/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Contents of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3182 - (show annotations) (download)
Sun May 14 20:40:02 2017 UTC (6 years, 10 months ago) by schoenebeck
File size: 281706 byte(s)
* Serialization framework: moved methods setVersion() and
  setMinVersion() from class Object to class Archive, and
  hide enum type operation_t from the public API.
* Bumped version (4.0.0.svn23).

1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file access library *
4 * *
5 * Copyright (C) 2003-2017 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #include "gig.h"
25
26 #include "helper.h"
27 #include "Serialization.h"
28
29 #include <algorithm>
30 #include <math.h>
31 #include <iostream>
32 #include <assert.h>
33
34 /// libgig's current file format version (for extending the original Giga file
35 /// format with libgig's own custom data / custom features).
36 #define GIG_FILE_EXT_VERSION 2
37
38 /// Initial size of the sample buffer which is used for decompression of
39 /// compressed sample wave streams - this value should always be bigger than
40 /// the biggest sample piece expected to be read by the sampler engine,
41 /// otherwise the buffer size will be raised at runtime and thus the buffer
42 /// reallocated which is time consuming and unefficient.
43 #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
44
45 /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
46 #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
47 #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
48 #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
49 #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
50 #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
51 #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
52 #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
53 #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
54 #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
55 #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
56 #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
57 #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
58
59 #define SRLZ(member) \
60 archive->serializeMember(*this, member, #member);
61
62 namespace gig {
63
64 // *************** Internal functions for sample decompression ***************
65 // *
66
67 namespace {
68
69 inline int get12lo(const unsigned char* pSrc)
70 {
71 const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
72 return x & 0x800 ? x - 0x1000 : x;
73 }
74
75 inline int get12hi(const unsigned char* pSrc)
76 {
77 const int x = pSrc[1] >> 4 | pSrc[2] << 4;
78 return x & 0x800 ? x - 0x1000 : x;
79 }
80
81 inline int16_t get16(const unsigned char* pSrc)
82 {
83 return int16_t(pSrc[0] | pSrc[1] << 8);
84 }
85
86 inline int get24(const unsigned char* pSrc)
87 {
88 const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
89 return x & 0x800000 ? x - 0x1000000 : x;
90 }
91
92 inline void store24(unsigned char* pDst, int x)
93 {
94 pDst[0] = x;
95 pDst[1] = x >> 8;
96 pDst[2] = x >> 16;
97 }
98
99 void Decompress16(int compressionmode, const unsigned char* params,
100 int srcStep, int dstStep,
101 const unsigned char* pSrc, int16_t* pDst,
102 file_offset_t currentframeoffset,
103 file_offset_t copysamples)
104 {
105 switch (compressionmode) {
106 case 0: // 16 bit uncompressed
107 pSrc += currentframeoffset * srcStep;
108 while (copysamples) {
109 *pDst = get16(pSrc);
110 pDst += dstStep;
111 pSrc += srcStep;
112 copysamples--;
113 }
114 break;
115
116 case 1: // 16 bit compressed to 8 bit
117 int y = get16(params);
118 int dy = get16(params + 2);
119 while (currentframeoffset) {
120 dy -= int8_t(*pSrc);
121 y -= dy;
122 pSrc += srcStep;
123 currentframeoffset--;
124 }
125 while (copysamples) {
126 dy -= int8_t(*pSrc);
127 y -= dy;
128 *pDst = y;
129 pDst += dstStep;
130 pSrc += srcStep;
131 copysamples--;
132 }
133 break;
134 }
135 }
136
137 void Decompress24(int compressionmode, const unsigned char* params,
138 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
139 file_offset_t currentframeoffset,
140 file_offset_t copysamples, int truncatedBits)
141 {
142 int y, dy, ddy, dddy;
143
144 #define GET_PARAMS(params) \
145 y = get24(params); \
146 dy = y - get24((params) + 3); \
147 ddy = get24((params) + 6); \
148 dddy = get24((params) + 9)
149
150 #define SKIP_ONE(x) \
151 dddy -= (x); \
152 ddy -= dddy; \
153 dy = -dy - ddy; \
154 y += dy
155
156 #define COPY_ONE(x) \
157 SKIP_ONE(x); \
158 store24(pDst, y << truncatedBits); \
159 pDst += dstStep
160
161 switch (compressionmode) {
162 case 2: // 24 bit uncompressed
163 pSrc += currentframeoffset * 3;
164 while (copysamples) {
165 store24(pDst, get24(pSrc) << truncatedBits);
166 pDst += dstStep;
167 pSrc += 3;
168 copysamples--;
169 }
170 break;
171
172 case 3: // 24 bit compressed to 16 bit
173 GET_PARAMS(params);
174 while (currentframeoffset) {
175 SKIP_ONE(get16(pSrc));
176 pSrc += 2;
177 currentframeoffset--;
178 }
179 while (copysamples) {
180 COPY_ONE(get16(pSrc));
181 pSrc += 2;
182 copysamples--;
183 }
184 break;
185
186 case 4: // 24 bit compressed to 12 bit
187 GET_PARAMS(params);
188 while (currentframeoffset > 1) {
189 SKIP_ONE(get12lo(pSrc));
190 SKIP_ONE(get12hi(pSrc));
191 pSrc += 3;
192 currentframeoffset -= 2;
193 }
194 if (currentframeoffset) {
195 SKIP_ONE(get12lo(pSrc));
196 currentframeoffset--;
197 if (copysamples) {
198 COPY_ONE(get12hi(pSrc));
199 pSrc += 3;
200 copysamples--;
201 }
202 }
203 while (copysamples > 1) {
204 COPY_ONE(get12lo(pSrc));
205 COPY_ONE(get12hi(pSrc));
206 pSrc += 3;
207 copysamples -= 2;
208 }
209 if (copysamples) {
210 COPY_ONE(get12lo(pSrc));
211 }
212 break;
213
214 case 5: // 24 bit compressed to 8 bit
215 GET_PARAMS(params);
216 while (currentframeoffset) {
217 SKIP_ONE(int8_t(*pSrc++));
218 currentframeoffset--;
219 }
220 while (copysamples) {
221 COPY_ONE(int8_t(*pSrc++));
222 copysamples--;
223 }
224 break;
225 }
226 }
227
228 const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
229 const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
230 const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
231 const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
232 }
233
234
235
236 // *************** Internal CRC-32 (Cyclic Redundancy Check) functions ***************
237 // *
238
239 static uint32_t* __initCRCTable() {
240 static uint32_t res[256];
241
242 for (int i = 0 ; i < 256 ; i++) {
243 uint32_t c = i;
244 for (int j = 0 ; j < 8 ; j++) {
245 c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
246 }
247 res[i] = c;
248 }
249 return res;
250 }
251
252 static const uint32_t* __CRCTable = __initCRCTable();
253
254 /**
255 * Initialize a CRC variable.
256 *
257 * @param crc - variable to be initialized
258 */
259 inline static void __resetCRC(uint32_t& crc) {
260 crc = 0xffffffff;
261 }
262
263 /**
264 * Used to calculate checksums of the sample data in a gig file. The
265 * checksums are stored in the 3crc chunk of the gig file and
266 * automatically updated when a sample is written with Sample::Write().
267 *
268 * One should call __resetCRC() to initialize the CRC variable to be
269 * used before calling this function the first time.
270 *
271 * After initializing the CRC variable one can call this function
272 * arbitrary times, i.e. to split the overall CRC calculation into
273 * steps.
274 *
275 * Once the whole data was processed by __calculateCRC(), one should
276 * call __finalizeCRC() to get the final CRC result.
277 *
278 * @param buf - pointer to data the CRC shall be calculated of
279 * @param bufSize - size of the data to be processed
280 * @param crc - variable the CRC sum shall be stored to
281 */
282 static void __calculateCRC(unsigned char* buf, size_t bufSize, uint32_t& crc) {
283 for (size_t i = 0 ; i < bufSize ; i++) {
284 crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
285 }
286 }
287
288 /**
289 * Returns the final CRC result.
290 *
291 * @param crc - variable previously passed to __calculateCRC()
292 */
293 inline static void __finalizeCRC(uint32_t& crc) {
294 crc ^= 0xffffffff;
295 }
296
297
298
299 // *************** Other Internal functions ***************
300 // *
301
302 static split_type_t __resolveSplitType(dimension_t dimension) {
303 return (
304 dimension == dimension_layer ||
305 dimension == dimension_samplechannel ||
306 dimension == dimension_releasetrigger ||
307 dimension == dimension_keyboard ||
308 dimension == dimension_roundrobin ||
309 dimension == dimension_random ||
310 dimension == dimension_smartmidi ||
311 dimension == dimension_roundrobinkeyboard
312 ) ? split_type_bit : split_type_normal;
313 }
314
315 static int __resolveZoneSize(dimension_def_t& dimension_definition) {
316 return (dimension_definition.split_type == split_type_normal)
317 ? int(128.0 / dimension_definition.zones) : 0;
318 }
319
320
321
322 // *************** leverage_ctrl_t ***************
323 // *
324
325 void leverage_ctrl_t::serialize(Serialization::Archive* archive) {
326 SRLZ(type);
327 SRLZ(controller_number);
328 }
329
330
331
332 // *************** crossfade_t ***************
333 // *
334
335 void crossfade_t::serialize(Serialization::Archive* archive) {
336 SRLZ(in_start);
337 SRLZ(in_end);
338 SRLZ(out_start);
339 SRLZ(out_end);
340 }
341
342
343
344 // *************** Sample ***************
345 // *
346
347 size_t Sample::Instances = 0;
348 buffer_t Sample::InternalDecompressionBuffer;
349
350 /** @brief Constructor.
351 *
352 * Load an existing sample or create a new one. A 'wave' list chunk must
353 * be given to this constructor. In case the given 'wave' list chunk
354 * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
355 * format and sample data will be loaded from there, otherwise default
356 * values will be used and those chunks will be created when
357 * File::Save() will be called later on.
358 *
359 * @param pFile - pointer to gig::File where this sample is
360 * located (or will be located)
361 * @param waveList - pointer to 'wave' list chunk which is (or
362 * will be) associated with this sample
363 * @param WavePoolOffset - offset of this sample data from wave pool
364 * ('wvpl') list chunk
365 * @param fileNo - number of an extension file where this sample
366 * is located, 0 otherwise
367 * @param index - wave pool index of sample (may be -1 on new sample)
368 */
369 Sample::Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo, int index)
370 : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset)
371 {
372 static const DLS::Info::string_length_t fixedStringLengths[] = {
373 { CHUNK_ID_INAM, 64 },
374 { 0, 0 }
375 };
376 pInfo->SetFixedStringLengths(fixedStringLengths);
377 Instances++;
378 FileNo = fileNo;
379
380 __resetCRC(crc);
381 // if this is not a new sample, try to get the sample's already existing
382 // CRC32 checksum from disk, this checksum will reflect the sample's CRC32
383 // checksum of the time when the sample was consciously modified by the
384 // user for the last time (by calling Sample::Write() that is).
385 if (index >= 0) { // not a new file ...
386 try {
387 uint32_t crc = pFile->GetSampleChecksumByIndex(index);
388 this->crc = crc;
389 } catch (...) {}
390 }
391
392 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
393 if (pCk3gix) {
394 uint16_t iSampleGroup = pCk3gix->ReadInt16();
395 pGroup = pFile->GetGroup(iSampleGroup);
396 } else { // '3gix' chunk missing
397 // by default assigned to that mandatory "Default Group"
398 pGroup = pFile->GetGroup(0);
399 }
400
401 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
402 if (pCkSmpl) {
403 Manufacturer = pCkSmpl->ReadInt32();
404 Product = pCkSmpl->ReadInt32();
405 SamplePeriod = pCkSmpl->ReadInt32();
406 MIDIUnityNote = pCkSmpl->ReadInt32();
407 FineTune = pCkSmpl->ReadInt32();
408 pCkSmpl->Read(&SMPTEFormat, 1, 4);
409 SMPTEOffset = pCkSmpl->ReadInt32();
410 Loops = pCkSmpl->ReadInt32();
411 pCkSmpl->ReadInt32(); // manufByt
412 LoopID = pCkSmpl->ReadInt32();
413 pCkSmpl->Read(&LoopType, 1, 4);
414 LoopStart = pCkSmpl->ReadInt32();
415 LoopEnd = pCkSmpl->ReadInt32();
416 LoopFraction = pCkSmpl->ReadInt32();
417 LoopPlayCount = pCkSmpl->ReadInt32();
418 } else { // 'smpl' chunk missing
419 // use default values
420 Manufacturer = 0;
421 Product = 0;
422 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
423 MIDIUnityNote = 60;
424 FineTune = 0;
425 SMPTEFormat = smpte_format_no_offset;
426 SMPTEOffset = 0;
427 Loops = 0;
428 LoopID = 0;
429 LoopType = loop_type_normal;
430 LoopStart = 0;
431 LoopEnd = 0;
432 LoopFraction = 0;
433 LoopPlayCount = 0;
434 }
435
436 FrameTable = NULL;
437 SamplePos = 0;
438 RAMCache.Size = 0;
439 RAMCache.pStart = NULL;
440 RAMCache.NullExtensionSize = 0;
441
442 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
443
444 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
445 Compressed = ewav;
446 Dithered = false;
447 TruncatedBits = 0;
448 if (Compressed) {
449 uint32_t version = ewav->ReadInt32();
450 if (version == 3 && BitDepth == 24) {
451 Dithered = ewav->ReadInt32();
452 ewav->SetPos(Channels == 2 ? 84 : 64);
453 TruncatedBits = ewav->ReadInt32();
454 }
455 ScanCompressedSample();
456 }
457
458 // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
459 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
460 InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
461 InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
462 }
463 FrameOffset = 0; // just for streaming compressed samples
464
465 LoopSize = LoopEnd - LoopStart + 1;
466 }
467
468 /**
469 * Make a (semi) deep copy of the Sample object given by @a orig (without
470 * the actual waveform data) and assign it to this object.
471 *
472 * Discussion: copying .gig samples is a bit tricky. It requires three
473 * steps:
474 * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
475 * its new sample waveform data size.
476 * 2. Saving the file (done by File::Save()) so that it gains correct size
477 * and layout for writing the actual wave form data directly to disc
478 * in next step.
479 * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
480 *
481 * @param orig - original Sample object to be copied from
482 */
483 void Sample::CopyAssignMeta(const Sample* orig) {
484 // handle base classes
485 DLS::Sample::CopyAssignCore(orig);
486
487 // handle actual own attributes of this class
488 Manufacturer = orig->Manufacturer;
489 Product = orig->Product;
490 SamplePeriod = orig->SamplePeriod;
491 MIDIUnityNote = orig->MIDIUnityNote;
492 FineTune = orig->FineTune;
493 SMPTEFormat = orig->SMPTEFormat;
494 SMPTEOffset = orig->SMPTEOffset;
495 Loops = orig->Loops;
496 LoopID = orig->LoopID;
497 LoopType = orig->LoopType;
498 LoopStart = orig->LoopStart;
499 LoopEnd = orig->LoopEnd;
500 LoopSize = orig->LoopSize;
501 LoopFraction = orig->LoopFraction;
502 LoopPlayCount = orig->LoopPlayCount;
503
504 // schedule resizing this sample to the given sample's size
505 Resize(orig->GetSize());
506 }
507
508 /**
509 * Should be called after CopyAssignMeta() and File::Save() sequence.
510 * Read more about it in the discussion of CopyAssignMeta(). This method
511 * copies the actual waveform data by disk streaming.
512 *
513 * @e CAUTION: this method is currently not thread safe! During this
514 * operation the sample must not be used for other purposes by other
515 * threads!
516 *
517 * @param orig - original Sample object to be copied from
518 */
519 void Sample::CopyAssignWave(const Sample* orig) {
520 const int iReadAtOnce = 32*1024;
521 char* buf = new char[iReadAtOnce * orig->FrameSize];
522 Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
523 file_offset_t restorePos = pOrig->GetPos();
524 pOrig->SetPos(0);
525 SetPos(0);
526 for (file_offset_t n = pOrig->Read(buf, iReadAtOnce); n;
527 n = pOrig->Read(buf, iReadAtOnce))
528 {
529 Write(buf, n);
530 }
531 pOrig->SetPos(restorePos);
532 delete [] buf;
533 }
534
535 /**
536 * Apply sample and its settings to the respective RIFF chunks. You have
537 * to call File::Save() to make changes persistent.
538 *
539 * Usually there is absolutely no need to call this method explicitly.
540 * It will be called automatically when File::Save() was called.
541 *
542 * @param pProgress - callback function for progress notification
543 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
544 * was provided yet
545 * @throws gig::Exception if there is any invalid sample setting
546 */
547 void Sample::UpdateChunks(progress_t* pProgress) {
548 // first update base class's chunks
549 DLS::Sample::UpdateChunks(pProgress);
550
551 // make sure 'smpl' chunk exists
552 pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
553 if (!pCkSmpl) {
554 pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
555 memset(pCkSmpl->LoadChunkData(), 0, 60);
556 }
557 // update 'smpl' chunk
558 uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
559 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
560 store32(&pData[0], Manufacturer);
561 store32(&pData[4], Product);
562 store32(&pData[8], SamplePeriod);
563 store32(&pData[12], MIDIUnityNote);
564 store32(&pData[16], FineTune);
565 store32(&pData[20], SMPTEFormat);
566 store32(&pData[24], SMPTEOffset);
567 store32(&pData[28], Loops);
568
569 // we skip 'manufByt' for now (4 bytes)
570
571 store32(&pData[36], LoopID);
572 store32(&pData[40], LoopType);
573 store32(&pData[44], LoopStart);
574 store32(&pData[48], LoopEnd);
575 store32(&pData[52], LoopFraction);
576 store32(&pData[56], LoopPlayCount);
577
578 // make sure '3gix' chunk exists
579 pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
580 if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
581 // determine appropriate sample group index (to be stored in chunk)
582 uint16_t iSampleGroup = 0; // 0 refers to default sample group
583 File* pFile = static_cast<File*>(pParent);
584 if (pFile->pGroups) {
585 std::list<Group*>::iterator iter = pFile->pGroups->begin();
586 std::list<Group*>::iterator end = pFile->pGroups->end();
587 for (int i = 0; iter != end; i++, iter++) {
588 if (*iter == pGroup) {
589 iSampleGroup = i;
590 break; // found
591 }
592 }
593 }
594 // update '3gix' chunk
595 pData = (uint8_t*) pCk3gix->LoadChunkData();
596 store16(&pData[0], iSampleGroup);
597
598 // if the library user toggled the "Compressed" attribute from true to
599 // false, then the EWAV chunk associated with compressed samples needs
600 // to be deleted
601 RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
602 if (ewav && !Compressed) {
603 pWaveList->DeleteSubChunk(ewav);
604 }
605 }
606
607 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
608 void Sample::ScanCompressedSample() {
609 //TODO: we have to add some more scans here (e.g. determine compression rate)
610 this->SamplesTotal = 0;
611 std::list<file_offset_t> frameOffsets;
612
613 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
614 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
615
616 // Scanning
617 pCkData->SetPos(0);
618 if (Channels == 2) { // Stereo
619 for (int i = 0 ; ; i++) {
620 // for 24 bit samples every 8:th frame offset is
621 // stored, to save some memory
622 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
623
624 const int mode_l = pCkData->ReadUint8();
625 const int mode_r = pCkData->ReadUint8();
626 if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
627 const file_offset_t frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
628
629 if (pCkData->RemainingBytes() <= frameSize) {
630 SamplesInLastFrame =
631 ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
632 (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
633 SamplesTotal += SamplesInLastFrame;
634 break;
635 }
636 SamplesTotal += SamplesPerFrame;
637 pCkData->SetPos(frameSize, RIFF::stream_curpos);
638 }
639 }
640 else { // Mono
641 for (int i = 0 ; ; i++) {
642 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
643
644 const int mode = pCkData->ReadUint8();
645 if (mode > 5) throw gig::Exception("Unknown compression mode");
646 const file_offset_t frameSize = bytesPerFrame[mode];
647
648 if (pCkData->RemainingBytes() <= frameSize) {
649 SamplesInLastFrame =
650 ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
651 SamplesTotal += SamplesInLastFrame;
652 break;
653 }
654 SamplesTotal += SamplesPerFrame;
655 pCkData->SetPos(frameSize, RIFF::stream_curpos);
656 }
657 }
658 pCkData->SetPos(0);
659
660 // Build the frames table (which is used for fast resolving of a frame's chunk offset)
661 if (FrameTable) delete[] FrameTable;
662 FrameTable = new file_offset_t[frameOffsets.size()];
663 std::list<file_offset_t>::iterator end = frameOffsets.end();
664 std::list<file_offset_t>::iterator iter = frameOffsets.begin();
665 for (int i = 0; iter != end; i++, iter++) {
666 FrameTable[i] = *iter;
667 }
668 }
669
670 /**
671 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
672 * ReleaseSampleData() to free the memory if you don't need the cached
673 * sample data anymore.
674 *
675 * @returns buffer_t structure with start address and size of the buffer
676 * in bytes
677 * @see ReleaseSampleData(), Read(), SetPos()
678 */
679 buffer_t Sample::LoadSampleData() {
680 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
681 }
682
683 /**
684 * Reads (uncompresses if needed) and caches the first \a SampleCount
685 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
686 * memory space if you don't need the cached samples anymore. There is no
687 * guarantee that exactly \a SampleCount samples will be cached; this is
688 * not an error. The size will be eventually truncated e.g. to the
689 * beginning of a frame of a compressed sample. This is done for
690 * efficiency reasons while streaming the wave by your sampler engine
691 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
692 * that will be returned to determine the actual cached samples, but note
693 * that the size is given in bytes! You get the number of actually cached
694 * samples by dividing it by the frame size of the sample:
695 * @code
696 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
697 * long cachedsamples = buf.Size / pSample->FrameSize;
698 * @endcode
699 *
700 * @param SampleCount - number of sample points to load into RAM
701 * @returns buffer_t structure with start address and size of
702 * the cached sample data in bytes
703 * @see ReleaseSampleData(), Read(), SetPos()
704 */
705 buffer_t Sample::LoadSampleData(file_offset_t SampleCount) {
706 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
707 }
708
709 /**
710 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
711 * ReleaseSampleData() to free the memory if you don't need the cached
712 * sample data anymore.
713 * The method will add \a NullSamplesCount silence samples past the
714 * official buffer end (this won't affect the 'Size' member of the
715 * buffer_t structure, that means 'Size' always reflects the size of the
716 * actual sample data, the buffer might be bigger though). Silence
717 * samples past the official buffer are needed for differential
718 * algorithms that always have to take subsequent samples into account
719 * (resampling/interpolation would be an important example) and avoids
720 * memory access faults in such cases.
721 *
722 * @param NullSamplesCount - number of silence samples the buffer should
723 * be extended past it's data end
724 * @returns buffer_t structure with start address and
725 * size of the buffer in bytes
726 * @see ReleaseSampleData(), Read(), SetPos()
727 */
728 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
729 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
730 }
731
732 /**
733 * Reads (uncompresses if needed) and caches the first \a SampleCount
734 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
735 * memory space if you don't need the cached samples anymore. There is no
736 * guarantee that exactly \a SampleCount samples will be cached; this is
737 * not an error. The size will be eventually truncated e.g. to the
738 * beginning of a frame of a compressed sample. This is done for
739 * efficiency reasons while streaming the wave by your sampler engine
740 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
741 * that will be returned to determine the actual cached samples, but note
742 * that the size is given in bytes! You get the number of actually cached
743 * samples by dividing it by the frame size of the sample:
744 * @code
745 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
746 * long cachedsamples = buf.Size / pSample->FrameSize;
747 * @endcode
748 * The method will add \a NullSamplesCount silence samples past the
749 * official buffer end (this won't affect the 'Size' member of the
750 * buffer_t structure, that means 'Size' always reflects the size of the
751 * actual sample data, the buffer might be bigger though). Silence
752 * samples past the official buffer are needed for differential
753 * algorithms that always have to take subsequent samples into account
754 * (resampling/interpolation would be an important example) and avoids
755 * memory access faults in such cases.
756 *
757 * @param SampleCount - number of sample points to load into RAM
758 * @param NullSamplesCount - number of silence samples the buffer should
759 * be extended past it's data end
760 * @returns buffer_t structure with start address and
761 * size of the cached sample data in bytes
762 * @see ReleaseSampleData(), Read(), SetPos()
763 */
764 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount) {
765 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
766 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
767 file_offset_t allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
768 SetPos(0); // reset read position to begin of sample
769 RAMCache.pStart = new int8_t[allocationsize];
770 RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
771 RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
772 // fill the remaining buffer space with silence samples
773 memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
774 return GetCache();
775 }
776
777 /**
778 * Returns current cached sample points. A buffer_t structure will be
779 * returned which contains address pointer to the begin of the cache and
780 * the size of the cached sample data in bytes. Use
781 * <i>LoadSampleData()</i> to cache a specific amount of sample points in
782 * RAM.
783 *
784 * @returns buffer_t structure with current cached sample points
785 * @see LoadSampleData();
786 */
787 buffer_t Sample::GetCache() {
788 // return a copy of the buffer_t structure
789 buffer_t result;
790 result.Size = this->RAMCache.Size;
791 result.pStart = this->RAMCache.pStart;
792 result.NullExtensionSize = this->RAMCache.NullExtensionSize;
793 return result;
794 }
795
796 /**
797 * Frees the cached sample from RAM if loaded with
798 * <i>LoadSampleData()</i> previously.
799 *
800 * @see LoadSampleData();
801 */
802 void Sample::ReleaseSampleData() {
803 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
804 RAMCache.pStart = NULL;
805 RAMCache.Size = 0;
806 RAMCache.NullExtensionSize = 0;
807 }
808
809 /** @brief Resize sample.
810 *
811 * Resizes the sample's wave form data, that is the actual size of
812 * sample wave data possible to be written for this sample. This call
813 * will return immediately and just schedule the resize operation. You
814 * should call File::Save() to actually perform the resize operation(s)
815 * "physically" to the file. As this can take a while on large files, it
816 * is recommended to call Resize() first on all samples which have to be
817 * resized and finally to call File::Save() to perform all those resize
818 * operations in one rush.
819 *
820 * The actual size (in bytes) is dependant to the current FrameSize
821 * value. You may want to set FrameSize before calling Resize().
822 *
823 * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
824 * enlarged samples before calling File::Save() as this might exceed the
825 * current sample's boundary!
826 *
827 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
828 * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
829 * other formats will fail!
830 *
831 * @param NewSize - new sample wave data size in sample points (must be
832 * greater than zero)
833 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
834 * @throws DLS::Exception if \a NewSize is less than 1 or unrealistic large
835 * @throws gig::Exception if existing sample is compressed
836 * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
837 * DLS::Sample::FormatTag, File::Save()
838 */
839 void Sample::Resize(file_offset_t NewSize) {
840 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
841 DLS::Sample::Resize(NewSize);
842 }
843
844 /**
845 * Sets the position within the sample (in sample points, not in
846 * bytes). Use this method and <i>Read()</i> if you don't want to load
847 * the sample into RAM, thus for disk streaming.
848 *
849 * Although the original Gigasampler engine doesn't allow positioning
850 * within compressed samples, I decided to implement it. Even though
851 * the Gigasampler format doesn't allow to define loops for compressed
852 * samples at the moment, positioning within compressed samples might be
853 * interesting for some sampler engines though. The only drawback about
854 * my decision is that it takes longer to load compressed gig Files on
855 * startup, because it's neccessary to scan the samples for some
856 * mandatory informations. But I think as it doesn't affect the runtime
857 * efficiency, nobody will have a problem with that.
858 *
859 * @param SampleCount number of sample points to jump
860 * @param Whence optional: to which relation \a SampleCount refers
861 * to, if omited <i>RIFF::stream_start</i> is assumed
862 * @returns the new sample position
863 * @see Read()
864 */
865 file_offset_t Sample::SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence) {
866 if (Compressed) {
867 switch (Whence) {
868 case RIFF::stream_curpos:
869 this->SamplePos += SampleCount;
870 break;
871 case RIFF::stream_end:
872 this->SamplePos = this->SamplesTotal - 1 - SampleCount;
873 break;
874 case RIFF::stream_backward:
875 this->SamplePos -= SampleCount;
876 break;
877 case RIFF::stream_start: default:
878 this->SamplePos = SampleCount;
879 break;
880 }
881 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
882
883 file_offset_t frame = this->SamplePos / 2048; // to which frame to jump
884 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
885 pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
886 return this->SamplePos;
887 }
888 else { // not compressed
889 file_offset_t orderedBytes = SampleCount * this->FrameSize;
890 file_offset_t result = pCkData->SetPos(orderedBytes, Whence);
891 return (result == orderedBytes) ? SampleCount
892 : result / this->FrameSize;
893 }
894 }
895
896 /**
897 * Returns the current position in the sample (in sample points).
898 */
899 file_offset_t Sample::GetPos() const {
900 if (Compressed) return SamplePos;
901 else return pCkData->GetPos() / FrameSize;
902 }
903
904 /**
905 * Reads \a SampleCount number of sample points from the position stored
906 * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
907 * the position within the sample respectively, this method honors the
908 * looping informations of the sample (if any). The sample wave stream
909 * will be decompressed on the fly if using a compressed sample. Use this
910 * method if you don't want to load the sample into RAM, thus for disk
911 * streaming. All this methods needs to know to proceed with streaming
912 * for the next time you call this method is stored in \a pPlaybackState.
913 * You have to allocate and initialize the playback_state_t structure by
914 * yourself before you use it to stream a sample:
915 * @code
916 * gig::playback_state_t playbackstate;
917 * playbackstate.position = 0;
918 * playbackstate.reverse = false;
919 * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
920 * @endcode
921 * You don't have to take care of things like if there is actually a loop
922 * defined or if the current read position is located within a loop area.
923 * The method already handles such cases by itself.
924 *
925 * <b>Caution:</b> If you are using more than one streaming thread, you
926 * have to use an external decompression buffer for <b>EACH</b>
927 * streaming thread to avoid race conditions and crashes!
928 *
929 * @param pBuffer destination buffer
930 * @param SampleCount number of sample points to read
931 * @param pPlaybackState will be used to store and reload the playback
932 * state for the next ReadAndLoop() call
933 * @param pDimRgn dimension region with looping information
934 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
935 * @returns number of successfully read sample points
936 * @see CreateDecompressionBuffer()
937 */
938 file_offset_t Sample::ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState,
939 DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
940 file_offset_t samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
941 uint8_t* pDst = (uint8_t*) pBuffer;
942
943 SetPos(pPlaybackState->position); // recover position from the last time
944
945 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
946
947 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
948 const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
949
950 if (GetPos() <= loopEnd) {
951 switch (loop.LoopType) {
952
953 case loop_type_bidirectional: { //TODO: not tested yet!
954 do {
955 // if not endless loop check if max. number of loop cycles have been passed
956 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
957
958 if (!pPlaybackState->reverse) { // forward playback
959 do {
960 samplestoloopend = loopEnd - GetPos();
961 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
962 samplestoread -= readsamples;
963 totalreadsamples += readsamples;
964 if (readsamples == samplestoloopend) {
965 pPlaybackState->reverse = true;
966 break;
967 }
968 } while (samplestoread && readsamples);
969 }
970 else { // backward playback
971
972 // as we can only read forward from disk, we have to
973 // determine the end position within the loop first,
974 // read forward from that 'end' and finally after
975 // reading, swap all sample frames so it reflects
976 // backward playback
977
978 file_offset_t swapareastart = totalreadsamples;
979 file_offset_t loopoffset = GetPos() - loop.LoopStart;
980 file_offset_t samplestoreadinloop = Min(samplestoread, loopoffset);
981 file_offset_t reverseplaybackend = GetPos() - samplestoreadinloop;
982
983 SetPos(reverseplaybackend);
984
985 // read samples for backward playback
986 do {
987 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
988 samplestoreadinloop -= readsamples;
989 samplestoread -= readsamples;
990 totalreadsamples += readsamples;
991 } while (samplestoreadinloop && readsamples);
992
993 SetPos(reverseplaybackend); // pretend we really read backwards
994
995 if (reverseplaybackend == loop.LoopStart) {
996 pPlaybackState->loop_cycles_left--;
997 pPlaybackState->reverse = false;
998 }
999
1000 // reverse the sample frames for backward playback
1001 if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
1002 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1003 }
1004 } while (samplestoread && readsamples);
1005 break;
1006 }
1007
1008 case loop_type_backward: { // TODO: not tested yet!
1009 // forward playback (not entered the loop yet)
1010 if (!pPlaybackState->reverse) do {
1011 samplestoloopend = loopEnd - GetPos();
1012 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1013 samplestoread -= readsamples;
1014 totalreadsamples += readsamples;
1015 if (readsamples == samplestoloopend) {
1016 pPlaybackState->reverse = true;
1017 break;
1018 }
1019 } while (samplestoread && readsamples);
1020
1021 if (!samplestoread) break;
1022
1023 // as we can only read forward from disk, we have to
1024 // determine the end position within the loop first,
1025 // read forward from that 'end' and finally after
1026 // reading, swap all sample frames so it reflects
1027 // backward playback
1028
1029 file_offset_t swapareastart = totalreadsamples;
1030 file_offset_t loopoffset = GetPos() - loop.LoopStart;
1031 file_offset_t samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1032 : samplestoread;
1033 file_offset_t reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1034
1035 SetPos(reverseplaybackend);
1036
1037 // read samples for backward playback
1038 do {
1039 // if not endless loop check if max. number of loop cycles have been passed
1040 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1041 samplestoloopend = loopEnd - GetPos();
1042 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1043 samplestoreadinloop -= readsamples;
1044 samplestoread -= readsamples;
1045 totalreadsamples += readsamples;
1046 if (readsamples == samplestoloopend) {
1047 pPlaybackState->loop_cycles_left--;
1048 SetPos(loop.LoopStart);
1049 }
1050 } while (samplestoreadinloop && readsamples);
1051
1052 SetPos(reverseplaybackend); // pretend we really read backwards
1053
1054 // reverse the sample frames for backward playback
1055 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1056 break;
1057 }
1058
1059 default: case loop_type_normal: {
1060 do {
1061 // if not endless loop check if max. number of loop cycles have been passed
1062 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1063 samplestoloopend = loopEnd - GetPos();
1064 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1065 samplestoread -= readsamples;
1066 totalreadsamples += readsamples;
1067 if (readsamples == samplestoloopend) {
1068 pPlaybackState->loop_cycles_left--;
1069 SetPos(loop.LoopStart);
1070 }
1071 } while (samplestoread && readsamples);
1072 break;
1073 }
1074 }
1075 }
1076 }
1077
1078 // read on without looping
1079 if (samplestoread) do {
1080 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
1081 samplestoread -= readsamples;
1082 totalreadsamples += readsamples;
1083 } while (readsamples && samplestoread);
1084
1085 // store current position
1086 pPlaybackState->position = GetPos();
1087
1088 return totalreadsamples;
1089 }
1090
1091 /**
1092 * Reads \a SampleCount number of sample points from the current
1093 * position into the buffer pointed by \a pBuffer and increments the
1094 * position within the sample. The sample wave stream will be
1095 * decompressed on the fly if using a compressed sample. Use this method
1096 * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1097 * thus for disk streaming.
1098 *
1099 * <b>Caution:</b> If you are using more than one streaming thread, you
1100 * have to use an external decompression buffer for <b>EACH</b>
1101 * streaming thread to avoid race conditions and crashes!
1102 *
1103 * For 16 bit samples, the data in the buffer will be int16_t
1104 * (using native endianness). For 24 bit, the buffer will
1105 * contain three bytes per sample, little-endian.
1106 *
1107 * @param pBuffer destination buffer
1108 * @param SampleCount number of sample points to read
1109 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
1110 * @returns number of successfully read sample points
1111 * @see SetPos(), CreateDecompressionBuffer()
1112 */
1113 file_offset_t Sample::Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer) {
1114 if (SampleCount == 0) return 0;
1115 if (!Compressed) {
1116 if (BitDepth == 24) {
1117 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1118 }
1119 else { // 16 bit
1120 // (pCkData->Read does endian correction)
1121 return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1122 : pCkData->Read(pBuffer, SampleCount, 2);
1123 }
1124 }
1125 else {
1126 if (this->SamplePos >= this->SamplesTotal) return 0;
1127 //TODO: efficiency: maybe we should test for an average compression rate
1128 file_offset_t assumedsize = GuessSize(SampleCount),
1129 remainingbytes = 0, // remaining bytes in the local buffer
1130 remainingsamples = SampleCount,
1131 copysamples, skipsamples,
1132 currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
1133 this->FrameOffset = 0;
1134
1135 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1136
1137 // if decompression buffer too small, then reduce amount of samples to read
1138 if (pDecompressionBuffer->Size < assumedsize) {
1139 std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1140 SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1141 remainingsamples = SampleCount;
1142 assumedsize = GuessSize(SampleCount);
1143 }
1144
1145 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1146 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1147 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1148 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1149
1150 while (remainingsamples && remainingbytes) {
1151 file_offset_t framesamples = SamplesPerFrame;
1152 file_offset_t framebytes, rightChannelOffset = 0, nextFrameOffset;
1153
1154 int mode_l = *pSrc++, mode_r = 0;
1155
1156 if (Channels == 2) {
1157 mode_r = *pSrc++;
1158 framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1159 rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1160 nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1161 if (remainingbytes < framebytes) { // last frame in sample
1162 framesamples = SamplesInLastFrame;
1163 if (mode_l == 4 && (framesamples & 1)) {
1164 rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1165 }
1166 else {
1167 rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1168 }
1169 }
1170 }
1171 else {
1172 framebytes = bytesPerFrame[mode_l] + 1;
1173 nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1174 if (remainingbytes < framebytes) {
1175 framesamples = SamplesInLastFrame;
1176 }
1177 }
1178
1179 // determine how many samples in this frame to skip and read
1180 if (currentframeoffset + remainingsamples >= framesamples) {
1181 if (currentframeoffset <= framesamples) {
1182 copysamples = framesamples - currentframeoffset;
1183 skipsamples = currentframeoffset;
1184 }
1185 else {
1186 copysamples = 0;
1187 skipsamples = framesamples;
1188 }
1189 }
1190 else {
1191 // This frame has enough data for pBuffer, but not
1192 // all of the frame is needed. Set file position
1193 // to start of this frame for next call to Read.
1194 copysamples = remainingsamples;
1195 skipsamples = currentframeoffset;
1196 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1197 this->FrameOffset = currentframeoffset + copysamples;
1198 }
1199 remainingsamples -= copysamples;
1200
1201 if (remainingbytes > framebytes) {
1202 remainingbytes -= framebytes;
1203 if (remainingsamples == 0 &&
1204 currentframeoffset + copysamples == framesamples) {
1205 // This frame has enough data for pBuffer, and
1206 // all of the frame is needed. Set file
1207 // position to start of next frame for next
1208 // call to Read. FrameOffset is 0.
1209 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1210 }
1211 }
1212 else remainingbytes = 0;
1213
1214 currentframeoffset -= skipsamples;
1215
1216 if (copysamples == 0) {
1217 // skip this frame
1218 pSrc += framebytes - Channels;
1219 }
1220 else {
1221 const unsigned char* const param_l = pSrc;
1222 if (BitDepth == 24) {
1223 if (mode_l != 2) pSrc += 12;
1224
1225 if (Channels == 2) { // Stereo
1226 const unsigned char* const param_r = pSrc;
1227 if (mode_r != 2) pSrc += 12;
1228
1229 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1230 skipsamples, copysamples, TruncatedBits);
1231 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1232 skipsamples, copysamples, TruncatedBits);
1233 pDst24 += copysamples * 6;
1234 }
1235 else { // Mono
1236 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1237 skipsamples, copysamples, TruncatedBits);
1238 pDst24 += copysamples * 3;
1239 }
1240 }
1241 else { // 16 bit
1242 if (mode_l) pSrc += 4;
1243
1244 int step;
1245 if (Channels == 2) { // Stereo
1246 const unsigned char* const param_r = pSrc;
1247 if (mode_r) pSrc += 4;
1248
1249 step = (2 - mode_l) + (2 - mode_r);
1250 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1251 Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1252 skipsamples, copysamples);
1253 pDst += copysamples << 1;
1254 }
1255 else { // Mono
1256 step = 2 - mode_l;
1257 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1258 pDst += copysamples;
1259 }
1260 }
1261 pSrc += nextFrameOffset;
1262 }
1263
1264 // reload from disk to local buffer if needed
1265 if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1266 assumedsize = GuessSize(remainingsamples);
1267 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1268 if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1269 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1270 pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1271 }
1272 } // while
1273
1274 this->SamplePos += (SampleCount - remainingsamples);
1275 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1276 return (SampleCount - remainingsamples);
1277 }
1278 }
1279
1280 /** @brief Write sample wave data.
1281 *
1282 * Writes \a SampleCount number of sample points from the buffer pointed
1283 * by \a pBuffer and increments the position within the sample. Use this
1284 * method to directly write the sample data to disk, i.e. if you don't
1285 * want or cannot load the whole sample data into RAM.
1286 *
1287 * You have to Resize() the sample to the desired size and call
1288 * File::Save() <b>before</b> using Write().
1289 *
1290 * Note: there is currently no support for writing compressed samples.
1291 *
1292 * For 16 bit samples, the data in the source buffer should be
1293 * int16_t (using native endianness). For 24 bit, the buffer
1294 * should contain three bytes per sample, little-endian.
1295 *
1296 * @param pBuffer - source buffer
1297 * @param SampleCount - number of sample points to write
1298 * @throws DLS::Exception if current sample size is too small
1299 * @throws gig::Exception if sample is compressed
1300 * @see DLS::LoadSampleData()
1301 */
1302 file_offset_t Sample::Write(void* pBuffer, file_offset_t SampleCount) {
1303 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1304
1305 // if this is the first write in this sample, reset the
1306 // checksum calculator
1307 if (pCkData->GetPos() == 0) {
1308 __resetCRC(crc);
1309 }
1310 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1311 file_offset_t res;
1312 if (BitDepth == 24) {
1313 res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1314 } else { // 16 bit
1315 res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1316 : pCkData->Write(pBuffer, SampleCount, 2);
1317 }
1318 __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1319
1320 // if this is the last write, update the checksum chunk in the
1321 // file
1322 if (pCkData->GetPos() == pCkData->GetSize()) {
1323 __finalizeCRC(crc);
1324 File* pFile = static_cast<File*>(GetParent());
1325 pFile->SetSampleChecksum(this, crc);
1326 }
1327 return res;
1328 }
1329
1330 /**
1331 * Allocates a decompression buffer for streaming (compressed) samples
1332 * with Sample::Read(). If you are using more than one streaming thread
1333 * in your application you <b>HAVE</b> to create a decompression buffer
1334 * for <b>EACH</b> of your streaming threads and provide it with the
1335 * Sample::Read() call in order to avoid race conditions and crashes.
1336 *
1337 * You should free the memory occupied by the allocated buffer(s) once
1338 * you don't need one of your streaming threads anymore by calling
1339 * DestroyDecompressionBuffer().
1340 *
1341 * @param MaxReadSize - the maximum size (in sample points) you ever
1342 * expect to read with one Read() call
1343 * @returns allocated decompression buffer
1344 * @see DestroyDecompressionBuffer()
1345 */
1346 buffer_t Sample::CreateDecompressionBuffer(file_offset_t MaxReadSize) {
1347 buffer_t result;
1348 const double worstCaseHeaderOverhead =
1349 (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1350 result.Size = (file_offset_t) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1351 result.pStart = new int8_t[result.Size];
1352 result.NullExtensionSize = 0;
1353 return result;
1354 }
1355
1356 /**
1357 * Free decompression buffer, previously created with
1358 * CreateDecompressionBuffer().
1359 *
1360 * @param DecompressionBuffer - previously allocated decompression
1361 * buffer to free
1362 */
1363 void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1364 if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1365 delete[] (int8_t*) DecompressionBuffer.pStart;
1366 DecompressionBuffer.pStart = NULL;
1367 DecompressionBuffer.Size = 0;
1368 DecompressionBuffer.NullExtensionSize = 0;
1369 }
1370 }
1371
1372 /**
1373 * Returns pointer to the Group this Sample belongs to. In the .gig
1374 * format a sample always belongs to one group. If it wasn't explicitly
1375 * assigned to a certain group, it will be automatically assigned to a
1376 * default group.
1377 *
1378 * @returns Sample's Group (never NULL)
1379 */
1380 Group* Sample::GetGroup() const {
1381 return pGroup;
1382 }
1383
1384 /**
1385 * Returns the CRC-32 checksum of the sample's raw wave form data at the
1386 * time when this sample's wave form data was modified for the last time
1387 * by calling Write(). This checksum only covers the raw wave form data,
1388 * not any meta informations like i.e. bit depth or loop points. Since
1389 * this method just returns the checksum stored for this sample i.e. when
1390 * the gig file was loaded, this method returns immediately. So it does no
1391 * recalcuation of the checksum with the currently available sample wave
1392 * form data.
1393 *
1394 * @see VerifyWaveData()
1395 */
1396 uint32_t Sample::GetWaveDataCRC32Checksum() {
1397 return crc;
1398 }
1399
1400 /**
1401 * Checks the integrity of this sample's raw audio wave data. Whenever a
1402 * Sample's raw wave data is intentionally modified (i.e. by calling
1403 * Write() and supplying the new raw audio wave form data) a CRC32 checksum
1404 * is calculated and stored/updated for this sample, along to the sample's
1405 * meta informations.
1406 *
1407 * Now by calling this method the current raw audio wave data is checked
1408 * against the already stored CRC32 check sum in order to check whether the
1409 * sample data had been damaged unintentionally for some reason. Since by
1410 * calling this method always the entire raw audio wave data has to be
1411 * read, verifying all samples this way may take a long time accordingly.
1412 * And that's also the reason why the sample integrity is not checked by
1413 * default whenever a gig file is loaded. So this method must be called
1414 * explicitly to fulfill this task.
1415 *
1416 * @param pActually - (optional) if provided, will be set to the actually
1417 * calculated checksum of the current raw wave form data,
1418 * you can get the expected checksum instead by calling
1419 * GetWaveDataCRC32Checksum()
1420 * @returns true if sample is OK or false if the sample is damaged
1421 * @throws Exception if no checksum had been stored to disk for this
1422 * sample yet, or on I/O issues
1423 * @see GetWaveDataCRC32Checksum()
1424 */
1425 bool Sample::VerifyWaveData(uint32_t* pActually) {
1426 //File* pFile = static_cast<File*>(GetParent());
1427 uint32_t crc = CalculateWaveDataChecksum();
1428 if (pActually) *pActually = crc;
1429 return crc == this->crc;
1430 }
1431
1432 uint32_t Sample::CalculateWaveDataChecksum() {
1433 const size_t sz = 20*1024; // 20kB buffer size
1434 std::vector<uint8_t> buffer(sz);
1435 buffer.resize(sz);
1436
1437 const size_t n = sz / FrameSize;
1438 SetPos(0);
1439 uint32_t crc = 0;
1440 __resetCRC(crc);
1441 while (true) {
1442 file_offset_t nRead = Read(&buffer[0], n);
1443 if (nRead <= 0) break;
1444 __calculateCRC(&buffer[0], nRead * FrameSize, crc);
1445 }
1446 __finalizeCRC(crc);
1447 return crc;
1448 }
1449
1450 Sample::~Sample() {
1451 Instances--;
1452 if (!Instances && InternalDecompressionBuffer.Size) {
1453 delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1454 InternalDecompressionBuffer.pStart = NULL;
1455 InternalDecompressionBuffer.Size = 0;
1456 }
1457 if (FrameTable) delete[] FrameTable;
1458 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1459 }
1460
1461
1462
1463 // *************** DimensionRegion ***************
1464 // *
1465
1466 size_t DimensionRegion::Instances = 0;
1467 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1468
1469 DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1470 Instances++;
1471
1472 pSample = NULL;
1473 pRegion = pParent;
1474
1475 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1476 else memset(&Crossfade, 0, 4);
1477
1478 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1479
1480 RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1481 if (_3ewa) { // if '3ewa' chunk exists
1482 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1483 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1484 EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1485 _3ewa->ReadInt16(); // unknown
1486 LFO1InternalDepth = _3ewa->ReadUint16();
1487 _3ewa->ReadInt16(); // unknown
1488 LFO3InternalDepth = _3ewa->ReadInt16();
1489 _3ewa->ReadInt16(); // unknown
1490 LFO1ControlDepth = _3ewa->ReadUint16();
1491 _3ewa->ReadInt16(); // unknown
1492 LFO3ControlDepth = _3ewa->ReadInt16();
1493 EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1494 EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1495 _3ewa->ReadInt16(); // unknown
1496 EG1Sustain = _3ewa->ReadUint16();
1497 EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1498 EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1499 uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1500 EG1ControllerInvert = eg1ctrloptions & 0x01;
1501 EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1502 EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1503 EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1504 EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1505 uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1506 EG2ControllerInvert = eg2ctrloptions & 0x01;
1507 EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1508 EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1509 EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1510 LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1511 EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1512 EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1513 _3ewa->ReadInt16(); // unknown
1514 EG2Sustain = _3ewa->ReadUint16();
1515 EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1516 _3ewa->ReadInt16(); // unknown
1517 LFO2ControlDepth = _3ewa->ReadUint16();
1518 LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1519 _3ewa->ReadInt16(); // unknown
1520 LFO2InternalDepth = _3ewa->ReadUint16();
1521 int32_t eg1decay2 = _3ewa->ReadInt32();
1522 EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1523 EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1524 _3ewa->ReadInt16(); // unknown
1525 EG1PreAttack = _3ewa->ReadUint16();
1526 int32_t eg2decay2 = _3ewa->ReadInt32();
1527 EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1528 EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1529 _3ewa->ReadInt16(); // unknown
1530 EG2PreAttack = _3ewa->ReadUint16();
1531 uint8_t velocityresponse = _3ewa->ReadUint8();
1532 if (velocityresponse < 5) {
1533 VelocityResponseCurve = curve_type_nonlinear;
1534 VelocityResponseDepth = velocityresponse;
1535 } else if (velocityresponse < 10) {
1536 VelocityResponseCurve = curve_type_linear;
1537 VelocityResponseDepth = velocityresponse - 5;
1538 } else if (velocityresponse < 15) {
1539 VelocityResponseCurve = curve_type_special;
1540 VelocityResponseDepth = velocityresponse - 10;
1541 } else {
1542 VelocityResponseCurve = curve_type_unknown;
1543 VelocityResponseDepth = 0;
1544 }
1545 uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1546 if (releasevelocityresponse < 5) {
1547 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1548 ReleaseVelocityResponseDepth = releasevelocityresponse;
1549 } else if (releasevelocityresponse < 10) {
1550 ReleaseVelocityResponseCurve = curve_type_linear;
1551 ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1552 } else if (releasevelocityresponse < 15) {
1553 ReleaseVelocityResponseCurve = curve_type_special;
1554 ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1555 } else {
1556 ReleaseVelocityResponseCurve = curve_type_unknown;
1557 ReleaseVelocityResponseDepth = 0;
1558 }
1559 VelocityResponseCurveScaling = _3ewa->ReadUint8();
1560 AttenuationControllerThreshold = _3ewa->ReadInt8();
1561 _3ewa->ReadInt32(); // unknown
1562 SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1563 _3ewa->ReadInt16(); // unknown
1564 uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1565 PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1566 if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1567 else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1568 else DimensionBypass = dim_bypass_ctrl_none;
1569 uint8_t pan = _3ewa->ReadUint8();
1570 Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1571 SelfMask = _3ewa->ReadInt8() & 0x01;
1572 _3ewa->ReadInt8(); // unknown
1573 uint8_t lfo3ctrl = _3ewa->ReadUint8();
1574 LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1575 LFO3Sync = lfo3ctrl & 0x20; // bit 5
1576 InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1577 AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1578 uint8_t lfo2ctrl = _3ewa->ReadUint8();
1579 LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1580 LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1581 LFO2Sync = lfo2ctrl & 0x20; // bit 5
1582 bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1583 uint8_t lfo1ctrl = _3ewa->ReadUint8();
1584 LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1585 LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1586 LFO1Sync = lfo1ctrl & 0x40; // bit 6
1587 VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1588 : vcf_res_ctrl_none;
1589 uint16_t eg3depth = _3ewa->ReadUint16();
1590 EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1591 : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1592 _3ewa->ReadInt16(); // unknown
1593 ChannelOffset = _3ewa->ReadUint8() / 4;
1594 uint8_t regoptions = _3ewa->ReadUint8();
1595 MSDecode = regoptions & 0x01; // bit 0
1596 SustainDefeat = regoptions & 0x02; // bit 1
1597 _3ewa->ReadInt16(); // unknown
1598 VelocityUpperLimit = _3ewa->ReadInt8();
1599 _3ewa->ReadInt8(); // unknown
1600 _3ewa->ReadInt16(); // unknown
1601 ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1602 _3ewa->ReadInt8(); // unknown
1603 _3ewa->ReadInt8(); // unknown
1604 EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1605 uint8_t vcfcutoff = _3ewa->ReadUint8();
1606 VCFEnabled = vcfcutoff & 0x80; // bit 7
1607 VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1608 VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1609 uint8_t vcfvelscale = _3ewa->ReadUint8();
1610 VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1611 VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1612 _3ewa->ReadInt8(); // unknown
1613 uint8_t vcfresonance = _3ewa->ReadUint8();
1614 VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1615 VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1616 uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1617 VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1618 VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1619 uint8_t vcfvelocity = _3ewa->ReadUint8();
1620 VCFVelocityDynamicRange = vcfvelocity % 5;
1621 VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1622 VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1623 if (VCFType == vcf_type_lowpass) {
1624 if (lfo3ctrl & 0x40) // bit 6
1625 VCFType = vcf_type_lowpassturbo;
1626 }
1627 if (_3ewa->RemainingBytes() >= 8) {
1628 _3ewa->Read(DimensionUpperLimits, 1, 8);
1629 } else {
1630 memset(DimensionUpperLimits, 0, 8);
1631 }
1632 } else { // '3ewa' chunk does not exist yet
1633 // use default values
1634 LFO3Frequency = 1.0;
1635 EG3Attack = 0.0;
1636 LFO1InternalDepth = 0;
1637 LFO3InternalDepth = 0;
1638 LFO1ControlDepth = 0;
1639 LFO3ControlDepth = 0;
1640 EG1Attack = 0.0;
1641 EG1Decay1 = 0.005;
1642 EG1Sustain = 1000;
1643 EG1Release = 0.3;
1644 EG1Controller.type = eg1_ctrl_t::type_none;
1645 EG1Controller.controller_number = 0;
1646 EG1ControllerInvert = false;
1647 EG1ControllerAttackInfluence = 0;
1648 EG1ControllerDecayInfluence = 0;
1649 EG1ControllerReleaseInfluence = 0;
1650 EG2Controller.type = eg2_ctrl_t::type_none;
1651 EG2Controller.controller_number = 0;
1652 EG2ControllerInvert = false;
1653 EG2ControllerAttackInfluence = 0;
1654 EG2ControllerDecayInfluence = 0;
1655 EG2ControllerReleaseInfluence = 0;
1656 LFO1Frequency = 1.0;
1657 EG2Attack = 0.0;
1658 EG2Decay1 = 0.005;
1659 EG2Sustain = 1000;
1660 EG2Release = 60;
1661 LFO2ControlDepth = 0;
1662 LFO2Frequency = 1.0;
1663 LFO2InternalDepth = 0;
1664 EG1Decay2 = 0.0;
1665 EG1InfiniteSustain = true;
1666 EG1PreAttack = 0;
1667 EG2Decay2 = 0.0;
1668 EG2InfiniteSustain = true;
1669 EG2PreAttack = 0;
1670 VelocityResponseCurve = curve_type_nonlinear;
1671 VelocityResponseDepth = 3;
1672 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1673 ReleaseVelocityResponseDepth = 3;
1674 VelocityResponseCurveScaling = 32;
1675 AttenuationControllerThreshold = 0;
1676 SampleStartOffset = 0;
1677 PitchTrack = true;
1678 DimensionBypass = dim_bypass_ctrl_none;
1679 Pan = 0;
1680 SelfMask = true;
1681 LFO3Controller = lfo3_ctrl_modwheel;
1682 LFO3Sync = false;
1683 InvertAttenuationController = false;
1684 AttenuationController.type = attenuation_ctrl_t::type_none;
1685 AttenuationController.controller_number = 0;
1686 LFO2Controller = lfo2_ctrl_internal;
1687 LFO2FlipPhase = false;
1688 LFO2Sync = false;
1689 LFO1Controller = lfo1_ctrl_internal;
1690 LFO1FlipPhase = false;
1691 LFO1Sync = false;
1692 VCFResonanceController = vcf_res_ctrl_none;
1693 EG3Depth = 0;
1694 ChannelOffset = 0;
1695 MSDecode = false;
1696 SustainDefeat = false;
1697 VelocityUpperLimit = 0;
1698 ReleaseTriggerDecay = 0;
1699 EG1Hold = false;
1700 VCFEnabled = false;
1701 VCFCutoff = 0;
1702 VCFCutoffController = vcf_cutoff_ctrl_none;
1703 VCFCutoffControllerInvert = false;
1704 VCFVelocityScale = 0;
1705 VCFResonance = 0;
1706 VCFResonanceDynamic = false;
1707 VCFKeyboardTracking = false;
1708 VCFKeyboardTrackingBreakpoint = 0;
1709 VCFVelocityDynamicRange = 0x04;
1710 VCFVelocityCurve = curve_type_linear;
1711 VCFType = vcf_type_lowpass;
1712 memset(DimensionUpperLimits, 127, 8);
1713 }
1714
1715 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1716 VelocityResponseDepth,
1717 VelocityResponseCurveScaling);
1718
1719 pVelocityReleaseTable = GetReleaseVelocityTable(
1720 ReleaseVelocityResponseCurve,
1721 ReleaseVelocityResponseDepth
1722 );
1723
1724 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1725 VCFVelocityDynamicRange,
1726 VCFVelocityScale,
1727 VCFCutoffController);
1728
1729 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1730 VelocityTable = 0;
1731 }
1732
1733 /*
1734 * Constructs a DimensionRegion by copying all parameters from
1735 * another DimensionRegion
1736 */
1737 DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1738 Instances++;
1739 //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1740 *this = src; // default memberwise shallow copy of all parameters
1741 pParentList = _3ewl; // restore the chunk pointer
1742
1743 // deep copy of owned structures
1744 if (src.VelocityTable) {
1745 VelocityTable = new uint8_t[128];
1746 for (int k = 0 ; k < 128 ; k++)
1747 VelocityTable[k] = src.VelocityTable[k];
1748 }
1749 if (src.pSampleLoops) {
1750 pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1751 for (int k = 0 ; k < src.SampleLoops ; k++)
1752 pSampleLoops[k] = src.pSampleLoops[k];
1753 }
1754 }
1755
1756 /**
1757 * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1758 * and assign it to this object.
1759 *
1760 * Note that all sample pointers referenced by @a orig are simply copied as
1761 * memory address. Thus the respective samples are shared, not duplicated!
1762 *
1763 * @param orig - original DimensionRegion object to be copied from
1764 */
1765 void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1766 CopyAssign(orig, NULL);
1767 }
1768
1769 /**
1770 * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1771 * and assign it to this object.
1772 *
1773 * @param orig - original DimensionRegion object to be copied from
1774 * @param mSamples - crosslink map between the foreign file's samples and
1775 * this file's samples
1776 */
1777 void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1778 // delete all allocated data first
1779 if (VelocityTable) delete [] VelocityTable;
1780 if (pSampleLoops) delete [] pSampleLoops;
1781
1782 // backup parent list pointer
1783 RIFF::List* p = pParentList;
1784
1785 gig::Sample* pOriginalSample = pSample;
1786 gig::Region* pOriginalRegion = pRegion;
1787
1788 //NOTE: copy code copied from assignment constructor above, see comment there as well
1789
1790 *this = *orig; // default memberwise shallow copy of all parameters
1791
1792 // restore members that shall not be altered
1793 pParentList = p; // restore the chunk pointer
1794 pRegion = pOriginalRegion;
1795
1796 // only take the raw sample reference reference if the
1797 // two DimensionRegion objects are part of the same file
1798 if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1799 pSample = pOriginalSample;
1800 }
1801
1802 if (mSamples && mSamples->count(orig->pSample)) {
1803 pSample = mSamples->find(orig->pSample)->second;
1804 }
1805
1806 // deep copy of owned structures
1807 if (orig->VelocityTable) {
1808 VelocityTable = new uint8_t[128];
1809 for (int k = 0 ; k < 128 ; k++)
1810 VelocityTable[k] = orig->VelocityTable[k];
1811 }
1812 if (orig->pSampleLoops) {
1813 pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1814 for (int k = 0 ; k < orig->SampleLoops ; k++)
1815 pSampleLoops[k] = orig->pSampleLoops[k];
1816 }
1817 }
1818
1819 void DimensionRegion::serialize(Serialization::Archive* archive) {
1820 // in case this class will become backward incompatible one day,
1821 // then set a version and minimum version for this class like:
1822 //archive->setVersion(*this, 2);
1823 //archive->setMinVersion(*this, 1);
1824
1825 SRLZ(VelocityUpperLimit);
1826 SRLZ(EG1PreAttack);
1827 SRLZ(EG1Attack);
1828 SRLZ(EG1Decay1);
1829 SRLZ(EG1Decay2);
1830 SRLZ(EG1InfiniteSustain);
1831 SRLZ(EG1Sustain);
1832 SRLZ(EG1Release);
1833 SRLZ(EG1Hold);
1834 SRLZ(EG1Controller);
1835 SRLZ(EG1ControllerInvert);
1836 SRLZ(EG1ControllerAttackInfluence);
1837 SRLZ(EG1ControllerDecayInfluence);
1838 SRLZ(EG1ControllerReleaseInfluence);
1839 SRLZ(LFO1Frequency);
1840 SRLZ(LFO1InternalDepth);
1841 SRLZ(LFO1ControlDepth);
1842 SRLZ(LFO1Controller);
1843 SRLZ(LFO1FlipPhase);
1844 SRLZ(LFO1Sync);
1845 SRLZ(EG2PreAttack);
1846 SRLZ(EG2Attack);
1847 SRLZ(EG2Decay1);
1848 SRLZ(EG2Decay2);
1849 SRLZ(EG2InfiniteSustain);
1850 SRLZ(EG2Sustain);
1851 SRLZ(EG2Release);
1852 SRLZ(EG2Controller);
1853 SRLZ(EG2ControllerInvert);
1854 SRLZ(EG2ControllerAttackInfluence);
1855 SRLZ(EG2ControllerDecayInfluence);
1856 SRLZ(EG2ControllerReleaseInfluence);
1857 SRLZ(LFO2Frequency);
1858 SRLZ(LFO2InternalDepth);
1859 SRLZ(LFO2ControlDepth);
1860 SRLZ(LFO2Controller);
1861 SRLZ(LFO2FlipPhase);
1862 SRLZ(LFO2Sync);
1863 SRLZ(EG3Attack);
1864 SRLZ(EG3Depth);
1865 SRLZ(LFO3Frequency);
1866 SRLZ(LFO3InternalDepth);
1867 SRLZ(LFO3ControlDepth);
1868 SRLZ(LFO3Controller);
1869 SRLZ(LFO3Sync);
1870 SRLZ(VCFEnabled);
1871 SRLZ(VCFType);
1872 SRLZ(VCFCutoffController);
1873 SRLZ(VCFCutoffControllerInvert);
1874 SRLZ(VCFCutoff);
1875 SRLZ(VCFVelocityCurve);
1876 SRLZ(VCFVelocityScale);
1877 SRLZ(VCFVelocityDynamicRange);
1878 SRLZ(VCFResonance);
1879 SRLZ(VCFResonanceDynamic);
1880 SRLZ(VCFResonanceController);
1881 SRLZ(VCFKeyboardTracking);
1882 SRLZ(VCFKeyboardTrackingBreakpoint);
1883 SRLZ(VelocityResponseCurve);
1884 SRLZ(VelocityResponseDepth);
1885 SRLZ(VelocityResponseCurveScaling);
1886 SRLZ(ReleaseVelocityResponseCurve);
1887 SRLZ(ReleaseVelocityResponseDepth);
1888 SRLZ(ReleaseTriggerDecay);
1889 SRLZ(Crossfade);
1890 SRLZ(PitchTrack);
1891 SRLZ(DimensionBypass);
1892 SRLZ(Pan);
1893 SRLZ(SelfMask);
1894 SRLZ(AttenuationController);
1895 SRLZ(InvertAttenuationController);
1896 SRLZ(AttenuationControllerThreshold);
1897 SRLZ(ChannelOffset);
1898 SRLZ(SustainDefeat);
1899 SRLZ(MSDecode);
1900 //SRLZ(SampleStartOffset);
1901 SRLZ(SampleAttenuation);
1902
1903 // derived attributes from DLS::Sampler
1904 SRLZ(FineTune);
1905 SRLZ(Gain);
1906 }
1907
1908 /**
1909 * Updates the respective member variable and updates @c SampleAttenuation
1910 * which depends on this value.
1911 */
1912 void DimensionRegion::SetGain(int32_t gain) {
1913 DLS::Sampler::SetGain(gain);
1914 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1915 }
1916
1917 /**
1918 * Apply dimension region settings to the respective RIFF chunks. You
1919 * have to call File::Save() to make changes persistent.
1920 *
1921 * Usually there is absolutely no need to call this method explicitly.
1922 * It will be called automatically when File::Save() was called.
1923 *
1924 * @param pProgress - callback function for progress notification
1925 */
1926 void DimensionRegion::UpdateChunks(progress_t* pProgress) {
1927 // first update base class's chunk
1928 DLS::Sampler::UpdateChunks(pProgress);
1929
1930 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1931 uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1932 pData[12] = Crossfade.in_start;
1933 pData[13] = Crossfade.in_end;
1934 pData[14] = Crossfade.out_start;
1935 pData[15] = Crossfade.out_end;
1936
1937 // make sure '3ewa' chunk exists
1938 RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1939 if (!_3ewa) {
1940 File* pFile = (File*) GetParent()->GetParent()->GetParent();
1941 bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1942 _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1943 }
1944 pData = (uint8_t*) _3ewa->LoadChunkData();
1945
1946 // update '3ewa' chunk with DimensionRegion's current settings
1947
1948 const uint32_t chunksize = (uint32_t) _3ewa->GetNewSize();
1949 store32(&pData[0], chunksize); // unknown, always chunk size?
1950
1951 const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1952 store32(&pData[4], lfo3freq);
1953
1954 const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1955 store32(&pData[8], eg3attack);
1956
1957 // next 2 bytes unknown
1958
1959 store16(&pData[14], LFO1InternalDepth);
1960
1961 // next 2 bytes unknown
1962
1963 store16(&pData[18], LFO3InternalDepth);
1964
1965 // next 2 bytes unknown
1966
1967 store16(&pData[22], LFO1ControlDepth);
1968
1969 // next 2 bytes unknown
1970
1971 store16(&pData[26], LFO3ControlDepth);
1972
1973 const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1974 store32(&pData[28], eg1attack);
1975
1976 const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1977 store32(&pData[32], eg1decay1);
1978
1979 // next 2 bytes unknown
1980
1981 store16(&pData[38], EG1Sustain);
1982
1983 const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1984 store32(&pData[40], eg1release);
1985
1986 const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1987 pData[44] = eg1ctl;
1988
1989 const uint8_t eg1ctrloptions =
1990 (EG1ControllerInvert ? 0x01 : 0x00) |
1991 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1992 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1993 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1994 pData[45] = eg1ctrloptions;
1995
1996 const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1997 pData[46] = eg2ctl;
1998
1999 const uint8_t eg2ctrloptions =
2000 (EG2ControllerInvert ? 0x01 : 0x00) |
2001 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
2002 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
2003 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
2004 pData[47] = eg2ctrloptions;
2005
2006 const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
2007 store32(&pData[48], lfo1freq);
2008
2009 const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
2010 store32(&pData[52], eg2attack);
2011
2012 const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
2013 store32(&pData[56], eg2decay1);
2014
2015 // next 2 bytes unknown
2016
2017 store16(&pData[62], EG2Sustain);
2018
2019 const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
2020 store32(&pData[64], eg2release);
2021
2022 // next 2 bytes unknown
2023
2024 store16(&pData[70], LFO2ControlDepth);
2025
2026 const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
2027 store32(&pData[72], lfo2freq);
2028
2029 // next 2 bytes unknown
2030
2031 store16(&pData[78], LFO2InternalDepth);
2032
2033 const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
2034 store32(&pData[80], eg1decay2);
2035
2036 // next 2 bytes unknown
2037
2038 store16(&pData[86], EG1PreAttack);
2039
2040 const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
2041 store32(&pData[88], eg2decay2);
2042
2043 // next 2 bytes unknown
2044
2045 store16(&pData[94], EG2PreAttack);
2046
2047 {
2048 if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
2049 uint8_t velocityresponse = VelocityResponseDepth;
2050 switch (VelocityResponseCurve) {
2051 case curve_type_nonlinear:
2052 break;
2053 case curve_type_linear:
2054 velocityresponse += 5;
2055 break;
2056 case curve_type_special:
2057 velocityresponse += 10;
2058 break;
2059 case curve_type_unknown:
2060 default:
2061 throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
2062 }
2063 pData[96] = velocityresponse;
2064 }
2065
2066 {
2067 if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
2068 uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
2069 switch (ReleaseVelocityResponseCurve) {
2070 case curve_type_nonlinear:
2071 break;
2072 case curve_type_linear:
2073 releasevelocityresponse += 5;
2074 break;
2075 case curve_type_special:
2076 releasevelocityresponse += 10;
2077 break;
2078 case curve_type_unknown:
2079 default:
2080 throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
2081 }
2082 pData[97] = releasevelocityresponse;
2083 }
2084
2085 pData[98] = VelocityResponseCurveScaling;
2086
2087 pData[99] = AttenuationControllerThreshold;
2088
2089 // next 4 bytes unknown
2090
2091 store16(&pData[104], SampleStartOffset);
2092
2093 // next 2 bytes unknown
2094
2095 {
2096 uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
2097 switch (DimensionBypass) {
2098 case dim_bypass_ctrl_94:
2099 pitchTrackDimensionBypass |= 0x10;
2100 break;
2101 case dim_bypass_ctrl_95:
2102 pitchTrackDimensionBypass |= 0x20;
2103 break;
2104 case dim_bypass_ctrl_none:
2105 //FIXME: should we set anything here?
2106 break;
2107 default:
2108 throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
2109 }
2110 pData[108] = pitchTrackDimensionBypass;
2111 }
2112
2113 const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
2114 pData[109] = pan;
2115
2116 const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
2117 pData[110] = selfmask;
2118
2119 // next byte unknown
2120
2121 {
2122 uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
2123 if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
2124 if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
2125 if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
2126 pData[112] = lfo3ctrl;
2127 }
2128
2129 const uint8_t attenctl = EncodeLeverageController(AttenuationController);
2130 pData[113] = attenctl;
2131
2132 {
2133 uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
2134 if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
2135 if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
2136 if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
2137 pData[114] = lfo2ctrl;
2138 }
2139
2140 {
2141 uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
2142 if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
2143 if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
2144 if (VCFResonanceController != vcf_res_ctrl_none)
2145 lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
2146 pData[115] = lfo1ctrl;
2147 }
2148
2149 const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
2150 : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
2151 store16(&pData[116], eg3depth);
2152
2153 // next 2 bytes unknown
2154
2155 const uint8_t channeloffset = ChannelOffset * 4;
2156 pData[120] = channeloffset;
2157
2158 {
2159 uint8_t regoptions = 0;
2160 if (MSDecode) regoptions |= 0x01; // bit 0
2161 if (SustainDefeat) regoptions |= 0x02; // bit 1
2162 pData[121] = regoptions;
2163 }
2164
2165 // next 2 bytes unknown
2166
2167 pData[124] = VelocityUpperLimit;
2168
2169 // next 3 bytes unknown
2170
2171 pData[128] = ReleaseTriggerDecay;
2172
2173 // next 2 bytes unknown
2174
2175 const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2176 pData[131] = eg1hold;
2177
2178 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
2179 (VCFCutoff & 0x7f); /* lower 7 bits */
2180 pData[132] = vcfcutoff;
2181
2182 pData[133] = VCFCutoffController;
2183
2184 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2185 (VCFVelocityScale & 0x7f); /* lower 7 bits */
2186 pData[134] = vcfvelscale;
2187
2188 // next byte unknown
2189
2190 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2191 (VCFResonance & 0x7f); /* lower 7 bits */
2192 pData[136] = vcfresonance;
2193
2194 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2195 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2196 pData[137] = vcfbreakpoint;
2197
2198 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2199 VCFVelocityCurve * 5;
2200 pData[138] = vcfvelocity;
2201
2202 const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2203 pData[139] = vcftype;
2204
2205 if (chunksize >= 148) {
2206 memcpy(&pData[140], DimensionUpperLimits, 8);
2207 }
2208 }
2209
2210 double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2211 curve_type_t curveType = releaseVelocityResponseCurve;
2212 uint8_t depth = releaseVelocityResponseDepth;
2213 // this models a strange behaviour or bug in GSt: two of the
2214 // velocity response curves for release time are not used even
2215 // if specified, instead another curve is chosen.
2216 if ((curveType == curve_type_nonlinear && depth == 0) ||
2217 (curveType == curve_type_special && depth == 4)) {
2218 curveType = curve_type_nonlinear;
2219 depth = 3;
2220 }
2221 return GetVelocityTable(curveType, depth, 0);
2222 }
2223
2224 double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2225 uint8_t vcfVelocityDynamicRange,
2226 uint8_t vcfVelocityScale,
2227 vcf_cutoff_ctrl_t vcfCutoffController)
2228 {
2229 curve_type_t curveType = vcfVelocityCurve;
2230 uint8_t depth = vcfVelocityDynamicRange;
2231 // even stranger GSt: two of the velocity response curves for
2232 // filter cutoff are not used, instead another special curve
2233 // is chosen. This curve is not used anywhere else.
2234 if ((curveType == curve_type_nonlinear && depth == 0) ||
2235 (curveType == curve_type_special && depth == 4)) {
2236 curveType = curve_type_special;
2237 depth = 5;
2238 }
2239 return GetVelocityTable(curveType, depth,
2240 (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2241 ? vcfVelocityScale : 0);
2242 }
2243
2244 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2245 double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2246 {
2247 double* table;
2248 uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2249 if (pVelocityTables->count(tableKey)) { // if key exists
2250 table = (*pVelocityTables)[tableKey];
2251 }
2252 else {
2253 table = CreateVelocityTable(curveType, depth, scaling);
2254 (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
2255 }
2256 return table;
2257 }
2258
2259 Region* DimensionRegion::GetParent() const {
2260 return pRegion;
2261 }
2262
2263 // show error if some _lev_ctrl_* enum entry is not listed in the following function
2264 // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2265 // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2266 //#pragma GCC diagnostic push
2267 //#pragma GCC diagnostic error "-Wswitch"
2268
2269 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2270 leverage_ctrl_t decodedcontroller;
2271 switch (EncodedController) {
2272 // special controller
2273 case _lev_ctrl_none:
2274 decodedcontroller.type = leverage_ctrl_t::type_none;
2275 decodedcontroller.controller_number = 0;
2276 break;
2277 case _lev_ctrl_velocity:
2278 decodedcontroller.type = leverage_ctrl_t::type_velocity;
2279 decodedcontroller.controller_number = 0;
2280 break;
2281 case _lev_ctrl_channelaftertouch:
2282 decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
2283 decodedcontroller.controller_number = 0;
2284 break;
2285
2286 // ordinary MIDI control change controller
2287 case _lev_ctrl_modwheel:
2288 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2289 decodedcontroller.controller_number = 1;
2290 break;
2291 case _lev_ctrl_breath:
2292 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2293 decodedcontroller.controller_number = 2;
2294 break;
2295 case _lev_ctrl_foot:
2296 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2297 decodedcontroller.controller_number = 4;
2298 break;
2299 case _lev_ctrl_effect1:
2300 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2301 decodedcontroller.controller_number = 12;
2302 break;
2303 case _lev_ctrl_effect2:
2304 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2305 decodedcontroller.controller_number = 13;
2306 break;
2307 case _lev_ctrl_genpurpose1:
2308 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2309 decodedcontroller.controller_number = 16;
2310 break;
2311 case _lev_ctrl_genpurpose2:
2312 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2313 decodedcontroller.controller_number = 17;
2314 break;
2315 case _lev_ctrl_genpurpose3:
2316 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2317 decodedcontroller.controller_number = 18;
2318 break;
2319 case _lev_ctrl_genpurpose4:
2320 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2321 decodedcontroller.controller_number = 19;
2322 break;
2323 case _lev_ctrl_portamentotime:
2324 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2325 decodedcontroller.controller_number = 5;
2326 break;
2327 case _lev_ctrl_sustainpedal:
2328 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2329 decodedcontroller.controller_number = 64;
2330 break;
2331 case _lev_ctrl_portamento:
2332 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2333 decodedcontroller.controller_number = 65;
2334 break;
2335 case _lev_ctrl_sostenutopedal:
2336 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2337 decodedcontroller.controller_number = 66;
2338 break;
2339 case _lev_ctrl_softpedal:
2340 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2341 decodedcontroller.controller_number = 67;
2342 break;
2343 case _lev_ctrl_genpurpose5:
2344 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2345 decodedcontroller.controller_number = 80;
2346 break;
2347 case _lev_ctrl_genpurpose6:
2348 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2349 decodedcontroller.controller_number = 81;
2350 break;
2351 case _lev_ctrl_genpurpose7:
2352 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2353 decodedcontroller.controller_number = 82;
2354 break;
2355 case _lev_ctrl_genpurpose8:
2356 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2357 decodedcontroller.controller_number = 83;
2358 break;
2359 case _lev_ctrl_effect1depth:
2360 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2361 decodedcontroller.controller_number = 91;
2362 break;
2363 case _lev_ctrl_effect2depth:
2364 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2365 decodedcontroller.controller_number = 92;
2366 break;
2367 case _lev_ctrl_effect3depth:
2368 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2369 decodedcontroller.controller_number = 93;
2370 break;
2371 case _lev_ctrl_effect4depth:
2372 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2373 decodedcontroller.controller_number = 94;
2374 break;
2375 case _lev_ctrl_effect5depth:
2376 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2377 decodedcontroller.controller_number = 95;
2378 break;
2379
2380 // format extension (these controllers are so far only supported by
2381 // LinuxSampler & gigedit) they will *NOT* work with
2382 // Gigasampler/GigaStudio !
2383 case _lev_ctrl_CC3_EXT:
2384 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2385 decodedcontroller.controller_number = 3;
2386 break;
2387 case _lev_ctrl_CC6_EXT:
2388 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2389 decodedcontroller.controller_number = 6;
2390 break;
2391 case _lev_ctrl_CC7_EXT:
2392 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2393 decodedcontroller.controller_number = 7;
2394 break;
2395 case _lev_ctrl_CC8_EXT:
2396 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2397 decodedcontroller.controller_number = 8;
2398 break;
2399 case _lev_ctrl_CC9_EXT:
2400 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2401 decodedcontroller.controller_number = 9;
2402 break;
2403 case _lev_ctrl_CC10_EXT:
2404 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2405 decodedcontroller.controller_number = 10;
2406 break;
2407 case _lev_ctrl_CC11_EXT:
2408 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2409 decodedcontroller.controller_number = 11;
2410 break;
2411 case _lev_ctrl_CC14_EXT:
2412 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2413 decodedcontroller.controller_number = 14;
2414 break;
2415 case _lev_ctrl_CC15_EXT:
2416 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2417 decodedcontroller.controller_number = 15;
2418 break;
2419 case _lev_ctrl_CC20_EXT:
2420 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2421 decodedcontroller.controller_number = 20;
2422 break;
2423 case _lev_ctrl_CC21_EXT:
2424 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2425 decodedcontroller.controller_number = 21;
2426 break;
2427 case _lev_ctrl_CC22_EXT:
2428 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2429 decodedcontroller.controller_number = 22;
2430 break;
2431 case _lev_ctrl_CC23_EXT:
2432 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2433 decodedcontroller.controller_number = 23;
2434 break;
2435 case _lev_ctrl_CC24_EXT:
2436 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2437 decodedcontroller.controller_number = 24;
2438 break;
2439 case _lev_ctrl_CC25_EXT:
2440 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2441 decodedcontroller.controller_number = 25;
2442 break;
2443 case _lev_ctrl_CC26_EXT:
2444 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2445 decodedcontroller.controller_number = 26;
2446 break;
2447 case _lev_ctrl_CC27_EXT:
2448 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2449 decodedcontroller.controller_number = 27;
2450 break;
2451 case _lev_ctrl_CC28_EXT:
2452 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2453 decodedcontroller.controller_number = 28;
2454 break;
2455 case _lev_ctrl_CC29_EXT:
2456 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2457 decodedcontroller.controller_number = 29;
2458 break;
2459 case _lev_ctrl_CC30_EXT:
2460 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2461 decodedcontroller.controller_number = 30;
2462 break;
2463 case _lev_ctrl_CC31_EXT:
2464 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2465 decodedcontroller.controller_number = 31;
2466 break;
2467 case _lev_ctrl_CC68_EXT:
2468 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2469 decodedcontroller.controller_number = 68;
2470 break;
2471 case _lev_ctrl_CC69_EXT:
2472 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2473 decodedcontroller.controller_number = 69;
2474 break;
2475 case _lev_ctrl_CC70_EXT:
2476 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2477 decodedcontroller.controller_number = 70;
2478 break;
2479 case _lev_ctrl_CC71_EXT:
2480 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2481 decodedcontroller.controller_number = 71;
2482 break;
2483 case _lev_ctrl_CC72_EXT:
2484 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2485 decodedcontroller.controller_number = 72;
2486 break;
2487 case _lev_ctrl_CC73_EXT:
2488 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2489 decodedcontroller.controller_number = 73;
2490 break;
2491 case _lev_ctrl_CC74_EXT:
2492 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2493 decodedcontroller.controller_number = 74;
2494 break;
2495 case _lev_ctrl_CC75_EXT:
2496 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2497 decodedcontroller.controller_number = 75;
2498 break;
2499 case _lev_ctrl_CC76_EXT:
2500 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2501 decodedcontroller.controller_number = 76;
2502 break;
2503 case _lev_ctrl_CC77_EXT:
2504 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2505 decodedcontroller.controller_number = 77;
2506 break;
2507 case _lev_ctrl_CC78_EXT:
2508 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2509 decodedcontroller.controller_number = 78;
2510 break;
2511 case _lev_ctrl_CC79_EXT:
2512 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2513 decodedcontroller.controller_number = 79;
2514 break;
2515 case _lev_ctrl_CC84_EXT:
2516 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2517 decodedcontroller.controller_number = 84;
2518 break;
2519 case _lev_ctrl_CC85_EXT:
2520 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2521 decodedcontroller.controller_number = 85;
2522 break;
2523 case _lev_ctrl_CC86_EXT:
2524 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2525 decodedcontroller.controller_number = 86;
2526 break;
2527 case _lev_ctrl_CC87_EXT:
2528 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2529 decodedcontroller.controller_number = 87;
2530 break;
2531 case _lev_ctrl_CC89_EXT:
2532 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2533 decodedcontroller.controller_number = 89;
2534 break;
2535 case _lev_ctrl_CC90_EXT:
2536 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2537 decodedcontroller.controller_number = 90;
2538 break;
2539 case _lev_ctrl_CC96_EXT:
2540 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2541 decodedcontroller.controller_number = 96;
2542 break;
2543 case _lev_ctrl_CC97_EXT:
2544 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2545 decodedcontroller.controller_number = 97;
2546 break;
2547 case _lev_ctrl_CC102_EXT:
2548 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2549 decodedcontroller.controller_number = 102;
2550 break;
2551 case _lev_ctrl_CC103_EXT:
2552 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2553 decodedcontroller.controller_number = 103;
2554 break;
2555 case _lev_ctrl_CC104_EXT:
2556 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2557 decodedcontroller.controller_number = 104;
2558 break;
2559 case _lev_ctrl_CC105_EXT:
2560 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2561 decodedcontroller.controller_number = 105;
2562 break;
2563 case _lev_ctrl_CC106_EXT:
2564 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2565 decodedcontroller.controller_number = 106;
2566 break;
2567 case _lev_ctrl_CC107_EXT:
2568 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2569 decodedcontroller.controller_number = 107;
2570 break;
2571 case _lev_ctrl_CC108_EXT:
2572 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2573 decodedcontroller.controller_number = 108;
2574 break;
2575 case _lev_ctrl_CC109_EXT:
2576 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2577 decodedcontroller.controller_number = 109;
2578 break;
2579 case _lev_ctrl_CC110_EXT:
2580 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2581 decodedcontroller.controller_number = 110;
2582 break;
2583 case _lev_ctrl_CC111_EXT:
2584 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2585 decodedcontroller.controller_number = 111;
2586 break;
2587 case _lev_ctrl_CC112_EXT:
2588 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2589 decodedcontroller.controller_number = 112;
2590 break;
2591 case _lev_ctrl_CC113_EXT:
2592 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2593 decodedcontroller.controller_number = 113;
2594 break;
2595 case _lev_ctrl_CC114_EXT:
2596 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2597 decodedcontroller.controller_number = 114;
2598 break;
2599 case _lev_ctrl_CC115_EXT:
2600 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2601 decodedcontroller.controller_number = 115;
2602 break;
2603 case _lev_ctrl_CC116_EXT:
2604 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2605 decodedcontroller.controller_number = 116;
2606 break;
2607 case _lev_ctrl_CC117_EXT:
2608 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2609 decodedcontroller.controller_number = 117;
2610 break;
2611 case _lev_ctrl_CC118_EXT:
2612 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2613 decodedcontroller.controller_number = 118;
2614 break;
2615 case _lev_ctrl_CC119_EXT:
2616 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2617 decodedcontroller.controller_number = 119;
2618 break;
2619
2620 // unknown controller type
2621 default:
2622 throw gig::Exception("Unknown leverage controller type.");
2623 }
2624 return decodedcontroller;
2625 }
2626
2627 // see above (diagnostic push not supported prior GCC 4.6)
2628 //#pragma GCC diagnostic pop
2629
2630 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2631 _lev_ctrl_t encodedcontroller;
2632 switch (DecodedController.type) {
2633 // special controller
2634 case leverage_ctrl_t::type_none:
2635 encodedcontroller = _lev_ctrl_none;
2636 break;
2637 case leverage_ctrl_t::type_velocity:
2638 encodedcontroller = _lev_ctrl_velocity;
2639 break;
2640 case leverage_ctrl_t::type_channelaftertouch:
2641 encodedcontroller = _lev_ctrl_channelaftertouch;
2642 break;
2643
2644 // ordinary MIDI control change controller
2645 case leverage_ctrl_t::type_controlchange:
2646 switch (DecodedController.controller_number) {
2647 case 1:
2648 encodedcontroller = _lev_ctrl_modwheel;
2649 break;
2650 case 2:
2651 encodedcontroller = _lev_ctrl_breath;
2652 break;
2653 case 4:
2654 encodedcontroller = _lev_ctrl_foot;
2655 break;
2656 case 12:
2657 encodedcontroller = _lev_ctrl_effect1;
2658 break;
2659 case 13:
2660 encodedcontroller = _lev_ctrl_effect2;
2661 break;
2662 case 16:
2663 encodedcontroller = _lev_ctrl_genpurpose1;
2664 break;
2665 case 17:
2666 encodedcontroller = _lev_ctrl_genpurpose2;
2667 break;
2668 case 18:
2669 encodedcontroller = _lev_ctrl_genpurpose3;
2670 break;
2671 case 19:
2672 encodedcontroller = _lev_ctrl_genpurpose4;
2673 break;
2674 case 5:
2675 encodedcontroller = _lev_ctrl_portamentotime;
2676 break;
2677 case 64:
2678 encodedcontroller = _lev_ctrl_sustainpedal;
2679 break;
2680 case 65:
2681 encodedcontroller = _lev_ctrl_portamento;
2682 break;
2683 case 66:
2684 encodedcontroller = _lev_ctrl_sostenutopedal;
2685 break;
2686 case 67:
2687 encodedcontroller = _lev_ctrl_softpedal;
2688 break;
2689 case 80:
2690 encodedcontroller = _lev_ctrl_genpurpose5;
2691 break;
2692 case 81:
2693 encodedcontroller = _lev_ctrl_genpurpose6;
2694 break;
2695 case 82:
2696 encodedcontroller = _lev_ctrl_genpurpose7;
2697 break;
2698 case 83:
2699 encodedcontroller = _lev_ctrl_genpurpose8;
2700 break;
2701 case 91:
2702 encodedcontroller = _lev_ctrl_effect1depth;
2703 break;
2704 case 92:
2705 encodedcontroller = _lev_ctrl_effect2depth;
2706 break;
2707 case 93:
2708 encodedcontroller = _lev_ctrl_effect3depth;
2709 break;
2710 case 94:
2711 encodedcontroller = _lev_ctrl_effect4depth;
2712 break;
2713 case 95:
2714 encodedcontroller = _lev_ctrl_effect5depth;
2715 break;
2716
2717 // format extension (these controllers are so far only
2718 // supported by LinuxSampler & gigedit) they will *NOT*
2719 // work with Gigasampler/GigaStudio !
2720 case 3:
2721 encodedcontroller = _lev_ctrl_CC3_EXT;
2722 break;
2723 case 6:
2724 encodedcontroller = _lev_ctrl_CC6_EXT;
2725 break;
2726 case 7:
2727 encodedcontroller = _lev_ctrl_CC7_EXT;
2728 break;
2729 case 8:
2730 encodedcontroller = _lev_ctrl_CC8_EXT;
2731 break;
2732 case 9:
2733 encodedcontroller = _lev_ctrl_CC9_EXT;
2734 break;
2735 case 10:
2736 encodedcontroller = _lev_ctrl_CC10_EXT;
2737 break;
2738 case 11:
2739 encodedcontroller = _lev_ctrl_CC11_EXT;
2740 break;
2741 case 14:
2742 encodedcontroller = _lev_ctrl_CC14_EXT;
2743 break;
2744 case 15:
2745 encodedcontroller = _lev_ctrl_CC15_EXT;
2746 break;
2747 case 20:
2748 encodedcontroller = _lev_ctrl_CC20_EXT;
2749 break;
2750 case 21:
2751 encodedcontroller = _lev_ctrl_CC21_EXT;
2752 break;
2753 case 22:
2754 encodedcontroller = _lev_ctrl_CC22_EXT;
2755 break;
2756 case 23:
2757 encodedcontroller = _lev_ctrl_CC23_EXT;
2758 break;
2759 case 24:
2760 encodedcontroller = _lev_ctrl_CC24_EXT;
2761 break;
2762 case 25:
2763 encodedcontroller = _lev_ctrl_CC25_EXT;
2764 break;
2765 case 26:
2766 encodedcontroller = _lev_ctrl_CC26_EXT;
2767 break;
2768 case 27:
2769 encodedcontroller = _lev_ctrl_CC27_EXT;
2770 break;
2771 case 28:
2772 encodedcontroller = _lev_ctrl_CC28_EXT;
2773 break;
2774 case 29:
2775 encodedcontroller = _lev_ctrl_CC29_EXT;
2776 break;
2777 case 30:
2778 encodedcontroller = _lev_ctrl_CC30_EXT;
2779 break;
2780 case 31:
2781 encodedcontroller = _lev_ctrl_CC31_EXT;
2782 break;
2783 case 68:
2784 encodedcontroller = _lev_ctrl_CC68_EXT;
2785 break;
2786 case 69:
2787 encodedcontroller = _lev_ctrl_CC69_EXT;
2788 break;
2789 case 70:
2790 encodedcontroller = _lev_ctrl_CC70_EXT;
2791 break;
2792 case 71:
2793 encodedcontroller = _lev_ctrl_CC71_EXT;
2794 break;
2795 case 72:
2796 encodedcontroller = _lev_ctrl_CC72_EXT;
2797 break;
2798 case 73:
2799 encodedcontroller = _lev_ctrl_CC73_EXT;
2800 break;
2801 case 74:
2802 encodedcontroller = _lev_ctrl_CC74_EXT;
2803 break;
2804 case 75:
2805 encodedcontroller = _lev_ctrl_CC75_EXT;
2806 break;
2807 case 76:
2808 encodedcontroller = _lev_ctrl_CC76_EXT;
2809 break;
2810 case 77:
2811 encodedcontroller = _lev_ctrl_CC77_EXT;
2812 break;
2813 case 78:
2814 encodedcontroller = _lev_ctrl_CC78_EXT;
2815 break;
2816 case 79:
2817 encodedcontroller = _lev_ctrl_CC79_EXT;
2818 break;
2819 case 84:
2820 encodedcontroller = _lev_ctrl_CC84_EXT;
2821 break;
2822 case 85:
2823 encodedcontroller = _lev_ctrl_CC85_EXT;
2824 break;
2825 case 86:
2826 encodedcontroller = _lev_ctrl_CC86_EXT;
2827 break;
2828 case 87:
2829 encodedcontroller = _lev_ctrl_CC87_EXT;
2830 break;
2831 case 89:
2832 encodedcontroller = _lev_ctrl_CC89_EXT;
2833 break;
2834 case 90:
2835 encodedcontroller = _lev_ctrl_CC90_EXT;
2836 break;
2837 case 96:
2838 encodedcontroller = _lev_ctrl_CC96_EXT;
2839 break;
2840 case 97:
2841 encodedcontroller = _lev_ctrl_CC97_EXT;
2842 break;
2843 case 102:
2844 encodedcontroller = _lev_ctrl_CC102_EXT;
2845 break;
2846 case 103:
2847 encodedcontroller = _lev_ctrl_CC103_EXT;
2848 break;
2849 case 104:
2850 encodedcontroller = _lev_ctrl_CC104_EXT;
2851 break;
2852 case 105:
2853 encodedcontroller = _lev_ctrl_CC105_EXT;
2854 break;
2855 case 106:
2856 encodedcontroller = _lev_ctrl_CC106_EXT;
2857 break;
2858 case 107:
2859 encodedcontroller = _lev_ctrl_CC107_EXT;
2860 break;
2861 case 108:
2862 encodedcontroller = _lev_ctrl_CC108_EXT;
2863 break;
2864 case 109:
2865 encodedcontroller = _lev_ctrl_CC109_EXT;
2866 break;
2867 case 110:
2868 encodedcontroller = _lev_ctrl_CC110_EXT;
2869 break;
2870 case 111:
2871 encodedcontroller = _lev_ctrl_CC111_EXT;
2872 break;
2873 case 112:
2874 encodedcontroller = _lev_ctrl_CC112_EXT;
2875 break;
2876 case 113:
2877 encodedcontroller = _lev_ctrl_CC113_EXT;
2878 break;
2879 case 114:
2880 encodedcontroller = _lev_ctrl_CC114_EXT;
2881 break;
2882 case 115:
2883 encodedcontroller = _lev_ctrl_CC115_EXT;
2884 break;
2885 case 116:
2886 encodedcontroller = _lev_ctrl_CC116_EXT;
2887 break;
2888 case 117:
2889 encodedcontroller = _lev_ctrl_CC117_EXT;
2890 break;
2891 case 118:
2892 encodedcontroller = _lev_ctrl_CC118_EXT;
2893 break;
2894 case 119:
2895 encodedcontroller = _lev_ctrl_CC119_EXT;
2896 break;
2897
2898 default:
2899 throw gig::Exception("leverage controller number is not supported by the gig format");
2900 }
2901 break;
2902 default:
2903 throw gig::Exception("Unknown leverage controller type.");
2904 }
2905 return encodedcontroller;
2906 }
2907
2908 DimensionRegion::~DimensionRegion() {
2909 Instances--;
2910 if (!Instances) {
2911 // delete the velocity->volume tables
2912 VelocityTableMap::iterator iter;
2913 for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
2914 double* pTable = iter->second;
2915 if (pTable) delete[] pTable;
2916 }
2917 pVelocityTables->clear();
2918 delete pVelocityTables;
2919 pVelocityTables = NULL;
2920 }
2921 if (VelocityTable) delete[] VelocityTable;
2922 }
2923
2924 /**
2925 * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
2926 * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
2927 * and VelocityResponseCurveScaling) involved are taken into account to
2928 * calculate the amplitude factor. Use this method when a key was
2929 * triggered to get the volume with which the sample should be played
2930 * back.
2931 *
2932 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
2933 * @returns amplitude factor (between 0.0 and 1.0)
2934 */
2935 double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2936 return pVelocityAttenuationTable[MIDIKeyVelocity];
2937 }
2938
2939 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2940 return pVelocityReleaseTable[MIDIKeyVelocity];
2941 }
2942
2943 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2944 return pVelocityCutoffTable[MIDIKeyVelocity];
2945 }
2946
2947 /**
2948 * Updates the respective member variable and the lookup table / cache
2949 * that depends on this value.
2950 */
2951 void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
2952 pVelocityAttenuationTable =
2953 GetVelocityTable(
2954 curve, VelocityResponseDepth, VelocityResponseCurveScaling
2955 );
2956 VelocityResponseCurve = curve;
2957 }
2958
2959 /**
2960 * Updates the respective member variable and the lookup table / cache
2961 * that depends on this value.
2962 */
2963 void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
2964 pVelocityAttenuationTable =
2965 GetVelocityTable(
2966 VelocityResponseCurve, depth, VelocityResponseCurveScaling
2967 );
2968 VelocityResponseDepth = depth;
2969 }
2970
2971 /**
2972 * Updates the respective member variable and the lookup table / cache
2973 * that depends on this value.
2974 */
2975 void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
2976 pVelocityAttenuationTable =
2977 GetVelocityTable(
2978 VelocityResponseCurve, VelocityResponseDepth, scaling
2979 );
2980 VelocityResponseCurveScaling = scaling;
2981 }
2982
2983 /**
2984 * Updates the respective member variable and the lookup table / cache
2985 * that depends on this value.
2986 */
2987 void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
2988 pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
2989 ReleaseVelocityResponseCurve = curve;
2990 }
2991
2992 /**
2993 * Updates the respective member variable and the lookup table / cache
2994 * that depends on this value.
2995 */
2996 void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
2997 pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
2998 ReleaseVelocityResponseDepth = depth;
2999 }
3000
3001 /**
3002 * Updates the respective member variable and the lookup table / cache
3003 * that depends on this value.
3004 */
3005 void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
3006 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
3007 VCFCutoffController = controller;
3008 }
3009
3010 /**
3011 * Updates the respective member variable and the lookup table / cache
3012 * that depends on this value.
3013 */
3014 void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
3015 pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
3016 VCFVelocityCurve = curve;
3017 }
3018
3019 /**
3020 * Updates the respective member variable and the lookup table / cache
3021 * that depends on this value.
3022 */
3023 void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
3024 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
3025 VCFVelocityDynamicRange = range;
3026 }
3027
3028 /**
3029 * Updates the respective member variable and the lookup table / cache
3030 * that depends on this value.
3031 */
3032 void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
3033 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
3034 VCFVelocityScale = scaling;
3035 }
3036
3037 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
3038
3039 // line-segment approximations of the 15 velocity curves
3040
3041 // linear
3042 const int lin0[] = { 1, 1, 127, 127 };
3043 const int lin1[] = { 1, 21, 127, 127 };
3044 const int lin2[] = { 1, 45, 127, 127 };
3045 const int lin3[] = { 1, 74, 127, 127 };
3046 const int lin4[] = { 1, 127, 127, 127 };
3047
3048 // non-linear
3049 const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
3050 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
3051 127, 127 };
3052 const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
3053 127, 127 };
3054 const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
3055 127, 127 };
3056 const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
3057
3058 // special
3059 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
3060 113, 127, 127, 127 };
3061 const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
3062 118, 127, 127, 127 };
3063 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
3064 85, 90, 91, 127, 127, 127 };
3065 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
3066 117, 127, 127, 127 };
3067 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
3068 127, 127 };
3069
3070 // this is only used by the VCF velocity curve
3071 const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
3072 91, 127, 127, 127 };
3073
3074 const int* const curves[] = { non0, non1, non2, non3, non4,
3075 lin0, lin1, lin2, lin3, lin4,
3076 spe0, spe1, spe2, spe3, spe4, spe5 };
3077
3078 double* const table = new double[128];
3079
3080 const int* curve = curves[curveType * 5 + depth];
3081 const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
3082
3083 table[0] = 0;
3084 for (int x = 1 ; x < 128 ; x++) {
3085
3086 if (x > curve[2]) curve += 2;
3087 double y = curve[1] + (x - curve[0]) *
3088 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
3089 y = y / 127;
3090
3091 // Scale up for s > 20, down for s < 20. When
3092 // down-scaling, the curve still ends at 1.0.
3093 if (s < 20 && y >= 0.5)
3094 y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
3095 else
3096 y = y * (s / 20.0);
3097 if (y > 1) y = 1;
3098
3099 table[x] = y;
3100 }
3101 return table;
3102 }
3103
3104
3105 // *************** Region ***************
3106 // *
3107
3108 Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
3109 // Initialization
3110 Dimensions = 0;
3111 for (int i = 0; i < 256; i++) {
3112 pDimensionRegions[i] = NULL;
3113 }
3114 Layers = 1;
3115 File* file = (File*) GetParent()->GetParent();
3116 int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
3117
3118 // Actual Loading
3119
3120 if (!file->GetAutoLoad()) return;
3121
3122 LoadDimensionRegions(rgnList);
3123
3124 RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
3125 if (_3lnk) {
3126 DimensionRegions = _3lnk->ReadUint32();
3127 for (int i = 0; i < dimensionBits; i++) {
3128 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
3129 uint8_t bits = _3lnk->ReadUint8();
3130 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
3131 _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
3132 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
3133 if (dimension == dimension_none) { // inactive dimension
3134 pDimensionDefinitions[i].dimension = dimension_none;
3135 pDimensionDefinitions[i].bits = 0;
3136 pDimensionDefinitions[i].zones = 0;
3137 pDimensionDefinitions[i].split_type = split_type_bit;
3138 pDimensionDefinitions[i].zone_size = 0;
3139 }
3140 else { // active dimension
3141 pDimensionDefinitions[i].dimension = dimension;
3142 pDimensionDefinitions[i].bits = bits;
3143 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
3144 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
3145 pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
3146 Dimensions++;
3147
3148 // if this is a layer dimension, remember the amount of layers
3149 if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
3150 }
3151 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
3152 }
3153 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
3154
3155 // if there's a velocity dimension and custom velocity zone splits are used,
3156 // update the VelocityTables in the dimension regions
3157 UpdateVelocityTable();
3158
3159 // jump to start of the wave pool indices (if not already there)
3160 if (file->pVersion && file->pVersion->major == 3)
3161 _3lnk->SetPos(68); // version 3 has a different 3lnk structure
3162 else
3163 _3lnk->SetPos(44);
3164
3165 // load sample references (if auto loading is enabled)
3166 if (file->GetAutoLoad()) {
3167 for (uint i = 0; i < DimensionRegions; i++) {
3168 uint32_t wavepoolindex = _3lnk->ReadUint32();
3169 if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
3170 }
3171 GetSample(); // load global region sample reference
3172 }
3173 } else {
3174 DimensionRegions = 0;
3175 for (int i = 0 ; i < 8 ; i++) {
3176 pDimensionDefinitions[i].dimension = dimension_none;
3177 pDimensionDefinitions[i].bits = 0;
3178 pDimensionDefinitions[i].zones = 0;
3179 }
3180 }
3181
3182 // make sure there is at least one dimension region
3183 if (!DimensionRegions) {
3184 RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
3185 if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
3186 RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
3187 pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
3188 DimensionRegions = 1;
3189 }
3190 }
3191
3192 /**
3193 * Apply Region settings and all its DimensionRegions to the respective
3194 * RIFF chunks. You have to call File::Save() to make changes persistent.
3195 *
3196 * Usually there is absolutely no need to call this method explicitly.
3197 * It will be called automatically when File::Save() was called.
3198 *
3199 * @param pProgress - callback function for progress notification
3200 * @throws gig::Exception if samples cannot be dereferenced
3201 */
3202 void Region::UpdateChunks(progress_t* pProgress) {
3203 // in the gig format we don't care about the Region's sample reference
3204 // but we still have to provide some existing one to not corrupt the
3205 // file, so to avoid the latter we simply always assign the sample of
3206 // the first dimension region of this region
3207 pSample = pDimensionRegions[0]->pSample;
3208
3209 // first update base class's chunks
3210 DLS::Region::UpdateChunks(pProgress);
3211
3212 // update dimension region's chunks
3213 for (int i = 0; i < DimensionRegions; i++) {
3214 pDimensionRegions[i]->UpdateChunks(pProgress);
3215 }
3216
3217 File* pFile = (File*) GetParent()->GetParent();
3218 bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
3219 const int iMaxDimensions = version3 ? 8 : 5;
3220 const int iMaxDimensionRegions = version3 ? 256 : 32;
3221
3222 // make sure '3lnk' chunk exists
3223 RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3224 if (!_3lnk) {
3225 const int _3lnkChunkSize = version3 ? 1092 : 172;
3226 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3227 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3228
3229 // move 3prg to last position
3230 pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), (RIFF::Chunk*)NULL);
3231 }
3232
3233 // update dimension definitions in '3lnk' chunk
3234 uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3235 store32(&pData[0], DimensionRegions);
3236 int shift = 0;
3237 for (int i = 0; i < iMaxDimensions; i++) {
3238 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3239 pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3240 pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3241 pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3242 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3243 // next 3 bytes unknown, always zero?
3244
3245 shift += pDimensionDefinitions[i].bits;
3246 }
3247
3248 // update wave pool table in '3lnk' chunk
3249 const int iWavePoolOffset = version3 ? 68 : 44;
3250 for (uint i = 0; i < iMaxDimensionRegions; i++) {
3251 int iWaveIndex = -1;
3252 if (i < DimensionRegions) {
3253 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
3254 File::SampleList::iterator iter = pFile->pSamples->begin();
3255 File::SampleList::iterator end = pFile->pSamples->end();
3256 for (int index = 0; iter != end; ++iter, ++index) {
3257 if (*iter == pDimensionRegions[i]->pSample) {
3258 iWaveIndex = index;
3259 break;
3260 }
3261 }
3262 }
3263 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3264 }
3265 }
3266
3267 void Region::LoadDimensionRegions(RIFF::List* rgn) {
3268 RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
3269 if (_3prg) {
3270 int dimensionRegionNr = 0;
3271 RIFF::List* _3ewl = _3prg->GetFirstSubList();
3272 while (_3ewl) {
3273 if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3274 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3275 dimensionRegionNr++;
3276 }
3277 _3ewl = _3prg->GetNextSubList();
3278 }
3279 if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
3280 }
3281 }
3282
3283 void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3284 // update KeyRange struct and make sure regions are in correct order
3285 DLS::Region::SetKeyRange(Low, High);
3286 // update Region key table for fast lookup
3287 ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3288 }
3289
3290 void Region::UpdateVelocityTable() {
3291 // get velocity dimension's index
3292 int veldim = -1;
3293 for (int i = 0 ; i < Dimensions ; i++) {
3294 if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
3295 veldim = i;
3296 break;
3297 }
3298 }
3299 if (veldim == -1) return;
3300
3301 int step = 1;
3302 for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3303 int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
3304
3305 // loop through all dimension regions for all dimensions except the velocity dimension
3306 int dim[8] = { 0 };
3307 for (int i = 0 ; i < DimensionRegions ; i++) {
3308 const int end = i + step * pDimensionDefinitions[veldim].zones;
3309
3310 // create a velocity table for all cases where the velocity zone is zero
3311 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3312 pDimensionRegions[i]->VelocityUpperLimit) {
3313 // create the velocity table
3314 uint8_t* table = pDimensionRegions[i]->VelocityTable;
3315 if (!table) {
3316 table = new uint8_t[128];
3317 pDimensionRegions[i]->VelocityTable = table;
3318 }
3319 int tableidx = 0;
3320 int velocityZone = 0;
3321 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
3322 for (int k = i ; k < end ; k += step) {
3323 DimensionRegion *d = pDimensionRegions[k];
3324 for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
3325 velocityZone++;
3326 }
3327 } else { // gig2
3328 for (int k = i ; k < end ; k += step) {
3329 DimensionRegion *d = pDimensionRegions[k];
3330 for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
3331 velocityZone++;
3332 }
3333 }
3334 } else {
3335 if (pDimensionRegions[i]->VelocityTable) {
3336 delete[] pDimensionRegions[i]->VelocityTable;
3337 pDimensionRegions[i]->VelocityTable = 0;
3338 }
3339 }
3340
3341 // jump to the next case where the velocity zone is zero
3342 int j;
3343 int shift = 0;
3344 for (j = 0 ; j < Dimensions ; j++) {
3345 if (j == veldim) i += skipveldim; // skip velocity dimension
3346 else {
3347 dim[j]++;
3348 if (dim[j] < pDimensionDefinitions[j].zones) break;
3349 else {
3350 // skip unused dimension regions
3351 dim[j] = 0;
3352 i += ((1 << pDimensionDefinitions[j].bits) -
3353 pDimensionDefinitions[j].zones) << shift;
3354 }
3355 }
3356 shift += pDimensionDefinitions[j].bits;
3357 }
3358 if (j == Dimensions) break;
3359 }
3360 }
3361
3362 /** @brief Einstein would have dreamed of it - create a new dimension.
3363 *
3364 * Creates a new dimension with the dimension definition given by
3365 * \a pDimDef. The appropriate amount of DimensionRegions will be created.
3366 * There is a hard limit of dimensions and total amount of "bits" all
3367 * dimensions can have. This limit is dependant to what gig file format
3368 * version this file refers to. The gig v2 (and lower) format has a
3369 * dimension limit and total amount of bits limit of 5, whereas the gig v3
3370 * format has a limit of 8.
3371 *
3372 * @param pDimDef - defintion of the new dimension
3373 * @throws gig::Exception if dimension of the same type exists already
3374 * @throws gig::Exception if amount of dimensions or total amount of
3375 * dimension bits limit is violated
3376 */
3377 void Region::AddDimension(dimension_def_t* pDimDef) {
3378 // some initial sanity checks of the given dimension definition
3379 if (pDimDef->zones < 2)
3380 throw gig::Exception("Could not add new dimension, amount of requested zones must always be at least two");
3381 if (pDimDef->bits < 1)
3382 throw gig::Exception("Could not add new dimension, amount of requested requested zone bits must always be at least one");
3383 if (pDimDef->dimension == dimension_samplechannel) {
3384 if (pDimDef->zones != 2)
3385 throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zones must always be 2 for this dimension type");
3386 if (pDimDef->bits != 1)
3387 throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zone bits must always be 1 for this dimension type");
3388 }
3389
3390 // check if max. amount of dimensions reached
3391 File* file = (File*) GetParent()->GetParent();
3392 const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
3393 if (Dimensions >= iMaxDimensions)
3394 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
3395 // check if max. amount of dimension bits reached
3396 int iCurrentBits = 0;
3397 for (int i = 0; i < Dimensions; i++)
3398 iCurrentBits += pDimensionDefinitions[i].bits;
3399 if (iCurrentBits >= iMaxDimensions)
3400 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
3401 const int iNewBits = iCurrentBits + pDimDef->bits;
3402 if (iNewBits > iMaxDimensions)
3403 throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
3404 // check if there's already a dimensions of the same type
3405 for (int i = 0; i < Dimensions; i++)
3406 if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3407 throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3408
3409 // pos is where the new dimension should be placed, normally
3410 // last in list, except for the samplechannel dimension which
3411 // has to be first in list
3412 int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3413 int bitpos = 0;
3414 for (int i = 0 ; i < pos ; i++)
3415 bitpos += pDimensionDefinitions[i].bits;
3416
3417 // make room for the new dimension
3418 for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3419 for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3420 for (int j = Dimensions ; j > pos ; j--) {
3421 pDimensionRegions[i]->DimensionUpperLimits[j] =
3422 pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3423 }
3424 }
3425
3426 // assign definition of new dimension
3427 pDimensionDefinitions[pos] = *pDimDef;
3428
3429 // auto correct certain dimension definition fields (where possible)
3430 pDimensionDefinitions[pos].split_type =
3431 __resolveSplitType(pDimensionDefinitions[pos].dimension);
3432 pDimensionDefinitions[pos].zone_size =
3433 __resolveZoneSize(pDimensionDefinitions[pos]);
3434
3435 // create new dimension region(s) for this new dimension, and make
3436 // sure that the dimension regions are placed correctly in both the
3437 // RIFF list and the pDimensionRegions array
3438 RIFF::Chunk* moveTo = NULL;
3439 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3440 for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3441 for (int k = 0 ; k < (1 << bitpos) ; k++) {
3442 pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3443 }
3444 for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3445 for (int k = 0 ; k < (1 << bitpos) ; k++) {
3446 RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3447 if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3448 // create a new dimension region and copy all parameter values from
3449 // an existing dimension region
3450 pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3451 new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3452
3453 DimensionRegions++;
3454 }
3455 }
3456 moveTo = pDimensionRegions[i]->pParentList;
3457 }
3458
3459 // initialize the upper limits for this dimension
3460 int mask = (1 << bitpos) - 1;
3461 for (int z = 0 ; z < pDimDef->zones ; z++) {
3462 uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3463 for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3464 pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3465 (z << bitpos) |
3466 (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3467 }
3468 }
3469
3470 Dimensions++;
3471
3472 // if this is a layer dimension, update 'Layers' attribute
3473 if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
3474
3475 UpdateVelocityTable();
3476 }
3477
3478 /** @brief Delete an existing dimension.
3479 *
3480 * Deletes the dimension given by \a pDimDef and deletes all respective
3481 * dimension regions, that is all dimension regions where the dimension's
3482 * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
3483 * for example this would delete all dimension regions for the case(s)
3484 * where the sustain pedal is pressed down.
3485 *
3486 * @param pDimDef - dimension to delete
3487 * @throws gig::Exception if given dimension cannot be found
3488 */
3489 void Region::DeleteDimension(dimension_def_t* pDimDef) {
3490 // get dimension's index
3491 int iDimensionNr = -1;
3492 for (int i = 0; i < Dimensions; i++) {
3493 if (&pDimensionDefinitions[i] == pDimDef) {
3494 iDimensionNr = i;
3495 break;
3496 }
3497 }
3498 if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
3499
3500 // get amount of bits below the dimension to delete
3501 int iLowerBits = 0;
3502 for (int i = 0; i < iDimensionNr; i++)
3503 iLowerBits += pDimensionDefinitions[i].bits;
3504
3505 // get amount ot bits above the dimension to delete
3506 int iUpperBits = 0;
3507 for (int i = iDimensionNr + 1; i < Dimensions; i++)
3508 iUpperBits += pDimensionDefinitions[i].bits;
3509
3510 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3511
3512 // delete dimension regions which belong to the given dimension
3513 // (that is where the dimension's bit > 0)
3514 for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
3515 for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
3516 for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
3517 int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3518 iObsoleteBit << iLowerBits |
3519 iLowerBit;
3520
3521 _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3522 delete pDimensionRegions[iToDelete];
3523 pDimensionRegions[iToDelete] = NULL;
3524 DimensionRegions--;
3525 }
3526 }
3527 }
3528
3529 // defrag pDimensionRegions array
3530 // (that is remove the NULL spaces within the pDimensionRegions array)
3531 for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
3532 if (!pDimensionRegions[iTo]) {
3533 if (iFrom <= iTo) iFrom = iTo + 1;
3534 while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
3535 if (iFrom < 256 && pDimensionRegions[iFrom]) {
3536 pDimensionRegions[iTo] = pDimensionRegions[iFrom];
3537 pDimensionRegions[iFrom] = NULL;
3538 }
3539 }
3540 }
3541
3542 // remove the this dimension from the upper limits arrays
3543 for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3544 DimensionRegion* d = pDimensionRegions[j];
3545 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3546 d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3547 }
3548 d->DimensionUpperLimits[Dimensions - 1] = 127;
3549 }
3550
3551 // 'remove' dimension definition
3552 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3553 pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
3554 }
3555 pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
3556 pDimensionDefinitions[Dimensions - 1].bits = 0;
3557 pDimensionDefinitions[Dimensions - 1].zones = 0;
3558
3559 Dimensions--;
3560
3561 // if this was a layer dimension, update 'Layers' attribute
3562 if (pDimDef->dimension == dimension_layer) Layers = 1;
3563 }
3564
3565 /** @brief Delete one split zone of a dimension (decrement zone amount).
3566 *
3567 * Instead of deleting an entire dimensions, this method will only delete
3568 * one particular split zone given by @a zone of the Region's dimension
3569 * given by @a type. So this method will simply decrement the amount of
3570 * zones by one of the dimension in question. To be able to do that, the
3571 * respective dimension must exist on this Region and it must have at least
3572 * 3 zones. All DimensionRegion objects associated with the zone will be
3573 * deleted.
3574 *
3575 * @param type - identifies the dimension where a zone shall be deleted
3576 * @param zone - index of the dimension split zone that shall be deleted
3577 * @throws gig::Exception if requested zone could not be deleted
3578 */
3579 void Region::DeleteDimensionZone(dimension_t type, int zone) {
3580 dimension_def_t* oldDef = GetDimensionDefinition(type);
3581 if (!oldDef)
3582 throw gig::Exception("Could not delete dimension zone, no such dimension of given type");
3583 if (oldDef->zones <= 2)
3584 throw gig::Exception("Could not delete dimension zone, because it would end up with only one zone.");
3585 if (zone < 0 || zone >= oldDef->zones)
3586 throw gig::Exception("Could not delete dimension zone, requested zone index out of bounds.");
3587
3588 const int newZoneSize = oldDef->zones - 1;
3589
3590 // create a temporary Region which just acts as a temporary copy
3591 // container and will be deleted at the end of this function and will
3592 // also not be visible through the API during this process
3593 gig::Region* tempRgn = NULL;
3594 {
3595 // adding these temporary chunks is probably not even necessary
3596 Instrument* instr = static_cast<Instrument*>(GetParent());
3597 RIFF::List* pCkInstrument = instr->pCkInstrument;
3598 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3599 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3600 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3601 tempRgn = new Region(instr, rgn);
3602 }
3603
3604 // copy this region's dimensions (with already the dimension split size
3605 // requested by the arguments of this method call) to the temporary
3606 // region, and don't use Region::CopyAssign() here for this task, since
3607 // it would also alter fast lookup helper variables here and there
3608 dimension_def_t newDef;
3609 for (int i = 0; i < Dimensions; ++i) {
3610 dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3611 // is this the dimension requested by the method arguments? ...
3612 if (def.dimension == type) { // ... if yes, decrement zone amount by one
3613 def.zones = newZoneSize;
3614 if ((1 << (def.bits - 1)) == def.zones) def.bits--;
3615 newDef = def;
3616 }
3617 tempRgn->AddDimension(&def);
3618 }
3619
3620 // find the dimension index in the tempRegion which is the dimension
3621 // type passed to this method (paranoidly expecting different order)
3622 int tempReducedDimensionIndex = -1;
3623 for (int d = 0; d < tempRgn->Dimensions; ++d) {
3624 if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3625 tempReducedDimensionIndex = d;
3626 break;
3627 }
3628 }
3629
3630 // copy dimension regions from this region to the temporary region
3631 for (int iDst = 0; iDst < 256; ++iDst) {
3632 DimensionRegion* dstDimRgn = tempRgn->pDimensionRegions[iDst];
3633 if (!dstDimRgn) continue;
3634 std::map<dimension_t,int> dimCase;
3635 bool isValidZone = true;
3636 for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3637 const int dstBits = tempRgn->pDimensionDefinitions[d].bits;
3638 dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3639 (iDst >> baseBits) & ((1 << dstBits) - 1);
3640 baseBits += dstBits;
3641 // there are also DimensionRegion objects of unused zones, skip them
3642 if (dimCase[tempRgn->pDimensionDefinitions[d].dimension] >= tempRgn->pDimensionDefinitions[d].zones) {
3643 isValidZone = false;
3644 break;
3645 }
3646 }
3647 if (!isValidZone) continue;
3648 // a bit paranoid: cope with the chance that the dimensions would
3649 // have different order in source and destination regions
3650 const bool isLastZone = (dimCase[type] == newZoneSize - 1);
3651 if (dimCase[type] >= zone) dimCase[type]++;
3652 DimensionRegion* srcDimRgn = GetDimensionRegionByBit(dimCase);
3653 dstDimRgn->CopyAssign(srcDimRgn);
3654 // if this is the upper most zone of the dimension passed to this
3655 // method, then correct (raise) its upper limit to 127
3656 if (newDef.split_type == split_type_normal && isLastZone)
3657 dstDimRgn->DimensionUpperLimits[tempReducedDimensionIndex] = 127;
3658 }
3659
3660 // now tempRegion's dimensions and DimensionRegions basically reflect
3661 // what we wanted to get for this actual Region here, so we now just
3662 // delete and recreate the dimension in question with the new amount
3663 // zones and then copy back from tempRegion
3664 DeleteDimension(oldDef);
3665 AddDimension(&newDef);
3666 for (int iSrc = 0; iSrc < 256; ++iSrc) {
3667 DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3668 if (!srcDimRgn) continue;
3669 std::map<dimension_t,int> dimCase;
3670 for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3671 const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3672 dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3673 (iSrc >> baseBits) & ((1 << srcBits) - 1);
3674 baseBits += srcBits;
3675 }
3676 // a bit paranoid: cope with the chance that the dimensions would
3677 // have different order in source and destination regions
3678 DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3679 if (!dstDimRgn) continue;
3680 dstDimRgn->CopyAssign(srcDimRgn);
3681 }
3682
3683 // delete temporary region
3684 delete tempRgn;
3685
3686 UpdateVelocityTable();
3687 }
3688
3689 /** @brief Divide split zone of a dimension in two (increment zone amount).
3690 *
3691 * This will increment the amount of zones for the dimension (given by
3692 * @a type) by one. It will do so by dividing the zone (given by @a zone)
3693 * in the middle of its zone range in two. So the two zones resulting from
3694 * the zone being splitted, will be an equivalent copy regarding all their
3695 * articulation informations and sample reference. The two zones will only
3696 * differ in their zone's upper limit
3697 * (DimensionRegion::DimensionUpperLimits).
3698 *
3699 * @param type - identifies the dimension where a zone shall be splitted
3700 * @param zone - index of the dimension split zone that shall be splitted
3701 * @throws gig::Exception if requested zone could not be splitted
3702 */
3703 void Region::SplitDimensionZone(dimension_t type, int zone) {
3704 dimension_def_t* oldDef = GetDimensionDefinition(type);
3705 if (!oldDef)
3706 throw gig::Exception("Could not split dimension zone, no such dimension of given type");
3707 if (zone < 0 || zone >= oldDef->zones)
3708 throw gig::Exception("Could not split dimension zone, requested zone index out of bounds.");
3709
3710 const int newZoneSize = oldDef->zones + 1;
3711
3712 // create a temporary Region which just acts as a temporary copy
3713 // container and will be deleted at the end of this function and will
3714 // also not be visible through the API during this process
3715 gig::Region* tempRgn = NULL;
3716 {
3717 // adding these temporary chunks is probably not even necessary
3718 Instrument* instr = static_cast<Instrument*>(GetParent());
3719 RIFF::List* pCkInstrument = instr->pCkInstrument;
3720 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3721 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3722 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3723 tempRgn = new Region(instr, rgn);
3724 }
3725
3726 // copy this region's dimensions (with already the dimension split size
3727 // requested by the arguments of this method call) to the temporary
3728 // region, and don't use Region::CopyAssign() here for this task, since
3729 // it would also alter fast lookup helper variables here and there
3730 dimension_def_t newDef;
3731 for (int i = 0; i < Dimensions; ++i) {
3732 dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3733 // is this the dimension requested by the method arguments? ...
3734 if (def.dimension == type) { // ... if yes, increment zone amount by one
3735 def.zones = newZoneSize;
3736 if ((1 << oldDef->bits) < newZoneSize) def.bits++;
3737 newDef = def;
3738 }
3739 tempRgn->AddDimension(&def);
3740 }
3741
3742 // find the dimension index in the tempRegion which is the dimension
3743 // type passed to this method (paranoidly expecting different order)
3744 int tempIncreasedDimensionIndex = -1;
3745 for (int d = 0; d < tempRgn->Dimensions; ++d) {
3746 if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3747 tempIncreasedDimensionIndex = d;
3748 break;
3749 }
3750 }
3751
3752 // copy dimension regions from this region to the temporary region
3753 for (int iSrc = 0; iSrc < 256; ++iSrc) {
3754 DimensionRegion* srcDimRgn = pDimensionRegions[iSrc];
3755 if (!srcDimRgn) continue;
3756 std::map<dimension_t,int> dimCase;
3757 bool isValidZone = true;
3758 for (int d = 0, baseBits = 0; d < Dimensions; ++d) {
3759 const int srcBits = pDimensionDefinitions[d].bits;
3760 dimCase[pDimensionDefinitions[d].dimension] =
3761 (iSrc >> baseBits) & ((1 << srcBits) - 1);
3762 // there are also DimensionRegion objects for unused zones, skip them
3763 if (dimCase[pDimensionDefinitions[d].dimension] >= pDimensionDefinitions[d].zones) {
3764 isValidZone = false;
3765 break;
3766 }
3767 baseBits += srcBits;
3768 }
3769 if (!isValidZone) continue;
3770 // a bit paranoid: cope with the chance that the dimensions would
3771 // have different order in source and destination regions
3772 if (dimCase[type] > zone) dimCase[type]++;
3773 DimensionRegion* dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3774 dstDimRgn->CopyAssign(srcDimRgn);
3775 // if this is the requested zone to be splitted, then also copy
3776 // the source DimensionRegion to the newly created target zone
3777 // and set the old zones upper limit lower
3778 if (dimCase[type] == zone) {
3779 // lower old zones upper limit
3780 if (newDef.split_type == split_type_normal) {
3781 const int high =
3782 dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex];
3783 int low = 0;
3784 if (zone > 0) {
3785 std::map<dimension_t,int> lowerCase = dimCase;
3786 lowerCase[type]--;
3787 DimensionRegion* dstDimRgnLow = tempRgn->GetDimensionRegionByBit(lowerCase);
3788 low = dstDimRgnLow->DimensionUpperLimits[tempIncreasedDimensionIndex];
3789 }
3790 dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex] = low + (high - low) / 2;
3791 }
3792 // fill the newly created zone of the divided zone as well
3793 dimCase[type]++;
3794 dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3795 dstDimRgn->CopyAssign(srcDimRgn);
3796 }
3797 }
3798
3799 // now tempRegion's dimensions and DimensionRegions basically reflect
3800 // what we wanted to get for this actual Region here, so we now just
3801 // delete and recreate the dimension in question with the new amount
3802 // zones and then copy back from tempRegion
3803 DeleteDimension(oldDef);
3804 AddDimension(&newDef);
3805 for (int iSrc = 0; iSrc < 256; ++iSrc) {
3806 DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3807 if (!srcDimRgn) continue;
3808 std::map<dimension_t,int> dimCase;
3809 for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3810 const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3811 dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3812 (iSrc >> baseBits) & ((1 << srcBits) - 1);
3813 baseBits += srcBits;
3814 }
3815 // a bit paranoid: cope with the chance that the dimensions would
3816 // have different order in source and destination regions
3817 DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3818 if (!dstDimRgn) continue;
3819 dstDimRgn->CopyAssign(srcDimRgn);
3820 }
3821
3822 // delete temporary region
3823 delete tempRgn;
3824
3825 UpdateVelocityTable();
3826 }
3827
3828 /** @brief Change type of an existing dimension.
3829 *
3830 * Alters the dimension type of a dimension already existing on this
3831 * region. If there is currently no dimension on this Region with type
3832 * @a oldType, then this call with throw an Exception. Likewise there are
3833 * cases where the requested dimension type cannot be performed. For example
3834 * if the new dimension type shall be gig::dimension_samplechannel, and the
3835 * current dimension has more than 2 zones. In such cases an Exception is
3836 * thrown as well.
3837 *
3838 * @param oldType - identifies the existing dimension to be changed
3839 * @param newType - to which dimension type it should be changed to
3840 * @throws gig::Exception if requested change cannot be performed
3841 */
3842 void Region::SetDimensionType(dimension_t oldType, dimension_t newType) {
3843 if (oldType == newType) return;
3844 dimension_def_t* def = GetDimensionDefinition(oldType);
3845 if (!def)
3846 throw gig::Exception("No dimension with provided old dimension type exists on this region");
3847 if (newType == dimension_samplechannel && def->zones != 2)
3848 throw gig::Exception("Cannot change to dimension type 'sample channel', because existing dimension does not have 2 zones");
3849 if (GetDimensionDefinition(newType))
3850 throw gig::Exception("There is already a dimension with requested new dimension type on this region");
3851 def->dimension = newType;
3852 def->split_type = __resolveSplitType(newType);
3853 }
3854
3855 DimensionRegion* Region::GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase) {
3856 uint8_t bits[8] = {};
3857 for (std::map<dimension_t,int>::const_iterator it = DimCase.begin();
3858 it != DimCase.end(); ++it)
3859 {
3860 for (int d = 0; d < Dimensions; ++d) {
3861 if (pDimensionDefinitions[d].dimension == it->first) {
3862 bits[d] = it->second;
3863 goto nextDimCaseSlice;
3864 }
3865 }
3866 assert(false); // do crash ... too harsh maybe ? ignore it instead ?
3867 nextDimCaseSlice:
3868 ; // noop
3869 }
3870 return GetDimensionRegionByBit(bits);
3871 }
3872
3873 /**
3874 * Searches in the current Region for a dimension of the given dimension
3875 * type and returns the precise configuration of that dimension in this
3876 * Region.
3877 *
3878 * @param type - dimension type of the sought dimension
3879 * @returns dimension definition or NULL if there is no dimension with
3880 * sought type in this Region.
3881 */
3882 dimension_def_t* Region::GetDimensionDefinition(dimension_t type) {
3883 for (int i = 0; i < Dimensions; ++i)
3884 if (pDimensionDefinitions[i].dimension == type)
3885 return &pDimensionDefinitions[i];
3886 return NULL;
3887 }
3888
3889 Region::~Region() {
3890 for (int i = 0; i < 256; i++) {
3891 if (pDimensionRegions[i]) delete pDimensionRegions[i];
3892 }
3893 }
3894
3895 /**
3896 * Use this method in your audio engine to get the appropriate dimension
3897 * region with it's articulation data for the current situation. Just
3898 * call the method with the current MIDI controller values and you'll get
3899 * the DimensionRegion with the appropriate articulation data for the
3900 * current situation (for this Region of course only). To do that you'll
3901 * first have to look which dimensions with which controllers and in
3902 * which order are defined for this Region when you load the .gig file.
3903 * Special cases are e.g. layer or channel dimensions where you just put
3904 * in the index numbers instead of a MIDI controller value (means 0 for
3905 * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
3906 * etc.).
3907 *
3908 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
3909 * @returns adress to the DimensionRegion for the given situation
3910 * @see pDimensionDefinitions
3911 * @see Dimensions
3912 */
3913 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
3914 uint8_t bits;
3915 int veldim = -1;
3916 int velbitpos = 0;
3917 int bitpos = 0;
3918 int dimregidx = 0;
3919 for (uint i = 0; i < Dimensions; i++) {
3920 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
3921 // the velocity dimension must be handled after the other dimensions
3922 veldim = i;
3923 velbitpos = bitpos;
3924 } else {
3925 switch (pDimensionDefinitions[i].split_type) {
3926 case split_type_normal:
3927 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
3928 // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
3929 for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
3930 if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
3931 }
3932 } else {
3933 // gig2: evenly sized zones
3934 bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
3935 }
3936 break;
3937 case split_type_bit: // the value is already the sought dimension bit number
3938 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
3939 bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
3940 break;
3941 }
3942 dimregidx |= bits << bitpos;
3943 }
3944 bitpos += pDimensionDefinitions[i].bits;
3945 }
3946 DimensionRegion* dimreg = pDimensionRegions[dimregidx & 255];
3947 if (!dimreg) return NULL;
3948 if (veldim != -1) {
3949 // (dimreg is now the dimension region for the lowest velocity)
3950 if (dimreg->VelocityTable) // custom defined zone ranges
3951 bits = dimreg->VelocityTable[DimValues[veldim] & 127];
3952 else // normal split type
3953 bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
3954
3955 const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
3956 dimregidx |= (bits & limiter_mask) << velbitpos;
3957 dimreg = pDimensionRegions[dimregidx & 255];
3958 }
3959 return dimreg;
3960 }
3961
3962 int Region::GetDimensionRegionIndexByValue(const uint DimValues[8]) {
3963 uint8_t bits;
3964 int veldim = -1;
3965 int velbitpos = 0;
3966 int bitpos = 0;
3967 int dimregidx = 0;
3968 for (uint i = 0; i < Dimensions; i++) {
3969 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
3970 // the velocity dimension must be handled after the other dimensions
3971 veldim = i;
3972 velbitpos = bitpos;
3973 } else {
3974 switch (pDimensionDefinitions[i].split_type) {
3975 case split_type_normal:
3976 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
3977 // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
3978 for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
3979 if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
3980 }
3981 } else {
3982 // gig2: evenly sized zones
3983 bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
3984 }
3985 break;
3986 case split_type_bit: // the value is already the sought dimension bit number
3987 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
3988 bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
3989 break;
3990 }
3991 dimregidx |= bits << bitpos;
3992 }
3993 bitpos += pDimensionDefinitions[i].bits;
3994 }
3995 dimregidx &= 255;
3996 DimensionRegion* dimreg = pDimensionRegions[dimregidx];
3997 if (!dimreg) return -1;
3998 if (veldim != -1) {
3999 // (dimreg is now the dimension region for the lowest velocity)
4000 if (dimreg->VelocityTable) // custom defined zone ranges
4001 bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4002 else // normal split type
4003 bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4004
4005 const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4006 dimregidx |= (bits & limiter_mask) << velbitpos;
4007 dimregidx &= 255;
4008 }
4009 return dimregidx;
4010 }
4011
4012 /**
4013 * Returns the appropriate DimensionRegion for the given dimension bit
4014 * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
4015 * instead of calling this method directly!
4016 *
4017 * @param DimBits Bit numbers for dimension 0 to 7
4018 * @returns adress to the DimensionRegion for the given dimension
4019 * bit numbers
4020 * @see GetDimensionRegionByValue()
4021 */
4022 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
4023 return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
4024 << pDimensionDefinitions[5].bits | DimBits[5])
4025 << pDimensionDefinitions[4].bits | DimBits[4])
4026 << pDimensionDefinitions[3].bits | DimBits[3])
4027 << pDimensionDefinitions[2].bits | DimBits[2])
4028 << pDimensionDefinitions[1].bits | DimBits[1])
4029 << pDimensionDefinitions[0].bits | DimBits[0]];
4030 }
4031
4032 /**
4033 * Returns pointer address to the Sample referenced with this region.
4034 * This is the global Sample for the entire Region (not sure if this is
4035 * actually used by the Gigasampler engine - I would only use the Sample
4036 * referenced by the appropriate DimensionRegion instead of this sample).
4037 *
4038 * @returns address to Sample or NULL if there is no reference to a
4039 * sample saved in the .gig file
4040 */
4041 Sample* Region::GetSample() {
4042 if (pSample) return static_cast<gig::Sample*>(pSample);
4043 else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
4044 }
4045
4046 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
4047 if ((int32_t)WavePoolTableIndex == -1) return NULL;
4048 File* file = (File*) GetParent()->GetParent();
4049 if (!file->pWavePoolTable) return NULL;
4050 // for new files or files >= 2 GB use 64 bit wave pool offsets
4051 if (file->pRIFF->IsNew() || (file->pRIFF->GetCurrentFileSize() >> 31)) {
4052 // use 64 bit wave pool offsets (treating this as large file)
4053 uint64_t soughtoffset =
4054 uint64_t(file->pWavePoolTable[WavePoolTableIndex]) |
4055 uint64_t(file->pWavePoolTableHi[WavePoolTableIndex]) << 32;
4056 Sample* sample = file->GetFirstSample(pProgress);
4057 while (sample) {
4058 if (sample->ullWavePoolOffset == soughtoffset)
4059 return static_cast<gig::Sample*>(sample);
4060 sample = file->GetNextSample();
4061 }
4062 } else {
4063 // use extension files and 32 bit wave pool offsets
4064 file_offset_t soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
4065 file_offset_t soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
4066 Sample* sample = file->GetFirstSample(pProgress);
4067 while (sample) {
4068 if (sample->ullWavePoolOffset == soughtoffset &&
4069 sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
4070 sample = file->GetNextSample();
4071 }
4072 }
4073 return NULL;
4074 }
4075
4076 /**
4077 * Make a (semi) deep copy of the Region object given by @a orig
4078 * and assign it to this object.
4079 *
4080 * Note that all sample pointers referenced by @a orig are simply copied as
4081 * memory address. Thus the respective samples are shared, not duplicated!
4082 *
4083 * @param orig - original Region object to be copied from
4084 */
4085 void Region::CopyAssign(const Region* orig) {
4086 CopyAssign(orig, NULL);
4087 }
4088
4089 /**
4090 * Make a (semi) deep copy of the Region object given by @a orig and
4091 * assign it to this object
4092 *
4093 * @param mSamples - crosslink map between the foreign file's samples and
4094 * this file's samples
4095 */
4096 void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
4097 // handle base classes
4098 DLS::Region::CopyAssign(orig);
4099
4100 if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
4101 pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
4102 }
4103
4104 // handle own member variables
4105 for (int i = Dimensions - 1; i >= 0; --i) {
4106 DeleteDimension(&pDimensionDefinitions[i]);
4107 }
4108 Layers = 0; // just to be sure
4109 for (int i = 0; i < orig->Dimensions; i++) {
4110 // we need to copy the dim definition here, to avoid the compiler
4111 // complaining about const-ness issue
4112 dimension_def_t def = orig->pDimensionDefinitions[i];
4113 AddDimension(&def);
4114 }
4115 for (int i = 0; i < 256; i++) {
4116 if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
4117 pDimensionRegions[i]->CopyAssign(
4118 orig->pDimensionRegions[i],
4119 mSamples
4120 );
4121 }
4122 }
4123 Layers = orig->Layers;
4124 }
4125
4126
4127 // *************** MidiRule ***************
4128 // *
4129
4130 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
4131 _3ewg->SetPos(36);
4132 Triggers = _3ewg->ReadUint8();
4133 _3ewg->SetPos(40);
4134 ControllerNumber = _3ewg->ReadUint8();
4135 _3ewg->SetPos(46);
4136 for (int i = 0 ; i < Triggers ; i++) {
4137 pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
4138 pTriggers[i].Descending = _3ewg->ReadUint8();
4139 pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
4140 pTriggers[i].Key = _3ewg->ReadUint8();
4141 pTriggers[i].NoteOff = _3ewg->ReadUint8();
4142 pTriggers[i].Velocity = _3ewg->ReadUint8();
4143 pTriggers[i].OverridePedal = _3ewg->ReadUint8();
4144 _3ewg->ReadUint8();
4145 }
4146 }
4147
4148 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
4149 ControllerNumber(0),
4150 Triggers(0) {
4151 }
4152
4153 void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
4154 pData[32] = 4;
4155 pData[33] = 16;
4156 pData[36] = Triggers;
4157 pData[40] = ControllerNumber;
4158 for (int i = 0 ; i < Triggers ; i++) {
4159 pData[46 + i * 8] = pTriggers[i].TriggerPoint;
4160 pData[47 + i * 8] = pTriggers[i].Descending;
4161 pData[48 + i * 8] = pTriggers[i].VelSensitivity;
4162 pData[49 + i * 8] = pTriggers[i].Key;
4163 pData[50 + i * 8] = pTriggers[i].NoteOff;
4164 pData[51 + i * 8] = pTriggers[i].Velocity;
4165 pData[52 + i * 8] = pTriggers[i].OverridePedal;
4166 }
4167 }
4168
4169 MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
4170 _3ewg->SetPos(36);
4171 LegatoSamples = _3ewg->ReadUint8(); // always 12
4172 _3ewg->SetPos(40);
4173 BypassUseController = _3ewg->ReadUint8();
4174 BypassKey = _3ewg->ReadUint8();
4175 BypassController = _3ewg->ReadUint8();
4176 ThresholdTime = _3ewg->ReadUint16();
4177 _3ewg->ReadInt16();
4178 ReleaseTime = _3ewg->ReadUint16();
4179 _3ewg->ReadInt16();
4180 KeyRange.low = _3ewg->ReadUint8();
4181 KeyRange.high = _3ewg->ReadUint8();
4182 _3ewg->SetPos(64);
4183 ReleaseTriggerKey = _3ewg->ReadUint8();
4184 AltSustain1Key = _3ewg->ReadUint8();
4185 AltSustain2Key = _3ewg->ReadUint8();
4186 }
4187
4188 MidiRuleLegato::MidiRuleLegato() :
4189 LegatoSamples(12),
4190 BypassUseController(false),
4191 BypassKey(0),
4192 BypassController(1),
4193 ThresholdTime(20),
4194 ReleaseTime(20),
4195 ReleaseTriggerKey(0),
4196 AltSustain1Key(0),
4197 AltSustain2Key(0)
4198 {
4199 KeyRange.low = KeyRange.high = 0;
4200 }
4201
4202 void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
4203 pData[32] = 0;
4204 pData[33] = 16;
4205 pData[36] = LegatoSamples;
4206 pData[40] = BypassUseController;
4207 pData[41] = BypassKey;
4208 pData[42] = BypassController;
4209 store16(&pData[43], ThresholdTime);
4210 store16(&pData[47], ReleaseTime);
4211 pData[51] = KeyRange.low;
4212 pData[52] = KeyRange.high;
4213 pData[64] = ReleaseTriggerKey;
4214 pData[65] = AltSustain1Key;
4215 pData[66] = AltSustain2Key;
4216 }
4217
4218 MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
4219 _3ewg->SetPos(36);
4220 Articulations = _3ewg->ReadUint8();
4221 int flags = _3ewg->ReadUint8();
4222 Polyphonic = flags & 8;
4223 Chained = flags & 4;
4224 Selector = (flags & 2) ? selector_controller :
4225 (flags & 1) ? selector_key_switch : selector_none;
4226 Patterns = _3ewg->ReadUint8();
4227 _3ewg->ReadUint8(); // chosen row
4228 _3ewg->ReadUint8(); // unknown
4229 _3ewg->ReadUint8(); // unknown
4230 _3ewg->ReadUint8(); // unknown
4231 KeySwitchRange.low = _3ewg->ReadUint8();
4232 KeySwitchRange.high = _3ewg->ReadUint8();
4233 Controller = _3ewg->ReadUint8();
4234 PlayRange.low = _3ewg->ReadUint8();
4235 PlayRange.high = _3ewg->ReadUint8();
4236
4237 int n = std::min(int(Articulations), 32);
4238 for (int i = 0 ; i < n ; i++) {
4239 _3ewg->ReadString(pArticulations[i], 32);
4240 }
4241 _3ewg->SetPos(1072);
4242 n = std::min(int(Patterns), 32);
4243 for (int i = 0 ; i < n ; i++) {
4244 _3ewg->ReadString(pPatterns[i].Name, 16);
4245 pPatterns[i].Size = _3ewg->ReadUint8();
4246 _3ewg->Read(&pPatterns[i][0], 1, 32);
4247 }
4248 }
4249
4250 MidiRuleAlternator::MidiRuleAlternator() :
4251 Articulations(0),
4252 Patterns(0),
4253 Selector(selector_none),
4254 Controller(0),
4255 Polyphonic(false),
4256 Chained(false)
4257 {
4258 PlayRange.low = PlayRange.high = 0;
4259 KeySwitchRange.low = KeySwitchRange.high = 0;
4260 }
4261
4262 void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
4263 pData[32] = 3;
4264 pData[33] = 16;
4265 pData[36] = Articulations;
4266 pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
4267 (Selector == selector_controller ? 2 :
4268 (Selector == selector_key_switch ? 1 : 0));
4269 pData[38] = Patterns;
4270
4271 pData[43] = KeySwitchRange.low;
4272 pData[44] = KeySwitchRange.high;
4273 pData[45] = Controller;
4274 pData[46] = PlayRange.low;
4275 pData[47] = PlayRange.high;
4276
4277 char* str = reinterpret_cast<char*>(pData);
4278 int pos = 48;
4279 int n = std::min(int(Articulations), 32);
4280 for (int i = 0 ; i < n ; i++, pos += 32) {
4281 strncpy(&str[pos], pArticulations[i].c_str(), 32);
4282 }
4283
4284 pos = 1072;
4285 n = std::min(int(Patterns), 32);
4286 for (int i = 0 ; i < n ; i++, pos += 49) {
4287 strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
4288 pData[pos + 16] = pPatterns[i].Size;
4289 memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
4290 }
4291 }
4292
4293 // *************** Script ***************
4294 // *
4295
4296 Script::Script(ScriptGroup* group, RIFF::Chunk* ckScri) {
4297 pGroup = group;
4298 pChunk = ckScri;
4299 if (ckScri) { // object is loaded from file ...
4300 // read header
4301 uint32_t headerSize = ckScri->ReadUint32();
4302 Compression = (Compression_t) ckScri->ReadUint32();
4303 Encoding = (Encoding_t) ckScri->ReadUint32();
4304 Language = (Language_t) ckScri->ReadUint32();
4305 Bypass = (Language_t) ckScri->ReadUint32() & 1;
4306 crc = ckScri->ReadUint32();
4307 uint32_t nameSize = ckScri->ReadUint32();
4308 Name.resize(nameSize, ' ');
4309 for (int i = 0; i < nameSize; ++i)
4310 Name[i] = ckScri->ReadUint8();
4311 // to handle potential future extensions of the header
4312 ckScri->SetPos(sizeof(int32_t) + headerSize);
4313 // read actual script data
4314 uint32_t scriptSize = uint32_t(ckScri->GetSize() - ckScri->GetPos());
4315 data.resize(scriptSize);
4316 for (int i = 0; i < scriptSize; ++i)
4317 data[i] = ckScri->ReadUint8();
4318 } else { // this is a new script object, so just initialize it as such ...
4319 Compression = COMPRESSION_NONE;
4320 Encoding = ENCODING_ASCII;
4321 Language = LANGUAGE_NKSP;
4322 Bypass = false;
4323 crc = 0;
4324 Name = "Unnamed Script";
4325 }
4326 }
4327
4328 Script::~Script() {
4329 }
4330
4331 /**
4332 * Returns the current script (i.e. as source code) in text format.
4333 */
4334 String Script::GetScriptAsText() {
4335 String s;
4336 s.resize(data.size(), ' ');
4337 memcpy(&s[0], &data[0], data.size());
4338 return s;
4339 }
4340
4341 /**
4342 * Replaces the current script with the new script source code text given
4343 * by @a text.
4344 *
4345 * @param text - new script source code
4346 */
4347 void Script::SetScriptAsText(const String& text) {
4348 data.resize(text.size());
4349 memcpy(&data[0], &text[0], text.size());
4350 }
4351
4352 /**
4353 * Apply this script to the respective RIFF chunks. You have to call
4354 * File::Save() to make changes persistent.
4355 *
4356 * Usually there is absolutely no need to call this method explicitly.
4357 * It will be called automatically when File::Save() was called.
4358 *
4359 * @param pProgress - callback function for progress notification
4360 */
4361 void Script::UpdateChunks(progress_t* pProgress) {
4362 // recalculate CRC32 check sum
4363 __resetCRC(crc);
4364 __calculateCRC(&data[0], data.size(), crc);
4365 __finalizeCRC(crc);
4366 // make sure chunk exists and has the required size
4367 const file_offset_t chunkSize = (file_offset_t) 7*sizeof(int32_t) + Name.size() + data.size();
4368 if (!pChunk) pChunk = pGroup->pList->AddSubChunk(CHUNK_ID_SCRI, chunkSize);
4369 else pChunk->Resize(chunkSize);
4370 // fill the chunk data to be written to disk
4371 uint8_t* pData = (uint8_t*) pChunk->LoadChunkData();
4372 int pos = 0;
4373 store32(&pData[pos], uint32_t(6*sizeof(int32_t) + Name.size())); // total header size
4374 pos += sizeof(int32_t);
4375 store32(&pData[pos], Compression);
4376 pos += sizeof(int32_t);
4377 store32(&pData[pos], Encoding);
4378 pos += sizeof(int32_t);
4379 store32(&pData[pos], Language);
4380 pos += sizeof(int32_t);
4381 store32(&pData[pos], Bypass ? 1 : 0);
4382 pos += sizeof(int32_t);
4383 store32(&pData[pos], crc);
4384 pos += sizeof(int32_t);
4385 store32(&pData[pos], (uint32_t) Name.size());
4386 pos += sizeof(int32_t);
4387 for (int i = 0; i < Name.size(); ++i, ++pos)
4388 pData[pos] = Name[i];
4389 for (int i = 0; i < data.size(); ++i, ++pos)
4390 pData[pos] = data[i];
4391 }
4392
4393 /**
4394 * Move this script from its current ScriptGroup to another ScriptGroup
4395 * given by @a pGroup.
4396 *
4397 * @param pGroup - script's new group
4398 */
4399 void Script::SetGroup(ScriptGroup* pGroup) {
4400 if (this->pGroup == pGroup) return;
4401 if (pChunk)
4402 pChunk->GetParent()->MoveSubChunk(pChunk, pGroup->pList);
4403 this->pGroup = pGroup;
4404 }
4405
4406 /**
4407 * Returns the script group this script currently belongs to. Each script
4408 * is a member of exactly one ScriptGroup.
4409 *
4410 * @returns current script group
4411 */
4412 ScriptGroup* Script::GetGroup() const {
4413 return pGroup;
4414 }
4415
4416 /**
4417 * Make a (semi) deep copy of the Script object given by @a orig
4418 * and assign it to this object. Note: the ScriptGroup this Script
4419 * object belongs to remains untouched by this call.
4420 *
4421 * @param orig - original Script object to be copied from
4422 */
4423 void Script::CopyAssign(const Script* orig) {
4424 Name = orig->Name;
4425 Compression = orig->Compression;
4426 Encoding = orig->Encoding;
4427 Language = orig->Language;
4428 Bypass = orig->Bypass;
4429 data = orig->data;
4430 }
4431
4432 void Script::RemoveAllScriptReferences() {
4433 File* pFile = pGroup->pFile;
4434 for (int i = 0; pFile->GetInstrument(i); ++i) {
4435 Instrument* instr = pFile->GetInstrument(i);
4436 instr->RemoveScript(this);
4437 }
4438 }
4439
4440 // *************** ScriptGroup ***************
4441 // *
4442
4443 ScriptGroup::ScriptGroup(File* file, RIFF::List* lstRTIS) {
4444 pFile = file;
4445 pList = lstRTIS;
4446 pScripts = NULL;
4447 if (lstRTIS) {
4448 RIFF::Chunk* ckName = lstRTIS->GetSubChunk(CHUNK_ID_LSNM);
4449 ::LoadString(ckName, Name);
4450 } else {
4451 Name = "Default Group";
4452 }
4453 }
4454
4455 ScriptGroup::~ScriptGroup() {
4456 if (pScripts) {
4457 std::list<Script*>::iterator iter = pScripts->begin();
4458 std::list<Script*>::iterator end = pScripts->end();
4459 while (iter != end) {
4460 delete *iter;
4461 ++iter;
4462 }
4463 delete pScripts;
4464 }
4465 }
4466
4467 /**
4468 * Apply this script group to the respective RIFF chunks. You have to call
4469 * File::Save() to make changes persistent.
4470 *
4471 * Usually there is absolutely no need to call this method explicitly.
4472 * It will be called automatically when File::Save() was called.
4473 *
4474 * @param pProgress - callback function for progress notification
4475 */
4476 void ScriptGroup::UpdateChunks(progress_t* pProgress) {
4477 if (pScripts) {
4478 if (!pList)
4479 pList = pFile->pRIFF->GetSubList(LIST_TYPE_3LS)->AddSubList(LIST_TYPE_RTIS);
4480
4481 // now store the name of this group as <LSNM> chunk as subchunk of the <RTIS> list chunk
4482 ::SaveString(CHUNK_ID_LSNM, NULL, pList, Name, String("Unnamed Group"), true, 64);
4483
4484 for (std::list<Script*>::iterator it = pScripts->begin();
4485 it != pScripts->end(); ++it)
4486 {
4487 (*it)->UpdateChunks(pProgress);
4488 }
4489 }
4490 }
4491
4492 /** @brief Get instrument script.
4493 *
4494 * Returns the real-time instrument script with the given index.
4495 *
4496 * @param index - number of the sought script (0..n)
4497 * @returns sought script or NULL if there's no such script
4498 */
4499 Script* ScriptGroup::GetScript(uint index) {
4500 if (!pScripts) LoadScripts();
4501 std::list<Script*>::iterator it = pScripts->begin();
4502 for (uint i = 0; it != pScripts->end(); ++i, ++it)
4503 if (i == index) return *it;
4504 return NULL;
4505 }
4506
4507 /** @brief Add new instrument script.
4508 *
4509 * Adds a new real-time instrument script to the file. The script is not
4510 * actually used / executed unless it is referenced by an instrument to be
4511 * used. This is similar to samples, which you can add to a file, without
4512 * an instrument necessarily actually using it.
4513 *
4514 * You have to call Save() to make this persistent to the file.
4515 *
4516 * @return new empty script object
4517 */
4518 Script* ScriptGroup::AddScript() {
4519 if (!pScripts) LoadScripts();
4520 Script* pScript = new Script(this, NULL);
4521 pScripts->push_back(pScript);
4522 return pScript;
4523 }
4524
4525 /** @brief Delete an instrument script.
4526 *
4527 * This will delete the given real-time instrument script. References of
4528 * instruments that are using that script will be removed accordingly.
4529 *
4530 * You have to call Save() to make this persistent to the file.
4531 *
4532 * @param pScript - script to delete
4533 * @throws gig::Exception if given script could not be found
4534 */
4535 void ScriptGroup::DeleteScript(Script* pScript) {
4536 if (!pScripts) LoadScripts();
4537 std::list<Script*>::iterator iter =
4538 find(pScripts->begin(), pScripts->end(), pScript);
4539 if (iter == pScripts->end())
4540 throw gig::Exception("Could not delete script, could not find given script");
4541 pScripts->erase(iter);
4542 pScript->RemoveAllScriptReferences();
4543 if (pScript->pChunk)
4544 pScript->pChunk->GetParent()->DeleteSubChunk(pScript->pChunk);
4545 delete pScript;
4546 }
4547
4548 void ScriptGroup::LoadScripts() {
4549 if (pScripts) return;
4550 pScripts = new std::list<Script*>;
4551 if (!pList) return;
4552
4553 for (RIFF::Chunk* ck = pList->GetFirstSubChunk(); ck;
4554 ck = pList->GetNextSubChunk())
4555 {
4556 if (ck->GetChunkID() == CHUNK_ID_SCRI) {
4557 pScripts->push_back(new Script(this, ck));
4558 }
4559 }
4560 }
4561
4562 // *************** Instrument ***************
4563 // *
4564
4565 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
4566 static const DLS::Info::string_length_t fixedStringLengths[] = {
4567 { CHUNK_ID_INAM, 64 },
4568 { CHUNK_ID_ISFT, 12 },
4569 { 0, 0 }
4570 };
4571 pInfo->SetFixedStringLengths(fixedStringLengths);
4572
4573 // Initialization
4574 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4575 EffectSend = 0;
4576 Attenuation = 0;
4577 FineTune = 0;
4578 PitchbendRange = 2;
4579 PianoReleaseMode = false;
4580 DimensionKeyRange.low = 0;
4581 DimensionKeyRange.high = 0;
4582 pMidiRules = new MidiRule*[3];
4583 pMidiRules[0] = NULL;
4584 pScriptRefs = NULL;
4585
4586 // Loading
4587 RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
4588 if (lart) {
4589 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4590 if (_3ewg) {
4591 EffectSend = _3ewg->ReadUint16();
4592 Attenuation = _3ewg->ReadInt32();
4593 FineTune = _3ewg->ReadInt16();
4594 PitchbendRange = _3ewg->ReadInt16();
4595 uint8_t dimkeystart = _3ewg->ReadUint8();
4596 PianoReleaseMode = dimkeystart & 0x01;
4597 DimensionKeyRange.low = dimkeystart >> 1;
4598 DimensionKeyRange.high = _3ewg->ReadUint8();
4599
4600 if (_3ewg->GetSize() > 32) {
4601 // read MIDI rules
4602 int i = 0;
4603 _3ewg->SetPos(32);
4604 uint8_t id1 = _3ewg->ReadUint8();
4605 uint8_t id2 = _3ewg->ReadUint8();
4606
4607 if (id2 == 16) {
4608 if (id1 == 4) {
4609 pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
4610 } else if (id1 == 0) {
4611 pMidiRules[i++] = new MidiRuleLegato(_3ewg);
4612 } else if (id1 == 3) {
4613 pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
4614 } else {
4615 pMidiRules[i++] = new MidiRuleUnknown;
4616 }
4617 }
4618 else if (id1 != 0 || id2 != 0) {
4619 pMidiRules[i++] = new MidiRuleUnknown;
4620 }
4621 //TODO: all the other types of rules
4622
4623 pMidiRules[i] = NULL;
4624 }
4625 }
4626 }
4627
4628 if (pFile->GetAutoLoad()) {
4629 if (!pRegions) pRegions = new RegionList;
4630 RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
4631 if (lrgn) {
4632 RIFF::List* rgn = lrgn->GetFirstSubList();
4633 while (rgn) {
4634 if (rgn->GetListType() == LIST_TYPE_RGN) {
4635 __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
4636 pRegions->push_back(new Region(this, rgn));
4637 }
4638 rgn = lrgn->GetNextSubList();
4639 }
4640 // Creating Region Key Table for fast lookup
4641 UpdateRegionKeyTable();
4642 }
4643 }
4644
4645 // own gig format extensions
4646 RIFF::List* lst3LS = insList->GetSubList(LIST_TYPE_3LS);
4647 if (lst3LS) {
4648 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4649 if (ckSCSL) {
4650 int headerSize = ckSCSL->ReadUint32();
4651 int slotCount = ckSCSL->ReadUint32();
4652 if (slotCount) {
4653 int slotSize = ckSCSL->ReadUint32();
4654 ckSCSL->SetPos(headerSize); // in case of future header extensions
4655 int unknownSpace = slotSize - 2*sizeof(uint32_t); // in case of future slot extensions
4656 for (int i = 0; i < slotCount; ++i) {
4657 _ScriptPooolEntry e;
4658 e.fileOffset = ckSCSL->ReadUint32();
4659 e.bypass = ckSCSL->ReadUint32() & 1;
4660 if (unknownSpace) ckSCSL->SetPos(unknownSpace, RIFF::stream_curpos); // in case of future extensions
4661 scriptPoolFileOffsets.push_back(e);
4662 }
4663 }
4664 }
4665 }
4666
4667 __notify_progress(pProgress, 1.0f); // notify done
4668 }
4669
4670 void Instrument::UpdateRegionKeyTable() {
4671 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4672 RegionList::iterator iter = pRegions->begin();
4673 RegionList::iterator end = pRegions->end();
4674 for (; iter != end; ++iter) {
4675 gig::Region* pRegion = static_cast<gig::Region*>(*iter);
4676 for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
4677 RegionKeyTable[iKey] = pRegion;
4678 }
4679 }
4680 }
4681
4682 Instrument::~Instrument() {
4683 for (int i = 0 ; pMidiRules[i] ; i++) {
4684 delete pMidiRules[i];
4685 }
4686 delete[] pMidiRules;
4687 if (pScriptRefs) delete pScriptRefs;
4688 }
4689
4690 /**
4691 * Apply Instrument with all its Regions to the respective RIFF chunks.
4692 * You have to call File::Save() to make changes persistent.
4693 *
4694 * Usually there is absolutely no need to call this method explicitly.
4695 * It will be called automatically when File::Save() was called.
4696 *
4697 * @param pProgress - callback function for progress notification
4698 * @throws gig::Exception if samples cannot be dereferenced
4699 */
4700 void Instrument::UpdateChunks(progress_t* pProgress) {
4701 // first update base classes' chunks
4702 DLS::Instrument::UpdateChunks(pProgress);
4703
4704 // update Regions' chunks
4705 {
4706 RegionList::iterator iter = pRegions->begin();
4707 RegionList::iterator end = pRegions->end();
4708 for (; iter != end; ++iter)
4709 (*iter)->UpdateChunks(pProgress);
4710 }
4711
4712 // make sure 'lart' RIFF list chunk exists
4713 RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
4714 if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
4715 // make sure '3ewg' RIFF chunk exists
4716 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4717 if (!_3ewg) {
4718 File* pFile = (File*) GetParent();
4719
4720 // 3ewg is bigger in gig3, as it includes the iMIDI rules
4721 int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
4722 _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
4723 memset(_3ewg->LoadChunkData(), 0, size);
4724 }
4725 // update '3ewg' RIFF chunk
4726 uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
4727 store16(&pData[0], EffectSend);
4728 store32(&pData[2], Attenuation);
4729 store16(&pData[6], FineTune);
4730 store16(&pData[8], PitchbendRange);
4731 const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
4732 DimensionKeyRange.low << 1;
4733 pData[10] = dimkeystart;
4734 pData[11] = DimensionKeyRange.high;
4735
4736 if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
4737 pData[32] = 0;
4738 pData[33] = 0;
4739 } else {
4740 for (int i = 0 ; pMidiRules[i] ; i++) {
4741 pMidiRules[i]->UpdateChunks(pData);
4742 }
4743 }
4744
4745 // own gig format extensions
4746 if (ScriptSlotCount()) {
4747 // make sure we have converted the original loaded script file
4748 // offsets into valid Script object pointers
4749 LoadScripts();
4750
4751 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4752 if (!lst3LS) lst3LS = pCkInstrument->AddSubList(LIST_TYPE_3LS);
4753 const int slotCount = (int) pScriptRefs->size();
4754 const int headerSize = 3 * sizeof(uint32_t);
4755 const int slotSize = 2 * sizeof(uint32_t);
4756 const int totalChunkSize = headerSize + slotCount * slotSize;
4757 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4758 if (!ckSCSL) ckSCSL = lst3LS->AddSubChunk(CHUNK_ID_SCSL, totalChunkSize);
4759 else ckSCSL->Resize(totalChunkSize);
4760 uint8_t* pData = (uint8_t*) ckSCSL->LoadChunkData();
4761 int pos = 0;
4762 store32(&pData[pos], headerSize);
4763 pos += sizeof(uint32_t);
4764 store32(&pData[pos], slotCount);
4765 pos += sizeof(uint32_t);
4766 store32(&pData[pos], slotSize);
4767 pos += sizeof(uint32_t);
4768 for (int i = 0; i < slotCount; ++i) {
4769 // arbitrary value, the actual file offset will be updated in
4770 // UpdateScriptFileOffsets() after the file has been resized
4771 int bogusFileOffset = 0;
4772 store32(&pData[pos], bogusFileOffset);
4773 pos += sizeof(uint32_t);
4774 store32(&pData[pos], (*pScriptRefs)[i].bypass ? 1 : 0);
4775 pos += sizeof(uint32_t);
4776 }
4777 } else {
4778 // no script slots, so get rid of any LS custom RIFF chunks (if any)
4779 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4780 if (lst3LS) pCkInstrument->DeleteSubChunk(lst3LS);
4781 }
4782 }
4783
4784 void Instrument::UpdateScriptFileOffsets() {
4785 // own gig format extensions
4786 if (pScriptRefs && pScriptRefs->size() > 0) {
4787 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4788 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4789 const int slotCount = (int) pScriptRefs->size();
4790 const int headerSize = 3 * sizeof(uint32_t);
4791 ckSCSL->SetPos(headerSize);
4792 for (int i = 0; i < slotCount; ++i) {
4793 uint32_t fileOffset = uint32_t(
4794 (*pScriptRefs)[i].script->pChunk->GetFilePos() -
4795 (*pScriptRefs)[i].script->pChunk->GetPos() -
4796 CHUNK_HEADER_SIZE(ckSCSL->GetFile()->GetFileOffsetSize())
4797 );
4798 ckSCSL->WriteUint32(&fileOffset);
4799 // jump over flags entry (containing the bypass flag)
4800 ckSCSL->SetPos(sizeof(uint32_t), RIFF::stream_curpos);
4801 }
4802 }
4803 }
4804
4805 /**
4806 * Returns the appropriate Region for a triggered note.
4807 *
4808 * @param Key MIDI Key number of triggered note / key (0 - 127)
4809 * @returns pointer adress to the appropriate Region or NULL if there
4810 * there is no Region defined for the given \a Key
4811 */
4812 Region* Instrument::GetRegion(unsigned int Key) {
4813 if (!pRegions || pRegions->empty() || Key > 127) return NULL;
4814 return RegionKeyTable[Key];
4815
4816 /*for (int i = 0; i < Regions; i++) {
4817 if (Key <= pRegions[i]->KeyRange.high &&
4818 Key >= pRegions[i]->KeyRange.low) return pRegions[i];
4819 }
4820 return NULL;*/
4821 }
4822
4823 /**
4824 * Returns the first Region of the instrument. You have to call this
4825 * method once before you use GetNextRegion().
4826 *
4827 * @returns pointer address to first region or NULL if there is none
4828 * @see GetNextRegion()
4829 */
4830 Region* Instrument::GetFirstRegion() {
4831 if (!pRegions) return NULL;
4832 RegionsIterator = pRegions->begin();
4833 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4834 }
4835
4836 /**
4837 * Returns the next Region of the instrument. You have to call
4838 * GetFirstRegion() once before you can use this method. By calling this
4839 * method multiple times it iterates through the available Regions.
4840 *
4841 * @returns pointer address to the next region or NULL if end reached
4842 * @see GetFirstRegion()
4843 */
4844 Region* Instrument::GetNextRegion() {
4845 if (!pRegions) return NULL;
4846 RegionsIterator++;
4847 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4848 }
4849
4850 Region* Instrument::AddRegion() {
4851 // create new Region object (and its RIFF chunks)
4852 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
4853 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
4854 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
4855 Region* pNewRegion = new Region(this, rgn);
4856 pRegions->push_back(pNewRegion);
4857 Regions = (uint32_t) pRegions->size();
4858 // update Region key table for fast lookup
4859 UpdateRegionKeyTable();
4860 // done
4861 return pNewRegion;
4862 }
4863
4864 void Instrument::DeleteRegion(Region* pRegion) {
4865 if (!pRegions) return;
4866 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
4867 // update Region key table for fast lookup
4868 UpdateRegionKeyTable();
4869 }
4870
4871 /**
4872 * Move this instrument at the position before @arg dst.
4873 *
4874 * This method can be used to reorder the sequence of instruments in a
4875 * .gig file. This might be helpful especially on large .gig files which
4876 * contain a large number of instruments within the same .gig file. So
4877 * grouping such instruments to similar ones, can help to keep track of them
4878 * when working with such complex .gig files.
4879 *
4880 * When calling this method, this instrument will be removed from in its
4881 * current position in the instruments list and moved to the requested
4882 * target position provided by @param dst. You may also pass NULL as
4883 * argument to this method, in that case this intrument will be moved to the
4884 * very end of the .gig file's instrument list.
4885 *
4886 * You have to call Save() to make the order change persistent to the .gig
4887 * file.
4888 *
4889 * Currently this method is limited to moving the instrument within the same
4890 * .gig file. Trying to move it to another .gig file by calling this method
4891 * will throw an exception.
4892 *
4893 * @param dst - destination instrument at which this instrument will be
4894 * moved to, or pass NULL for moving to end of list
4895 * @throw gig::Exception if this instrument and target instrument are not
4896 * part of the same file
4897 */
4898 void Instrument::MoveTo(Instrument* dst) {
4899 if (dst && GetParent() != dst->GetParent())
4900 throw Exception(
4901 "gig::Instrument::MoveTo() can only be used for moving within "
4902 "the same gig file."
4903 );
4904
4905 File* pFile = (File*) GetParent();
4906
4907 // move this instrument within the instrument list
4908 {
4909 File::InstrumentList& list = *pFile->pInstruments;
4910
4911 File::InstrumentList::iterator itFrom =
4912 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(this));
4913
4914 File::InstrumentList::iterator itTo =
4915 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(dst));
4916
4917 list.splice(itTo, list, itFrom);
4918 }
4919
4920 // move the instrument's actual list RIFF chunk appropriately
4921 RIFF::List* lstCkInstruments = pFile->pRIFF->GetSubList(LIST_TYPE_LINS);
4922 lstCkInstruments->MoveSubChunk(
4923 this->pCkInstrument,
4924 (RIFF::Chunk*) ((dst) ? dst->pCkInstrument : NULL)
4925 );
4926 }
4927
4928 /**
4929 * Returns a MIDI rule of the instrument.
4930 *
4931 * The list of MIDI rules, at least in gig v3, always contains at
4932 * most two rules. The second rule can only be the DEF filter
4933 * (which currently isn't supported by libgig).
4934 *
4935 * @param i - MIDI rule number
4936 * @returns pointer address to MIDI rule number i or NULL if there is none
4937 */
4938 MidiRule* Instrument::GetMidiRule(int i) {
4939 return pMidiRules[i];
4940 }
4941
4942 /**
4943 * Adds the "controller trigger" MIDI rule to the instrument.
4944 *
4945 * @returns the new MIDI rule
4946 */
4947 MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
4948 delete pMidiRules[0];
4949 MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
4950 pMidiRules[0] = r;
4951 pMidiRules[1] = 0;
4952 return r;
4953 }
4954
4955 /**
4956 * Adds the legato MIDI rule to the instrument.
4957 *
4958 * @returns the new MIDI rule
4959 */
4960 MidiRuleLegato* Instrument::AddMidiRuleLegato() {
4961 delete pMidiRules[0];
4962 MidiRuleLegato* r = new MidiRuleLegato;
4963 pMidiRules[0] = r;
4964 pMidiRules[1] = 0;
4965 return r;
4966 }
4967
4968 /**
4969 * Adds the alternator MIDI rule to the instrument.
4970 *
4971 * @returns the new MIDI rule
4972 */
4973 MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
4974 delete pMidiRules[0];
4975 MidiRuleAlternator* r = new MidiRuleAlternator;
4976 pMidiRules[0] = r;
4977 pMidiRules[1] = 0;
4978 return r;
4979 }
4980
4981 /**
4982 * Deletes a MIDI rule from the instrument.
4983 *
4984 * @param i - MIDI rule number
4985 */
4986 void Instrument::DeleteMidiRule(int i) {
4987 delete pMidiRules[i];
4988 pMidiRules[i] = 0;
4989 }
4990
4991 void Instrument::LoadScripts() {
4992 if (pScriptRefs) return;
4993 pScriptRefs = new std::vector<_ScriptPooolRef>;
4994 if (scriptPoolFileOffsets.empty()) return;
4995 File* pFile = (File*) GetParent();
4996 for (uint k = 0; k < scriptPoolFileOffsets.size(); ++k) {
4997 uint32_t soughtOffset = scriptPoolFileOffsets[k].fileOffset;
4998 for (uint i = 0; pFile->GetScriptGroup(i); ++i) {
4999 ScriptGroup* group = pFile->GetScriptGroup(i);
5000 for (uint s = 0; group->GetScript(s); ++s) {
5001 Script* script = group->GetScript(s);
5002 if (script->pChunk) {
5003 uint32_t offset = uint32_t(
5004 script->pChunk->GetFilePos() -
5005 script->pChunk->GetPos() -
5006 CHUNK_HEADER_SIZE(script->pChunk->GetFile()->GetFileOffsetSize())
5007 );
5008 if (offset == soughtOffset)
5009 {
5010 _ScriptPooolRef ref;
5011 ref.script = script;
5012 ref.bypass = scriptPoolFileOffsets[k].bypass;
5013 pScriptRefs->push_back(ref);
5014 break;
5015 }
5016 }
5017 }
5018 }
5019 }
5020 // we don't need that anymore
5021 scriptPoolFileOffsets.clear();
5022 }
5023
5024 /** @brief Get instrument script (gig format extension).
5025 *
5026 * Returns the real-time instrument script of instrument script slot
5027 * @a index.
5028 *
5029 * @note This is an own format extension which did not exist i.e. in the
5030 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5031 * gigedit.
5032 *
5033 * @param index - instrument script slot index
5034 * @returns script or NULL if index is out of bounds
5035 */
5036 Script* Instrument::GetScriptOfSlot(uint index) {
5037 LoadScripts();
5038 if (index >= pScriptRefs->size()) return NULL;
5039 return pScriptRefs->at(index).script;
5040 }
5041
5042 /** @brief Add new instrument script slot (gig format extension).
5043 *
5044 * Add the given real-time instrument script reference to this instrument,
5045 * which shall be executed by the sampler for for this instrument. The
5046 * script will be added to the end of the script list of this instrument.
5047 * The positions of the scripts in the Instrument's Script list are
5048 * relevant, because they define in which order they shall be executed by
5049 * the sampler. For this reason it is also legal to add the same script
5050 * twice to an instrument, for example you might have a script called
5051 * "MyFilter" which performs an event filter task, and you might have
5052 * another script called "MyNoteTrigger" which triggers new notes, then you
5053 * might for example have the following list of scripts on the instrument:
5054 *
5055 * 1. Script "MyFilter"
5056 * 2. Script "MyNoteTrigger"
5057 * 3. Script "MyFilter"
5058 *
5059 * Which would make sense, because the 2nd script launched new events, which
5060 * you might need to filter as well.
5061 *
5062 * There are two ways to disable / "bypass" scripts. You can either disable
5063 * a script locally for the respective script slot on an instrument (i.e. by
5064 * passing @c false to the 2nd argument of this method, or by calling
5065 * SetScriptBypassed()). Or you can disable a script globally for all slots
5066 * and all instruments by setting Script::Bypass.
5067 *
5068 * @note This is an own format extension which did not exist i.e. in the
5069 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5070 * gigedit.
5071 *
5072 * @param pScript - script that shall be executed for this instrument
5073 * @param bypass - if enabled, the sampler shall skip executing this
5074 * script (in the respective list position)
5075 * @see SetScriptBypassed()
5076 */
5077 void Instrument::AddScriptSlot(Script* pScript, bool bypass) {
5078 LoadScripts();
5079 _ScriptPooolRef ref = { pScript, bypass };
5080 pScriptRefs->push_back(ref);
5081 }
5082
5083 /** @brief Flip two script slots with each other (gig format extension).
5084 *
5085 * Swaps the position of the two given scripts in the Instrument's Script
5086 * list. The positions of the scripts in the Instrument's Script list are
5087 * relevant, because they define in which order they shall be executed by
5088 * the sampler.
5089 *
5090 * @note This is an own format extension which did not exist i.e. in the
5091 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5092 * gigedit.
5093 *
5094 * @param index1 - index of the first script slot to swap
5095 * @param index2 - index of the second script slot to swap
5096 */
5097 void Instrument::SwapScriptSlots(uint index1, uint index2) {
5098 LoadScripts();
5099 if (index1 >= pScriptRefs->size() || index2 >= pScriptRefs->size())
5100 return;
5101 _ScriptPooolRef tmp = (*pScriptRefs)[index1];
5102 (*pScriptRefs)[index1] = (*pScriptRefs)[index2];
5103 (*pScriptRefs)[index2] = tmp;
5104 }
5105
5106 /** @brief Remove script slot.
5107 *
5108 * Removes the script slot with the given slot index.
5109 *
5110 * @param index - index of script slot to remove
5111 */
5112 void Instrument::RemoveScriptSlot(uint index) {
5113 LoadScripts();
5114 if (index >= pScriptRefs->size()) return;
5115 pScriptRefs->erase( pScriptRefs->begin() + index );
5116 }
5117
5118 /** @brief Remove reference to given Script (gig format extension).
5119 *
5120 * This will remove all script slots on the instrument which are referencing
5121 * the given script.
5122 *
5123 * @note This is an own format extension which did not exist i.e. in the
5124 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5125 * gigedit.
5126 *
5127 * @param pScript - script reference to remove from this instrument
5128 * @see RemoveScriptSlot()
5129 */
5130 void Instrument::RemoveScript(Script* pScript) {
5131 LoadScripts();
5132 for (ssize_t i = pScriptRefs->size() - 1; i >= 0; --i) {
5133 if ((*pScriptRefs)[i].script == pScript) {
5134 pScriptRefs->erase( pScriptRefs->begin() + i );
5135 }
5136 }
5137 }
5138
5139 /** @brief Instrument's amount of script slots.
5140 *
5141 * This method returns the amount of script slots this instrument currently
5142 * uses.
5143 *
5144 * A script slot is a reference of a real-time instrument script to be
5145 * executed by the sampler. The scripts will be executed by the sampler in
5146 * sequence of the slots. One (same) script may be referenced multiple
5147 * times in different slots.
5148 *
5149 * @note This is an own format extension which did not exist i.e. in the
5150 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5151 * gigedit.
5152 */
5153 uint Instrument::ScriptSlotCount() const {
5154 return uint(pScriptRefs ? pScriptRefs->size() : scriptPoolFileOffsets.size());
5155 }
5156
5157 /** @brief Whether script execution shall be skipped.
5158 *
5159 * Defines locally for the Script reference slot in the Instrument's Script
5160 * list, whether the script shall be skipped by the sampler regarding
5161 * execution.
5162 *
5163 * It is also possible to ignore exeuction of the script globally, for all
5164 * slots and for all instruments by setting Script::Bypass.
5165 *
5166 * @note This is an own format extension which did not exist i.e. in the
5167 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5168 * gigedit.
5169 *
5170 * @param index - index of the script slot on this instrument
5171 * @see Script::Bypass
5172 */
5173 bool Instrument::IsScriptSlotBypassed(uint index) {
5174 if (index >= ScriptSlotCount()) return false;
5175 return pScriptRefs ? pScriptRefs->at(index).bypass
5176 : scriptPoolFileOffsets.at(index).bypass;
5177
5178 }
5179
5180 /** @brief Defines whether execution shall be skipped.
5181 *
5182 * You can call this method to define locally whether or whether not the
5183 * given script slot shall be executed by the sampler.
5184 *
5185 * @note This is an own format extension which did not exist i.e. in the
5186 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5187 * gigedit.
5188 *
5189 * @param index - script slot index on this instrument
5190 * @param bBypass - if true, the script slot will be skipped by the sampler
5191 * @see Script::Bypass
5192 */
5193 void Instrument::SetScriptSlotBypassed(uint index, bool bBypass) {
5194 if (index >= ScriptSlotCount()) return;
5195 if (pScriptRefs)
5196 pScriptRefs->at(index).bypass = bBypass;
5197 else
5198 scriptPoolFileOffsets.at(index).bypass = bBypass;
5199 }
5200
5201 /**
5202 * Make a (semi) deep copy of the Instrument object given by @a orig
5203 * and assign it to this object.
5204 *
5205 * Note that all sample pointers referenced by @a orig are simply copied as
5206 * memory address. Thus the respective samples are shared, not duplicated!
5207 *
5208 * @param orig - original Instrument object to be copied from
5209 */
5210 void Instrument::CopyAssign(const Instrument* orig) {
5211 CopyAssign(orig, NULL);
5212 }
5213
5214 /**
5215 * Make a (semi) deep copy of the Instrument object given by @a orig
5216 * and assign it to this object.
5217 *
5218 * @param orig - original Instrument object to be copied from
5219 * @param mSamples - crosslink map between the foreign file's samples and
5220 * this file's samples
5221 */
5222 void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
5223 // handle base class
5224 // (without copying DLS region stuff)
5225 DLS::Instrument::CopyAssignCore(orig);
5226
5227 // handle own member variables
5228 Attenuation = orig->Attenuation;
5229 EffectSend = orig->EffectSend;
5230 FineTune = orig->FineTune;
5231 PitchbendRange = orig->PitchbendRange;
5232 PianoReleaseMode = orig->PianoReleaseMode;
5233 DimensionKeyRange = orig->DimensionKeyRange;
5234 scriptPoolFileOffsets = orig->scriptPoolFileOffsets;
5235 pScriptRefs = orig->pScriptRefs;
5236
5237 // free old midi rules
5238 for (int i = 0 ; pMidiRules[i] ; i++) {
5239 delete pMidiRules[i];
5240 }
5241 //TODO: MIDI rule copying
5242 pMidiRules[0] = NULL;
5243
5244 // delete all old regions
5245 while (Regions) DeleteRegion(GetFirstRegion());
5246 // create new regions and copy them from original
5247 {
5248 RegionList::const_iterator it = orig->pRegions->begin();
5249 for (int i = 0; i < orig->Regions; ++i, ++it) {
5250 Region* dstRgn = AddRegion();
5251 //NOTE: Region does semi-deep copy !
5252 dstRgn->CopyAssign(
5253 static_cast<gig::Region*>(*it),
5254 mSamples
5255 );
5256 }
5257 }
5258
5259 UpdateRegionKeyTable();
5260 }
5261
5262
5263 // *************** Group ***************
5264 // *
5265
5266 /** @brief Constructor.
5267 *
5268 * @param file - pointer to the gig::File object
5269 * @param ck3gnm - pointer to 3gnm chunk associated with this group or
5270 * NULL if this is a new Group
5271 */
5272 Group::Group(File* file, RIFF::Chunk* ck3gnm) {
5273 pFile = file;
5274 pNameChunk = ck3gnm;
5275 ::LoadString(pNameChunk, Name);
5276 }
5277
5278 Group::~Group() {
5279 // remove the chunk associated with this group (if any)
5280 if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
5281 }
5282
5283 /** @brief Update chunks with current group settings.
5284 *
5285 * Apply current Group field values to the respective chunks. You have
5286 * to call File::Save() to make changes persistent.
5287 *
5288 * Usually there is absolutely no need to call this method explicitly.
5289 * It will be called automatically when File::Save() was called.
5290 *
5291 * @param pProgress - callback function for progress notification
5292 */
5293 void Group::UpdateChunks(progress_t* pProgress) {
5294 // make sure <3gri> and <3gnl> list chunks exist
5295 RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
5296 if (!_3gri) {
5297 _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
5298 pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
5299 }
5300 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
5301 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
5302
5303 if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
5304 // v3 has a fixed list of 128 strings, find a free one
5305 for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
5306 if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
5307 pNameChunk = ck;
5308 break;
5309 }
5310 }
5311 }
5312
5313 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
5314 ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
5315 }
5316
5317 /**
5318 * Returns the first Sample of this Group. You have to call this method
5319 * once before you use GetNextSample().
5320 *
5321 * <b>Notice:</b> this method might block for a long time, in case the
5322 * samples of this .gig file were not scanned yet
5323 *
5324 * @returns pointer address to first Sample or NULL if there is none
5325 * applied to this Group
5326 * @see GetNextSample()
5327 */
5328 Sample* Group::GetFirstSample() {
5329 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5330 for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
5331 if (pSample->GetGroup() == this) return pSample;
5332 }
5333 return NULL;
5334 }
5335
5336 /**
5337 * Returns the next Sample of the Group. You have to call
5338 * GetFirstSample() once before you can use this method. By calling this
5339 * method multiple times it iterates through the Samples assigned to
5340 * this Group.
5341 *
5342 * @returns pointer address to the next Sample of this Group or NULL if
5343 * end reached
5344 * @see GetFirstSample()
5345 */
5346 Sample* Group::GetNextSample() {
5347 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5348 for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
5349 if (pSample->GetGroup() == this) return pSample;
5350 }
5351 return NULL;
5352 }
5353
5354 /**
5355 * Move Sample given by \a pSample from another Group to this Group.
5356 */
5357 void Group::AddSample(Sample* pSample) {
5358 pSample->pGroup = this;
5359 }
5360
5361 /**
5362 * Move all members of this group to another group (preferably the 1st
5363 * one except this). This method is called explicitly by
5364 * File::DeleteGroup() thus when a Group was deleted. This code was
5365 * intentionally not placed in the destructor!
5366 */
5367 void Group::MoveAll() {
5368 // get "that" other group first
5369 Group* pOtherGroup = NULL;
5370 for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
5371 if (pOtherGroup != this) break;
5372 }
5373 if (!pOtherGroup) throw Exception(
5374 "Could not move samples to another group, since there is no "
5375 "other Group. This is a bug, report it!"
5376 );
5377 // now move all samples of this group to the other group
5378 for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
5379 pOtherGroup->AddSample(pSample);
5380 }
5381 }
5382
5383
5384
5385 // *************** File ***************
5386 // *
5387
5388 /// Reflects Gigasampler file format version 2.0 (1998-06-28).
5389 const DLS::version_t File::VERSION_2 = {
5390 0, 2, 19980628 & 0xffff, 19980628 >> 16
5391 };
5392
5393 /// Reflects Gigasampler file format version 3.0 (2003-03-31).
5394 const DLS::version_t File::VERSION_3 = {
5395 0, 3, 20030331 & 0xffff, 20030331 >> 16
5396 };
5397
5398 static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
5399 { CHUNK_ID_IARL, 256 },
5400 { CHUNK_ID_IART, 128 },
5401 { CHUNK_ID_ICMS, 128 },
5402 { CHUNK_ID_ICMT, 1024 },
5403 { CHUNK_ID_ICOP, 128 },
5404 { CHUNK_ID_ICRD, 128 },
5405 { CHUNK_ID_IENG, 128 },
5406 { CHUNK_ID_IGNR, 128 },
5407 { CHUNK_ID_IKEY, 128 },
5408 { CHUNK_ID_IMED, 128 },
5409 { CHUNK_ID_INAM, 128 },
5410 { CHUNK_ID_IPRD, 128 },
5411 { CHUNK_ID_ISBJ, 128 },
5412 { CHUNK_ID_ISFT, 128 },
5413 { CHUNK_ID_ISRC, 128 },
5414 { CHUNK_ID_ISRF, 128 },
5415 { CHUNK_ID_ITCH, 128 },
5416 { 0, 0 }
5417 };
5418
5419 File::File() : DLS::File() {
5420 bAutoLoad = true;
5421 *pVersion = VERSION_3;
5422 pGroups = NULL;
5423 pScriptGroups = NULL;
5424 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5425 pInfo->ArchivalLocation = String(256, ' ');
5426
5427 // add some mandatory chunks to get the file chunks in right
5428 // order (INFO chunk will be moved to first position later)
5429 pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
5430 pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
5431 pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
5432
5433 GenerateDLSID();
5434 }
5435
5436 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
5437 bAutoLoad = true;
5438 pGroups = NULL;
5439 pScriptGroups = NULL;
5440 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5441 }
5442
5443 File::~File() {
5444 if (pGroups) {
5445 std::list<Group*>::iterator iter = pGroups->begin();
5446 std::list<Group*>::iterator end = pGroups->end();
5447 while (iter != end) {
5448 delete *iter;
5449 ++iter;
5450 }
5451 delete pGroups;
5452 }
5453 if (pScriptGroups) {
5454 std::list<ScriptGroup*>::iterator iter = pScriptGroups->begin();
5455 std::list<ScriptGroup*>::iterator end = pScriptGroups->end();
5456 while (iter != end) {
5457 delete *iter;
5458 ++iter;
5459 }
5460 delete pScriptGroups;
5461 }
5462 }
5463
5464 Sample* File::GetFirstSample(progress_t* pProgress) {
5465 if (!pSamples) LoadSamples(pProgress);
5466 if (!pSamples) return NULL;
5467 SamplesIterator = pSamples->begin();
5468 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5469 }
5470
5471 Sample* File::GetNextSample() {
5472 if (!pSamples) return NULL;
5473 SamplesIterator++;
5474 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5475 }
5476
5477 /**
5478 * Returns Sample object of @a index.
5479 *
5480 * @returns sample object or NULL if index is out of bounds
5481 */
5482 Sample* File::GetSample(uint index) {
5483 if (!pSamples) LoadSamples();
5484 if (!pSamples) return NULL;
5485 DLS::File::SampleList::iterator it = pSamples->begin();
5486 for (int i = 0; i < index; ++i) {
5487 ++it;
5488 if (it == pSamples->end()) return NULL;
5489 }
5490 if (it == pSamples->end()) return NULL;
5491 return static_cast<gig::Sample*>( *it );
5492 }
5493
5494 /** @brief Add a new sample.
5495 *
5496 * This will create a new Sample object for the gig file. You have to
5497 * call Save() to make this persistent to the file.
5498 *
5499 * @returns pointer to new Sample object
5500 */
5501 Sample* File::AddSample() {
5502 if (!pSamples) LoadSamples();
5503 __ensureMandatoryChunksExist();
5504 RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
5505 // create new Sample object and its respective 'wave' list chunk
5506 RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
5507 Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
5508
5509 // add mandatory chunks to get the chunks in right order
5510 wave->AddSubChunk(CHUNK_ID_FMT, 16);
5511 wave->AddSubList(LIST_TYPE_INFO);
5512
5513 pSamples->push_back(pSample);
5514 return pSample;
5515 }
5516
5517 /** @brief Delete a sample.
5518 *
5519 * This will delete the given Sample object from the gig file. Any
5520 * references to this sample from Regions and DimensionRegions will be
5521 * removed. You have to call Save() to make this persistent to the file.
5522 *
5523 * @param pSample - sample to delete
5524 * @throws gig::Exception if given sample could not be found
5525 */
5526 void File::DeleteSample(Sample* pSample) {
5527 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
5528 SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
5529 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
5530 if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
5531 pSamples->erase(iter);
5532 delete pSample;
5533
5534 SampleList::iterator tmp = SamplesIterator;
5535 // remove all references to the sample
5536 for (Instrument* instrument = GetFirstInstrument() ; instrument ;
5537 instrument = GetNextInstrument()) {
5538 for (Region* region = instrument->GetFirstRegion() ; region ;
5539 region = instrument->GetNextRegion()) {
5540
5541 if (region->GetSample() == pSample) region->SetSample(NULL);
5542
5543 for (int i = 0 ; i < region->DimensionRegions ; i++) {
5544 gig::DimensionRegion *d = region->pDimensionRegions[i];
5545 if (d->pSample == pSample) d->pSample = NULL;
5546 }
5547 }
5548 }
5549 SamplesIterator = tmp; // restore iterator
5550 }
5551
5552 void File::LoadSamples() {
5553 LoadSamples(NULL);
5554 }
5555
5556 void File::LoadSamples(progress_t* pProgress) {
5557 // Groups must be loaded before samples, because samples will try
5558 // to resolve the group they belong to
5559 if (!pGroups) LoadGroups();
5560
5561 if (!pSamples) pSamples = new SampleList;
5562
5563 RIFF::File* file = pRIFF;
5564
5565 // just for progress calculation
5566 int iSampleIndex = 0;
5567 int iTotalSamples = WavePoolCount;
5568
5569 // check if samples should be loaded from extension files
5570 // (only for old gig files < 2 GB)
5571 int lastFileNo = 0;
5572 if (!file->IsNew() && !(file->GetCurrentFileSize() >> 31)) {
5573 for (int i = 0 ; i < WavePoolCount ; i++) {
5574 if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
5575 }
5576 }
5577 String name(pRIFF->GetFileName());
5578 int nameLen = (int) name.length();
5579 char suffix[6];
5580 if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
5581
5582 for (int fileNo = 0 ; ; ) {
5583 RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
5584 if (wvpl) {
5585 file_offset_t wvplFileOffset = wvpl->GetFilePos();
5586 RIFF::List* wave = wvpl->GetFirstSubList();
5587 while (wave) {
5588 if (wave->GetListType() == LIST_TYPE_WAVE) {
5589 // notify current progress
5590 const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
5591 __notify_progress(pProgress, subprogress);
5592
5593 file_offset_t waveFileOffset = wave->GetFilePos();
5594 pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo, iSampleIndex));
5595
5596 iSampleIndex++;
5597 }
5598 wave = wvpl->GetNextSubList();
5599 }
5600
5601 if (fileNo == lastFileNo) break;
5602
5603 // open extension file (*.gx01, *.gx02, ...)
5604 fileNo++;
5605 sprintf(suffix, ".gx%02d", fileNo);
5606 name.replace(nameLen, 5, suffix);
5607 file = new RIFF::File(name);
5608 ExtensionFiles.push_back(file);
5609 } else break;
5610 }
5611
5612 __notify_progress(pProgress, 1.0); // notify done
5613 }
5614
5615 Instrument* File::GetFirstInstrument() {
5616 if (!pInstruments) LoadInstruments();
5617 if (!pInstruments) return NULL;
5618 InstrumentsIterator = pInstruments->begin();
5619 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5620 }
5621
5622 Instrument* File::GetNextInstrument() {
5623 if (!pInstruments) return NULL;
5624 InstrumentsIterator++;
5625 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5626 }
5627
5628 /**
5629 * Returns the instrument with the given index.
5630 *
5631 * @param index - number of the sought instrument (0..n)
5632 * @param pProgress - optional: callback function for progress notification
5633 * @returns sought instrument or NULL if there's no such instrument
5634 */
5635 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
5636 if (!pInstruments) {
5637 // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
5638
5639 // sample loading subtask
5640 progress_t subprogress;
5641 __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
5642 __notify_progress(&subprogress, 0.0f);
5643 if (GetAutoLoad())
5644 GetFirstSample(&subprogress); // now force all samples to be loaded
5645 __notify_progress(&subprogress, 1.0f);
5646
5647 // instrument loading subtask
5648 if (pProgress && pProgress->callback) {
5649 subprogress.__range_min = subprogress.__range_max;
5650 subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
5651 }
5652 __notify_progress(&subprogress, 0.0f);
5653 LoadInstruments(&subprogress);
5654 __notify_progress(&subprogress, 1.0f);
5655 }
5656 if (!pInstruments) return NULL;
5657 InstrumentsIterator = pInstruments->begin();
5658 for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
5659 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
5660 InstrumentsIterator++;
5661 }
5662 return NULL;
5663 }
5664
5665 /** @brief Add a new instrument definition.
5666 *
5667 * This will create a new Instrument object for the gig file. You have
5668 * to call Save() to make this persistent to the file.
5669 *
5670 * @returns pointer to new Instrument object
5671 */
5672 Instrument* File::AddInstrument() {
5673 if (!pInstruments) LoadInstruments();
5674 __ensureMandatoryChunksExist();
5675 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5676 RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
5677
5678 // add mandatory chunks to get the chunks in right order
5679 lstInstr->AddSubList(LIST_TYPE_INFO);
5680 lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
5681
5682 Instrument* pInstrument = new Instrument(this, lstInstr);
5683 pInstrument->GenerateDLSID();
5684
5685 lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
5686
5687 // this string is needed for the gig to be loadable in GSt:
5688 pInstrument->pInfo->Software = "Endless Wave";
5689
5690 pInstruments->push_back(pInstrument);
5691 return pInstrument;
5692 }
5693
5694 /** @brief Add a duplicate of an existing instrument.
5695 *
5696 * Duplicates the instrument definition given by @a orig and adds it
5697 * to this file. This allows in an instrument editor application to
5698 * easily create variations of an instrument, which will be stored in
5699 * the same .gig file, sharing i.e. the same samples.
5700 *
5701 * Note that all sample pointers referenced by @a orig are simply copied as
5702 * memory address. Thus the respective samples are shared, not duplicated!
5703 *
5704 * You have to call Save() to make this persistent to the file.
5705 *
5706 * @param orig - original instrument to be copied
5707 * @returns duplicated copy of the given instrument
5708 */
5709 Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
5710 Instrument* instr = AddInstrument();
5711 instr->CopyAssign(orig);
5712 return instr;
5713 }
5714
5715 /** @brief Add content of another existing file.
5716 *
5717 * Duplicates the samples, groups and instruments of the original file
5718 * given by @a pFile and adds them to @c this File. In case @c this File is
5719 * a new one that you haven't saved before, then you have to call
5720 * SetFileName() before calling AddContentOf(), because this method will
5721 * automatically save this file during operation, which is required for
5722 * writing the sample waveform data by disk streaming.
5723 *
5724 * @param pFile - original file whose's content shall be copied from
5725 */
5726 void File::AddContentOf(File* pFile) {
5727 static int iCallCount = -1;
5728 iCallCount++;
5729 std::map<Group*,Group*> mGroups;
5730 std::map<Sample*,Sample*> mSamples;
5731
5732 // clone sample groups
5733 for (int i = 0; pFile->GetGroup(i); ++i) {
5734 Group* g = AddGroup();
5735 g->Name =
5736 "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
5737 mGroups[pFile->GetGroup(i)] = g;
5738 }
5739
5740 // clone samples (not waveform data here yet)
5741 for (int i = 0; pFile->GetSample(i); ++i) {
5742 Sample* s = AddSample();
5743 s->CopyAssignMeta(pFile->GetSample(i));
5744 mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
5745 mSamples[pFile->GetSample(i)] = s;
5746 }
5747
5748 // clone script groups and their scripts
5749 for (int iGroup = 0; pFile->GetScriptGroup(iGroup); ++iGroup) {
5750 ScriptGroup* sg = pFile->GetScriptGroup(iGroup);
5751 ScriptGroup* dg = AddScriptGroup();
5752 dg->Name = "COPY" + ToString(iCallCount) + "_" + sg->Name;
5753 for (int iScript = 0; sg->GetScript(iScript); ++iScript) {
5754 Script* ss = sg->GetScript(iScript);
5755 Script* ds = dg->AddScript();
5756 ds->CopyAssign(ss);
5757 }
5758 }
5759
5760 //BUG: For some reason this method only works with this additional
5761 // Save() call in between here.
5762 //
5763 // Important: The correct one of the 2 Save() methods has to be called
5764 // here, depending on whether the file is completely new or has been
5765 // saved to disk already, otherwise it will result in data corruption.
5766 if (pRIFF->IsNew())
5767 Save(GetFileName());
5768 else
5769 Save();
5770
5771 // clone instruments
5772 // (passing the crosslink table here for the cloned samples)
5773 for (int i = 0; pFile->GetInstrument(i); ++i) {
5774 Instrument* instr = AddInstrument();
5775 instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
5776 }
5777
5778 // Mandatory: file needs to be saved to disk at this point, so this
5779 // file has the correct size and data layout for writing the samples'
5780 // waveform data to disk.
5781 Save();
5782
5783 // clone samples' waveform data
5784 // (using direct read & write disk streaming)
5785 for (int i = 0; pFile->GetSample(i); ++i) {
5786 mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
5787 }
5788 }
5789
5790 /** @brief Delete an instrument.
5791 *
5792 * This will delete the given Instrument object from the gig file. You
5793 * have to call Save() to make this persistent to the file.
5794 *
5795 * @param pInstrument - instrument to delete
5796 * @throws gig::Exception if given instrument could not be found
5797 */
5798 void File::DeleteInstrument(Instrument* pInstrument) {
5799 if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
5800 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
5801 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
5802 pInstruments->erase(iter);
5803 delete pInstrument;
5804 }
5805
5806 void File::LoadInstruments() {
5807 LoadInstruments(NULL);
5808 }
5809
5810 void File::LoadInstruments(progress_t* pProgress) {
5811 if (!pInstruments) pInstruments = new InstrumentList;
5812 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5813 if (lstInstruments) {
5814 int iInstrumentIndex = 0;
5815 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
5816 while (lstInstr) {
5817 if (lstInstr->GetListType() == LIST_TYPE_INS) {
5818 // notify current progress
5819 const float localProgress = (float) iInstrumentIndex / (float) Instruments;
5820 __notify_progress(pProgress, localProgress);
5821
5822 // divide local progress into subprogress for loading current Instrument
5823 progress_t subprogress;
5824 __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
5825
5826 pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
5827
5828 iInstrumentIndex++;
5829 }
5830 lstInstr = lstInstruments->GetNextSubList();
5831 }
5832 __notify_progress(pProgress, 1.0); // notify done
5833 }
5834 }
5835
5836 /// Updates the 3crc chunk with the checksum of a sample. The
5837 /// update is done directly to disk, as this method is called
5838 /// after File::Save()
5839 void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
5840 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5841 if (!_3crc) return;
5842
5843 // get the index of the sample
5844 int iWaveIndex = GetWaveTableIndexOf(pSample);
5845 if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
5846
5847 // write the CRC-32 checksum to disk
5848 _3crc->SetPos(iWaveIndex * 8);
5849 uint32_t one = 1;
5850 _3crc->WriteUint32(&one); // always 1
5851 _3crc->WriteUint32(&crc);
5852 }
5853
5854 uint32_t File::GetSampleChecksum(Sample* pSample) {
5855 // get the index of the sample
5856 int iWaveIndex = GetWaveTableIndexOf(pSample);
5857 if (iWaveIndex < 0) throw gig::Exception("Could not retrieve reference crc of sample, could not resolve sample's wave table index");
5858
5859 return GetSampleChecksumByIndex(iWaveIndex);
5860 }
5861
5862 uint32_t File::GetSampleChecksumByIndex(int index) {
5863 if (index < 0) throw gig::Exception("Could not retrieve reference crc of sample, invalid wave pool index of sample");
5864
5865 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5866 if (!_3crc) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
5867 uint8_t* pData = (uint8_t*) _3crc->LoadChunkData();
5868 if (!pData) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
5869
5870 // read the CRC-32 checksum directly from disk
5871 size_t pos = index * 8;
5872 if (pos + 8 > _3crc->GetNewSize())
5873 throw gig::Exception("Could not retrieve reference crc of sample, could not seek to required position in crc chunk");
5874
5875 uint32_t one = load32(&pData[pos]); // always 1
5876 if (one != 1)
5877 throw gig::Exception("Could not retrieve reference crc of sample, because reference checksum table is damaged");
5878
5879 return load32(&pData[pos+4]);
5880 }
5881
5882 int File::GetWaveTableIndexOf(gig::Sample* pSample) {
5883 if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
5884 File::SampleList::iterator iter = pSamples->begin();
5885 File::SampleList::iterator end = pSamples->end();
5886 for (int index = 0; iter != end; ++iter, ++index)
5887 if (*iter == pSample)
5888 return index;
5889 return -1;
5890 }
5891
5892 /**
5893 * Checks whether the file's "3CRC" chunk was damaged. This chunk contains
5894 * the CRC32 check sums of all samples' raw wave data.
5895 *
5896 * @return true if 3CRC chunk is OK, or false if 3CRC chunk is damaged
5897 */
5898 bool File::VerifySampleChecksumTable() {
5899 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5900 if (!_3crc) return false;
5901 if (_3crc->GetNewSize() <= 0) return false;
5902 if (_3crc->GetNewSize() % 8) return false;
5903 if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
5904 if (_3crc->GetNewSize() != pSamples->size() * 8) return false;
5905
5906 const file_offset_t n = _3crc->GetNewSize() / 8;
5907
5908 uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
5909 if (!pData) return false;
5910
5911 for (file_offset_t i = 0; i < n; ++i) {
5912 uint32_t one = pData[i*2];
5913 if (one != 1) return false;
5914 }
5915
5916 return true;
5917 }
5918
5919 /**
5920 * Recalculates CRC32 checksums for all samples and rebuilds this gig
5921 * file's checksum table with those new checksums. This might usually
5922 * just be necessary if the checksum table was damaged.
5923 *
5924 * @e IMPORTANT: The current implementation of this method only works
5925 * with files that have not been modified since it was loaded, because
5926 * it expects that no externally caused file structure changes are
5927 * required!
5928 *
5929 * Due to the expectation above, this method is currently protected
5930 * and actually only used by the command line tool "gigdump" yet.
5931 *
5932 * @returns true if Save() is required to be called after this call,
5933 * false if no further action is required
5934 */
5935 bool File::RebuildSampleChecksumTable() {
5936 // make sure sample chunks were scanned
5937 if (!pSamples) GetFirstSample();
5938
5939 bool bRequiresSave = false;
5940
5941 // make sure "3CRC" chunk exists with required size
5942 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5943 if (!_3crc) {
5944 _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
5945 // the order of einf and 3crc is not the same in v2 and v3
5946 RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
5947 if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
5948 bRequiresSave = true;
5949 } else if (_3crc->GetNewSize() != pSamples->size() * 8) {
5950 _3crc->Resize(pSamples->size() * 8);
5951 bRequiresSave = true;
5952 }
5953
5954 if (bRequiresSave) { // refill CRC table for all samples in RAM ...
5955 uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
5956 {
5957 File::SampleList::iterator iter = pSamples->begin();
5958 File::SampleList::iterator end = pSamples->end();
5959 for (; iter != end; ++iter) {
5960 gig::Sample* pSample = (gig::Sample*) *iter;
5961 int index = GetWaveTableIndexOf(pSample);
5962 if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
5963 pData[index*2] = 1; // always 1
5964 pData[index*2+1] = pSample->CalculateWaveDataChecksum();
5965 }
5966 }
5967 } else { // no file structure changes necessary, so directly write to disk and we are done ...
5968 // make sure file is in write mode
5969 pRIFF->SetMode(RIFF::stream_mode_read_write);
5970 {
5971 File::SampleList::iterator iter = pSamples->begin();
5972 File::SampleList::iterator end = pSamples->end();
5973 for (; iter != end; ++iter) {
5974 gig::Sample* pSample = (gig::Sample*) *iter;
5975 int index = GetWaveTableIndexOf(pSample);
5976 if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
5977 pSample->crc = pSample->CalculateWaveDataChecksum();
5978 SetSampleChecksum(pSample, pSample->crc);
5979 }
5980 }
5981 }
5982
5983 return bRequiresSave;
5984 }
5985
5986 Group* File::GetFirstGroup() {
5987 if (!pGroups) LoadGroups();
5988 // there must always be at least one group
5989 GroupsIterator = pGroups->begin();
5990 return *GroupsIterator;
5991 }
5992
5993 Group* File::GetNextGroup() {
5994 if (!pGroups) return NULL;
5995 ++GroupsIterator;
5996 return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
5997 }
5998
5999 /**
6000 * Returns the group with the given index.
6001 *
6002 * @param index - number of the sought group (0..n)
6003 * @returns sought group or NULL if there's no such group
6004 */
6005 Group* File::GetGroup(uint index) {
6006 if (!pGroups) LoadGroups();
6007 GroupsIterator = pGroups->begin();
6008 for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
6009 if (i == index) return *GroupsIterator;
6010 ++GroupsIterator;
6011 }
6012 return NULL;
6013 }
6014
6015 /**
6016 * Returns the group with the given group name.
6017 *
6018 * Note: group names don't have to be unique in the gig format! So there
6019 * can be multiple groups with the same name. This method will simply
6020 * return the first group found with the given name.
6021 *
6022 * @param name - name of the sought group
6023 * @returns sought group or NULL if there's no group with that name
6024 */
6025 Group* File::GetGroup(String name) {
6026 if (!pGroups) LoadGroups();
6027 GroupsIterator = pGroups->begin();
6028 for (uint i = 0; GroupsIterator != pGroups->end(); ++GroupsIterator, ++i)
6029 if ((*GroupsIterator)->Name == name) return *GroupsIterator;
6030 return NULL;
6031 }
6032
6033 Group* File::AddGroup() {
6034 if (!pGroups) LoadGroups();
6035 // there must always be at least one group
6036 __ensureMandatoryChunksExist();
6037 Group* pGroup = new Group(this, NULL);
6038 pGroups->push_back(pGroup);
6039 return pGroup;
6040 }
6041
6042 /** @brief Delete a group and its samples.
6043 *
6044 * This will delete the given Group object and all the samples that
6045 * belong to this group from the gig file. You have to call Save() to
6046 * make this persistent to the file.
6047 *
6048 * @param pGroup - group to delete
6049 * @throws gig::Exception if given group could not be found
6050 */
6051 void File::DeleteGroup(Group* pGroup) {
6052 if (!pGroups) LoadGroups();
6053 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6054 if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6055 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6056 // delete all members of this group
6057 for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
6058 DeleteSample(pSample);
6059 }
6060 // now delete this group object
6061 pGroups->erase(iter);
6062 delete pGroup;
6063 }
6064
6065 /** @brief Delete a group.
6066 *
6067 * This will delete the given Group object from the gig file. All the
6068 * samples that belong to this group will not be deleted, but instead
6069 * be moved to another group. You have to call Save() to make this
6070 * persistent to the file.
6071 *
6072 * @param pGroup - group to delete
6073 * @throws gig::Exception if given group could not be found
6074 */
6075 void File::DeleteGroupOnly(Group* pGroup) {
6076 if (!pGroups) LoadGroups();
6077 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6078 if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6079 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6080 // move all members of this group to another group
6081 pGroup->MoveAll();
6082 pGroups->erase(iter);
6083 delete pGroup;
6084 }
6085
6086 void File::LoadGroups() {
6087 if (!pGroups) pGroups = new std::list<Group*>;
6088 // try to read defined groups from file
6089 RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6090 if (lst3gri) {
6091 RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
6092 if (lst3gnl) {
6093 RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
6094 while (ck) {
6095 if (ck->GetChunkID() == CHUNK_ID_3GNM) {
6096 if (pVersion && pVersion->major == 3 &&
6097 strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
6098
6099 pGroups->push_back(new Group(this, ck));
6100 }
6101 ck = lst3gnl->GetNextSubChunk();
6102 }
6103 }
6104 }
6105 // if there were no group(s), create at least the mandatory default group
6106 if (!pGroups->size()) {
6107 Group* pGroup = new Group(this, NULL);
6108 pGroup->Name = "Default Group";
6109 pGroups->push_back(pGroup);
6110 }
6111 }
6112
6113 /** @brief Get instrument script group (by index).
6114 *
6115 * Returns the real-time instrument script group with the given index.
6116 *
6117 * @param index - number of the sought group (0..n)
6118 * @returns sought script group or NULL if there's no such group
6119 */
6120 ScriptGroup* File::GetScriptGroup(uint index) {
6121 if (!pScriptGroups) LoadScriptGroups();
6122 std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6123 for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6124 if (i == index) return *it;
6125 return NULL;
6126 }
6127
6128 /** @brief Get instrument script group (by name).
6129 *
6130 * Returns the first real-time instrument script group found with the given
6131 * group name. Note that group names may not necessarily be unique.
6132 *
6133 * @param name - name of the sought script group
6134 * @returns sought script group or NULL if there's no such group
6135 */
6136 ScriptGroup* File::GetScriptGroup(const String& name) {
6137 if (!pScriptGroups) LoadScriptGroups();
6138 std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6139 for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6140 if ((*it)->Name == name) return *it;
6141 return NULL;
6142 }
6143
6144 /** @brief Add new instrument script group.
6145 *
6146 * Adds a new, empty real-time instrument script group to the file.
6147 *
6148 * You have to call Save() to make this persistent to the file.
6149 *
6150 * @return new empty script group
6151 */
6152 ScriptGroup* File::AddScriptGroup() {
6153 if (!pScriptGroups) LoadScriptGroups();
6154 ScriptGroup* pScriptGroup = new ScriptGroup(this, NULL);
6155 pScriptGroups->push_back(pScriptGroup);
6156 return pScriptGroup;
6157 }
6158
6159 /** @brief Delete an instrument script group.
6160 *
6161 * This will delete the given real-time instrument script group and all its
6162 * instrument scripts it contains. References inside instruments that are
6163 * using the deleted scripts will be removed from the respective instruments
6164 * accordingly.
6165 *
6166 * You have to call Save() to make this persistent to the file.
6167 *
6168 * @param pScriptGroup - script group to delete
6169 * @throws gig::Exception if given script group could not be found
6170 */
6171 void File::DeleteScriptGroup(ScriptGroup* pScriptGroup) {
6172 if (!pScriptGroups) LoadScriptGroups();
6173 std::list<ScriptGroup*>::iterator iter =
6174 find(pScriptGroups->begin(), pScriptGroups->end(), pScriptGroup);
6175 if (iter == pScriptGroups->end())
6176 throw gig::Exception("Could not delete script group, could not find given script group");
6177 pScriptGroups->erase(iter);
6178 for (int i = 0; pScriptGroup->GetScript(i); ++i)
6179 pScriptGroup->DeleteScript(pScriptGroup->GetScript(i));
6180 if (pScriptGroup->pList)
6181 pScriptGroup->pList->GetParent()->DeleteSubChunk(pScriptGroup->pList);
6182 delete pScriptGroup;
6183 }
6184
6185 void File::LoadScriptGroups() {
6186 if (pScriptGroups) return;
6187 pScriptGroups = new std::list<ScriptGroup*>;
6188 RIFF::List* lstLS = pRIFF->GetSubList(LIST_TYPE_3LS);
6189 if (lstLS) {
6190 for (RIFF::List* lst = lstLS->GetFirstSubList(); lst;
6191 lst = lstLS->GetNextSubList())
6192 {
6193 if (lst->GetListType() == LIST_TYPE_RTIS) {
6194 pScriptGroups->push_back(new ScriptGroup(this, lst));
6195 }
6196 }
6197 }
6198 }
6199
6200 /**
6201 * Apply all the gig file's current instruments, samples, groups and settings
6202 * to the respective RIFF chunks. You have to call Save() to make changes
6203 * persistent.
6204 *
6205 * Usually there is absolutely no need to call this method explicitly.
6206 * It will be called automatically when File::Save() was called.
6207 *
6208 * @param pProgress - callback function for progress notification
6209 * @throws Exception - on errors
6210 */
6211 void File::UpdateChunks(progress_t* pProgress) {
6212 bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
6213
6214 // update own gig format extension chunks
6215 // (not part of the GigaStudio 4 format)
6216 RIFF::List* lst3LS = pRIFF->GetSubList(LIST_TYPE_3LS);
6217 if (!lst3LS) {
6218 lst3LS = pRIFF->AddSubList(LIST_TYPE_3LS);
6219 }
6220 // Make sure <3LS > chunk is placed before <ptbl> chunk. The precise
6221 // location of <3LS > is irrelevant, however it should be located
6222 // before the actual wave data
6223 RIFF::Chunk* ckPTBL = pRIFF->GetSubChunk(CHUNK_ID_PTBL);
6224 pRIFF->MoveSubChunk(lst3LS, ckPTBL);
6225
6226 // This must be performed before writing the chunks for instruments,
6227 // because the instruments' script slots will write the file offsets
6228 // of the respective instrument script chunk as reference.
6229 if (pScriptGroups) {
6230 // Update instrument script (group) chunks.
6231 for (std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6232 it != pScriptGroups->end(); ++it)
6233 {
6234 (*it)->UpdateChunks(pProgress);
6235 }
6236 }
6237
6238 // in case no libgig custom format data was added, then remove the
6239 // custom "3LS " chunk again
6240 if (!lst3LS->CountSubChunks()) {
6241 pRIFF->DeleteSubChunk(lst3LS);
6242 lst3LS = NULL;
6243 }
6244
6245 // first update base class's chunks
6246 DLS::File::UpdateChunks(pProgress);
6247
6248 if (newFile) {
6249 // INFO was added by Resource::UpdateChunks - make sure it
6250 // is placed first in file
6251 RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
6252 RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
6253 if (first != info) {
6254 pRIFF->MoveSubChunk(info, first);
6255 }
6256 }
6257
6258 // update group's chunks
6259 if (pGroups) {
6260 // make sure '3gri' and '3gnl' list chunks exist
6261 // (before updating the Group chunks)
6262 RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6263 if (!_3gri) {
6264 _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
6265 pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
6266 }
6267 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
6268 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
6269
6270 // v3: make sure the file has 128 3gnm chunks
6271 // (before updating the Group chunks)
6272 if (pVersion && pVersion->major == 3) {
6273 RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
6274 for (int i = 0 ; i < 128 ; i++) {
6275 if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
6276 if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
6277 }
6278 }
6279
6280 std::list<Group*>::iterator iter = pGroups->begin();
6281 std::list<Group*>::iterator end = pGroups->end();
6282 for (; iter != end; ++iter) {
6283 (*iter)->UpdateChunks(pProgress);
6284 }
6285 }
6286
6287 // update einf chunk
6288
6289 // The einf chunk contains statistics about the gig file, such
6290 // as the number of regions and samples used by each
6291 // instrument. It is divided in equally sized parts, where the
6292 // first part contains information about the whole gig file,
6293 // and the rest of the parts map to each instrument in the
6294 // file.
6295 //
6296 // At the end of each part there is a bit map of each sample
6297 // in the file, where a set bit means that the sample is used
6298 // by the file/instrument.
6299 //
6300 // Note that there are several fields with unknown use. These
6301 // are set to zero.
6302
6303 int sublen = int(pSamples->size() / 8 + 49);
6304 int einfSize = (Instruments + 1) * sublen;
6305
6306 RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6307 if (einf) {
6308 if (einf->GetSize() != einfSize) {
6309 einf->Resize(einfSize);
6310 memset(einf->LoadChunkData(), 0, einfSize);
6311 }
6312 } else if (newFile) {
6313 einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
6314 }
6315 if (einf) {
6316 uint8_t* pData = (uint8_t*) einf->LoadChunkData();
6317
6318 std::map<gig::Sample*,int> sampleMap;
6319 int sampleIdx = 0;
6320 for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
6321 sampleMap[pSample] = sampleIdx++;
6322 }
6323
6324 int totnbusedsamples = 0;
6325 int totnbusedchannels = 0;
6326 int totnbregions = 0;
6327 int totnbdimregions = 0;
6328 int totnbloops = 0;
6329 int instrumentIdx = 0;
6330
6331 memset(&pData[48], 0, sublen - 48);
6332
6333 for (Instrument* instrument = GetFirstInstrument() ; instrument ;
6334 instrument = GetNextInstrument()) {
6335 int nbusedsamples = 0;
6336 int nbusedchannels = 0;
6337 int nbdimregions = 0;
6338 int nbloops = 0;
6339
6340 memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
6341
6342 for (Region* region = instrument->GetFirstRegion() ; region ;
6343 region = instrument->GetNextRegion()) {
6344 for (int i = 0 ; i < region->DimensionRegions ; i++) {
6345 gig::DimensionRegion *d = region->pDimensionRegions[i];
6346 if (d->pSample) {
6347 int sampleIdx = sampleMap[d->pSample];
6348 int byte = 48 + sampleIdx / 8;
6349 int bit = 1 << (sampleIdx & 7);
6350 if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
6351 pData[(instrumentIdx + 1) * sublen + byte] |= bit;
6352 nbusedsamples++;
6353 nbusedchannels += d->pSample->Channels;
6354
6355 if ((pData[byte] & bit) == 0) {
6356 pData[byte] |= bit;
6357 totnbusedsamples++;
6358 totnbusedchannels += d->pSample->Channels;
6359 }
6360 }
6361 }
6362 if (d->SampleLoops) nbloops++;
6363 }
6364 nbdimregions += region->DimensionRegions;
6365 }
6366 // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6367 // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
6368 store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
6369 store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
6370 store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
6371 store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
6372 store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
6373 store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
6374 // next 8 bytes unknown
6375 store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
6376 store32(&pData[(instrumentIdx + 1) * sublen + 40], (uint32_t) pSamples->size());
6377 // next 4 bytes unknown
6378
6379 totnbregions += instrument->Regions;
6380 totnbdimregions += nbdimregions;
6381 totnbloops += nbloops;
6382 instrumentIdx++;
6383 }
6384 // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6385 // store32(&pData[0], sublen);
6386 store32(&pData[4], totnbusedchannels);
6387 store32(&pData[8], totnbusedsamples);
6388 store32(&pData[12], Instruments);
6389 store32(&pData[16], totnbregions);
6390 store32(&pData[20], totnbdimregions);
6391 store32(&pData[24], totnbloops);
6392 // next 8 bytes unknown
6393 // next 4 bytes unknown, not always 0
6394 store32(&pData[40], (uint32_t) pSamples->size());
6395 // next 4 bytes unknown
6396 }
6397
6398 // update 3crc chunk
6399
6400 // The 3crc chunk contains CRC-32 checksums for the
6401 // samples. When saving a gig file to disk, we first update the 3CRC
6402 // chunk here (in RAM) with the old crc values which we read from the
6403 // 3CRC chunk when we opened the file (available with gig::Sample::crc
6404 // member variable). This step is required, because samples might have
6405 // been deleted by the user since the file was opened, which in turn
6406 // changes the order of the (i.e. old) checksums within the 3crc chunk.
6407 // If a sample was conciously modified by the user (that is if
6408 // Sample::Write() was called later on) then Sample::Write() will just
6409 // update the respective individual checksum(s) directly on disk and
6410 // leaves all other sample checksums untouched.
6411
6412 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6413 if (_3crc) {
6414 _3crc->Resize(pSamples->size() * 8);
6415 } else /*if (newFile)*/ {
6416 _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6417 // the order of einf and 3crc is not the same in v2 and v3
6418 if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
6419 }
6420 { // must be performed in RAM here ...
6421 uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6422 if (pData) {
6423 File::SampleList::iterator iter = pSamples->begin();
6424 File::SampleList::iterator end = pSamples->end();
6425 for (int index = 0; iter != end; ++iter, ++index) {
6426 gig::Sample* pSample = (gig::Sample*) *iter;
6427 pData[index*2] = 1; // always 1
6428 pData[index*2+1] = pSample->crc;
6429 }
6430 }
6431 }
6432 }
6433
6434 void File::UpdateFileOffsets() {
6435 DLS::File::UpdateFileOffsets();
6436
6437 for (Instrument* instrument = GetFirstInstrument(); instrument;
6438 instrument = GetNextInstrument())
6439 {
6440 instrument->UpdateScriptFileOffsets();
6441 }
6442 }
6443
6444 /**
6445 * Enable / disable automatic loading. By default this properyt is
6446 * enabled and all informations are loaded automatically. However
6447 * loading all Regions, DimensionRegions and especially samples might
6448 * take a long time for large .gig files, and sometimes one might only
6449 * be interested in retrieving very superficial informations like the
6450 * amount of instruments and their names. In this case one might disable
6451 * automatic loading to avoid very slow response times.
6452 *
6453 * @e CAUTION: by disabling this property many pointers (i.e. sample
6454 * references) and informations will have invalid or even undefined
6455 * data! This feature is currently only intended for retrieving very
6456 * superficial informations in a very fast way. Don't use it to retrieve
6457 * details like synthesis informations or even to modify .gig files!
6458 */
6459 void File::SetAutoLoad(bool b) {
6460 bAutoLoad = b;
6461 }
6462
6463 /**
6464 * Returns whether automatic loading is enabled.
6465 * @see SetAutoLoad()
6466 */
6467 bool File::GetAutoLoad() {
6468 return bAutoLoad;
6469 }
6470
6471
6472
6473 // *************** Exception ***************
6474 // *
6475
6476 Exception::Exception(String Message) : DLS::Exception(Message) {
6477 }
6478
6479 void Exception::PrintMessage() {
6480 std::cout << "gig::Exception: " << Message << std::endl;
6481 }
6482
6483
6484 // *************** functions ***************
6485 // *
6486
6487 /**
6488 * Returns the name of this C++ library. This is usually "libgig" of
6489 * course. This call is equivalent to RIFF::libraryName() and
6490 * DLS::libraryName().
6491 */
6492 String libraryName() {
6493 return PACKAGE;
6494 }
6495
6496 /**
6497 * Returns version of this C++ library. This call is equivalent to
6498 * RIFF::libraryVersion() and DLS::libraryVersion().
6499 */
6500 String libraryVersion() {
6501 return VERSION;
6502 }
6503
6504 } // namespace gig

  ViewVC Help
Powered by ViewVC