @a zone)
3578 * in the middle of its zone range in two. So the two zones resulting from
3579 * the zone being splitted, will be an equivalent copy regarding all their
3580 * articulation informations and sample reference. The two zones will only
3581 * differ in their zone's upper limit
3582 * (DimensionRegion::DimensionUpperLimits).
3583 *
3584 * @param type - identifies the dimension where a zone shall be splitted
3585 * @param zone - index of the dimension split zone that shall be splitted
3586 * @throws gig::Exception if requested zone could not be splitted
3587 */
3588 void Region::SplitDimensionZone(dimension_t type, int zone) {
3589 dimension_def_t* oldDef = GetDimensionDefinition(type);
3590 if (!oldDef)
3591 throw gig::Exception("Could not split dimension zone, no such dimension of given type");
3592 if (zone < 0 || zone >= oldDef->zones)
3593 throw gig::Exception("Could not split dimension zone, requested zone index out of bounds.");
3594
3595 const int newZoneSize = oldDef->zones + 1;
3596
3597 // create a temporary Region which just acts as a temporary copy
3598 // container and will be deleted at the end of this function and will
3599 // also not be visible through the API during this process
3600 gig::Region* tempRgn = NULL;
3601 {
3602 // adding these temporary chunks is probably not even necessary
3603 Instrument* instr = static_cast<Instrument*>(GetParent());
3604 RIFF::List* pCkInstrument = instr->pCkInstrument;
3605 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3606 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3607 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3608 tempRgn = new Region(instr, rgn);
3609 }
3610
3611 // copy this region's dimensions (with already the dimension split size
3612 // requested by the arguments of this method call) to the temporary
3613 // region, and don't use Region::CopyAssign() here for this task, since
3614 // it would also alter fast lookup helper variables here and there
3615 dimension_def_t newDef;
3616 for (int i = 0; i < Dimensions; ++i) {
3617 dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3618 // is this the dimension requested by the method arguments? ...
3619 if (def.dimension == type) { // ... if yes, increment zone amount by one
3620 def.zones = newZoneSize;
3621 if ((1 << oldDef->bits) < newZoneSize) def.bits++;
3622 newDef = def;
3623 }
3624 tempRgn->AddDimension(&def);
3625 }
3626
3627 // find the dimension index in the tempRegion which is the dimension
3628 // type passed to this method (paranoidly expecting different order)
3629 int tempIncreasedDimensionIndex = -1;
3630 for (int d = 0; d < tempRgn->Dimensions; ++d) {
3631 if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3632 tempIncreasedDimensionIndex = d;
3633 break;
3634 }
3635 }
3636
3637 // copy dimension regions from this region to the temporary region
3638 for (int iSrc = 0; iSrc < 256; ++iSrc) {
3639 DimensionRegion* srcDimRgn = pDimensionRegions[iSrc];
3640 if (!srcDimRgn) continue;
3641 std::map<dimension_t,int> dimCase;
3642 bool isValidZone = true;
3643 for (int d = 0, baseBits = 0; d < Dimensions; ++d) {
3644 const int srcBits = pDimensionDefinitions[d].bits;
3645 dimCase[pDimensionDefinitions[d].dimension] =
3646 (iSrc >> baseBits) & ((1 << srcBits) - 1);
3647 // there are also DimensionRegion objects for unused zones, skip them
3648 if (dimCase[pDimensionDefinitions[d].dimension] >= pDimensionDefinitions[d].zones) {
3649 isValidZone = false;
3650 break;
3651 }
3652 baseBits += srcBits;
3653 }
3654 if (!isValidZone) continue;
3655 // a bit paranoid: cope with the chance that the dimensions would
3656 // have different order in source and destination regions
3657 if (dimCase[type] > zone) dimCase[type]++;
3658 DimensionRegion* dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3659 dstDimRgn->CopyAssign(srcDimRgn);
3660 // if this is the requested zone to be splitted, then also copy
3661 // the source DimensionRegion to the newly created target zone
3662 // and set the old zones upper limit lower
3663 if (dimCase[type] == zone) {
3664 // lower old zones upper limit
3665 if (newDef.split_type == split_type_normal) {
3666 const int high =
3667 dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex];
3668 int low = 0;
3669 if (zone > 0) {
3670 std::map<dimension_t,int> lowerCase = dimCase;
3671 lowerCase[type]--;
3672 DimensionRegion* dstDimRgnLow = tempRgn->GetDimensionRegionByBit(lowerCase);
3673 low = dstDimRgnLow->DimensionUpperLimits[tempIncreasedDimensionIndex];
3674 }
3675 dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex] = low + (high - low) / 2;
3676 }
3677 // fill the newly created zone of the divided zone as well
3678 dimCase[type]++;
3679 dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3680 dstDimRgn->CopyAssign(srcDimRgn);
3681 }
3682 }
3683
3684 // now tempRegion's dimensions and DimensionRegions basically reflect
3685 // what we wanted to get for this actual Region here, so we now just
3686 // delete and recreate the dimension in question with the new amount
3687 // zones and then copy back from tempRegion
3688 DeleteDimension(oldDef);
3689 AddDimension(&newDef);
3690 for (int iSrc = 0; iSrc < 256; ++iSrc) {
3691 DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3692 if (!srcDimRgn) continue;
3693 std::map<dimension_t,int> dimCase;
3694 for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3695 const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3696 dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3697 (iSrc >> baseBits) & ((1 << srcBits) - 1);
3698 baseBits += srcBits;
3699 }
3700 // a bit paranoid: cope with the chance that the dimensions would
3701 // have different order in source and destination regions
3702 DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3703 if (!dstDimRgn) continue;
3704 dstDimRgn->CopyAssign(srcDimRgn);
3705 }
3706
3707 // delete temporary region
3708 delete tempRgn;
3709
3710 UpdateVelocityTable();
3711 }
3712
3713 /** @brief Change type of an existing dimension.
3714 *
3715 * Alters the dimension type of a dimension already existing on this
3716 * region. If there is currently no dimension on this Region with type
3717 * @a oldType, then this call with throw an Exception. Likewise there are
3718 * cases where the requested dimension type cannot be performed. For example
3719 * if the new dimension type shall be gig::dimension_samplechannel, and the
3720 * current dimension has more than 2 zones. In such cases an Exception is
3721 * thrown as well.
3722 *
3723 * @param oldType - identifies the existing dimension to be changed
3724 * @param newType - to which dimension type it should be changed to
3725 * @throws gig::Exception if requested change cannot be performed
3726 */
3727 void Region::SetDimensionType(dimension_t oldType, dimension_t newType) {
3728 if (oldType == newType) return;
3729 dimension_def_t* def = GetDimensionDefinition(oldType);
3730 if (!def)
3731 throw gig::Exception("No dimension with provided old dimension type exists on this region");
3732 if (newType == dimension_samplechannel && def->zones != 2)
3733 throw gig::Exception("Cannot change to dimension type 'sample channel', because existing dimension does not have 2 zones");
3734 if (GetDimensionDefinition(newType))
3735 throw gig::Exception("There is already a dimension with requested new dimension type on this region");
3736 def->dimension = newType;
3737 def->split_type = __resolveSplitType(newType);
3738 }
3739
3740 DimensionRegion* Region::GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase) {
3741 uint8_t bits[8] = {};
3742 for (std::map<dimension_t,int>::const_iterator it = DimCase.begin();
3743 it != DimCase.end(); ++it)
3744 {
3745 for (int d = 0; d < Dimensions; ++d) {
3746 if (pDimensionDefinitions[d].dimension == it->first) {
3747 bits[d] = it->second;
3748 goto nextDimCaseSlice;
3749 }
3750 }
3751 assert(false); // do crash ... too harsh maybe ? ignore it instead ?
3752 nextDimCaseSlice:
3753 ; // noop
3754 }
3755 return GetDimensionRegionByBit(bits);
3756 }
3757
3758 /**
3759 * Searches in the current Region for a dimension of the given dimension
3760 * type and returns the precise configuration of that dimension in this
3761 * Region.
3762 *
3763 * @param type - dimension type of the sought dimension
3764 * @returns dimension definition or NULL if there is no dimension with
3765 * sought type in this Region.
3766 */
3767 dimension_def_t* Region::GetDimensionDefinition(dimension_t type) {
3768 for (int i = 0; i < Dimensions; ++i)
3769 if (pDimensionDefinitions[i].dimension == type)
3770 return &pDimensionDefinitions[i];
3771 return NULL;
3772 }
3773
3774 Region::~Region() {
3775 for (int i = 0; i < 256; i++) {
3776 if (pDimensionRegions[i]) delete pDimensionRegions[i];
3777 }
3778 }
3779
3780 /**
3781 * Use this method in your audio engine to get the appropriate dimension
3782 * region with it's articulation data for the current situation. Just
3783 * call the method with the current MIDI controller values and you'll get
3784 * the DimensionRegion with the appropriate articulation data for the
3785 * current situation (for this Region of course only). To do that you'll
3786 * first have to look which dimensions with which controllers and in
3787 * which order are defined for this Region when you load the .gig file.
3788 * Special cases are e.g. layer or channel dimensions where you just put
3789 * in the index numbers instead of a MIDI controller value (means 0 for
3790 * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
3791 * etc.).
3792 *
3793 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
3794 * @returns adress to the DimensionRegion for the given situation
3795 * @see pDimensionDefinitions
3796 * @see Dimensions
3797 */
3798 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
3799 uint8_t bits;
3800 int veldim = -1;
3801 int velbitpos = 0;
3802 int bitpos = 0;
3803 int dimregidx = 0;
3804 for (uint i = 0; i < Dimensions; i++) {
3805 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
3806 // the velocity dimension must be handled after the other dimensions
3807 veldim = i;
3808 velbitpos = bitpos;
3809 } else {
3810 switch (pDimensionDefinitions[i].split_type) {
3811 case split_type_normal:
3812 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
3813 // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
3814 for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
3815 if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
3816 }
3817 } else {
3818 // gig2: evenly sized zones
3819 bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
3820 }
3821 break;
3822 case split_type_bit: // the value is already the sought dimension bit number
3823 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
3824 bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
3825 break;
3826 }
3827 dimregidx |= bits << bitpos;
3828 }
3829 bitpos += pDimensionDefinitions[i].bits;
3830 }
3831 DimensionRegion* dimreg = pDimensionRegions[dimregidx & 255];
3832 if (!dimreg) return NULL;
3833 if (veldim != -1) {
3834 // (dimreg is now the dimension region for the lowest velocity)
3835 if (dimreg->VelocityTable) // custom defined zone ranges
3836 bits = dimreg->VelocityTable[DimValues[veldim] & 127];
3837 else // normal split type
3838 bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
3839
3840 const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
3841 dimregidx |= (bits & limiter_mask) << velbitpos;
3842 dimreg = pDimensionRegions[dimregidx & 255];
3843 }
3844 return dimreg;
3845 }
3846
3847 int Region::GetDimensionRegionIndexByValue(const uint DimValues[8]) {
3848 uint8_t bits;
3849 int veldim = -1;
3850 int velbitpos = 0;
3851 int bitpos = 0;
3852 int dimregidx = 0;
3853 for (uint i = 0; i < Dimensions; i++) {
3854 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
3855 // the velocity dimension must be handled after the other dimensions
3856 veldim = i;
3857 velbitpos = bitpos;
3858 } else {
3859 switch (pDimensionDefinitions[i].split_type) {
3860 case split_type_normal:
3861 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
3862 // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
3863 for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
3864 if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
3865 }
3866 } else {
3867 // gig2: evenly sized zones
3868 bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
3869 }
3870 break;
3871 case split_type_bit: // the value is already the sought dimension bit number
3872 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
3873 bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
3874 break;
3875 }
3876 dimregidx |= bits << bitpos;
3877 }
3878 bitpos += pDimensionDefinitions[i].bits;
3879 }
3880 dimregidx &= 255;
3881 DimensionRegion* dimreg = pDimensionRegions[dimregidx];
3882 if (!dimreg) return -1;
3883 if (veldim != -1) {
3884 // (dimreg is now the dimension region for the lowest velocity)
3885 if (dimreg->VelocityTable) // custom defined zone ranges
3886 bits = dimreg->VelocityTable[DimValues[veldim] & 127];
3887 else // normal split type
3888 bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
3889
3890 const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
3891 dimregidx |= (bits & limiter_mask) << velbitpos;
3892 dimregidx &= 255;
3893 }
3894 return dimregidx;
3895 }
3896
3897 /**
3898 * Returns the appropriate DimensionRegion for the given dimension bit
3899 * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
3900 * instead of calling this method directly!
3901 *
3902 * @param DimBits Bit numbers for dimension 0 to 7
3903 * @returns adress to the DimensionRegion for the given dimension
3904 * bit numbers
3905 * @see GetDimensionRegionByValue()
3906 */
3907 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
3908 return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
3909 << pDimensionDefinitions[5].bits | DimBits[5])
3910 << pDimensionDefinitions[4].bits | DimBits[4])
3911 << pDimensionDefinitions[3].bits | DimBits[3])
3912 << pDimensionDefinitions[2].bits | DimBits[2])
3913 << pDimensionDefinitions[1].bits | DimBits[1])
3914 << pDimensionDefinitions[0].bits | DimBits[0]];
3915 }
3916
3917 /**
3918 * Returns pointer address to the Sample referenced with this region.
3919 * This is the global Sample for the entire Region (not sure if this is
3920 * actually used by the Gigasampler engine - I would only use the Sample
3921 * referenced by the appropriate DimensionRegion instead of this sample).
3922 *
3923 * @returns address to Sample or NULL if there is no reference to a
3924 * sample saved in the .gig file
3925 */
3926 Sample* Region::GetSample() {
3927 if (pSample) return static_cast<gig::Sample*>(pSample);
3928 else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
3929 }
3930
3931 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
3932 if ((int32_t)WavePoolTableIndex == -1) return NULL;
3933 File* file = (File*) GetParent()->GetParent();
3934 if (!file->pWavePoolTable) return NULL;
3935 // for new files or files >= 2 GB use 64 bit wave pool offsets
3936 if (file->pRIFF->IsNew() || (file->pRIFF->GetCurrentFileSize() >> 31)) {
3937 // use 64 bit wave pool offsets (treating this as large file)
3938 uint64_t soughtoffset =
3939 uint64_t(file->pWavePoolTable[WavePoolTableIndex]) |
3940 uint64_t(file->pWavePoolTableHi[WavePoolTableIndex]) << 32;
3941 Sample* sample = file->GetFirstSample(pProgress);
3942 while (sample) {
3943 if (sample->ullWavePoolOffset == soughtoffset)
3944 return static_cast<gig::Sample*>(sample);
3945 sample = file->GetNextSample();
3946 }
3947 } else {
3948 // use extension files and 32 bit wave pool offsets
3949 file_offset_t soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
3950 file_offset_t soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
3951 Sample* sample = file->GetFirstSample(pProgress);
3952 while (sample) {
3953 if (sample->ullWavePoolOffset == soughtoffset &&
3954 sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
3955 sample = file->GetNextSample();
3956 }
3957 }
3958 return NULL;
3959 }
3960
3961 /**
3962 * Make a (semi) deep copy of the Region object given by @a orig
3963 * and assign it to this object.
3964 *
3965 * Note that all sample pointers referenced by @a orig are simply copied as
3966 * memory address. Thus the respective samples are shared, not duplicated!
3967 *
3968 * @param orig - original Region object to be copied from
3969 */
3970 void Region::CopyAssign(const Region* orig) {
3971 CopyAssign(orig, NULL);
3972 }
3973
3974 /**
3975 * Make a (semi) deep copy of the Region object given by @a orig and
3976 * assign it to this object
3977 *
3978 * @param mSamples - crosslink map between the foreign file's samples and
3979 * this file's samples
3980 */
3981 void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
3982 // handle base classes
3983 DLS::Region::CopyAssign(orig);
3984
3985 if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
3986 pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
3987 }
3988
3989 // handle own member variables
3990 for (int i = Dimensions - 1; i >= 0; --i) {
3991 DeleteDimension(&pDimensionDefinitions[i]);
3992 }
3993 Layers = 0; // just to be sure
3994 for (int i = 0; i < orig->Dimensions; i++) {
3995 // we need to copy the dim definition here, to avoid the compiler
3996 // complaining about const-ness issue
3997 dimension_def_t def = orig->pDimensionDefinitions[i];
3998 AddDimension(&def);
3999 }
4000 for (int i = 0; i < 256; i++) {
4001 if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
4002 pDimensionRegions[i]->CopyAssign(
4003 orig->pDimensionRegions[i],
4004 mSamples
4005 );
4006 }
4007 }
4008 Layers = orig->Layers;
4009 }
4010
4011
4012 // *************** MidiRule ***************
4013 // *
4014
4015 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
4016 _3ewg->SetPos(36);
4017 Triggers = _3ewg->ReadUint8();
4018 _3ewg->SetPos(40);
4019 ControllerNumber = _3ewg->ReadUint8();
4020 _3ewg->SetPos(46);
4021 for (int i = 0 ; i < Triggers ; i++) {
4022 pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
4023 pTriggers[i].Descending = _3ewg->ReadUint8();
4024 pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
4025 pTriggers[i].Key = _3ewg->ReadUint8();
4026 pTriggers[i].NoteOff = _3ewg->ReadUint8();
4027 pTriggers[i].Velocity = _3ewg->ReadUint8();
4028 pTriggers[i].OverridePedal = _3ewg->ReadUint8();
4029 _3ewg->ReadUint8();
4030 }
4031 }
4032
4033 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
4034 ControllerNumber(0),
4035 Triggers(0) {
4036 }
4037
4038 void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
4039 pData[32] = 4;
4040 pData[33] = 16;
4041 pData[36] = Triggers;
4042 pData[40] = ControllerNumber;
4043 for (int i = 0 ; i < Triggers ; i++) {
4044 pData[46 + i * 8] = pTriggers[i].TriggerPoint;
4045 pData[47 + i * 8] = pTriggers[i].Descending;
4046 pData[48 + i * 8] = pTriggers[i].VelSensitivity;
4047 pData[49 + i * 8] = pTriggers[i].Key;
4048 pData[50 + i * 8] = pTriggers[i].NoteOff;
4049 pData[51 + i * 8] = pTriggers[i].Velocity;
4050 pData[52 + i * 8] = pTriggers[i].OverridePedal;
4051 }
4052 }
4053
4054 MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
4055 _3ewg->SetPos(36);
4056 LegatoSamples = _3ewg->ReadUint8(); // always 12
4057 _3ewg->SetPos(40);
4058 BypassUseController = _3ewg->ReadUint8();
4059 BypassKey = _3ewg->ReadUint8();
4060 BypassController = _3ewg->ReadUint8();
4061 ThresholdTime = _3ewg->ReadUint16();
4062 _3ewg->ReadInt16();
4063 ReleaseTime = _3ewg->ReadUint16();
4064 _3ewg->ReadInt16();
4065 KeyRange.low = _3ewg->ReadUint8();
4066 KeyRange.high = _3ewg->ReadUint8();
4067 _3ewg->SetPos(64);
4068 ReleaseTriggerKey = _3ewg->ReadUint8();
4069 AltSustain1Key = _3ewg->ReadUint8();
4070 AltSustain2Key = _3ewg->ReadUint8();
4071 }
4072
4073 MidiRuleLegato::MidiRuleLegato() :
4074 LegatoSamples(12),
4075 BypassUseController(false),
4076 BypassKey(0),
4077 BypassController(1),
4078 ThresholdTime(20),
4079 ReleaseTime(20),
4080 ReleaseTriggerKey(0),
4081 AltSustain1Key(0),
4082 AltSustain2Key(0)
4083 {
4084 KeyRange.low = KeyRange.high = 0;
4085 }
4086
4087 void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
4088 pData[32] = 0;
4089 pData[33] = 16;
4090 pData[36] = LegatoSamples;
4091 pData[40] = BypassUseController;
4092 pData[41] = BypassKey;
4093 pData[42] = BypassController;
4094 store16(&pData[43], ThresholdTime);
4095 store16(&pData[47], ReleaseTime);
4096 pData[51] = KeyRange.low;
4097 pData[52] = KeyRange.high;
4098 pData[64] = ReleaseTriggerKey;
4099 pData[65] = AltSustain1Key;
4100 pData[66] = AltSustain2Key;
4101 }
4102
4103 MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
4104 _3ewg->SetPos(36);
4105 Articulations = _3ewg->ReadUint8();
4106 int flags = _3ewg->ReadUint8();
4107 Polyphonic = flags & 8;
4108 Chained = flags & 4;
4109 Selector = (flags & 2) ? selector_controller :
4110 (flags & 1) ? selector_key_switch : selector_none;
4111 Patterns = _3ewg->ReadUint8();
4112 _3ewg->ReadUint8(); // chosen row
4113 _3ewg->ReadUint8(); // unknown
4114 _3ewg->ReadUint8(); // unknown
4115 _3ewg->ReadUint8(); // unknown
4116 KeySwitchRange.low = _3ewg->ReadUint8();
4117 KeySwitchRange.high = _3ewg->ReadUint8();
4118 Controller = _3ewg->ReadUint8();
4119 PlayRange.low = _3ewg->ReadUint8();
4120 PlayRange.high = _3ewg->ReadUint8();
4121
4122 int n = std::min(int(Articulations), 32);
4123 for (int i = 0 ; i < n ; i++) {
4124 _3ewg->ReadString(pArticulations[i], 32);
4125 }
4126 _3ewg->SetPos(1072);
4127 n = std::min(int(Patterns), 32);
4128 for (int i = 0 ; i < n ; i++) {
4129 _3ewg->ReadString(pPatterns[i].Name, 16);
4130 pPatterns[i].Size = _3ewg->ReadUint8();
4131 _3ewg->Read(&pPatterns[i][0], 1, 32);
4132 }
4133 }
4134
4135 MidiRuleAlternator::MidiRuleAlternator() :
4136 Articulations(0),
4137 Patterns(0),
4138 Selector(selector_none),
4139 Controller(0),
4140 Polyphonic(false),
4141 Chained(false)
4142 {
4143 PlayRange.low = PlayRange.high = 0;
4144 KeySwitchRange.low = KeySwitchRange.high = 0;
4145 }
4146
4147 void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
4148 pData[32] = 3;
4149 pData[33] = 16;
4150 pData[36] = Articulations;
4151 pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
4152 (Selector == selector_controller ? 2 :
4153 (Selector == selector_key_switch ? 1 : 0));
4154 pData[38] = Patterns;
4155
4156 pData[43] = KeySwitchRange.low;
4157 pData[44] = KeySwitchRange.high;
4158 pData[45] = Controller;
4159 pData[46] = PlayRange.low;
4160 pData[47] = PlayRange.high;
4161
4162 char* str = reinterpret_cast<char*>(pData);
4163 int pos = 48;
4164 int n = std::min(int(Articulations), 32);
4165 for (int i = 0 ; i < n ; i++, pos += 32) {
4166 strncpy(&str[pos], pArticulations[i].c_str(), 32);
4167 }
4168
4169 pos = 1072;
4170 n = std::min(int(Patterns), 32);
4171 for (int i = 0 ; i < n ; i++, pos += 49) {
4172 strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
4173 pData[pos + 16] = pPatterns[i].Size;
4174 memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
4175 }
4176 }
4177
4178 // *************** Script ***************
4179 // *
4180
4181 Script::Script(ScriptGroup* group, RIFF::Chunk* ckScri) {
4182 pGroup = group;
4183 pChunk = ckScri;
4184 if (ckScri) { // object is loaded from file ...
4185 // read header
4186 uint32_t headerSize = ckScri->ReadUint32();
4187 Compression = (Compression_t) ckScri->ReadUint32();
4188 Encoding = (Encoding_t) ckScri->ReadUint32();
4189 Language = (Language_t) ckScri->ReadUint32();
4190 Bypass = (Language_t) ckScri->ReadUint32() & 1;
4191 crc = ckScri->ReadUint32();
4192 uint32_t nameSize = ckScri->ReadUint32();
4193 Name.resize(nameSize, ' ');
4194 for (int i = 0; i < nameSize; ++i)
4195 Name[i] = ckScri->ReadUint8();
4196 // to handle potential future extensions of the header
4197 ckScri->SetPos(sizeof(int32_t) + headerSize);
4198 // read actual script data
4199 uint32_t scriptSize = uint32_t(ckScri->GetSize() - ckScri->GetPos());
4200 data.resize(scriptSize);
4201 for (int i = 0; i < scriptSize; ++i)
4202 data[i] = ckScri->ReadUint8();
4203 } else { // this is a new script object, so just initialize it as such ...
4204 Compression = COMPRESSION_NONE;
4205 Encoding = ENCODING_ASCII;
4206 Language = LANGUAGE_NKSP;
4207 Bypass = false;
4208 crc = 0;
4209 Name = "Unnamed Script";
4210 }
4211 }
4212
4213 Script::~Script() {
4214 }
4215
4216 /**
4217 * Returns the current script (i.e. as source code) in text format.
4218 */
4219 String Script::GetScriptAsText() {
4220 String s;
4221 s.resize(data.size(), ' ');
4222 memcpy(&s[0], &data[0], data.size());
4223 return s;
4224 }
4225
4226 /**
4227 * Replaces the current script with the new script source code text given
4228 * by @a text.
4229 *
4230 * @param text - new script source code
4231 */
4232 void Script::SetScriptAsText(const String& text) {
4233 data.resize(text.size());
4234 memcpy(&data[0], &text[0], text.size());
4235 }
4236
4237 /**
4238 * Apply this script to the respective RIFF chunks. You have to call
4239 * File::Save() to make changes persistent.
4240 *
4241 * Usually there is absolutely no need to call this method explicitly.
4242 * It will be called automatically when File::Save() was called.
4243 *
4244 * @param pProgress - callback function for progress notification
4245 */
4246 void Script::UpdateChunks(progress_t* pProgress) {
4247 // recalculate CRC32 check sum
4248 __resetCRC(crc);
4249 __calculateCRC(&data[0], data.size(), crc);
4250 __finalizeCRC(crc);
4251 // make sure chunk exists and has the required size
4252 const file_offset_t chunkSize = (file_offset_t) 7*sizeof(int32_t) + Name.size() + data.size();
4253 if (!pChunk) pChunk = pGroup->pList->AddSubChunk(CHUNK_ID_SCRI, chunkSize);
4254 else pChunk->Resize(chunkSize);
4255 // fill the chunk data to be written to disk
4256 uint8_t* pData = (uint8_t*) pChunk->LoadChunkData();
4257 int pos = 0;
4258 store32(&pData[pos], uint32_t(6*sizeof(int32_t) + Name.size())); // total header size
4259 pos += sizeof(int32_t);
4260 store32(&pData[pos], Compression);
4261 pos += sizeof(int32_t);
4262 store32(&pData[pos], Encoding);
4263 pos += sizeof(int32_t);
4264 store32(&pData[pos], Language);
4265 pos += sizeof(int32_t);
4266 store32(&pData[pos], Bypass ? 1 : 0);
4267 pos += sizeof(int32_t);
4268 store32(&pData[pos], crc);
4269 pos += sizeof(int32_t);
4270 store32(&pData[pos], (uint32_t) Name.size());
4271 pos += sizeof(int32_t);
4272 for (int i = 0; i < Name.size(); ++i, ++pos)
4273 pData[pos] = Name[i];
4274 for (int i = 0; i < data.size(); ++i, ++pos)
4275 pData[pos] = data[i];
4276 }
4277
4278 /**
4279 * Move this script from its current ScriptGroup to another ScriptGroup
4280 * given by @a pGroup.
4281 *
4282 * @param pGroup - script's new group
4283 */
4284 void Script::SetGroup(ScriptGroup* pGroup) {
4285 if (this->pGroup == pGroup) return;
4286 if (pChunk)
4287 pChunk->GetParent()->MoveSubChunk(pChunk, pGroup->pList);
4288 this->pGroup = pGroup;
4289 }
4290
4291 /**
4292 * Returns the script group this script currently belongs to. Each script
4293 * is a member of exactly one ScriptGroup.
4294 *
4295 * @returns current script group
4296 */
4297 ScriptGroup* Script::GetGroup() const {
4298 return pGroup;
4299 }
4300
4301 /**
4302 * Make a (semi) deep copy of the Script object given by @a orig
4303 * and assign it to this object. Note: the ScriptGroup this Script
4304 * object belongs to remains untouched by this call.
4305 *
4306 * @param orig - original Script object to be copied from
4307 */
4308 void Script::CopyAssign(const Script* orig) {
4309 Name = orig->Name;
4310 Compression = orig->Compression;
4311 Encoding = orig->Encoding;
4312 Language = orig->Language;
4313 Bypass = orig->Bypass;
4314 data = orig->data;
4315 }
4316
4317 void Script::RemoveAllScriptReferences() {
4318 File* pFile = pGroup->pFile;
4319 for (int i = 0; pFile->GetInstrument(i); ++i) {
4320 Instrument* instr = pFile->GetInstrument(i);
4321 instr->RemoveScript(this);
4322 }
4323 }
4324
4325 // *************** ScriptGroup ***************
4326 // *
4327
4328 ScriptGroup::ScriptGroup(File* file, RIFF::List* lstRTIS) {
4329 pFile = file;
4330 pList = lstRTIS;
4331 pScripts = NULL;
4332 if (lstRTIS) {
4333 RIFF::Chunk* ckName = lstRTIS->GetSubChunk(CHUNK_ID_LSNM);
4334 ::LoadString(ckName, Name);
4335 } else {
4336 Name = "Default Group";
4337 }
4338 }
4339
4340 ScriptGroup::~ScriptGroup() {
4341 if (pScripts) {
4342 std::list<Script*>::iterator iter = pScripts->begin();
4343 std::list<Script*>::iterator end = pScripts->end();
4344 while (iter != end) {
4345 delete *iter;
4346 ++iter;
4347 }
4348 delete pScripts;
4349 }
4350 }
4351
4352 /**
4353 * Apply this script group to the respective RIFF chunks. You have to call
4354 * File::Save() to make changes persistent.
4355 *
4356 * Usually there is absolutely no need to call this method explicitly.
4357 * It will be called automatically when File::Save() was called.
4358 *
4359 * @param pProgress - callback function for progress notification
4360 */
4361 void ScriptGroup::UpdateChunks(progress_t* pProgress) {
4362 if (pScripts) {
4363 if (!pList)
4364 pList = pFile->pRIFF->GetSubList(LIST_TYPE_3LS)->AddSubList(LIST_TYPE_RTIS);
4365
4366 // now store the name of this group as <LSNM> chunk as subchunk of the <RTIS> list chunk
4367 ::SaveString(CHUNK_ID_LSNM, NULL, pList, Name, String("Unnamed Group"), true, 64);
4368
4369 for (std::list<Script*>::iterator it = pScripts->begin();
4370 it != pScripts->end(); ++it)
4371 {
4372 (*it)->UpdateChunks(pProgress);
4373 }
4374 }
4375 }
4376
4377 /** @brief Get instrument script.
4378 *
4379 * Returns the real-time instrument script with the given index.
4380 *
4381 * @param index - number of the sought script (0..n)
4382 * @returns sought script or NULL if there's no such script
4383 */
4384 Script* ScriptGroup::GetScript(uint index) {
4385 if (!pScripts) LoadScripts();
4386 std::list<Script*>::iterator it = pScripts->begin();
4387 for (uint i = 0; it != pScripts->end(); ++i, ++it)
4388 if (i == index) return *it;
4389 return NULL;
4390 }
4391
4392 /** @brief Add new instrument script.
4393 *
4394 * Adds a new real-time instrument script to the file. The script is not
4395 * actually used / executed unless it is referenced by an instrument to be
4396 * used. This is similar to samples, which you can add to a file, without
4397 * an instrument necessarily actually using it.
4398 *
4399 * You have to call Save() to make this persistent to the file.
4400 *
4401 * @return new empty script object
4402 */
4403 Script* ScriptGroup::AddScript() {
4404 if (!pScripts) LoadScripts();
4405 Script* pScript = new Script(this, NULL);
4406 pScripts->push_back(pScript);
4407 return pScript;
4408 }
4409
4410 /** @brief Delete an instrument script.
4411 *
4412 * This will delete the given real-time instrument script. References of
4413 * instruments that are using that script will be removed accordingly.
4414 *
4415 * You have to call Save() to make this persistent to the file.
4416 *
4417 * @param pScript - script to delete
4418 * @throws gig::Exception if given script could not be found
4419 */
4420 void ScriptGroup::DeleteScript(Script* pScript) {
4421 if (!pScripts) LoadScripts();
4422 std::list<Script*>::iterator iter =
4423 find(pScripts->begin(), pScripts->end(), pScript);
4424 if (iter == pScripts->end())
4425 throw gig::Exception("Could not delete script, could not find given script");
4426 pScripts->erase(iter);
4427 pScript->RemoveAllScriptReferences();
4428 if (pScript->pChunk)
4429 pScript->pChunk->GetParent()->DeleteSubChunk(pScript->pChunk);
4430 delete pScript;
4431 }
4432
4433 void ScriptGroup::LoadScripts() {
4434 if (pScripts) return;
4435 pScripts = new std::list<Script*>;
4436 if (!pList) return;
4437
4438 for (RIFF::Chunk* ck = pList->GetFirstSubChunk(); ck;
4439 ck = pList->GetNextSubChunk())
4440 {
4441 if (ck->GetChunkID() == CHUNK_ID_SCRI) {
4442 pScripts->push_back(new Script(this, ck));
4443 }
4444 }
4445 }
4446
4447 // *************** Instrument ***************
4448 // *
4449
4450 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
4451 static const DLS::Info::string_length_t fixedStringLengths[] = {
4452 { CHUNK_ID_INAM, 64 },
4453 { CHUNK_ID_ISFT, 12 },
4454 { 0, 0 }
4455 };
4456 pInfo->SetFixedStringLengths(fixedStringLengths);
4457
4458 // Initialization
4459 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4460 EffectSend = 0;
4461 Attenuation = 0;
4462 FineTune = 0;
4463 PitchbendRange = 2;
4464 PianoReleaseMode = false;
4465 DimensionKeyRange.low = 0;
4466 DimensionKeyRange.high = 0;
4467 pMidiRules = new MidiRule*[3];
4468 pMidiRules[0] = NULL;
4469 pScriptRefs = NULL;
4470
4471 // Loading
4472 RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
4473 if (lart) {
4474 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4475 if (_3ewg) {
4476 EffectSend = _3ewg->ReadUint16();
4477 Attenuation = _3ewg->ReadInt32();
4478 FineTune = _3ewg->ReadInt16();
4479 PitchbendRange = _3ewg->ReadInt16();
4480 uint8_t dimkeystart = _3ewg->ReadUint8();
4481 PianoReleaseMode = dimkeystart & 0x01;
4482 DimensionKeyRange.low = dimkeystart >> 1;
4483 DimensionKeyRange.high = _3ewg->ReadUint8();
4484
4485 if (_3ewg->GetSize() > 32) {
4486 // read MIDI rules
4487 int i = 0;
4488 _3ewg->SetPos(32);
4489 uint8_t id1 = _3ewg->ReadUint8();
4490 uint8_t id2 = _3ewg->ReadUint8();
4491
4492 if (id2 == 16) {
4493 if (id1 == 4) {
4494 pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
4495 } else if (id1 == 0) {
4496 pMidiRules[i++] = new MidiRuleLegato(_3ewg);
4497 } else if (id1 == 3) {
4498 pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
4499 } else {
4500 pMidiRules[i++] = new MidiRuleUnknown;
4501 }
4502 }
4503 else if (id1 != 0 || id2 != 0) {
4504 pMidiRules[i++] = new MidiRuleUnknown;
4505 }
4506 //TODO: all the other types of rules
4507
4508 pMidiRules[i] = NULL;
4509 }
4510 }
4511 }
4512
4513 if (pFile->GetAutoLoad()) {
4514 if (!pRegions) pRegions = new RegionList;
4515 RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
4516 if (lrgn) {
4517 RIFF::List* rgn = lrgn->GetFirstSubList();
4518 while (rgn) {
4519 if (rgn->GetListType() == LIST_TYPE_RGN) {
4520 __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
4521 pRegions->push_back(new Region(this, rgn));
4522 }
4523 rgn = lrgn->GetNextSubList();
4524 }
4525 // Creating Region Key Table for fast lookup
4526 UpdateRegionKeyTable();
4527 }
4528 }
4529
4530 // own gig format extensions
4531 RIFF::List* lst3LS = insList->GetSubList(LIST_TYPE_3LS);
4532 if (lst3LS) {
4533 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4534 if (ckSCSL) {
4535 int headerSize = ckSCSL->ReadUint32();
4536 int slotCount = ckSCSL->ReadUint32();
4537 if (slotCount) {
4538 int slotSize = ckSCSL->ReadUint32();
4539 ckSCSL->SetPos(headerSize); // in case of future header extensions
4540 int unknownSpace = slotSize - 2*sizeof(uint32_t); // in case of future slot extensions
4541 for (int i = 0; i < slotCount; ++i) {
4542 _ScriptPooolEntry e;
4543 e.fileOffset = ckSCSL->ReadUint32();
4544 e.bypass = ckSCSL->ReadUint32() & 1;
4545 if (unknownSpace) ckSCSL->SetPos(unknownSpace, RIFF::stream_curpos); // in case of future extensions
4546 scriptPoolFileOffsets.push_back(e);
4547 }
4548 }
4549 }
4550 }
4551
4552 __notify_progress(pProgress, 1.0f); // notify done
4553 }
4554
4555 void Instrument::UpdateRegionKeyTable() {
4556 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4557 RegionList::iterator iter = pRegions->begin();
4558 RegionList::iterator end = pRegions->end();
4559 for (; iter != end; ++iter) {
4560 gig::Region* pRegion = static_cast<gig::Region*>(*iter);
4561 for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
4562 RegionKeyTable[iKey] = pRegion;
4563 }
4564 }
4565 }
4566
4567 Instrument::~Instrument() {
4568 for (int i = 0 ; pMidiRules[i] ; i++) {
4569 delete pMidiRules[i];
4570 }
4571 delete[] pMidiRules;
4572 if (pScriptRefs) delete pScriptRefs;
4573 }
4574
4575 /**
4576 * Apply Instrument with all its Regions to the respective RIFF chunks.
4577 * You have to call File::Save() to make changes persistent.
4578 *
4579 * Usually there is absolutely no need to call this method explicitly.
4580 * It will be called automatically when File::Save() was called.
4581 *
4582 * @param pProgress - callback function for progress notification
4583 * @throws gig::Exception if samples cannot be dereferenced
4584 */
4585 void Instrument::UpdateChunks(progress_t* pProgress) {
4586 // first update base classes' chunks
4587 DLS::Instrument::UpdateChunks(pProgress);
4588
4589 // update Regions' chunks
4590 {
4591 RegionList::iterator iter = pRegions->begin();
4592 RegionList::iterator end = pRegions->end();
4593 for (; iter != end; ++iter)
4594 (*iter)->UpdateChunks(pProgress);
4595 }
4596
4597 // make sure 'lart' RIFF list chunk exists
4598 RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
4599 if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
4600 // make sure '3ewg' RIFF chunk exists
4601 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4602 if (!_3ewg) {
4603 File* pFile = (File*) GetParent();
4604
4605 // 3ewg is bigger in gig3, as it includes the iMIDI rules
4606 int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
4607 _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
4608 memset(_3ewg->LoadChunkData(), 0, size);
4609 }
4610 // update '3ewg' RIFF chunk
4611 uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
4612 store16(&pData[0], EffectSend);
4613 store32(&pData[2], Attenuation);
4614 store16(&pData[6], FineTune);
4615 store16(&pData[8], PitchbendRange);
4616 const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
4617 DimensionKeyRange.low << 1;
4618 pData[10] = dimkeystart;
4619 pData[11] = DimensionKeyRange.high;
4620
4621 if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
4622 pData[32] = 0;
4623 pData[33] = 0;
4624 } else {
4625 for (int i = 0 ; pMidiRules[i] ; i++) {
4626 pMidiRules[i]->UpdateChunks(pData);
4627 }
4628 }
4629
4630 // own gig format extensions
4631 if (ScriptSlotCount()) {
4632 // make sure we have converted the original loaded script file
4633 // offsets into valid Script object pointers
4634 LoadScripts();
4635
4636 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4637 if (!lst3LS) lst3LS = pCkInstrument->AddSubList(LIST_TYPE_3LS);
4638 const int slotCount = (int) pScriptRefs->size();
4639 const int headerSize = 3 * sizeof(uint32_t);
4640 const int slotSize = 2 * sizeof(uint32_t);
4641 const int totalChunkSize = headerSize + slotCount * slotSize;
4642 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4643 if (!ckSCSL) ckSCSL = lst3LS->AddSubChunk(CHUNK_ID_SCSL, totalChunkSize);
4644 else ckSCSL->Resize(totalChunkSize);
4645 uint8_t* pData = (uint8_t*) ckSCSL->LoadChunkData();
4646 int pos = 0;
4647 store32(&pData[pos], headerSize);
4648 pos += sizeof(uint32_t);
4649 store32(&pData[pos], slotCount);
4650 pos += sizeof(uint32_t);
4651 store32(&pData[pos], slotSize);
4652 pos += sizeof(uint32_t);
4653 for (int i = 0; i < slotCount; ++i) {
4654 // arbitrary value, the actual file offset will be updated in
4655 // UpdateScriptFileOffsets() after the file has been resized
4656 int bogusFileOffset = 0;
4657 store32(&pData[pos], bogusFileOffset);
4658 pos += sizeof(uint32_t);
4659 store32(&pData[pos], (*pScriptRefs)[i].bypass ? 1 : 0);
4660 pos += sizeof(uint32_t);
4661 }
4662 } else {
4663 // no script slots, so get rid of any LS custom RIFF chunks (if any)
4664 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4665 if (lst3LS) pCkInstrument->DeleteSubChunk(lst3LS);
4666 }
4667 }
4668
4669 void Instrument::UpdateScriptFileOffsets() {
4670 // own gig format extensions
4671 if (pScriptRefs && pScriptRefs->size() > 0) {
4672 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4673 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4674 const int slotCount = (int) pScriptRefs->size();
4675 const int headerSize = 3 * sizeof(uint32_t);
4676 ckSCSL->SetPos(headerSize);
4677 for (int i = 0; i < slotCount; ++i) {
4678 uint32_t fileOffset = uint32_t(
4679 (*pScriptRefs)[i].script->pChunk->GetFilePos() -
4680 (*pScriptRefs)[i].script->pChunk->GetPos() -
4681 CHUNK_HEADER_SIZE(ckSCSL->GetFile()->GetFileOffsetSize())
4682 );
4683 ckSCSL->WriteUint32(&fileOffset);
4684 // jump over flags entry (containing the bypass flag)
4685 ckSCSL->SetPos(sizeof(uint32_t), RIFF::stream_curpos);
4686 }
4687 }
4688 }
4689
4690 /**
4691 * Returns the appropriate Region for a triggered note.
4692 *
4693 * @param Key MIDI Key number of triggered note / key (0 - 127)
4694 * @returns pointer adress to the appropriate Region or NULL if there
4695 * there is no Region defined for the given \a Key
4696 */
4697 Region* Instrument::GetRegion(unsigned int Key) {
4698 if (!pRegions || pRegions->empty() || Key > 127) return NULL;
4699 return RegionKeyTable[Key];
4700
4701 /*for (int i = 0; i < Regions; i++) {
4702 if (Key <= pRegions[i]->KeyRange.high &&
4703 Key >= pRegions[i]->KeyRange.low) return pRegions[i];
4704 }
4705 return NULL;*/
4706 }
4707
4708 /**
4709 * Returns the first Region of the instrument. You have to call this
4710 * method once before you use GetNextRegion().
4711 *
4712 * @returns pointer address to first region or NULL if there is none
4713 * @see GetNextRegion()
4714 */
4715 Region* Instrument::GetFirstRegion() {
4716 if (!pRegions) return NULL;
4717 RegionsIterator = pRegions->begin();
4718 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4719 }
4720
4721 /**
4722 * Returns the next Region of the instrument. You have to call
4723 * GetFirstRegion() once before you can use this method. By calling this
4724 * method multiple times it iterates through the available Regions.
4725 *
4726 * @returns pointer address to the next region or NULL if end reached
4727 * @see GetFirstRegion()
4728 */
4729 Region* Instrument::GetNextRegion() {
4730 if (!pRegions) return NULL;
4731 RegionsIterator++;
4732 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4733 }
4734
4735 Region* Instrument::AddRegion() {
4736 // create new Region object (and its RIFF chunks)
4737 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
4738 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
4739 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
4740 Region* pNewRegion = new Region(this, rgn);
4741 pRegions->push_back(pNewRegion);
4742 Regions = (uint32_t) pRegions->size();
4743 // update Region key table for fast lookup
4744 UpdateRegionKeyTable();
4745 // done
4746 return pNewRegion;
4747 }
4748
4749 void Instrument::DeleteRegion(Region* pRegion) {
4750 if (!pRegions) return;
4751 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
4752 // update Region key table for fast lookup
4753 UpdateRegionKeyTable();
4754 }
4755
4756 /**
4757 * Move this instrument at the position before @arg dst.
4758 *
4759 * This method can be used to reorder the sequence of instruments in a
4760 * .gig file. This might be helpful especially on large .gig files which
4761 * contain a large number of instruments within the same .gig file. So
4762 * grouping such instruments to similar ones, can help to keep track of them
4763 * when working with such complex .gig files.
4764 *
4765 * When calling this method, this instrument will be removed from in its
4766 * current position in the instruments list and moved to the requested
4767 * target position provided by @param dst. You may also pass NULL as
4768 * argument to this method, in that case this intrument will be moved to the
4769 * very end of the .gig file's instrument list.
4770 *
4771 * You have to call Save() to make the order change persistent to the .gig
4772 * file.
4773 *
4774 * Currently this method is limited to moving the instrument within the same
4775 * .gig file. Trying to move it to another .gig file by calling this method
4776 * will throw an exception.
4777 *
4778 * @param dst - destination instrument at which this instrument will be
4779 * moved to, or pass NULL for moving to end of list
4780 * @throw gig::Exception if this instrument and target instrument are not
4781 * part of the same file
4782 */
4783 void Instrument::MoveTo(Instrument* dst) {
4784 if (dst && GetParent() != dst->GetParent())
4785 throw Exception(
4786 "gig::Instrument::MoveTo() can only be used for moving within "
4787 "the same gig file."
4788 );
4789
4790 File* pFile = (File*) GetParent();
4791
4792 // move this instrument within the instrument list
4793 {
4794 File::InstrumentList& list = *pFile->pInstruments;
4795
4796 File::InstrumentList::iterator itFrom =
4797 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(this));
4798
4799 File::InstrumentList::iterator itTo =
4800 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(dst));
4801
4802 list.splice(itTo, list, itFrom);
4803 }
4804
4805 // move the instrument's actual list RIFF chunk appropriately
4806 RIFF::List* lstCkInstruments = pFile->pRIFF->GetSubList(LIST_TYPE_LINS);
4807 lstCkInstruments->MoveSubChunk(
4808 this->pCkInstrument,
4809 (RIFF::Chunk*) ((dst) ? dst->pCkInstrument : NULL)
4810 );
4811 }
4812
4813 /**
4814 * Returns a MIDI rule of the instrument.
4815 *
4816 * The list of MIDI rules, at least in gig v3, always contains at
4817 * most two rules. The second rule can only be the DEF filter
4818 * (which currently isn't supported by libgig).
4819 *
4820 * @param i - MIDI rule number
4821 * @returns pointer address to MIDI rule number i or NULL if there is none
4822 */
4823 MidiRule* Instrument::GetMidiRule(int i) {
4824 return pMidiRules[i];
4825 }
4826
4827 /**
4828 * Adds the "controller trigger" MIDI rule to the instrument.
4829 *
4830 * @returns the new MIDI rule
4831 */
4832 MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
4833 delete pMidiRules[0];
4834 MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
4835 pMidiRules[0] = r;
4836 pMidiRules[1] = 0;
4837 return r;
4838 }
4839
4840 /**
4841 * Adds the legato MIDI rule to the instrument.
4842 *
4843 * @returns the new MIDI rule
4844 */
4845 MidiRuleLegato* Instrument::AddMidiRuleLegato() {
4846 delete pMidiRules[0];
4847 MidiRuleLegato* r = new MidiRuleLegato;
4848 pMidiRules[0] = r;
4849 pMidiRules[1] = 0;
4850 return r;
4851 }
4852
4853 /**
4854 * Adds the alternator MIDI rule to the instrument.
4855 *
4856 * @returns the new MIDI rule
4857 */
4858 MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
4859 delete pMidiRules[0];
4860 MidiRuleAlternator* r = new MidiRuleAlternator;
4861 pMidiRules[0] = r;
4862 pMidiRules[1] = 0;
4863 return r;
4864 }
4865
4866 /**
4867 * Deletes a MIDI rule from the instrument.
4868 *
4869 * @param i - MIDI rule number
4870 */
4871 void Instrument::DeleteMidiRule(int i) {
4872 delete pMidiRules[i];
4873 pMidiRules[i] = 0;
4874 }
4875
4876 void Instrument::LoadScripts() {
4877 if (pScriptRefs) return;
4878 pScriptRefs = new std::vector<_ScriptPooolRef>;
4879 if (scriptPoolFileOffsets.empty()) return;
4880 File* pFile = (File*) GetParent();
4881 for (uint k = 0; k < scriptPoolFileOffsets.size(); ++k) {
4882 uint32_t soughtOffset = scriptPoolFileOffsets[k].fileOffset;
4883 for (uint i = 0; pFile->GetScriptGroup(i); ++i) {
4884 ScriptGroup* group = pFile->GetScriptGroup(i);
4885 for (uint s = 0; group->GetScript(s); ++s) {
4886 Script* script = group->GetScript(s);
4887 if (script->pChunk) {
4888 uint32_t offset = uint32_t(
4889 script->pChunk->GetFilePos() -
4890 script->pChunk->GetPos() -
4891 CHUNK_HEADER_SIZE(script->pChunk->GetFile()->GetFileOffsetSize())
4892 );
4893 if (offset == soughtOffset)
4894 {
4895 _ScriptPooolRef ref;
4896 ref.script = script;
4897 ref.bypass = scriptPoolFileOffsets[k].bypass;
4898 pScriptRefs->push_back(ref);
4899 break;
4900 }
4901 }
4902 }
4903 }
4904 }
4905 // we don't need that anymore
4906 scriptPoolFileOffsets.clear();
4907 }
4908
4909 /** @brief Get instrument script (gig format extension).
4910 *
4911 * Returns the real-time instrument script of instrument script slot
4912 * @a index.
4913 *
4914 * @note This is an own format extension which did not exist i.e. in the
4915 * GigaStudio 4 software. It will currently only work with LinuxSampler and
4916 * gigedit.
4917 *
4918 * @param index - instrument script slot index
4919 * @returns script or NULL if index is out of bounds
4920 */
4921 Script* Instrument::GetScriptOfSlot(uint index) {
4922 LoadScripts();
4923 if (index >= pScriptRefs->size()) return NULL;
4924 return pScriptRefs->at(index).script;
4925 }
4926
4927 /** @brief Add new instrument script slot (gig format extension).
4928 *
4929 * Add the given real-time instrument script reference to this instrument,
4930 * which shall be executed by the sampler for for this instrument. The
4931 * script will be added to the end of the script list of this instrument.
4932 * The positions of the scripts in the Instrument's Script list are
4933 * relevant, because they define in which order they shall be executed by
4934 * the sampler. For this reason it is also legal to add the same script
4935 * twice to an instrument, for example you might have a script called
4936 * "MyFilter" which performs an event filter task, and you might have
4937 * another script called "MyNoteTrigger" which triggers new notes, then you
4938 * might for example have the following list of scripts on the instrument:
4939 *
4940 * 1. Script "MyFilter"
4941 * 2. Script "MyNoteTrigger"
4942 * 3. Script "MyFilter"
4943 *
4944 * Which would make sense, because the 2nd script launched new events, which
4945 * you might need to filter as well.
4946 *
4947 * There are two ways to disable / "bypass" scripts. You can either disable
4948 * a script locally for the respective script slot on an instrument (i.e. by
4949 * passing @c false to the 2nd argument of this method, or by calling
4950 * SetScriptBypassed()). Or you can disable a script globally for all slots
4951 * and all instruments by setting Script::Bypass.
4952 *
4953 * @note This is an own format extension which did not exist i.e. in the
4954 * GigaStudio 4 software. It will currently only work with LinuxSampler and
4955 * gigedit.
4956 *
4957 * @param pScript - script that shall be executed for this instrument
4958 * @param bypass - if enabled, the sampler shall skip executing this
4959 * script (in the respective list position)
4960 * @see SetScriptBypassed()
4961 */
4962 void Instrument::AddScriptSlot(Script* pScript, bool bypass) {
4963 LoadScripts();
4964 _ScriptPooolRef ref = { pScript, bypass };
4965 pScriptRefs->push_back(ref);
4966 }
4967
4968 /** @brief Flip two script slots with each other (gig format extension).
4969 *
4970 * Swaps the position of the two given scripts in the Instrument's Script
4971 * list. The positions of the scripts in the Instrument's Script list are
4972 * relevant, because they define in which order they shall be executed by
4973 * the sampler.
4974 *
4975 * @note This is an own format extension which did not exist i.e. in the
4976 * GigaStudio 4 software. It will currently only work with LinuxSampler and
4977 * gigedit.
4978 *
4979 * @param index1 - index of the first script slot to swap
4980 * @param index2 - index of the second script slot to swap
4981 */
4982 void Instrument::SwapScriptSlots(uint index1, uint index2) {
4983 LoadScripts();
4984 if (index1 >= pScriptRefs->size() || index2 >= pScriptRefs->size())
4985 return;
4986 _ScriptPooolRef tmp = (*pScriptRefs)[index1];
4987 (*pScriptRefs)[index1] = (*pScriptRefs)[index2];
4988 (*pScriptRefs)[index2] = tmp;
4989 }
4990
4991 /** @brief Remove script slot.
4992 *
4993 * Removes the script slot with the given slot index.
4994 *
4995 * @param index - index of script slot to remove
4996 */
4997 void Instrument::RemoveScriptSlot(uint index) {
4998 LoadScripts();
4999 if (index >= pScriptRefs->size()) return;
5000 pScriptRefs->erase( pScriptRefs->begin() + index );
5001 }
5002
5003 /** @brief Remove reference to given Script (gig format extension).
5004 *
5005 * This will remove all script slots on the instrument which are referencing
5006 * the given script.
5007 *
5008 * @note This is an own format extension which did not exist i.e. in the
5009 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5010 * gigedit.
5011 *
5012 * @param pScript - script reference to remove from this instrument
5013 * @see RemoveScriptSlot()
5014 */
5015 void Instrument::RemoveScript(Script* pScript) {
5016 LoadScripts();
5017 for (ssize_t i = pScriptRefs->size() - 1; i >= 0; --i) {
5018 if ((*pScriptRefs)[i].script == pScript) {
5019 pScriptRefs->erase( pScriptRefs->begin() + i );
5020 }
5021 }
5022 }
5023
5024 /** @brief Instrument's amount of script slots.
5025 *
5026 * This method returns the amount of script slots this instrument currently
5027 * uses.
5028 *
5029 * A script slot is a reference of a real-time instrument script to be
5030 * executed by the sampler. The scripts will be executed by the sampler in
5031 * sequence of the slots. One (same) script may be referenced multiple
5032 * times in different slots.
5033 *
5034 * @note This is an own format extension which did not exist i.e. in the
5035 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5036 * gigedit.
5037 */
5038 uint Instrument::ScriptSlotCount() const {
5039 return uint(pScriptRefs ? pScriptRefs->size() : scriptPoolFileOffsets.size());
5040 }
5041
5042 /** @brief Whether script execution shall be skipped.
5043 *
5044 * Defines locally for the Script reference slot in the Instrument's Script
5045 * list, whether the script shall be skipped by the sampler regarding
5046 * execution.
5047 *
5048 * It is also possible to ignore exeuction of the script globally, for all
5049 * slots and for all instruments by setting Script::Bypass.
5050 *
5051 * @note This is an own format extension which did not exist i.e. in the
5052 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5053 * gigedit.
5054 *
5055 * @param index - index of the script slot on this instrument
5056 * @see Script::Bypass
5057 */
5058 bool Instrument::IsScriptSlotBypassed(uint index) {
5059 if (index >= ScriptSlotCount()) return false;
5060 return pScriptRefs ? pScriptRefs->at(index).bypass
5061 : scriptPoolFileOffsets.at(index).bypass;
5062
5063 }
5064
5065 /** @brief Defines whether execution shall be skipped.
5066 *
5067 * You can call this method to define locally whether or whether not the
5068 * given script slot shall be executed by the sampler.
5069 *
5070 * @note This is an own format extension which did not exist i.e. in the
5071 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5072 * gigedit.
5073 *
5074 * @param index - script slot index on this instrument
5075 * @param bBypass - if true, the script slot will be skipped by the sampler
5076 * @see Script::Bypass
5077 */
5078 void Instrument::SetScriptSlotBypassed(uint index, bool bBypass) {
5079 if (index >= ScriptSlotCount()) return;
5080 if (pScriptRefs)
5081 pScriptRefs->at(index).bypass = bBypass;
5082 else
5083 scriptPoolFileOffsets.at(index).bypass = bBypass;
5084 }
5085
5086 /**
5087 * Make a (semi) deep copy of the Instrument object given by @a orig
5088 * and assign it to this object.
5089 *
5090 * Note that all sample pointers referenced by @a orig are simply copied as
5091 * memory address. Thus the respective samples are shared, not duplicated!
5092 *
5093 * @param orig - original Instrument object to be copied from
5094 */
5095 void Instrument::CopyAssign(const Instrument* orig) {
5096 CopyAssign(orig, NULL);
5097 }
5098
5099 /**
5100 * Make a (semi) deep copy of the Instrument object given by @a orig
5101 * and assign it to this object.
5102 *
5103 * @param orig - original Instrument object to be copied from
5104 * @param mSamples - crosslink map between the foreign file's samples and
5105 * this file's samples
5106 */
5107 void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
5108 // handle base class
5109 // (without copying DLS region stuff)
5110 DLS::Instrument::CopyAssignCore(orig);
5111
5112 // handle own member variables
5113 Attenuation = orig->Attenuation;
5114 EffectSend = orig->EffectSend;
5115 FineTune = orig->FineTune;
5116 PitchbendRange = orig->PitchbendRange;
5117 PianoReleaseMode = orig->PianoReleaseMode;
5118 DimensionKeyRange = orig->DimensionKeyRange;
5119 scriptPoolFileOffsets = orig->scriptPoolFileOffsets;
5120 pScriptRefs = orig->pScriptRefs;
5121
5122 // free old midi rules
5123 for (int i = 0 ; pMidiRules[i] ; i++) {
5124 delete pMidiRules[i];
5125 }
5126 //TODO: MIDI rule copying
5127 pMidiRules[0] = NULL;
5128
5129 // delete all old regions
5130 while (Regions) DeleteRegion(GetFirstRegion());
5131 // create new regions and copy them from original
5132 {
5133 RegionList::const_iterator it = orig->pRegions->begin();
5134 for (int i = 0; i < orig->Regions; ++i, ++it) {
5135 Region* dstRgn = AddRegion();
5136 //NOTE: Region does semi-deep copy !
5137 dstRgn->CopyAssign(
5138 static_cast<gig::Region*>(*it),
5139 mSamples
5140 );
5141 }
5142 }
5143
5144 UpdateRegionKeyTable();
5145 }
5146
5147
5148 // *************** Group ***************
5149 // *
5150
5151 /** @brief Constructor.
5152 *
5153 * @param file - pointer to the gig::File object
5154 * @param ck3gnm - pointer to 3gnm chunk associated with this group or
5155 * NULL if this is a new Group
5156 */
5157 Group::Group(File* file, RIFF::Chunk* ck3gnm) {
5158 pFile = file;
5159 pNameChunk = ck3gnm;
5160 ::LoadString(pNameChunk, Name);
5161 }
5162
5163 Group::~Group() {
5164 // remove the chunk associated with this group (if any)
5165 if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
5166 }
5167
5168 /** @brief Update chunks with current group settings.
5169 *
5170 * Apply current Group field values to the respective chunks. You have
5171 * to call File::Save() to make changes persistent.
5172 *
5173 * Usually there is absolutely no need to call this method explicitly.
5174 * It will be called automatically when File::Save() was called.
5175 *
5176 * @param pProgress - callback function for progress notification
5177 */
5178 void Group::UpdateChunks(progress_t* pProgress) {
5179 // make sure <3gri> and <3gnl> list chunks exist
5180 RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
5181 if (!_3gri) {
5182 _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
5183 pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
5184 }
5185 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
5186 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
5187
5188 if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
5189 // v3 has a fixed list of 128 strings, find a free one
5190 for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
5191 if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
5192 pNameChunk = ck;
5193 break;
5194 }
5195 }
5196 }
5197
5198 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
5199 ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
5200 }
5201
5202 /**
5203 * Returns the first Sample of this Group. You have to call this method
5204 * once before you use GetNextSample().
5205 *
5206 * <b>Notice:</b> this method might block for a long time, in case the
5207 * samples of this .gig file were not scanned yet
5208 *
5209 * @returns pointer address to first Sample or NULL if there is none
5210 * applied to this Group
5211 * @see GetNextSample()
5212 */
5213 Sample* Group::GetFirstSample() {
5214 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5215 for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
5216 if (pSample->GetGroup() == this) return pSample;
5217 }
5218 return NULL;
5219 }
5220
5221 /**
5222 * Returns the next Sample of the Group. You have to call
5223 * GetFirstSample() once before you can use this method. By calling this
5224 * method multiple times it iterates through the Samples assigned to
5225 * this Group.
5226 *
5227 * @returns pointer address to the next Sample of this Group or NULL if
5228 * end reached
5229 * @see GetFirstSample()
5230 */
5231 Sample* Group::GetNextSample() {
5232 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5233 for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
5234 if (pSample->GetGroup() == this) return pSample;
5235 }
5236 return NULL;
5237 }
5238
5239 /**
5240 * Move Sample given by \a pSample from another Group to this Group.
5241 */
5242 void Group::AddSample(Sample* pSample) {
5243 pSample->pGroup = this;
5244 }
5245
5246 /**
5247 * Move all members of this group to another group (preferably the 1st
5248 * one except this). This method is called explicitly by
5249 * File::DeleteGroup() thus when a Group was deleted. This code was
5250 * intentionally not placed in the destructor!
5251 */
5252 void Group::MoveAll() {
5253 // get "that" other group first
5254 Group* pOtherGroup = NULL;
5255 for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
5256 if (pOtherGroup != this) break;
5257 }
5258 if (!pOtherGroup) throw Exception(
5259 "Could not move samples to another group, since there is no "
5260 "other Group. This is a bug, report it!"
5261 );
5262 // now move all samples of this group to the other group
5263 for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
5264 pOtherGroup->AddSample(pSample);
5265 }
5266 }
5267
5268
5269
5270 // *************** File ***************
5271 // *
5272
5273 /// Reflects Gigasampler file format version 2.0 (1998-06-28).
5274 const DLS::version_t File::VERSION_2 = {
5275 0, 2, 19980628 & 0xffff, 19980628 >> 16
5276 };
5277
5278 /// Reflects Gigasampler file format version 3.0 (2003-03-31).
5279 const DLS::version_t File::VERSION_3 = {
5280 0, 3, 20030331 & 0xffff, 20030331 >> 16
5281 };
5282
5283 static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
5284 { CHUNK_ID_IARL, 256 },
5285 { CHUNK_ID_IART, 128 },
5286 { CHUNK_ID_ICMS, 128 },
5287 { CHUNK_ID_ICMT, 1024 },
5288 { CHUNK_ID_ICOP, 128 },
5289 { CHUNK_ID_ICRD, 128 },
5290 { CHUNK_ID_IENG, 128 },
5291 { CHUNK_ID_IGNR, 128 },
5292 { CHUNK_ID_IKEY, 128 },
5293 { CHUNK_ID_IMED, 128 },
5294 { CHUNK_ID_INAM, 128 },
5295 { CHUNK_ID_IPRD, 128 },
5296 { CHUNK_ID_ISBJ, 128 },
5297 { CHUNK_ID_ISFT, 128 },
5298 { CHUNK_ID_ISRC, 128 },
5299 { CHUNK_ID_ISRF, 128 },
5300 { CHUNK_ID_ITCH, 128 },
5301 { 0, 0 }
5302 };
5303
5304 File::File() : DLS::File() {
5305 bAutoLoad = true;
5306 *pVersion = VERSION_3;
5307 pGroups = NULL;
5308 pScriptGroups = NULL;
5309 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5310 pInfo->ArchivalLocation = String(256, ' ');
5311
5312 // add some mandatory chunks to get the file chunks in right
5313 // order (INFO chunk will be moved to first position later)
5314 pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
5315 pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
5316 pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
5317
5318 GenerateDLSID();
5319 }
5320
5321 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
5322 bAutoLoad = true;
5323 pGroups = NULL;
5324 pScriptGroups = NULL;
5325 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5326 }
5327
5328 File::~File() {
5329 if (pGroups) {
5330 std::list<Group*>::iterator iter = pGroups->begin();
5331 std::list<Group*>::iterator end = pGroups->end();
5332 while (iter != end) {
5333 delete *iter;
5334 ++iter;
5335 }
5336 delete pGroups;
5337 }
5338 if (pScriptGroups) {
5339 std::list<ScriptGroup*>::iterator iter = pScriptGroups->begin();
5340 std::list<ScriptGroup*>::iterator end = pScriptGroups->end();
5341 while (iter != end) {
5342 delete *iter;
5343 ++iter;
5344 }
5345 delete pScriptGroups;
5346 }
5347 }
5348
5349 Sample* File::GetFirstSample(progress_t* pProgress) {
5350 if (!pSamples) LoadSamples(pProgress);
5351 if (!pSamples) return NULL;
5352 SamplesIterator = pSamples->begin();
5353 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5354 }
5355
5356 Sample* File::GetNextSample() {
5357 if (!pSamples) return NULL;
5358 SamplesIterator++;
5359 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5360 }
5361
5362 /**
5363 * Returns Sample object of @a index.
5364 *
5365 * @returns sample object or NULL if index is out of bounds
5366 */
5367 Sample* File::GetSample(uint index) {
5368 if (!pSamples) LoadSamples();
5369 if (!pSamples) return NULL;
5370 DLS::File::SampleList::iterator it = pSamples->begin();
5371 for (int i = 0; i < index; ++i) {
5372 ++it;
5373 if (it == pSamples->end()) return NULL;
5374 }
5375 if (it == pSamples->end()) return NULL;
5376 return static_cast<gig::Sample*>( *it );
5377 }
5378
5379 /** @brief Add a new sample.
5380 *
5381 * This will create a new Sample object for the gig file. You have to
5382 * call Save() to make this persistent to the file.
5383 *
5384 * @returns pointer to new Sample object
5385 */
5386 Sample* File::AddSample() {
5387 if (!pSamples) LoadSamples();
5388 __ensureMandatoryChunksExist();
5389 RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
5390 // create new Sample object and its respective 'wave' list chunk
5391 RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
5392 Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
5393
5394 // add mandatory chunks to get the chunks in right order
5395 wave->AddSubChunk(CHUNK_ID_FMT, 16);
5396 wave->AddSubList(LIST_TYPE_INFO);
5397
5398 pSamples->push_back(pSample);
5399 return pSample;
5400 }
5401
5402 /** @brief Delete a sample.
5403 *
5404 * This will delete the given Sample object from the gig file. Any
5405 * references to this sample from Regions and DimensionRegions will be
5406 * removed. You have to call Save() to make this persistent to the file.
5407 *
5408 * @param pSample - sample to delete
5409 * @throws gig::Exception if given sample could not be found
5410 */
5411 void File::DeleteSample(Sample* pSample) {
5412 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
5413 SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
5414 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
5415 if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
5416 pSamples->erase(iter);
5417 delete pSample;
5418
5419 SampleList::iterator tmp = SamplesIterator;
5420 // remove all references to the sample
5421 for (Instrument* instrument = GetFirstInstrument() ; instrument ;
5422 instrument = GetNextInstrument()) {
5423 for (Region* region = instrument->GetFirstRegion() ; region ;
5424 region = instrument->GetNextRegion()) {
5425
5426 if (region->GetSample() == pSample) region->SetSample(NULL);
5427
5428 for (int i = 0 ; i < region->DimensionRegions ; i++) {
5429 gig::DimensionRegion *d = region->pDimensionRegions[i];
5430 if (d->pSample == pSample) d->pSample = NULL;
5431 }
5432 }
5433 }
5434 SamplesIterator = tmp; // restore iterator
5435 }
5436
5437 void File::LoadSamples() {
5438 LoadSamples(NULL);
5439 }
5440
5441 void File::LoadSamples(progress_t* pProgress) {
5442 // Groups must be loaded before samples, because samples will try
5443 // to resolve the group they belong to
5444 if (!pGroups) LoadGroups();
5445
5446 if (!pSamples) pSamples = new SampleList;
5447
5448 RIFF::File* file = pRIFF;
5449
5450 // just for progress calculation
5451 int iSampleIndex = 0;
5452 int iTotalSamples = WavePoolCount;
5453
5454 // check if samples should be loaded from extension files
5455 // (only for old gig files < 2 GB)
5456 int lastFileNo = 0;
5457 if (!file->IsNew() && !(file->GetCurrentFileSize() >> 31)) {
5458 for (int i = 0 ; i < WavePoolCount ; i++) {
5459 if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
5460 }
5461 }
5462 String name(pRIFF->GetFileName());
5463 int nameLen = (int) name.length();
5464 char suffix[6];
5465 if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
5466
5467 for (int fileNo = 0 ; ; ) {
5468 RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
5469 if (wvpl) {
5470 file_offset_t wvplFileOffset = wvpl->GetFilePos();
5471 RIFF::List* wave = wvpl->GetFirstSubList();
5472 while (wave) {
5473 if (wave->GetListType() == LIST_TYPE_WAVE) {
5474 // notify current progress
5475 const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
5476 __notify_progress(pProgress, subprogress);
5477
5478 file_offset_t waveFileOffset = wave->GetFilePos();
5479 pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo, iSampleIndex));
5480
5481 iSampleIndex++;
5482 }
5483 wave = wvpl->GetNextSubList();
5484 }
5485
5486 if (fileNo == lastFileNo) break;
5487
5488 // open extension file (*.gx01, *.gx02, ...)
5489 fileNo++;
5490 sprintf(suffix, ".gx%02d", fileNo);
5491 name.replace(nameLen, 5, suffix);
5492 file = new RIFF::File(name);
5493 ExtensionFiles.push_back(file);
5494 } else break;
5495 }
5496
5497 __notify_progress(pProgress, 1.0); // notify done
5498 }
5499
5500 Instrument* File::GetFirstInstrument() {
5501 if (!pInstruments) LoadInstruments();
5502 if (!pInstruments) return NULL;
5503 InstrumentsIterator = pInstruments->begin();
5504 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5505 }
5506
5507 Instrument* File::GetNextInstrument() {
5508 if (!pInstruments) return NULL;
5509 InstrumentsIterator++;
5510 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5511 }
5512
5513 /**
5514 * Returns the instrument with the given index.
5515 *
5516 * @param index - number of the sought instrument (0..n)
5517 * @param pProgress - optional: callback function for progress notification
5518 * @returns sought instrument or NULL if there's no such instrument
5519 */
5520 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
5521 if (!pInstruments) {
5522 // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
5523
5524 // sample loading subtask
5525 progress_t subprogress;
5526 __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
5527 __notify_progress(&subprogress, 0.0f);
5528 if (GetAutoLoad())
5529 GetFirstSample(&subprogress); // now force all samples to be loaded
5530 __notify_progress(&subprogress, 1.0f);
5531
5532 // instrument loading subtask
5533 if (pProgress && pProgress->callback) {
5534 subprogress.__range_min = subprogress.__range_max;
5535 subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
5536 }
5537 __notify_progress(&subprogress, 0.0f);
5538 LoadInstruments(&subprogress);
5539 __notify_progress(&subprogress, 1.0f);
5540 }
5541 if (!pInstruments) return NULL;
5542 InstrumentsIterator = pInstruments->begin();
5543 for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
5544 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
5545 InstrumentsIterator++;
5546 }
5547 return NULL;
5548 }
5549
5550 /** @brief Add a new instrument definition.
5551 *
5552 * This will create a new Instrument object for the gig file. You have
5553 * to call Save() to make this persistent to the file.
5554 *
5555 * @returns pointer to new Instrument object
5556 */
5557 Instrument* File::AddInstrument() {
5558 if (!pInstruments) LoadInstruments();
5559 __ensureMandatoryChunksExist();
5560 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5561 RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
5562
5563 // add mandatory chunks to get the chunks in right order
5564 lstInstr->AddSubList(LIST_TYPE_INFO);
5565 lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
5566
5567 Instrument* pInstrument = new Instrument(this, lstInstr);
5568 pInstrument->GenerateDLSID();
5569
5570 lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
5571
5572 // this string is needed for the gig to be loadable in GSt:
5573 pInstrument->pInfo->Software = "Endless Wave";
5574
5575 pInstruments->push_back(pInstrument);
5576 return pInstrument;
5577 }
5578
5579 /** @brief Add a duplicate of an existing instrument.
5580 *
5581 * Duplicates the instrument definition given by @a orig and adds it
5582 * to this file. This allows in an instrument editor application to
5583 * easily create variations of an instrument, which will be stored in
5584 * the same .gig file, sharing i.e. the same samples.
5585 *
5586 * Note that all sample pointers referenced by @a orig are simply copied as
5587 * memory address. Thus the respective samples are shared, not duplicated!
5588 *
5589 * You have to call Save() to make this persistent to the file.
5590 *
5591 * @param orig - original instrument to be copied
5592 * @returns duplicated copy of the given instrument
5593 */
5594 Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
5595 Instrument* instr = AddInstrument();
5596 instr->CopyAssign(orig);
5597 return instr;
5598 }
5599
5600 /** @brief Add content of another existing file.
5601 *
5602 * Duplicates the samples, groups and instruments of the original file
5603 * given by @a pFile and adds them to @c this File. In case @c this File is
5604 * a new one that you haven't saved before, then you have to call
5605 * SetFileName() before calling AddContentOf(), because this method will
5606 * automatically save this file during operation, which is required for
5607 * writing the sample waveform data by disk streaming.
5608 *
5609 * @param pFile - original file whose's content shall be copied from
5610 */
5611 void File::AddContentOf(File* pFile) {
5612 static int iCallCount = -1;
5613 iCallCount++;
5614 std::map<Group*,Group*> mGroups;
5615 std::map<Sample*,Sample*> mSamples;
5616
5617 // clone sample groups
5618 for (int i = 0; pFile->GetGroup(i); ++i) {
5619 Group* g = AddGroup();
5620 g->Name =
5621 "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
5622 mGroups[pFile->GetGroup(i)] = g;
5623 }
5624
5625 // clone samples (not waveform data here yet)
5626 for (int i = 0; pFile->GetSample(i); ++i) {
5627 Sample* s = AddSample();
5628 s->CopyAssignMeta(pFile->GetSample(i));
5629 mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
5630 mSamples[pFile->GetSample(i)] = s;
5631 }
5632
5633 // clone script groups and their scripts
5634 for (int iGroup = 0; pFile->GetScriptGroup(iGroup); ++iGroup) {
5635 ScriptGroup* sg = pFile->GetScriptGroup(iGroup);
5636 ScriptGroup* dg = AddScriptGroup();
5637 dg->Name = "COPY" + ToString(iCallCount) + "_" + sg->Name;
5638 for (int iScript = 0; sg->GetScript(iScript); ++iScript) {
5639 Script* ss = sg->GetScript(iScript);
5640 Script* ds = dg->AddScript();
5641 ds->CopyAssign(ss);
5642 }
5643 }
5644
5645 //BUG: For some reason this method only works with this additional
5646 // Save() call in between here.
5647 //
5648 // Important: The correct one of the 2 Save() methods has to be called
5649 // here, depending on whether the file is completely new or has been
5650 // saved to disk already, otherwise it will result in data corruption.
5651 if (pRIFF->IsNew())
5652 Save(GetFileName());
5653 else
5654 Save();
5655
5656 // clone instruments
5657 // (passing the crosslink table here for the cloned samples)
5658 for (int i = 0; pFile->GetInstrument(i); ++i) {
5659 Instrument* instr = AddInstrument();
5660 instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
5661 }
5662
5663 // Mandatory: file needs to be saved to disk at this point, so this
5664 // file has the correct size and data layout for writing the samples'
5665 // waveform data to disk.
5666 Save();
5667
5668 // clone samples' waveform data
5669 // (using direct read & write disk streaming)
5670 for (int i = 0; pFile->GetSample(i); ++i) {
5671 mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
5672 }
5673 }
5674
5675 /** @brief Delete an instrument.
5676 *
5677 * This will delete the given Instrument object from the gig file. You
5678 * have to call Save() to make this persistent to the file.
5679 *
5680 * @param pInstrument - instrument to delete
5681 * @throws gig::Exception if given instrument could not be found
5682 */
5683 void File::DeleteInstrument(Instrument* pInstrument) {
5684 if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
5685 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
5686 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
5687 pInstruments->erase(iter);
5688 delete pInstrument;
5689 }
5690
5691 void File::LoadInstruments() {
5692 LoadInstruments(NULL);
5693 }
5694
5695 void File::LoadInstruments(progress_t* pProgress) {
5696 if (!pInstruments) pInstruments = new InstrumentList;
5697 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5698 if (lstInstruments) {
5699 int iInstrumentIndex = 0;
5700 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
5701 while (lstInstr) {
5702 if (lstInstr->GetListType() == LIST_TYPE_INS) {
5703 // notify current progress
5704 const float localProgress = (float) iInstrumentIndex / (float) Instruments;
5705 __notify_progress(pProgress, localProgress);
5706
5707 // divide local progress into subprogress for loading current Instrument
5708 progress_t subprogress;
5709 __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
5710
5711 pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
5712
5713 iInstrumentIndex++;
5714 }
5715 lstInstr = lstInstruments->GetNextSubList();
5716 }
5717 __notify_progress(pProgress, 1.0); // notify done
5718 }
5719 }
5720
5721 /// Updates the 3crc chunk with the checksum of a sample. The
5722 /// update is done directly to disk, as this method is called
5723 /// after File::Save()
5724 void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
5725 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5726 if (!_3crc) return;
5727
5728 // get the index of the sample
5729 int iWaveIndex = GetWaveTableIndexOf(pSample);
5730 if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
5731
5732 // write the CRC-32 checksum to disk
5733 _3crc->SetPos(iWaveIndex * 8);
5734 uint32_t one = 1;
5735 _3crc->WriteUint32(&one); // always 1
5736 _3crc->WriteUint32(&crc);
5737 }
5738
5739 uint32_t File::GetSampleChecksum(Sample* pSample) {
5740 // get the index of the sample
5741 int iWaveIndex = GetWaveTableIndexOf(pSample);
5742 if (iWaveIndex < 0) throw gig::Exception("Could not retrieve reference crc of sample, could not resolve sample's wave table index");
5743
5744 return GetSampleChecksumByIndex(iWaveIndex);
5745 }
5746
5747 uint32_t File::GetSampleChecksumByIndex(int index) {
5748 if (index < 0) throw gig::Exception("Could not retrieve reference crc of sample, invalid wave pool index of sample");
5749
5750 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5751 if (!_3crc) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
5752 uint8_t* pData = (uint8_t*) _3crc->LoadChunkData();
5753 if (!pData) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
5754
5755 // read the CRC-32 checksum directly from disk
5756 size_t pos = index * 8;
5757 if (pos + 8 > _3crc->GetNewSize())
5758 throw gig::Exception("Could not retrieve reference crc of sample, could not seek to required position in crc chunk");
5759
5760 uint32_t one = load32(&pData[pos]); // always 1
5761 if (one != 1)
5762 throw gig::Exception("Could not retrieve reference crc of sample, because reference checksum table is damaged");
5763
5764 return load32(&pData[pos+4]);
5765 }
5766
5767 int File::GetWaveTableIndexOf(gig::Sample* pSample) {
5768 if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
5769 File::SampleList::iterator iter = pSamples->begin();
5770 File::SampleList::iterator end = pSamples->end();
5771 for (int index = 0; iter != end; ++iter, ++index)
5772 if (*iter == pSample)
5773 return index;
5774 return -1;
5775 }
5776
5777 /**
5778 * Checks whether the file's "3CRC" chunk was damaged. This chunk contains
5779 * the CRC32 check sums of all samples' raw wave data.
5780 *
5781 * @return true if 3CRC chunk is OK, or false if 3CRC chunk is damaged
5782 */
5783 bool File::VerifySampleChecksumTable() {
5784 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5785 if (!_3crc) return false;
5786 if (_3crc->GetNewSize() <= 0) return false;
5787 if (_3crc->GetNewSize() % 8) return false;
5788 if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
5789 if (_3crc->GetNewSize() != pSamples->size() * 8) return false;
5790
5791 const file_offset_t n = _3crc->GetNewSize() / 8;
5792
5793 uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
5794 if (!pData) return false;
5795
5796 for (file_offset_t i = 0; i < n; ++i) {
5797 uint32_t one = pData[i*2];
5798 if (one != 1) return false;
5799 }
5800
5801 return true;
5802 }
5803
5804 /**
5805 * Recalculates CRC32 checksums for all samples and rebuilds this gig
5806 * file's checksum table with those new checksums. This might usually
5807 * just be necessary if the checksum table was damaged.
5808 *
5809 * @e IMPORTANT: The current implementation of this method only works
5810 * with files that have not been modified since it was loaded, because
5811 * it expects that no externally caused file structure changes are
5812 * required!
5813 *
5814 * Due to the expectation above, this method is currently protected
5815 * and actually only used by the command line tool "gigdump" yet.
5816 *
5817 * @returns true if Save() is required to be called after this call,
5818 * false if no further action is required
5819 */
5820 bool File::RebuildSampleChecksumTable() {
5821 // make sure sample chunks were scanned
5822 if (!pSamples) GetFirstSample();
5823
5824 bool bRequiresSave = false;
5825
5826 // make sure "3CRC" chunk exists with required size
5827 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5828 if (!_3crc) {
5829 _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
5830 // the order of einf and 3crc is not the same in v2 and v3
5831 RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
5832 if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
5833 bRequiresSave = true;
5834 } else if (_3crc->GetNewSize() != pSamples->size() * 8) {
5835 _3crc->Resize(pSamples->size() * 8);
5836 bRequiresSave = true;
5837 }
5838
5839 if (bRequiresSave) { // refill CRC table for all samples in RAM ...
5840 uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
5841 {
5842 File::SampleList::iterator iter = pSamples->begin();
5843 File::SampleList::iterator end = pSamples->end();
5844 for (; iter != end; ++iter) {
5845 gig::Sample* pSample = (gig::Sample*) *iter;
5846 int index = GetWaveTableIndexOf(pSample);
5847 if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
5848 pData[index*2] = 1; // always 1
5849 pData[index*2+1] = pSample->CalculateWaveDataChecksum();
5850 }
5851 }
5852 } else { // no file structure changes necessary, so directly write to disk and we are done ...
5853 // make sure file is in write mode
5854 pRIFF->SetMode(RIFF::stream_mode_read_write);
5855 {
5856 File::SampleList::iterator iter = pSamples->begin();
5857 File::SampleList::iterator end = pSamples->end();
5858 for (; iter != end; ++iter) {
5859 gig::Sample* pSample = (gig::Sample*) *iter;
5860 int index = GetWaveTableIndexOf(pSample);
5861 if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
5862 pSample->crc = pSample->CalculateWaveDataChecksum();
5863 SetSampleChecksum(pSample, pSample->crc);
5864 }
5865 }
5866 }
5867
5868 return bRequiresSave;
5869 }
5870
5871 Group* File::GetFirstGroup() {
5872 if (!pGroups) LoadGroups();
5873 // there must always be at least one group
5874 GroupsIterator = pGroups->begin();
5875 return *GroupsIterator;
5876 }
5877
5878 Group* File::GetNextGroup() {
5879 if (!pGroups) return NULL;
5880 ++GroupsIterator;
5881 return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
5882 }
5883
5884 /**
5885 * Returns the group with the given index.
5886 *
5887 * @param index - number of the sought group (0..n)
5888 * @returns sought group or NULL if there's no such group
5889 */
5890 Group* File::GetGroup(uint index) {
5891 if (!pGroups) LoadGroups();
5892 GroupsIterator = pGroups->begin();
5893 for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
5894 if (i == index) return *GroupsIterator;
5895 ++GroupsIterator;
5896 }
5897 return NULL;
5898 }
5899
5900 /**
5901 * Returns the group with the given group name.
5902 *
5903 * Note: group names don't have to be unique in the gig format! So there
5904 * can be multiple groups with the same name. This method will simply
5905 * return the first group found with the given name.
5906 *
5907 * @param name - name of the sought group
5908 * @returns sought group or NULL if there's no group with that name
5909 */
5910 Group* File::GetGroup(String name) {
5911 if (!pGroups) LoadGroups();
5912 GroupsIterator = pGroups->begin();
5913 for (uint i = 0; GroupsIterator != pGroups->end(); ++GroupsIterator, ++i)
5914 if ((*GroupsIterator)->Name == name) return *GroupsIterator;
5915 return NULL;
5916 }
5917
5918 Group* File::AddGroup() {
5919 if (!pGroups) LoadGroups();
5920 // there must always be at least one group
5921 __ensureMandatoryChunksExist();
5922 Group* pGroup = new Group(this, NULL);
5923 pGroups->push_back(pGroup);
5924 return pGroup;
5925 }
5926
5927 /** @brief Delete a group and its samples.
5928 *
5929 * This will delete the given Group object and all the samples that
5930 * belong to this group from the gig file. You have to call Save() to
5931 * make this persistent to the file.
5932 *
5933 * @param pGroup - group to delete
5934 * @throws gig::Exception if given group could not be found
5935 */
5936 void File::DeleteGroup(Group* pGroup) {
5937 if (!pGroups) LoadGroups();
5938 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
5939 if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
5940 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
5941 // delete all members of this group
5942 for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
5943 DeleteSample(pSample);
5944 }
5945 // now delete this group object
5946 pGroups->erase(iter);
5947 delete pGroup;
5948 }
5949
5950 /** @brief Delete a group.
5951 *
5952 * This will delete the given Group object from the gig file. All the
5953 * samples that belong to this group will not be deleted, but instead
5954 * be moved to another group. You have to call Save() to make this
5955 * persistent to the file.
5956 *
5957 * @param pGroup - group to delete
5958 * @throws gig::Exception if given group could not be found
5959 */
5960 void File::DeleteGroupOnly(Group* pGroup) {
5961 if (!pGroups) LoadGroups();
5962 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
5963 if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
5964 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
5965 // move all members of this group to another group
5966 pGroup->MoveAll();
5967 pGroups->erase(iter);
5968 delete pGroup;
5969 }
5970
5971 void File::LoadGroups() {
5972 if (!pGroups) pGroups = new std::list<Group*>;
5973 // try to read defined groups from file
5974 RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
5975 if (lst3gri) {
5976 RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
5977 if (lst3gnl) {
5978 RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
5979 while (ck) {
5980 if (ck->GetChunkID() == CHUNK_ID_3GNM) {
5981 if (pVersion && pVersion->major == 3 &&
5982 strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
5983
5984 pGroups->push_back(new Group(this, ck));
5985 }
5986 ck = lst3gnl->GetNextSubChunk();
5987 }
5988 }
5989 }
5990 // if there were no group(s), create at least the mandatory default group
5991 if (!pGroups->size()) {
5992 Group* pGroup = new Group(this, NULL);
5993 pGroup->Name = "Default Group";
5994 pGroups->push_back(pGroup);
5995 }
5996 }
5997
5998 /** @brief Get instrument script group (by index).
5999 *
6000 * Returns the real-time instrument script group with the given index.
6001 *
6002 * @param index - number of the sought group (0..n)
6003 * @returns sought script group or NULL if there's no such group
6004 */
6005 ScriptGroup* File::GetScriptGroup(uint index) {
6006 if (!pScriptGroups) LoadScriptGroups();
6007 std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6008 for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6009 if (i == index) return *it;
6010 return NULL;
6011 }
6012
6013 /** @brief Get instrument script group (by name).
6014 *
6015 * Returns the first real-time instrument script group found with the given
6016 * group name. Note that group names may not necessarily be unique.
6017 *
6018 * @param name - name of the sought script group
6019 * @returns sought script group or NULL if there's no such group
6020 */
6021 ScriptGroup* File::GetScriptGroup(const String& name) {
6022 if (!pScriptGroups) LoadScriptGroups();
6023 std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6024 for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6025 if ((*it)->Name == name) return *it;
6026 return NULL;
6027 }
6028
6029 /** @brief Add new instrument script group.
6030 *
6031 * Adds a new, empty real-time instrument script group to the file.
6032 *
6033 * You have to call Save() to make this persistent to the file.
6034 *
6035 * @return new empty script group
6036 */
6037 ScriptGroup* File::AddScriptGroup() {
6038 if (!pScriptGroups) LoadScriptGroups();
6039 ScriptGroup* pScriptGroup = new ScriptGroup(this, NULL);
6040 pScriptGroups->push_back(pScriptGroup);
6041 return pScriptGroup;
6042 }
6043
6044 /** @brief Delete an instrument script group.
6045 *
6046 * This will delete the given real-time instrument script group and all its
6047 * instrument scripts it contains. References inside instruments that are
6048 * using the deleted scripts will be removed from the respective instruments
6049 * accordingly.
6050 *
6051 * You have to call Save() to make this persistent to the file.
6052 *
6053 * @param pScriptGroup - script group to delete
6054 * @throws gig::Exception if given script group could not be found
6055 */
6056 void File::DeleteScriptGroup(ScriptGroup* pScriptGroup) {
6057 if (!pScriptGroups) LoadScriptGroups();
6058 std::list<ScriptGroup*>::iterator iter =
6059 find(pScriptGroups->begin(), pScriptGroups->end(), pScriptGroup);
6060 if (iter == pScriptGroups->end())
6061 throw gig::Exception("Could not delete script group, could not find given script group");
6062 pScriptGroups->erase(iter);
6063 for (int i = 0; pScriptGroup->GetScript(i); ++i)
6064 pScriptGroup->DeleteScript(pScriptGroup->GetScript(i));
6065 if (pScriptGroup->pList)
6066 pScriptGroup->pList->GetParent()->DeleteSubChunk(pScriptGroup->pList);
6067 delete pScriptGroup;
6068 }
6069
6070 void File::LoadScriptGroups() {
6071 if (pScriptGroups) return;
6072 pScriptGroups = new std::list<ScriptGroup*>;
6073 RIFF::List* lstLS = pRIFF->GetSubList(LIST_TYPE_3LS);
6074 if (lstLS) {
6075 for (RIFF::List* lst = lstLS->GetFirstSubList(); lst;
6076 lst = lstLS->GetNextSubList())
6077 {
6078 if (lst->GetListType() == LIST_TYPE_RTIS) {
6079 pScriptGroups->push_back(new ScriptGroup(this, lst));
6080 }
6081 }
6082 }
6083 }
6084
6085 /**
6086 * Apply all the gig file's current instruments, samples, groups and settings
6087 * to the respective RIFF chunks. You have to call Save() to make changes
6088 * persistent.
6089 *
6090 * Usually there is absolutely no need to call this method explicitly.
6091 * It will be called automatically when File::Save() was called.
6092 *
6093 * @param pProgress - callback function for progress notification
6094 * @throws Exception - on errors
6095 */
6096 void File::UpdateChunks(progress_t* pProgress) {
6097 bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
6098
6099 // update own gig format extension chunks
6100 // (not part of the GigaStudio 4 format)
6101 RIFF::List* lst3LS = pRIFF->GetSubList(LIST_TYPE_3LS);
6102 if (!lst3LS) {
6103 lst3LS = pRIFF->AddSubList(LIST_TYPE_3LS);
6104 }
6105 // Make sure <3LS > chunk is placed before <ptbl> chunk. The precise
6106 // location of <3LS > is irrelevant, however it should be located
6107 // before the actual wave data
6108 RIFF::Chunk* ckPTBL = pRIFF->GetSubChunk(CHUNK_ID_PTBL);
6109 pRIFF->MoveSubChunk(lst3LS, ckPTBL);
6110
6111 // This must be performed before writing the chunks for instruments,
6112 // because the instruments' script slots will write the file offsets
6113 // of the respective instrument script chunk as reference.
6114 if (pScriptGroups) {
6115 // Update instrument script (group) chunks.
6116 for (std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6117 it != pScriptGroups->end(); ++it)
6118 {
6119 (*it)->UpdateChunks(pProgress);
6120 }
6121 }
6122
6123 // in case no libgig custom format data was added, then remove the
6124 // custom "3LS " chunk again
6125 if (!lst3LS->CountSubChunks()) {
6126 pRIFF->DeleteSubChunk(lst3LS);
6127 lst3LS = NULL;
6128 }
6129
6130 // first update base class's chunks
6131 DLS::File::UpdateChunks(pProgress);
6132
6133 if (newFile) {
6134 // INFO was added by Resource::UpdateChunks - make sure it
6135 // is placed first in file
6136 RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
6137 RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
6138 if (first != info) {
6139 pRIFF->MoveSubChunk(info, first);
6140 }
6141 }
6142
6143 // update group's chunks
6144 if (pGroups) {
6145 // make sure '3gri' and '3gnl' list chunks exist
6146 // (before updating the Group chunks)
6147 RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6148 if (!_3gri) {
6149 _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
6150 pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
6151 }
6152 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
6153 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
6154
6155 // v3: make sure the file has 128 3gnm chunks
6156 // (before updating the Group chunks)
6157 if (pVersion && pVersion->major == 3) {
6158 RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
6159 for (int i = 0 ; i < 128 ; i++) {
6160 if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
6161 if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
6162 }
6163 }
6164
6165 std::list<Group*>::iterator iter = pGroups->begin();
6166 std::list<Group*>::iterator end = pGroups->end();
6167 for (; iter != end; ++iter) {
6168 (*iter)->UpdateChunks(pProgress);
6169 }
6170 }
6171
6172 // update einf chunk
6173
6174 // The einf chunk contains statistics about the gig file, such
6175 // as the number of regions and samples used by each
6176 // instrument. It is divided in equally sized parts, where the
6177 // first part contains information about the whole gig file,
6178 // and the rest of the parts map to each instrument in the
6179 // file.
6180 //
6181 // At the end of each part there is a bit map of each sample
6182 // in the file, where a set bit means that the sample is used
6183 // by the file/instrument.
6184 //
6185 // Note that there are several fields with unknown use. These
6186 // are set to zero.
6187
6188 int sublen = int(pSamples->size() / 8 + 49);
6189 int einfSize = (Instruments + 1) * sublen;
6190
6191 RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6192 if (einf) {
6193 if (einf->GetSize() != einfSize) {
6194 einf->Resize(einfSize);
6195 memset(einf->LoadChunkData(), 0, einfSize);
6196 }
6197 } else if (newFile) {
6198 einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
6199 }
6200 if (einf) {
6201 uint8_t* pData = (uint8_t*) einf->LoadChunkData();
6202
6203 std::map<gig::Sample*,int> sampleMap;
6204 int sampleIdx = 0;
6205 for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
6206 sampleMap[pSample] = sampleIdx++;
6207 }
6208
6209 int totnbusedsamples = 0;
6210 int totnbusedchannels = 0;
6211 int totnbregions = 0;
6212 int totnbdimregions = 0;
6213 int totnbloops = 0;
6214 int instrumentIdx = 0;
6215
6216 memset(&pData[48], 0, sublen - 48);
6217
6218 for (Instrument* instrument = GetFirstInstrument() ; instrument ;
6219 instrument = GetNextInstrument()) {
6220 int nbusedsamples = 0;
6221 int nbusedchannels = 0;
6222 int nbdimregions = 0;
6223 int nbloops = 0;
6224
6225 memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
6226
6227 for (Region* region = instrument->GetFirstRegion() ; region ;
6228 region = instrument->GetNextRegion()) {
6229 for (int i = 0 ; i < region->DimensionRegions ; i++) {
6230 gig::DimensionRegion *d = region->pDimensionRegions[i];
6231 if (d->pSample) {
6232 int sampleIdx = sampleMap[d->pSample];
6233 int byte = 48 + sampleIdx / 8;
6234 int bit = 1 << (sampleIdx & 7);
6235 if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
6236 pData[(instrumentIdx + 1) * sublen + byte] |= bit;
6237 nbusedsamples++;
6238 nbusedchannels += d->pSample->Channels;
6239
6240 if ((pData[byte] & bit) == 0) {
6241 pData[byte] |= bit;
6242 totnbusedsamples++;
6243 totnbusedchannels += d->pSample->Channels;
6244 }
6245 }
6246 }
6247 if (d->SampleLoops) nbloops++;
6248 }
6249 nbdimregions += region->DimensionRegions;
6250 }
6251 // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6252 // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
6253 store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
6254 store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
6255 store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
6256 store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
6257 store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
6258 store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
6259 // next 8 bytes unknown
6260 store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
6261 store32(&pData[(instrumentIdx + 1) * sublen + 40], (uint32_t) pSamples->size());
6262 // next 4 bytes unknown
6263
6264 totnbregions += instrument->Regions;
6265 totnbdimregions += nbdimregions;
6266 totnbloops += nbloops;
6267 instrumentIdx++;
6268 }
6269 // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6270 // store32(&pData[0], sublen);
6271 store32(&pData[4], totnbusedchannels);
6272 store32(&pData[8], totnbusedsamples);
6273 store32(&pData[12], Instruments);
6274 store32(&pData[16], totnbregions);
6275 store32(&pData[20], totnbdimregions);
6276 store32(&pData[24], totnbloops);
6277 // next 8 bytes unknown
6278 // next 4 bytes unknown, not always 0
6279 store32(&pData[40], (uint32_t) pSamples->size());
6280 // next 4 bytes unknown
6281 }
6282
6283 // update 3crc chunk
6284
6285 // The 3crc chunk contains CRC-32 checksums for the
6286 // samples. When saving a gig file to disk, we first update the 3CRC
6287 // chunk here (in RAM) with the old crc values which we read from the
6288 // 3CRC chunk when we opened the file (available with gig::Sample::crc
6289 // member variable). This step is required, because samples might have
6290 // been deleted by the user since the file was opened, which in turn
6291 // changes the order of the (i.e. old) checksums within the 3crc chunk.
6292 // If a sample was conciously modified by the user (that is if
6293 // Sample::Write() was called later on) then Sample::Write() will just
6294 // update the respective individual checksum(s) directly on disk and
6295 // leaves all other sample checksums untouched.
6296
6297 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6298 if (_3crc) {
6299 _3crc->Resize(pSamples->size() * 8);
6300 } else /*if (newFile)*/ {
6301 _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6302 // the order of einf and 3crc is not the same in v2 and v3
6303 if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
6304 }
6305 { // must be performed in RAM here ...
6306 uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6307 if (pData) {
6308 File::SampleList::iterator iter = pSamples->begin();
6309 File::SampleList::iterator end = pSamples->end();
6310 for (int index = 0; iter != end; ++iter, ++index) {
6311 gig::Sample* pSample = (gig::Sample*) *iter;
6312 pData[index*2] = 1; // always 1
6313 pData[index*2+1] = pSample->crc;
6314 }
6315 }
6316 }
6317 }
6318
6319 void File::UpdateFileOffsets() {
6320 DLS::File::UpdateFileOffsets();
6321
6322 for (Instrument* instrument = GetFirstInstrument(); instrument;
6323 instrument = GetNextInstrument())
6324 {
6325 instrument->UpdateScriptFileOffsets();
6326 }
6327 }
6328
6329 /**
6330 * Enable / disable automatic loading. By default this properyt is
6331 * enabled and all informations are loaded automatically. However
6332 * loading all Regions, DimensionRegions and especially samples might
6333 * take a long time for large .gig files, and sometimes one might only
6334 * be interested in retrieving very superficial informations like the
6335 * amount of instruments and their names. In this case one might disable
6336 * automatic loading to avoid very slow response times.
6337 *
6338 * @e CAUTION: by disabling this property many pointers (i.e. sample
6339 * references) and informations will have invalid or even undefined
6340 * data! This feature is currently only intended for retrieving very
6341 * superficial informations in a very fast way. Don't use it to retrieve
6342 * details like synthesis informations or even to modify .gig files!
6343 */
6344 void File::SetAutoLoad(bool b) {
6345 bAutoLoad = b;
6346 }
6347
6348 /**
6349 * Returns whether automatic loading is enabled.
6350 * @see SetAutoLoad()
6351 */
6352 bool File::GetAutoLoad() {
6353 return bAutoLoad;
6354 }
6355
6356
6357
6358 // *************** Exception ***************
6359 // *
6360
6361 Exception::Exception(String Message) : DLS::Exception(Message) {
6362 }
6363
6364 void Exception::PrintMessage() {
6365 std::cout << "gig::Exception: " << Message << std::endl;
6366 }
6367
6368
6369 // *************** functions ***************
6370 // *
6371
6372 /**
6373 * Returns the name of this C++ library. This is usually "libgig" of
6374 * course. This call is equivalent to RIFF::libraryName() and
6375 * DLS::libraryName().
6376 */
6377 String libraryName() {
6378 return PACKAGE;
6379 }
6380
6381 /**
6382 * Returns version of this C++ library. This call is equivalent to
6383 * RIFF::libraryVersion() and DLS::libraryVersion().
6384 */
6385 String libraryVersion() {
6386 return VERSION;
6387 }
6388
6389 } // namespace gig

  ViewVC Help
Powered by ViewVC