/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Contents of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3203 - (show annotations) (download)
Tue May 23 14:51:01 2017 UTC (6 years, 10 months ago) by schoenebeck
File size: 282166 byte(s)
* gig.cpp: Ignore invalid leverage controller types and just show
  a warning on the console instead of throwing an exception.
* Bumped version (4.0.0.svn26).

1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file access library *
4 * *
5 * Copyright (C) 2003-2017 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #include "gig.h"
25
26 #include "helper.h"
27 #include "Serialization.h"
28
29 #include <algorithm>
30 #include <math.h>
31 #include <iostream>
32 #include <assert.h>
33
34 /// libgig's current file format version (for extending the original Giga file
35 /// format with libgig's own custom data / custom features).
36 #define GIG_FILE_EXT_VERSION 2
37
38 /// Initial size of the sample buffer which is used for decompression of
39 /// compressed sample wave streams - this value should always be bigger than
40 /// the biggest sample piece expected to be read by the sampler engine,
41 /// otherwise the buffer size will be raised at runtime and thus the buffer
42 /// reallocated which is time consuming and unefficient.
43 #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
44
45 /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
46 #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
47 #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
48 #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
49 #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
50 #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
51 #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
52 #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
53 #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
54 #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
55 #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
56 #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
57 #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
58
59 #define SRLZ(member) \
60 archive->serializeMember(*this, member, #member);
61
62 namespace gig {
63
64 // *************** Internal functions for sample decompression ***************
65 // *
66
67 namespace {
68
69 inline int get12lo(const unsigned char* pSrc)
70 {
71 const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
72 return x & 0x800 ? x - 0x1000 : x;
73 }
74
75 inline int get12hi(const unsigned char* pSrc)
76 {
77 const int x = pSrc[1] >> 4 | pSrc[2] << 4;
78 return x & 0x800 ? x - 0x1000 : x;
79 }
80
81 inline int16_t get16(const unsigned char* pSrc)
82 {
83 return int16_t(pSrc[0] | pSrc[1] << 8);
84 }
85
86 inline int get24(const unsigned char* pSrc)
87 {
88 const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
89 return x & 0x800000 ? x - 0x1000000 : x;
90 }
91
92 inline void store24(unsigned char* pDst, int x)
93 {
94 pDst[0] = x;
95 pDst[1] = x >> 8;
96 pDst[2] = x >> 16;
97 }
98
99 void Decompress16(int compressionmode, const unsigned char* params,
100 int srcStep, int dstStep,
101 const unsigned char* pSrc, int16_t* pDst,
102 file_offset_t currentframeoffset,
103 file_offset_t copysamples)
104 {
105 switch (compressionmode) {
106 case 0: // 16 bit uncompressed
107 pSrc += currentframeoffset * srcStep;
108 while (copysamples) {
109 *pDst = get16(pSrc);
110 pDst += dstStep;
111 pSrc += srcStep;
112 copysamples--;
113 }
114 break;
115
116 case 1: // 16 bit compressed to 8 bit
117 int y = get16(params);
118 int dy = get16(params + 2);
119 while (currentframeoffset) {
120 dy -= int8_t(*pSrc);
121 y -= dy;
122 pSrc += srcStep;
123 currentframeoffset--;
124 }
125 while (copysamples) {
126 dy -= int8_t(*pSrc);
127 y -= dy;
128 *pDst = y;
129 pDst += dstStep;
130 pSrc += srcStep;
131 copysamples--;
132 }
133 break;
134 }
135 }
136
137 void Decompress24(int compressionmode, const unsigned char* params,
138 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
139 file_offset_t currentframeoffset,
140 file_offset_t copysamples, int truncatedBits)
141 {
142 int y, dy, ddy, dddy;
143
144 #define GET_PARAMS(params) \
145 y = get24(params); \
146 dy = y - get24((params) + 3); \
147 ddy = get24((params) + 6); \
148 dddy = get24((params) + 9)
149
150 #define SKIP_ONE(x) \
151 dddy -= (x); \
152 ddy -= dddy; \
153 dy = -dy - ddy; \
154 y += dy
155
156 #define COPY_ONE(x) \
157 SKIP_ONE(x); \
158 store24(pDst, y << truncatedBits); \
159 pDst += dstStep
160
161 switch (compressionmode) {
162 case 2: // 24 bit uncompressed
163 pSrc += currentframeoffset * 3;
164 while (copysamples) {
165 store24(pDst, get24(pSrc) << truncatedBits);
166 pDst += dstStep;
167 pSrc += 3;
168 copysamples--;
169 }
170 break;
171
172 case 3: // 24 bit compressed to 16 bit
173 GET_PARAMS(params);
174 while (currentframeoffset) {
175 SKIP_ONE(get16(pSrc));
176 pSrc += 2;
177 currentframeoffset--;
178 }
179 while (copysamples) {
180 COPY_ONE(get16(pSrc));
181 pSrc += 2;
182 copysamples--;
183 }
184 break;
185
186 case 4: // 24 bit compressed to 12 bit
187 GET_PARAMS(params);
188 while (currentframeoffset > 1) {
189 SKIP_ONE(get12lo(pSrc));
190 SKIP_ONE(get12hi(pSrc));
191 pSrc += 3;
192 currentframeoffset -= 2;
193 }
194 if (currentframeoffset) {
195 SKIP_ONE(get12lo(pSrc));
196 currentframeoffset--;
197 if (copysamples) {
198 COPY_ONE(get12hi(pSrc));
199 pSrc += 3;
200 copysamples--;
201 }
202 }
203 while (copysamples > 1) {
204 COPY_ONE(get12lo(pSrc));
205 COPY_ONE(get12hi(pSrc));
206 pSrc += 3;
207 copysamples -= 2;
208 }
209 if (copysamples) {
210 COPY_ONE(get12lo(pSrc));
211 }
212 break;
213
214 case 5: // 24 bit compressed to 8 bit
215 GET_PARAMS(params);
216 while (currentframeoffset) {
217 SKIP_ONE(int8_t(*pSrc++));
218 currentframeoffset--;
219 }
220 while (copysamples) {
221 COPY_ONE(int8_t(*pSrc++));
222 copysamples--;
223 }
224 break;
225 }
226 }
227
228 const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
229 const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
230 const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
231 const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
232 }
233
234
235
236 // *************** Internal CRC-32 (Cyclic Redundancy Check) functions ***************
237 // *
238
239 static uint32_t* __initCRCTable() {
240 static uint32_t res[256];
241
242 for (int i = 0 ; i < 256 ; i++) {
243 uint32_t c = i;
244 for (int j = 0 ; j < 8 ; j++) {
245 c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
246 }
247 res[i] = c;
248 }
249 return res;
250 }
251
252 static const uint32_t* __CRCTable = __initCRCTable();
253
254 /**
255 * Initialize a CRC variable.
256 *
257 * @param crc - variable to be initialized
258 */
259 inline static void __resetCRC(uint32_t& crc) {
260 crc = 0xffffffff;
261 }
262
263 /**
264 * Used to calculate checksums of the sample data in a gig file. The
265 * checksums are stored in the 3crc chunk of the gig file and
266 * automatically updated when a sample is written with Sample::Write().
267 *
268 * One should call __resetCRC() to initialize the CRC variable to be
269 * used before calling this function the first time.
270 *
271 * After initializing the CRC variable one can call this function
272 * arbitrary times, i.e. to split the overall CRC calculation into
273 * steps.
274 *
275 * Once the whole data was processed by __calculateCRC(), one should
276 * call __finalizeCRC() to get the final CRC result.
277 *
278 * @param buf - pointer to data the CRC shall be calculated of
279 * @param bufSize - size of the data to be processed
280 * @param crc - variable the CRC sum shall be stored to
281 */
282 static void __calculateCRC(unsigned char* buf, size_t bufSize, uint32_t& crc) {
283 for (size_t i = 0 ; i < bufSize ; i++) {
284 crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
285 }
286 }
287
288 /**
289 * Returns the final CRC result.
290 *
291 * @param crc - variable previously passed to __calculateCRC()
292 */
293 inline static void __finalizeCRC(uint32_t& crc) {
294 crc ^= 0xffffffff;
295 }
296
297
298
299 // *************** Other Internal functions ***************
300 // *
301
302 static split_type_t __resolveSplitType(dimension_t dimension) {
303 return (
304 dimension == dimension_layer ||
305 dimension == dimension_samplechannel ||
306 dimension == dimension_releasetrigger ||
307 dimension == dimension_keyboard ||
308 dimension == dimension_roundrobin ||
309 dimension == dimension_random ||
310 dimension == dimension_smartmidi ||
311 dimension == dimension_roundrobinkeyboard
312 ) ? split_type_bit : split_type_normal;
313 }
314
315 static int __resolveZoneSize(dimension_def_t& dimension_definition) {
316 return (dimension_definition.split_type == split_type_normal)
317 ? int(128.0 / dimension_definition.zones) : 0;
318 }
319
320
321
322 // *************** leverage_ctrl_t ***************
323 // *
324
325 void leverage_ctrl_t::serialize(Serialization::Archive* archive) {
326 SRLZ(type);
327 SRLZ(controller_number);
328 }
329
330
331
332 // *************** crossfade_t ***************
333 // *
334
335 void crossfade_t::serialize(Serialization::Archive* archive) {
336 SRLZ(in_start);
337 SRLZ(in_end);
338 SRLZ(out_start);
339 SRLZ(out_end);
340 }
341
342
343
344 // *************** Sample ***************
345 // *
346
347 size_t Sample::Instances = 0;
348 buffer_t Sample::InternalDecompressionBuffer;
349
350 /** @brief Constructor.
351 *
352 * Load an existing sample or create a new one. A 'wave' list chunk must
353 * be given to this constructor. In case the given 'wave' list chunk
354 * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
355 * format and sample data will be loaded from there, otherwise default
356 * values will be used and those chunks will be created when
357 * File::Save() will be called later on.
358 *
359 * @param pFile - pointer to gig::File where this sample is
360 * located (or will be located)
361 * @param waveList - pointer to 'wave' list chunk which is (or
362 * will be) associated with this sample
363 * @param WavePoolOffset - offset of this sample data from wave pool
364 * ('wvpl') list chunk
365 * @param fileNo - number of an extension file where this sample
366 * is located, 0 otherwise
367 * @param index - wave pool index of sample (may be -1 on new sample)
368 */
369 Sample::Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo, int index)
370 : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset)
371 {
372 static const DLS::Info::string_length_t fixedStringLengths[] = {
373 { CHUNK_ID_INAM, 64 },
374 { 0, 0 }
375 };
376 pInfo->SetFixedStringLengths(fixedStringLengths);
377 Instances++;
378 FileNo = fileNo;
379
380 __resetCRC(crc);
381 // if this is not a new sample, try to get the sample's already existing
382 // CRC32 checksum from disk, this checksum will reflect the sample's CRC32
383 // checksum of the time when the sample was consciously modified by the
384 // user for the last time (by calling Sample::Write() that is).
385 if (index >= 0) { // not a new file ...
386 try {
387 uint32_t crc = pFile->GetSampleChecksumByIndex(index);
388 this->crc = crc;
389 } catch (...) {}
390 }
391
392 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
393 if (pCk3gix) {
394 uint16_t iSampleGroup = pCk3gix->ReadInt16();
395 pGroup = pFile->GetGroup(iSampleGroup);
396 } else { // '3gix' chunk missing
397 // by default assigned to that mandatory "Default Group"
398 pGroup = pFile->GetGroup(0);
399 }
400
401 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
402 if (pCkSmpl) {
403 Manufacturer = pCkSmpl->ReadInt32();
404 Product = pCkSmpl->ReadInt32();
405 SamplePeriod = pCkSmpl->ReadInt32();
406 MIDIUnityNote = pCkSmpl->ReadInt32();
407 FineTune = pCkSmpl->ReadInt32();
408 pCkSmpl->Read(&SMPTEFormat, 1, 4);
409 SMPTEOffset = pCkSmpl->ReadInt32();
410 Loops = pCkSmpl->ReadInt32();
411 pCkSmpl->ReadInt32(); // manufByt
412 LoopID = pCkSmpl->ReadInt32();
413 pCkSmpl->Read(&LoopType, 1, 4);
414 LoopStart = pCkSmpl->ReadInt32();
415 LoopEnd = pCkSmpl->ReadInt32();
416 LoopFraction = pCkSmpl->ReadInt32();
417 LoopPlayCount = pCkSmpl->ReadInt32();
418 } else { // 'smpl' chunk missing
419 // use default values
420 Manufacturer = 0;
421 Product = 0;
422 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
423 MIDIUnityNote = 60;
424 FineTune = 0;
425 SMPTEFormat = smpte_format_no_offset;
426 SMPTEOffset = 0;
427 Loops = 0;
428 LoopID = 0;
429 LoopType = loop_type_normal;
430 LoopStart = 0;
431 LoopEnd = 0;
432 LoopFraction = 0;
433 LoopPlayCount = 0;
434 }
435
436 FrameTable = NULL;
437 SamplePos = 0;
438 RAMCache.Size = 0;
439 RAMCache.pStart = NULL;
440 RAMCache.NullExtensionSize = 0;
441
442 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
443
444 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
445 Compressed = ewav;
446 Dithered = false;
447 TruncatedBits = 0;
448 if (Compressed) {
449 uint32_t version = ewav->ReadInt32();
450 if (version == 3 && BitDepth == 24) {
451 Dithered = ewav->ReadInt32();
452 ewav->SetPos(Channels == 2 ? 84 : 64);
453 TruncatedBits = ewav->ReadInt32();
454 }
455 ScanCompressedSample();
456 }
457
458 // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
459 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
460 InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
461 InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
462 }
463 FrameOffset = 0; // just for streaming compressed samples
464
465 LoopSize = LoopEnd - LoopStart + 1;
466 }
467
468 /**
469 * Make a (semi) deep copy of the Sample object given by @a orig (without
470 * the actual waveform data) and assign it to this object.
471 *
472 * Discussion: copying .gig samples is a bit tricky. It requires three
473 * steps:
474 * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
475 * its new sample waveform data size.
476 * 2. Saving the file (done by File::Save()) so that it gains correct size
477 * and layout for writing the actual wave form data directly to disc
478 * in next step.
479 * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
480 *
481 * @param orig - original Sample object to be copied from
482 */
483 void Sample::CopyAssignMeta(const Sample* orig) {
484 // handle base classes
485 DLS::Sample::CopyAssignCore(orig);
486
487 // handle actual own attributes of this class
488 Manufacturer = orig->Manufacturer;
489 Product = orig->Product;
490 SamplePeriod = orig->SamplePeriod;
491 MIDIUnityNote = orig->MIDIUnityNote;
492 FineTune = orig->FineTune;
493 SMPTEFormat = orig->SMPTEFormat;
494 SMPTEOffset = orig->SMPTEOffset;
495 Loops = orig->Loops;
496 LoopID = orig->LoopID;
497 LoopType = orig->LoopType;
498 LoopStart = orig->LoopStart;
499 LoopEnd = orig->LoopEnd;
500 LoopSize = orig->LoopSize;
501 LoopFraction = orig->LoopFraction;
502 LoopPlayCount = orig->LoopPlayCount;
503
504 // schedule resizing this sample to the given sample's size
505 Resize(orig->GetSize());
506 }
507
508 /**
509 * Should be called after CopyAssignMeta() and File::Save() sequence.
510 * Read more about it in the discussion of CopyAssignMeta(). This method
511 * copies the actual waveform data by disk streaming.
512 *
513 * @e CAUTION: this method is currently not thread safe! During this
514 * operation the sample must not be used for other purposes by other
515 * threads!
516 *
517 * @param orig - original Sample object to be copied from
518 */
519 void Sample::CopyAssignWave(const Sample* orig) {
520 const int iReadAtOnce = 32*1024;
521 char* buf = new char[iReadAtOnce * orig->FrameSize];
522 Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
523 file_offset_t restorePos = pOrig->GetPos();
524 pOrig->SetPos(0);
525 SetPos(0);
526 for (file_offset_t n = pOrig->Read(buf, iReadAtOnce); n;
527 n = pOrig->Read(buf, iReadAtOnce))
528 {
529 Write(buf, n);
530 }
531 pOrig->SetPos(restorePos);
532 delete [] buf;
533 }
534
535 /**
536 * Apply sample and its settings to the respective RIFF chunks. You have
537 * to call File::Save() to make changes persistent.
538 *
539 * Usually there is absolutely no need to call this method explicitly.
540 * It will be called automatically when File::Save() was called.
541 *
542 * @param pProgress - callback function for progress notification
543 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
544 * was provided yet
545 * @throws gig::Exception if there is any invalid sample setting
546 */
547 void Sample::UpdateChunks(progress_t* pProgress) {
548 // first update base class's chunks
549 DLS::Sample::UpdateChunks(pProgress);
550
551 // make sure 'smpl' chunk exists
552 pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
553 if (!pCkSmpl) {
554 pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
555 memset(pCkSmpl->LoadChunkData(), 0, 60);
556 }
557 // update 'smpl' chunk
558 uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
559 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
560 store32(&pData[0], Manufacturer);
561 store32(&pData[4], Product);
562 store32(&pData[8], SamplePeriod);
563 store32(&pData[12], MIDIUnityNote);
564 store32(&pData[16], FineTune);
565 store32(&pData[20], SMPTEFormat);
566 store32(&pData[24], SMPTEOffset);
567 store32(&pData[28], Loops);
568
569 // we skip 'manufByt' for now (4 bytes)
570
571 store32(&pData[36], LoopID);
572 store32(&pData[40], LoopType);
573 store32(&pData[44], LoopStart);
574 store32(&pData[48], LoopEnd);
575 store32(&pData[52], LoopFraction);
576 store32(&pData[56], LoopPlayCount);
577
578 // make sure '3gix' chunk exists
579 pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
580 if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
581 // determine appropriate sample group index (to be stored in chunk)
582 uint16_t iSampleGroup = 0; // 0 refers to default sample group
583 File* pFile = static_cast<File*>(pParent);
584 if (pFile->pGroups) {
585 std::list<Group*>::iterator iter = pFile->pGroups->begin();
586 std::list<Group*>::iterator end = pFile->pGroups->end();
587 for (int i = 0; iter != end; i++, iter++) {
588 if (*iter == pGroup) {
589 iSampleGroup = i;
590 break; // found
591 }
592 }
593 }
594 // update '3gix' chunk
595 pData = (uint8_t*) pCk3gix->LoadChunkData();
596 store16(&pData[0], iSampleGroup);
597
598 // if the library user toggled the "Compressed" attribute from true to
599 // false, then the EWAV chunk associated with compressed samples needs
600 // to be deleted
601 RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
602 if (ewav && !Compressed) {
603 pWaveList->DeleteSubChunk(ewav);
604 }
605 }
606
607 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
608 void Sample::ScanCompressedSample() {
609 //TODO: we have to add some more scans here (e.g. determine compression rate)
610 this->SamplesTotal = 0;
611 std::list<file_offset_t> frameOffsets;
612
613 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
614 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
615
616 // Scanning
617 pCkData->SetPos(0);
618 if (Channels == 2) { // Stereo
619 for (int i = 0 ; ; i++) {
620 // for 24 bit samples every 8:th frame offset is
621 // stored, to save some memory
622 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
623
624 const int mode_l = pCkData->ReadUint8();
625 const int mode_r = pCkData->ReadUint8();
626 if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
627 const file_offset_t frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
628
629 if (pCkData->RemainingBytes() <= frameSize) {
630 SamplesInLastFrame =
631 ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
632 (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
633 SamplesTotal += SamplesInLastFrame;
634 break;
635 }
636 SamplesTotal += SamplesPerFrame;
637 pCkData->SetPos(frameSize, RIFF::stream_curpos);
638 }
639 }
640 else { // Mono
641 for (int i = 0 ; ; i++) {
642 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
643
644 const int mode = pCkData->ReadUint8();
645 if (mode > 5) throw gig::Exception("Unknown compression mode");
646 const file_offset_t frameSize = bytesPerFrame[mode];
647
648 if (pCkData->RemainingBytes() <= frameSize) {
649 SamplesInLastFrame =
650 ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
651 SamplesTotal += SamplesInLastFrame;
652 break;
653 }
654 SamplesTotal += SamplesPerFrame;
655 pCkData->SetPos(frameSize, RIFF::stream_curpos);
656 }
657 }
658 pCkData->SetPos(0);
659
660 // Build the frames table (which is used for fast resolving of a frame's chunk offset)
661 if (FrameTable) delete[] FrameTable;
662 FrameTable = new file_offset_t[frameOffsets.size()];
663 std::list<file_offset_t>::iterator end = frameOffsets.end();
664 std::list<file_offset_t>::iterator iter = frameOffsets.begin();
665 for (int i = 0; iter != end; i++, iter++) {
666 FrameTable[i] = *iter;
667 }
668 }
669
670 /**
671 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
672 * ReleaseSampleData() to free the memory if you don't need the cached
673 * sample data anymore.
674 *
675 * @returns buffer_t structure with start address and size of the buffer
676 * in bytes
677 * @see ReleaseSampleData(), Read(), SetPos()
678 */
679 buffer_t Sample::LoadSampleData() {
680 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
681 }
682
683 /**
684 * Reads (uncompresses if needed) and caches the first \a SampleCount
685 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
686 * memory space if you don't need the cached samples anymore. There is no
687 * guarantee that exactly \a SampleCount samples will be cached; this is
688 * not an error. The size will be eventually truncated e.g. to the
689 * beginning of a frame of a compressed sample. This is done for
690 * efficiency reasons while streaming the wave by your sampler engine
691 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
692 * that will be returned to determine the actual cached samples, but note
693 * that the size is given in bytes! You get the number of actually cached
694 * samples by dividing it by the frame size of the sample:
695 * @code
696 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
697 * long cachedsamples = buf.Size / pSample->FrameSize;
698 * @endcode
699 *
700 * @param SampleCount - number of sample points to load into RAM
701 * @returns buffer_t structure with start address and size of
702 * the cached sample data in bytes
703 * @see ReleaseSampleData(), Read(), SetPos()
704 */
705 buffer_t Sample::LoadSampleData(file_offset_t SampleCount) {
706 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
707 }
708
709 /**
710 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
711 * ReleaseSampleData() to free the memory if you don't need the cached
712 * sample data anymore.
713 * The method will add \a NullSamplesCount silence samples past the
714 * official buffer end (this won't affect the 'Size' member of the
715 * buffer_t structure, that means 'Size' always reflects the size of the
716 * actual sample data, the buffer might be bigger though). Silence
717 * samples past the official buffer are needed for differential
718 * algorithms that always have to take subsequent samples into account
719 * (resampling/interpolation would be an important example) and avoids
720 * memory access faults in such cases.
721 *
722 * @param NullSamplesCount - number of silence samples the buffer should
723 * be extended past it's data end
724 * @returns buffer_t structure with start address and
725 * size of the buffer in bytes
726 * @see ReleaseSampleData(), Read(), SetPos()
727 */
728 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
729 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
730 }
731
732 /**
733 * Reads (uncompresses if needed) and caches the first \a SampleCount
734 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
735 * memory space if you don't need the cached samples anymore. There is no
736 * guarantee that exactly \a SampleCount samples will be cached; this is
737 * not an error. The size will be eventually truncated e.g. to the
738 * beginning of a frame of a compressed sample. This is done for
739 * efficiency reasons while streaming the wave by your sampler engine
740 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
741 * that will be returned to determine the actual cached samples, but note
742 * that the size is given in bytes! You get the number of actually cached
743 * samples by dividing it by the frame size of the sample:
744 * @code
745 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
746 * long cachedsamples = buf.Size / pSample->FrameSize;
747 * @endcode
748 * The method will add \a NullSamplesCount silence samples past the
749 * official buffer end (this won't affect the 'Size' member of the
750 * buffer_t structure, that means 'Size' always reflects the size of the
751 * actual sample data, the buffer might be bigger though). Silence
752 * samples past the official buffer are needed for differential
753 * algorithms that always have to take subsequent samples into account
754 * (resampling/interpolation would be an important example) and avoids
755 * memory access faults in such cases.
756 *
757 * @param SampleCount - number of sample points to load into RAM
758 * @param NullSamplesCount - number of silence samples the buffer should
759 * be extended past it's data end
760 * @returns buffer_t structure with start address and
761 * size of the cached sample data in bytes
762 * @see ReleaseSampleData(), Read(), SetPos()
763 */
764 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount) {
765 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
766 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
767 file_offset_t allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
768 SetPos(0); // reset read position to begin of sample
769 RAMCache.pStart = new int8_t[allocationsize];
770 RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
771 RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
772 // fill the remaining buffer space with silence samples
773 memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
774 return GetCache();
775 }
776
777 /**
778 * Returns current cached sample points. A buffer_t structure will be
779 * returned which contains address pointer to the begin of the cache and
780 * the size of the cached sample data in bytes. Use
781 * <i>LoadSampleData()</i> to cache a specific amount of sample points in
782 * RAM.
783 *
784 * @returns buffer_t structure with current cached sample points
785 * @see LoadSampleData();
786 */
787 buffer_t Sample::GetCache() {
788 // return a copy of the buffer_t structure
789 buffer_t result;
790 result.Size = this->RAMCache.Size;
791 result.pStart = this->RAMCache.pStart;
792 result.NullExtensionSize = this->RAMCache.NullExtensionSize;
793 return result;
794 }
795
796 /**
797 * Frees the cached sample from RAM if loaded with
798 * <i>LoadSampleData()</i> previously.
799 *
800 * @see LoadSampleData();
801 */
802 void Sample::ReleaseSampleData() {
803 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
804 RAMCache.pStart = NULL;
805 RAMCache.Size = 0;
806 RAMCache.NullExtensionSize = 0;
807 }
808
809 /** @brief Resize sample.
810 *
811 * Resizes the sample's wave form data, that is the actual size of
812 * sample wave data possible to be written for this sample. This call
813 * will return immediately and just schedule the resize operation. You
814 * should call File::Save() to actually perform the resize operation(s)
815 * "physically" to the file. As this can take a while on large files, it
816 * is recommended to call Resize() first on all samples which have to be
817 * resized and finally to call File::Save() to perform all those resize
818 * operations in one rush.
819 *
820 * The actual size (in bytes) is dependant to the current FrameSize
821 * value. You may want to set FrameSize before calling Resize().
822 *
823 * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
824 * enlarged samples before calling File::Save() as this might exceed the
825 * current sample's boundary!
826 *
827 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
828 * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
829 * other formats will fail!
830 *
831 * @param NewSize - new sample wave data size in sample points (must be
832 * greater than zero)
833 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
834 * @throws DLS::Exception if \a NewSize is less than 1 or unrealistic large
835 * @throws gig::Exception if existing sample is compressed
836 * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
837 * DLS::Sample::FormatTag, File::Save()
838 */
839 void Sample::Resize(file_offset_t NewSize) {
840 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
841 DLS::Sample::Resize(NewSize);
842 }
843
844 /**
845 * Sets the position within the sample (in sample points, not in
846 * bytes). Use this method and <i>Read()</i> if you don't want to load
847 * the sample into RAM, thus for disk streaming.
848 *
849 * Although the original Gigasampler engine doesn't allow positioning
850 * within compressed samples, I decided to implement it. Even though
851 * the Gigasampler format doesn't allow to define loops for compressed
852 * samples at the moment, positioning within compressed samples might be
853 * interesting for some sampler engines though. The only drawback about
854 * my decision is that it takes longer to load compressed gig Files on
855 * startup, because it's neccessary to scan the samples for some
856 * mandatory informations. But I think as it doesn't affect the runtime
857 * efficiency, nobody will have a problem with that.
858 *
859 * @param SampleCount number of sample points to jump
860 * @param Whence optional: to which relation \a SampleCount refers
861 * to, if omited <i>RIFF::stream_start</i> is assumed
862 * @returns the new sample position
863 * @see Read()
864 */
865 file_offset_t Sample::SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence) {
866 if (Compressed) {
867 switch (Whence) {
868 case RIFF::stream_curpos:
869 this->SamplePos += SampleCount;
870 break;
871 case RIFF::stream_end:
872 this->SamplePos = this->SamplesTotal - 1 - SampleCount;
873 break;
874 case RIFF::stream_backward:
875 this->SamplePos -= SampleCount;
876 break;
877 case RIFF::stream_start: default:
878 this->SamplePos = SampleCount;
879 break;
880 }
881 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
882
883 file_offset_t frame = this->SamplePos / 2048; // to which frame to jump
884 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
885 pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
886 return this->SamplePos;
887 }
888 else { // not compressed
889 file_offset_t orderedBytes = SampleCount * this->FrameSize;
890 file_offset_t result = pCkData->SetPos(orderedBytes, Whence);
891 return (result == orderedBytes) ? SampleCount
892 : result / this->FrameSize;
893 }
894 }
895
896 /**
897 * Returns the current position in the sample (in sample points).
898 */
899 file_offset_t Sample::GetPos() const {
900 if (Compressed) return SamplePos;
901 else return pCkData->GetPos() / FrameSize;
902 }
903
904 /**
905 * Reads \a SampleCount number of sample points from the position stored
906 * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
907 * the position within the sample respectively, this method honors the
908 * looping informations of the sample (if any). The sample wave stream
909 * will be decompressed on the fly if using a compressed sample. Use this
910 * method if you don't want to load the sample into RAM, thus for disk
911 * streaming. All this methods needs to know to proceed with streaming
912 * for the next time you call this method is stored in \a pPlaybackState.
913 * You have to allocate and initialize the playback_state_t structure by
914 * yourself before you use it to stream a sample:
915 * @code
916 * gig::playback_state_t playbackstate;
917 * playbackstate.position = 0;
918 * playbackstate.reverse = false;
919 * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
920 * @endcode
921 * You don't have to take care of things like if there is actually a loop
922 * defined or if the current read position is located within a loop area.
923 * The method already handles such cases by itself.
924 *
925 * <b>Caution:</b> If you are using more than one streaming thread, you
926 * have to use an external decompression buffer for <b>EACH</b>
927 * streaming thread to avoid race conditions and crashes!
928 *
929 * @param pBuffer destination buffer
930 * @param SampleCount number of sample points to read
931 * @param pPlaybackState will be used to store and reload the playback
932 * state for the next ReadAndLoop() call
933 * @param pDimRgn dimension region with looping information
934 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
935 * @returns number of successfully read sample points
936 * @see CreateDecompressionBuffer()
937 */
938 file_offset_t Sample::ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState,
939 DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
940 file_offset_t samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
941 uint8_t* pDst = (uint8_t*) pBuffer;
942
943 SetPos(pPlaybackState->position); // recover position from the last time
944
945 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
946
947 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
948 const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
949
950 if (GetPos() <= loopEnd) {
951 switch (loop.LoopType) {
952
953 case loop_type_bidirectional: { //TODO: not tested yet!
954 do {
955 // if not endless loop check if max. number of loop cycles have been passed
956 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
957
958 if (!pPlaybackState->reverse) { // forward playback
959 do {
960 samplestoloopend = loopEnd - GetPos();
961 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
962 samplestoread -= readsamples;
963 totalreadsamples += readsamples;
964 if (readsamples == samplestoloopend) {
965 pPlaybackState->reverse = true;
966 break;
967 }
968 } while (samplestoread && readsamples);
969 }
970 else { // backward playback
971
972 // as we can only read forward from disk, we have to
973 // determine the end position within the loop first,
974 // read forward from that 'end' and finally after
975 // reading, swap all sample frames so it reflects
976 // backward playback
977
978 file_offset_t swapareastart = totalreadsamples;
979 file_offset_t loopoffset = GetPos() - loop.LoopStart;
980 file_offset_t samplestoreadinloop = Min(samplestoread, loopoffset);
981 file_offset_t reverseplaybackend = GetPos() - samplestoreadinloop;
982
983 SetPos(reverseplaybackend);
984
985 // read samples for backward playback
986 do {
987 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
988 samplestoreadinloop -= readsamples;
989 samplestoread -= readsamples;
990 totalreadsamples += readsamples;
991 } while (samplestoreadinloop && readsamples);
992
993 SetPos(reverseplaybackend); // pretend we really read backwards
994
995 if (reverseplaybackend == loop.LoopStart) {
996 pPlaybackState->loop_cycles_left--;
997 pPlaybackState->reverse = false;
998 }
999
1000 // reverse the sample frames for backward playback
1001 if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
1002 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1003 }
1004 } while (samplestoread && readsamples);
1005 break;
1006 }
1007
1008 case loop_type_backward: { // TODO: not tested yet!
1009 // forward playback (not entered the loop yet)
1010 if (!pPlaybackState->reverse) do {
1011 samplestoloopend = loopEnd - GetPos();
1012 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1013 samplestoread -= readsamples;
1014 totalreadsamples += readsamples;
1015 if (readsamples == samplestoloopend) {
1016 pPlaybackState->reverse = true;
1017 break;
1018 }
1019 } while (samplestoread && readsamples);
1020
1021 if (!samplestoread) break;
1022
1023 // as we can only read forward from disk, we have to
1024 // determine the end position within the loop first,
1025 // read forward from that 'end' and finally after
1026 // reading, swap all sample frames so it reflects
1027 // backward playback
1028
1029 file_offset_t swapareastart = totalreadsamples;
1030 file_offset_t loopoffset = GetPos() - loop.LoopStart;
1031 file_offset_t samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1032 : samplestoread;
1033 file_offset_t reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1034
1035 SetPos(reverseplaybackend);
1036
1037 // read samples for backward playback
1038 do {
1039 // if not endless loop check if max. number of loop cycles have been passed
1040 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1041 samplestoloopend = loopEnd - GetPos();
1042 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1043 samplestoreadinloop -= readsamples;
1044 samplestoread -= readsamples;
1045 totalreadsamples += readsamples;
1046 if (readsamples == samplestoloopend) {
1047 pPlaybackState->loop_cycles_left--;
1048 SetPos(loop.LoopStart);
1049 }
1050 } while (samplestoreadinloop && readsamples);
1051
1052 SetPos(reverseplaybackend); // pretend we really read backwards
1053
1054 // reverse the sample frames for backward playback
1055 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1056 break;
1057 }
1058
1059 default: case loop_type_normal: {
1060 do {
1061 // if not endless loop check if max. number of loop cycles have been passed
1062 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1063 samplestoloopend = loopEnd - GetPos();
1064 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1065 samplestoread -= readsamples;
1066 totalreadsamples += readsamples;
1067 if (readsamples == samplestoloopend) {
1068 pPlaybackState->loop_cycles_left--;
1069 SetPos(loop.LoopStart);
1070 }
1071 } while (samplestoread && readsamples);
1072 break;
1073 }
1074 }
1075 }
1076 }
1077
1078 // read on without looping
1079 if (samplestoread) do {
1080 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
1081 samplestoread -= readsamples;
1082 totalreadsamples += readsamples;
1083 } while (readsamples && samplestoread);
1084
1085 // store current position
1086 pPlaybackState->position = GetPos();
1087
1088 return totalreadsamples;
1089 }
1090
1091 /**
1092 * Reads \a SampleCount number of sample points from the current
1093 * position into the buffer pointed by \a pBuffer and increments the
1094 * position within the sample. The sample wave stream will be
1095 * decompressed on the fly if using a compressed sample. Use this method
1096 * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1097 * thus for disk streaming.
1098 *
1099 * <b>Caution:</b> If you are using more than one streaming thread, you
1100 * have to use an external decompression buffer for <b>EACH</b>
1101 * streaming thread to avoid race conditions and crashes!
1102 *
1103 * For 16 bit samples, the data in the buffer will be int16_t
1104 * (using native endianness). For 24 bit, the buffer will
1105 * contain three bytes per sample, little-endian.
1106 *
1107 * @param pBuffer destination buffer
1108 * @param SampleCount number of sample points to read
1109 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
1110 * @returns number of successfully read sample points
1111 * @see SetPos(), CreateDecompressionBuffer()
1112 */
1113 file_offset_t Sample::Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer) {
1114 if (SampleCount == 0) return 0;
1115 if (!Compressed) {
1116 if (BitDepth == 24) {
1117 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1118 }
1119 else { // 16 bit
1120 // (pCkData->Read does endian correction)
1121 return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1122 : pCkData->Read(pBuffer, SampleCount, 2);
1123 }
1124 }
1125 else {
1126 if (this->SamplePos >= this->SamplesTotal) return 0;
1127 //TODO: efficiency: maybe we should test for an average compression rate
1128 file_offset_t assumedsize = GuessSize(SampleCount),
1129 remainingbytes = 0, // remaining bytes in the local buffer
1130 remainingsamples = SampleCount,
1131 copysamples, skipsamples,
1132 currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
1133 this->FrameOffset = 0;
1134
1135 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1136
1137 // if decompression buffer too small, then reduce amount of samples to read
1138 if (pDecompressionBuffer->Size < assumedsize) {
1139 std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1140 SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1141 remainingsamples = SampleCount;
1142 assumedsize = GuessSize(SampleCount);
1143 }
1144
1145 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1146 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1147 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1148 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1149
1150 while (remainingsamples && remainingbytes) {
1151 file_offset_t framesamples = SamplesPerFrame;
1152 file_offset_t framebytes, rightChannelOffset = 0, nextFrameOffset;
1153
1154 int mode_l = *pSrc++, mode_r = 0;
1155
1156 if (Channels == 2) {
1157 mode_r = *pSrc++;
1158 framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1159 rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1160 nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1161 if (remainingbytes < framebytes) { // last frame in sample
1162 framesamples = SamplesInLastFrame;
1163 if (mode_l == 4 && (framesamples & 1)) {
1164 rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1165 }
1166 else {
1167 rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1168 }
1169 }
1170 }
1171 else {
1172 framebytes = bytesPerFrame[mode_l] + 1;
1173 nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1174 if (remainingbytes < framebytes) {
1175 framesamples = SamplesInLastFrame;
1176 }
1177 }
1178
1179 // determine how many samples in this frame to skip and read
1180 if (currentframeoffset + remainingsamples >= framesamples) {
1181 if (currentframeoffset <= framesamples) {
1182 copysamples = framesamples - currentframeoffset;
1183 skipsamples = currentframeoffset;
1184 }
1185 else {
1186 copysamples = 0;
1187 skipsamples = framesamples;
1188 }
1189 }
1190 else {
1191 // This frame has enough data for pBuffer, but not
1192 // all of the frame is needed. Set file position
1193 // to start of this frame for next call to Read.
1194 copysamples = remainingsamples;
1195 skipsamples = currentframeoffset;
1196 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1197 this->FrameOffset = currentframeoffset + copysamples;
1198 }
1199 remainingsamples -= copysamples;
1200
1201 if (remainingbytes > framebytes) {
1202 remainingbytes -= framebytes;
1203 if (remainingsamples == 0 &&
1204 currentframeoffset + copysamples == framesamples) {
1205 // This frame has enough data for pBuffer, and
1206 // all of the frame is needed. Set file
1207 // position to start of next frame for next
1208 // call to Read. FrameOffset is 0.
1209 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1210 }
1211 }
1212 else remainingbytes = 0;
1213
1214 currentframeoffset -= skipsamples;
1215
1216 if (copysamples == 0) {
1217 // skip this frame
1218 pSrc += framebytes - Channels;
1219 }
1220 else {
1221 const unsigned char* const param_l = pSrc;
1222 if (BitDepth == 24) {
1223 if (mode_l != 2) pSrc += 12;
1224
1225 if (Channels == 2) { // Stereo
1226 const unsigned char* const param_r = pSrc;
1227 if (mode_r != 2) pSrc += 12;
1228
1229 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1230 skipsamples, copysamples, TruncatedBits);
1231 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1232 skipsamples, copysamples, TruncatedBits);
1233 pDst24 += copysamples * 6;
1234 }
1235 else { // Mono
1236 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1237 skipsamples, copysamples, TruncatedBits);
1238 pDst24 += copysamples * 3;
1239 }
1240 }
1241 else { // 16 bit
1242 if (mode_l) pSrc += 4;
1243
1244 int step;
1245 if (Channels == 2) { // Stereo
1246 const unsigned char* const param_r = pSrc;
1247 if (mode_r) pSrc += 4;
1248
1249 step = (2 - mode_l) + (2 - mode_r);
1250 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1251 Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1252 skipsamples, copysamples);
1253 pDst += copysamples << 1;
1254 }
1255 else { // Mono
1256 step = 2 - mode_l;
1257 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1258 pDst += copysamples;
1259 }
1260 }
1261 pSrc += nextFrameOffset;
1262 }
1263
1264 // reload from disk to local buffer if needed
1265 if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1266 assumedsize = GuessSize(remainingsamples);
1267 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1268 if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1269 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1270 pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1271 }
1272 } // while
1273
1274 this->SamplePos += (SampleCount - remainingsamples);
1275 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1276 return (SampleCount - remainingsamples);
1277 }
1278 }
1279
1280 /** @brief Write sample wave data.
1281 *
1282 * Writes \a SampleCount number of sample points from the buffer pointed
1283 * by \a pBuffer and increments the position within the sample. Use this
1284 * method to directly write the sample data to disk, i.e. if you don't
1285 * want or cannot load the whole sample data into RAM.
1286 *
1287 * You have to Resize() the sample to the desired size and call
1288 * File::Save() <b>before</b> using Write().
1289 *
1290 * Note: there is currently no support for writing compressed samples.
1291 *
1292 * For 16 bit samples, the data in the source buffer should be
1293 * int16_t (using native endianness). For 24 bit, the buffer
1294 * should contain three bytes per sample, little-endian.
1295 *
1296 * @param pBuffer - source buffer
1297 * @param SampleCount - number of sample points to write
1298 * @throws DLS::Exception if current sample size is too small
1299 * @throws gig::Exception if sample is compressed
1300 * @see DLS::LoadSampleData()
1301 */
1302 file_offset_t Sample::Write(void* pBuffer, file_offset_t SampleCount) {
1303 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1304
1305 // if this is the first write in this sample, reset the
1306 // checksum calculator
1307 if (pCkData->GetPos() == 0) {
1308 __resetCRC(crc);
1309 }
1310 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1311 file_offset_t res;
1312 if (BitDepth == 24) {
1313 res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1314 } else { // 16 bit
1315 res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1316 : pCkData->Write(pBuffer, SampleCount, 2);
1317 }
1318 __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1319
1320 // if this is the last write, update the checksum chunk in the
1321 // file
1322 if (pCkData->GetPos() == pCkData->GetSize()) {
1323 __finalizeCRC(crc);
1324 File* pFile = static_cast<File*>(GetParent());
1325 pFile->SetSampleChecksum(this, crc);
1326 }
1327 return res;
1328 }
1329
1330 /**
1331 * Allocates a decompression buffer for streaming (compressed) samples
1332 * with Sample::Read(). If you are using more than one streaming thread
1333 * in your application you <b>HAVE</b> to create a decompression buffer
1334 * for <b>EACH</b> of your streaming threads and provide it with the
1335 * Sample::Read() call in order to avoid race conditions and crashes.
1336 *
1337 * You should free the memory occupied by the allocated buffer(s) once
1338 * you don't need one of your streaming threads anymore by calling
1339 * DestroyDecompressionBuffer().
1340 *
1341 * @param MaxReadSize - the maximum size (in sample points) you ever
1342 * expect to read with one Read() call
1343 * @returns allocated decompression buffer
1344 * @see DestroyDecompressionBuffer()
1345 */
1346 buffer_t Sample::CreateDecompressionBuffer(file_offset_t MaxReadSize) {
1347 buffer_t result;
1348 const double worstCaseHeaderOverhead =
1349 (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1350 result.Size = (file_offset_t) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1351 result.pStart = new int8_t[result.Size];
1352 result.NullExtensionSize = 0;
1353 return result;
1354 }
1355
1356 /**
1357 * Free decompression buffer, previously created with
1358 * CreateDecompressionBuffer().
1359 *
1360 * @param DecompressionBuffer - previously allocated decompression
1361 * buffer to free
1362 */
1363 void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1364 if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1365 delete[] (int8_t*) DecompressionBuffer.pStart;
1366 DecompressionBuffer.pStart = NULL;
1367 DecompressionBuffer.Size = 0;
1368 DecompressionBuffer.NullExtensionSize = 0;
1369 }
1370 }
1371
1372 /**
1373 * Returns pointer to the Group this Sample belongs to. In the .gig
1374 * format a sample always belongs to one group. If it wasn't explicitly
1375 * assigned to a certain group, it will be automatically assigned to a
1376 * default group.
1377 *
1378 * @returns Sample's Group (never NULL)
1379 */
1380 Group* Sample::GetGroup() const {
1381 return pGroup;
1382 }
1383
1384 /**
1385 * Returns the CRC-32 checksum of the sample's raw wave form data at the
1386 * time when this sample's wave form data was modified for the last time
1387 * by calling Write(). This checksum only covers the raw wave form data,
1388 * not any meta informations like i.e. bit depth or loop points. Since
1389 * this method just returns the checksum stored for this sample i.e. when
1390 * the gig file was loaded, this method returns immediately. So it does no
1391 * recalcuation of the checksum with the currently available sample wave
1392 * form data.
1393 *
1394 * @see VerifyWaveData()
1395 */
1396 uint32_t Sample::GetWaveDataCRC32Checksum() {
1397 return crc;
1398 }
1399
1400 /**
1401 * Checks the integrity of this sample's raw audio wave data. Whenever a
1402 * Sample's raw wave data is intentionally modified (i.e. by calling
1403 * Write() and supplying the new raw audio wave form data) a CRC32 checksum
1404 * is calculated and stored/updated for this sample, along to the sample's
1405 * meta informations.
1406 *
1407 * Now by calling this method the current raw audio wave data is checked
1408 * against the already stored CRC32 check sum in order to check whether the
1409 * sample data had been damaged unintentionally for some reason. Since by
1410 * calling this method always the entire raw audio wave data has to be
1411 * read, verifying all samples this way may take a long time accordingly.
1412 * And that's also the reason why the sample integrity is not checked by
1413 * default whenever a gig file is loaded. So this method must be called
1414 * explicitly to fulfill this task.
1415 *
1416 * @param pActually - (optional) if provided, will be set to the actually
1417 * calculated checksum of the current raw wave form data,
1418 * you can get the expected checksum instead by calling
1419 * GetWaveDataCRC32Checksum()
1420 * @returns true if sample is OK or false if the sample is damaged
1421 * @throws Exception if no checksum had been stored to disk for this
1422 * sample yet, or on I/O issues
1423 * @see GetWaveDataCRC32Checksum()
1424 */
1425 bool Sample::VerifyWaveData(uint32_t* pActually) {
1426 //File* pFile = static_cast<File*>(GetParent());
1427 uint32_t crc = CalculateWaveDataChecksum();
1428 if (pActually) *pActually = crc;
1429 return crc == this->crc;
1430 }
1431
1432 uint32_t Sample::CalculateWaveDataChecksum() {
1433 const size_t sz = 20*1024; // 20kB buffer size
1434 std::vector<uint8_t> buffer(sz);
1435 buffer.resize(sz);
1436
1437 const size_t n = sz / FrameSize;
1438 SetPos(0);
1439 uint32_t crc = 0;
1440 __resetCRC(crc);
1441 while (true) {
1442 file_offset_t nRead = Read(&buffer[0], n);
1443 if (nRead <= 0) break;
1444 __calculateCRC(&buffer[0], nRead * FrameSize, crc);
1445 }
1446 __finalizeCRC(crc);
1447 return crc;
1448 }
1449
1450 Sample::~Sample() {
1451 Instances--;
1452 if (!Instances && InternalDecompressionBuffer.Size) {
1453 delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1454 InternalDecompressionBuffer.pStart = NULL;
1455 InternalDecompressionBuffer.Size = 0;
1456 }
1457 if (FrameTable) delete[] FrameTable;
1458 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1459 }
1460
1461
1462
1463 // *************** DimensionRegion ***************
1464 // *
1465
1466 size_t DimensionRegion::Instances = 0;
1467 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1468
1469 DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1470 Instances++;
1471
1472 pSample = NULL;
1473 pRegion = pParent;
1474
1475 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1476 else memset(&Crossfade, 0, 4);
1477
1478 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1479
1480 RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1481 if (_3ewa) { // if '3ewa' chunk exists
1482 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1483 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1484 EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1485 _3ewa->ReadInt16(); // unknown
1486 LFO1InternalDepth = _3ewa->ReadUint16();
1487 _3ewa->ReadInt16(); // unknown
1488 LFO3InternalDepth = _3ewa->ReadInt16();
1489 _3ewa->ReadInt16(); // unknown
1490 LFO1ControlDepth = _3ewa->ReadUint16();
1491 _3ewa->ReadInt16(); // unknown
1492 LFO3ControlDepth = _3ewa->ReadInt16();
1493 EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1494 EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1495 _3ewa->ReadInt16(); // unknown
1496 EG1Sustain = _3ewa->ReadUint16();
1497 EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1498 EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1499 uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1500 EG1ControllerInvert = eg1ctrloptions & 0x01;
1501 EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1502 EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1503 EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1504 EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1505 uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1506 EG2ControllerInvert = eg2ctrloptions & 0x01;
1507 EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1508 EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1509 EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1510 LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1511 EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1512 EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1513 _3ewa->ReadInt16(); // unknown
1514 EG2Sustain = _3ewa->ReadUint16();
1515 EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1516 _3ewa->ReadInt16(); // unknown
1517 LFO2ControlDepth = _3ewa->ReadUint16();
1518 LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1519 _3ewa->ReadInt16(); // unknown
1520 LFO2InternalDepth = _3ewa->ReadUint16();
1521 int32_t eg1decay2 = _3ewa->ReadInt32();
1522 EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1523 EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1524 _3ewa->ReadInt16(); // unknown
1525 EG1PreAttack = _3ewa->ReadUint16();
1526 int32_t eg2decay2 = _3ewa->ReadInt32();
1527 EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1528 EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1529 _3ewa->ReadInt16(); // unknown
1530 EG2PreAttack = _3ewa->ReadUint16();
1531 uint8_t velocityresponse = _3ewa->ReadUint8();
1532 if (velocityresponse < 5) {
1533 VelocityResponseCurve = curve_type_nonlinear;
1534 VelocityResponseDepth = velocityresponse;
1535 } else if (velocityresponse < 10) {
1536 VelocityResponseCurve = curve_type_linear;
1537 VelocityResponseDepth = velocityresponse - 5;
1538 } else if (velocityresponse < 15) {
1539 VelocityResponseCurve = curve_type_special;
1540 VelocityResponseDepth = velocityresponse - 10;
1541 } else {
1542 VelocityResponseCurve = curve_type_unknown;
1543 VelocityResponseDepth = 0;
1544 }
1545 uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1546 if (releasevelocityresponse < 5) {
1547 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1548 ReleaseVelocityResponseDepth = releasevelocityresponse;
1549 } else if (releasevelocityresponse < 10) {
1550 ReleaseVelocityResponseCurve = curve_type_linear;
1551 ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1552 } else if (releasevelocityresponse < 15) {
1553 ReleaseVelocityResponseCurve = curve_type_special;
1554 ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1555 } else {
1556 ReleaseVelocityResponseCurve = curve_type_unknown;
1557 ReleaseVelocityResponseDepth = 0;
1558 }
1559 VelocityResponseCurveScaling = _3ewa->ReadUint8();
1560 AttenuationControllerThreshold = _3ewa->ReadInt8();
1561 _3ewa->ReadInt32(); // unknown
1562 SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1563 _3ewa->ReadInt16(); // unknown
1564 uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1565 PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1566 if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1567 else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1568 else DimensionBypass = dim_bypass_ctrl_none;
1569 uint8_t pan = _3ewa->ReadUint8();
1570 Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1571 SelfMask = _3ewa->ReadInt8() & 0x01;
1572 _3ewa->ReadInt8(); // unknown
1573 uint8_t lfo3ctrl = _3ewa->ReadUint8();
1574 LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1575 LFO3Sync = lfo3ctrl & 0x20; // bit 5
1576 InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1577 AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1578 uint8_t lfo2ctrl = _3ewa->ReadUint8();
1579 LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1580 LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1581 LFO2Sync = lfo2ctrl & 0x20; // bit 5
1582 bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1583 uint8_t lfo1ctrl = _3ewa->ReadUint8();
1584 LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1585 LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1586 LFO1Sync = lfo1ctrl & 0x40; // bit 6
1587 VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1588 : vcf_res_ctrl_none;
1589 uint16_t eg3depth = _3ewa->ReadUint16();
1590 EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1591 : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1592 _3ewa->ReadInt16(); // unknown
1593 ChannelOffset = _3ewa->ReadUint8() / 4;
1594 uint8_t regoptions = _3ewa->ReadUint8();
1595 MSDecode = regoptions & 0x01; // bit 0
1596 SustainDefeat = regoptions & 0x02; // bit 1
1597 _3ewa->ReadInt16(); // unknown
1598 VelocityUpperLimit = _3ewa->ReadInt8();
1599 _3ewa->ReadInt8(); // unknown
1600 _3ewa->ReadInt16(); // unknown
1601 ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1602 _3ewa->ReadInt8(); // unknown
1603 _3ewa->ReadInt8(); // unknown
1604 EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1605 uint8_t vcfcutoff = _3ewa->ReadUint8();
1606 VCFEnabled = vcfcutoff & 0x80; // bit 7
1607 VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1608 VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1609 uint8_t vcfvelscale = _3ewa->ReadUint8();
1610 VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1611 VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1612 _3ewa->ReadInt8(); // unknown
1613 uint8_t vcfresonance = _3ewa->ReadUint8();
1614 VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1615 VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1616 uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1617 VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1618 VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1619 uint8_t vcfvelocity = _3ewa->ReadUint8();
1620 VCFVelocityDynamicRange = vcfvelocity % 5;
1621 VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1622 VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1623 if (VCFType == vcf_type_lowpass) {
1624 if (lfo3ctrl & 0x40) // bit 6
1625 VCFType = vcf_type_lowpassturbo;
1626 }
1627 if (_3ewa->RemainingBytes() >= 8) {
1628 _3ewa->Read(DimensionUpperLimits, 1, 8);
1629 } else {
1630 memset(DimensionUpperLimits, 0, 8);
1631 }
1632 } else { // '3ewa' chunk does not exist yet
1633 // use default values
1634 LFO3Frequency = 1.0;
1635 EG3Attack = 0.0;
1636 LFO1InternalDepth = 0;
1637 LFO3InternalDepth = 0;
1638 LFO1ControlDepth = 0;
1639 LFO3ControlDepth = 0;
1640 EG1Attack = 0.0;
1641 EG1Decay1 = 0.005;
1642 EG1Sustain = 1000;
1643 EG1Release = 0.3;
1644 EG1Controller.type = eg1_ctrl_t::type_none;
1645 EG1Controller.controller_number = 0;
1646 EG1ControllerInvert = false;
1647 EG1ControllerAttackInfluence = 0;
1648 EG1ControllerDecayInfluence = 0;
1649 EG1ControllerReleaseInfluence = 0;
1650 EG2Controller.type = eg2_ctrl_t::type_none;
1651 EG2Controller.controller_number = 0;
1652 EG2ControllerInvert = false;
1653 EG2ControllerAttackInfluence = 0;
1654 EG2ControllerDecayInfluence = 0;
1655 EG2ControllerReleaseInfluence = 0;
1656 LFO1Frequency = 1.0;
1657 EG2Attack = 0.0;
1658 EG2Decay1 = 0.005;
1659 EG2Sustain = 1000;
1660 EG2Release = 60;
1661 LFO2ControlDepth = 0;
1662 LFO2Frequency = 1.0;
1663 LFO2InternalDepth = 0;
1664 EG1Decay2 = 0.0;
1665 EG1InfiniteSustain = true;
1666 EG1PreAttack = 0;
1667 EG2Decay2 = 0.0;
1668 EG2InfiniteSustain = true;
1669 EG2PreAttack = 0;
1670 VelocityResponseCurve = curve_type_nonlinear;
1671 VelocityResponseDepth = 3;
1672 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1673 ReleaseVelocityResponseDepth = 3;
1674 VelocityResponseCurveScaling = 32;
1675 AttenuationControllerThreshold = 0;
1676 SampleStartOffset = 0;
1677 PitchTrack = true;
1678 DimensionBypass = dim_bypass_ctrl_none;
1679 Pan = 0;
1680 SelfMask = true;
1681 LFO3Controller = lfo3_ctrl_modwheel;
1682 LFO3Sync = false;
1683 InvertAttenuationController = false;
1684 AttenuationController.type = attenuation_ctrl_t::type_none;
1685 AttenuationController.controller_number = 0;
1686 LFO2Controller = lfo2_ctrl_internal;
1687 LFO2FlipPhase = false;
1688 LFO2Sync = false;
1689 LFO1Controller = lfo1_ctrl_internal;
1690 LFO1FlipPhase = false;
1691 LFO1Sync = false;
1692 VCFResonanceController = vcf_res_ctrl_none;
1693 EG3Depth = 0;
1694 ChannelOffset = 0;
1695 MSDecode = false;
1696 SustainDefeat = false;
1697 VelocityUpperLimit = 0;
1698 ReleaseTriggerDecay = 0;
1699 EG1Hold = false;
1700 VCFEnabled = false;
1701 VCFCutoff = 0;
1702 VCFCutoffController = vcf_cutoff_ctrl_none;
1703 VCFCutoffControllerInvert = false;
1704 VCFVelocityScale = 0;
1705 VCFResonance = 0;
1706 VCFResonanceDynamic = false;
1707 VCFKeyboardTracking = false;
1708 VCFKeyboardTrackingBreakpoint = 0;
1709 VCFVelocityDynamicRange = 0x04;
1710 VCFVelocityCurve = curve_type_linear;
1711 VCFType = vcf_type_lowpass;
1712 memset(DimensionUpperLimits, 127, 8);
1713 }
1714
1715 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1716 VelocityResponseDepth,
1717 VelocityResponseCurveScaling);
1718
1719 pVelocityReleaseTable = GetReleaseVelocityTable(
1720 ReleaseVelocityResponseCurve,
1721 ReleaseVelocityResponseDepth
1722 );
1723
1724 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1725 VCFVelocityDynamicRange,
1726 VCFVelocityScale,
1727 VCFCutoffController);
1728
1729 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1730 VelocityTable = 0;
1731 }
1732
1733 /*
1734 * Constructs a DimensionRegion by copying all parameters from
1735 * another DimensionRegion
1736 */
1737 DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1738 Instances++;
1739 //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1740 *this = src; // default memberwise shallow copy of all parameters
1741 pParentList = _3ewl; // restore the chunk pointer
1742
1743 // deep copy of owned structures
1744 if (src.VelocityTable) {
1745 VelocityTable = new uint8_t[128];
1746 for (int k = 0 ; k < 128 ; k++)
1747 VelocityTable[k] = src.VelocityTable[k];
1748 }
1749 if (src.pSampleLoops) {
1750 pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1751 for (int k = 0 ; k < src.SampleLoops ; k++)
1752 pSampleLoops[k] = src.pSampleLoops[k];
1753 }
1754 }
1755
1756 /**
1757 * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1758 * and assign it to this object.
1759 *
1760 * Note that all sample pointers referenced by @a orig are simply copied as
1761 * memory address. Thus the respective samples are shared, not duplicated!
1762 *
1763 * @param orig - original DimensionRegion object to be copied from
1764 */
1765 void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1766 CopyAssign(orig, NULL);
1767 }
1768
1769 /**
1770 * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1771 * and assign it to this object.
1772 *
1773 * @param orig - original DimensionRegion object to be copied from
1774 * @param mSamples - crosslink map between the foreign file's samples and
1775 * this file's samples
1776 */
1777 void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1778 // delete all allocated data first
1779 if (VelocityTable) delete [] VelocityTable;
1780 if (pSampleLoops) delete [] pSampleLoops;
1781
1782 // backup parent list pointer
1783 RIFF::List* p = pParentList;
1784
1785 gig::Sample* pOriginalSample = pSample;
1786 gig::Region* pOriginalRegion = pRegion;
1787
1788 //NOTE: copy code copied from assignment constructor above, see comment there as well
1789
1790 *this = *orig; // default memberwise shallow copy of all parameters
1791
1792 // restore members that shall not be altered
1793 pParentList = p; // restore the chunk pointer
1794 pRegion = pOriginalRegion;
1795
1796 // only take the raw sample reference reference if the
1797 // two DimensionRegion objects are part of the same file
1798 if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1799 pSample = pOriginalSample;
1800 }
1801
1802 if (mSamples && mSamples->count(orig->pSample)) {
1803 pSample = mSamples->find(orig->pSample)->second;
1804 }
1805
1806 // deep copy of owned structures
1807 if (orig->VelocityTable) {
1808 VelocityTable = new uint8_t[128];
1809 for (int k = 0 ; k < 128 ; k++)
1810 VelocityTable[k] = orig->VelocityTable[k];
1811 }
1812 if (orig->pSampleLoops) {
1813 pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1814 for (int k = 0 ; k < orig->SampleLoops ; k++)
1815 pSampleLoops[k] = orig->pSampleLoops[k];
1816 }
1817 }
1818
1819 void DimensionRegion::serialize(Serialization::Archive* archive) {
1820 // in case this class will become backward incompatible one day,
1821 // then set a version and minimum version for this class like:
1822 //archive->setVersion(*this, 2);
1823 //archive->setMinVersion(*this, 1);
1824
1825 SRLZ(VelocityUpperLimit);
1826 SRLZ(EG1PreAttack);
1827 SRLZ(EG1Attack);
1828 SRLZ(EG1Decay1);
1829 SRLZ(EG1Decay2);
1830 SRLZ(EG1InfiniteSustain);
1831 SRLZ(EG1Sustain);
1832 SRLZ(EG1Release);
1833 SRLZ(EG1Hold);
1834 SRLZ(EG1Controller);
1835 SRLZ(EG1ControllerInvert);
1836 SRLZ(EG1ControllerAttackInfluence);
1837 SRLZ(EG1ControllerDecayInfluence);
1838 SRLZ(EG1ControllerReleaseInfluence);
1839 SRLZ(LFO1Frequency);
1840 SRLZ(LFO1InternalDepth);
1841 SRLZ(LFO1ControlDepth);
1842 SRLZ(LFO1Controller);
1843 SRLZ(LFO1FlipPhase);
1844 SRLZ(LFO1Sync);
1845 SRLZ(EG2PreAttack);
1846 SRLZ(EG2Attack);
1847 SRLZ(EG2Decay1);
1848 SRLZ(EG2Decay2);
1849 SRLZ(EG2InfiniteSustain);
1850 SRLZ(EG2Sustain);
1851 SRLZ(EG2Release);
1852 SRLZ(EG2Controller);
1853 SRLZ(EG2ControllerInvert);
1854 SRLZ(EG2ControllerAttackInfluence);
1855 SRLZ(EG2ControllerDecayInfluence);
1856 SRLZ(EG2ControllerReleaseInfluence);
1857 SRLZ(LFO2Frequency);
1858 SRLZ(LFO2InternalDepth);
1859 SRLZ(LFO2ControlDepth);
1860 SRLZ(LFO2Controller);
1861 SRLZ(LFO2FlipPhase);
1862 SRLZ(LFO2Sync);
1863 SRLZ(EG3Attack);
1864 SRLZ(EG3Depth);
1865 SRLZ(LFO3Frequency);
1866 SRLZ(LFO3InternalDepth);
1867 SRLZ(LFO3ControlDepth);
1868 SRLZ(LFO3Controller);
1869 SRLZ(LFO3Sync);
1870 SRLZ(VCFEnabled);
1871 SRLZ(VCFType);
1872 SRLZ(VCFCutoffController);
1873 SRLZ(VCFCutoffControllerInvert);
1874 SRLZ(VCFCutoff);
1875 SRLZ(VCFVelocityCurve);
1876 SRLZ(VCFVelocityScale);
1877 SRLZ(VCFVelocityDynamicRange);
1878 SRLZ(VCFResonance);
1879 SRLZ(VCFResonanceDynamic);
1880 SRLZ(VCFResonanceController);
1881 SRLZ(VCFKeyboardTracking);
1882 SRLZ(VCFKeyboardTrackingBreakpoint);
1883 SRLZ(VelocityResponseCurve);
1884 SRLZ(VelocityResponseDepth);
1885 SRLZ(VelocityResponseCurveScaling);
1886 SRLZ(ReleaseVelocityResponseCurve);
1887 SRLZ(ReleaseVelocityResponseDepth);
1888 SRLZ(ReleaseTriggerDecay);
1889 SRLZ(Crossfade);
1890 SRLZ(PitchTrack);
1891 SRLZ(DimensionBypass);
1892 SRLZ(Pan);
1893 SRLZ(SelfMask);
1894 SRLZ(AttenuationController);
1895 SRLZ(InvertAttenuationController);
1896 SRLZ(AttenuationControllerThreshold);
1897 SRLZ(ChannelOffset);
1898 SRLZ(SustainDefeat);
1899 SRLZ(MSDecode);
1900 //SRLZ(SampleStartOffset);
1901 SRLZ(SampleAttenuation);
1902
1903 // derived attributes from DLS::Sampler
1904 SRLZ(FineTune);
1905 SRLZ(Gain);
1906 }
1907
1908 /**
1909 * Updates the respective member variable and updates @c SampleAttenuation
1910 * which depends on this value.
1911 */
1912 void DimensionRegion::SetGain(int32_t gain) {
1913 DLS::Sampler::SetGain(gain);
1914 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1915 }
1916
1917 /**
1918 * Apply dimension region settings to the respective RIFF chunks. You
1919 * have to call File::Save() to make changes persistent.
1920 *
1921 * Usually there is absolutely no need to call this method explicitly.
1922 * It will be called automatically when File::Save() was called.
1923 *
1924 * @param pProgress - callback function for progress notification
1925 */
1926 void DimensionRegion::UpdateChunks(progress_t* pProgress) {
1927 // first update base class's chunk
1928 DLS::Sampler::UpdateChunks(pProgress);
1929
1930 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1931 uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1932 pData[12] = Crossfade.in_start;
1933 pData[13] = Crossfade.in_end;
1934 pData[14] = Crossfade.out_start;
1935 pData[15] = Crossfade.out_end;
1936
1937 // make sure '3ewa' chunk exists
1938 RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1939 if (!_3ewa) {
1940 File* pFile = (File*) GetParent()->GetParent()->GetParent();
1941 bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1942 _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1943 }
1944 pData = (uint8_t*) _3ewa->LoadChunkData();
1945
1946 // update '3ewa' chunk with DimensionRegion's current settings
1947
1948 const uint32_t chunksize = (uint32_t) _3ewa->GetNewSize();
1949 store32(&pData[0], chunksize); // unknown, always chunk size?
1950
1951 const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1952 store32(&pData[4], lfo3freq);
1953
1954 const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1955 store32(&pData[8], eg3attack);
1956
1957 // next 2 bytes unknown
1958
1959 store16(&pData[14], LFO1InternalDepth);
1960
1961 // next 2 bytes unknown
1962
1963 store16(&pData[18], LFO3InternalDepth);
1964
1965 // next 2 bytes unknown
1966
1967 store16(&pData[22], LFO1ControlDepth);
1968
1969 // next 2 bytes unknown
1970
1971 store16(&pData[26], LFO3ControlDepth);
1972
1973 const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1974 store32(&pData[28], eg1attack);
1975
1976 const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1977 store32(&pData[32], eg1decay1);
1978
1979 // next 2 bytes unknown
1980
1981 store16(&pData[38], EG1Sustain);
1982
1983 const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1984 store32(&pData[40], eg1release);
1985
1986 const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1987 pData[44] = eg1ctl;
1988
1989 const uint8_t eg1ctrloptions =
1990 (EG1ControllerInvert ? 0x01 : 0x00) |
1991 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1992 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1993 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1994 pData[45] = eg1ctrloptions;
1995
1996 const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1997 pData[46] = eg2ctl;
1998
1999 const uint8_t eg2ctrloptions =
2000 (EG2ControllerInvert ? 0x01 : 0x00) |
2001 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
2002 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
2003 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
2004 pData[47] = eg2ctrloptions;
2005
2006 const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
2007 store32(&pData[48], lfo1freq);
2008
2009 const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
2010 store32(&pData[52], eg2attack);
2011
2012 const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
2013 store32(&pData[56], eg2decay1);
2014
2015 // next 2 bytes unknown
2016
2017 store16(&pData[62], EG2Sustain);
2018
2019 const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
2020 store32(&pData[64], eg2release);
2021
2022 // next 2 bytes unknown
2023
2024 store16(&pData[70], LFO2ControlDepth);
2025
2026 const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
2027 store32(&pData[72], lfo2freq);
2028
2029 // next 2 bytes unknown
2030
2031 store16(&pData[78], LFO2InternalDepth);
2032
2033 const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
2034 store32(&pData[80], eg1decay2);
2035
2036 // next 2 bytes unknown
2037
2038 store16(&pData[86], EG1PreAttack);
2039
2040 const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
2041 store32(&pData[88], eg2decay2);
2042
2043 // next 2 bytes unknown
2044
2045 store16(&pData[94], EG2PreAttack);
2046
2047 {
2048 if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
2049 uint8_t velocityresponse = VelocityResponseDepth;
2050 switch (VelocityResponseCurve) {
2051 case curve_type_nonlinear:
2052 break;
2053 case curve_type_linear:
2054 velocityresponse += 5;
2055 break;
2056 case curve_type_special:
2057 velocityresponse += 10;
2058 break;
2059 case curve_type_unknown:
2060 default:
2061 throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
2062 }
2063 pData[96] = velocityresponse;
2064 }
2065
2066 {
2067 if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
2068 uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
2069 switch (ReleaseVelocityResponseCurve) {
2070 case curve_type_nonlinear:
2071 break;
2072 case curve_type_linear:
2073 releasevelocityresponse += 5;
2074 break;
2075 case curve_type_special:
2076 releasevelocityresponse += 10;
2077 break;
2078 case curve_type_unknown:
2079 default:
2080 throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
2081 }
2082 pData[97] = releasevelocityresponse;
2083 }
2084
2085 pData[98] = VelocityResponseCurveScaling;
2086
2087 pData[99] = AttenuationControllerThreshold;
2088
2089 // next 4 bytes unknown
2090
2091 store16(&pData[104], SampleStartOffset);
2092
2093 // next 2 bytes unknown
2094
2095 {
2096 uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
2097 switch (DimensionBypass) {
2098 case dim_bypass_ctrl_94:
2099 pitchTrackDimensionBypass |= 0x10;
2100 break;
2101 case dim_bypass_ctrl_95:
2102 pitchTrackDimensionBypass |= 0x20;
2103 break;
2104 case dim_bypass_ctrl_none:
2105 //FIXME: should we set anything here?
2106 break;
2107 default:
2108 throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
2109 }
2110 pData[108] = pitchTrackDimensionBypass;
2111 }
2112
2113 const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
2114 pData[109] = pan;
2115
2116 const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
2117 pData[110] = selfmask;
2118
2119 // next byte unknown
2120
2121 {
2122 uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
2123 if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
2124 if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
2125 if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
2126 pData[112] = lfo3ctrl;
2127 }
2128
2129 const uint8_t attenctl = EncodeLeverageController(AttenuationController);
2130 pData[113] = attenctl;
2131
2132 {
2133 uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
2134 if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
2135 if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
2136 if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
2137 pData[114] = lfo2ctrl;
2138 }
2139
2140 {
2141 uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
2142 if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
2143 if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
2144 if (VCFResonanceController != vcf_res_ctrl_none)
2145 lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
2146 pData[115] = lfo1ctrl;
2147 }
2148
2149 const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
2150 : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
2151 store16(&pData[116], eg3depth);
2152
2153 // next 2 bytes unknown
2154
2155 const uint8_t channeloffset = ChannelOffset * 4;
2156 pData[120] = channeloffset;
2157
2158 {
2159 uint8_t regoptions = 0;
2160 if (MSDecode) regoptions |= 0x01; // bit 0
2161 if (SustainDefeat) regoptions |= 0x02; // bit 1
2162 pData[121] = regoptions;
2163 }
2164
2165 // next 2 bytes unknown
2166
2167 pData[124] = VelocityUpperLimit;
2168
2169 // next 3 bytes unknown
2170
2171 pData[128] = ReleaseTriggerDecay;
2172
2173 // next 2 bytes unknown
2174
2175 const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2176 pData[131] = eg1hold;
2177
2178 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
2179 (VCFCutoff & 0x7f); /* lower 7 bits */
2180 pData[132] = vcfcutoff;
2181
2182 pData[133] = VCFCutoffController;
2183
2184 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2185 (VCFVelocityScale & 0x7f); /* lower 7 bits */
2186 pData[134] = vcfvelscale;
2187
2188 // next byte unknown
2189
2190 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2191 (VCFResonance & 0x7f); /* lower 7 bits */
2192 pData[136] = vcfresonance;
2193
2194 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2195 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2196 pData[137] = vcfbreakpoint;
2197
2198 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2199 VCFVelocityCurve * 5;
2200 pData[138] = vcfvelocity;
2201
2202 const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2203 pData[139] = vcftype;
2204
2205 if (chunksize >= 148) {
2206 memcpy(&pData[140], DimensionUpperLimits, 8);
2207 }
2208 }
2209
2210 double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2211 curve_type_t curveType = releaseVelocityResponseCurve;
2212 uint8_t depth = releaseVelocityResponseDepth;
2213 // this models a strange behaviour or bug in GSt: two of the
2214 // velocity response curves for release time are not used even
2215 // if specified, instead another curve is chosen.
2216 if ((curveType == curve_type_nonlinear && depth == 0) ||
2217 (curveType == curve_type_special && depth == 4)) {
2218 curveType = curve_type_nonlinear;
2219 depth = 3;
2220 }
2221 return GetVelocityTable(curveType, depth, 0);
2222 }
2223
2224 double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2225 uint8_t vcfVelocityDynamicRange,
2226 uint8_t vcfVelocityScale,
2227 vcf_cutoff_ctrl_t vcfCutoffController)
2228 {
2229 curve_type_t curveType = vcfVelocityCurve;
2230 uint8_t depth = vcfVelocityDynamicRange;
2231 // even stranger GSt: two of the velocity response curves for
2232 // filter cutoff are not used, instead another special curve
2233 // is chosen. This curve is not used anywhere else.
2234 if ((curveType == curve_type_nonlinear && depth == 0) ||
2235 (curveType == curve_type_special && depth == 4)) {
2236 curveType = curve_type_special;
2237 depth = 5;
2238 }
2239 return GetVelocityTable(curveType, depth,
2240 (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2241 ? vcfVelocityScale : 0);
2242 }
2243
2244 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2245 double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2246 {
2247 double* table;
2248 uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2249 if (pVelocityTables->count(tableKey)) { // if key exists
2250 table = (*pVelocityTables)[tableKey];
2251 }
2252 else {
2253 table = CreateVelocityTable(curveType, depth, scaling);
2254 (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
2255 }
2256 return table;
2257 }
2258
2259 Region* DimensionRegion::GetParent() const {
2260 return pRegion;
2261 }
2262
2263 // show error if some _lev_ctrl_* enum entry is not listed in the following function
2264 // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2265 // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2266 //#pragma GCC diagnostic push
2267 //#pragma GCC diagnostic error "-Wswitch"
2268
2269 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2270 leverage_ctrl_t decodedcontroller;
2271 switch (EncodedController) {
2272 // special controller
2273 case _lev_ctrl_none:
2274 decodedcontroller.type = leverage_ctrl_t::type_none;
2275 decodedcontroller.controller_number = 0;
2276 break;
2277 case _lev_ctrl_velocity:
2278 decodedcontroller.type = leverage_ctrl_t::type_velocity;
2279 decodedcontroller.controller_number = 0;
2280 break;
2281 case _lev_ctrl_channelaftertouch:
2282 decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
2283 decodedcontroller.controller_number = 0;
2284 break;
2285
2286 // ordinary MIDI control change controller
2287 case _lev_ctrl_modwheel:
2288 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2289 decodedcontroller.controller_number = 1;
2290 break;
2291 case _lev_ctrl_breath:
2292 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2293 decodedcontroller.controller_number = 2;
2294 break;
2295 case _lev_ctrl_foot:
2296 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2297 decodedcontroller.controller_number = 4;
2298 break;
2299 case _lev_ctrl_effect1:
2300 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2301 decodedcontroller.controller_number = 12;
2302 break;
2303 case _lev_ctrl_effect2:
2304 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2305 decodedcontroller.controller_number = 13;
2306 break;
2307 case _lev_ctrl_genpurpose1:
2308 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2309 decodedcontroller.controller_number = 16;
2310 break;
2311 case _lev_ctrl_genpurpose2:
2312 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2313 decodedcontroller.controller_number = 17;
2314 break;
2315 case _lev_ctrl_genpurpose3:
2316 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2317 decodedcontroller.controller_number = 18;
2318 break;
2319 case _lev_ctrl_genpurpose4:
2320 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2321 decodedcontroller.controller_number = 19;
2322 break;
2323 case _lev_ctrl_portamentotime:
2324 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2325 decodedcontroller.controller_number = 5;
2326 break;
2327 case _lev_ctrl_sustainpedal:
2328 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2329 decodedcontroller.controller_number = 64;
2330 break;
2331 case _lev_ctrl_portamento:
2332 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2333 decodedcontroller.controller_number = 65;
2334 break;
2335 case _lev_ctrl_sostenutopedal:
2336 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2337 decodedcontroller.controller_number = 66;
2338 break;
2339 case _lev_ctrl_softpedal:
2340 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2341 decodedcontroller.controller_number = 67;
2342 break;
2343 case _lev_ctrl_genpurpose5:
2344 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2345 decodedcontroller.controller_number = 80;
2346 break;
2347 case _lev_ctrl_genpurpose6:
2348 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2349 decodedcontroller.controller_number = 81;
2350 break;
2351 case _lev_ctrl_genpurpose7:
2352 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2353 decodedcontroller.controller_number = 82;
2354 break;
2355 case _lev_ctrl_genpurpose8:
2356 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2357 decodedcontroller.controller_number = 83;
2358 break;
2359 case _lev_ctrl_effect1depth:
2360 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2361 decodedcontroller.controller_number = 91;
2362 break;
2363 case _lev_ctrl_effect2depth:
2364 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2365 decodedcontroller.controller_number = 92;
2366 break;
2367 case _lev_ctrl_effect3depth:
2368 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2369 decodedcontroller.controller_number = 93;
2370 break;
2371 case _lev_ctrl_effect4depth:
2372 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2373 decodedcontroller.controller_number = 94;
2374 break;
2375 case _lev_ctrl_effect5depth:
2376 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2377 decodedcontroller.controller_number = 95;
2378 break;
2379
2380 // format extension (these controllers are so far only supported by
2381 // LinuxSampler & gigedit) they will *NOT* work with
2382 // Gigasampler/GigaStudio !
2383 case _lev_ctrl_CC3_EXT:
2384 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2385 decodedcontroller.controller_number = 3;
2386 break;
2387 case _lev_ctrl_CC6_EXT:
2388 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2389 decodedcontroller.controller_number = 6;
2390 break;
2391 case _lev_ctrl_CC7_EXT:
2392 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2393 decodedcontroller.controller_number = 7;
2394 break;
2395 case _lev_ctrl_CC8_EXT:
2396 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2397 decodedcontroller.controller_number = 8;
2398 break;
2399 case _lev_ctrl_CC9_EXT:
2400 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2401 decodedcontroller.controller_number = 9;
2402 break;
2403 case _lev_ctrl_CC10_EXT:
2404 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2405 decodedcontroller.controller_number = 10;
2406 break;
2407 case _lev_ctrl_CC11_EXT:
2408 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2409 decodedcontroller.controller_number = 11;
2410 break;
2411 case _lev_ctrl_CC14_EXT:
2412 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2413 decodedcontroller.controller_number = 14;
2414 break;
2415 case _lev_ctrl_CC15_EXT:
2416 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2417 decodedcontroller.controller_number = 15;
2418 break;
2419 case _lev_ctrl_CC20_EXT:
2420 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2421 decodedcontroller.controller_number = 20;
2422 break;
2423 case _lev_ctrl_CC21_EXT:
2424 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2425 decodedcontroller.controller_number = 21;
2426 break;
2427 case _lev_ctrl_CC22_EXT:
2428 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2429 decodedcontroller.controller_number = 22;
2430 break;
2431 case _lev_ctrl_CC23_EXT:
2432 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2433 decodedcontroller.controller_number = 23;
2434 break;
2435 case _lev_ctrl_CC24_EXT:
2436 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2437 decodedcontroller.controller_number = 24;
2438 break;
2439 case _lev_ctrl_CC25_EXT:
2440 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2441 decodedcontroller.controller_number = 25;
2442 break;
2443 case _lev_ctrl_CC26_EXT:
2444 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2445 decodedcontroller.controller_number = 26;
2446 break;
2447 case _lev_ctrl_CC27_EXT:
2448 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2449 decodedcontroller.controller_number = 27;
2450 break;
2451 case _lev_ctrl_CC28_EXT:
2452 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2453 decodedcontroller.controller_number = 28;
2454 break;
2455 case _lev_ctrl_CC29_EXT:
2456 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2457 decodedcontroller.controller_number = 29;
2458 break;
2459 case _lev_ctrl_CC30_EXT:
2460 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2461 decodedcontroller.controller_number = 30;
2462 break;
2463 case _lev_ctrl_CC31_EXT:
2464 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2465 decodedcontroller.controller_number = 31;
2466 break;
2467 case _lev_ctrl_CC68_EXT:
2468 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2469 decodedcontroller.controller_number = 68;
2470 break;
2471 case _lev_ctrl_CC69_EXT:
2472 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2473 decodedcontroller.controller_number = 69;
2474 break;
2475 case _lev_ctrl_CC70_EXT:
2476 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2477 decodedcontroller.controller_number = 70;
2478 break;
2479 case _lev_ctrl_CC71_EXT:
2480 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2481 decodedcontroller.controller_number = 71;
2482 break;
2483 case _lev_ctrl_CC72_EXT:
2484 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2485 decodedcontroller.controller_number = 72;
2486 break;
2487 case _lev_ctrl_CC73_EXT:
2488 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2489 decodedcontroller.controller_number = 73;
2490 break;
2491 case _lev_ctrl_CC74_EXT:
2492 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2493 decodedcontroller.controller_number = 74;
2494 break;
2495 case _lev_ctrl_CC75_EXT:
2496 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2497 decodedcontroller.controller_number = 75;
2498 break;
2499 case _lev_ctrl_CC76_EXT:
2500 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2501 decodedcontroller.controller_number = 76;
2502 break;
2503 case _lev_ctrl_CC77_EXT:
2504 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2505 decodedcontroller.controller_number = 77;
2506 break;
2507 case _lev_ctrl_CC78_EXT:
2508 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2509 decodedcontroller.controller_number = 78;
2510 break;
2511 case _lev_ctrl_CC79_EXT:
2512 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2513 decodedcontroller.controller_number = 79;
2514 break;
2515 case _lev_ctrl_CC84_EXT:
2516 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2517 decodedcontroller.controller_number = 84;
2518 break;
2519 case _lev_ctrl_CC85_EXT:
2520 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2521 decodedcontroller.controller_number = 85;
2522 break;
2523 case _lev_ctrl_CC86_EXT:
2524 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2525 decodedcontroller.controller_number = 86;
2526 break;
2527 case _lev_ctrl_CC87_EXT:
2528 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2529 decodedcontroller.controller_number = 87;
2530 break;
2531 case _lev_ctrl_CC89_EXT:
2532 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2533 decodedcontroller.controller_number = 89;
2534 break;
2535 case _lev_ctrl_CC90_EXT:
2536 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2537 decodedcontroller.controller_number = 90;
2538 break;
2539 case _lev_ctrl_CC96_EXT:
2540 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2541 decodedcontroller.controller_number = 96;
2542 break;
2543 case _lev_ctrl_CC97_EXT:
2544 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2545 decodedcontroller.controller_number = 97;
2546 break;
2547 case _lev_ctrl_CC102_EXT:
2548 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2549 decodedcontroller.controller_number = 102;
2550 break;
2551 case _lev_ctrl_CC103_EXT:
2552 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2553 decodedcontroller.controller_number = 103;
2554 break;
2555 case _lev_ctrl_CC104_EXT:
2556 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2557 decodedcontroller.controller_number = 104;
2558 break;
2559 case _lev_ctrl_CC105_EXT:
2560 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2561 decodedcontroller.controller_number = 105;
2562 break;
2563 case _lev_ctrl_CC106_EXT:
2564 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2565 decodedcontroller.controller_number = 106;
2566 break;
2567 case _lev_ctrl_CC107_EXT:
2568 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2569 decodedcontroller.controller_number = 107;
2570 break;
2571 case _lev_ctrl_CC108_EXT:
2572 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2573 decodedcontroller.controller_number = 108;
2574 break;
2575 case _lev_ctrl_CC109_EXT:
2576 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2577 decodedcontroller.controller_number = 109;
2578 break;
2579 case _lev_ctrl_CC110_EXT:
2580 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2581 decodedcontroller.controller_number = 110;
2582 break;
2583 case _lev_ctrl_CC111_EXT:
2584 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2585 decodedcontroller.controller_number = 111;
2586 break;
2587 case _lev_ctrl_CC112_EXT:
2588 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2589 decodedcontroller.controller_number = 112;
2590 break;
2591 case _lev_ctrl_CC113_EXT:
2592 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2593 decodedcontroller.controller_number = 113;
2594 break;
2595 case _lev_ctrl_CC114_EXT:
2596 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2597 decodedcontroller.controller_number = 114;
2598 break;
2599 case _lev_ctrl_CC115_EXT:
2600 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2601 decodedcontroller.controller_number = 115;
2602 break;
2603 case _lev_ctrl_CC116_EXT:
2604 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2605 decodedcontroller.controller_number = 116;
2606 break;
2607 case _lev_ctrl_CC117_EXT:
2608 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2609 decodedcontroller.controller_number = 117;
2610 break;
2611 case _lev_ctrl_CC118_EXT:
2612 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2613 decodedcontroller.controller_number = 118;
2614 break;
2615 case _lev_ctrl_CC119_EXT:
2616 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2617 decodedcontroller.controller_number = 119;
2618 break;
2619
2620 // unknown controller type
2621 default:
2622 decodedcontroller.type = leverage_ctrl_t::type_none;
2623 decodedcontroller.controller_number = 0;
2624 printf("Warning: Unknown leverage controller type (0x%x).\n", EncodedController);
2625 break;
2626 }
2627 return decodedcontroller;
2628 }
2629
2630 // see above (diagnostic push not supported prior GCC 4.6)
2631 //#pragma GCC diagnostic pop
2632
2633 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2634 _lev_ctrl_t encodedcontroller;
2635 switch (DecodedController.type) {
2636 // special controller
2637 case leverage_ctrl_t::type_none:
2638 encodedcontroller = _lev_ctrl_none;
2639 break;
2640 case leverage_ctrl_t::type_velocity:
2641 encodedcontroller = _lev_ctrl_velocity;
2642 break;
2643 case leverage_ctrl_t::type_channelaftertouch:
2644 encodedcontroller = _lev_ctrl_channelaftertouch;
2645 break;
2646
2647 // ordinary MIDI control change controller
2648 case leverage_ctrl_t::type_controlchange:
2649 switch (DecodedController.controller_number) {
2650 case 1:
2651 encodedcontroller = _lev_ctrl_modwheel;
2652 break;
2653 case 2:
2654 encodedcontroller = _lev_ctrl_breath;
2655 break;
2656 case 4:
2657 encodedcontroller = _lev_ctrl_foot;
2658 break;
2659 case 12:
2660 encodedcontroller = _lev_ctrl_effect1;
2661 break;
2662 case 13:
2663 encodedcontroller = _lev_ctrl_effect2;
2664 break;
2665 case 16:
2666 encodedcontroller = _lev_ctrl_genpurpose1;
2667 break;
2668 case 17:
2669 encodedcontroller = _lev_ctrl_genpurpose2;
2670 break;
2671 case 18:
2672 encodedcontroller = _lev_ctrl_genpurpose3;
2673 break;
2674 case 19:
2675 encodedcontroller = _lev_ctrl_genpurpose4;
2676 break;
2677 case 5:
2678 encodedcontroller = _lev_ctrl_portamentotime;
2679 break;
2680 case 64:
2681 encodedcontroller = _lev_ctrl_sustainpedal;
2682 break;
2683 case 65:
2684 encodedcontroller = _lev_ctrl_portamento;
2685 break;
2686 case 66:
2687 encodedcontroller = _lev_ctrl_sostenutopedal;
2688 break;
2689 case 67:
2690 encodedcontroller = _lev_ctrl_softpedal;
2691 break;
2692 case 80:
2693 encodedcontroller = _lev_ctrl_genpurpose5;
2694 break;
2695 case 81:
2696 encodedcontroller = _lev_ctrl_genpurpose6;
2697 break;
2698 case 82:
2699 encodedcontroller = _lev_ctrl_genpurpose7;
2700 break;
2701 case 83:
2702 encodedcontroller = _lev_ctrl_genpurpose8;
2703 break;
2704 case 91:
2705 encodedcontroller = _lev_ctrl_effect1depth;
2706 break;
2707 case 92:
2708 encodedcontroller = _lev_ctrl_effect2depth;
2709 break;
2710 case 93:
2711 encodedcontroller = _lev_ctrl_effect3depth;
2712 break;
2713 case 94:
2714 encodedcontroller = _lev_ctrl_effect4depth;
2715 break;
2716 case 95:
2717 encodedcontroller = _lev_ctrl_effect5depth;
2718 break;
2719
2720 // format extension (these controllers are so far only
2721 // supported by LinuxSampler & gigedit) they will *NOT*
2722 // work with Gigasampler/GigaStudio !
2723 case 3:
2724 encodedcontroller = _lev_ctrl_CC3_EXT;
2725 break;
2726 case 6:
2727 encodedcontroller = _lev_ctrl_CC6_EXT;
2728 break;
2729 case 7:
2730 encodedcontroller = _lev_ctrl_CC7_EXT;
2731 break;
2732 case 8:
2733 encodedcontroller = _lev_ctrl_CC8_EXT;
2734 break;
2735 case 9:
2736 encodedcontroller = _lev_ctrl_CC9_EXT;
2737 break;
2738 case 10:
2739 encodedcontroller = _lev_ctrl_CC10_EXT;
2740 break;
2741 case 11:
2742 encodedcontroller = _lev_ctrl_CC11_EXT;
2743 break;
2744 case 14:
2745 encodedcontroller = _lev_ctrl_CC14_EXT;
2746 break;
2747 case 15:
2748 encodedcontroller = _lev_ctrl_CC15_EXT;
2749 break;
2750 case 20:
2751 encodedcontroller = _lev_ctrl_CC20_EXT;
2752 break;
2753 case 21:
2754 encodedcontroller = _lev_ctrl_CC21_EXT;
2755 break;
2756 case 22:
2757 encodedcontroller = _lev_ctrl_CC22_EXT;
2758 break;
2759 case 23:
2760 encodedcontroller = _lev_ctrl_CC23_EXT;
2761 break;
2762 case 24:
2763 encodedcontroller = _lev_ctrl_CC24_EXT;
2764 break;
2765 case 25:
2766 encodedcontroller = _lev_ctrl_CC25_EXT;
2767 break;
2768 case 26:
2769 encodedcontroller = _lev_ctrl_CC26_EXT;
2770 break;
2771 case 27:
2772 encodedcontroller = _lev_ctrl_CC27_EXT;
2773 break;
2774 case 28:
2775 encodedcontroller = _lev_ctrl_CC28_EXT;
2776 break;
2777 case 29:
2778 encodedcontroller = _lev_ctrl_CC29_EXT;
2779 break;
2780 case 30:
2781 encodedcontroller = _lev_ctrl_CC30_EXT;
2782 break;
2783 case 31:
2784 encodedcontroller = _lev_ctrl_CC31_EXT;
2785 break;
2786 case 68:
2787 encodedcontroller = _lev_ctrl_CC68_EXT;
2788 break;
2789 case 69:
2790 encodedcontroller = _lev_ctrl_CC69_EXT;
2791 break;
2792 case 70:
2793 encodedcontroller = _lev_ctrl_CC70_EXT;
2794 break;
2795 case 71:
2796 encodedcontroller = _lev_ctrl_CC71_EXT;
2797 break;
2798 case 72:
2799 encodedcontroller = _lev_ctrl_CC72_EXT;
2800 break;
2801 case 73:
2802 encodedcontroller = _lev_ctrl_CC73_EXT;
2803 break;
2804 case 74:
2805 encodedcontroller = _lev_ctrl_CC74_EXT;
2806 break;
2807 case 75:
2808 encodedcontroller = _lev_ctrl_CC75_EXT;
2809 break;
2810 case 76:
2811 encodedcontroller = _lev_ctrl_CC76_EXT;
2812 break;
2813 case 77:
2814 encodedcontroller = _lev_ctrl_CC77_EXT;
2815 break;
2816 case 78:
2817 encodedcontroller = _lev_ctrl_CC78_EXT;
2818 break;
2819 case 79:
2820 encodedcontroller = _lev_ctrl_CC79_EXT;
2821 break;
2822 case 84:
2823 encodedcontroller = _lev_ctrl_CC84_EXT;
2824 break;
2825 case 85:
2826 encodedcontroller = _lev_ctrl_CC85_EXT;
2827 break;
2828 case 86:
2829 encodedcontroller = _lev_ctrl_CC86_EXT;
2830 break;
2831 case 87:
2832 encodedcontroller = _lev_ctrl_CC87_EXT;
2833 break;
2834 case 89:
2835 encodedcontroller = _lev_ctrl_CC89_EXT;
2836 break;
2837 case 90:
2838 encodedcontroller = _lev_ctrl_CC90_EXT;
2839 break;
2840 case 96:
2841 encodedcontroller = _lev_ctrl_CC96_EXT;
2842 break;
2843 case 97:
2844 encodedcontroller = _lev_ctrl_CC97_EXT;
2845 break;
2846 case 102:
2847 encodedcontroller = _lev_ctrl_CC102_EXT;
2848 break;
2849 case 103:
2850 encodedcontroller = _lev_ctrl_CC103_EXT;
2851 break;
2852 case 104:
2853 encodedcontroller = _lev_ctrl_CC104_EXT;
2854 break;
2855 case 105:
2856 encodedcontroller = _lev_ctrl_CC105_EXT;
2857 break;
2858 case 106:
2859 encodedcontroller = _lev_ctrl_CC106_EXT;
2860 break;
2861 case 107:
2862 encodedcontroller = _lev_ctrl_CC107_EXT;
2863 break;
2864 case 108:
2865 encodedcontroller = _lev_ctrl_CC108_EXT;
2866 break;
2867 case 109:
2868 encodedcontroller = _lev_ctrl_CC109_EXT;
2869 break;
2870 case 110:
2871 encodedcontroller = _lev_ctrl_CC110_EXT;
2872 break;
2873 case 111:
2874 encodedcontroller = _lev_ctrl_CC111_EXT;
2875 break;
2876 case 112:
2877 encodedcontroller = _lev_ctrl_CC112_EXT;
2878 break;
2879 case 113:
2880 encodedcontroller = _lev_ctrl_CC113_EXT;
2881 break;
2882 case 114:
2883 encodedcontroller = _lev_ctrl_CC114_EXT;
2884 break;
2885 case 115:
2886 encodedcontroller = _lev_ctrl_CC115_EXT;
2887 break;
2888 case 116:
2889 encodedcontroller = _lev_ctrl_CC116_EXT;
2890 break;
2891 case 117:
2892 encodedcontroller = _lev_ctrl_CC117_EXT;
2893 break;
2894 case 118:
2895 encodedcontroller = _lev_ctrl_CC118_EXT;
2896 break;
2897 case 119:
2898 encodedcontroller = _lev_ctrl_CC119_EXT;
2899 break;
2900
2901 default:
2902 throw gig::Exception("leverage controller number is not supported by the gig format");
2903 }
2904 break;
2905 default:
2906 throw gig::Exception("Unknown leverage controller type.");
2907 }
2908 return encodedcontroller;
2909 }
2910
2911 DimensionRegion::~DimensionRegion() {
2912 Instances--;
2913 if (!Instances) {
2914 // delete the velocity->volume tables
2915 VelocityTableMap::iterator iter;
2916 for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
2917 double* pTable = iter->second;
2918 if (pTable) delete[] pTable;
2919 }
2920 pVelocityTables->clear();
2921 delete pVelocityTables;
2922 pVelocityTables = NULL;
2923 }
2924 if (VelocityTable) delete[] VelocityTable;
2925 }
2926
2927 /**
2928 * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
2929 * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
2930 * and VelocityResponseCurveScaling) involved are taken into account to
2931 * calculate the amplitude factor. Use this method when a key was
2932 * triggered to get the volume with which the sample should be played
2933 * back.
2934 *
2935 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
2936 * @returns amplitude factor (between 0.0 and 1.0)
2937 */
2938 double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2939 return pVelocityAttenuationTable[MIDIKeyVelocity];
2940 }
2941
2942 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2943 return pVelocityReleaseTable[MIDIKeyVelocity];
2944 }
2945
2946 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2947 return pVelocityCutoffTable[MIDIKeyVelocity];
2948 }
2949
2950 /**
2951 * Updates the respective member variable and the lookup table / cache
2952 * that depends on this value.
2953 */
2954 void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
2955 pVelocityAttenuationTable =
2956 GetVelocityTable(
2957 curve, VelocityResponseDepth, VelocityResponseCurveScaling
2958 );
2959 VelocityResponseCurve = curve;
2960 }
2961
2962 /**
2963 * Updates the respective member variable and the lookup table / cache
2964 * that depends on this value.
2965 */
2966 void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
2967 pVelocityAttenuationTable =
2968 GetVelocityTable(
2969 VelocityResponseCurve, depth, VelocityResponseCurveScaling
2970 );
2971 VelocityResponseDepth = depth;
2972 }
2973
2974 /**
2975 * Updates the respective member variable and the lookup table / cache
2976 * that depends on this value.
2977 */
2978 void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
2979 pVelocityAttenuationTable =
2980 GetVelocityTable(
2981 VelocityResponseCurve, VelocityResponseDepth, scaling
2982 );
2983 VelocityResponseCurveScaling = scaling;
2984 }
2985
2986 /**
2987 * Updates the respective member variable and the lookup table / cache
2988 * that depends on this value.
2989 */
2990 void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
2991 pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
2992 ReleaseVelocityResponseCurve = curve;
2993 }
2994
2995 /**
2996 * Updates the respective member variable and the lookup table / cache
2997 * that depends on this value.
2998 */
2999 void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
3000 pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
3001 ReleaseVelocityResponseDepth = depth;
3002 }
3003
3004 /**
3005 * Updates the respective member variable and the lookup table / cache
3006 * that depends on this value.
3007 */
3008 void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
3009 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
3010 VCFCutoffController = controller;
3011 }
3012
3013 /**
3014 * Updates the respective member variable and the lookup table / cache
3015 * that depends on this value.
3016 */
3017 void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
3018 pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
3019 VCFVelocityCurve = curve;
3020 }
3021
3022 /**
3023 * Updates the respective member variable and the lookup table / cache
3024 * that depends on this value.
3025 */
3026 void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
3027 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
3028 VCFVelocityDynamicRange = range;
3029 }
3030
3031 /**
3032 * Updates the respective member variable and the lookup table / cache
3033 * that depends on this value.
3034 */
3035 void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
3036 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
3037 VCFVelocityScale = scaling;
3038 }
3039
3040 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
3041
3042 // line-segment approximations of the 15 velocity curves
3043
3044 // linear
3045 const int lin0[] = { 1, 1, 127, 127 };
3046 const int lin1[] = { 1, 21, 127, 127 };
3047 const int lin2[] = { 1, 45, 127, 127 };
3048 const int lin3[] = { 1, 74, 127, 127 };
3049 const int lin4[] = { 1, 127, 127, 127 };
3050
3051 // non-linear
3052 const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
3053 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
3054 127, 127 };
3055 const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
3056 127, 127 };
3057 const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
3058 127, 127 };
3059 const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
3060
3061 // special
3062 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
3063 113, 127, 127, 127 };
3064 const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
3065 118, 127, 127, 127 };
3066 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
3067 85, 90, 91, 127, 127, 127 };
3068 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
3069 117, 127, 127, 127 };
3070 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
3071 127, 127 };
3072
3073 // this is only used by the VCF velocity curve
3074 const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
3075 91, 127, 127, 127 };
3076
3077 const int* const curves[] = { non0, non1, non2, non3, non4,
3078 lin0, lin1, lin2, lin3, lin4,
3079 spe0, spe1, spe2, spe3, spe4, spe5 };
3080
3081 double* const table = new double[128];
3082
3083 const int* curve = curves[curveType * 5 + depth];
3084 const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
3085
3086 table[0] = 0;
3087 for (int x = 1 ; x < 128 ; x++) {
3088
3089 if (x > curve[2]) curve += 2;
3090 double y = curve[1] + (x - curve[0]) *
3091 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
3092 y = y / 127;
3093
3094 // Scale up for s > 20, down for s < 20. When
3095 // down-scaling, the curve still ends at 1.0.
3096 if (s < 20 && y >= 0.5)
3097 y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
3098 else
3099 y = y * (s / 20.0);
3100 if (y > 1) y = 1;
3101
3102 table[x] = y;
3103 }
3104 return table;
3105 }
3106
3107
3108 // *************** Region ***************
3109 // *
3110
3111 Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
3112 // Initialization
3113 Dimensions = 0;
3114 for (int i = 0; i < 256; i++) {
3115 pDimensionRegions[i] = NULL;
3116 }
3117 Layers = 1;
3118 File* file = (File*) GetParent()->GetParent();
3119 int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
3120
3121 // Actual Loading
3122
3123 if (!file->GetAutoLoad()) return;
3124
3125 LoadDimensionRegions(rgnList);
3126
3127 RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
3128 if (_3lnk) {
3129 DimensionRegions = _3lnk->ReadUint32();
3130 for (int i = 0; i < dimensionBits; i++) {
3131 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
3132 uint8_t bits = _3lnk->ReadUint8();
3133 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
3134 _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
3135 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
3136 if (dimension == dimension_none) { // inactive dimension
3137 pDimensionDefinitions[i].dimension = dimension_none;
3138 pDimensionDefinitions[i].bits = 0;
3139 pDimensionDefinitions[i].zones = 0;
3140 pDimensionDefinitions[i].split_type = split_type_bit;
3141 pDimensionDefinitions[i].zone_size = 0;
3142 }
3143 else { // active dimension
3144 pDimensionDefinitions[i].dimension = dimension;
3145 pDimensionDefinitions[i].bits = bits;
3146 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
3147 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
3148 pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
3149 Dimensions++;
3150
3151 // if this is a layer dimension, remember the amount of layers
3152 if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
3153 }
3154 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
3155 }
3156 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
3157
3158 // if there's a velocity dimension and custom velocity zone splits are used,
3159 // update the VelocityTables in the dimension regions
3160 UpdateVelocityTable();
3161
3162 // jump to start of the wave pool indices (if not already there)
3163 if (file->pVersion && file->pVersion->major == 3)
3164 _3lnk->SetPos(68); // version 3 has a different 3lnk structure
3165 else
3166 _3lnk->SetPos(44);
3167
3168 // load sample references (if auto loading is enabled)
3169 if (file->GetAutoLoad()) {
3170 for (uint i = 0; i < DimensionRegions; i++) {
3171 uint32_t wavepoolindex = _3lnk->ReadUint32();
3172 if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
3173 }
3174 GetSample(); // load global region sample reference
3175 }
3176 } else {
3177 DimensionRegions = 0;
3178 for (int i = 0 ; i < 8 ; i++) {
3179 pDimensionDefinitions[i].dimension = dimension_none;
3180 pDimensionDefinitions[i].bits = 0;
3181 pDimensionDefinitions[i].zones = 0;
3182 }
3183 }
3184
3185 // make sure there is at least one dimension region
3186 if (!DimensionRegions) {
3187 RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
3188 if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
3189 RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
3190 pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
3191 DimensionRegions = 1;
3192 }
3193 }
3194
3195 /**
3196 * Apply Region settings and all its DimensionRegions to the respective
3197 * RIFF chunks. You have to call File::Save() to make changes persistent.
3198 *
3199 * Usually there is absolutely no need to call this method explicitly.
3200 * It will be called automatically when File::Save() was called.
3201 *
3202 * @param pProgress - callback function for progress notification
3203 * @throws gig::Exception if samples cannot be dereferenced
3204 */
3205 void Region::UpdateChunks(progress_t* pProgress) {
3206 // in the gig format we don't care about the Region's sample reference
3207 // but we still have to provide some existing one to not corrupt the
3208 // file, so to avoid the latter we simply always assign the sample of
3209 // the first dimension region of this region
3210 pSample = pDimensionRegions[0]->pSample;
3211
3212 // first update base class's chunks
3213 DLS::Region::UpdateChunks(pProgress);
3214
3215 // update dimension region's chunks
3216 for (int i = 0; i < DimensionRegions; i++) {
3217 pDimensionRegions[i]->UpdateChunks(pProgress);
3218 }
3219
3220 File* pFile = (File*) GetParent()->GetParent();
3221 bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
3222 const int iMaxDimensions = version3 ? 8 : 5;
3223 const int iMaxDimensionRegions = version3 ? 256 : 32;
3224
3225 // make sure '3lnk' chunk exists
3226 RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3227 if (!_3lnk) {
3228 const int _3lnkChunkSize = version3 ? 1092 : 172;
3229 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3230 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3231
3232 // move 3prg to last position
3233 pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), (RIFF::Chunk*)NULL);
3234 }
3235
3236 // update dimension definitions in '3lnk' chunk
3237 uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3238 store32(&pData[0], DimensionRegions);
3239 int shift = 0;
3240 for (int i = 0; i < iMaxDimensions; i++) {
3241 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3242 pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3243 pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3244 pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3245 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3246 // next 3 bytes unknown, always zero?
3247
3248 shift += pDimensionDefinitions[i].bits;
3249 }
3250
3251 // update wave pool table in '3lnk' chunk
3252 const int iWavePoolOffset = version3 ? 68 : 44;
3253 for (uint i = 0; i < iMaxDimensionRegions; i++) {
3254 int iWaveIndex = -1;
3255 if (i < DimensionRegions) {
3256 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
3257 File::SampleList::iterator iter = pFile->pSamples->begin();
3258 File::SampleList::iterator end = pFile->pSamples->end();
3259 for (int index = 0; iter != end; ++iter, ++index) {
3260 if (*iter == pDimensionRegions[i]->pSample) {
3261 iWaveIndex = index;
3262 break;
3263 }
3264 }
3265 }
3266 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3267 }
3268 }
3269
3270 void Region::LoadDimensionRegions(RIFF::List* rgn) {
3271 RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
3272 if (_3prg) {
3273 int dimensionRegionNr = 0;
3274 RIFF::List* _3ewl = _3prg->GetFirstSubList();
3275 while (_3ewl) {
3276 if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3277 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3278 dimensionRegionNr++;
3279 }
3280 _3ewl = _3prg->GetNextSubList();
3281 }
3282 if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
3283 }
3284 }
3285
3286 void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3287 // update KeyRange struct and make sure regions are in correct order
3288 DLS::Region::SetKeyRange(Low, High);
3289 // update Region key table for fast lookup
3290 ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3291 }
3292
3293 void Region::UpdateVelocityTable() {
3294 // get velocity dimension's index
3295 int veldim = -1;
3296 for (int i = 0 ; i < Dimensions ; i++) {
3297 if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
3298 veldim = i;
3299 break;
3300 }
3301 }
3302 if (veldim == -1) return;
3303
3304 int step = 1;
3305 for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3306 int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
3307
3308 // loop through all dimension regions for all dimensions except the velocity dimension
3309 int dim[8] = { 0 };
3310 for (int i = 0 ; i < DimensionRegions ; i++) {
3311 const int end = i + step * pDimensionDefinitions[veldim].zones;
3312
3313 // create a velocity table for all cases where the velocity zone is zero
3314 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3315 pDimensionRegions[i]->VelocityUpperLimit) {
3316 // create the velocity table
3317 uint8_t* table = pDimensionRegions[i]->VelocityTable;
3318 if (!table) {
3319 table = new uint8_t[128];
3320 pDimensionRegions[i]->VelocityTable = table;
3321 }
3322 int tableidx = 0;
3323 int velocityZone = 0;
3324 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
3325 for (int k = i ; k < end ; k += step) {
3326 DimensionRegion *d = pDimensionRegions[k];
3327 for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
3328 velocityZone++;
3329 }
3330 } else { // gig2
3331 for (int k = i ; k < end ; k += step) {
3332 DimensionRegion *d = pDimensionRegions[k];
3333 for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
3334 velocityZone++;
3335 }
3336 }
3337 } else {
3338 if (pDimensionRegions[i]->VelocityTable) {
3339 delete[] pDimensionRegions[i]->VelocityTable;
3340 pDimensionRegions[i]->VelocityTable = 0;
3341 }
3342 }
3343
3344 // jump to the next case where the velocity zone is zero
3345 int j;
3346 int shift = 0;
3347 for (j = 0 ; j < Dimensions ; j++) {
3348 if (j == veldim) i += skipveldim; // skip velocity dimension
3349 else {
3350 dim[j]++;
3351 if (dim[j] < pDimensionDefinitions[j].zones) break;
3352 else {
3353 // skip unused dimension regions
3354 dim[j] = 0;
3355 i += ((1 << pDimensionDefinitions[j].bits) -
3356 pDimensionDefinitions[j].zones) << shift;
3357 }
3358 }
3359 shift += pDimensionDefinitions[j].bits;
3360 }
3361 if (j == Dimensions) break;
3362 }
3363 }
3364
3365 /** @brief Einstein would have dreamed of it - create a new dimension.
3366 *
3367 * Creates a new dimension with the dimension definition given by
3368 * \a pDimDef. The appropriate amount of DimensionRegions will be created.
3369 * There is a hard limit of dimensions and total amount of "bits" all
3370 * dimensions can have. This limit is dependant to what gig file format
3371 * version this file refers to. The gig v2 (and lower) format has a
3372 * dimension limit and total amount of bits limit of 5, whereas the gig v3
3373 * format has a limit of 8.
3374 *
3375 * @param pDimDef - defintion of the new dimension
3376 * @throws gig::Exception if dimension of the same type exists already
3377 * @throws gig::Exception if amount of dimensions or total amount of
3378 * dimension bits limit is violated
3379 */
3380 void Region::AddDimension(dimension_def_t* pDimDef) {
3381 // some initial sanity checks of the given dimension definition
3382 if (pDimDef->zones < 2)
3383 throw gig::Exception("Could not add new dimension, amount of requested zones must always be at least two");
3384 if (pDimDef->bits < 1)
3385 throw gig::Exception("Could not add new dimension, amount of requested requested zone bits must always be at least one");
3386 if (pDimDef->dimension == dimension_samplechannel) {
3387 if (pDimDef->zones != 2)
3388 throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zones must always be 2 for this dimension type");
3389 if (pDimDef->bits != 1)
3390 throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zone bits must always be 1 for this dimension type");
3391 }
3392
3393 // check if max. amount of dimensions reached
3394 File* file = (File*) GetParent()->GetParent();
3395 const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
3396 if (Dimensions >= iMaxDimensions)
3397 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
3398 // check if max. amount of dimension bits reached
3399 int iCurrentBits = 0;
3400 for (int i = 0; i < Dimensions; i++)
3401 iCurrentBits += pDimensionDefinitions[i].bits;
3402 if (iCurrentBits >= iMaxDimensions)
3403 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
3404 const int iNewBits = iCurrentBits + pDimDef->bits;
3405 if (iNewBits > iMaxDimensions)
3406 throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
3407 // check if there's already a dimensions of the same type
3408 for (int i = 0; i < Dimensions; i++)
3409 if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3410 throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3411
3412 // pos is where the new dimension should be placed, normally
3413 // last in list, except for the samplechannel dimension which
3414 // has to be first in list
3415 int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3416 int bitpos = 0;
3417 for (int i = 0 ; i < pos ; i++)
3418 bitpos += pDimensionDefinitions[i].bits;
3419
3420 // make room for the new dimension
3421 for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3422 for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3423 for (int j = Dimensions ; j > pos ; j--) {
3424 pDimensionRegions[i]->DimensionUpperLimits[j] =
3425 pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3426 }
3427 }
3428
3429 // assign definition of new dimension
3430 pDimensionDefinitions[pos] = *pDimDef;
3431
3432 // auto correct certain dimension definition fields (where possible)
3433 pDimensionDefinitions[pos].split_type =
3434 __resolveSplitType(pDimensionDefinitions[pos].dimension);
3435 pDimensionDefinitions[pos].zone_size =
3436 __resolveZoneSize(pDimensionDefinitions[pos]);
3437
3438 // create new dimension region(s) for this new dimension, and make
3439 // sure that the dimension regions are placed correctly in both the
3440 // RIFF list and the pDimensionRegions array
3441 RIFF::Chunk* moveTo = NULL;
3442 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3443 for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3444 for (int k = 0 ; k < (1 << bitpos) ; k++) {
3445 pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3446 }
3447 for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3448 for (int k = 0 ; k < (1 << bitpos) ; k++) {
3449 RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3450 if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3451 // create a new dimension region and copy all parameter values from
3452 // an existing dimension region
3453 pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3454 new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3455
3456 DimensionRegions++;
3457 }
3458 }
3459 moveTo = pDimensionRegions[i]->pParentList;
3460 }
3461
3462 // initialize the upper limits for this dimension
3463 int mask = (1 << bitpos) - 1;
3464 for (int z = 0 ; z < pDimDef->zones ; z++) {
3465 uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3466 for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3467 pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3468 (z << bitpos) |
3469 (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3470 }
3471 }
3472
3473 Dimensions++;
3474
3475 // if this is a layer dimension, update 'Layers' attribute
3476 if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
3477
3478 UpdateVelocityTable();
3479 }
3480
3481 /** @brief Delete an existing dimension.
3482 *
3483 * Deletes the dimension given by \a pDimDef and deletes all respective
3484 * dimension regions, that is all dimension regions where the dimension's
3485 * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
3486 * for example this would delete all dimension regions for the case(s)
3487 * where the sustain pedal is pressed down.
3488 *
3489 * @param pDimDef - dimension to delete
3490 * @throws gig::Exception if given dimension cannot be found
3491 */
3492 void Region::DeleteDimension(dimension_def_t* pDimDef) {
3493 // get dimension's index
3494 int iDimensionNr = -1;
3495 for (int i = 0; i < Dimensions; i++) {
3496 if (&pDimensionDefinitions[i] == pDimDef) {
3497 iDimensionNr = i;
3498 break;
3499 }
3500 }
3501 if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
3502
3503 // get amount of bits below the dimension to delete
3504 int iLowerBits = 0;
3505 for (int i = 0; i < iDimensionNr; i++)
3506 iLowerBits += pDimensionDefinitions[i].bits;
3507
3508 // get amount ot bits above the dimension to delete
3509 int iUpperBits = 0;
3510 for (int i = iDimensionNr + 1; i < Dimensions; i++)
3511 iUpperBits += pDimensionDefinitions[i].bits;
3512
3513 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3514
3515 // delete dimension regions which belong to the given dimension
3516 // (that is where the dimension's bit > 0)
3517 for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
3518 for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
3519 for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
3520 int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3521 iObsoleteBit << iLowerBits |
3522 iLowerBit;
3523
3524 _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3525 delete pDimensionRegions[iToDelete];
3526 pDimensionRegions[iToDelete] = NULL;
3527 DimensionRegions--;
3528 }
3529 }
3530 }
3531
3532 // defrag pDimensionRegions array
3533 // (that is remove the NULL spaces within the pDimensionRegions array)
3534 for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
3535 if (!pDimensionRegions[iTo]) {
3536 if (iFrom <= iTo) iFrom = iTo + 1;
3537 while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
3538 if (iFrom < 256 && pDimensionRegions[iFrom]) {
3539 pDimensionRegions[iTo] = pDimensionRegions[iFrom];
3540 pDimensionRegions[iFrom] = NULL;
3541 }
3542 }
3543 }
3544
3545 // remove the this dimension from the upper limits arrays
3546 for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3547 DimensionRegion* d = pDimensionRegions[j];
3548 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3549 d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3550 }
3551 d->DimensionUpperLimits[Dimensions - 1] = 127;
3552 }
3553
3554 // 'remove' dimension definition
3555 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3556 pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
3557 }
3558 pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
3559 pDimensionDefinitions[Dimensions - 1].bits = 0;
3560 pDimensionDefinitions[Dimensions - 1].zones = 0;
3561
3562 Dimensions--;
3563
3564 // if this was a layer dimension, update 'Layers' attribute
3565 if (pDimDef->dimension == dimension_layer) Layers = 1;
3566 }
3567
3568 /** @brief Delete one split zone of a dimension (decrement zone amount).
3569 *
3570 * Instead of deleting an entire dimensions, this method will only delete
3571 * one particular split zone given by @a zone of the Region's dimension
3572 * given by @a type. So this method will simply decrement the amount of
3573 * zones by one of the dimension in question. To be able to do that, the
3574 * respective dimension must exist on this Region and it must have at least
3575 * 3 zones. All DimensionRegion objects associated with the zone will be
3576 * deleted.
3577 *
3578 * @param type - identifies the dimension where a zone shall be deleted
3579 * @param zone - index of the dimension split zone that shall be deleted
3580 * @throws gig::Exception if requested zone could not be deleted
3581 */
3582 void Region::DeleteDimensionZone(dimension_t type, int zone) {
3583 dimension_def_t* oldDef = GetDimensionDefinition(type);
3584 if (!oldDef)
3585 throw gig::Exception("Could not delete dimension zone, no such dimension of given type");
3586 if (oldDef->zones <= 2)
3587 throw gig::Exception("Could not delete dimension zone, because it would end up with only one zone.");
3588 if (zone < 0 || zone >= oldDef->zones)
3589 throw gig::Exception("Could not delete dimension zone, requested zone index out of bounds.");
3590
3591 const int newZoneSize = oldDef->zones - 1;
3592
3593 // create a temporary Region which just acts as a temporary copy
3594 // container and will be deleted at the end of this function and will
3595 // also not be visible through the API during this process
3596 gig::Region* tempRgn = NULL;
3597 {
3598 // adding these temporary chunks is probably not even necessary
3599 Instrument* instr = static_cast<Instrument*>(GetParent());
3600 RIFF::List* pCkInstrument = instr->pCkInstrument;
3601 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3602 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3603 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3604 tempRgn = new Region(instr, rgn);
3605 }
3606
3607 // copy this region's dimensions (with already the dimension split size
3608 // requested by the arguments of this method call) to the temporary
3609 // region, and don't use Region::CopyAssign() here for this task, since
3610 // it would also alter fast lookup helper variables here and there
3611 dimension_def_t newDef;
3612 for (int i = 0; i < Dimensions; ++i) {
3613 dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3614 // is this the dimension requested by the method arguments? ...
3615 if (def.dimension == type) { // ... if yes, decrement zone amount by one
3616 def.zones = newZoneSize;
3617 if ((1 << (def.bits - 1)) == def.zones) def.bits--;
3618 newDef = def;
3619 }
3620 tempRgn->AddDimension(&def);
3621 }
3622
3623 // find the dimension index in the tempRegion which is the dimension
3624 // type passed to this method (paranoidly expecting different order)
3625 int tempReducedDimensionIndex = -1;
3626 for (int d = 0; d < tempRgn->Dimensions; ++d) {
3627 if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3628 tempReducedDimensionIndex = d;
3629 break;
3630 }
3631 }
3632
3633 // copy dimension regions from this region to the temporary region
3634 for (int iDst = 0; iDst < 256; ++iDst) {
3635 DimensionRegion* dstDimRgn = tempRgn->pDimensionRegions[iDst];
3636 if (!dstDimRgn) continue;
3637 std::map<dimension_t,int> dimCase;
3638 bool isValidZone = true;
3639 for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3640 const int dstBits = tempRgn->pDimensionDefinitions[d].bits;
3641 dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3642 (iDst >> baseBits) & ((1 << dstBits) - 1);
3643 baseBits += dstBits;
3644 // there are also DimensionRegion objects of unused zones, skip them
3645 if (dimCase[tempRgn->pDimensionDefinitions[d].dimension] >= tempRgn->pDimensionDefinitions[d].zones) {
3646 isValidZone = false;
3647 break;
3648 }
3649 }
3650 if (!isValidZone) continue;
3651 // a bit paranoid: cope with the chance that the dimensions would
3652 // have different order in source and destination regions
3653 const bool isLastZone = (dimCase[type] == newZoneSize - 1);
3654 if (dimCase[type] >= zone) dimCase[type]++;
3655 DimensionRegion* srcDimRgn = GetDimensionRegionByBit(dimCase);
3656 dstDimRgn->CopyAssign(srcDimRgn);
3657 // if this is the upper most zone of the dimension passed to this
3658 // method, then correct (raise) its upper limit to 127
3659 if (newDef.split_type == split_type_normal && isLastZone)
3660 dstDimRgn->DimensionUpperLimits[tempReducedDimensionIndex] = 127;
3661 }
3662
3663 // now tempRegion's dimensions and DimensionRegions basically reflect
3664 // what we wanted to get for this actual Region here, so we now just
3665 // delete and recreate the dimension in question with the new amount
3666 // zones and then copy back from tempRegion
3667 DeleteDimension(oldDef);
3668 AddDimension(&newDef);
3669 for (int iSrc = 0; iSrc < 256; ++iSrc) {
3670 DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3671 if (!srcDimRgn) continue;
3672 std::map<dimension_t,int> dimCase;
3673 for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3674 const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3675 dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3676 (iSrc >> baseBits) & ((1 << srcBits) - 1);
3677 baseBits += srcBits;
3678 }
3679 // a bit paranoid: cope with the chance that the dimensions would
3680 // have different order in source and destination regions
3681 DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3682 if (!dstDimRgn) continue;
3683 dstDimRgn->CopyAssign(srcDimRgn);
3684 }
3685
3686 // delete temporary region
3687 delete tempRgn;
3688
3689 UpdateVelocityTable();
3690 }
3691
3692 /** @brief Divide split zone of a dimension in two (increment zone amount).
3693 *
3694 * This will increment the amount of zones for the dimension (given by
3695 * @a type) by one. It will do so by dividing the zone (given by @a zone)
3696 * in the middle of its zone range in two. So the two zones resulting from
3697 * the zone being splitted, will be an equivalent copy regarding all their
3698 * articulation informations and sample reference. The two zones will only
3699 * differ in their zone's upper limit
3700 * (DimensionRegion::DimensionUpperLimits).
3701 *
3702 * @param type - identifies the dimension where a zone shall be splitted
3703 * @param zone - index of the dimension split zone that shall be splitted
3704 * @throws gig::Exception if requested zone could not be splitted
3705 */
3706 void Region::SplitDimensionZone(dimension_t type, int zone) {
3707 dimension_def_t* oldDef = GetDimensionDefinition(type);
3708 if (!oldDef)
3709 throw gig::Exception("Could not split dimension zone, no such dimension of given type");
3710 if (zone < 0 || zone >= oldDef->zones)
3711 throw gig::Exception("Could not split dimension zone, requested zone index out of bounds.");
3712
3713 const int newZoneSize = oldDef->zones + 1;
3714
3715 // create a temporary Region which just acts as a temporary copy
3716 // container and will be deleted at the end of this function and will
3717 // also not be visible through the API during this process
3718 gig::Region* tempRgn = NULL;
3719 {
3720 // adding these temporary chunks is probably not even necessary
3721 Instrument* instr = static_cast<Instrument*>(GetParent());
3722 RIFF::List* pCkInstrument = instr->pCkInstrument;
3723 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3724 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3725 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3726 tempRgn = new Region(instr, rgn);
3727 }
3728
3729 // copy this region's dimensions (with already the dimension split size
3730 // requested by the arguments of this method call) to the temporary
3731 // region, and don't use Region::CopyAssign() here for this task, since
3732 // it would also alter fast lookup helper variables here and there
3733 dimension_def_t newDef;
3734 for (int i = 0; i < Dimensions; ++i) {
3735 dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3736 // is this the dimension requested by the method arguments? ...
3737 if (def.dimension == type) { // ... if yes, increment zone amount by one
3738 def.zones = newZoneSize;
3739 if ((1 << oldDef->bits) < newZoneSize) def.bits++;
3740 newDef = def;
3741 }
3742 tempRgn->AddDimension(&def);
3743 }
3744
3745 // find the dimension index in the tempRegion which is the dimension
3746 // type passed to this method (paranoidly expecting different order)
3747 int tempIncreasedDimensionIndex = -1;
3748 for (int d = 0; d < tempRgn->Dimensions; ++d) {
3749 if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3750 tempIncreasedDimensionIndex = d;
3751 break;
3752 }
3753 }
3754
3755 // copy dimension regions from this region to the temporary region
3756 for (int iSrc = 0; iSrc < 256; ++iSrc) {
3757 DimensionRegion* srcDimRgn = pDimensionRegions[iSrc];
3758 if (!srcDimRgn) continue;
3759 std::map<dimension_t,int> dimCase;
3760 bool isValidZone = true;
3761 for (int d = 0, baseBits = 0; d < Dimensions; ++d) {
3762 const int srcBits = pDimensionDefinitions[d].bits;
3763 dimCase[pDimensionDefinitions[d].dimension] =
3764 (iSrc >> baseBits) & ((1 << srcBits) - 1);
3765 // there are also DimensionRegion objects for unused zones, skip them
3766 if (dimCase[pDimensionDefinitions[d].dimension] >= pDimensionDefinitions[d].zones) {
3767 isValidZone = false;
3768 break;
3769 }
3770 baseBits += srcBits;
3771 }
3772 if (!isValidZone) continue;
3773 // a bit paranoid: cope with the chance that the dimensions would
3774 // have different order in source and destination regions
3775 if (dimCase[type] > zone) dimCase[type]++;
3776 DimensionRegion* dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3777 dstDimRgn->CopyAssign(srcDimRgn);
3778 // if this is the requested zone to be splitted, then also copy
3779 // the source DimensionRegion to the newly created target zone
3780 // and set the old zones upper limit lower
3781 if (dimCase[type] == zone) {
3782 // lower old zones upper limit
3783 if (newDef.split_type == split_type_normal) {
3784 const int high =
3785 dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex];
3786 int low = 0;
3787 if (zone > 0) {
3788 std::map<dimension_t,int> lowerCase = dimCase;
3789 lowerCase[type]--;
3790 DimensionRegion* dstDimRgnLow = tempRgn->GetDimensionRegionByBit(lowerCase);
3791 low = dstDimRgnLow->DimensionUpperLimits[tempIncreasedDimensionIndex];
3792 }
3793 dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex] = low + (high - low) / 2;
3794 }
3795 // fill the newly created zone of the divided zone as well
3796 dimCase[type]++;
3797 dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3798 dstDimRgn->CopyAssign(srcDimRgn);
3799 }
3800 }
3801
3802 // now tempRegion's dimensions and DimensionRegions basically reflect
3803 // what we wanted to get for this actual Region here, so we now just
3804 // delete and recreate the dimension in question with the new amount
3805 // zones and then copy back from tempRegion
3806 DeleteDimension(oldDef);
3807 AddDimension(&newDef);
3808 for (int iSrc = 0; iSrc < 256; ++iSrc) {
3809 DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3810 if (!srcDimRgn) continue;
3811 std::map<dimension_t,int> dimCase;
3812 for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3813 const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3814 dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3815 (iSrc >> baseBits) & ((1 << srcBits) - 1);
3816 baseBits += srcBits;
3817 }
3818 // a bit paranoid: cope with the chance that the dimensions would
3819 // have different order in source and destination regions
3820 DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3821 if (!dstDimRgn) continue;
3822 dstDimRgn->CopyAssign(srcDimRgn);
3823 }
3824
3825 // delete temporary region
3826 delete tempRgn;
3827
3828 UpdateVelocityTable();
3829 }
3830
3831 /** @brief Change type of an existing dimension.
3832 *
3833 * Alters the dimension type of a dimension already existing on this
3834 * region. If there is currently no dimension on this Region with type
3835 * @a oldType, then this call with throw an Exception. Likewise there are
3836 * cases where the requested dimension type cannot be performed. For example
3837 * if the new dimension type shall be gig::dimension_samplechannel, and the
3838 * current dimension has more than 2 zones. In such cases an Exception is
3839 * thrown as well.
3840 *
3841 * @param oldType - identifies the existing dimension to be changed
3842 * @param newType - to which dimension type it should be changed to
3843 * @throws gig::Exception if requested change cannot be performed
3844 */
3845 void Region::SetDimensionType(dimension_t oldType, dimension_t newType) {
3846 if (oldType == newType) return;
3847 dimension_def_t* def = GetDimensionDefinition(oldType);
3848 if (!def)
3849 throw gig::Exception("No dimension with provided old dimension type exists on this region");
3850 if (newType == dimension_samplechannel && def->zones != 2)
3851 throw gig::Exception("Cannot change to dimension type 'sample channel', because existing dimension does not have 2 zones");
3852 if (GetDimensionDefinition(newType))
3853 throw gig::Exception("There is already a dimension with requested new dimension type on this region");
3854 def->dimension = newType;
3855 def->split_type = __resolveSplitType(newType);
3856 }
3857
3858 DimensionRegion* Region::GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase) {
3859 uint8_t bits[8] = {};
3860 for (std::map<dimension_t,int>::const_iterator it = DimCase.begin();
3861 it != DimCase.end(); ++it)
3862 {
3863 for (int d = 0; d < Dimensions; ++d) {
3864 if (pDimensionDefinitions[d].dimension == it->first) {
3865 bits[d] = it->second;
3866 goto nextDimCaseSlice;
3867 }
3868 }
3869 assert(false); // do crash ... too harsh maybe ? ignore it instead ?
3870 nextDimCaseSlice:
3871 ; // noop
3872 }
3873 return GetDimensionRegionByBit(bits);
3874 }
3875
3876 /**
3877 * Searches in the current Region for a dimension of the given dimension
3878 * type and returns the precise configuration of that dimension in this
3879 * Region.
3880 *
3881 * @param type - dimension type of the sought dimension
3882 * @returns dimension definition or NULL if there is no dimension with
3883 * sought type in this Region.
3884 */
3885 dimension_def_t* Region::GetDimensionDefinition(dimension_t type) {
3886 for (int i = 0; i < Dimensions; ++i)
3887 if (pDimensionDefinitions[i].dimension == type)
3888 return &pDimensionDefinitions[i];
3889 return NULL;
3890 }
3891
3892 Region::~Region() {
3893 for (int i = 0; i < 256; i++) {
3894 if (pDimensionRegions[i]) delete pDimensionRegions[i];
3895 }
3896 }
3897
3898 /**
3899 * Use this method in your audio engine to get the appropriate dimension
3900 * region with it's articulation data for the current situation. Just
3901 * call the method with the current MIDI controller values and you'll get
3902 * the DimensionRegion with the appropriate articulation data for the
3903 * current situation (for this Region of course only). To do that you'll
3904 * first have to look which dimensions with which controllers and in
3905 * which order are defined for this Region when you load the .gig file.
3906 * Special cases are e.g. layer or channel dimensions where you just put
3907 * in the index numbers instead of a MIDI controller value (means 0 for
3908 * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
3909 * etc.).
3910 *
3911 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
3912 * @returns adress to the DimensionRegion for the given situation
3913 * @see pDimensionDefinitions
3914 * @see Dimensions
3915 */
3916 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
3917 uint8_t bits;
3918 int veldim = -1;
3919 int velbitpos = 0;
3920 int bitpos = 0;
3921 int dimregidx = 0;
3922 for (uint i = 0; i < Dimensions; i++) {
3923 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
3924 // the velocity dimension must be handled after the other dimensions
3925 veldim = i;
3926 velbitpos = bitpos;
3927 } else {
3928 switch (pDimensionDefinitions[i].split_type) {
3929 case split_type_normal:
3930 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
3931 // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
3932 for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
3933 if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
3934 }
3935 } else {
3936 // gig2: evenly sized zones
3937 bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
3938 }
3939 break;
3940 case split_type_bit: // the value is already the sought dimension bit number
3941 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
3942 bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
3943 break;
3944 }
3945 dimregidx |= bits << bitpos;
3946 }
3947 bitpos += pDimensionDefinitions[i].bits;
3948 }
3949 DimensionRegion* dimreg = pDimensionRegions[dimregidx & 255];
3950 if (!dimreg) return NULL;
3951 if (veldim != -1) {
3952 // (dimreg is now the dimension region for the lowest velocity)
3953 if (dimreg->VelocityTable) // custom defined zone ranges
3954 bits = dimreg->VelocityTable[DimValues[veldim] & 127];
3955 else // normal split type
3956 bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
3957
3958 const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
3959 dimregidx |= (bits & limiter_mask) << velbitpos;
3960 dimreg = pDimensionRegions[dimregidx & 255];
3961 }
3962 return dimreg;
3963 }
3964
3965 int Region::GetDimensionRegionIndexByValue(const uint DimValues[8]) {
3966 uint8_t bits;
3967 int veldim = -1;
3968 int velbitpos = 0;
3969 int bitpos = 0;
3970 int dimregidx = 0;
3971 for (uint i = 0; i < Dimensions; i++) {
3972 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
3973 // the velocity dimension must be handled after the other dimensions
3974 veldim = i;
3975 velbitpos = bitpos;
3976 } else {
3977 switch (pDimensionDefinitions[i].split_type) {
3978 case split_type_normal:
3979 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
3980 // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
3981 for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
3982 if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
3983 }
3984 } else {
3985 // gig2: evenly sized zones
3986 bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
3987 }
3988 break;
3989 case split_type_bit: // the value is already the sought dimension bit number
3990 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
3991 bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
3992 break;
3993 }
3994 dimregidx |= bits << bitpos;
3995 }
3996 bitpos += pDimensionDefinitions[i].bits;
3997 }
3998 dimregidx &= 255;
3999 DimensionRegion* dimreg = pDimensionRegions[dimregidx];
4000 if (!dimreg) return -1;
4001 if (veldim != -1) {
4002 // (dimreg is now the dimension region for the lowest velocity)
4003 if (dimreg->VelocityTable) // custom defined zone ranges
4004 bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4005 else // normal split type
4006 bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4007
4008 const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4009 dimregidx |= (bits & limiter_mask) << velbitpos;
4010 dimregidx &= 255;
4011 }
4012 return dimregidx;
4013 }
4014
4015 /**
4016 * Returns the appropriate DimensionRegion for the given dimension bit
4017 * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
4018 * instead of calling this method directly!
4019 *
4020 * @param DimBits Bit numbers for dimension 0 to 7
4021 * @returns adress to the DimensionRegion for the given dimension
4022 * bit numbers
4023 * @see GetDimensionRegionByValue()
4024 */
4025 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
4026 return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
4027 << pDimensionDefinitions[5].bits | DimBits[5])
4028 << pDimensionDefinitions[4].bits | DimBits[4])
4029 << pDimensionDefinitions[3].bits | DimBits[3])
4030 << pDimensionDefinitions[2].bits | DimBits[2])
4031 << pDimensionDefinitions[1].bits | DimBits[1])
4032 << pDimensionDefinitions[0].bits | DimBits[0]];
4033 }
4034
4035 /**
4036 * Returns pointer address to the Sample referenced with this region.
4037 * This is the global Sample for the entire Region (not sure if this is
4038 * actually used by the Gigasampler engine - I would only use the Sample
4039 * referenced by the appropriate DimensionRegion instead of this sample).
4040 *
4041 * @returns address to Sample or NULL if there is no reference to a
4042 * sample saved in the .gig file
4043 */
4044 Sample* Region::GetSample() {
4045 if (pSample) return static_cast<gig::Sample*>(pSample);
4046 else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
4047 }
4048
4049 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
4050 if ((int32_t)WavePoolTableIndex == -1) return NULL;
4051 File* file = (File*) GetParent()->GetParent();
4052 if (!file->pWavePoolTable) return NULL;
4053 // for new files or files >= 2 GB use 64 bit wave pool offsets
4054 if (file->pRIFF->IsNew() || (file->pRIFF->GetCurrentFileSize() >> 31)) {
4055 // use 64 bit wave pool offsets (treating this as large file)
4056 uint64_t soughtoffset =
4057 uint64_t(file->pWavePoolTable[WavePoolTableIndex]) |
4058 uint64_t(file->pWavePoolTableHi[WavePoolTableIndex]) << 32;
4059 Sample* sample = file->GetFirstSample(pProgress);
4060 while (sample) {
4061 if (sample->ullWavePoolOffset == soughtoffset)
4062 return static_cast<gig::Sample*>(sample);
4063 sample = file->GetNextSample();
4064 }
4065 } else {
4066 // use extension files and 32 bit wave pool offsets
4067 file_offset_t soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
4068 file_offset_t soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
4069 Sample* sample = file->GetFirstSample(pProgress);
4070 while (sample) {
4071 if (sample->ullWavePoolOffset == soughtoffset &&
4072 sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
4073 sample = file->GetNextSample();
4074 }
4075 }
4076 return NULL;
4077 }
4078
4079 /**
4080 * Make a (semi) deep copy of the Region object given by @a orig
4081 * and assign it to this object.
4082 *
4083 * Note that all sample pointers referenced by @a orig are simply copied as
4084 * memory address. Thus the respective samples are shared, not duplicated!
4085 *
4086 * @param orig - original Region object to be copied from
4087 */
4088 void Region::CopyAssign(const Region* orig) {
4089 CopyAssign(orig, NULL);
4090 }
4091
4092 /**
4093 * Make a (semi) deep copy of the Region object given by @a orig and
4094 * assign it to this object
4095 *
4096 * @param mSamples - crosslink map between the foreign file's samples and
4097 * this file's samples
4098 */
4099 void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
4100 // handle base classes
4101 DLS::Region::CopyAssign(orig);
4102
4103 if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
4104 pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
4105 }
4106
4107 // handle own member variables
4108 for (int i = Dimensions - 1; i >= 0; --i) {
4109 DeleteDimension(&pDimensionDefinitions[i]);
4110 }
4111 Layers = 0; // just to be sure
4112 for (int i = 0; i < orig->Dimensions; i++) {
4113 // we need to copy the dim definition here, to avoid the compiler
4114 // complaining about const-ness issue
4115 dimension_def_t def = orig->pDimensionDefinitions[i];
4116 AddDimension(&def);
4117 }
4118 for (int i = 0; i < 256; i++) {
4119 if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
4120 pDimensionRegions[i]->CopyAssign(
4121 orig->pDimensionRegions[i],
4122 mSamples
4123 );
4124 }
4125 }
4126 Layers = orig->Layers;
4127 }
4128
4129
4130 // *************** MidiRule ***************
4131 // *
4132
4133 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
4134 _3ewg->SetPos(36);
4135 Triggers = _3ewg->ReadUint8();
4136 _3ewg->SetPos(40);
4137 ControllerNumber = _3ewg->ReadUint8();
4138 _3ewg->SetPos(46);
4139 for (int i = 0 ; i < Triggers ; i++) {
4140 pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
4141 pTriggers[i].Descending = _3ewg->ReadUint8();
4142 pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
4143 pTriggers[i].Key = _3ewg->ReadUint8();
4144 pTriggers[i].NoteOff = _3ewg->ReadUint8();
4145 pTriggers[i].Velocity = _3ewg->ReadUint8();
4146 pTriggers[i].OverridePedal = _3ewg->ReadUint8();
4147 _3ewg->ReadUint8();
4148 }
4149 }
4150
4151 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
4152 ControllerNumber(0),
4153 Triggers(0) {
4154 }
4155
4156 void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
4157 pData[32] = 4;
4158 pData[33] = 16;
4159 pData[36] = Triggers;
4160 pData[40] = ControllerNumber;
4161 for (int i = 0 ; i < Triggers ; i++) {
4162 pData[46 + i * 8] = pTriggers[i].TriggerPoint;
4163 pData[47 + i * 8] = pTriggers[i].Descending;
4164 pData[48 + i * 8] = pTriggers[i].VelSensitivity;
4165 pData[49 + i * 8] = pTriggers[i].Key;
4166 pData[50 + i * 8] = pTriggers[i].NoteOff;
4167 pData[51 + i * 8] = pTriggers[i].Velocity;
4168 pData[52 + i * 8] = pTriggers[i].OverridePedal;
4169 }
4170 }
4171
4172 MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
4173 _3ewg->SetPos(36);
4174 LegatoSamples = _3ewg->ReadUint8(); // always 12
4175 _3ewg->SetPos(40);
4176 BypassUseController = _3ewg->ReadUint8();
4177 BypassKey = _3ewg->ReadUint8();
4178 BypassController = _3ewg->ReadUint8();
4179 ThresholdTime = _3ewg->ReadUint16();
4180 _3ewg->ReadInt16();
4181 ReleaseTime = _3ewg->ReadUint16();
4182 _3ewg->ReadInt16();
4183 KeyRange.low = _3ewg->ReadUint8();
4184 KeyRange.high = _3ewg->ReadUint8();
4185 _3ewg->SetPos(64);
4186 ReleaseTriggerKey = _3ewg->ReadUint8();
4187 AltSustain1Key = _3ewg->ReadUint8();
4188 AltSustain2Key = _3ewg->ReadUint8();
4189 }
4190
4191 MidiRuleLegato::MidiRuleLegato() :
4192 LegatoSamples(12),
4193 BypassUseController(false),
4194 BypassKey(0),
4195 BypassController(1),
4196 ThresholdTime(20),
4197 ReleaseTime(20),
4198 ReleaseTriggerKey(0),
4199 AltSustain1Key(0),
4200 AltSustain2Key(0)
4201 {
4202 KeyRange.low = KeyRange.high = 0;
4203 }
4204
4205 void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
4206 pData[32] = 0;
4207 pData[33] = 16;
4208 pData[36] = LegatoSamples;
4209 pData[40] = BypassUseController;
4210 pData[41] = BypassKey;
4211 pData[42] = BypassController;
4212 store16(&pData[43], ThresholdTime);
4213 store16(&pData[47], ReleaseTime);
4214 pData[51] = KeyRange.low;
4215 pData[52] = KeyRange.high;
4216 pData[64] = ReleaseTriggerKey;
4217 pData[65] = AltSustain1Key;
4218 pData[66] = AltSustain2Key;
4219 }
4220
4221 MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
4222 _3ewg->SetPos(36);
4223 Articulations = _3ewg->ReadUint8();
4224 int flags = _3ewg->ReadUint8();
4225 Polyphonic = flags & 8;
4226 Chained = flags & 4;
4227 Selector = (flags & 2) ? selector_controller :
4228 (flags & 1) ? selector_key_switch : selector_none;
4229 Patterns = _3ewg->ReadUint8();
4230 _3ewg->ReadUint8(); // chosen row
4231 _3ewg->ReadUint8(); // unknown
4232 _3ewg->ReadUint8(); // unknown
4233 _3ewg->ReadUint8(); // unknown
4234 KeySwitchRange.low = _3ewg->ReadUint8();
4235 KeySwitchRange.high = _3ewg->ReadUint8();
4236 Controller = _3ewg->ReadUint8();
4237 PlayRange.low = _3ewg->ReadUint8();
4238 PlayRange.high = _3ewg->ReadUint8();
4239
4240 int n = std::min(int(Articulations), 32);
4241 for (int i = 0 ; i < n ; i++) {
4242 _3ewg->ReadString(pArticulations[i], 32);
4243 }
4244 _3ewg->SetPos(1072);
4245 n = std::min(int(Patterns), 32);
4246 for (int i = 0 ; i < n ; i++) {
4247 _3ewg->ReadString(pPatterns[i].Name, 16);
4248 pPatterns[i].Size = _3ewg->ReadUint8();
4249 _3ewg->Read(&pPatterns[i][0], 1, 32);
4250 }
4251 }
4252
4253 MidiRuleAlternator::MidiRuleAlternator() :
4254 Articulations(0),
4255 Patterns(0),
4256 Selector(selector_none),
4257 Controller(0),
4258 Polyphonic(false),
4259 Chained(false)
4260 {
4261 PlayRange.low = PlayRange.high = 0;
4262 KeySwitchRange.low = KeySwitchRange.high = 0;
4263 }
4264
4265 void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
4266 pData[32] = 3;
4267 pData[33] = 16;
4268 pData[36] = Articulations;
4269 pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
4270 (Selector == selector_controller ? 2 :
4271 (Selector == selector_key_switch ? 1 : 0));
4272 pData[38] = Patterns;
4273
4274 pData[43] = KeySwitchRange.low;
4275 pData[44] = KeySwitchRange.high;
4276 pData[45] = Controller;
4277 pData[46] = PlayRange.low;
4278 pData[47] = PlayRange.high;
4279
4280 char* str = reinterpret_cast<char*>(pData);
4281 int pos = 48;
4282 int n = std::min(int(Articulations), 32);
4283 for (int i = 0 ; i < n ; i++, pos += 32) {
4284 strncpy(&str[pos], pArticulations[i].c_str(), 32);
4285 }
4286
4287 pos = 1072;
4288 n = std::min(int(Patterns), 32);
4289 for (int i = 0 ; i < n ; i++, pos += 49) {
4290 strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
4291 pData[pos + 16] = pPatterns[i].Size;
4292 memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
4293 }
4294 }
4295
4296 // *************** Script ***************
4297 // *
4298
4299 Script::Script(ScriptGroup* group, RIFF::Chunk* ckScri) {
4300 pGroup = group;
4301 pChunk = ckScri;
4302 if (ckScri) { // object is loaded from file ...
4303 // read header
4304 uint32_t headerSize = ckScri->ReadUint32();
4305 Compression = (Compression_t) ckScri->ReadUint32();
4306 Encoding = (Encoding_t) ckScri->ReadUint32();
4307 Language = (Language_t) ckScri->ReadUint32();
4308 Bypass = (Language_t) ckScri->ReadUint32() & 1;
4309 crc = ckScri->ReadUint32();
4310 uint32_t nameSize = ckScri->ReadUint32();
4311 Name.resize(nameSize, ' ');
4312 for (int i = 0; i < nameSize; ++i)
4313 Name[i] = ckScri->ReadUint8();
4314 // to handle potential future extensions of the header
4315 ckScri->SetPos(sizeof(int32_t) + headerSize);
4316 // read actual script data
4317 uint32_t scriptSize = uint32_t(ckScri->GetSize() - ckScri->GetPos());
4318 data.resize(scriptSize);
4319 for (int i = 0; i < scriptSize; ++i)
4320 data[i] = ckScri->ReadUint8();
4321 } else { // this is a new script object, so just initialize it as such ...
4322 Compression = COMPRESSION_NONE;
4323 Encoding = ENCODING_ASCII;
4324 Language = LANGUAGE_NKSP;
4325 Bypass = false;
4326 crc = 0;
4327 Name = "Unnamed Script";
4328 }
4329 }
4330
4331 Script::~Script() {
4332 }
4333
4334 /**
4335 * Returns the current script (i.e. as source code) in text format.
4336 */
4337 String Script::GetScriptAsText() {
4338 String s;
4339 s.resize(data.size(), ' ');
4340 memcpy(&s[0], &data[0], data.size());
4341 return s;
4342 }
4343
4344 /**
4345 * Replaces the current script with the new script source code text given
4346 * by @a text.
4347 *
4348 * @param text - new script source code
4349 */
4350 void Script::SetScriptAsText(const String& text) {
4351 data.resize(text.size());
4352 memcpy(&data[0], &text[0], text.size());
4353 }
4354
4355 /**
4356 * Apply this script to the respective RIFF chunks. You have to call
4357 * File::Save() to make changes persistent.
4358 *
4359 * Usually there is absolutely no need to call this method explicitly.
4360 * It will be called automatically when File::Save() was called.
4361 *
4362 * @param pProgress - callback function for progress notification
4363 */
4364 void Script::UpdateChunks(progress_t* pProgress) {
4365 // recalculate CRC32 check sum
4366 __resetCRC(crc);
4367 __calculateCRC(&data[0], data.size(), crc);
4368 __finalizeCRC(crc);
4369 // make sure chunk exists and has the required size
4370 const file_offset_t chunkSize = (file_offset_t) 7*sizeof(int32_t) + Name.size() + data.size();
4371 if (!pChunk) pChunk = pGroup->pList->AddSubChunk(CHUNK_ID_SCRI, chunkSize);
4372 else pChunk->Resize(chunkSize);
4373 // fill the chunk data to be written to disk
4374 uint8_t* pData = (uint8_t*) pChunk->LoadChunkData();
4375 int pos = 0;
4376 store32(&pData[pos], uint32_t(6*sizeof(int32_t) + Name.size())); // total header size
4377 pos += sizeof(int32_t);
4378 store32(&pData[pos], Compression);
4379 pos += sizeof(int32_t);
4380 store32(&pData[pos], Encoding);
4381 pos += sizeof(int32_t);
4382 store32(&pData[pos], Language);
4383 pos += sizeof(int32_t);
4384 store32(&pData[pos], Bypass ? 1 : 0);
4385 pos += sizeof(int32_t);
4386 store32(&pData[pos], crc);
4387 pos += sizeof(int32_t);
4388 store32(&pData[pos], (uint32_t) Name.size());
4389 pos += sizeof(int32_t);
4390 for (int i = 0; i < Name.size(); ++i, ++pos)
4391 pData[pos] = Name[i];
4392 for (int i = 0; i < data.size(); ++i, ++pos)
4393 pData[pos] = data[i];
4394 }
4395
4396 /**
4397 * Move this script from its current ScriptGroup to another ScriptGroup
4398 * given by @a pGroup.
4399 *
4400 * @param pGroup - script's new group
4401 */
4402 void Script::SetGroup(ScriptGroup* pGroup) {
4403 if (this->pGroup == pGroup) return;
4404 if (pChunk)
4405 pChunk->GetParent()->MoveSubChunk(pChunk, pGroup->pList);
4406 this->pGroup = pGroup;
4407 }
4408
4409 /**
4410 * Returns the script group this script currently belongs to. Each script
4411 * is a member of exactly one ScriptGroup.
4412 *
4413 * @returns current script group
4414 */
4415 ScriptGroup* Script::GetGroup() const {
4416 return pGroup;
4417 }
4418
4419 /**
4420 * Make a (semi) deep copy of the Script object given by @a orig
4421 * and assign it to this object. Note: the ScriptGroup this Script
4422 * object belongs to remains untouched by this call.
4423 *
4424 * @param orig - original Script object to be copied from
4425 */
4426 void Script::CopyAssign(const Script* orig) {
4427 Name = orig->Name;
4428 Compression = orig->Compression;
4429 Encoding = orig->Encoding;
4430 Language = orig->Language;
4431 Bypass = orig->Bypass;
4432 data = orig->data;
4433 }
4434
4435 void Script::RemoveAllScriptReferences() {
4436 File* pFile = pGroup->pFile;
4437 for (int i = 0; pFile->GetInstrument(i); ++i) {
4438 Instrument* instr = pFile->GetInstrument(i);
4439 instr->RemoveScript(this);
4440 }
4441 }
4442
4443 // *************** ScriptGroup ***************
4444 // *
4445
4446 ScriptGroup::ScriptGroup(File* file, RIFF::List* lstRTIS) {
4447 pFile = file;
4448 pList = lstRTIS;
4449 pScripts = NULL;
4450 if (lstRTIS) {
4451 RIFF::Chunk* ckName = lstRTIS->GetSubChunk(CHUNK_ID_LSNM);
4452 ::LoadString(ckName, Name);
4453 } else {
4454 Name = "Default Group";
4455 }
4456 }
4457
4458 ScriptGroup::~ScriptGroup() {
4459 if (pScripts) {
4460 std::list<Script*>::iterator iter = pScripts->begin();
4461 std::list<Script*>::iterator end = pScripts->end();
4462 while (iter != end) {
4463 delete *iter;
4464 ++iter;
4465 }
4466 delete pScripts;
4467 }
4468 }
4469
4470 /**
4471 * Apply this script group to the respective RIFF chunks. You have to call
4472 * File::Save() to make changes persistent.
4473 *
4474 * Usually there is absolutely no need to call this method explicitly.
4475 * It will be called automatically when File::Save() was called.
4476 *
4477 * @param pProgress - callback function for progress notification
4478 */
4479 void ScriptGroup::UpdateChunks(progress_t* pProgress) {
4480 if (pScripts) {
4481 if (!pList)
4482 pList = pFile->pRIFF->GetSubList(LIST_TYPE_3LS)->AddSubList(LIST_TYPE_RTIS);
4483
4484 // now store the name of this group as <LSNM> chunk as subchunk of the <RTIS> list chunk
4485 ::SaveString(CHUNK_ID_LSNM, NULL, pList, Name, String("Unnamed Group"), true, 64);
4486
4487 for (std::list<Script*>::iterator it = pScripts->begin();
4488 it != pScripts->end(); ++it)
4489 {
4490 (*it)->UpdateChunks(pProgress);
4491 }
4492 }
4493 }
4494
4495 /** @brief Get instrument script.
4496 *
4497 * Returns the real-time instrument script with the given index.
4498 *
4499 * @param index - number of the sought script (0..n)
4500 * @returns sought script or NULL if there's no such script
4501 */
4502 Script* ScriptGroup::GetScript(uint index) {
4503 if (!pScripts) LoadScripts();
4504 std::list<Script*>::iterator it = pScripts->begin();
4505 for (uint i = 0; it != pScripts->end(); ++i, ++it)
4506 if (i == index) return *it;
4507 return NULL;
4508 }
4509
4510 /** @brief Add new instrument script.
4511 *
4512 * Adds a new real-time instrument script to the file. The script is not
4513 * actually used / executed unless it is referenced by an instrument to be
4514 * used. This is similar to samples, which you can add to a file, without
4515 * an instrument necessarily actually using it.
4516 *
4517 * You have to call Save() to make this persistent to the file.
4518 *
4519 * @return new empty script object
4520 */
4521 Script* ScriptGroup::AddScript() {
4522 if (!pScripts) LoadScripts();
4523 Script* pScript = new Script(this, NULL);
4524 pScripts->push_back(pScript);
4525 return pScript;
4526 }
4527
4528 /** @brief Delete an instrument script.
4529 *
4530 * This will delete the given real-time instrument script. References of
4531 * instruments that are using that script will be removed accordingly.
4532 *
4533 * You have to call Save() to make this persistent to the file.
4534 *
4535 * @param pScript - script to delete
4536 * @throws gig::Exception if given script could not be found
4537 */
4538 void ScriptGroup::DeleteScript(Script* pScript) {
4539 if (!pScripts) LoadScripts();
4540 std::list<Script*>::iterator iter =
4541 find(pScripts->begin(), pScripts->end(), pScript);
4542 if (iter == pScripts->end())
4543 throw gig::Exception("Could not delete script, could not find given script");
4544 pScripts->erase(iter);
4545 pScript->RemoveAllScriptReferences();
4546 if (pScript->pChunk)
4547 pScript->pChunk->GetParent()->DeleteSubChunk(pScript->pChunk);
4548 delete pScript;
4549 }
4550
4551 void ScriptGroup::LoadScripts() {
4552 if (pScripts) return;
4553 pScripts = new std::list<Script*>;
4554 if (!pList) return;
4555
4556 for (RIFF::Chunk* ck = pList->GetFirstSubChunk(); ck;
4557 ck = pList->GetNextSubChunk())
4558 {
4559 if (ck->GetChunkID() == CHUNK_ID_SCRI) {
4560 pScripts->push_back(new Script(this, ck));
4561 }
4562 }
4563 }
4564
4565 // *************** Instrument ***************
4566 // *
4567
4568 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
4569 static const DLS::Info::string_length_t fixedStringLengths[] = {
4570 { CHUNK_ID_INAM, 64 },
4571 { CHUNK_ID_ISFT, 12 },
4572 { 0, 0 }
4573 };
4574 pInfo->SetFixedStringLengths(fixedStringLengths);
4575
4576 // Initialization
4577 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4578 EffectSend = 0;
4579 Attenuation = 0;
4580 FineTune = 0;
4581 PitchbendRange = 2;
4582 PianoReleaseMode = false;
4583 DimensionKeyRange.low = 0;
4584 DimensionKeyRange.high = 0;
4585 pMidiRules = new MidiRule*[3];
4586 pMidiRules[0] = NULL;
4587 pScriptRefs = NULL;
4588
4589 // Loading
4590 RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
4591 if (lart) {
4592 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4593 if (_3ewg) {
4594 EffectSend = _3ewg->ReadUint16();
4595 Attenuation = _3ewg->ReadInt32();
4596 FineTune = _3ewg->ReadInt16();
4597 PitchbendRange = _3ewg->ReadInt16();
4598 uint8_t dimkeystart = _3ewg->ReadUint8();
4599 PianoReleaseMode = dimkeystart & 0x01;
4600 DimensionKeyRange.low = dimkeystart >> 1;
4601 DimensionKeyRange.high = _3ewg->ReadUint8();
4602
4603 if (_3ewg->GetSize() > 32) {
4604 // read MIDI rules
4605 int i = 0;
4606 _3ewg->SetPos(32);
4607 uint8_t id1 = _3ewg->ReadUint8();
4608 uint8_t id2 = _3ewg->ReadUint8();
4609
4610 if (id2 == 16) {
4611 if (id1 == 4) {
4612 pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
4613 } else if (id1 == 0) {
4614 pMidiRules[i++] = new MidiRuleLegato(_3ewg);
4615 } else if (id1 == 3) {
4616 pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
4617 } else {
4618 pMidiRules[i++] = new MidiRuleUnknown;
4619 }
4620 }
4621 else if (id1 != 0 || id2 != 0) {
4622 pMidiRules[i++] = new MidiRuleUnknown;
4623 }
4624 //TODO: all the other types of rules
4625
4626 pMidiRules[i] = NULL;
4627 }
4628 }
4629 }
4630
4631 if (pFile->GetAutoLoad()) {
4632 if (!pRegions) pRegions = new RegionList;
4633 RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
4634 if (lrgn) {
4635 RIFF::List* rgn = lrgn->GetFirstSubList();
4636 while (rgn) {
4637 if (rgn->GetListType() == LIST_TYPE_RGN) {
4638 __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
4639 pRegions->push_back(new Region(this, rgn));
4640 }
4641 rgn = lrgn->GetNextSubList();
4642 }
4643 // Creating Region Key Table for fast lookup
4644 UpdateRegionKeyTable();
4645 }
4646 }
4647
4648 // own gig format extensions
4649 RIFF::List* lst3LS = insList->GetSubList(LIST_TYPE_3LS);
4650 if (lst3LS) {
4651 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4652 if (ckSCSL) {
4653 int headerSize = ckSCSL->ReadUint32();
4654 int slotCount = ckSCSL->ReadUint32();
4655 if (slotCount) {
4656 int slotSize = ckSCSL->ReadUint32();
4657 ckSCSL->SetPos(headerSize); // in case of future header extensions
4658 int unknownSpace = slotSize - 2*sizeof(uint32_t); // in case of future slot extensions
4659 for (int i = 0; i < slotCount; ++i) {
4660 _ScriptPooolEntry e;
4661 e.fileOffset = ckSCSL->ReadUint32();
4662 e.bypass = ckSCSL->ReadUint32() & 1;
4663 if (unknownSpace) ckSCSL->SetPos(unknownSpace, RIFF::stream_curpos); // in case of future extensions
4664 scriptPoolFileOffsets.push_back(e);
4665 }
4666 }
4667 }
4668 }
4669
4670 __notify_progress(pProgress, 1.0f); // notify done
4671 }
4672
4673 void Instrument::UpdateRegionKeyTable() {
4674 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4675 RegionList::iterator iter = pRegions->begin();
4676 RegionList::iterator end = pRegions->end();
4677 for (; iter != end; ++iter) {
4678 gig::Region* pRegion = static_cast<gig::Region*>(*iter);
4679 for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
4680 RegionKeyTable[iKey] = pRegion;
4681 }
4682 }
4683 }
4684
4685 Instrument::~Instrument() {
4686 for (int i = 0 ; pMidiRules[i] ; i++) {
4687 delete pMidiRules[i];
4688 }
4689 delete[] pMidiRules;
4690 if (pScriptRefs) delete pScriptRefs;
4691 }
4692
4693 /**
4694 * Apply Instrument with all its Regions to the respective RIFF chunks.
4695 * You have to call File::Save() to make changes persistent.
4696 *
4697 * Usually there is absolutely no need to call this method explicitly.
4698 * It will be called automatically when File::Save() was called.
4699 *
4700 * @param pProgress - callback function for progress notification
4701 * @throws gig::Exception if samples cannot be dereferenced
4702 */
4703 void Instrument::UpdateChunks(progress_t* pProgress) {
4704 // first update base classes' chunks
4705 DLS::Instrument::UpdateChunks(pProgress);
4706
4707 // update Regions' chunks
4708 {
4709 RegionList::iterator iter = pRegions->begin();
4710 RegionList::iterator end = pRegions->end();
4711 for (; iter != end; ++iter)
4712 (*iter)->UpdateChunks(pProgress);
4713 }
4714
4715 // make sure 'lart' RIFF list chunk exists
4716 RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
4717 if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
4718 // make sure '3ewg' RIFF chunk exists
4719 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4720 if (!_3ewg) {
4721 File* pFile = (File*) GetParent();
4722
4723 // 3ewg is bigger in gig3, as it includes the iMIDI rules
4724 int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
4725 _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
4726 memset(_3ewg->LoadChunkData(), 0, size);
4727 }
4728 // update '3ewg' RIFF chunk
4729 uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
4730 store16(&pData[0], EffectSend);
4731 store32(&pData[2], Attenuation);
4732 store16(&pData[6], FineTune);
4733 store16(&pData[8], PitchbendRange);
4734 const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
4735 DimensionKeyRange.low << 1;
4736 pData[10] = dimkeystart;
4737 pData[11] = DimensionKeyRange.high;
4738
4739 if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
4740 pData[32] = 0;
4741 pData[33] = 0;
4742 } else {
4743 for (int i = 0 ; pMidiRules[i] ; i++) {
4744 pMidiRules[i]->UpdateChunks(pData);
4745 }
4746 }
4747
4748 // own gig format extensions
4749 if (ScriptSlotCount()) {
4750 // make sure we have converted the original loaded script file
4751 // offsets into valid Script object pointers
4752 LoadScripts();
4753
4754 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4755 if (!lst3LS) lst3LS = pCkInstrument->AddSubList(LIST_TYPE_3LS);
4756 const int slotCount = (int) pScriptRefs->size();
4757 const int headerSize = 3 * sizeof(uint32_t);
4758 const int slotSize = 2 * sizeof(uint32_t);
4759 const int totalChunkSize = headerSize + slotCount * slotSize;
4760 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4761 if (!ckSCSL) ckSCSL = lst3LS->AddSubChunk(CHUNK_ID_SCSL, totalChunkSize);
4762 else ckSCSL->Resize(totalChunkSize);
4763 uint8_t* pData = (uint8_t*) ckSCSL->LoadChunkData();
4764 int pos = 0;
4765 store32(&pData[pos], headerSize);
4766 pos += sizeof(uint32_t);
4767 store32(&pData[pos], slotCount);
4768 pos += sizeof(uint32_t);
4769 store32(&pData[pos], slotSize);
4770 pos += sizeof(uint32_t);
4771 for (int i = 0; i < slotCount; ++i) {
4772 // arbitrary value, the actual file offset will be updated in
4773 // UpdateScriptFileOffsets() after the file has been resized
4774 int bogusFileOffset = 0;
4775 store32(&pData[pos], bogusFileOffset);
4776 pos += sizeof(uint32_t);
4777 store32(&pData[pos], (*pScriptRefs)[i].bypass ? 1 : 0);
4778 pos += sizeof(uint32_t);
4779 }
4780 } else {
4781 // no script slots, so get rid of any LS custom RIFF chunks (if any)
4782 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4783 if (lst3LS) pCkInstrument->DeleteSubChunk(lst3LS);
4784 }
4785 }
4786
4787 void Instrument::UpdateScriptFileOffsets() {
4788 // own gig format extensions
4789 if (pScriptRefs && pScriptRefs->size() > 0) {
4790 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4791 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4792 const int slotCount = (int) pScriptRefs->size();
4793 const int headerSize = 3 * sizeof(uint32_t);
4794 ckSCSL->SetPos(headerSize);
4795 for (int i = 0; i < slotCount; ++i) {
4796 uint32_t fileOffset = uint32_t(
4797 (*pScriptRefs)[i].script->pChunk->GetFilePos() -
4798 (*pScriptRefs)[i].script->pChunk->GetPos() -
4799 CHUNK_HEADER_SIZE(ckSCSL->GetFile()->GetFileOffsetSize())
4800 );
4801 ckSCSL->WriteUint32(&fileOffset);
4802 // jump over flags entry (containing the bypass flag)
4803 ckSCSL->SetPos(sizeof(uint32_t), RIFF::stream_curpos);
4804 }
4805 }
4806 }
4807
4808 /**
4809 * Returns the appropriate Region for a triggered note.
4810 *
4811 * @param Key MIDI Key number of triggered note / key (0 - 127)
4812 * @returns pointer adress to the appropriate Region or NULL if there
4813 * there is no Region defined for the given \a Key
4814 */
4815 Region* Instrument::GetRegion(unsigned int Key) {
4816 if (!pRegions || pRegions->empty() || Key > 127) return NULL;
4817 return RegionKeyTable[Key];
4818
4819 /*for (int i = 0; i < Regions; i++) {
4820 if (Key <= pRegions[i]->KeyRange.high &&
4821 Key >= pRegions[i]->KeyRange.low) return pRegions[i];
4822 }
4823 return NULL;*/
4824 }
4825
4826 /**
4827 * Returns the first Region of the instrument. You have to call this
4828 * method once before you use GetNextRegion().
4829 *
4830 * @returns pointer address to first region or NULL if there is none
4831 * @see GetNextRegion()
4832 */
4833 Region* Instrument::GetFirstRegion() {
4834 if (!pRegions) return NULL;
4835 RegionsIterator = pRegions->begin();
4836 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4837 }
4838
4839 /**
4840 * Returns the next Region of the instrument. You have to call
4841 * GetFirstRegion() once before you can use this method. By calling this
4842 * method multiple times it iterates through the available Regions.
4843 *
4844 * @returns pointer address to the next region or NULL if end reached
4845 * @see GetFirstRegion()
4846 */
4847 Region* Instrument::GetNextRegion() {
4848 if (!pRegions) return NULL;
4849 RegionsIterator++;
4850 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4851 }
4852
4853 Region* Instrument::AddRegion() {
4854 // create new Region object (and its RIFF chunks)
4855 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
4856 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
4857 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
4858 Region* pNewRegion = new Region(this, rgn);
4859 pRegions->push_back(pNewRegion);
4860 Regions = (uint32_t) pRegions->size();
4861 // update Region key table for fast lookup
4862 UpdateRegionKeyTable();
4863 // done
4864 return pNewRegion;
4865 }
4866
4867 void Instrument::DeleteRegion(Region* pRegion) {
4868 if (!pRegions) return;
4869 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
4870 // update Region key table for fast lookup
4871 UpdateRegionKeyTable();
4872 }
4873
4874 /**
4875 * Move this instrument at the position before @arg dst.
4876 *
4877 * This method can be used to reorder the sequence of instruments in a
4878 * .gig file. This might be helpful especially on large .gig files which
4879 * contain a large number of instruments within the same .gig file. So
4880 * grouping such instruments to similar ones, can help to keep track of them
4881 * when working with such complex .gig files.
4882 *
4883 * When calling this method, this instrument will be removed from in its
4884 * current position in the instruments list and moved to the requested
4885 * target position provided by @param dst. You may also pass NULL as
4886 * argument to this method, in that case this intrument will be moved to the
4887 * very end of the .gig file's instrument list.
4888 *
4889 * You have to call Save() to make the order change persistent to the .gig
4890 * file.
4891 *
4892 * Currently this method is limited to moving the instrument within the same
4893 * .gig file. Trying to move it to another .gig file by calling this method
4894 * will throw an exception.
4895 *
4896 * @param dst - destination instrument at which this instrument will be
4897 * moved to, or pass NULL for moving to end of list
4898 * @throw gig::Exception if this instrument and target instrument are not
4899 * part of the same file
4900 */
4901 void Instrument::MoveTo(Instrument* dst) {
4902 if (dst && GetParent() != dst->GetParent())
4903 throw Exception(
4904 "gig::Instrument::MoveTo() can only be used for moving within "
4905 "the same gig file."
4906 );
4907
4908 File* pFile = (File*) GetParent();
4909
4910 // move this instrument within the instrument list
4911 {
4912 File::InstrumentList& list = *pFile->pInstruments;
4913
4914 File::InstrumentList::iterator itFrom =
4915 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(this));
4916
4917 File::InstrumentList::iterator itTo =
4918 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(dst));
4919
4920 list.splice(itTo, list, itFrom);
4921 }
4922
4923 // move the instrument's actual list RIFF chunk appropriately
4924 RIFF::List* lstCkInstruments = pFile->pRIFF->GetSubList(LIST_TYPE_LINS);
4925 lstCkInstruments->MoveSubChunk(
4926 this->pCkInstrument,
4927 (RIFF::Chunk*) ((dst) ? dst->pCkInstrument : NULL)
4928 );
4929 }
4930
4931 /**
4932 * Returns a MIDI rule of the instrument.
4933 *
4934 * The list of MIDI rules, at least in gig v3, always contains at
4935 * most two rules. The second rule can only be the DEF filter
4936 * (which currently isn't supported by libgig).
4937 *
4938 * @param i - MIDI rule number
4939 * @returns pointer address to MIDI rule number i or NULL if there is none
4940 */
4941 MidiRule* Instrument::GetMidiRule(int i) {
4942 return pMidiRules[i];
4943 }
4944
4945 /**
4946 * Adds the "controller trigger" MIDI rule to the instrument.
4947 *
4948 * @returns the new MIDI rule
4949 */
4950 MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
4951 delete pMidiRules[0];
4952 MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
4953 pMidiRules[0] = r;
4954 pMidiRules[1] = 0;
4955 return r;
4956 }
4957
4958 /**
4959 * Adds the legato MIDI rule to the instrument.
4960 *
4961 * @returns the new MIDI rule
4962 */
4963 MidiRuleLegato* Instrument::AddMidiRuleLegato() {
4964 delete pMidiRules[0];
4965 MidiRuleLegato* r = new MidiRuleLegato;
4966 pMidiRules[0] = r;
4967 pMidiRules[1] = 0;
4968 return r;
4969 }
4970
4971 /**
4972 * Adds the alternator MIDI rule to the instrument.
4973 *
4974 * @returns the new MIDI rule
4975 */
4976 MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
4977 delete pMidiRules[0];
4978 MidiRuleAlternator* r = new MidiRuleAlternator;
4979 pMidiRules[0] = r;
4980 pMidiRules[1] = 0;
4981 return r;
4982 }
4983
4984 /**
4985 * Deletes a MIDI rule from the instrument.
4986 *
4987 * @param i - MIDI rule number
4988 */
4989 void Instrument::DeleteMidiRule(int i) {
4990 delete pMidiRules[i];
4991 pMidiRules[i] = 0;
4992 }
4993
4994 void Instrument::LoadScripts() {
4995 if (pScriptRefs) return;
4996 pScriptRefs = new std::vector<_ScriptPooolRef>;
4997 if (scriptPoolFileOffsets.empty()) return;
4998 File* pFile = (File*) GetParent();
4999 for (uint k = 0; k < scriptPoolFileOffsets.size(); ++k) {
5000 uint32_t soughtOffset = scriptPoolFileOffsets[k].fileOffset;
5001 for (uint i = 0; pFile->GetScriptGroup(i); ++i) {
5002 ScriptGroup* group = pFile->GetScriptGroup(i);
5003 for (uint s = 0; group->GetScript(s); ++s) {
5004 Script* script = group->GetScript(s);
5005 if (script->pChunk) {
5006 uint32_t offset = uint32_t(
5007 script->pChunk->GetFilePos() -
5008 script->pChunk->GetPos() -
5009 CHUNK_HEADER_SIZE(script->pChunk->GetFile()->GetFileOffsetSize())
5010 );
5011 if (offset == soughtOffset)
5012 {
5013 _ScriptPooolRef ref;
5014 ref.script = script;
5015 ref.bypass = scriptPoolFileOffsets[k].bypass;
5016 pScriptRefs->push_back(ref);
5017 break;
5018 }
5019 }
5020 }
5021 }
5022 }
5023 // we don't need that anymore
5024 scriptPoolFileOffsets.clear();
5025 }
5026
5027 /** @brief Get instrument script (gig format extension).
5028 *
5029 * Returns the real-time instrument script of instrument script slot
5030 * @a index.
5031 *
5032 * @note This is an own format extension which did not exist i.e. in the
5033 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5034 * gigedit.
5035 *
5036 * @param index - instrument script slot index
5037 * @returns script or NULL if index is out of bounds
5038 */
5039 Script* Instrument::GetScriptOfSlot(uint index) {
5040 LoadScripts();
5041 if (index >= pScriptRefs->size()) return NULL;
5042 return pScriptRefs->at(index).script;
5043 }
5044
5045 /** @brief Add new instrument script slot (gig format extension).
5046 *
5047 * Add the given real-time instrument script reference to this instrument,
5048 * which shall be executed by the sampler for for this instrument. The
5049 * script will be added to the end of the script list of this instrument.
5050 * The positions of the scripts in the Instrument's Script list are
5051 * relevant, because they define in which order they shall be executed by
5052 * the sampler. For this reason it is also legal to add the same script
5053 * twice to an instrument, for example you might have a script called
5054 * "MyFilter" which performs an event filter task, and you might have
5055 * another script called "MyNoteTrigger" which triggers new notes, then you
5056 * might for example have the following list of scripts on the instrument:
5057 *
5058 * 1. Script "MyFilter"
5059 * 2. Script "MyNoteTrigger"
5060 * 3. Script "MyFilter"
5061 *
5062 * Which would make sense, because the 2nd script launched new events, which
5063 * you might need to filter as well.
5064 *
5065 * There are two ways to disable / "bypass" scripts. You can either disable
5066 * a script locally for the respective script slot on an instrument (i.e. by
5067 * passing @c false to the 2nd argument of this method, or by calling
5068 * SetScriptBypassed()). Or you can disable a script globally for all slots
5069 * and all instruments by setting Script::Bypass.
5070 *
5071 * @note This is an own format extension which did not exist i.e. in the
5072 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5073 * gigedit.
5074 *
5075 * @param pScript - script that shall be executed for this instrument
5076 * @param bypass - if enabled, the sampler shall skip executing this
5077 * script (in the respective list position)
5078 * @see SetScriptBypassed()
5079 */
5080 void Instrument::AddScriptSlot(Script* pScript, bool bypass) {
5081 LoadScripts();
5082 _ScriptPooolRef ref = { pScript, bypass };
5083 pScriptRefs->push_back(ref);
5084 }
5085
5086 /** @brief Flip two script slots with each other (gig format extension).
5087 *
5088 * Swaps the position of the two given scripts in the Instrument's Script
5089 * list. The positions of the scripts in the Instrument's Script list are
5090 * relevant, because they define in which order they shall be executed by
5091 * the sampler.
5092 *
5093 * @note This is an own format extension which did not exist i.e. in the
5094 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5095 * gigedit.
5096 *
5097 * @param index1 - index of the first script slot to swap
5098 * @param index2 - index of the second script slot to swap
5099 */
5100 void Instrument::SwapScriptSlots(uint index1, uint index2) {
5101 LoadScripts();
5102 if (index1 >= pScriptRefs->size() || index2 >= pScriptRefs->size())
5103 return;
5104 _ScriptPooolRef tmp = (*pScriptRefs)[index1];
5105 (*pScriptRefs)[index1] = (*pScriptRefs)[index2];
5106 (*pScriptRefs)[index2] = tmp;
5107 }
5108
5109 /** @brief Remove script slot.
5110 *
5111 * Removes the script slot with the given slot index.
5112 *
5113 * @param index - index of script slot to remove
5114 */
5115 void Instrument::RemoveScriptSlot(uint index) {
5116 LoadScripts();
5117 if (index >= pScriptRefs->size()) return;
5118 pScriptRefs->erase( pScriptRefs->begin() + index );
5119 }
5120
5121 /** @brief Remove reference to given Script (gig format extension).
5122 *
5123 * This will remove all script slots on the instrument which are referencing
5124 * the given script.
5125 *
5126 * @note This is an own format extension which did not exist i.e. in the
5127 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5128 * gigedit.
5129 *
5130 * @param pScript - script reference to remove from this instrument
5131 * @see RemoveScriptSlot()
5132 */
5133 void Instrument::RemoveScript(Script* pScript) {
5134 LoadScripts();
5135 for (ssize_t i = pScriptRefs->size() - 1; i >= 0; --i) {
5136 if ((*pScriptRefs)[i].script == pScript) {
5137 pScriptRefs->erase( pScriptRefs->begin() + i );
5138 }
5139 }
5140 }
5141
5142 /** @brief Instrument's amount of script slots.
5143 *
5144 * This method returns the amount of script slots this instrument currently
5145 * uses.
5146 *
5147 * A script slot is a reference of a real-time instrument script to be
5148 * executed by the sampler. The scripts will be executed by the sampler in
5149 * sequence of the slots. One (same) script may be referenced multiple
5150 * times in different slots.
5151 *
5152 * @note This is an own format extension which did not exist i.e. in the
5153 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5154 * gigedit.
5155 */
5156 uint Instrument::ScriptSlotCount() const {
5157 return uint(pScriptRefs ? pScriptRefs->size() : scriptPoolFileOffsets.size());
5158 }
5159
5160 /** @brief Whether script execution shall be skipped.
5161 *
5162 * Defines locally for the Script reference slot in the Instrument's Script
5163 * list, whether the script shall be skipped by the sampler regarding
5164 * execution.
5165 *
5166 * It is also possible to ignore exeuction of the script globally, for all
5167 * slots and for all instruments by setting Script::Bypass.
5168 *
5169 * @note This is an own format extension which did not exist i.e. in the
5170 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5171 * gigedit.
5172 *
5173 * @param index - index of the script slot on this instrument
5174 * @see Script::Bypass
5175 */
5176 bool Instrument::IsScriptSlotBypassed(uint index) {
5177 if (index >= ScriptSlotCount()) return false;
5178 return pScriptRefs ? pScriptRefs->at(index).bypass
5179 : scriptPoolFileOffsets.at(index).bypass;
5180
5181 }
5182
5183 /** @brief Defines whether execution shall be skipped.
5184 *
5185 * You can call this method to define locally whether or whether not the
5186 * given script slot shall be executed by the sampler.
5187 *
5188 * @note This is an own format extension which did not exist i.e. in the
5189 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5190 * gigedit.
5191 *
5192 * @param index - script slot index on this instrument
5193 * @param bBypass - if true, the script slot will be skipped by the sampler
5194 * @see Script::Bypass
5195 */
5196 void Instrument::SetScriptSlotBypassed(uint index, bool bBypass) {
5197 if (index >= ScriptSlotCount()) return;
5198 if (pScriptRefs)
5199 pScriptRefs->at(index).bypass = bBypass;
5200 else
5201 scriptPoolFileOffsets.at(index).bypass = bBypass;
5202 }
5203
5204 /**
5205 * Make a (semi) deep copy of the Instrument object given by @a orig
5206 * and assign it to this object.
5207 *
5208 * Note that all sample pointers referenced by @a orig are simply copied as
5209 * memory address. Thus the respective samples are shared, not duplicated!
5210 *
5211 * @param orig - original Instrument object to be copied from
5212 */
5213 void Instrument::CopyAssign(const Instrument* orig) {
5214 CopyAssign(orig, NULL);
5215 }
5216
5217 /**
5218 * Make a (semi) deep copy of the Instrument object given by @a orig
5219 * and assign it to this object.
5220 *
5221 * @param orig - original Instrument object to be copied from
5222 * @param mSamples - crosslink map between the foreign file's samples and
5223 * this file's samples
5224 */
5225 void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
5226 // handle base class
5227 // (without copying DLS region stuff)
5228 DLS::Instrument::CopyAssignCore(orig);
5229
5230 // handle own member variables
5231 Attenuation = orig->Attenuation;
5232 EffectSend = orig->EffectSend;
5233 FineTune = orig->FineTune;
5234 PitchbendRange = orig->PitchbendRange;
5235 PianoReleaseMode = orig->PianoReleaseMode;
5236 DimensionKeyRange = orig->DimensionKeyRange;
5237 scriptPoolFileOffsets = orig->scriptPoolFileOffsets;
5238 pScriptRefs = orig->pScriptRefs;
5239
5240 // free old midi rules
5241 for (int i = 0 ; pMidiRules[i] ; i++) {
5242 delete pMidiRules[i];
5243 }
5244 //TODO: MIDI rule copying
5245 pMidiRules[0] = NULL;
5246
5247 // delete all old regions
5248 while (Regions) DeleteRegion(GetFirstRegion());
5249 // create new regions and copy them from original
5250 {
5251 RegionList::const_iterator it = orig->pRegions->begin();
5252 for (int i = 0; i < orig->Regions; ++i, ++it) {
5253 Region* dstRgn = AddRegion();
5254 //NOTE: Region does semi-deep copy !
5255 dstRgn->CopyAssign(
5256 static_cast<gig::Region*>(*it),
5257 mSamples
5258 );
5259 }
5260 }
5261
5262 UpdateRegionKeyTable();
5263 }
5264
5265
5266 // *************** Group ***************
5267 // *
5268
5269 /** @brief Constructor.
5270 *
5271 * @param file - pointer to the gig::File object
5272 * @param ck3gnm - pointer to 3gnm chunk associated with this group or
5273 * NULL if this is a new Group
5274 */
5275 Group::Group(File* file, RIFF::Chunk* ck3gnm) {
5276 pFile = file;
5277 pNameChunk = ck3gnm;
5278 ::LoadString(pNameChunk, Name);
5279 }
5280
5281 Group::~Group() {
5282 // remove the chunk associated with this group (if any)
5283 if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
5284 }
5285
5286 /** @brief Update chunks with current group settings.
5287 *
5288 * Apply current Group field values to the respective chunks. You have
5289 * to call File::Save() to make changes persistent.
5290 *
5291 * Usually there is absolutely no need to call this method explicitly.
5292 * It will be called automatically when File::Save() was called.
5293 *
5294 * @param pProgress - callback function for progress notification
5295 */
5296 void Group::UpdateChunks(progress_t* pProgress) {
5297 // make sure <3gri> and <3gnl> list chunks exist
5298 RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
5299 if (!_3gri) {
5300 _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
5301 pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
5302 }
5303 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
5304 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
5305
5306 if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
5307 // v3 has a fixed list of 128 strings, find a free one
5308 for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
5309 if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
5310 pNameChunk = ck;
5311 break;
5312 }
5313 }
5314 }
5315
5316 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
5317 ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
5318 }
5319
5320 /**
5321 * Returns the first Sample of this Group. You have to call this method
5322 * once before you use GetNextSample().
5323 *
5324 * <b>Notice:</b> this method might block for a long time, in case the
5325 * samples of this .gig file were not scanned yet
5326 *
5327 * @returns pointer address to first Sample or NULL if there is none
5328 * applied to this Group
5329 * @see GetNextSample()
5330 */
5331 Sample* Group::GetFirstSample() {
5332 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5333 for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
5334 if (pSample->GetGroup() == this) return pSample;
5335 }
5336 return NULL;
5337 }
5338
5339 /**
5340 * Returns the next Sample of the Group. You have to call
5341 * GetFirstSample() once before you can use this method. By calling this
5342 * method multiple times it iterates through the Samples assigned to
5343 * this Group.
5344 *
5345 * @returns pointer address to the next Sample of this Group or NULL if
5346 * end reached
5347 * @see GetFirstSample()
5348 */
5349 Sample* Group::GetNextSample() {
5350 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5351 for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
5352 if (pSample->GetGroup() == this) return pSample;
5353 }
5354 return NULL;
5355 }
5356
5357 /**
5358 * Move Sample given by \a pSample from another Group to this Group.
5359 */
5360 void Group::AddSample(Sample* pSample) {
5361 pSample->pGroup = this;
5362 }
5363
5364 /**
5365 * Move all members of this group to another group (preferably the 1st
5366 * one except this). This method is called explicitly by
5367 * File::DeleteGroup() thus when a Group was deleted. This code was
5368 * intentionally not placed in the destructor!
5369 */
5370 void Group::MoveAll() {
5371 // get "that" other group first
5372 Group* pOtherGroup = NULL;
5373 for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
5374 if (pOtherGroup != this) break;
5375 }
5376 if (!pOtherGroup) throw Exception(
5377 "Could not move samples to another group, since there is no "
5378 "other Group. This is a bug, report it!"
5379 );
5380 // now move all samples of this group to the other group
5381 for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
5382 pOtherGroup->AddSample(pSample);
5383 }
5384 }
5385
5386
5387
5388 // *************** File ***************
5389 // *
5390
5391 /// Reflects Gigasampler file format version 2.0 (1998-06-28).
5392 const DLS::version_t File::VERSION_2 = {
5393 0, 2, 19980628 & 0xffff, 19980628 >> 16
5394 };
5395
5396 /// Reflects Gigasampler file format version 3.0 (2003-03-31).
5397 const DLS::version_t File::VERSION_3 = {
5398 0, 3, 20030331 & 0xffff, 20030331 >> 16
5399 };
5400
5401 static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
5402 { CHUNK_ID_IARL, 256 },
5403 { CHUNK_ID_IART, 128 },
5404 { CHUNK_ID_ICMS, 128 },
5405 { CHUNK_ID_ICMT, 1024 },
5406 { CHUNK_ID_ICOP, 128 },
5407 { CHUNK_ID_ICRD, 128 },
5408 { CHUNK_ID_IENG, 128 },
5409 { CHUNK_ID_IGNR, 128 },
5410 { CHUNK_ID_IKEY, 128 },
5411 { CHUNK_ID_IMED, 128 },
5412 { CHUNK_ID_INAM, 128 },
5413 { CHUNK_ID_IPRD, 128 },
5414 { CHUNK_ID_ISBJ, 128 },
5415 { CHUNK_ID_ISFT, 128 },
5416 { CHUNK_ID_ISRC, 128 },
5417 { CHUNK_ID_ISRF, 128 },
5418 { CHUNK_ID_ITCH, 128 },
5419 { 0, 0 }
5420 };
5421
5422 File::File() : DLS::File() {
5423 bAutoLoad = true;
5424 *pVersion = VERSION_3;
5425 pGroups = NULL;
5426 pScriptGroups = NULL;
5427 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5428 pInfo->ArchivalLocation = String(256, ' ');
5429
5430 // add some mandatory chunks to get the file chunks in right
5431 // order (INFO chunk will be moved to first position later)
5432 pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
5433 pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
5434 pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
5435
5436 GenerateDLSID();
5437 }
5438
5439 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
5440 bAutoLoad = true;
5441 pGroups = NULL;
5442 pScriptGroups = NULL;
5443 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5444 }
5445
5446 File::~File() {
5447 if (pGroups) {
5448 std::list<Group*>::iterator iter = pGroups->begin();
5449 std::list<Group*>::iterator end = pGroups->end();
5450 while (iter != end) {
5451 delete *iter;
5452 ++iter;
5453 }
5454 delete pGroups;
5455 }
5456 if (pScriptGroups) {
5457 std::list<ScriptGroup*>::iterator iter = pScriptGroups->begin();
5458 std::list<ScriptGroup*>::iterator end = pScriptGroups->end();
5459 while (iter != end) {
5460 delete *iter;
5461 ++iter;
5462 }
5463 delete pScriptGroups;
5464 }
5465 }
5466
5467 Sample* File::GetFirstSample(progress_t* pProgress) {
5468 if (!pSamples) LoadSamples(pProgress);
5469 if (!pSamples) return NULL;
5470 SamplesIterator = pSamples->begin();
5471 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5472 }
5473
5474 Sample* File::GetNextSample() {
5475 if (!pSamples) return NULL;
5476 SamplesIterator++;
5477 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5478 }
5479
5480 /**
5481 * Returns Sample object of @a index.
5482 *
5483 * @returns sample object or NULL if index is out of bounds
5484 */
5485 Sample* File::GetSample(uint index) {
5486 if (!pSamples) LoadSamples();
5487 if (!pSamples) return NULL;
5488 DLS::File::SampleList::iterator it = pSamples->begin();
5489 for (int i = 0; i < index; ++i) {
5490 ++it;
5491 if (it == pSamples->end()) return NULL;
5492 }
5493 if (it == pSamples->end()) return NULL;
5494 return static_cast<gig::Sample*>( *it );
5495 }
5496
5497 /** @brief Add a new sample.
5498 *
5499 * This will create a new Sample object for the gig file. You have to
5500 * call Save() to make this persistent to the file.
5501 *
5502 * @returns pointer to new Sample object
5503 */
5504 Sample* File::AddSample() {
5505 if (!pSamples) LoadSamples();
5506 __ensureMandatoryChunksExist();
5507 RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
5508 // create new Sample object and its respective 'wave' list chunk
5509 RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
5510 Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
5511
5512 // add mandatory chunks to get the chunks in right order
5513 wave->AddSubChunk(CHUNK_ID_FMT, 16);
5514 wave->AddSubList(LIST_TYPE_INFO);
5515
5516 pSamples->push_back(pSample);
5517 return pSample;
5518 }
5519
5520 /** @brief Delete a sample.
5521 *
5522 * This will delete the given Sample object from the gig file. Any
5523 * references to this sample from Regions and DimensionRegions will be
5524 * removed. You have to call Save() to make this persistent to the file.
5525 *
5526 * @param pSample - sample to delete
5527 * @throws gig::Exception if given sample could not be found
5528 */
5529 void File::DeleteSample(Sample* pSample) {
5530 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
5531 SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
5532 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
5533 if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
5534 pSamples->erase(iter);
5535 delete pSample;
5536
5537 SampleList::iterator tmp = SamplesIterator;
5538 // remove all references to the sample
5539 for (Instrument* instrument = GetFirstInstrument() ; instrument ;
5540 instrument = GetNextInstrument()) {
5541 for (Region* region = instrument->GetFirstRegion() ; region ;
5542 region = instrument->GetNextRegion()) {
5543
5544 if (region->GetSample() == pSample) region->SetSample(NULL);
5545
5546 for (int i = 0 ; i < region->DimensionRegions ; i++) {
5547 gig::DimensionRegion *d = region->pDimensionRegions[i];
5548 if (d->pSample == pSample) d->pSample = NULL;
5549 }
5550 }
5551 }
5552 SamplesIterator = tmp; // restore iterator
5553 }
5554
5555 void File::LoadSamples() {
5556 LoadSamples(NULL);
5557 }
5558
5559 void File::LoadSamples(progress_t* pProgress) {
5560 // Groups must be loaded before samples, because samples will try
5561 // to resolve the group they belong to
5562 if (!pGroups) LoadGroups();
5563
5564 if (!pSamples) pSamples = new SampleList;
5565
5566 RIFF::File* file = pRIFF;
5567
5568 // just for progress calculation
5569 int iSampleIndex = 0;
5570 int iTotalSamples = WavePoolCount;
5571
5572 // check if samples should be loaded from extension files
5573 // (only for old gig files < 2 GB)
5574 int lastFileNo = 0;
5575 if (!file->IsNew() && !(file->GetCurrentFileSize() >> 31)) {
5576 for (int i = 0 ; i < WavePoolCount ; i++) {
5577 if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
5578 }
5579 }
5580 String name(pRIFF->GetFileName());
5581 int nameLen = (int) name.length();
5582 char suffix[6];
5583 if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
5584
5585 for (int fileNo = 0 ; ; ) {
5586 RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
5587 if (wvpl) {
5588 file_offset_t wvplFileOffset = wvpl->GetFilePos();
5589 RIFF::List* wave = wvpl->GetFirstSubList();
5590 while (wave) {
5591 if (wave->GetListType() == LIST_TYPE_WAVE) {
5592 // notify current progress
5593 const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
5594 __notify_progress(pProgress, subprogress);
5595
5596 file_offset_t waveFileOffset = wave->GetFilePos();
5597 pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo, iSampleIndex));
5598
5599 iSampleIndex++;
5600 }
5601 wave = wvpl->GetNextSubList();
5602 }
5603
5604 if (fileNo == lastFileNo) break;
5605
5606 // open extension file (*.gx01, *.gx02, ...)
5607 fileNo++;
5608 sprintf(suffix, ".gx%02d", fileNo);
5609 name.replace(nameLen, 5, suffix);
5610 file = new RIFF::File(name);
5611 ExtensionFiles.push_back(file);
5612 } else break;
5613 }
5614
5615 __notify_progress(pProgress, 1.0); // notify done
5616 }
5617
5618 Instrument* File::GetFirstInstrument() {
5619 if (!pInstruments) LoadInstruments();
5620 if (!pInstruments) return NULL;
5621 InstrumentsIterator = pInstruments->begin();
5622 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5623 }
5624
5625 Instrument* File::GetNextInstrument() {
5626 if (!pInstruments) return NULL;
5627 InstrumentsIterator++;
5628 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5629 }
5630
5631 /**
5632 * Returns the instrument with the given index.
5633 *
5634 * @param index - number of the sought instrument (0..n)
5635 * @param pProgress - optional: callback function for progress notification
5636 * @returns sought instrument or NULL if there's no such instrument
5637 */
5638 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
5639 if (!pInstruments) {
5640 // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
5641
5642 // sample loading subtask
5643 progress_t subprogress;
5644 __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
5645 __notify_progress(&subprogress, 0.0f);
5646 if (GetAutoLoad())
5647 GetFirstSample(&subprogress); // now force all samples to be loaded
5648 __notify_progress(&subprogress, 1.0f);
5649
5650 // instrument loading subtask
5651 if (pProgress && pProgress->callback) {
5652 subprogress.__range_min = subprogress.__range_max;
5653 subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
5654 }
5655 __notify_progress(&subprogress, 0.0f);
5656 LoadInstruments(&subprogress);
5657 __notify_progress(&subprogress, 1.0f);
5658 }
5659 if (!pInstruments) return NULL;
5660 InstrumentsIterator = pInstruments->begin();
5661 for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
5662 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
5663 InstrumentsIterator++;
5664 }
5665 return NULL;
5666 }
5667
5668 /** @brief Add a new instrument definition.
5669 *
5670 * This will create a new Instrument object for the gig file. You have
5671 * to call Save() to make this persistent to the file.
5672 *
5673 * @returns pointer to new Instrument object
5674 */
5675 Instrument* File::AddInstrument() {
5676 if (!pInstruments) LoadInstruments();
5677 __ensureMandatoryChunksExist();
5678 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5679 RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
5680
5681 // add mandatory chunks to get the chunks in right order
5682 lstInstr->AddSubList(LIST_TYPE_INFO);
5683 lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
5684
5685 Instrument* pInstrument = new Instrument(this, lstInstr);
5686 pInstrument->GenerateDLSID();
5687
5688 lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
5689
5690 // this string is needed for the gig to be loadable in GSt:
5691 pInstrument->pInfo->Software = "Endless Wave";
5692
5693 pInstruments->push_back(pInstrument);
5694 return pInstrument;
5695 }
5696
5697 /** @brief Add a duplicate of an existing instrument.
5698 *
5699 * Duplicates the instrument definition given by @a orig and adds it
5700 * to this file. This allows in an instrument editor application to
5701 * easily create variations of an instrument, which will be stored in
5702 * the same .gig file, sharing i.e. the same samples.
5703 *
5704 * Note that all sample pointers referenced by @a orig are simply copied as
5705 * memory address. Thus the respective samples are shared, not duplicated!
5706 *
5707 * You have to call Save() to make this persistent to the file.
5708 *
5709 * @param orig - original instrument to be copied
5710 * @returns duplicated copy of the given instrument
5711 */
5712 Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
5713 Instrument* instr = AddInstrument();
5714 instr->CopyAssign(orig);
5715 return instr;
5716 }
5717
5718 /** @brief Add content of another existing file.
5719 *
5720 * Duplicates the samples, groups and instruments of the original file
5721 * given by @a pFile and adds them to @c this File. In case @c this File is
5722 * a new one that you haven't saved before, then you have to call
5723 * SetFileName() before calling AddContentOf(), because this method will
5724 * automatically save this file during operation, which is required for
5725 * writing the sample waveform data by disk streaming.
5726 *
5727 * @param pFile - original file whose's content shall be copied from
5728 */
5729 void File::AddContentOf(File* pFile) {
5730 static int iCallCount = -1;
5731 iCallCount++;
5732 std::map<Group*,Group*> mGroups;
5733 std::map<Sample*,Sample*> mSamples;
5734
5735 // clone sample groups
5736 for (int i = 0; pFile->GetGroup(i); ++i) {
5737 Group* g = AddGroup();
5738 g->Name =
5739 "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
5740 mGroups[pFile->GetGroup(i)] = g;
5741 }
5742
5743 // clone samples (not waveform data here yet)
5744 for (int i = 0; pFile->GetSample(i); ++i) {
5745 Sample* s = AddSample();
5746 s->CopyAssignMeta(pFile->GetSample(i));
5747 mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
5748 mSamples[pFile->GetSample(i)] = s;
5749 }
5750
5751 // clone script groups and their scripts
5752 for (int iGroup = 0; pFile->GetScriptGroup(iGroup); ++iGroup) {
5753 ScriptGroup* sg = pFile->GetScriptGroup(iGroup);
5754 ScriptGroup* dg = AddScriptGroup();
5755 dg->Name = "COPY" + ToString(iCallCount) + "_" + sg->Name;
5756 for (int iScript = 0; sg->GetScript(iScript); ++iScript) {
5757 Script* ss = sg->GetScript(iScript);
5758 Script* ds = dg->AddScript();
5759 ds->CopyAssign(ss);
5760 }
5761 }
5762
5763 //BUG: For some reason this method only works with this additional
5764 // Save() call in between here.
5765 //
5766 // Important: The correct one of the 2 Save() methods has to be called
5767 // here, depending on whether the file is completely new or has been
5768 // saved to disk already, otherwise it will result in data corruption.
5769 if (pRIFF->IsNew())
5770 Save(GetFileName());
5771 else
5772 Save();
5773
5774 // clone instruments
5775 // (passing the crosslink table here for the cloned samples)
5776 for (int i = 0; pFile->GetInstrument(i); ++i) {
5777 Instrument* instr = AddInstrument();
5778 instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
5779 }
5780
5781 // Mandatory: file needs to be saved to disk at this point, so this
5782 // file has the correct size and data layout for writing the samples'
5783 // waveform data to disk.
5784 Save();
5785
5786 // clone samples' waveform data
5787 // (using direct read & write disk streaming)
5788 for (int i = 0; pFile->GetSample(i); ++i) {
5789 mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
5790 }
5791 }
5792
5793 /** @brief Delete an instrument.
5794 *
5795 * This will delete the given Instrument object from the gig file. You
5796 * have to call Save() to make this persistent to the file.
5797 *
5798 * @param pInstrument - instrument to delete
5799 * @throws gig::Exception if given instrument could not be found
5800 */
5801 void File::DeleteInstrument(Instrument* pInstrument) {
5802 if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
5803 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
5804 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
5805 pInstruments->erase(iter);
5806 delete pInstrument;
5807 }
5808
5809 void File::LoadInstruments() {
5810 LoadInstruments(NULL);
5811 }
5812
5813 void File::LoadInstruments(progress_t* pProgress) {
5814 if (!pInstruments) pInstruments = new InstrumentList;
5815 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5816 if (lstInstruments) {
5817 int iInstrumentIndex = 0;
5818 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
5819 while (lstInstr) {
5820 if (lstInstr->GetListType() == LIST_TYPE_INS) {
5821 // notify current progress
5822 const float localProgress = (float) iInstrumentIndex / (float) Instruments;
5823 __notify_progress(pProgress, localProgress);
5824
5825 // divide local progress into subprogress for loading current Instrument
5826 progress_t subprogress;
5827 __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
5828
5829 pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
5830
5831 iInstrumentIndex++;
5832 }
5833 lstInstr = lstInstruments->GetNextSubList();
5834 }
5835 __notify_progress(pProgress, 1.0); // notify done
5836 }
5837 }
5838
5839 /// Updates the 3crc chunk with the checksum of a sample. The
5840 /// update is done directly to disk, as this method is called
5841 /// after File::Save()
5842 void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
5843 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5844 if (!_3crc) return;
5845
5846 // get the index of the sample
5847 int iWaveIndex = GetWaveTableIndexOf(pSample);
5848 if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
5849
5850 // write the CRC-32 checksum to disk
5851 _3crc->SetPos(iWaveIndex * 8);
5852 uint32_t one = 1;
5853 _3crc->WriteUint32(&one); // always 1
5854 _3crc->WriteUint32(&crc);
5855 }
5856
5857 uint32_t File::GetSampleChecksum(Sample* pSample) {
5858 // get the index of the sample
5859 int iWaveIndex = GetWaveTableIndexOf(pSample);
5860 if (iWaveIndex < 0) throw gig::Exception("Could not retrieve reference crc of sample, could not resolve sample's wave table index");
5861
5862 return GetSampleChecksumByIndex(iWaveIndex);
5863 }
5864
5865 uint32_t File::GetSampleChecksumByIndex(int index) {
5866 if (index < 0) throw gig::Exception("Could not retrieve reference crc of sample, invalid wave pool index of sample");
5867
5868 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5869 if (!_3crc) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
5870 uint8_t* pData = (uint8_t*) _3crc->LoadChunkData();
5871 if (!pData) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
5872
5873 // read the CRC-32 checksum directly from disk
5874 size_t pos = index * 8;
5875 if (pos + 8 > _3crc->GetNewSize())
5876 throw gig::Exception("Could not retrieve reference crc of sample, could not seek to required position in crc chunk");
5877
5878 uint32_t one = load32(&pData[pos]); // always 1
5879 if (one != 1)
5880 throw gig::Exception("Could not retrieve reference crc of sample, because reference checksum table is damaged");
5881
5882 return load32(&pData[pos+4]);
5883 }
5884
5885 int File::GetWaveTableIndexOf(gig::Sample* pSample) {
5886 if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
5887 File::SampleList::iterator iter = pSamples->begin();
5888 File::SampleList::iterator end = pSamples->end();
5889 for (int index = 0; iter != end; ++iter, ++index)
5890 if (*iter == pSample)
5891 return index;
5892 return -1;
5893 }
5894
5895 /**
5896 * Checks whether the file's "3CRC" chunk was damaged. This chunk contains
5897 * the CRC32 check sums of all samples' raw wave data.
5898 *
5899 * @return true if 3CRC chunk is OK, or false if 3CRC chunk is damaged
5900 */
5901 bool File::VerifySampleChecksumTable() {
5902 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5903 if (!_3crc) return false;
5904 if (_3crc->GetNewSize() <= 0) return false;
5905 if (_3crc->GetNewSize() % 8) return false;
5906 if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
5907 if (_3crc->GetNewSize() != pSamples->size() * 8) return false;
5908
5909 const file_offset_t n = _3crc->GetNewSize() / 8;
5910
5911 uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
5912 if (!pData) return false;
5913
5914 for (file_offset_t i = 0; i < n; ++i) {
5915 uint32_t one = pData[i*2];
5916 if (one != 1) return false;
5917 }
5918
5919 return true;
5920 }
5921
5922 /**
5923 * Recalculates CRC32 checksums for all samples and rebuilds this gig
5924 * file's checksum table with those new checksums. This might usually
5925 * just be necessary if the checksum table was damaged.
5926 *
5927 * @e IMPORTANT: The current implementation of this method only works
5928 * with files that have not been modified since it was loaded, because
5929 * it expects that no externally caused file structure changes are
5930 * required!
5931 *
5932 * Due to the expectation above, this method is currently protected
5933 * and actually only used by the command line tool "gigdump" yet.
5934 *
5935 * @returns true if Save() is required to be called after this call,
5936 * false if no further action is required
5937 */
5938 bool File::RebuildSampleChecksumTable() {
5939 // make sure sample chunks were scanned
5940 if (!pSamples) GetFirstSample();
5941
5942 bool bRequiresSave = false;
5943
5944 // make sure "3CRC" chunk exists with required size
5945 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5946 if (!_3crc) {
5947 _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
5948 // the order of einf and 3crc is not the same in v2 and v3
5949 RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
5950 if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
5951 bRequiresSave = true;
5952 } else if (_3crc->GetNewSize() != pSamples->size() * 8) {
5953 _3crc->Resize(pSamples->size() * 8);
5954 bRequiresSave = true;
5955 }
5956
5957 if (bRequiresSave) { // refill CRC table for all samples in RAM ...
5958 uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
5959 {
5960 File::SampleList::iterator iter = pSamples->begin();
5961 File::SampleList::iterator end = pSamples->end();
5962 for (; iter != end; ++iter) {
5963 gig::Sample* pSample = (gig::Sample*) *iter;
5964 int index = GetWaveTableIndexOf(pSample);
5965 if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
5966 pData[index*2] = 1; // always 1
5967 pData[index*2+1] = pSample->CalculateWaveDataChecksum();
5968 }
5969 }
5970 } else { // no file structure changes necessary, so directly write to disk and we are done ...
5971 // make sure file is in write mode
5972 pRIFF->SetMode(RIFF::stream_mode_read_write);
5973 {
5974 File::SampleList::iterator iter = pSamples->begin();
5975 File::SampleList::iterator end = pSamples->end();
5976 for (; iter != end; ++iter) {
5977 gig::Sample* pSample = (gig::Sample*) *iter;
5978 int index = GetWaveTableIndexOf(pSample);
5979 if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
5980 pSample->crc = pSample->CalculateWaveDataChecksum();
5981 SetSampleChecksum(pSample, pSample->crc);
5982 }
5983 }
5984 }
5985
5986 return bRequiresSave;
5987 }
5988
5989 Group* File::GetFirstGroup() {
5990 if (!pGroups) LoadGroups();
5991 // there must always be at least one group
5992 GroupsIterator = pGroups->begin();
5993 return *GroupsIterator;
5994 }
5995
5996 Group* File::GetNextGroup() {
5997 if (!pGroups) return NULL;
5998 ++GroupsIterator;
5999 return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
6000 }
6001
6002 /**
6003 * Returns the group with the given index.
6004 *
6005 * @param index - number of the sought group (0..n)
6006 * @returns sought group or NULL if there's no such group
6007 */
6008 Group* File::GetGroup(uint index) {
6009 if (!pGroups) LoadGroups();
6010 GroupsIterator = pGroups->begin();
6011 for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
6012 if (i == index) return *GroupsIterator;
6013 ++GroupsIterator;
6014 }
6015 return NULL;
6016 }
6017
6018 /**
6019 * Returns the group with the given group name.
6020 *
6021 * Note: group names don't have to be unique in the gig format! So there
6022 * can be multiple groups with the same name. This method will simply
6023 * return the first group found with the given name.
6024 *
6025 * @param name - name of the sought group
6026 * @returns sought group or NULL if there's no group with that name
6027 */
6028 Group* File::GetGroup(String name) {
6029 if (!pGroups) LoadGroups();
6030 GroupsIterator = pGroups->begin();
6031 for (uint i = 0; GroupsIterator != pGroups->end(); ++GroupsIterator, ++i)
6032 if ((*GroupsIterator)->Name == name) return *GroupsIterator;
6033 return NULL;
6034 }
6035
6036 Group* File::AddGroup() {
6037 if (!pGroups) LoadGroups();
6038 // there must always be at least one group
6039 __ensureMandatoryChunksExist();
6040 Group* pGroup = new Group(this, NULL);
6041 pGroups->push_back(pGroup);
6042 return pGroup;
6043 }
6044
6045 /** @brief Delete a group and its samples.
6046 *
6047 * This will delete the given Group object and all the samples that
6048 * belong to this group from the gig file. You have to call Save() to
6049 * make this persistent to the file.
6050 *
6051 * @param pGroup - group to delete
6052 * @throws gig::Exception if given group could not be found
6053 */
6054 void File::DeleteGroup(Group* pGroup) {
6055 if (!pGroups) LoadGroups();
6056 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6057 if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6058 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6059 // delete all members of this group
6060 for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
6061 DeleteSample(pSample);
6062 }
6063 // now delete this group object
6064 pGroups->erase(iter);
6065 delete pGroup;
6066 }
6067
6068 /** @brief Delete a group.
6069 *
6070 * This will delete the given Group object from the gig file. All the
6071 * samples that belong to this group will not be deleted, but instead
6072 * be moved to another group. You have to call Save() to make this
6073 * persistent to the file.
6074 *
6075 * @param pGroup - group to delete
6076 * @throws gig::Exception if given group could not be found
6077 */
6078 void File::DeleteGroupOnly(Group* pGroup) {
6079 if (!pGroups) LoadGroups();
6080 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6081 if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6082 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6083 // move all members of this group to another group
6084 pGroup->MoveAll();
6085 pGroups->erase(iter);
6086 delete pGroup;
6087 }
6088
6089 void File::LoadGroups() {
6090 if (!pGroups) pGroups = new std::list<Group*>;
6091 // try to read defined groups from file
6092 RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6093 if (lst3gri) {
6094 RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
6095 if (lst3gnl) {
6096 RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
6097 while (ck) {
6098 if (ck->GetChunkID() == CHUNK_ID_3GNM) {
6099 if (pVersion && pVersion->major == 3 &&
6100 strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
6101
6102 pGroups->push_back(new Group(this, ck));
6103 }
6104 ck = lst3gnl->GetNextSubChunk();
6105 }
6106 }
6107 }
6108 // if there were no group(s), create at least the mandatory default group
6109 if (!pGroups->size()) {
6110 Group* pGroup = new Group(this, NULL);
6111 pGroup->Name = "Default Group";
6112 pGroups->push_back(pGroup);
6113 }
6114 }
6115
6116 /** @brief Get instrument script group (by index).
6117 *
6118 * Returns the real-time instrument script group with the given index.
6119 *
6120 * @param index - number of the sought group (0..n)
6121 * @returns sought script group or NULL if there's no such group
6122 */
6123 ScriptGroup* File::GetScriptGroup(uint index) {
6124 if (!pScriptGroups) LoadScriptGroups();
6125 std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6126 for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6127 if (i == index) return *it;
6128 return NULL;
6129 }
6130
6131 /** @brief Get instrument script group (by name).
6132 *
6133 * Returns the first real-time instrument script group found with the given
6134 * group name. Note that group names may not necessarily be unique.
6135 *
6136 * @param name - name of the sought script group
6137 * @returns sought script group or NULL if there's no such group
6138 */
6139 ScriptGroup* File::GetScriptGroup(const String& name) {
6140 if (!pScriptGroups) LoadScriptGroups();
6141 std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6142 for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6143 if ((*it)->Name == name) return *it;
6144 return NULL;
6145 }
6146
6147 /** @brief Add new instrument script group.
6148 *
6149 * Adds a new, empty real-time instrument script group to the file.
6150 *
6151 * You have to call Save() to make this persistent to the file.
6152 *
6153 * @return new empty script group
6154 */
6155 ScriptGroup* File::AddScriptGroup() {
6156 if (!pScriptGroups) LoadScriptGroups();
6157 ScriptGroup* pScriptGroup = new ScriptGroup(this, NULL);
6158 pScriptGroups->push_back(pScriptGroup);
6159 return pScriptGroup;
6160 }
6161
6162 /** @brief Delete an instrument script group.
6163 *
6164 * This will delete the given real-time instrument script group and all its
6165 * instrument scripts it contains. References inside instruments that are
6166 * using the deleted scripts will be removed from the respective instruments
6167 * accordingly.
6168 *
6169 * You have to call Save() to make this persistent to the file.
6170 *
6171 * @param pScriptGroup - script group to delete
6172 * @throws gig::Exception if given script group could not be found
6173 */
6174 void File::DeleteScriptGroup(ScriptGroup* pScriptGroup) {
6175 if (!pScriptGroups) LoadScriptGroups();
6176 std::list<ScriptGroup*>::iterator iter =
6177 find(pScriptGroups->begin(), pScriptGroups->end(), pScriptGroup);
6178 if (iter == pScriptGroups->end())
6179 throw gig::Exception("Could not delete script group, could not find given script group");
6180 pScriptGroups->erase(iter);
6181 for (int i = 0; pScriptGroup->GetScript(i); ++i)
6182 pScriptGroup->DeleteScript(pScriptGroup->GetScript(i));
6183 if (pScriptGroup->pList)
6184 pScriptGroup->pList->GetParent()->DeleteSubChunk(pScriptGroup->pList);
6185 delete pScriptGroup;
6186 }
6187
6188 void File::LoadScriptGroups() {
6189 if (pScriptGroups) return;
6190 pScriptGroups = new std::list<ScriptGroup*>;
6191 RIFF::List* lstLS = pRIFF->GetSubList(LIST_TYPE_3LS);
6192 if (lstLS) {
6193 for (RIFF::List* lst = lstLS->GetFirstSubList(); lst;
6194 lst = lstLS->GetNextSubList())
6195 {
6196 if (lst->GetListType() == LIST_TYPE_RTIS) {
6197 pScriptGroups->push_back(new ScriptGroup(this, lst));
6198 }
6199 }
6200 }
6201 }
6202
6203 /**
6204 * Apply all the gig file's current instruments, samples, groups and settings
6205 * to the respective RIFF chunks. You have to call Save() to make changes
6206 * persistent.
6207 *
6208 * Usually there is absolutely no need to call this method explicitly.
6209 * It will be called automatically when File::Save() was called.
6210 *
6211 * @param pProgress - callback function for progress notification
6212 * @throws Exception - on errors
6213 */
6214 void File::UpdateChunks(progress_t* pProgress) {
6215 bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
6216
6217 // update own gig format extension chunks
6218 // (not part of the GigaStudio 4 format)
6219 RIFF::List* lst3LS = pRIFF->GetSubList(LIST_TYPE_3LS);
6220 if (!lst3LS) {
6221 lst3LS = pRIFF->AddSubList(LIST_TYPE_3LS);
6222 }
6223 // Make sure <3LS > chunk is placed before <ptbl> chunk. The precise
6224 // location of <3LS > is irrelevant, however it should be located
6225 // before the actual wave data
6226 RIFF::Chunk* ckPTBL = pRIFF->GetSubChunk(CHUNK_ID_PTBL);
6227 pRIFF->MoveSubChunk(lst3LS, ckPTBL);
6228
6229 // This must be performed before writing the chunks for instruments,
6230 // because the instruments' script slots will write the file offsets
6231 // of the respective instrument script chunk as reference.
6232 if (pScriptGroups) {
6233 // Update instrument script (group) chunks.
6234 for (std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6235 it != pScriptGroups->end(); ++it)
6236 {
6237 (*it)->UpdateChunks(pProgress);
6238 }
6239 }
6240
6241 // in case no libgig custom format data was added, then remove the
6242 // custom "3LS " chunk again
6243 if (!lst3LS->CountSubChunks()) {
6244 pRIFF->DeleteSubChunk(lst3LS);
6245 lst3LS = NULL;
6246 }
6247
6248 // first update base class's chunks
6249 DLS::File::UpdateChunks(pProgress);
6250
6251 if (newFile) {
6252 // INFO was added by Resource::UpdateChunks - make sure it
6253 // is placed first in file
6254 RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
6255 RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
6256 if (first != info) {
6257 pRIFF->MoveSubChunk(info, first);
6258 }
6259 }
6260
6261 // update group's chunks
6262 if (pGroups) {
6263 // make sure '3gri' and '3gnl' list chunks exist
6264 // (before updating the Group chunks)
6265 RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6266 if (!_3gri) {
6267 _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
6268 pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
6269 }
6270 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
6271 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
6272
6273 // v3: make sure the file has 128 3gnm chunks
6274 // (before updating the Group chunks)
6275 if (pVersion && pVersion->major == 3) {
6276 RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
6277 for (int i = 0 ; i < 128 ; i++) {
6278 if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
6279 if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
6280 }
6281 }
6282
6283 std::list<Group*>::iterator iter = pGroups->begin();
6284 std::list<Group*>::iterator end = pGroups->end();
6285 for (; iter != end; ++iter) {
6286 (*iter)->UpdateChunks(pProgress);
6287 }
6288 }
6289
6290 // update einf chunk
6291
6292 // The einf chunk contains statistics about the gig file, such
6293 // as the number of regions and samples used by each
6294 // instrument. It is divided in equally sized parts, where the
6295 // first part contains information about the whole gig file,
6296 // and the rest of the parts map to each instrument in the
6297 // file.
6298 //
6299 // At the end of each part there is a bit map of each sample
6300 // in the file, where a set bit means that the sample is used
6301 // by the file/instrument.
6302 //
6303 // Note that there are several fields with unknown use. These
6304 // are set to zero.
6305
6306 int sublen = int(pSamples->size() / 8 + 49);
6307 int einfSize = (Instruments + 1) * sublen;
6308
6309 RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6310 if (einf) {
6311 if (einf->GetSize() != einfSize) {
6312 einf->Resize(einfSize);
6313 memset(einf->LoadChunkData(), 0, einfSize);
6314 }
6315 } else if (newFile) {
6316 einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
6317 }
6318 if (einf) {
6319 uint8_t* pData = (uint8_t*) einf->LoadChunkData();
6320
6321 std::map<gig::Sample*,int> sampleMap;
6322 int sampleIdx = 0;
6323 for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
6324 sampleMap[pSample] = sampleIdx++;
6325 }
6326
6327 int totnbusedsamples = 0;
6328 int totnbusedchannels = 0;
6329 int totnbregions = 0;
6330 int totnbdimregions = 0;
6331 int totnbloops = 0;
6332 int instrumentIdx = 0;
6333
6334 memset(&pData[48], 0, sublen - 48);
6335
6336 for (Instrument* instrument = GetFirstInstrument() ; instrument ;
6337 instrument = GetNextInstrument()) {
6338 int nbusedsamples = 0;
6339 int nbusedchannels = 0;
6340 int nbdimregions = 0;
6341 int nbloops = 0;
6342
6343 memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
6344
6345 for (Region* region = instrument->GetFirstRegion() ; region ;
6346 region = instrument->GetNextRegion()) {
6347 for (int i = 0 ; i < region->DimensionRegions ; i++) {
6348 gig::DimensionRegion *d = region->pDimensionRegions[i];
6349 if (d->pSample) {
6350 int sampleIdx = sampleMap[d->pSample];
6351 int byte = 48 + sampleIdx / 8;
6352 int bit = 1 << (sampleIdx & 7);
6353 if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
6354 pData[(instrumentIdx + 1) * sublen + byte] |= bit;
6355 nbusedsamples++;
6356 nbusedchannels += d->pSample->Channels;
6357
6358 if ((pData[byte] & bit) == 0) {
6359 pData[byte] |= bit;
6360 totnbusedsamples++;
6361 totnbusedchannels += d->pSample->Channels;
6362 }
6363 }
6364 }
6365 if (d->SampleLoops) nbloops++;
6366 }
6367 nbdimregions += region->DimensionRegions;
6368 }
6369 // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6370 // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
6371 store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
6372 store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
6373 store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
6374 store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
6375 store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
6376 store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
6377 // next 8 bytes unknown
6378 store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
6379 store32(&pData[(instrumentIdx + 1) * sublen + 40], (uint32_t) pSamples->size());
6380 // next 4 bytes unknown
6381
6382 totnbregions += instrument->Regions;
6383 totnbdimregions += nbdimregions;
6384 totnbloops += nbloops;
6385 instrumentIdx++;
6386 }
6387 // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6388 // store32(&pData[0], sublen);
6389 store32(&pData[4], totnbusedchannels);
6390 store32(&pData[8], totnbusedsamples);
6391 store32(&pData[12], Instruments);
6392 store32(&pData[16], totnbregions);
6393 store32(&pData[20], totnbdimregions);
6394 store32(&pData[24], totnbloops);
6395 // next 8 bytes unknown
6396 // next 4 bytes unknown, not always 0
6397 store32(&pData[40], (uint32_t) pSamples->size());
6398 // next 4 bytes unknown
6399 }
6400
6401 // update 3crc chunk
6402
6403 // The 3crc chunk contains CRC-32 checksums for the
6404 // samples. When saving a gig file to disk, we first update the 3CRC
6405 // chunk here (in RAM) with the old crc values which we read from the
6406 // 3CRC chunk when we opened the file (available with gig::Sample::crc
6407 // member variable). This step is required, because samples might have
6408 // been deleted by the user since the file was opened, which in turn
6409 // changes the order of the (i.e. old) checksums within the 3crc chunk.
6410 // If a sample was conciously modified by the user (that is if
6411 // Sample::Write() was called later on) then Sample::Write() will just
6412 // update the respective individual checksum(s) directly on disk and
6413 // leaves all other sample checksums untouched.
6414
6415 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6416 if (_3crc) {
6417 _3crc->Resize(pSamples->size() * 8);
6418 } else /*if (newFile)*/ {
6419 _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6420 // the order of einf and 3crc is not the same in v2 and v3
6421 if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
6422 }
6423 { // must be performed in RAM here ...
6424 uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6425 if (pData) {
6426 File::SampleList::iterator iter = pSamples->begin();
6427 File::SampleList::iterator end = pSamples->end();
6428 for (int index = 0; iter != end; ++iter, ++index) {
6429 gig::Sample* pSample = (gig::Sample*) *iter;
6430 pData[index*2] = 1; // always 1
6431 pData[index*2+1] = pSample->crc;
6432 }
6433 }
6434 }
6435 }
6436
6437 void File::UpdateFileOffsets() {
6438 DLS::File::UpdateFileOffsets();
6439
6440 for (Instrument* instrument = GetFirstInstrument(); instrument;
6441 instrument = GetNextInstrument())
6442 {
6443 instrument->UpdateScriptFileOffsets();
6444 }
6445 }
6446
6447 /**
6448 * Enable / disable automatic loading. By default this properyt is
6449 * enabled and all informations are loaded automatically. However
6450 * loading all Regions, DimensionRegions and especially samples might
6451 * take a long time for large .gig files, and sometimes one might only
6452 * be interested in retrieving very superficial informations like the
6453 * amount of instruments and their names. In this case one might disable
6454 * automatic loading to avoid very slow response times.
6455 *
6456 * @e CAUTION: by disabling this property many pointers (i.e. sample
6457 * references) and informations will have invalid or even undefined
6458 * data! This feature is currently only intended for retrieving very
6459 * superficial informations in a very fast way. Don't use it to retrieve
6460 * details like synthesis informations or even to modify .gig files!
6461 */
6462 void File::SetAutoLoad(bool b) {
6463 bAutoLoad = b;
6464 }
6465
6466 /**
6467 * Returns whether automatic loading is enabled.
6468 * @see SetAutoLoad()
6469 */
6470 bool File::GetAutoLoad() {
6471 return bAutoLoad;
6472 }
6473
6474
6475
6476 // *************** Exception ***************
6477 // *
6478
6479 Exception::Exception() : DLS::Exception() {
6480 }
6481
6482 Exception::Exception(String format, ...) : DLS::Exception() {
6483 va_list arg;
6484 va_start(arg, format);
6485 Message = assemble(format, arg);
6486 va_end(arg);
6487 }
6488
6489 Exception::Exception(String format, va_list arg) : DLS::Exception() {
6490 Message = assemble(format, arg);
6491 }
6492
6493 void Exception::PrintMessage() {
6494 std::cout << "gig::Exception: " << Message << std::endl;
6495 }
6496
6497
6498 // *************** functions ***************
6499 // *
6500
6501 /**
6502 * Returns the name of this C++ library. This is usually "libgig" of
6503 * course. This call is equivalent to RIFF::libraryName() and
6504 * DLS::libraryName().
6505 */
6506 String libraryName() {
6507 return PACKAGE;
6508 }
6509
6510 /**
6511 * Returns version of this C++ library. This call is equivalent to
6512 * RIFF::libraryVersion() and DLS::libraryVersion().
6513 */
6514 String libraryVersion() {
6515 return VERSION;
6516 }
6517
6518 } // namespace gig

  ViewVC Help
Powered by ViewVC