/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Contents of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3323 - (show annotations) (download)
Thu Jul 20 22:09:54 2017 UTC (6 years, 8 months ago) by schoenebeck
File size: 284084 byte(s)
* gig.h/.cpp: Added new struct "eg_opt_t" and new class member variable
  "DimensionRegion::EGOptions" as an extension to the gig file format,
  which allows to override the default behavior of EGs' state machines.
* DLS.h: Got rid of C-style typedefs.
* src/tools/gigdump.cpp: Print the new EG behavior options.
* Bumped version (4.0.0.svn27).

1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file access library *
4 * *
5 * Copyright (C) 2003-2017 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #include "gig.h"
25
26 #include "helper.h"
27 #include "Serialization.h"
28
29 #include <algorithm>
30 #include <math.h>
31 #include <iostream>
32 #include <assert.h>
33
34 /// libgig's current file format version (for extending the original Giga file
35 /// format with libgig's own custom data / custom features).
36 #define GIG_FILE_EXT_VERSION 2
37
38 /// Initial size of the sample buffer which is used for decompression of
39 /// compressed sample wave streams - this value should always be bigger than
40 /// the biggest sample piece expected to be read by the sampler engine,
41 /// otherwise the buffer size will be raised at runtime and thus the buffer
42 /// reallocated which is time consuming and unefficient.
43 #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
44
45 /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
46 #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
47 #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
48 #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
49 #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
50 #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
51 #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
52 #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
53 #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
54 #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
55 #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
56 #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
57 #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
58
59 #define SRLZ(member) \
60 archive->serializeMember(*this, member, #member);
61
62 namespace gig {
63
64 // *************** Internal functions for sample decompression ***************
65 // *
66
67 namespace {
68
69 inline int get12lo(const unsigned char* pSrc)
70 {
71 const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
72 return x & 0x800 ? x - 0x1000 : x;
73 }
74
75 inline int get12hi(const unsigned char* pSrc)
76 {
77 const int x = pSrc[1] >> 4 | pSrc[2] << 4;
78 return x & 0x800 ? x - 0x1000 : x;
79 }
80
81 inline int16_t get16(const unsigned char* pSrc)
82 {
83 return int16_t(pSrc[0] | pSrc[1] << 8);
84 }
85
86 inline int get24(const unsigned char* pSrc)
87 {
88 const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
89 return x & 0x800000 ? x - 0x1000000 : x;
90 }
91
92 inline void store24(unsigned char* pDst, int x)
93 {
94 pDst[0] = x;
95 pDst[1] = x >> 8;
96 pDst[2] = x >> 16;
97 }
98
99 void Decompress16(int compressionmode, const unsigned char* params,
100 int srcStep, int dstStep,
101 const unsigned char* pSrc, int16_t* pDst,
102 file_offset_t currentframeoffset,
103 file_offset_t copysamples)
104 {
105 switch (compressionmode) {
106 case 0: // 16 bit uncompressed
107 pSrc += currentframeoffset * srcStep;
108 while (copysamples) {
109 *pDst = get16(pSrc);
110 pDst += dstStep;
111 pSrc += srcStep;
112 copysamples--;
113 }
114 break;
115
116 case 1: // 16 bit compressed to 8 bit
117 int y = get16(params);
118 int dy = get16(params + 2);
119 while (currentframeoffset) {
120 dy -= int8_t(*pSrc);
121 y -= dy;
122 pSrc += srcStep;
123 currentframeoffset--;
124 }
125 while (copysamples) {
126 dy -= int8_t(*pSrc);
127 y -= dy;
128 *pDst = y;
129 pDst += dstStep;
130 pSrc += srcStep;
131 copysamples--;
132 }
133 break;
134 }
135 }
136
137 void Decompress24(int compressionmode, const unsigned char* params,
138 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
139 file_offset_t currentframeoffset,
140 file_offset_t copysamples, int truncatedBits)
141 {
142 int y, dy, ddy, dddy;
143
144 #define GET_PARAMS(params) \
145 y = get24(params); \
146 dy = y - get24((params) + 3); \
147 ddy = get24((params) + 6); \
148 dddy = get24((params) + 9)
149
150 #define SKIP_ONE(x) \
151 dddy -= (x); \
152 ddy -= dddy; \
153 dy = -dy - ddy; \
154 y += dy
155
156 #define COPY_ONE(x) \
157 SKIP_ONE(x); \
158 store24(pDst, y << truncatedBits); \
159 pDst += dstStep
160
161 switch (compressionmode) {
162 case 2: // 24 bit uncompressed
163 pSrc += currentframeoffset * 3;
164 while (copysamples) {
165 store24(pDst, get24(pSrc) << truncatedBits);
166 pDst += dstStep;
167 pSrc += 3;
168 copysamples--;
169 }
170 break;
171
172 case 3: // 24 bit compressed to 16 bit
173 GET_PARAMS(params);
174 while (currentframeoffset) {
175 SKIP_ONE(get16(pSrc));
176 pSrc += 2;
177 currentframeoffset--;
178 }
179 while (copysamples) {
180 COPY_ONE(get16(pSrc));
181 pSrc += 2;
182 copysamples--;
183 }
184 break;
185
186 case 4: // 24 bit compressed to 12 bit
187 GET_PARAMS(params);
188 while (currentframeoffset > 1) {
189 SKIP_ONE(get12lo(pSrc));
190 SKIP_ONE(get12hi(pSrc));
191 pSrc += 3;
192 currentframeoffset -= 2;
193 }
194 if (currentframeoffset) {
195 SKIP_ONE(get12lo(pSrc));
196 currentframeoffset--;
197 if (copysamples) {
198 COPY_ONE(get12hi(pSrc));
199 pSrc += 3;
200 copysamples--;
201 }
202 }
203 while (copysamples > 1) {
204 COPY_ONE(get12lo(pSrc));
205 COPY_ONE(get12hi(pSrc));
206 pSrc += 3;
207 copysamples -= 2;
208 }
209 if (copysamples) {
210 COPY_ONE(get12lo(pSrc));
211 }
212 break;
213
214 case 5: // 24 bit compressed to 8 bit
215 GET_PARAMS(params);
216 while (currentframeoffset) {
217 SKIP_ONE(int8_t(*pSrc++));
218 currentframeoffset--;
219 }
220 while (copysamples) {
221 COPY_ONE(int8_t(*pSrc++));
222 copysamples--;
223 }
224 break;
225 }
226 }
227
228 const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
229 const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
230 const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
231 const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
232 }
233
234
235
236 // *************** Internal CRC-32 (Cyclic Redundancy Check) functions ***************
237 // *
238
239 static uint32_t* __initCRCTable() {
240 static uint32_t res[256];
241
242 for (int i = 0 ; i < 256 ; i++) {
243 uint32_t c = i;
244 for (int j = 0 ; j < 8 ; j++) {
245 c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
246 }
247 res[i] = c;
248 }
249 return res;
250 }
251
252 static const uint32_t* __CRCTable = __initCRCTable();
253
254 /**
255 * Initialize a CRC variable.
256 *
257 * @param crc - variable to be initialized
258 */
259 inline static void __resetCRC(uint32_t& crc) {
260 crc = 0xffffffff;
261 }
262
263 /**
264 * Used to calculate checksums of the sample data in a gig file. The
265 * checksums are stored in the 3crc chunk of the gig file and
266 * automatically updated when a sample is written with Sample::Write().
267 *
268 * One should call __resetCRC() to initialize the CRC variable to be
269 * used before calling this function the first time.
270 *
271 * After initializing the CRC variable one can call this function
272 * arbitrary times, i.e. to split the overall CRC calculation into
273 * steps.
274 *
275 * Once the whole data was processed by __calculateCRC(), one should
276 * call __finalizeCRC() to get the final CRC result.
277 *
278 * @param buf - pointer to data the CRC shall be calculated of
279 * @param bufSize - size of the data to be processed
280 * @param crc - variable the CRC sum shall be stored to
281 */
282 static void __calculateCRC(unsigned char* buf, size_t bufSize, uint32_t& crc) {
283 for (size_t i = 0 ; i < bufSize ; i++) {
284 crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
285 }
286 }
287
288 /**
289 * Returns the final CRC result.
290 *
291 * @param crc - variable previously passed to __calculateCRC()
292 */
293 inline static void __finalizeCRC(uint32_t& crc) {
294 crc ^= 0xffffffff;
295 }
296
297
298
299 // *************** Other Internal functions ***************
300 // *
301
302 static split_type_t __resolveSplitType(dimension_t dimension) {
303 return (
304 dimension == dimension_layer ||
305 dimension == dimension_samplechannel ||
306 dimension == dimension_releasetrigger ||
307 dimension == dimension_keyboard ||
308 dimension == dimension_roundrobin ||
309 dimension == dimension_random ||
310 dimension == dimension_smartmidi ||
311 dimension == dimension_roundrobinkeyboard
312 ) ? split_type_bit : split_type_normal;
313 }
314
315 static int __resolveZoneSize(dimension_def_t& dimension_definition) {
316 return (dimension_definition.split_type == split_type_normal)
317 ? int(128.0 / dimension_definition.zones) : 0;
318 }
319
320
321
322 // *************** leverage_ctrl_t ***************
323 // *
324
325 void leverage_ctrl_t::serialize(Serialization::Archive* archive) {
326 SRLZ(type);
327 SRLZ(controller_number);
328 }
329
330
331
332 // *************** crossfade_t ***************
333 // *
334
335 void crossfade_t::serialize(Serialization::Archive* archive) {
336 SRLZ(in_start);
337 SRLZ(in_end);
338 SRLZ(out_start);
339 SRLZ(out_end);
340 }
341
342
343
344 // *************** eg_opt_t ***************
345 // *
346
347 eg_opt_t::eg_opt_t() {
348 AttackCancel = true;
349 AttackHoldCancel = true;
350 DecayCancel = true;
351 ReleaseCancel = true;
352 }
353
354 void eg_opt_t::serialize(Serialization::Archive* archive) {
355 SRLZ(AttackCancel);
356 SRLZ(AttackHoldCancel);
357 SRLZ(DecayCancel);
358 SRLZ(ReleaseCancel);
359 }
360
361
362
363 // *************** Sample ***************
364 // *
365
366 size_t Sample::Instances = 0;
367 buffer_t Sample::InternalDecompressionBuffer;
368
369 /** @brief Constructor.
370 *
371 * Load an existing sample or create a new one. A 'wave' list chunk must
372 * be given to this constructor. In case the given 'wave' list chunk
373 * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
374 * format and sample data will be loaded from there, otherwise default
375 * values will be used and those chunks will be created when
376 * File::Save() will be called later on.
377 *
378 * @param pFile - pointer to gig::File where this sample is
379 * located (or will be located)
380 * @param waveList - pointer to 'wave' list chunk which is (or
381 * will be) associated with this sample
382 * @param WavePoolOffset - offset of this sample data from wave pool
383 * ('wvpl') list chunk
384 * @param fileNo - number of an extension file where this sample
385 * is located, 0 otherwise
386 * @param index - wave pool index of sample (may be -1 on new sample)
387 */
388 Sample::Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo, int index)
389 : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset)
390 {
391 static const DLS::Info::string_length_t fixedStringLengths[] = {
392 { CHUNK_ID_INAM, 64 },
393 { 0, 0 }
394 };
395 pInfo->SetFixedStringLengths(fixedStringLengths);
396 Instances++;
397 FileNo = fileNo;
398
399 __resetCRC(crc);
400 // if this is not a new sample, try to get the sample's already existing
401 // CRC32 checksum from disk, this checksum will reflect the sample's CRC32
402 // checksum of the time when the sample was consciously modified by the
403 // user for the last time (by calling Sample::Write() that is).
404 if (index >= 0) { // not a new file ...
405 try {
406 uint32_t crc = pFile->GetSampleChecksumByIndex(index);
407 this->crc = crc;
408 } catch (...) {}
409 }
410
411 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
412 if (pCk3gix) {
413 uint16_t iSampleGroup = pCk3gix->ReadInt16();
414 pGroup = pFile->GetGroup(iSampleGroup);
415 } else { // '3gix' chunk missing
416 // by default assigned to that mandatory "Default Group"
417 pGroup = pFile->GetGroup(0);
418 }
419
420 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
421 if (pCkSmpl) {
422 Manufacturer = pCkSmpl->ReadInt32();
423 Product = pCkSmpl->ReadInt32();
424 SamplePeriod = pCkSmpl->ReadInt32();
425 MIDIUnityNote = pCkSmpl->ReadInt32();
426 FineTune = pCkSmpl->ReadInt32();
427 pCkSmpl->Read(&SMPTEFormat, 1, 4);
428 SMPTEOffset = pCkSmpl->ReadInt32();
429 Loops = pCkSmpl->ReadInt32();
430 pCkSmpl->ReadInt32(); // manufByt
431 LoopID = pCkSmpl->ReadInt32();
432 pCkSmpl->Read(&LoopType, 1, 4);
433 LoopStart = pCkSmpl->ReadInt32();
434 LoopEnd = pCkSmpl->ReadInt32();
435 LoopFraction = pCkSmpl->ReadInt32();
436 LoopPlayCount = pCkSmpl->ReadInt32();
437 } else { // 'smpl' chunk missing
438 // use default values
439 Manufacturer = 0;
440 Product = 0;
441 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
442 MIDIUnityNote = 60;
443 FineTune = 0;
444 SMPTEFormat = smpte_format_no_offset;
445 SMPTEOffset = 0;
446 Loops = 0;
447 LoopID = 0;
448 LoopType = loop_type_normal;
449 LoopStart = 0;
450 LoopEnd = 0;
451 LoopFraction = 0;
452 LoopPlayCount = 0;
453 }
454
455 FrameTable = NULL;
456 SamplePos = 0;
457 RAMCache.Size = 0;
458 RAMCache.pStart = NULL;
459 RAMCache.NullExtensionSize = 0;
460
461 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
462
463 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
464 Compressed = ewav;
465 Dithered = false;
466 TruncatedBits = 0;
467 if (Compressed) {
468 uint32_t version = ewav->ReadInt32();
469 if (version == 3 && BitDepth == 24) {
470 Dithered = ewav->ReadInt32();
471 ewav->SetPos(Channels == 2 ? 84 : 64);
472 TruncatedBits = ewav->ReadInt32();
473 }
474 ScanCompressedSample();
475 }
476
477 // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
478 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
479 InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
480 InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
481 }
482 FrameOffset = 0; // just for streaming compressed samples
483
484 LoopSize = LoopEnd - LoopStart + 1;
485 }
486
487 /**
488 * Make a (semi) deep copy of the Sample object given by @a orig (without
489 * the actual waveform data) and assign it to this object.
490 *
491 * Discussion: copying .gig samples is a bit tricky. It requires three
492 * steps:
493 * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
494 * its new sample waveform data size.
495 * 2. Saving the file (done by File::Save()) so that it gains correct size
496 * and layout for writing the actual wave form data directly to disc
497 * in next step.
498 * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
499 *
500 * @param orig - original Sample object to be copied from
501 */
502 void Sample::CopyAssignMeta(const Sample* orig) {
503 // handle base classes
504 DLS::Sample::CopyAssignCore(orig);
505
506 // handle actual own attributes of this class
507 Manufacturer = orig->Manufacturer;
508 Product = orig->Product;
509 SamplePeriod = orig->SamplePeriod;
510 MIDIUnityNote = orig->MIDIUnityNote;
511 FineTune = orig->FineTune;
512 SMPTEFormat = orig->SMPTEFormat;
513 SMPTEOffset = orig->SMPTEOffset;
514 Loops = orig->Loops;
515 LoopID = orig->LoopID;
516 LoopType = orig->LoopType;
517 LoopStart = orig->LoopStart;
518 LoopEnd = orig->LoopEnd;
519 LoopSize = orig->LoopSize;
520 LoopFraction = orig->LoopFraction;
521 LoopPlayCount = orig->LoopPlayCount;
522
523 // schedule resizing this sample to the given sample's size
524 Resize(orig->GetSize());
525 }
526
527 /**
528 * Should be called after CopyAssignMeta() and File::Save() sequence.
529 * Read more about it in the discussion of CopyAssignMeta(). This method
530 * copies the actual waveform data by disk streaming.
531 *
532 * @e CAUTION: this method is currently not thread safe! During this
533 * operation the sample must not be used for other purposes by other
534 * threads!
535 *
536 * @param orig - original Sample object to be copied from
537 */
538 void Sample::CopyAssignWave(const Sample* orig) {
539 const int iReadAtOnce = 32*1024;
540 char* buf = new char[iReadAtOnce * orig->FrameSize];
541 Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
542 file_offset_t restorePos = pOrig->GetPos();
543 pOrig->SetPos(0);
544 SetPos(0);
545 for (file_offset_t n = pOrig->Read(buf, iReadAtOnce); n;
546 n = pOrig->Read(buf, iReadAtOnce))
547 {
548 Write(buf, n);
549 }
550 pOrig->SetPos(restorePos);
551 delete [] buf;
552 }
553
554 /**
555 * Apply sample and its settings to the respective RIFF chunks. You have
556 * to call File::Save() to make changes persistent.
557 *
558 * Usually there is absolutely no need to call this method explicitly.
559 * It will be called automatically when File::Save() was called.
560 *
561 * @param pProgress - callback function for progress notification
562 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
563 * was provided yet
564 * @throws gig::Exception if there is any invalid sample setting
565 */
566 void Sample::UpdateChunks(progress_t* pProgress) {
567 // first update base class's chunks
568 DLS::Sample::UpdateChunks(pProgress);
569
570 // make sure 'smpl' chunk exists
571 pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
572 if (!pCkSmpl) {
573 pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
574 memset(pCkSmpl->LoadChunkData(), 0, 60);
575 }
576 // update 'smpl' chunk
577 uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
578 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
579 store32(&pData[0], Manufacturer);
580 store32(&pData[4], Product);
581 store32(&pData[8], SamplePeriod);
582 store32(&pData[12], MIDIUnityNote);
583 store32(&pData[16], FineTune);
584 store32(&pData[20], SMPTEFormat);
585 store32(&pData[24], SMPTEOffset);
586 store32(&pData[28], Loops);
587
588 // we skip 'manufByt' for now (4 bytes)
589
590 store32(&pData[36], LoopID);
591 store32(&pData[40], LoopType);
592 store32(&pData[44], LoopStart);
593 store32(&pData[48], LoopEnd);
594 store32(&pData[52], LoopFraction);
595 store32(&pData[56], LoopPlayCount);
596
597 // make sure '3gix' chunk exists
598 pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
599 if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
600 // determine appropriate sample group index (to be stored in chunk)
601 uint16_t iSampleGroup = 0; // 0 refers to default sample group
602 File* pFile = static_cast<File*>(pParent);
603 if (pFile->pGroups) {
604 std::list<Group*>::iterator iter = pFile->pGroups->begin();
605 std::list<Group*>::iterator end = pFile->pGroups->end();
606 for (int i = 0; iter != end; i++, iter++) {
607 if (*iter == pGroup) {
608 iSampleGroup = i;
609 break; // found
610 }
611 }
612 }
613 // update '3gix' chunk
614 pData = (uint8_t*) pCk3gix->LoadChunkData();
615 store16(&pData[0], iSampleGroup);
616
617 // if the library user toggled the "Compressed" attribute from true to
618 // false, then the EWAV chunk associated with compressed samples needs
619 // to be deleted
620 RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
621 if (ewav && !Compressed) {
622 pWaveList->DeleteSubChunk(ewav);
623 }
624 }
625
626 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
627 void Sample::ScanCompressedSample() {
628 //TODO: we have to add some more scans here (e.g. determine compression rate)
629 this->SamplesTotal = 0;
630 std::list<file_offset_t> frameOffsets;
631
632 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
633 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
634
635 // Scanning
636 pCkData->SetPos(0);
637 if (Channels == 2) { // Stereo
638 for (int i = 0 ; ; i++) {
639 // for 24 bit samples every 8:th frame offset is
640 // stored, to save some memory
641 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
642
643 const int mode_l = pCkData->ReadUint8();
644 const int mode_r = pCkData->ReadUint8();
645 if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
646 const file_offset_t frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
647
648 if (pCkData->RemainingBytes() <= frameSize) {
649 SamplesInLastFrame =
650 ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
651 (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
652 SamplesTotal += SamplesInLastFrame;
653 break;
654 }
655 SamplesTotal += SamplesPerFrame;
656 pCkData->SetPos(frameSize, RIFF::stream_curpos);
657 }
658 }
659 else { // Mono
660 for (int i = 0 ; ; i++) {
661 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
662
663 const int mode = pCkData->ReadUint8();
664 if (mode > 5) throw gig::Exception("Unknown compression mode");
665 const file_offset_t frameSize = bytesPerFrame[mode];
666
667 if (pCkData->RemainingBytes() <= frameSize) {
668 SamplesInLastFrame =
669 ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
670 SamplesTotal += SamplesInLastFrame;
671 break;
672 }
673 SamplesTotal += SamplesPerFrame;
674 pCkData->SetPos(frameSize, RIFF::stream_curpos);
675 }
676 }
677 pCkData->SetPos(0);
678
679 // Build the frames table (which is used for fast resolving of a frame's chunk offset)
680 if (FrameTable) delete[] FrameTable;
681 FrameTable = new file_offset_t[frameOffsets.size()];
682 std::list<file_offset_t>::iterator end = frameOffsets.end();
683 std::list<file_offset_t>::iterator iter = frameOffsets.begin();
684 for (int i = 0; iter != end; i++, iter++) {
685 FrameTable[i] = *iter;
686 }
687 }
688
689 /**
690 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
691 * ReleaseSampleData() to free the memory if you don't need the cached
692 * sample data anymore.
693 *
694 * @returns buffer_t structure with start address and size of the buffer
695 * in bytes
696 * @see ReleaseSampleData(), Read(), SetPos()
697 */
698 buffer_t Sample::LoadSampleData() {
699 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
700 }
701
702 /**
703 * Reads (uncompresses if needed) and caches the first \a SampleCount
704 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
705 * memory space if you don't need the cached samples anymore. There is no
706 * guarantee that exactly \a SampleCount samples will be cached; this is
707 * not an error. The size will be eventually truncated e.g. to the
708 * beginning of a frame of a compressed sample. This is done for
709 * efficiency reasons while streaming the wave by your sampler engine
710 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
711 * that will be returned to determine the actual cached samples, but note
712 * that the size is given in bytes! You get the number of actually cached
713 * samples by dividing it by the frame size of the sample:
714 * @code
715 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
716 * long cachedsamples = buf.Size / pSample->FrameSize;
717 * @endcode
718 *
719 * @param SampleCount - number of sample points to load into RAM
720 * @returns buffer_t structure with start address and size of
721 * the cached sample data in bytes
722 * @see ReleaseSampleData(), Read(), SetPos()
723 */
724 buffer_t Sample::LoadSampleData(file_offset_t SampleCount) {
725 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
726 }
727
728 /**
729 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
730 * ReleaseSampleData() to free the memory if you don't need the cached
731 * sample data anymore.
732 * The method will add \a NullSamplesCount silence samples past the
733 * official buffer end (this won't affect the 'Size' member of the
734 * buffer_t structure, that means 'Size' always reflects the size of the
735 * actual sample data, the buffer might be bigger though). Silence
736 * samples past the official buffer are needed for differential
737 * algorithms that always have to take subsequent samples into account
738 * (resampling/interpolation would be an important example) and avoids
739 * memory access faults in such cases.
740 *
741 * @param NullSamplesCount - number of silence samples the buffer should
742 * be extended past it's data end
743 * @returns buffer_t structure with start address and
744 * size of the buffer in bytes
745 * @see ReleaseSampleData(), Read(), SetPos()
746 */
747 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
748 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
749 }
750
751 /**
752 * Reads (uncompresses if needed) and caches the first \a SampleCount
753 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
754 * memory space if you don't need the cached samples anymore. There is no
755 * guarantee that exactly \a SampleCount samples will be cached; this is
756 * not an error. The size will be eventually truncated e.g. to the
757 * beginning of a frame of a compressed sample. This is done for
758 * efficiency reasons while streaming the wave by your sampler engine
759 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
760 * that will be returned to determine the actual cached samples, but note
761 * that the size is given in bytes! You get the number of actually cached
762 * samples by dividing it by the frame size of the sample:
763 * @code
764 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
765 * long cachedsamples = buf.Size / pSample->FrameSize;
766 * @endcode
767 * The method will add \a NullSamplesCount silence samples past the
768 * official buffer end (this won't affect the 'Size' member of the
769 * buffer_t structure, that means 'Size' always reflects the size of the
770 * actual sample data, the buffer might be bigger though). Silence
771 * samples past the official buffer are needed for differential
772 * algorithms that always have to take subsequent samples into account
773 * (resampling/interpolation would be an important example) and avoids
774 * memory access faults in such cases.
775 *
776 * @param SampleCount - number of sample points to load into RAM
777 * @param NullSamplesCount - number of silence samples the buffer should
778 * be extended past it's data end
779 * @returns buffer_t structure with start address and
780 * size of the cached sample data in bytes
781 * @see ReleaseSampleData(), Read(), SetPos()
782 */
783 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount) {
784 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
785 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
786 file_offset_t allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
787 SetPos(0); // reset read position to begin of sample
788 RAMCache.pStart = new int8_t[allocationsize];
789 RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
790 RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
791 // fill the remaining buffer space with silence samples
792 memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
793 return GetCache();
794 }
795
796 /**
797 * Returns current cached sample points. A buffer_t structure will be
798 * returned which contains address pointer to the begin of the cache and
799 * the size of the cached sample data in bytes. Use
800 * <i>LoadSampleData()</i> to cache a specific amount of sample points in
801 * RAM.
802 *
803 * @returns buffer_t structure with current cached sample points
804 * @see LoadSampleData();
805 */
806 buffer_t Sample::GetCache() {
807 // return a copy of the buffer_t structure
808 buffer_t result;
809 result.Size = this->RAMCache.Size;
810 result.pStart = this->RAMCache.pStart;
811 result.NullExtensionSize = this->RAMCache.NullExtensionSize;
812 return result;
813 }
814
815 /**
816 * Frees the cached sample from RAM if loaded with
817 * <i>LoadSampleData()</i> previously.
818 *
819 * @see LoadSampleData();
820 */
821 void Sample::ReleaseSampleData() {
822 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
823 RAMCache.pStart = NULL;
824 RAMCache.Size = 0;
825 RAMCache.NullExtensionSize = 0;
826 }
827
828 /** @brief Resize sample.
829 *
830 * Resizes the sample's wave form data, that is the actual size of
831 * sample wave data possible to be written for this sample. This call
832 * will return immediately and just schedule the resize operation. You
833 * should call File::Save() to actually perform the resize operation(s)
834 * "physically" to the file. As this can take a while on large files, it
835 * is recommended to call Resize() first on all samples which have to be
836 * resized and finally to call File::Save() to perform all those resize
837 * operations in one rush.
838 *
839 * The actual size (in bytes) is dependant to the current FrameSize
840 * value. You may want to set FrameSize before calling Resize().
841 *
842 * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
843 * enlarged samples before calling File::Save() as this might exceed the
844 * current sample's boundary!
845 *
846 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
847 * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
848 * other formats will fail!
849 *
850 * @param NewSize - new sample wave data size in sample points (must be
851 * greater than zero)
852 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
853 * @throws DLS::Exception if \a NewSize is less than 1 or unrealistic large
854 * @throws gig::Exception if existing sample is compressed
855 * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
856 * DLS::Sample::FormatTag, File::Save()
857 */
858 void Sample::Resize(file_offset_t NewSize) {
859 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
860 DLS::Sample::Resize(NewSize);
861 }
862
863 /**
864 * Sets the position within the sample (in sample points, not in
865 * bytes). Use this method and <i>Read()</i> if you don't want to load
866 * the sample into RAM, thus for disk streaming.
867 *
868 * Although the original Gigasampler engine doesn't allow positioning
869 * within compressed samples, I decided to implement it. Even though
870 * the Gigasampler format doesn't allow to define loops for compressed
871 * samples at the moment, positioning within compressed samples might be
872 * interesting for some sampler engines though. The only drawback about
873 * my decision is that it takes longer to load compressed gig Files on
874 * startup, because it's neccessary to scan the samples for some
875 * mandatory informations. But I think as it doesn't affect the runtime
876 * efficiency, nobody will have a problem with that.
877 *
878 * @param SampleCount number of sample points to jump
879 * @param Whence optional: to which relation \a SampleCount refers
880 * to, if omited <i>RIFF::stream_start</i> is assumed
881 * @returns the new sample position
882 * @see Read()
883 */
884 file_offset_t Sample::SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence) {
885 if (Compressed) {
886 switch (Whence) {
887 case RIFF::stream_curpos:
888 this->SamplePos += SampleCount;
889 break;
890 case RIFF::stream_end:
891 this->SamplePos = this->SamplesTotal - 1 - SampleCount;
892 break;
893 case RIFF::stream_backward:
894 this->SamplePos -= SampleCount;
895 break;
896 case RIFF::stream_start: default:
897 this->SamplePos = SampleCount;
898 break;
899 }
900 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
901
902 file_offset_t frame = this->SamplePos / 2048; // to which frame to jump
903 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
904 pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
905 return this->SamplePos;
906 }
907 else { // not compressed
908 file_offset_t orderedBytes = SampleCount * this->FrameSize;
909 file_offset_t result = pCkData->SetPos(orderedBytes, Whence);
910 return (result == orderedBytes) ? SampleCount
911 : result / this->FrameSize;
912 }
913 }
914
915 /**
916 * Returns the current position in the sample (in sample points).
917 */
918 file_offset_t Sample::GetPos() const {
919 if (Compressed) return SamplePos;
920 else return pCkData->GetPos() / FrameSize;
921 }
922
923 /**
924 * Reads \a SampleCount number of sample points from the position stored
925 * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
926 * the position within the sample respectively, this method honors the
927 * looping informations of the sample (if any). The sample wave stream
928 * will be decompressed on the fly if using a compressed sample. Use this
929 * method if you don't want to load the sample into RAM, thus for disk
930 * streaming. All this methods needs to know to proceed with streaming
931 * for the next time you call this method is stored in \a pPlaybackState.
932 * You have to allocate and initialize the playback_state_t structure by
933 * yourself before you use it to stream a sample:
934 * @code
935 * gig::playback_state_t playbackstate;
936 * playbackstate.position = 0;
937 * playbackstate.reverse = false;
938 * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
939 * @endcode
940 * You don't have to take care of things like if there is actually a loop
941 * defined or if the current read position is located within a loop area.
942 * The method already handles such cases by itself.
943 *
944 * <b>Caution:</b> If you are using more than one streaming thread, you
945 * have to use an external decompression buffer for <b>EACH</b>
946 * streaming thread to avoid race conditions and crashes!
947 *
948 * @param pBuffer destination buffer
949 * @param SampleCount number of sample points to read
950 * @param pPlaybackState will be used to store and reload the playback
951 * state for the next ReadAndLoop() call
952 * @param pDimRgn dimension region with looping information
953 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
954 * @returns number of successfully read sample points
955 * @see CreateDecompressionBuffer()
956 */
957 file_offset_t Sample::ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState,
958 DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
959 file_offset_t samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
960 uint8_t* pDst = (uint8_t*) pBuffer;
961
962 SetPos(pPlaybackState->position); // recover position from the last time
963
964 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
965
966 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
967 const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
968
969 if (GetPos() <= loopEnd) {
970 switch (loop.LoopType) {
971
972 case loop_type_bidirectional: { //TODO: not tested yet!
973 do {
974 // if not endless loop check if max. number of loop cycles have been passed
975 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
976
977 if (!pPlaybackState->reverse) { // forward playback
978 do {
979 samplestoloopend = loopEnd - GetPos();
980 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
981 samplestoread -= readsamples;
982 totalreadsamples += readsamples;
983 if (readsamples == samplestoloopend) {
984 pPlaybackState->reverse = true;
985 break;
986 }
987 } while (samplestoread && readsamples);
988 }
989 else { // backward playback
990
991 // as we can only read forward from disk, we have to
992 // determine the end position within the loop first,
993 // read forward from that 'end' and finally after
994 // reading, swap all sample frames so it reflects
995 // backward playback
996
997 file_offset_t swapareastart = totalreadsamples;
998 file_offset_t loopoffset = GetPos() - loop.LoopStart;
999 file_offset_t samplestoreadinloop = Min(samplestoread, loopoffset);
1000 file_offset_t reverseplaybackend = GetPos() - samplestoreadinloop;
1001
1002 SetPos(reverseplaybackend);
1003
1004 // read samples for backward playback
1005 do {
1006 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
1007 samplestoreadinloop -= readsamples;
1008 samplestoread -= readsamples;
1009 totalreadsamples += readsamples;
1010 } while (samplestoreadinloop && readsamples);
1011
1012 SetPos(reverseplaybackend); // pretend we really read backwards
1013
1014 if (reverseplaybackend == loop.LoopStart) {
1015 pPlaybackState->loop_cycles_left--;
1016 pPlaybackState->reverse = false;
1017 }
1018
1019 // reverse the sample frames for backward playback
1020 if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
1021 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1022 }
1023 } while (samplestoread && readsamples);
1024 break;
1025 }
1026
1027 case loop_type_backward: { // TODO: not tested yet!
1028 // forward playback (not entered the loop yet)
1029 if (!pPlaybackState->reverse) do {
1030 samplestoloopend = loopEnd - GetPos();
1031 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1032 samplestoread -= readsamples;
1033 totalreadsamples += readsamples;
1034 if (readsamples == samplestoloopend) {
1035 pPlaybackState->reverse = true;
1036 break;
1037 }
1038 } while (samplestoread && readsamples);
1039
1040 if (!samplestoread) break;
1041
1042 // as we can only read forward from disk, we have to
1043 // determine the end position within the loop first,
1044 // read forward from that 'end' and finally after
1045 // reading, swap all sample frames so it reflects
1046 // backward playback
1047
1048 file_offset_t swapareastart = totalreadsamples;
1049 file_offset_t loopoffset = GetPos() - loop.LoopStart;
1050 file_offset_t samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1051 : samplestoread;
1052 file_offset_t reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1053
1054 SetPos(reverseplaybackend);
1055
1056 // read samples for backward playback
1057 do {
1058 // if not endless loop check if max. number of loop cycles have been passed
1059 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1060 samplestoloopend = loopEnd - GetPos();
1061 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1062 samplestoreadinloop -= readsamples;
1063 samplestoread -= readsamples;
1064 totalreadsamples += readsamples;
1065 if (readsamples == samplestoloopend) {
1066 pPlaybackState->loop_cycles_left--;
1067 SetPos(loop.LoopStart);
1068 }
1069 } while (samplestoreadinloop && readsamples);
1070
1071 SetPos(reverseplaybackend); // pretend we really read backwards
1072
1073 // reverse the sample frames for backward playback
1074 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1075 break;
1076 }
1077
1078 default: case loop_type_normal: {
1079 do {
1080 // if not endless loop check if max. number of loop cycles have been passed
1081 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1082 samplestoloopend = loopEnd - GetPos();
1083 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1084 samplestoread -= readsamples;
1085 totalreadsamples += readsamples;
1086 if (readsamples == samplestoloopend) {
1087 pPlaybackState->loop_cycles_left--;
1088 SetPos(loop.LoopStart);
1089 }
1090 } while (samplestoread && readsamples);
1091 break;
1092 }
1093 }
1094 }
1095 }
1096
1097 // read on without looping
1098 if (samplestoread) do {
1099 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
1100 samplestoread -= readsamples;
1101 totalreadsamples += readsamples;
1102 } while (readsamples && samplestoread);
1103
1104 // store current position
1105 pPlaybackState->position = GetPos();
1106
1107 return totalreadsamples;
1108 }
1109
1110 /**
1111 * Reads \a SampleCount number of sample points from the current
1112 * position into the buffer pointed by \a pBuffer and increments the
1113 * position within the sample. The sample wave stream will be
1114 * decompressed on the fly if using a compressed sample. Use this method
1115 * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1116 * thus for disk streaming.
1117 *
1118 * <b>Caution:</b> If you are using more than one streaming thread, you
1119 * have to use an external decompression buffer for <b>EACH</b>
1120 * streaming thread to avoid race conditions and crashes!
1121 *
1122 * For 16 bit samples, the data in the buffer will be int16_t
1123 * (using native endianness). For 24 bit, the buffer will
1124 * contain three bytes per sample, little-endian.
1125 *
1126 * @param pBuffer destination buffer
1127 * @param SampleCount number of sample points to read
1128 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
1129 * @returns number of successfully read sample points
1130 * @see SetPos(), CreateDecompressionBuffer()
1131 */
1132 file_offset_t Sample::Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer) {
1133 if (SampleCount == 0) return 0;
1134 if (!Compressed) {
1135 if (BitDepth == 24) {
1136 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1137 }
1138 else { // 16 bit
1139 // (pCkData->Read does endian correction)
1140 return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1141 : pCkData->Read(pBuffer, SampleCount, 2);
1142 }
1143 }
1144 else {
1145 if (this->SamplePos >= this->SamplesTotal) return 0;
1146 //TODO: efficiency: maybe we should test for an average compression rate
1147 file_offset_t assumedsize = GuessSize(SampleCount),
1148 remainingbytes = 0, // remaining bytes in the local buffer
1149 remainingsamples = SampleCount,
1150 copysamples, skipsamples,
1151 currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
1152 this->FrameOffset = 0;
1153
1154 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1155
1156 // if decompression buffer too small, then reduce amount of samples to read
1157 if (pDecompressionBuffer->Size < assumedsize) {
1158 std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1159 SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1160 remainingsamples = SampleCount;
1161 assumedsize = GuessSize(SampleCount);
1162 }
1163
1164 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1165 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1166 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1167 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1168
1169 while (remainingsamples && remainingbytes) {
1170 file_offset_t framesamples = SamplesPerFrame;
1171 file_offset_t framebytes, rightChannelOffset = 0, nextFrameOffset;
1172
1173 int mode_l = *pSrc++, mode_r = 0;
1174
1175 if (Channels == 2) {
1176 mode_r = *pSrc++;
1177 framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1178 rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1179 nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1180 if (remainingbytes < framebytes) { // last frame in sample
1181 framesamples = SamplesInLastFrame;
1182 if (mode_l == 4 && (framesamples & 1)) {
1183 rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1184 }
1185 else {
1186 rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1187 }
1188 }
1189 }
1190 else {
1191 framebytes = bytesPerFrame[mode_l] + 1;
1192 nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1193 if (remainingbytes < framebytes) {
1194 framesamples = SamplesInLastFrame;
1195 }
1196 }
1197
1198 // determine how many samples in this frame to skip and read
1199 if (currentframeoffset + remainingsamples >= framesamples) {
1200 if (currentframeoffset <= framesamples) {
1201 copysamples = framesamples - currentframeoffset;
1202 skipsamples = currentframeoffset;
1203 }
1204 else {
1205 copysamples = 0;
1206 skipsamples = framesamples;
1207 }
1208 }
1209 else {
1210 // This frame has enough data for pBuffer, but not
1211 // all of the frame is needed. Set file position
1212 // to start of this frame for next call to Read.
1213 copysamples = remainingsamples;
1214 skipsamples = currentframeoffset;
1215 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1216 this->FrameOffset = currentframeoffset + copysamples;
1217 }
1218 remainingsamples -= copysamples;
1219
1220 if (remainingbytes > framebytes) {
1221 remainingbytes -= framebytes;
1222 if (remainingsamples == 0 &&
1223 currentframeoffset + copysamples == framesamples) {
1224 // This frame has enough data for pBuffer, and
1225 // all of the frame is needed. Set file
1226 // position to start of next frame for next
1227 // call to Read. FrameOffset is 0.
1228 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1229 }
1230 }
1231 else remainingbytes = 0;
1232
1233 currentframeoffset -= skipsamples;
1234
1235 if (copysamples == 0) {
1236 // skip this frame
1237 pSrc += framebytes - Channels;
1238 }
1239 else {
1240 const unsigned char* const param_l = pSrc;
1241 if (BitDepth == 24) {
1242 if (mode_l != 2) pSrc += 12;
1243
1244 if (Channels == 2) { // Stereo
1245 const unsigned char* const param_r = pSrc;
1246 if (mode_r != 2) pSrc += 12;
1247
1248 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1249 skipsamples, copysamples, TruncatedBits);
1250 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1251 skipsamples, copysamples, TruncatedBits);
1252 pDst24 += copysamples * 6;
1253 }
1254 else { // Mono
1255 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1256 skipsamples, copysamples, TruncatedBits);
1257 pDst24 += copysamples * 3;
1258 }
1259 }
1260 else { // 16 bit
1261 if (mode_l) pSrc += 4;
1262
1263 int step;
1264 if (Channels == 2) { // Stereo
1265 const unsigned char* const param_r = pSrc;
1266 if (mode_r) pSrc += 4;
1267
1268 step = (2 - mode_l) + (2 - mode_r);
1269 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1270 Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1271 skipsamples, copysamples);
1272 pDst += copysamples << 1;
1273 }
1274 else { // Mono
1275 step = 2 - mode_l;
1276 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1277 pDst += copysamples;
1278 }
1279 }
1280 pSrc += nextFrameOffset;
1281 }
1282
1283 // reload from disk to local buffer if needed
1284 if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1285 assumedsize = GuessSize(remainingsamples);
1286 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1287 if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1288 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1289 pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1290 }
1291 } // while
1292
1293 this->SamplePos += (SampleCount - remainingsamples);
1294 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1295 return (SampleCount - remainingsamples);
1296 }
1297 }
1298
1299 /** @brief Write sample wave data.
1300 *
1301 * Writes \a SampleCount number of sample points from the buffer pointed
1302 * by \a pBuffer and increments the position within the sample. Use this
1303 * method to directly write the sample data to disk, i.e. if you don't
1304 * want or cannot load the whole sample data into RAM.
1305 *
1306 * You have to Resize() the sample to the desired size and call
1307 * File::Save() <b>before</b> using Write().
1308 *
1309 * Note: there is currently no support for writing compressed samples.
1310 *
1311 * For 16 bit samples, the data in the source buffer should be
1312 * int16_t (using native endianness). For 24 bit, the buffer
1313 * should contain three bytes per sample, little-endian.
1314 *
1315 * @param pBuffer - source buffer
1316 * @param SampleCount - number of sample points to write
1317 * @throws DLS::Exception if current sample size is too small
1318 * @throws gig::Exception if sample is compressed
1319 * @see DLS::LoadSampleData()
1320 */
1321 file_offset_t Sample::Write(void* pBuffer, file_offset_t SampleCount) {
1322 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1323
1324 // if this is the first write in this sample, reset the
1325 // checksum calculator
1326 if (pCkData->GetPos() == 0) {
1327 __resetCRC(crc);
1328 }
1329 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1330 file_offset_t res;
1331 if (BitDepth == 24) {
1332 res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1333 } else { // 16 bit
1334 res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1335 : pCkData->Write(pBuffer, SampleCount, 2);
1336 }
1337 __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1338
1339 // if this is the last write, update the checksum chunk in the
1340 // file
1341 if (pCkData->GetPos() == pCkData->GetSize()) {
1342 __finalizeCRC(crc);
1343 File* pFile = static_cast<File*>(GetParent());
1344 pFile->SetSampleChecksum(this, crc);
1345 }
1346 return res;
1347 }
1348
1349 /**
1350 * Allocates a decompression buffer for streaming (compressed) samples
1351 * with Sample::Read(). If you are using more than one streaming thread
1352 * in your application you <b>HAVE</b> to create a decompression buffer
1353 * for <b>EACH</b> of your streaming threads and provide it with the
1354 * Sample::Read() call in order to avoid race conditions and crashes.
1355 *
1356 * You should free the memory occupied by the allocated buffer(s) once
1357 * you don't need one of your streaming threads anymore by calling
1358 * DestroyDecompressionBuffer().
1359 *
1360 * @param MaxReadSize - the maximum size (in sample points) you ever
1361 * expect to read with one Read() call
1362 * @returns allocated decompression buffer
1363 * @see DestroyDecompressionBuffer()
1364 */
1365 buffer_t Sample::CreateDecompressionBuffer(file_offset_t MaxReadSize) {
1366 buffer_t result;
1367 const double worstCaseHeaderOverhead =
1368 (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1369 result.Size = (file_offset_t) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1370 result.pStart = new int8_t[result.Size];
1371 result.NullExtensionSize = 0;
1372 return result;
1373 }
1374
1375 /**
1376 * Free decompression buffer, previously created with
1377 * CreateDecompressionBuffer().
1378 *
1379 * @param DecompressionBuffer - previously allocated decompression
1380 * buffer to free
1381 */
1382 void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1383 if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1384 delete[] (int8_t*) DecompressionBuffer.pStart;
1385 DecompressionBuffer.pStart = NULL;
1386 DecompressionBuffer.Size = 0;
1387 DecompressionBuffer.NullExtensionSize = 0;
1388 }
1389 }
1390
1391 /**
1392 * Returns pointer to the Group this Sample belongs to. In the .gig
1393 * format a sample always belongs to one group. If it wasn't explicitly
1394 * assigned to a certain group, it will be automatically assigned to a
1395 * default group.
1396 *
1397 * @returns Sample's Group (never NULL)
1398 */
1399 Group* Sample::GetGroup() const {
1400 return pGroup;
1401 }
1402
1403 /**
1404 * Returns the CRC-32 checksum of the sample's raw wave form data at the
1405 * time when this sample's wave form data was modified for the last time
1406 * by calling Write(). This checksum only covers the raw wave form data,
1407 * not any meta informations like i.e. bit depth or loop points. Since
1408 * this method just returns the checksum stored for this sample i.e. when
1409 * the gig file was loaded, this method returns immediately. So it does no
1410 * recalcuation of the checksum with the currently available sample wave
1411 * form data.
1412 *
1413 * @see VerifyWaveData()
1414 */
1415 uint32_t Sample::GetWaveDataCRC32Checksum() {
1416 return crc;
1417 }
1418
1419 /**
1420 * Checks the integrity of this sample's raw audio wave data. Whenever a
1421 * Sample's raw wave data is intentionally modified (i.e. by calling
1422 * Write() and supplying the new raw audio wave form data) a CRC32 checksum
1423 * is calculated and stored/updated for this sample, along to the sample's
1424 * meta informations.
1425 *
1426 * Now by calling this method the current raw audio wave data is checked
1427 * against the already stored CRC32 check sum in order to check whether the
1428 * sample data had been damaged unintentionally for some reason. Since by
1429 * calling this method always the entire raw audio wave data has to be
1430 * read, verifying all samples this way may take a long time accordingly.
1431 * And that's also the reason why the sample integrity is not checked by
1432 * default whenever a gig file is loaded. So this method must be called
1433 * explicitly to fulfill this task.
1434 *
1435 * @param pActually - (optional) if provided, will be set to the actually
1436 * calculated checksum of the current raw wave form data,
1437 * you can get the expected checksum instead by calling
1438 * GetWaveDataCRC32Checksum()
1439 * @returns true if sample is OK or false if the sample is damaged
1440 * @throws Exception if no checksum had been stored to disk for this
1441 * sample yet, or on I/O issues
1442 * @see GetWaveDataCRC32Checksum()
1443 */
1444 bool Sample::VerifyWaveData(uint32_t* pActually) {
1445 //File* pFile = static_cast<File*>(GetParent());
1446 uint32_t crc = CalculateWaveDataChecksum();
1447 if (pActually) *pActually = crc;
1448 return crc == this->crc;
1449 }
1450
1451 uint32_t Sample::CalculateWaveDataChecksum() {
1452 const size_t sz = 20*1024; // 20kB buffer size
1453 std::vector<uint8_t> buffer(sz);
1454 buffer.resize(sz);
1455
1456 const size_t n = sz / FrameSize;
1457 SetPos(0);
1458 uint32_t crc = 0;
1459 __resetCRC(crc);
1460 while (true) {
1461 file_offset_t nRead = Read(&buffer[0], n);
1462 if (nRead <= 0) break;
1463 __calculateCRC(&buffer[0], nRead * FrameSize, crc);
1464 }
1465 __finalizeCRC(crc);
1466 return crc;
1467 }
1468
1469 Sample::~Sample() {
1470 Instances--;
1471 if (!Instances && InternalDecompressionBuffer.Size) {
1472 delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1473 InternalDecompressionBuffer.pStart = NULL;
1474 InternalDecompressionBuffer.Size = 0;
1475 }
1476 if (FrameTable) delete[] FrameTable;
1477 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1478 }
1479
1480
1481
1482 // *************** DimensionRegion ***************
1483 // *
1484
1485 size_t DimensionRegion::Instances = 0;
1486 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1487
1488 DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1489 Instances++;
1490
1491 pSample = NULL;
1492 pRegion = pParent;
1493
1494 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1495 else memset(&Crossfade, 0, 4);
1496
1497 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1498
1499 RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1500 if (_3ewa) { // if '3ewa' chunk exists
1501 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1502 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1503 EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1504 _3ewa->ReadInt16(); // unknown
1505 LFO1InternalDepth = _3ewa->ReadUint16();
1506 _3ewa->ReadInt16(); // unknown
1507 LFO3InternalDepth = _3ewa->ReadInt16();
1508 _3ewa->ReadInt16(); // unknown
1509 LFO1ControlDepth = _3ewa->ReadUint16();
1510 _3ewa->ReadInt16(); // unknown
1511 LFO3ControlDepth = _3ewa->ReadInt16();
1512 EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1513 EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1514 _3ewa->ReadInt16(); // unknown
1515 EG1Sustain = _3ewa->ReadUint16();
1516 EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1517 EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1518 uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1519 EG1ControllerInvert = eg1ctrloptions & 0x01;
1520 EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1521 EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1522 EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1523 EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1524 uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1525 EG2ControllerInvert = eg2ctrloptions & 0x01;
1526 EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1527 EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1528 EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1529 LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1530 EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1531 EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1532 _3ewa->ReadInt16(); // unknown
1533 EG2Sustain = _3ewa->ReadUint16();
1534 EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1535 _3ewa->ReadInt16(); // unknown
1536 LFO2ControlDepth = _3ewa->ReadUint16();
1537 LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1538 _3ewa->ReadInt16(); // unknown
1539 LFO2InternalDepth = _3ewa->ReadUint16();
1540 int32_t eg1decay2 = _3ewa->ReadInt32();
1541 EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1542 EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1543 _3ewa->ReadInt16(); // unknown
1544 EG1PreAttack = _3ewa->ReadUint16();
1545 int32_t eg2decay2 = _3ewa->ReadInt32();
1546 EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1547 EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1548 _3ewa->ReadInt16(); // unknown
1549 EG2PreAttack = _3ewa->ReadUint16();
1550 uint8_t velocityresponse = _3ewa->ReadUint8();
1551 if (velocityresponse < 5) {
1552 VelocityResponseCurve = curve_type_nonlinear;
1553 VelocityResponseDepth = velocityresponse;
1554 } else if (velocityresponse < 10) {
1555 VelocityResponseCurve = curve_type_linear;
1556 VelocityResponseDepth = velocityresponse - 5;
1557 } else if (velocityresponse < 15) {
1558 VelocityResponseCurve = curve_type_special;
1559 VelocityResponseDepth = velocityresponse - 10;
1560 } else {
1561 VelocityResponseCurve = curve_type_unknown;
1562 VelocityResponseDepth = 0;
1563 }
1564 uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1565 if (releasevelocityresponse < 5) {
1566 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1567 ReleaseVelocityResponseDepth = releasevelocityresponse;
1568 } else if (releasevelocityresponse < 10) {
1569 ReleaseVelocityResponseCurve = curve_type_linear;
1570 ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1571 } else if (releasevelocityresponse < 15) {
1572 ReleaseVelocityResponseCurve = curve_type_special;
1573 ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1574 } else {
1575 ReleaseVelocityResponseCurve = curve_type_unknown;
1576 ReleaseVelocityResponseDepth = 0;
1577 }
1578 VelocityResponseCurveScaling = _3ewa->ReadUint8();
1579 AttenuationControllerThreshold = _3ewa->ReadInt8();
1580 _3ewa->ReadInt32(); // unknown
1581 SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1582 _3ewa->ReadInt16(); // unknown
1583 uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1584 PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1585 if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1586 else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1587 else DimensionBypass = dim_bypass_ctrl_none;
1588 uint8_t pan = _3ewa->ReadUint8();
1589 Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1590 SelfMask = _3ewa->ReadInt8() & 0x01;
1591 _3ewa->ReadInt8(); // unknown
1592 uint8_t lfo3ctrl = _3ewa->ReadUint8();
1593 LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1594 LFO3Sync = lfo3ctrl & 0x20; // bit 5
1595 InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1596 AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1597 uint8_t lfo2ctrl = _3ewa->ReadUint8();
1598 LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1599 LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1600 LFO2Sync = lfo2ctrl & 0x20; // bit 5
1601 bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1602 uint8_t lfo1ctrl = _3ewa->ReadUint8();
1603 LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1604 LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1605 LFO1Sync = lfo1ctrl & 0x40; // bit 6
1606 VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1607 : vcf_res_ctrl_none;
1608 uint16_t eg3depth = _3ewa->ReadUint16();
1609 EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1610 : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1611 _3ewa->ReadInt16(); // unknown
1612 ChannelOffset = _3ewa->ReadUint8() / 4;
1613 uint8_t regoptions = _3ewa->ReadUint8();
1614 MSDecode = regoptions & 0x01; // bit 0
1615 SustainDefeat = regoptions & 0x02; // bit 1
1616 _3ewa->ReadInt16(); // unknown
1617 VelocityUpperLimit = _3ewa->ReadInt8();
1618 _3ewa->ReadInt8(); // unknown
1619 _3ewa->ReadInt16(); // unknown
1620 ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1621 _3ewa->ReadInt8(); // unknown
1622 _3ewa->ReadInt8(); // unknown
1623 EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1624 uint8_t vcfcutoff = _3ewa->ReadUint8();
1625 VCFEnabled = vcfcutoff & 0x80; // bit 7
1626 VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1627 VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1628 uint8_t vcfvelscale = _3ewa->ReadUint8();
1629 VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1630 VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1631 _3ewa->ReadInt8(); // unknown
1632 uint8_t vcfresonance = _3ewa->ReadUint8();
1633 VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1634 VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1635 uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1636 VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1637 VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1638 uint8_t vcfvelocity = _3ewa->ReadUint8();
1639 VCFVelocityDynamicRange = vcfvelocity % 5;
1640 VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1641 VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1642 if (VCFType == vcf_type_lowpass) {
1643 if (lfo3ctrl & 0x40) // bit 6
1644 VCFType = vcf_type_lowpassturbo;
1645 }
1646 if (_3ewa->RemainingBytes() >= 8) {
1647 _3ewa->Read(DimensionUpperLimits, 1, 8);
1648 } else {
1649 memset(DimensionUpperLimits, 0, 8);
1650 }
1651 } else { // '3ewa' chunk does not exist yet
1652 // use default values
1653 LFO3Frequency = 1.0;
1654 EG3Attack = 0.0;
1655 LFO1InternalDepth = 0;
1656 LFO3InternalDepth = 0;
1657 LFO1ControlDepth = 0;
1658 LFO3ControlDepth = 0;
1659 EG1Attack = 0.0;
1660 EG1Decay1 = 0.005;
1661 EG1Sustain = 1000;
1662 EG1Release = 0.3;
1663 EG1Controller.type = eg1_ctrl_t::type_none;
1664 EG1Controller.controller_number = 0;
1665 EG1ControllerInvert = false;
1666 EG1ControllerAttackInfluence = 0;
1667 EG1ControllerDecayInfluence = 0;
1668 EG1ControllerReleaseInfluence = 0;
1669 EG2Controller.type = eg2_ctrl_t::type_none;
1670 EG2Controller.controller_number = 0;
1671 EG2ControllerInvert = false;
1672 EG2ControllerAttackInfluence = 0;
1673 EG2ControllerDecayInfluence = 0;
1674 EG2ControllerReleaseInfluence = 0;
1675 LFO1Frequency = 1.0;
1676 EG2Attack = 0.0;
1677 EG2Decay1 = 0.005;
1678 EG2Sustain = 1000;
1679 EG2Release = 60;
1680 LFO2ControlDepth = 0;
1681 LFO2Frequency = 1.0;
1682 LFO2InternalDepth = 0;
1683 EG1Decay2 = 0.0;
1684 EG1InfiniteSustain = true;
1685 EG1PreAttack = 0;
1686 EG2Decay2 = 0.0;
1687 EG2InfiniteSustain = true;
1688 EG2PreAttack = 0;
1689 VelocityResponseCurve = curve_type_nonlinear;
1690 VelocityResponseDepth = 3;
1691 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1692 ReleaseVelocityResponseDepth = 3;
1693 VelocityResponseCurveScaling = 32;
1694 AttenuationControllerThreshold = 0;
1695 SampleStartOffset = 0;
1696 PitchTrack = true;
1697 DimensionBypass = dim_bypass_ctrl_none;
1698 Pan = 0;
1699 SelfMask = true;
1700 LFO3Controller = lfo3_ctrl_modwheel;
1701 LFO3Sync = false;
1702 InvertAttenuationController = false;
1703 AttenuationController.type = attenuation_ctrl_t::type_none;
1704 AttenuationController.controller_number = 0;
1705 LFO2Controller = lfo2_ctrl_internal;
1706 LFO2FlipPhase = false;
1707 LFO2Sync = false;
1708 LFO1Controller = lfo1_ctrl_internal;
1709 LFO1FlipPhase = false;
1710 LFO1Sync = false;
1711 VCFResonanceController = vcf_res_ctrl_none;
1712 EG3Depth = 0;
1713 ChannelOffset = 0;
1714 MSDecode = false;
1715 SustainDefeat = false;
1716 VelocityUpperLimit = 0;
1717 ReleaseTriggerDecay = 0;
1718 EG1Hold = false;
1719 VCFEnabled = false;
1720 VCFCutoff = 0;
1721 VCFCutoffController = vcf_cutoff_ctrl_none;
1722 VCFCutoffControllerInvert = false;
1723 VCFVelocityScale = 0;
1724 VCFResonance = 0;
1725 VCFResonanceDynamic = false;
1726 VCFKeyboardTracking = false;
1727 VCFKeyboardTrackingBreakpoint = 0;
1728 VCFVelocityDynamicRange = 0x04;
1729 VCFVelocityCurve = curve_type_linear;
1730 VCFType = vcf_type_lowpass;
1731 memset(DimensionUpperLimits, 127, 8);
1732 }
1733 // format extension for EG behavior options, these will *NOT* work with
1734 // Gigasampler/GigaStudio !
1735 RIFF::Chunk* lsde = _3ewl->GetSubChunk(CHUNK_ID_LSDE);
1736 if (lsde) {
1737 unsigned char byte = lsde->ReadUint8();
1738 EGOptions.AttackCancel = byte & 1;
1739 EGOptions.AttackHoldCancel = byte & (1 << 1);
1740 EGOptions.DecayCancel = byte & (1 << 2);
1741 EGOptions.ReleaseCancel = byte & (1 << 3);
1742 }
1743
1744 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1745 VelocityResponseDepth,
1746 VelocityResponseCurveScaling);
1747
1748 pVelocityReleaseTable = GetReleaseVelocityTable(
1749 ReleaseVelocityResponseCurve,
1750 ReleaseVelocityResponseDepth
1751 );
1752
1753 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1754 VCFVelocityDynamicRange,
1755 VCFVelocityScale,
1756 VCFCutoffController);
1757
1758 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1759 VelocityTable = 0;
1760 }
1761
1762 /*
1763 * Constructs a DimensionRegion by copying all parameters from
1764 * another DimensionRegion
1765 */
1766 DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1767 Instances++;
1768 //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1769 *this = src; // default memberwise shallow copy of all parameters
1770 pParentList = _3ewl; // restore the chunk pointer
1771
1772 // deep copy of owned structures
1773 if (src.VelocityTable) {
1774 VelocityTable = new uint8_t[128];
1775 for (int k = 0 ; k < 128 ; k++)
1776 VelocityTable[k] = src.VelocityTable[k];
1777 }
1778 if (src.pSampleLoops) {
1779 pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1780 for (int k = 0 ; k < src.SampleLoops ; k++)
1781 pSampleLoops[k] = src.pSampleLoops[k];
1782 }
1783 }
1784
1785 /**
1786 * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1787 * and assign it to this object.
1788 *
1789 * Note that all sample pointers referenced by @a orig are simply copied as
1790 * memory address. Thus the respective samples are shared, not duplicated!
1791 *
1792 * @param orig - original DimensionRegion object to be copied from
1793 */
1794 void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1795 CopyAssign(orig, NULL);
1796 }
1797
1798 /**
1799 * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1800 * and assign it to this object.
1801 *
1802 * @param orig - original DimensionRegion object to be copied from
1803 * @param mSamples - crosslink map between the foreign file's samples and
1804 * this file's samples
1805 */
1806 void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1807 // delete all allocated data first
1808 if (VelocityTable) delete [] VelocityTable;
1809 if (pSampleLoops) delete [] pSampleLoops;
1810
1811 // backup parent list pointer
1812 RIFF::List* p = pParentList;
1813
1814 gig::Sample* pOriginalSample = pSample;
1815 gig::Region* pOriginalRegion = pRegion;
1816
1817 //NOTE: copy code copied from assignment constructor above, see comment there as well
1818
1819 *this = *orig; // default memberwise shallow copy of all parameters
1820
1821 // restore members that shall not be altered
1822 pParentList = p; // restore the chunk pointer
1823 pRegion = pOriginalRegion;
1824
1825 // only take the raw sample reference reference if the
1826 // two DimensionRegion objects are part of the same file
1827 if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1828 pSample = pOriginalSample;
1829 }
1830
1831 if (mSamples && mSamples->count(orig->pSample)) {
1832 pSample = mSamples->find(orig->pSample)->second;
1833 }
1834
1835 // deep copy of owned structures
1836 if (orig->VelocityTable) {
1837 VelocityTable = new uint8_t[128];
1838 for (int k = 0 ; k < 128 ; k++)
1839 VelocityTable[k] = orig->VelocityTable[k];
1840 }
1841 if (orig->pSampleLoops) {
1842 pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1843 for (int k = 0 ; k < orig->SampleLoops ; k++)
1844 pSampleLoops[k] = orig->pSampleLoops[k];
1845 }
1846 }
1847
1848 void DimensionRegion::serialize(Serialization::Archive* archive) {
1849 // in case this class will become backward incompatible one day,
1850 // then set a version and minimum version for this class like:
1851 //archive->setVersion(*this, 2);
1852 //archive->setMinVersion(*this, 1);
1853
1854 SRLZ(VelocityUpperLimit);
1855 SRLZ(EG1PreAttack);
1856 SRLZ(EG1Attack);
1857 SRLZ(EG1Decay1);
1858 SRLZ(EG1Decay2);
1859 SRLZ(EG1InfiniteSustain);
1860 SRLZ(EG1Sustain);
1861 SRLZ(EG1Release);
1862 SRLZ(EG1Hold);
1863 SRLZ(EG1Controller);
1864 SRLZ(EG1ControllerInvert);
1865 SRLZ(EG1ControllerAttackInfluence);
1866 SRLZ(EG1ControllerDecayInfluence);
1867 SRLZ(EG1ControllerReleaseInfluence);
1868 SRLZ(LFO1Frequency);
1869 SRLZ(LFO1InternalDepth);
1870 SRLZ(LFO1ControlDepth);
1871 SRLZ(LFO1Controller);
1872 SRLZ(LFO1FlipPhase);
1873 SRLZ(LFO1Sync);
1874 SRLZ(EG2PreAttack);
1875 SRLZ(EG2Attack);
1876 SRLZ(EG2Decay1);
1877 SRLZ(EG2Decay2);
1878 SRLZ(EG2InfiniteSustain);
1879 SRLZ(EG2Sustain);
1880 SRLZ(EG2Release);
1881 SRLZ(EG2Controller);
1882 SRLZ(EG2ControllerInvert);
1883 SRLZ(EG2ControllerAttackInfluence);
1884 SRLZ(EG2ControllerDecayInfluence);
1885 SRLZ(EG2ControllerReleaseInfluence);
1886 SRLZ(LFO2Frequency);
1887 SRLZ(LFO2InternalDepth);
1888 SRLZ(LFO2ControlDepth);
1889 SRLZ(LFO2Controller);
1890 SRLZ(LFO2FlipPhase);
1891 SRLZ(LFO2Sync);
1892 SRLZ(EG3Attack);
1893 SRLZ(EG3Depth);
1894 SRLZ(LFO3Frequency);
1895 SRLZ(LFO3InternalDepth);
1896 SRLZ(LFO3ControlDepth);
1897 SRLZ(LFO3Controller);
1898 SRLZ(LFO3Sync);
1899 SRLZ(VCFEnabled);
1900 SRLZ(VCFType);
1901 SRLZ(VCFCutoffController);
1902 SRLZ(VCFCutoffControllerInvert);
1903 SRLZ(VCFCutoff);
1904 SRLZ(VCFVelocityCurve);
1905 SRLZ(VCFVelocityScale);
1906 SRLZ(VCFVelocityDynamicRange);
1907 SRLZ(VCFResonance);
1908 SRLZ(VCFResonanceDynamic);
1909 SRLZ(VCFResonanceController);
1910 SRLZ(VCFKeyboardTracking);
1911 SRLZ(VCFKeyboardTrackingBreakpoint);
1912 SRLZ(VelocityResponseCurve);
1913 SRLZ(VelocityResponseDepth);
1914 SRLZ(VelocityResponseCurveScaling);
1915 SRLZ(ReleaseVelocityResponseCurve);
1916 SRLZ(ReleaseVelocityResponseDepth);
1917 SRLZ(ReleaseTriggerDecay);
1918 SRLZ(Crossfade);
1919 SRLZ(PitchTrack);
1920 SRLZ(DimensionBypass);
1921 SRLZ(Pan);
1922 SRLZ(SelfMask);
1923 SRLZ(AttenuationController);
1924 SRLZ(InvertAttenuationController);
1925 SRLZ(AttenuationControllerThreshold);
1926 SRLZ(ChannelOffset);
1927 SRLZ(SustainDefeat);
1928 SRLZ(MSDecode);
1929 //SRLZ(SampleStartOffset);
1930 SRLZ(SampleAttenuation);
1931 SRLZ(EGOptions);
1932
1933 // derived attributes from DLS::Sampler
1934 SRLZ(FineTune);
1935 SRLZ(Gain);
1936 }
1937
1938 /**
1939 * Updates the respective member variable and updates @c SampleAttenuation
1940 * which depends on this value.
1941 */
1942 void DimensionRegion::SetGain(int32_t gain) {
1943 DLS::Sampler::SetGain(gain);
1944 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1945 }
1946
1947 /**
1948 * Apply dimension region settings to the respective RIFF chunks. You
1949 * have to call File::Save() to make changes persistent.
1950 *
1951 * Usually there is absolutely no need to call this method explicitly.
1952 * It will be called automatically when File::Save() was called.
1953 *
1954 * @param pProgress - callback function for progress notification
1955 */
1956 void DimensionRegion::UpdateChunks(progress_t* pProgress) {
1957 // first update base class's chunk
1958 DLS::Sampler::UpdateChunks(pProgress);
1959
1960 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1961 uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1962 pData[12] = Crossfade.in_start;
1963 pData[13] = Crossfade.in_end;
1964 pData[14] = Crossfade.out_start;
1965 pData[15] = Crossfade.out_end;
1966
1967 // make sure '3ewa' chunk exists
1968 RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1969 if (!_3ewa) {
1970 File* pFile = (File*) GetParent()->GetParent()->GetParent();
1971 bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1972 _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1973 }
1974 pData = (uint8_t*) _3ewa->LoadChunkData();
1975
1976 // update '3ewa' chunk with DimensionRegion's current settings
1977
1978 const uint32_t chunksize = (uint32_t) _3ewa->GetNewSize();
1979 store32(&pData[0], chunksize); // unknown, always chunk size?
1980
1981 const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1982 store32(&pData[4], lfo3freq);
1983
1984 const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1985 store32(&pData[8], eg3attack);
1986
1987 // next 2 bytes unknown
1988
1989 store16(&pData[14], LFO1InternalDepth);
1990
1991 // next 2 bytes unknown
1992
1993 store16(&pData[18], LFO3InternalDepth);
1994
1995 // next 2 bytes unknown
1996
1997 store16(&pData[22], LFO1ControlDepth);
1998
1999 // next 2 bytes unknown
2000
2001 store16(&pData[26], LFO3ControlDepth);
2002
2003 const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
2004 store32(&pData[28], eg1attack);
2005
2006 const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
2007 store32(&pData[32], eg1decay1);
2008
2009 // next 2 bytes unknown
2010
2011 store16(&pData[38], EG1Sustain);
2012
2013 const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
2014 store32(&pData[40], eg1release);
2015
2016 const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
2017 pData[44] = eg1ctl;
2018
2019 const uint8_t eg1ctrloptions =
2020 (EG1ControllerInvert ? 0x01 : 0x00) |
2021 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
2022 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
2023 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
2024 pData[45] = eg1ctrloptions;
2025
2026 const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
2027 pData[46] = eg2ctl;
2028
2029 const uint8_t eg2ctrloptions =
2030 (EG2ControllerInvert ? 0x01 : 0x00) |
2031 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
2032 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
2033 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
2034 pData[47] = eg2ctrloptions;
2035
2036 const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
2037 store32(&pData[48], lfo1freq);
2038
2039 const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
2040 store32(&pData[52], eg2attack);
2041
2042 const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
2043 store32(&pData[56], eg2decay1);
2044
2045 // next 2 bytes unknown
2046
2047 store16(&pData[62], EG2Sustain);
2048
2049 const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
2050 store32(&pData[64], eg2release);
2051
2052 // next 2 bytes unknown
2053
2054 store16(&pData[70], LFO2ControlDepth);
2055
2056 const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
2057 store32(&pData[72], lfo2freq);
2058
2059 // next 2 bytes unknown
2060
2061 store16(&pData[78], LFO2InternalDepth);
2062
2063 const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
2064 store32(&pData[80], eg1decay2);
2065
2066 // next 2 bytes unknown
2067
2068 store16(&pData[86], EG1PreAttack);
2069
2070 const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
2071 store32(&pData[88], eg2decay2);
2072
2073 // next 2 bytes unknown
2074
2075 store16(&pData[94], EG2PreAttack);
2076
2077 {
2078 if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
2079 uint8_t velocityresponse = VelocityResponseDepth;
2080 switch (VelocityResponseCurve) {
2081 case curve_type_nonlinear:
2082 break;
2083 case curve_type_linear:
2084 velocityresponse += 5;
2085 break;
2086 case curve_type_special:
2087 velocityresponse += 10;
2088 break;
2089 case curve_type_unknown:
2090 default:
2091 throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
2092 }
2093 pData[96] = velocityresponse;
2094 }
2095
2096 {
2097 if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
2098 uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
2099 switch (ReleaseVelocityResponseCurve) {
2100 case curve_type_nonlinear:
2101 break;
2102 case curve_type_linear:
2103 releasevelocityresponse += 5;
2104 break;
2105 case curve_type_special:
2106 releasevelocityresponse += 10;
2107 break;
2108 case curve_type_unknown:
2109 default:
2110 throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
2111 }
2112 pData[97] = releasevelocityresponse;
2113 }
2114
2115 pData[98] = VelocityResponseCurveScaling;
2116
2117 pData[99] = AttenuationControllerThreshold;
2118
2119 // next 4 bytes unknown
2120
2121 store16(&pData[104], SampleStartOffset);
2122
2123 // next 2 bytes unknown
2124
2125 {
2126 uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
2127 switch (DimensionBypass) {
2128 case dim_bypass_ctrl_94:
2129 pitchTrackDimensionBypass |= 0x10;
2130 break;
2131 case dim_bypass_ctrl_95:
2132 pitchTrackDimensionBypass |= 0x20;
2133 break;
2134 case dim_bypass_ctrl_none:
2135 //FIXME: should we set anything here?
2136 break;
2137 default:
2138 throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
2139 }
2140 pData[108] = pitchTrackDimensionBypass;
2141 }
2142
2143 const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
2144 pData[109] = pan;
2145
2146 const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
2147 pData[110] = selfmask;
2148
2149 // next byte unknown
2150
2151 {
2152 uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
2153 if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
2154 if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
2155 if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
2156 pData[112] = lfo3ctrl;
2157 }
2158
2159 const uint8_t attenctl = EncodeLeverageController(AttenuationController);
2160 pData[113] = attenctl;
2161
2162 {
2163 uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
2164 if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
2165 if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
2166 if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
2167 pData[114] = lfo2ctrl;
2168 }
2169
2170 {
2171 uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
2172 if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
2173 if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
2174 if (VCFResonanceController != vcf_res_ctrl_none)
2175 lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
2176 pData[115] = lfo1ctrl;
2177 }
2178
2179 const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
2180 : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
2181 store16(&pData[116], eg3depth);
2182
2183 // next 2 bytes unknown
2184
2185 const uint8_t channeloffset = ChannelOffset * 4;
2186 pData[120] = channeloffset;
2187
2188 {
2189 uint8_t regoptions = 0;
2190 if (MSDecode) regoptions |= 0x01; // bit 0
2191 if (SustainDefeat) regoptions |= 0x02; // bit 1
2192 pData[121] = regoptions;
2193 }
2194
2195 // next 2 bytes unknown
2196
2197 pData[124] = VelocityUpperLimit;
2198
2199 // next 3 bytes unknown
2200
2201 pData[128] = ReleaseTriggerDecay;
2202
2203 // next 2 bytes unknown
2204
2205 const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2206 pData[131] = eg1hold;
2207
2208 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
2209 (VCFCutoff & 0x7f); /* lower 7 bits */
2210 pData[132] = vcfcutoff;
2211
2212 pData[133] = VCFCutoffController;
2213
2214 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2215 (VCFVelocityScale & 0x7f); /* lower 7 bits */
2216 pData[134] = vcfvelscale;
2217
2218 // next byte unknown
2219
2220 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2221 (VCFResonance & 0x7f); /* lower 7 bits */
2222 pData[136] = vcfresonance;
2223
2224 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2225 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2226 pData[137] = vcfbreakpoint;
2227
2228 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2229 VCFVelocityCurve * 5;
2230 pData[138] = vcfvelocity;
2231
2232 const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2233 pData[139] = vcftype;
2234
2235 if (chunksize >= 148) {
2236 memcpy(&pData[140], DimensionUpperLimits, 8);
2237 }
2238
2239 // format extension for EG behavior options, these will *NOT* work with
2240 // Gigasampler/GigaStudio !
2241 RIFF::Chunk* lsde = pParentList->GetSubChunk(CHUNK_ID_LSDE);
2242 if (!lsde) {
2243 // only add this "LSDE" chunk if the EG options do not match the
2244 // default EG behavior
2245 eg_opt_t defaultOpt;
2246 if (memcmp(&EGOptions, &defaultOpt, sizeof(eg_opt_t))) {
2247 lsde = pParentList->AddSubChunk(CHUNK_ID_LSDE, 1);
2248 // move LSDE chunk to the end of parent list
2249 pParentList->MoveSubChunk(lsde, (RIFF::Chunk*)NULL);
2250 }
2251 }
2252 if (lsde) {
2253 unsigned char* pByte = (unsigned char*) lsde->LoadChunkData();
2254 *pByte =
2255 (EGOptions.AttackCancel ? 1 : 0) |
2256 (EGOptions.AttackHoldCancel ? (1<<1) : 0) |
2257 (EGOptions.DecayCancel ? (1<<2) : 0) |
2258 (EGOptions.ReleaseCancel ? (1<<3) : 0);
2259 }
2260 }
2261
2262 double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2263 curve_type_t curveType = releaseVelocityResponseCurve;
2264 uint8_t depth = releaseVelocityResponseDepth;
2265 // this models a strange behaviour or bug in GSt: two of the
2266 // velocity response curves for release time are not used even
2267 // if specified, instead another curve is chosen.
2268 if ((curveType == curve_type_nonlinear && depth == 0) ||
2269 (curveType == curve_type_special && depth == 4)) {
2270 curveType = curve_type_nonlinear;
2271 depth = 3;
2272 }
2273 return GetVelocityTable(curveType, depth, 0);
2274 }
2275
2276 double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2277 uint8_t vcfVelocityDynamicRange,
2278 uint8_t vcfVelocityScale,
2279 vcf_cutoff_ctrl_t vcfCutoffController)
2280 {
2281 curve_type_t curveType = vcfVelocityCurve;
2282 uint8_t depth = vcfVelocityDynamicRange;
2283 // even stranger GSt: two of the velocity response curves for
2284 // filter cutoff are not used, instead another special curve
2285 // is chosen. This curve is not used anywhere else.
2286 if ((curveType == curve_type_nonlinear && depth == 0) ||
2287 (curveType == curve_type_special && depth == 4)) {
2288 curveType = curve_type_special;
2289 depth = 5;
2290 }
2291 return GetVelocityTable(curveType, depth,
2292 (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2293 ? vcfVelocityScale : 0);
2294 }
2295
2296 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2297 double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2298 {
2299 double* table;
2300 uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2301 if (pVelocityTables->count(tableKey)) { // if key exists
2302 table = (*pVelocityTables)[tableKey];
2303 }
2304 else {
2305 table = CreateVelocityTable(curveType, depth, scaling);
2306 (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
2307 }
2308 return table;
2309 }
2310
2311 Region* DimensionRegion::GetParent() const {
2312 return pRegion;
2313 }
2314
2315 // show error if some _lev_ctrl_* enum entry is not listed in the following function
2316 // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2317 // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2318 //#pragma GCC diagnostic push
2319 //#pragma GCC diagnostic error "-Wswitch"
2320
2321 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2322 leverage_ctrl_t decodedcontroller;
2323 switch (EncodedController) {
2324 // special controller
2325 case _lev_ctrl_none:
2326 decodedcontroller.type = leverage_ctrl_t::type_none;
2327 decodedcontroller.controller_number = 0;
2328 break;
2329 case _lev_ctrl_velocity:
2330 decodedcontroller.type = leverage_ctrl_t::type_velocity;
2331 decodedcontroller.controller_number = 0;
2332 break;
2333 case _lev_ctrl_channelaftertouch:
2334 decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
2335 decodedcontroller.controller_number = 0;
2336 break;
2337
2338 // ordinary MIDI control change controller
2339 case _lev_ctrl_modwheel:
2340 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2341 decodedcontroller.controller_number = 1;
2342 break;
2343 case _lev_ctrl_breath:
2344 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2345 decodedcontroller.controller_number = 2;
2346 break;
2347 case _lev_ctrl_foot:
2348 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2349 decodedcontroller.controller_number = 4;
2350 break;
2351 case _lev_ctrl_effect1:
2352 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2353 decodedcontroller.controller_number = 12;
2354 break;
2355 case _lev_ctrl_effect2:
2356 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2357 decodedcontroller.controller_number = 13;
2358 break;
2359 case _lev_ctrl_genpurpose1:
2360 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2361 decodedcontroller.controller_number = 16;
2362 break;
2363 case _lev_ctrl_genpurpose2:
2364 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2365 decodedcontroller.controller_number = 17;
2366 break;
2367 case _lev_ctrl_genpurpose3:
2368 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2369 decodedcontroller.controller_number = 18;
2370 break;
2371 case _lev_ctrl_genpurpose4:
2372 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2373 decodedcontroller.controller_number = 19;
2374 break;
2375 case _lev_ctrl_portamentotime:
2376 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2377 decodedcontroller.controller_number = 5;
2378 break;
2379 case _lev_ctrl_sustainpedal:
2380 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2381 decodedcontroller.controller_number = 64;
2382 break;
2383 case _lev_ctrl_portamento:
2384 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2385 decodedcontroller.controller_number = 65;
2386 break;
2387 case _lev_ctrl_sostenutopedal:
2388 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2389 decodedcontroller.controller_number = 66;
2390 break;
2391 case _lev_ctrl_softpedal:
2392 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2393 decodedcontroller.controller_number = 67;
2394 break;
2395 case _lev_ctrl_genpurpose5:
2396 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2397 decodedcontroller.controller_number = 80;
2398 break;
2399 case _lev_ctrl_genpurpose6:
2400 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2401 decodedcontroller.controller_number = 81;
2402 break;
2403 case _lev_ctrl_genpurpose7:
2404 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2405 decodedcontroller.controller_number = 82;
2406 break;
2407 case _lev_ctrl_genpurpose8:
2408 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2409 decodedcontroller.controller_number = 83;
2410 break;
2411 case _lev_ctrl_effect1depth:
2412 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2413 decodedcontroller.controller_number = 91;
2414 break;
2415 case _lev_ctrl_effect2depth:
2416 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2417 decodedcontroller.controller_number = 92;
2418 break;
2419 case _lev_ctrl_effect3depth:
2420 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2421 decodedcontroller.controller_number = 93;
2422 break;
2423 case _lev_ctrl_effect4depth:
2424 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2425 decodedcontroller.controller_number = 94;
2426 break;
2427 case _lev_ctrl_effect5depth:
2428 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2429 decodedcontroller.controller_number = 95;
2430 break;
2431
2432 // format extension (these controllers are so far only supported by
2433 // LinuxSampler & gigedit) they will *NOT* work with
2434 // Gigasampler/GigaStudio !
2435 case _lev_ctrl_CC3_EXT:
2436 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2437 decodedcontroller.controller_number = 3;
2438 break;
2439 case _lev_ctrl_CC6_EXT:
2440 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2441 decodedcontroller.controller_number = 6;
2442 break;
2443 case _lev_ctrl_CC7_EXT:
2444 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2445 decodedcontroller.controller_number = 7;
2446 break;
2447 case _lev_ctrl_CC8_EXT:
2448 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2449 decodedcontroller.controller_number = 8;
2450 break;
2451 case _lev_ctrl_CC9_EXT:
2452 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2453 decodedcontroller.controller_number = 9;
2454 break;
2455 case _lev_ctrl_CC10_EXT:
2456 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2457 decodedcontroller.controller_number = 10;
2458 break;
2459 case _lev_ctrl_CC11_EXT:
2460 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2461 decodedcontroller.controller_number = 11;
2462 break;
2463 case _lev_ctrl_CC14_EXT:
2464 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2465 decodedcontroller.controller_number = 14;
2466 break;
2467 case _lev_ctrl_CC15_EXT:
2468 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2469 decodedcontroller.controller_number = 15;
2470 break;
2471 case _lev_ctrl_CC20_EXT:
2472 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2473 decodedcontroller.controller_number = 20;
2474 break;
2475 case _lev_ctrl_CC21_EXT:
2476 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2477 decodedcontroller.controller_number = 21;
2478 break;
2479 case _lev_ctrl_CC22_EXT:
2480 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2481 decodedcontroller.controller_number = 22;
2482 break;
2483 case _lev_ctrl_CC23_EXT:
2484 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2485 decodedcontroller.controller_number = 23;
2486 break;
2487 case _lev_ctrl_CC24_EXT:
2488 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2489 decodedcontroller.controller_number = 24;
2490 break;
2491 case _lev_ctrl_CC25_EXT:
2492 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2493 decodedcontroller.controller_number = 25;
2494 break;
2495 case _lev_ctrl_CC26_EXT:
2496 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2497 decodedcontroller.controller_number = 26;
2498 break;
2499 case _lev_ctrl_CC27_EXT:
2500 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2501 decodedcontroller.controller_number = 27;
2502 break;
2503 case _lev_ctrl_CC28_EXT:
2504 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2505 decodedcontroller.controller_number = 28;
2506 break;
2507 case _lev_ctrl_CC29_EXT:
2508 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2509 decodedcontroller.controller_number = 29;
2510 break;
2511 case _lev_ctrl_CC30_EXT:
2512 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2513 decodedcontroller.controller_number = 30;
2514 break;
2515 case _lev_ctrl_CC31_EXT:
2516 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2517 decodedcontroller.controller_number = 31;
2518 break;
2519 case _lev_ctrl_CC68_EXT:
2520 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2521 decodedcontroller.controller_number = 68;
2522 break;
2523 case _lev_ctrl_CC69_EXT:
2524 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2525 decodedcontroller.controller_number = 69;
2526 break;
2527 case _lev_ctrl_CC70_EXT:
2528 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2529 decodedcontroller.controller_number = 70;
2530 break;
2531 case _lev_ctrl_CC71_EXT:
2532 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2533 decodedcontroller.controller_number = 71;
2534 break;
2535 case _lev_ctrl_CC72_EXT:
2536 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2537 decodedcontroller.controller_number = 72;
2538 break;
2539 case _lev_ctrl_CC73_EXT:
2540 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2541 decodedcontroller.controller_number = 73;
2542 break;
2543 case _lev_ctrl_CC74_EXT:
2544 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2545 decodedcontroller.controller_number = 74;
2546 break;
2547 case _lev_ctrl_CC75_EXT:
2548 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2549 decodedcontroller.controller_number = 75;
2550 break;
2551 case _lev_ctrl_CC76_EXT:
2552 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2553 decodedcontroller.controller_number = 76;
2554 break;
2555 case _lev_ctrl_CC77_EXT:
2556 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2557 decodedcontroller.controller_number = 77;
2558 break;
2559 case _lev_ctrl_CC78_EXT:
2560 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2561 decodedcontroller.controller_number = 78;
2562 break;
2563 case _lev_ctrl_CC79_EXT:
2564 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2565 decodedcontroller.controller_number = 79;
2566 break;
2567 case _lev_ctrl_CC84_EXT:
2568 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2569 decodedcontroller.controller_number = 84;
2570 break;
2571 case _lev_ctrl_CC85_EXT:
2572 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2573 decodedcontroller.controller_number = 85;
2574 break;
2575 case _lev_ctrl_CC86_EXT:
2576 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2577 decodedcontroller.controller_number = 86;
2578 break;
2579 case _lev_ctrl_CC87_EXT:
2580 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2581 decodedcontroller.controller_number = 87;
2582 break;
2583 case _lev_ctrl_CC89_EXT:
2584 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2585 decodedcontroller.controller_number = 89;
2586 break;
2587 case _lev_ctrl_CC90_EXT:
2588 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2589 decodedcontroller.controller_number = 90;
2590 break;
2591 case _lev_ctrl_CC96_EXT:
2592 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2593 decodedcontroller.controller_number = 96;
2594 break;
2595 case _lev_ctrl_CC97_EXT:
2596 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2597 decodedcontroller.controller_number = 97;
2598 break;
2599 case _lev_ctrl_CC102_EXT:
2600 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2601 decodedcontroller.controller_number = 102;
2602 break;
2603 case _lev_ctrl_CC103_EXT:
2604 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2605 decodedcontroller.controller_number = 103;
2606 break;
2607 case _lev_ctrl_CC104_EXT:
2608 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2609 decodedcontroller.controller_number = 104;
2610 break;
2611 case _lev_ctrl_CC105_EXT:
2612 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2613 decodedcontroller.controller_number = 105;
2614 break;
2615 case _lev_ctrl_CC106_EXT:
2616 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2617 decodedcontroller.controller_number = 106;
2618 break;
2619 case _lev_ctrl_CC107_EXT:
2620 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2621 decodedcontroller.controller_number = 107;
2622 break;
2623 case _lev_ctrl_CC108_EXT:
2624 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2625 decodedcontroller.controller_number = 108;
2626 break;
2627 case _lev_ctrl_CC109_EXT:
2628 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2629 decodedcontroller.controller_number = 109;
2630 break;
2631 case _lev_ctrl_CC110_EXT:
2632 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2633 decodedcontroller.controller_number = 110;
2634 break;
2635 case _lev_ctrl_CC111_EXT:
2636 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2637 decodedcontroller.controller_number = 111;
2638 break;
2639 case _lev_ctrl_CC112_EXT:
2640 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2641 decodedcontroller.controller_number = 112;
2642 break;
2643 case _lev_ctrl_CC113_EXT:
2644 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2645 decodedcontroller.controller_number = 113;
2646 break;
2647 case _lev_ctrl_CC114_EXT:
2648 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2649 decodedcontroller.controller_number = 114;
2650 break;
2651 case _lev_ctrl_CC115_EXT:
2652 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2653 decodedcontroller.controller_number = 115;
2654 break;
2655 case _lev_ctrl_CC116_EXT:
2656 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2657 decodedcontroller.controller_number = 116;
2658 break;
2659 case _lev_ctrl_CC117_EXT:
2660 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2661 decodedcontroller.controller_number = 117;
2662 break;
2663 case _lev_ctrl_CC118_EXT:
2664 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2665 decodedcontroller.controller_number = 118;
2666 break;
2667 case _lev_ctrl_CC119_EXT:
2668 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2669 decodedcontroller.controller_number = 119;
2670 break;
2671
2672 // unknown controller type
2673 default:
2674 decodedcontroller.type = leverage_ctrl_t::type_none;
2675 decodedcontroller.controller_number = 0;
2676 printf("Warning: Unknown leverage controller type (0x%x).\n", EncodedController);
2677 break;
2678 }
2679 return decodedcontroller;
2680 }
2681
2682 // see above (diagnostic push not supported prior GCC 4.6)
2683 //#pragma GCC diagnostic pop
2684
2685 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2686 _lev_ctrl_t encodedcontroller;
2687 switch (DecodedController.type) {
2688 // special controller
2689 case leverage_ctrl_t::type_none:
2690 encodedcontroller = _lev_ctrl_none;
2691 break;
2692 case leverage_ctrl_t::type_velocity:
2693 encodedcontroller = _lev_ctrl_velocity;
2694 break;
2695 case leverage_ctrl_t::type_channelaftertouch:
2696 encodedcontroller = _lev_ctrl_channelaftertouch;
2697 break;
2698
2699 // ordinary MIDI control change controller
2700 case leverage_ctrl_t::type_controlchange:
2701 switch (DecodedController.controller_number) {
2702 case 1:
2703 encodedcontroller = _lev_ctrl_modwheel;
2704 break;
2705 case 2:
2706 encodedcontroller = _lev_ctrl_breath;
2707 break;
2708 case 4:
2709 encodedcontroller = _lev_ctrl_foot;
2710 break;
2711 case 12:
2712 encodedcontroller = _lev_ctrl_effect1;
2713 break;
2714 case 13:
2715 encodedcontroller = _lev_ctrl_effect2;
2716 break;
2717 case 16:
2718 encodedcontroller = _lev_ctrl_genpurpose1;
2719 break;
2720 case 17:
2721 encodedcontroller = _lev_ctrl_genpurpose2;
2722 break;
2723 case 18:
2724 encodedcontroller = _lev_ctrl_genpurpose3;
2725 break;
2726 case 19:
2727 encodedcontroller = _lev_ctrl_genpurpose4;
2728 break;
2729 case 5:
2730 encodedcontroller = _lev_ctrl_portamentotime;
2731 break;
2732 case 64:
2733 encodedcontroller = _lev_ctrl_sustainpedal;
2734 break;
2735 case 65:
2736 encodedcontroller = _lev_ctrl_portamento;
2737 break;
2738 case 66:
2739 encodedcontroller = _lev_ctrl_sostenutopedal;
2740 break;
2741 case 67:
2742 encodedcontroller = _lev_ctrl_softpedal;
2743 break;
2744 case 80:
2745 encodedcontroller = _lev_ctrl_genpurpose5;
2746 break;
2747 case 81:
2748 encodedcontroller = _lev_ctrl_genpurpose6;
2749 break;
2750 case 82:
2751 encodedcontroller = _lev_ctrl_genpurpose7;
2752 break;
2753 case 83:
2754 encodedcontroller = _lev_ctrl_genpurpose8;
2755 break;
2756 case 91:
2757 encodedcontroller = _lev_ctrl_effect1depth;
2758 break;
2759 case 92:
2760 encodedcontroller = _lev_ctrl_effect2depth;
2761 break;
2762 case 93:
2763 encodedcontroller = _lev_ctrl_effect3depth;
2764 break;
2765 case 94:
2766 encodedcontroller = _lev_ctrl_effect4depth;
2767 break;
2768 case 95:
2769 encodedcontroller = _lev_ctrl_effect5depth;
2770 break;
2771
2772 // format extension (these controllers are so far only
2773 // supported by LinuxSampler & gigedit) they will *NOT*
2774 // work with Gigasampler/GigaStudio !
2775 case 3:
2776 encodedcontroller = _lev_ctrl_CC3_EXT;
2777 break;
2778 case 6:
2779 encodedcontroller = _lev_ctrl_CC6_EXT;
2780 break;
2781 case 7:
2782 encodedcontroller = _lev_ctrl_CC7_EXT;
2783 break;
2784 case 8:
2785 encodedcontroller = _lev_ctrl_CC8_EXT;
2786 break;
2787 case 9:
2788 encodedcontroller = _lev_ctrl_CC9_EXT;
2789 break;
2790 case 10:
2791 encodedcontroller = _lev_ctrl_CC10_EXT;
2792 break;
2793 case 11:
2794 encodedcontroller = _lev_ctrl_CC11_EXT;
2795 break;
2796 case 14:
2797 encodedcontroller = _lev_ctrl_CC14_EXT;
2798 break;
2799 case 15:
2800 encodedcontroller = _lev_ctrl_CC15_EXT;
2801 break;
2802 case 20:
2803 encodedcontroller = _lev_ctrl_CC20_EXT;
2804 break;
2805 case 21:
2806 encodedcontroller = _lev_ctrl_CC21_EXT;
2807 break;
2808 case 22:
2809 encodedcontroller = _lev_ctrl_CC22_EXT;
2810 break;
2811 case 23:
2812 encodedcontroller = _lev_ctrl_CC23_EXT;
2813 break;
2814 case 24:
2815 encodedcontroller = _lev_ctrl_CC24_EXT;
2816 break;
2817 case 25:
2818 encodedcontroller = _lev_ctrl_CC25_EXT;
2819 break;
2820 case 26:
2821 encodedcontroller = _lev_ctrl_CC26_EXT;
2822 break;
2823 case 27:
2824 encodedcontroller = _lev_ctrl_CC27_EXT;
2825 break;
2826 case 28:
2827 encodedcontroller = _lev_ctrl_CC28_EXT;
2828 break;
2829 case 29:
2830 encodedcontroller = _lev_ctrl_CC29_EXT;
2831 break;
2832 case 30:
2833 encodedcontroller = _lev_ctrl_CC30_EXT;
2834 break;
2835 case 31:
2836 encodedcontroller = _lev_ctrl_CC31_EXT;
2837 break;
2838 case 68:
2839 encodedcontroller = _lev_ctrl_CC68_EXT;
2840 break;
2841 case 69:
2842 encodedcontroller = _lev_ctrl_CC69_EXT;
2843 break;
2844 case 70:
2845 encodedcontroller = _lev_ctrl_CC70_EXT;
2846 break;
2847 case 71:
2848 encodedcontroller = _lev_ctrl_CC71_EXT;
2849 break;
2850 case 72:
2851 encodedcontroller = _lev_ctrl_CC72_EXT;
2852 break;
2853 case 73:
2854 encodedcontroller = _lev_ctrl_CC73_EXT;
2855 break;
2856 case 74:
2857 encodedcontroller = _lev_ctrl_CC74_EXT;
2858 break;
2859 case 75:
2860 encodedcontroller = _lev_ctrl_CC75_EXT;
2861 break;
2862 case 76:
2863 encodedcontroller = _lev_ctrl_CC76_EXT;
2864 break;
2865 case 77:
2866 encodedcontroller = _lev_ctrl_CC77_EXT;
2867 break;
2868 case 78:
2869 encodedcontroller = _lev_ctrl_CC78_EXT;
2870 break;
2871 case 79:
2872 encodedcontroller = _lev_ctrl_CC79_EXT;
2873 break;
2874 case 84:
2875 encodedcontroller = _lev_ctrl_CC84_EXT;
2876 break;
2877 case 85:
2878 encodedcontroller = _lev_ctrl_CC85_EXT;
2879 break;
2880 case 86:
2881 encodedcontroller = _lev_ctrl_CC86_EXT;
2882 break;
2883 case 87:
2884 encodedcontroller = _lev_ctrl_CC87_EXT;
2885 break;
2886 case 89:
2887 encodedcontroller = _lev_ctrl_CC89_EXT;
2888 break;
2889 case 90:
2890 encodedcontroller = _lev_ctrl_CC90_EXT;
2891 break;
2892 case 96:
2893 encodedcontroller = _lev_ctrl_CC96_EXT;
2894 break;
2895 case 97:
2896 encodedcontroller = _lev_ctrl_CC97_EXT;
2897 break;
2898 case 102:
2899 encodedcontroller = _lev_ctrl_CC102_EXT;
2900 break;
2901 case 103:
2902 encodedcontroller = _lev_ctrl_CC103_EXT;
2903 break;
2904 case 104:
2905 encodedcontroller = _lev_ctrl_CC104_EXT;
2906 break;
2907 case 105:
2908 encodedcontroller = _lev_ctrl_CC105_EXT;
2909 break;
2910 case 106:
2911 encodedcontroller = _lev_ctrl_CC106_EXT;
2912 break;
2913 case 107:
2914 encodedcontroller = _lev_ctrl_CC107_EXT;
2915 break;
2916 case 108:
2917 encodedcontroller = _lev_ctrl_CC108_EXT;
2918 break;
2919 case 109:
2920 encodedcontroller = _lev_ctrl_CC109_EXT;
2921 break;
2922 case 110:
2923 encodedcontroller = _lev_ctrl_CC110_EXT;
2924 break;
2925 case 111:
2926 encodedcontroller = _lev_ctrl_CC111_EXT;
2927 break;
2928 case 112:
2929 encodedcontroller = _lev_ctrl_CC112_EXT;
2930 break;
2931 case 113:
2932 encodedcontroller = _lev_ctrl_CC113_EXT;
2933 break;
2934 case 114:
2935 encodedcontroller = _lev_ctrl_CC114_EXT;
2936 break;
2937 case 115:
2938 encodedcontroller = _lev_ctrl_CC115_EXT;
2939 break;
2940 case 116:
2941 encodedcontroller = _lev_ctrl_CC116_EXT;
2942 break;
2943 case 117:
2944 encodedcontroller = _lev_ctrl_CC117_EXT;
2945 break;
2946 case 118:
2947 encodedcontroller = _lev_ctrl_CC118_EXT;
2948 break;
2949 case 119:
2950 encodedcontroller = _lev_ctrl_CC119_EXT;
2951 break;
2952
2953 default:
2954 throw gig::Exception("leverage controller number is not supported by the gig format");
2955 }
2956 break;
2957 default:
2958 throw gig::Exception("Unknown leverage controller type.");
2959 }
2960 return encodedcontroller;
2961 }
2962
2963 DimensionRegion::~DimensionRegion() {
2964 Instances--;
2965 if (!Instances) {
2966 // delete the velocity->volume tables
2967 VelocityTableMap::iterator iter;
2968 for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
2969 double* pTable = iter->second;
2970 if (pTable) delete[] pTable;
2971 }
2972 pVelocityTables->clear();
2973 delete pVelocityTables;
2974 pVelocityTables = NULL;
2975 }
2976 if (VelocityTable) delete[] VelocityTable;
2977 }
2978
2979 /**
2980 * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
2981 * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
2982 * and VelocityResponseCurveScaling) involved are taken into account to
2983 * calculate the amplitude factor. Use this method when a key was
2984 * triggered to get the volume with which the sample should be played
2985 * back.
2986 *
2987 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
2988 * @returns amplitude factor (between 0.0 and 1.0)
2989 */
2990 double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2991 return pVelocityAttenuationTable[MIDIKeyVelocity];
2992 }
2993
2994 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2995 return pVelocityReleaseTable[MIDIKeyVelocity];
2996 }
2997
2998 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2999 return pVelocityCutoffTable[MIDIKeyVelocity];
3000 }
3001
3002 /**
3003 * Updates the respective member variable and the lookup table / cache
3004 * that depends on this value.
3005 */
3006 void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
3007 pVelocityAttenuationTable =
3008 GetVelocityTable(
3009 curve, VelocityResponseDepth, VelocityResponseCurveScaling
3010 );
3011 VelocityResponseCurve = curve;
3012 }
3013
3014 /**
3015 * Updates the respective member variable and the lookup table / cache
3016 * that depends on this value.
3017 */
3018 void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
3019 pVelocityAttenuationTable =
3020 GetVelocityTable(
3021 VelocityResponseCurve, depth, VelocityResponseCurveScaling
3022 );
3023 VelocityResponseDepth = depth;
3024 }
3025
3026 /**
3027 * Updates the respective member variable and the lookup table / cache
3028 * that depends on this value.
3029 */
3030 void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
3031 pVelocityAttenuationTable =
3032 GetVelocityTable(
3033 VelocityResponseCurve, VelocityResponseDepth, scaling
3034 );
3035 VelocityResponseCurveScaling = scaling;
3036 }
3037
3038 /**
3039 * Updates the respective member variable and the lookup table / cache
3040 * that depends on this value.
3041 */
3042 void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
3043 pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
3044 ReleaseVelocityResponseCurve = curve;
3045 }
3046
3047 /**
3048 * Updates the respective member variable and the lookup table / cache
3049 * that depends on this value.
3050 */
3051 void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
3052 pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
3053 ReleaseVelocityResponseDepth = depth;
3054 }
3055
3056 /**
3057 * Updates the respective member variable and the lookup table / cache
3058 * that depends on this value.
3059 */
3060 void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
3061 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
3062 VCFCutoffController = controller;
3063 }
3064
3065 /**
3066 * Updates the respective member variable and the lookup table / cache
3067 * that depends on this value.
3068 */
3069 void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
3070 pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
3071 VCFVelocityCurve = curve;
3072 }
3073
3074 /**
3075 * Updates the respective member variable and the lookup table / cache
3076 * that depends on this value.
3077 */
3078 void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
3079 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
3080 VCFVelocityDynamicRange = range;
3081 }
3082
3083 /**
3084 * Updates the respective member variable and the lookup table / cache
3085 * that depends on this value.
3086 */
3087 void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
3088 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
3089 VCFVelocityScale = scaling;
3090 }
3091
3092 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
3093
3094 // line-segment approximations of the 15 velocity curves
3095
3096 // linear
3097 const int lin0[] = { 1, 1, 127, 127 };
3098 const int lin1[] = { 1, 21, 127, 127 };
3099 const int lin2[] = { 1, 45, 127, 127 };
3100 const int lin3[] = { 1, 74, 127, 127 };
3101 const int lin4[] = { 1, 127, 127, 127 };
3102
3103 // non-linear
3104 const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
3105 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
3106 127, 127 };
3107 const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
3108 127, 127 };
3109 const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
3110 127, 127 };
3111 const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
3112
3113 // special
3114 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
3115 113, 127, 127, 127 };
3116 const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
3117 118, 127, 127, 127 };
3118 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
3119 85, 90, 91, 127, 127, 127 };
3120 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
3121 117, 127, 127, 127 };
3122 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
3123 127, 127 };
3124
3125 // this is only used by the VCF velocity curve
3126 const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
3127 91, 127, 127, 127 };
3128
3129 const int* const curves[] = { non0, non1, non2, non3, non4,
3130 lin0, lin1, lin2, lin3, lin4,
3131 spe0, spe1, spe2, spe3, spe4, spe5 };
3132
3133 double* const table = new double[128];
3134
3135 const int* curve = curves[curveType * 5 + depth];
3136 const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
3137
3138 table[0] = 0;
3139 for (int x = 1 ; x < 128 ; x++) {
3140
3141 if (x > curve[2]) curve += 2;
3142 double y = curve[1] + (x - curve[0]) *
3143 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
3144 y = y / 127;
3145
3146 // Scale up for s > 20, down for s < 20. When
3147 // down-scaling, the curve still ends at 1.0.
3148 if (s < 20 && y >= 0.5)
3149 y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
3150 else
3151 y = y * (s / 20.0);
3152 if (y > 1) y = 1;
3153
3154 table[x] = y;
3155 }
3156 return table;
3157 }
3158
3159
3160 // *************** Region ***************
3161 // *
3162
3163 Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
3164 // Initialization
3165 Dimensions = 0;
3166 for (int i = 0; i < 256; i++) {
3167 pDimensionRegions[i] = NULL;
3168 }
3169 Layers = 1;
3170 File* file = (File*) GetParent()->GetParent();
3171 int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
3172
3173 // Actual Loading
3174
3175 if (!file->GetAutoLoad()) return;
3176
3177 LoadDimensionRegions(rgnList);
3178
3179 RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
3180 if (_3lnk) {
3181 DimensionRegions = _3lnk->ReadUint32();
3182 for (int i = 0; i < dimensionBits; i++) {
3183 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
3184 uint8_t bits = _3lnk->ReadUint8();
3185 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
3186 _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
3187 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
3188 if (dimension == dimension_none) { // inactive dimension
3189 pDimensionDefinitions[i].dimension = dimension_none;
3190 pDimensionDefinitions[i].bits = 0;
3191 pDimensionDefinitions[i].zones = 0;
3192 pDimensionDefinitions[i].split_type = split_type_bit;
3193 pDimensionDefinitions[i].zone_size = 0;
3194 }
3195 else { // active dimension
3196 pDimensionDefinitions[i].dimension = dimension;
3197 pDimensionDefinitions[i].bits = bits;
3198 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
3199 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
3200 pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
3201 Dimensions++;
3202
3203 // if this is a layer dimension, remember the amount of layers
3204 if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
3205 }
3206 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
3207 }
3208 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
3209
3210 // if there's a velocity dimension and custom velocity zone splits are used,
3211 // update the VelocityTables in the dimension regions
3212 UpdateVelocityTable();
3213
3214 // jump to start of the wave pool indices (if not already there)
3215 if (file->pVersion && file->pVersion->major == 3)
3216 _3lnk->SetPos(68); // version 3 has a different 3lnk structure
3217 else
3218 _3lnk->SetPos(44);
3219
3220 // load sample references (if auto loading is enabled)
3221 if (file->GetAutoLoad()) {
3222 for (uint i = 0; i < DimensionRegions; i++) {
3223 uint32_t wavepoolindex = _3lnk->ReadUint32();
3224 if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
3225 }
3226 GetSample(); // load global region sample reference
3227 }
3228 } else {
3229 DimensionRegions = 0;
3230 for (int i = 0 ; i < 8 ; i++) {
3231 pDimensionDefinitions[i].dimension = dimension_none;
3232 pDimensionDefinitions[i].bits = 0;
3233 pDimensionDefinitions[i].zones = 0;
3234 }
3235 }
3236
3237 // make sure there is at least one dimension region
3238 if (!DimensionRegions) {
3239 RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
3240 if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
3241 RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
3242 pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
3243 DimensionRegions = 1;
3244 }
3245 }
3246
3247 /**
3248 * Apply Region settings and all its DimensionRegions to the respective
3249 * RIFF chunks. You have to call File::Save() to make changes persistent.
3250 *
3251 * Usually there is absolutely no need to call this method explicitly.
3252 * It will be called automatically when File::Save() was called.
3253 *
3254 * @param pProgress - callback function for progress notification
3255 * @throws gig::Exception if samples cannot be dereferenced
3256 */
3257 void Region::UpdateChunks(progress_t* pProgress) {
3258 // in the gig format we don't care about the Region's sample reference
3259 // but we still have to provide some existing one to not corrupt the
3260 // file, so to avoid the latter we simply always assign the sample of
3261 // the first dimension region of this region
3262 pSample = pDimensionRegions[0]->pSample;
3263
3264 // first update base class's chunks
3265 DLS::Region::UpdateChunks(pProgress);
3266
3267 // update dimension region's chunks
3268 for (int i = 0; i < DimensionRegions; i++) {
3269 pDimensionRegions[i]->UpdateChunks(pProgress);
3270 }
3271
3272 File* pFile = (File*) GetParent()->GetParent();
3273 bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
3274 const int iMaxDimensions = version3 ? 8 : 5;
3275 const int iMaxDimensionRegions = version3 ? 256 : 32;
3276
3277 // make sure '3lnk' chunk exists
3278 RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3279 if (!_3lnk) {
3280 const int _3lnkChunkSize = version3 ? 1092 : 172;
3281 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3282 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3283
3284 // move 3prg to last position
3285 pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), (RIFF::Chunk*)NULL);
3286 }
3287
3288 // update dimension definitions in '3lnk' chunk
3289 uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3290 store32(&pData[0], DimensionRegions);
3291 int shift = 0;
3292 for (int i = 0; i < iMaxDimensions; i++) {
3293 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3294 pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3295 pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3296 pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3297 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3298 // next 3 bytes unknown, always zero?
3299
3300 shift += pDimensionDefinitions[i].bits;
3301 }
3302
3303 // update wave pool table in '3lnk' chunk
3304 const int iWavePoolOffset = version3 ? 68 : 44;
3305 for (uint i = 0; i < iMaxDimensionRegions; i++) {
3306 int iWaveIndex = -1;
3307 if (i < DimensionRegions) {
3308 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
3309 File::SampleList::iterator iter = pFile->pSamples->begin();
3310 File::SampleList::iterator end = pFile->pSamples->end();
3311 for (int index = 0; iter != end; ++iter, ++index) {
3312 if (*iter == pDimensionRegions[i]->pSample) {
3313 iWaveIndex = index;
3314 break;
3315 }
3316 }
3317 }
3318 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3319 }
3320 }
3321
3322 void Region::LoadDimensionRegions(RIFF::List* rgn) {
3323 RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
3324 if (_3prg) {
3325 int dimensionRegionNr = 0;
3326 RIFF::List* _3ewl = _3prg->GetFirstSubList();
3327 while (_3ewl) {
3328 if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3329 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3330 dimensionRegionNr++;
3331 }
3332 _3ewl = _3prg->GetNextSubList();
3333 }
3334 if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
3335 }
3336 }
3337
3338 void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3339 // update KeyRange struct and make sure regions are in correct order
3340 DLS::Region::SetKeyRange(Low, High);
3341 // update Region key table for fast lookup
3342 ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3343 }
3344
3345 void Region::UpdateVelocityTable() {
3346 // get velocity dimension's index
3347 int veldim = -1;
3348 for (int i = 0 ; i < Dimensions ; i++) {
3349 if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
3350 veldim = i;
3351 break;
3352 }
3353 }
3354 if (veldim == -1) return;
3355
3356 int step = 1;
3357 for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3358 int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
3359
3360 // loop through all dimension regions for all dimensions except the velocity dimension
3361 int dim[8] = { 0 };
3362 for (int i = 0 ; i < DimensionRegions ; i++) {
3363 const int end = i + step * pDimensionDefinitions[veldim].zones;
3364
3365 // create a velocity table for all cases where the velocity zone is zero
3366 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3367 pDimensionRegions[i]->VelocityUpperLimit) {
3368 // create the velocity table
3369 uint8_t* table = pDimensionRegions[i]->VelocityTable;
3370 if (!table) {
3371 table = new uint8_t[128];
3372 pDimensionRegions[i]->VelocityTable = table;
3373 }
3374 int tableidx = 0;
3375 int velocityZone = 0;
3376 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
3377 for (int k = i ; k < end ; k += step) {
3378 DimensionRegion *d = pDimensionRegions[k];
3379 for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
3380 velocityZone++;
3381 }
3382 } else { // gig2
3383 for (int k = i ; k < end ; k += step) {
3384 DimensionRegion *d = pDimensionRegions[k];
3385 for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
3386 velocityZone++;
3387 }
3388 }
3389 } else {
3390 if (pDimensionRegions[i]->VelocityTable) {
3391 delete[] pDimensionRegions[i]->VelocityTable;
3392 pDimensionRegions[i]->VelocityTable = 0;
3393 }
3394 }
3395
3396 // jump to the next case where the velocity zone is zero
3397 int j;
3398 int shift = 0;
3399 for (j = 0 ; j < Dimensions ; j++) {
3400 if (j == veldim) i += skipveldim; // skip velocity dimension
3401 else {
3402 dim[j]++;
3403 if (dim[j] < pDimensionDefinitions[j].zones) break;
3404 else {
3405 // skip unused dimension regions
3406 dim[j] = 0;
3407 i += ((1 << pDimensionDefinitions[j].bits) -
3408 pDimensionDefinitions[j].zones) << shift;
3409 }
3410 }
3411 shift += pDimensionDefinitions[j].bits;
3412 }
3413 if (j == Dimensions) break;
3414 }
3415 }
3416
3417 /** @brief Einstein would have dreamed of it - create a new dimension.
3418 *
3419 * Creates a new dimension with the dimension definition given by
3420 * \a pDimDef. The appropriate amount of DimensionRegions will be created.
3421 * There is a hard limit of dimensions and total amount of "bits" all
3422 * dimensions can have. This limit is dependant to what gig file format
3423 * version this file refers to. The gig v2 (and lower) format has a
3424 * dimension limit and total amount of bits limit of 5, whereas the gig v3
3425 * format has a limit of 8.
3426 *
3427 * @param pDimDef - defintion of the new dimension
3428 * @throws gig::Exception if dimension of the same type exists already
3429 * @throws gig::Exception if amount of dimensions or total amount of
3430 * dimension bits limit is violated
3431 */
3432 void Region::AddDimension(dimension_def_t* pDimDef) {
3433 // some initial sanity checks of the given dimension definition
3434 if (pDimDef->zones < 2)
3435 throw gig::Exception("Could not add new dimension, amount of requested zones must always be at least two");
3436 if (pDimDef->bits < 1)
3437 throw gig::Exception("Could not add new dimension, amount of requested requested zone bits must always be at least one");
3438 if (pDimDef->dimension == dimension_samplechannel) {
3439 if (pDimDef->zones != 2)
3440 throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zones must always be 2 for this dimension type");
3441 if (pDimDef->bits != 1)
3442 throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zone bits must always be 1 for this dimension type");
3443 }
3444
3445 // check if max. amount of dimensions reached
3446 File* file = (File*) GetParent()->GetParent();
3447 const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
3448 if (Dimensions >= iMaxDimensions)
3449 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
3450 // check if max. amount of dimension bits reached
3451 int iCurrentBits = 0;
3452 for (int i = 0; i < Dimensions; i++)
3453 iCurrentBits += pDimensionDefinitions[i].bits;
3454 if (iCurrentBits >= iMaxDimensions)
3455 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
3456 const int iNewBits = iCurrentBits + pDimDef->bits;
3457 if (iNewBits > iMaxDimensions)
3458 throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
3459 // check if there's already a dimensions of the same type
3460 for (int i = 0; i < Dimensions; i++)
3461 if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3462 throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3463
3464 // pos is where the new dimension should be placed, normally
3465 // last in list, except for the samplechannel dimension which
3466 // has to be first in list
3467 int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3468 int bitpos = 0;
3469 for (int i = 0 ; i < pos ; i++)
3470 bitpos += pDimensionDefinitions[i].bits;
3471
3472 // make room for the new dimension
3473 for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3474 for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3475 for (int j = Dimensions ; j > pos ; j--) {
3476 pDimensionRegions[i]->DimensionUpperLimits[j] =
3477 pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3478 }
3479 }
3480
3481 // assign definition of new dimension
3482 pDimensionDefinitions[pos] = *pDimDef;
3483
3484 // auto correct certain dimension definition fields (where possible)
3485 pDimensionDefinitions[pos].split_type =
3486 __resolveSplitType(pDimensionDefinitions[pos].dimension);
3487 pDimensionDefinitions[pos].zone_size =
3488 __resolveZoneSize(pDimensionDefinitions[pos]);
3489
3490 // create new dimension region(s) for this new dimension, and make
3491 // sure that the dimension regions are placed correctly in both the
3492 // RIFF list and the pDimensionRegions array
3493 RIFF::Chunk* moveTo = NULL;
3494 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3495 for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3496 for (int k = 0 ; k < (1 << bitpos) ; k++) {
3497 pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3498 }
3499 for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3500 for (int k = 0 ; k < (1 << bitpos) ; k++) {
3501 RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3502 if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3503 // create a new dimension region and copy all parameter values from
3504 // an existing dimension region
3505 pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3506 new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3507
3508 DimensionRegions++;
3509 }
3510 }
3511 moveTo = pDimensionRegions[i]->pParentList;
3512 }
3513
3514 // initialize the upper limits for this dimension
3515 int mask = (1 << bitpos) - 1;
3516 for (int z = 0 ; z < pDimDef->zones ; z++) {
3517 uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3518 for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3519 pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3520 (z << bitpos) |
3521 (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3522 }
3523 }
3524
3525 Dimensions++;
3526
3527 // if this is a layer dimension, update 'Layers' attribute
3528 if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
3529
3530 UpdateVelocityTable();
3531 }
3532
3533 /** @brief Delete an existing dimension.
3534 *
3535 * Deletes the dimension given by \a pDimDef and deletes all respective
3536 * dimension regions, that is all dimension regions where the dimension's
3537 * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
3538 * for example this would delete all dimension regions for the case(s)
3539 * where the sustain pedal is pressed down.
3540 *
3541 * @param pDimDef - dimension to delete
3542 * @throws gig::Exception if given dimension cannot be found
3543 */
3544 void Region::DeleteDimension(dimension_def_t* pDimDef) {
3545 // get dimension's index
3546 int iDimensionNr = -1;
3547 for (int i = 0; i < Dimensions; i++) {
3548 if (&pDimensionDefinitions[i] == pDimDef) {
3549 iDimensionNr = i;
3550 break;
3551 }
3552 }
3553 if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
3554
3555 // get amount of bits below the dimension to delete
3556 int iLowerBits = 0;
3557 for (int i = 0; i < iDimensionNr; i++)
3558 iLowerBits += pDimensionDefinitions[i].bits;
3559
3560 // get amount ot bits above the dimension to delete
3561 int iUpperBits = 0;
3562 for (int i = iDimensionNr + 1; i < Dimensions; i++)
3563 iUpperBits += pDimensionDefinitions[i].bits;
3564
3565 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3566
3567 // delete dimension regions which belong to the given dimension
3568 // (that is where the dimension's bit > 0)
3569 for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
3570 for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
3571 for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
3572 int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3573 iObsoleteBit << iLowerBits |
3574 iLowerBit;
3575
3576 _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3577 delete pDimensionRegions[iToDelete];
3578 pDimensionRegions[iToDelete] = NULL;
3579 DimensionRegions--;
3580 }
3581 }
3582 }
3583
3584 // defrag pDimensionRegions array
3585 // (that is remove the NULL spaces within the pDimensionRegions array)
3586 for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
3587 if (!pDimensionRegions[iTo]) {
3588 if (iFrom <= iTo) iFrom = iTo + 1;
3589 while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
3590 if (iFrom < 256 && pDimensionRegions[iFrom]) {
3591 pDimensionRegions[iTo] = pDimensionRegions[iFrom];
3592 pDimensionRegions[iFrom] = NULL;
3593 }
3594 }
3595 }
3596
3597 // remove the this dimension from the upper limits arrays
3598 for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3599 DimensionRegion* d = pDimensionRegions[j];
3600 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3601 d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3602 }
3603 d->DimensionUpperLimits[Dimensions - 1] = 127;
3604 }
3605
3606 // 'remove' dimension definition
3607 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3608 pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
3609 }
3610 pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
3611 pDimensionDefinitions[Dimensions - 1].bits = 0;
3612 pDimensionDefinitions[Dimensions - 1].zones = 0;
3613
3614 Dimensions--;
3615
3616 // if this was a layer dimension, update 'Layers' attribute
3617 if (pDimDef->dimension == dimension_layer) Layers = 1;
3618 }
3619
3620 /** @brief Delete one split zone of a dimension (decrement zone amount).
3621 *
3622 * Instead of deleting an entire dimensions, this method will only delete
3623 * one particular split zone given by @a zone of the Region's dimension
3624 * given by @a type. So this method will simply decrement the amount of
3625 * zones by one of the dimension in question. To be able to do that, the
3626 * respective dimension must exist on this Region and it must have at least
3627 * 3 zones. All DimensionRegion objects associated with the zone will be
3628 * deleted.
3629 *
3630 * @param type - identifies the dimension where a zone shall be deleted
3631 * @param zone - index of the dimension split zone that shall be deleted
3632 * @throws gig::Exception if requested zone could not be deleted
3633 */
3634 void Region::DeleteDimensionZone(dimension_t type, int zone) {
3635 dimension_def_t* oldDef = GetDimensionDefinition(type);
3636 if (!oldDef)
3637 throw gig::Exception("Could not delete dimension zone, no such dimension of given type");
3638 if (oldDef->zones <= 2)
3639 throw gig::Exception("Could not delete dimension zone, because it would end up with only one zone.");
3640 if (zone < 0 || zone >= oldDef->zones)
3641 throw gig::Exception("Could not delete dimension zone, requested zone index out of bounds.");
3642
3643 const int newZoneSize = oldDef->zones - 1;
3644
3645 // create a temporary Region which just acts as a temporary copy
3646 // container and will be deleted at the end of this function and will
3647 // also not be visible through the API during this process
3648 gig::Region* tempRgn = NULL;
3649 {
3650 // adding these temporary chunks is probably not even necessary
3651 Instrument* instr = static_cast<Instrument*>(GetParent());
3652 RIFF::List* pCkInstrument = instr->pCkInstrument;
3653 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3654 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3655 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3656 tempRgn = new Region(instr, rgn);
3657 }
3658
3659 // copy this region's dimensions (with already the dimension split size
3660 // requested by the arguments of this method call) to the temporary
3661 // region, and don't use Region::CopyAssign() here for this task, since
3662 // it would also alter fast lookup helper variables here and there
3663 dimension_def_t newDef;
3664 for (int i = 0; i < Dimensions; ++i) {
3665 dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3666 // is this the dimension requested by the method arguments? ...
3667 if (def.dimension == type) { // ... if yes, decrement zone amount by one
3668 def.zones = newZoneSize;
3669 if ((1 << (def.bits - 1)) == def.zones) def.bits--;
3670 newDef = def;
3671 }
3672 tempRgn->AddDimension(&def);
3673 }
3674
3675 // find the dimension index in the tempRegion which is the dimension
3676 // type passed to this method (paranoidly expecting different order)
3677 int tempReducedDimensionIndex = -1;
3678 for (int d = 0; d < tempRgn->Dimensions; ++d) {
3679 if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3680 tempReducedDimensionIndex = d;
3681 break;
3682 }
3683 }
3684
3685 // copy dimension regions from this region to the temporary region
3686 for (int iDst = 0; iDst < 256; ++iDst) {
3687 DimensionRegion* dstDimRgn = tempRgn->pDimensionRegions[iDst];
3688 if (!dstDimRgn) continue;
3689 std::map<dimension_t,int> dimCase;
3690 bool isValidZone = true;
3691 for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3692 const int dstBits = tempRgn->pDimensionDefinitions[d].bits;
3693 dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3694 (iDst >> baseBits) & ((1 << dstBits) - 1);
3695 baseBits += dstBits;
3696 // there are also DimensionRegion objects of unused zones, skip them
3697 if (dimCase[tempRgn->pDimensionDefinitions[d].dimension] >= tempRgn->pDimensionDefinitions[d].zones) {
3698 isValidZone = false;
3699 break;
3700 }
3701 }
3702 if (!isValidZone) continue;
3703 // a bit paranoid: cope with the chance that the dimensions would
3704 // have different order in source and destination regions
3705 const bool isLastZone = (dimCase[type] == newZoneSize - 1);
3706 if (dimCase[type] >= zone) dimCase[type]++;
3707 DimensionRegion* srcDimRgn = GetDimensionRegionByBit(dimCase);
3708 dstDimRgn->CopyAssign(srcDimRgn);
3709 // if this is the upper most zone of the dimension passed to this
3710 // method, then correct (raise) its upper limit to 127
3711 if (newDef.split_type == split_type_normal && isLastZone)
3712 dstDimRgn->DimensionUpperLimits[tempReducedDimensionIndex] = 127;
3713 }
3714
3715 // now tempRegion's dimensions and DimensionRegions basically reflect
3716 // what we wanted to get for this actual Region here, so we now just
3717 // delete and recreate the dimension in question with the new amount
3718 // zones and then copy back from tempRegion
3719 DeleteDimension(oldDef);
3720 AddDimension(&newDef);
3721 for (int iSrc = 0; iSrc < 256; ++iSrc) {
3722 DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3723 if (!srcDimRgn) continue;
3724 std::map<dimension_t,int> dimCase;
3725 for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3726 const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3727 dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3728 (iSrc >> baseBits) & ((1 << srcBits) - 1);
3729 baseBits += srcBits;
3730 }
3731 // a bit paranoid: cope with the chance that the dimensions would
3732 // have different order in source and destination regions
3733 DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3734 if (!dstDimRgn) continue;
3735 dstDimRgn->CopyAssign(srcDimRgn);
3736 }
3737
3738 // delete temporary region
3739 delete tempRgn;
3740
3741 UpdateVelocityTable();
3742 }
3743
3744 /** @brief Divide split zone of a dimension in two (increment zone amount).
3745 *
3746 * This will increment the amount of zones for the dimension (given by
3747 * @a type) by one. It will do so by dividing the zone (given by @a zone)
3748 * in the middle of its zone range in two. So the two zones resulting from
3749 * the zone being splitted, will be an equivalent copy regarding all their
3750 * articulation informations and sample reference. The two zones will only
3751 * differ in their zone's upper limit
3752 * (DimensionRegion::DimensionUpperLimits).
3753 *
3754 * @param type - identifies the dimension where a zone shall be splitted
3755 * @param zone - index of the dimension split zone that shall be splitted
3756 * @throws gig::Exception if requested zone could not be splitted
3757 */
3758 void Region::SplitDimensionZone(dimension_t type, int zone) {
3759 dimension_def_t* oldDef = GetDimensionDefinition(type);
3760 if (!oldDef)
3761 throw gig::Exception("Could not split dimension zone, no such dimension of given type");
3762 if (zone < 0 || zone >= oldDef->zones)
3763 throw gig::Exception("Could not split dimension zone, requested zone index out of bounds.");
3764
3765 const int newZoneSize = oldDef->zones + 1;
3766
3767 // create a temporary Region which just acts as a temporary copy
3768 // container and will be deleted at the end of this function and will
3769 // also not be visible through the API during this process
3770 gig::Region* tempRgn = NULL;
3771 {
3772 // adding these temporary chunks is probably not even necessary
3773 Instrument* instr = static_cast<Instrument*>(GetParent());
3774 RIFF::List* pCkInstrument = instr->pCkInstrument;
3775 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3776 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3777 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3778 tempRgn = new Region(instr, rgn);
3779 }
3780
3781 // copy this region's dimensions (with already the dimension split size
3782 // requested by the arguments of this method call) to the temporary
3783 // region, and don't use Region::CopyAssign() here for this task, since
3784 // it would also alter fast lookup helper variables here and there
3785 dimension_def_t newDef;
3786 for (int i = 0; i < Dimensions; ++i) {
3787 dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3788 // is this the dimension requested by the method arguments? ...
3789 if (def.dimension == type) { // ... if yes, increment zone amount by one
3790 def.zones = newZoneSize;
3791 if ((1 << oldDef->bits) < newZoneSize) def.bits++;
3792 newDef = def;
3793 }
3794 tempRgn->AddDimension(&def);
3795 }
3796
3797 // find the dimension index in the tempRegion which is the dimension
3798 // type passed to this method (paranoidly expecting different order)
3799 int tempIncreasedDimensionIndex = -1;
3800 for (int d = 0; d < tempRgn->Dimensions; ++d) {
3801 if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3802 tempIncreasedDimensionIndex = d;
3803 break;
3804 }
3805 }
3806
3807 // copy dimension regions from this region to the temporary region
3808 for (int iSrc = 0; iSrc < 256; ++iSrc) {
3809 DimensionRegion* srcDimRgn = pDimensionRegions[iSrc];
3810 if (!srcDimRgn) continue;
3811 std::map<dimension_t,int> dimCase;
3812 bool isValidZone = true;
3813 for (int d = 0, baseBits = 0; d < Dimensions; ++d) {
3814 const int srcBits = pDimensionDefinitions[d].bits;
3815 dimCase[pDimensionDefinitions[d].dimension] =
3816 (iSrc >> baseBits) & ((1 << srcBits) - 1);
3817 // there are also DimensionRegion objects for unused zones, skip them
3818 if (dimCase[pDimensionDefinitions[d].dimension] >= pDimensionDefinitions[d].zones) {
3819 isValidZone = false;
3820 break;
3821 }
3822 baseBits += srcBits;
3823 }
3824 if (!isValidZone) continue;
3825 // a bit paranoid: cope with the chance that the dimensions would
3826 // have different order in source and destination regions
3827 if (dimCase[type] > zone) dimCase[type]++;
3828 DimensionRegion* dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3829 dstDimRgn->CopyAssign(srcDimRgn);
3830 // if this is the requested zone to be splitted, then also copy
3831 // the source DimensionRegion to the newly created target zone
3832 // and set the old zones upper limit lower
3833 if (dimCase[type] == zone) {
3834 // lower old zones upper limit
3835 if (newDef.split_type == split_type_normal) {
3836 const int high =
3837 dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex];
3838 int low = 0;
3839 if (zone > 0) {
3840 std::map<dimension_t,int> lowerCase = dimCase;
3841 lowerCase[type]--;
3842 DimensionRegion* dstDimRgnLow = tempRgn->GetDimensionRegionByBit(lowerCase);
3843 low = dstDimRgnLow->DimensionUpperLimits[tempIncreasedDimensionIndex];
3844 }
3845 dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex] = low + (high - low) / 2;
3846 }
3847 // fill the newly created zone of the divided zone as well
3848 dimCase[type]++;
3849 dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3850 dstDimRgn->CopyAssign(srcDimRgn);
3851 }
3852 }
3853
3854 // now tempRegion's dimensions and DimensionRegions basically reflect
3855 // what we wanted to get for this actual Region here, so we now just
3856 // delete and recreate the dimension in question with the new amount
3857 // zones and then copy back from tempRegion
3858 DeleteDimension(oldDef);
3859 AddDimension(&newDef);
3860 for (int iSrc = 0; iSrc < 256; ++iSrc) {
3861 DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3862 if (!srcDimRgn) continue;
3863 std::map<dimension_t,int> dimCase;
3864 for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3865 const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3866 dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3867 (iSrc >> baseBits) & ((1 << srcBits) - 1);
3868 baseBits += srcBits;
3869 }
3870 // a bit paranoid: cope with the chance that the dimensions would
3871 // have different order in source and destination regions
3872 DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3873 if (!dstDimRgn) continue;
3874 dstDimRgn->CopyAssign(srcDimRgn);
3875 }
3876
3877 // delete temporary region
3878 delete tempRgn;
3879
3880 UpdateVelocityTable();
3881 }
3882
3883 /** @brief Change type of an existing dimension.
3884 *
3885 * Alters the dimension type of a dimension already existing on this
3886 * region. If there is currently no dimension on this Region with type
3887 * @a oldType, then this call with throw an Exception. Likewise there are
3888 * cases where the requested dimension type cannot be performed. For example
3889 * if the new dimension type shall be gig::dimension_samplechannel, and the
3890 * current dimension has more than 2 zones. In such cases an Exception is
3891 * thrown as well.
3892 *
3893 * @param oldType - identifies the existing dimension to be changed
3894 * @param newType - to which dimension type it should be changed to
3895 * @throws gig::Exception if requested change cannot be performed
3896 */
3897 void Region::SetDimensionType(dimension_t oldType, dimension_t newType) {
3898 if (oldType == newType) return;
3899 dimension_def_t* def = GetDimensionDefinition(oldType);
3900 if (!def)
3901 throw gig::Exception("No dimension with provided old dimension type exists on this region");
3902 if (newType == dimension_samplechannel && def->zones != 2)
3903 throw gig::Exception("Cannot change to dimension type 'sample channel', because existing dimension does not have 2 zones");
3904 if (GetDimensionDefinition(newType))
3905 throw gig::Exception("There is already a dimension with requested new dimension type on this region");
3906 def->dimension = newType;
3907 def->split_type = __resolveSplitType(newType);
3908 }
3909
3910 DimensionRegion* Region::GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase) {
3911 uint8_t bits[8] = {};
3912 for (std::map<dimension_t,int>::const_iterator it = DimCase.begin();
3913 it != DimCase.end(); ++it)
3914 {
3915 for (int d = 0; d < Dimensions; ++d) {
3916 if (pDimensionDefinitions[d].dimension == it->first) {
3917 bits[d] = it->second;
3918 goto nextDimCaseSlice;
3919 }
3920 }
3921 assert(false); // do crash ... too harsh maybe ? ignore it instead ?
3922 nextDimCaseSlice:
3923 ; // noop
3924 }
3925 return GetDimensionRegionByBit(bits);
3926 }
3927
3928 /**
3929 * Searches in the current Region for a dimension of the given dimension
3930 * type and returns the precise configuration of that dimension in this
3931 * Region.
3932 *
3933 * @param type - dimension type of the sought dimension
3934 * @returns dimension definition or NULL if there is no dimension with
3935 * sought type in this Region.
3936 */
3937 dimension_def_t* Region::GetDimensionDefinition(dimension_t type) {
3938 for (int i = 0; i < Dimensions; ++i)
3939 if (pDimensionDefinitions[i].dimension == type)
3940 return &pDimensionDefinitions[i];
3941 return NULL;
3942 }
3943
3944 Region::~Region() {
3945 for (int i = 0; i < 256; i++) {
3946 if (pDimensionRegions[i]) delete pDimensionRegions[i];
3947 }
3948 }
3949
3950 /**
3951 * Use this method in your audio engine to get the appropriate dimension
3952 * region with it's articulation data for the current situation. Just
3953 * call the method with the current MIDI controller values and you'll get
3954 * the DimensionRegion with the appropriate articulation data for the
3955 * current situation (for this Region of course only). To do that you'll
3956 * first have to look which dimensions with which controllers and in
3957 * which order are defined for this Region when you load the .gig file.
3958 * Special cases are e.g. layer or channel dimensions where you just put
3959 * in the index numbers instead of a MIDI controller value (means 0 for
3960 * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
3961 * etc.).
3962 *
3963 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
3964 * @returns adress to the DimensionRegion for the given situation
3965 * @see pDimensionDefinitions
3966 * @see Dimensions
3967 */
3968 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
3969 uint8_t bits;
3970 int veldim = -1;
3971 int velbitpos = 0;
3972 int bitpos = 0;
3973 int dimregidx = 0;
3974 for (uint i = 0; i < Dimensions; i++) {
3975 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
3976 // the velocity dimension must be handled after the other dimensions
3977 veldim = i;
3978 velbitpos = bitpos;
3979 } else {
3980 switch (pDimensionDefinitions[i].split_type) {
3981 case split_type_normal:
3982 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
3983 // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
3984 for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
3985 if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
3986 }
3987 } else {
3988 // gig2: evenly sized zones
3989 bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
3990 }
3991 break;
3992 case split_type_bit: // the value is already the sought dimension bit number
3993 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
3994 bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
3995 break;
3996 }
3997 dimregidx |= bits << bitpos;
3998 }
3999 bitpos += pDimensionDefinitions[i].bits;
4000 }
4001 DimensionRegion* dimreg = pDimensionRegions[dimregidx & 255];
4002 if (!dimreg) return NULL;
4003 if (veldim != -1) {
4004 // (dimreg is now the dimension region for the lowest velocity)
4005 if (dimreg->VelocityTable) // custom defined zone ranges
4006 bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4007 else // normal split type
4008 bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4009
4010 const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4011 dimregidx |= (bits & limiter_mask) << velbitpos;
4012 dimreg = pDimensionRegions[dimregidx & 255];
4013 }
4014 return dimreg;
4015 }
4016
4017 int Region::GetDimensionRegionIndexByValue(const uint DimValues[8]) {
4018 uint8_t bits;
4019 int veldim = -1;
4020 int velbitpos = 0;
4021 int bitpos = 0;
4022 int dimregidx = 0;
4023 for (uint i = 0; i < Dimensions; i++) {
4024 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
4025 // the velocity dimension must be handled after the other dimensions
4026 veldim = i;
4027 velbitpos = bitpos;
4028 } else {
4029 switch (pDimensionDefinitions[i].split_type) {
4030 case split_type_normal:
4031 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
4032 // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
4033 for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
4034 if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
4035 }
4036 } else {
4037 // gig2: evenly sized zones
4038 bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
4039 }
4040 break;
4041 case split_type_bit: // the value is already the sought dimension bit number
4042 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
4043 bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
4044 break;
4045 }
4046 dimregidx |= bits << bitpos;
4047 }
4048 bitpos += pDimensionDefinitions[i].bits;
4049 }
4050 dimregidx &= 255;
4051 DimensionRegion* dimreg = pDimensionRegions[dimregidx];
4052 if (!dimreg) return -1;
4053 if (veldim != -1) {
4054 // (dimreg is now the dimension region for the lowest velocity)
4055 if (dimreg->VelocityTable) // custom defined zone ranges
4056 bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4057 else // normal split type
4058 bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4059
4060 const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4061 dimregidx |= (bits & limiter_mask) << velbitpos;
4062 dimregidx &= 255;
4063 }
4064 return dimregidx;
4065 }
4066
4067 /**
4068 * Returns the appropriate DimensionRegion for the given dimension bit
4069 * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
4070 * instead of calling this method directly!
4071 *
4072 * @param DimBits Bit numbers for dimension 0 to 7
4073 * @returns adress to the DimensionRegion for the given dimension
4074 * bit numbers
4075 * @see GetDimensionRegionByValue()
4076 */
4077 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
4078 return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
4079 << pDimensionDefinitions[5].bits | DimBits[5])
4080 << pDimensionDefinitions[4].bits | DimBits[4])
4081 << pDimensionDefinitions[3].bits | DimBits[3])
4082 << pDimensionDefinitions[2].bits | DimBits[2])
4083 << pDimensionDefinitions[1].bits | DimBits[1])
4084 << pDimensionDefinitions[0].bits | DimBits[0]];
4085 }
4086
4087 /**
4088 * Returns pointer address to the Sample referenced with this region.
4089 * This is the global Sample for the entire Region (not sure if this is
4090 * actually used by the Gigasampler engine - I would only use the Sample
4091 * referenced by the appropriate DimensionRegion instead of this sample).
4092 *
4093 * @returns address to Sample or NULL if there is no reference to a
4094 * sample saved in the .gig file
4095 */
4096 Sample* Region::GetSample() {
4097 if (pSample) return static_cast<gig::Sample*>(pSample);
4098 else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
4099 }
4100
4101 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
4102 if ((int32_t)WavePoolTableIndex == -1) return NULL;
4103 File* file = (File*) GetParent()->GetParent();
4104 if (!file->pWavePoolTable) return NULL;
4105 // for new files or files >= 2 GB use 64 bit wave pool offsets
4106 if (file->pRIFF->IsNew() || (file->pRIFF->GetCurrentFileSize() >> 31)) {
4107 // use 64 bit wave pool offsets (treating this as large file)
4108 uint64_t soughtoffset =
4109 uint64_t(file->pWavePoolTable[WavePoolTableIndex]) |
4110 uint64_t(file->pWavePoolTableHi[WavePoolTableIndex]) << 32;
4111 Sample* sample = file->GetFirstSample(pProgress);
4112 while (sample) {
4113 if (sample->ullWavePoolOffset == soughtoffset)
4114 return static_cast<gig::Sample*>(sample);
4115 sample = file->GetNextSample();
4116 }
4117 } else {
4118 // use extension files and 32 bit wave pool offsets
4119 file_offset_t soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
4120 file_offset_t soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
4121 Sample* sample = file->GetFirstSample(pProgress);
4122 while (sample) {
4123 if (sample->ullWavePoolOffset == soughtoffset &&
4124 sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
4125 sample = file->GetNextSample();
4126 }
4127 }
4128 return NULL;
4129 }
4130
4131 /**
4132 * Make a (semi) deep copy of the Region object given by @a orig
4133 * and assign it to this object.
4134 *
4135 * Note that all sample pointers referenced by @a orig are simply copied as
4136 * memory address. Thus the respective samples are shared, not duplicated!
4137 *
4138 * @param orig - original Region object to be copied from
4139 */
4140 void Region::CopyAssign(const Region* orig) {
4141 CopyAssign(orig, NULL);
4142 }
4143
4144 /**
4145 * Make a (semi) deep copy of the Region object given by @a orig and
4146 * assign it to this object
4147 *
4148 * @param mSamples - crosslink map between the foreign file's samples and
4149 * this file's samples
4150 */
4151 void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
4152 // handle base classes
4153 DLS::Region::CopyAssign(orig);
4154
4155 if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
4156 pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
4157 }
4158
4159 // handle own member variables
4160 for (int i = Dimensions - 1; i >= 0; --i) {
4161 DeleteDimension(&pDimensionDefinitions[i]);
4162 }
4163 Layers = 0; // just to be sure
4164 for (int i = 0; i < orig->Dimensions; i++) {
4165 // we need to copy the dim definition here, to avoid the compiler
4166 // complaining about const-ness issue
4167 dimension_def_t def = orig->pDimensionDefinitions[i];
4168 AddDimension(&def);
4169 }
4170 for (int i = 0; i < 256; i++) {
4171 if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
4172 pDimensionRegions[i]->CopyAssign(
4173 orig->pDimensionRegions[i],
4174 mSamples
4175 );
4176 }
4177 }
4178 Layers = orig->Layers;
4179 }
4180
4181
4182 // *************** MidiRule ***************
4183 // *
4184
4185 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
4186 _3ewg->SetPos(36);
4187 Triggers = _3ewg->ReadUint8();
4188 _3ewg->SetPos(40);
4189 ControllerNumber = _3ewg->ReadUint8();
4190 _3ewg->SetPos(46);
4191 for (int i = 0 ; i < Triggers ; i++) {
4192 pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
4193 pTriggers[i].Descending = _3ewg->ReadUint8();
4194 pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
4195 pTriggers[i].Key = _3ewg->ReadUint8();
4196 pTriggers[i].NoteOff = _3ewg->ReadUint8();
4197 pTriggers[i].Velocity = _3ewg->ReadUint8();
4198 pTriggers[i].OverridePedal = _3ewg->ReadUint8();
4199 _3ewg->ReadUint8();
4200 }
4201 }
4202
4203 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
4204 ControllerNumber(0),
4205 Triggers(0) {
4206 }
4207
4208 void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
4209 pData[32] = 4;
4210 pData[33] = 16;
4211 pData[36] = Triggers;
4212 pData[40] = ControllerNumber;
4213 for (int i = 0 ; i < Triggers ; i++) {
4214 pData[46 + i * 8] = pTriggers[i].TriggerPoint;
4215 pData[47 + i * 8] = pTriggers[i].Descending;
4216 pData[48 + i * 8] = pTriggers[i].VelSensitivity;
4217 pData[49 + i * 8] = pTriggers[i].Key;
4218 pData[50 + i * 8] = pTriggers[i].NoteOff;
4219 pData[51 + i * 8] = pTriggers[i].Velocity;
4220 pData[52 + i * 8] = pTriggers[i].OverridePedal;
4221 }
4222 }
4223
4224 MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
4225 _3ewg->SetPos(36);
4226 LegatoSamples = _3ewg->ReadUint8(); // always 12
4227 _3ewg->SetPos(40);
4228 BypassUseController = _3ewg->ReadUint8();
4229 BypassKey = _3ewg->ReadUint8();
4230 BypassController = _3ewg->ReadUint8();
4231 ThresholdTime = _3ewg->ReadUint16();
4232 _3ewg->ReadInt16();
4233 ReleaseTime = _3ewg->ReadUint16();
4234 _3ewg->ReadInt16();
4235 KeyRange.low = _3ewg->ReadUint8();
4236 KeyRange.high = _3ewg->ReadUint8();
4237 _3ewg->SetPos(64);
4238 ReleaseTriggerKey = _3ewg->ReadUint8();
4239 AltSustain1Key = _3ewg->ReadUint8();
4240 AltSustain2Key = _3ewg->ReadUint8();
4241 }
4242
4243 MidiRuleLegato::MidiRuleLegato() :
4244 LegatoSamples(12),
4245 BypassUseController(false),
4246 BypassKey(0),
4247 BypassController(1),
4248 ThresholdTime(20),
4249 ReleaseTime(20),
4250 ReleaseTriggerKey(0),
4251 AltSustain1Key(0),
4252 AltSustain2Key(0)
4253 {
4254 KeyRange.low = KeyRange.high = 0;
4255 }
4256
4257 void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
4258 pData[32] = 0;
4259 pData[33] = 16;
4260 pData[36] = LegatoSamples;
4261 pData[40] = BypassUseController;
4262 pData[41] = BypassKey;
4263 pData[42] = BypassController;
4264 store16(&pData[43], ThresholdTime);
4265 store16(&pData[47], ReleaseTime);
4266 pData[51] = KeyRange.low;
4267 pData[52] = KeyRange.high;
4268 pData[64] = ReleaseTriggerKey;
4269 pData[65] = AltSustain1Key;
4270 pData[66] = AltSustain2Key;
4271 }
4272
4273 MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
4274 _3ewg->SetPos(36);
4275 Articulations = _3ewg->ReadUint8();
4276 int flags = _3ewg->ReadUint8();
4277 Polyphonic = flags & 8;
4278 Chained = flags & 4;
4279 Selector = (flags & 2) ? selector_controller :
4280 (flags & 1) ? selector_key_switch : selector_none;
4281 Patterns = _3ewg->ReadUint8();
4282 _3ewg->ReadUint8(); // chosen row
4283 _3ewg->ReadUint8(); // unknown
4284 _3ewg->ReadUint8(); // unknown
4285 _3ewg->ReadUint8(); // unknown
4286 KeySwitchRange.low = _3ewg->ReadUint8();
4287 KeySwitchRange.high = _3ewg->ReadUint8();
4288 Controller = _3ewg->ReadUint8();
4289 PlayRange.low = _3ewg->ReadUint8();
4290 PlayRange.high = _3ewg->ReadUint8();
4291
4292 int n = std::min(int(Articulations), 32);
4293 for (int i = 0 ; i < n ; i++) {
4294 _3ewg->ReadString(pArticulations[i], 32);
4295 }
4296 _3ewg->SetPos(1072);
4297 n = std::min(int(Patterns), 32);
4298 for (int i = 0 ; i < n ; i++) {
4299 _3ewg->ReadString(pPatterns[i].Name, 16);
4300 pPatterns[i].Size = _3ewg->ReadUint8();
4301 _3ewg->Read(&pPatterns[i][0], 1, 32);
4302 }
4303 }
4304
4305 MidiRuleAlternator::MidiRuleAlternator() :
4306 Articulations(0),
4307 Patterns(0),
4308 Selector(selector_none),
4309 Controller(0),
4310 Polyphonic(false),
4311 Chained(false)
4312 {
4313 PlayRange.low = PlayRange.high = 0;
4314 KeySwitchRange.low = KeySwitchRange.high = 0;
4315 }
4316
4317 void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
4318 pData[32] = 3;
4319 pData[33] = 16;
4320 pData[36] = Articulations;
4321 pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
4322 (Selector == selector_controller ? 2 :
4323 (Selector == selector_key_switch ? 1 : 0));
4324 pData[38] = Patterns;
4325
4326 pData[43] = KeySwitchRange.low;
4327 pData[44] = KeySwitchRange.high;
4328 pData[45] = Controller;
4329 pData[46] = PlayRange.low;
4330 pData[47] = PlayRange.high;
4331
4332 char* str = reinterpret_cast<char*>(pData);
4333 int pos = 48;
4334 int n = std::min(int(Articulations), 32);
4335 for (int i = 0 ; i < n ; i++, pos += 32) {
4336 strncpy(&str[pos], pArticulations[i].c_str(), 32);
4337 }
4338
4339 pos = 1072;
4340 n = std::min(int(Patterns), 32);
4341 for (int i = 0 ; i < n ; i++, pos += 49) {
4342 strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
4343 pData[pos + 16] = pPatterns[i].Size;
4344 memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
4345 }
4346 }
4347
4348 // *************** Script ***************
4349 // *
4350
4351 Script::Script(ScriptGroup* group, RIFF::Chunk* ckScri) {
4352 pGroup = group;
4353 pChunk = ckScri;
4354 if (ckScri) { // object is loaded from file ...
4355 // read header
4356 uint32_t headerSize = ckScri->ReadUint32();
4357 Compression = (Compression_t) ckScri->ReadUint32();
4358 Encoding = (Encoding_t) ckScri->ReadUint32();
4359 Language = (Language_t) ckScri->ReadUint32();
4360 Bypass = (Language_t) ckScri->ReadUint32() & 1;
4361 crc = ckScri->ReadUint32();
4362 uint32_t nameSize = ckScri->ReadUint32();
4363 Name.resize(nameSize, ' ');
4364 for (int i = 0; i < nameSize; ++i)
4365 Name[i] = ckScri->ReadUint8();
4366 // to handle potential future extensions of the header
4367 ckScri->SetPos(sizeof(int32_t) + headerSize);
4368 // read actual script data
4369 uint32_t scriptSize = uint32_t(ckScri->GetSize() - ckScri->GetPos());
4370 data.resize(scriptSize);
4371 for (int i = 0; i < scriptSize; ++i)
4372 data[i] = ckScri->ReadUint8();
4373 } else { // this is a new script object, so just initialize it as such ...
4374 Compression = COMPRESSION_NONE;
4375 Encoding = ENCODING_ASCII;
4376 Language = LANGUAGE_NKSP;
4377 Bypass = false;
4378 crc = 0;
4379 Name = "Unnamed Script";
4380 }
4381 }
4382
4383 Script::~Script() {
4384 }
4385
4386 /**
4387 * Returns the current script (i.e. as source code) in text format.
4388 */
4389 String Script::GetScriptAsText() {
4390 String s;
4391 s.resize(data.size(), ' ');
4392 memcpy(&s[0], &data[0], data.size());
4393 return s;
4394 }
4395
4396 /**
4397 * Replaces the current script with the new script source code text given
4398 * by @a text.
4399 *
4400 * @param text - new script source code
4401 */
4402 void Script::SetScriptAsText(const String& text) {
4403 data.resize(text.size());
4404 memcpy(&data[0], &text[0], text.size());
4405 }
4406
4407 /**
4408 * Apply this script to the respective RIFF chunks. You have to call
4409 * File::Save() to make changes persistent.
4410 *
4411 * Usually there is absolutely no need to call this method explicitly.
4412 * It will be called automatically when File::Save() was called.
4413 *
4414 * @param pProgress - callback function for progress notification
4415 */
4416 void Script::UpdateChunks(progress_t* pProgress) {
4417 // recalculate CRC32 check sum
4418 __resetCRC(crc);
4419 __calculateCRC(&data[0], data.size(), crc);
4420 __finalizeCRC(crc);
4421 // make sure chunk exists and has the required size
4422 const file_offset_t chunkSize = (file_offset_t) 7*sizeof(int32_t) + Name.size() + data.size();
4423 if (!pChunk) pChunk = pGroup->pList->AddSubChunk(CHUNK_ID_SCRI, chunkSize);
4424 else pChunk->Resize(chunkSize);
4425 // fill the chunk data to be written to disk
4426 uint8_t* pData = (uint8_t*) pChunk->LoadChunkData();
4427 int pos = 0;
4428 store32(&pData[pos], uint32_t(6*sizeof(int32_t) + Name.size())); // total header size
4429 pos += sizeof(int32_t);
4430 store32(&pData[pos], Compression);
4431 pos += sizeof(int32_t);
4432 store32(&pData[pos], Encoding);
4433 pos += sizeof(int32_t);
4434 store32(&pData[pos], Language);
4435 pos += sizeof(int32_t);
4436 store32(&pData[pos], Bypass ? 1 : 0);
4437 pos += sizeof(int32_t);
4438 store32(&pData[pos], crc);
4439 pos += sizeof(int32_t);
4440 store32(&pData[pos], (uint32_t) Name.size());
4441 pos += sizeof(int32_t);
4442 for (int i = 0; i < Name.size(); ++i, ++pos)
4443 pData[pos] = Name[i];
4444 for (int i = 0; i < data.size(); ++i, ++pos)
4445 pData[pos] = data[i];
4446 }
4447
4448 /**
4449 * Move this script from its current ScriptGroup to another ScriptGroup
4450 * given by @a pGroup.
4451 *
4452 * @param pGroup - script's new group
4453 */
4454 void Script::SetGroup(ScriptGroup* pGroup) {
4455 if (this->pGroup == pGroup) return;
4456 if (pChunk)
4457 pChunk->GetParent()->MoveSubChunk(pChunk, pGroup->pList);
4458 this->pGroup = pGroup;
4459 }
4460
4461 /**
4462 * Returns the script group this script currently belongs to. Each script
4463 * is a member of exactly one ScriptGroup.
4464 *
4465 * @returns current script group
4466 */
4467 ScriptGroup* Script::GetGroup() const {
4468 return pGroup;
4469 }
4470
4471 /**
4472 * Make a (semi) deep copy of the Script object given by @a orig
4473 * and assign it to this object. Note: the ScriptGroup this Script
4474 * object belongs to remains untouched by this call.
4475 *
4476 * @param orig - original Script object to be copied from
4477 */
4478 void Script::CopyAssign(const Script* orig) {
4479 Name = orig->Name;
4480 Compression = orig->Compression;
4481 Encoding = orig->Encoding;
4482 Language = orig->Language;
4483 Bypass = orig->Bypass;
4484 data = orig->data;
4485 }
4486
4487 void Script::RemoveAllScriptReferences() {
4488 File* pFile = pGroup->pFile;
4489 for (int i = 0; pFile->GetInstrument(i); ++i) {
4490 Instrument* instr = pFile->GetInstrument(i);
4491 instr->RemoveScript(this);
4492 }
4493 }
4494
4495 // *************** ScriptGroup ***************
4496 // *
4497
4498 ScriptGroup::ScriptGroup(File* file, RIFF::List* lstRTIS) {
4499 pFile = file;
4500 pList = lstRTIS;
4501 pScripts = NULL;
4502 if (lstRTIS) {
4503 RIFF::Chunk* ckName = lstRTIS->GetSubChunk(CHUNK_ID_LSNM);
4504 ::LoadString(ckName, Name);
4505 } else {
4506 Name = "Default Group";
4507 }
4508 }
4509
4510 ScriptGroup::~ScriptGroup() {
4511 if (pScripts) {
4512 std::list<Script*>::iterator iter = pScripts->begin();
4513 std::list<Script*>::iterator end = pScripts->end();
4514 while (iter != end) {
4515 delete *iter;
4516 ++iter;
4517 }
4518 delete pScripts;
4519 }
4520 }
4521
4522 /**
4523 * Apply this script group to the respective RIFF chunks. You have to call
4524 * File::Save() to make changes persistent.
4525 *
4526 * Usually there is absolutely no need to call this method explicitly.
4527 * It will be called automatically when File::Save() was called.
4528 *
4529 * @param pProgress - callback function for progress notification
4530 */
4531 void ScriptGroup::UpdateChunks(progress_t* pProgress) {
4532 if (pScripts) {
4533 if (!pList)
4534 pList = pFile->pRIFF->GetSubList(LIST_TYPE_3LS)->AddSubList(LIST_TYPE_RTIS);
4535
4536 // now store the name of this group as <LSNM> chunk as subchunk of the <RTIS> list chunk
4537 ::SaveString(CHUNK_ID_LSNM, NULL, pList, Name, String("Unnamed Group"), true, 64);
4538
4539 for (std::list<Script*>::iterator it = pScripts->begin();
4540 it != pScripts->end(); ++it)
4541 {
4542 (*it)->UpdateChunks(pProgress);
4543 }
4544 }
4545 }
4546
4547 /** @brief Get instrument script.
4548 *
4549 * Returns the real-time instrument script with the given index.
4550 *
4551 * @param index - number of the sought script (0..n)
4552 * @returns sought script or NULL if there's no such script
4553 */
4554 Script* ScriptGroup::GetScript(uint index) {
4555 if (!pScripts) LoadScripts();
4556 std::list<Script*>::iterator it = pScripts->begin();
4557 for (uint i = 0; it != pScripts->end(); ++i, ++it)
4558 if (i == index) return *it;
4559 return NULL;
4560 }
4561
4562 /** @brief Add new instrument script.
4563 *
4564 * Adds a new real-time instrument script to the file. The script is not
4565 * actually used / executed unless it is referenced by an instrument to be
4566 * used. This is similar to samples, which you can add to a file, without
4567 * an instrument necessarily actually using it.
4568 *
4569 * You have to call Save() to make this persistent to the file.
4570 *
4571 * @return new empty script object
4572 */
4573 Script* ScriptGroup::AddScript() {
4574 if (!pScripts) LoadScripts();
4575 Script* pScript = new Script(this, NULL);
4576 pScripts->push_back(pScript);
4577 return pScript;
4578 }
4579
4580 /** @brief Delete an instrument script.
4581 *
4582 * This will delete the given real-time instrument script. References of
4583 * instruments that are using that script will be removed accordingly.
4584 *
4585 * You have to call Save() to make this persistent to the file.
4586 *
4587 * @param pScript - script to delete
4588 * @throws gig::Exception if given script could not be found
4589 */
4590 void ScriptGroup::DeleteScript(Script* pScript) {
4591 if (!pScripts) LoadScripts();
4592 std::list<Script*>::iterator iter =
4593 find(pScripts->begin(), pScripts->end(), pScript);
4594 if (iter == pScripts->end())
4595 throw gig::Exception("Could not delete script, could not find given script");
4596 pScripts->erase(iter);
4597 pScript->RemoveAllScriptReferences();
4598 if (pScript->pChunk)
4599 pScript->pChunk->GetParent()->DeleteSubChunk(pScript->pChunk);
4600 delete pScript;
4601 }
4602
4603 void ScriptGroup::LoadScripts() {
4604 if (pScripts) return;
4605 pScripts = new std::list<Script*>;
4606 if (!pList) return;
4607
4608 for (RIFF::Chunk* ck = pList->GetFirstSubChunk(); ck;
4609 ck = pList->GetNextSubChunk())
4610 {
4611 if (ck->GetChunkID() == CHUNK_ID_SCRI) {
4612 pScripts->push_back(new Script(this, ck));
4613 }
4614 }
4615 }
4616
4617 // *************** Instrument ***************
4618 // *
4619
4620 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
4621 static const DLS::Info::string_length_t fixedStringLengths[] = {
4622 { CHUNK_ID_INAM, 64 },
4623 { CHUNK_ID_ISFT, 12 },
4624 { 0, 0 }
4625 };
4626 pInfo->SetFixedStringLengths(fixedStringLengths);
4627
4628 // Initialization
4629 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4630 EffectSend = 0;
4631 Attenuation = 0;
4632 FineTune = 0;
4633 PitchbendRange = 2;
4634 PianoReleaseMode = false;
4635 DimensionKeyRange.low = 0;
4636 DimensionKeyRange.high = 0;
4637 pMidiRules = new MidiRule*[3];
4638 pMidiRules[0] = NULL;
4639 pScriptRefs = NULL;
4640
4641 // Loading
4642 RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
4643 if (lart) {
4644 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4645 if (_3ewg) {
4646 EffectSend = _3ewg->ReadUint16();
4647 Attenuation = _3ewg->ReadInt32();
4648 FineTune = _3ewg->ReadInt16();
4649 PitchbendRange = _3ewg->ReadInt16();
4650 uint8_t dimkeystart = _3ewg->ReadUint8();
4651 PianoReleaseMode = dimkeystart & 0x01;
4652 DimensionKeyRange.low = dimkeystart >> 1;
4653 DimensionKeyRange.high = _3ewg->ReadUint8();
4654
4655 if (_3ewg->GetSize() > 32) {
4656 // read MIDI rules
4657 int i = 0;
4658 _3ewg->SetPos(32);
4659 uint8_t id1 = _3ewg->ReadUint8();
4660 uint8_t id2 = _3ewg->ReadUint8();
4661
4662 if (id2 == 16) {
4663 if (id1 == 4) {
4664 pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
4665 } else if (id1 == 0) {
4666 pMidiRules[i++] = new MidiRuleLegato(_3ewg);
4667 } else if (id1 == 3) {
4668 pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
4669 } else {
4670 pMidiRules[i++] = new MidiRuleUnknown;
4671 }
4672 }
4673 else if (id1 != 0 || id2 != 0) {
4674 pMidiRules[i++] = new MidiRuleUnknown;
4675 }
4676 //TODO: all the other types of rules
4677
4678 pMidiRules[i] = NULL;
4679 }
4680 }
4681 }
4682
4683 if (pFile->GetAutoLoad()) {
4684 if (!pRegions) pRegions = new RegionList;
4685 RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
4686 if (lrgn) {
4687 RIFF::List* rgn = lrgn->GetFirstSubList();
4688 while (rgn) {
4689 if (rgn->GetListType() == LIST_TYPE_RGN) {
4690 __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
4691 pRegions->push_back(new Region(this, rgn));
4692 }
4693 rgn = lrgn->GetNextSubList();
4694 }
4695 // Creating Region Key Table for fast lookup
4696 UpdateRegionKeyTable();
4697 }
4698 }
4699
4700 // own gig format extensions
4701 RIFF::List* lst3LS = insList->GetSubList(LIST_TYPE_3LS);
4702 if (lst3LS) {
4703 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4704 if (ckSCSL) {
4705 int headerSize = ckSCSL->ReadUint32();
4706 int slotCount = ckSCSL->ReadUint32();
4707 if (slotCount) {
4708 int slotSize = ckSCSL->ReadUint32();
4709 ckSCSL->SetPos(headerSize); // in case of future header extensions
4710 int unknownSpace = slotSize - 2*sizeof(uint32_t); // in case of future slot extensions
4711 for (int i = 0; i < slotCount; ++i) {
4712 _ScriptPooolEntry e;
4713 e.fileOffset = ckSCSL->ReadUint32();
4714 e.bypass = ckSCSL->ReadUint32() & 1;
4715 if (unknownSpace) ckSCSL->SetPos(unknownSpace, RIFF::stream_curpos); // in case of future extensions
4716 scriptPoolFileOffsets.push_back(e);
4717 }
4718 }
4719 }
4720 }
4721
4722 __notify_progress(pProgress, 1.0f); // notify done
4723 }
4724
4725 void Instrument::UpdateRegionKeyTable() {
4726 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4727 RegionList::iterator iter = pRegions->begin();
4728 RegionList::iterator end = pRegions->end();
4729 for (; iter != end; ++iter) {
4730 gig::Region* pRegion = static_cast<gig::Region*>(*iter);
4731 for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
4732 RegionKeyTable[iKey] = pRegion;
4733 }
4734 }
4735 }
4736
4737 Instrument::~Instrument() {
4738 for (int i = 0 ; pMidiRules[i] ; i++) {
4739 delete pMidiRules[i];
4740 }
4741 delete[] pMidiRules;
4742 if (pScriptRefs) delete pScriptRefs;
4743 }
4744
4745 /**
4746 * Apply Instrument with all its Regions to the respective RIFF chunks.
4747 * You have to call File::Save() to make changes persistent.
4748 *
4749 * Usually there is absolutely no need to call this method explicitly.
4750 * It will be called automatically when File::Save() was called.
4751 *
4752 * @param pProgress - callback function for progress notification
4753 * @throws gig::Exception if samples cannot be dereferenced
4754 */
4755 void Instrument::UpdateChunks(progress_t* pProgress) {
4756 // first update base classes' chunks
4757 DLS::Instrument::UpdateChunks(pProgress);
4758
4759 // update Regions' chunks
4760 {
4761 RegionList::iterator iter = pRegions->begin();
4762 RegionList::iterator end = pRegions->end();
4763 for (; iter != end; ++iter)
4764 (*iter)->UpdateChunks(pProgress);
4765 }
4766
4767 // make sure 'lart' RIFF list chunk exists
4768 RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
4769 if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
4770 // make sure '3ewg' RIFF chunk exists
4771 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4772 if (!_3ewg) {
4773 File* pFile = (File*) GetParent();
4774
4775 // 3ewg is bigger in gig3, as it includes the iMIDI rules
4776 int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
4777 _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
4778 memset(_3ewg->LoadChunkData(), 0, size);
4779 }
4780 // update '3ewg' RIFF chunk
4781 uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
4782 store16(&pData[0], EffectSend);
4783 store32(&pData[2], Attenuation);
4784 store16(&pData[6], FineTune);
4785 store16(&pData[8], PitchbendRange);
4786 const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
4787 DimensionKeyRange.low << 1;
4788 pData[10] = dimkeystart;
4789 pData[11] = DimensionKeyRange.high;
4790
4791 if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
4792 pData[32] = 0;
4793 pData[33] = 0;
4794 } else {
4795 for (int i = 0 ; pMidiRules[i] ; i++) {
4796 pMidiRules[i]->UpdateChunks(pData);
4797 }
4798 }
4799
4800 // own gig format extensions
4801 if (ScriptSlotCount()) {
4802 // make sure we have converted the original loaded script file
4803 // offsets into valid Script object pointers
4804 LoadScripts();
4805
4806 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4807 if (!lst3LS) lst3LS = pCkInstrument->AddSubList(LIST_TYPE_3LS);
4808 const int slotCount = (int) pScriptRefs->size();
4809 const int headerSize = 3 * sizeof(uint32_t);
4810 const int slotSize = 2 * sizeof(uint32_t);
4811 const int totalChunkSize = headerSize + slotCount * slotSize;
4812 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4813 if (!ckSCSL) ckSCSL = lst3LS->AddSubChunk(CHUNK_ID_SCSL, totalChunkSize);
4814 else ckSCSL->Resize(totalChunkSize);
4815 uint8_t* pData = (uint8_t*) ckSCSL->LoadChunkData();
4816 int pos = 0;
4817 store32(&pData[pos], headerSize);
4818 pos += sizeof(uint32_t);
4819 store32(&pData[pos], slotCount);
4820 pos += sizeof(uint32_t);
4821 store32(&pData[pos], slotSize);
4822 pos += sizeof(uint32_t);
4823 for (int i = 0; i < slotCount; ++i) {
4824 // arbitrary value, the actual file offset will be updated in
4825 // UpdateScriptFileOffsets() after the file has been resized
4826 int bogusFileOffset = 0;
4827 store32(&pData[pos], bogusFileOffset);
4828 pos += sizeof(uint32_t);
4829 store32(&pData[pos], (*pScriptRefs)[i].bypass ? 1 : 0);
4830 pos += sizeof(uint32_t);
4831 }
4832 } else {
4833 // no script slots, so get rid of any LS custom RIFF chunks (if any)
4834 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4835 if (lst3LS) pCkInstrument->DeleteSubChunk(lst3LS);
4836 }
4837 }
4838
4839 void Instrument::UpdateScriptFileOffsets() {
4840 // own gig format extensions
4841 if (pScriptRefs && pScriptRefs->size() > 0) {
4842 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4843 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4844 const int slotCount = (int) pScriptRefs->size();
4845 const int headerSize = 3 * sizeof(uint32_t);
4846 ckSCSL->SetPos(headerSize);
4847 for (int i = 0; i < slotCount; ++i) {
4848 uint32_t fileOffset = uint32_t(
4849 (*pScriptRefs)[i].script->pChunk->GetFilePos() -
4850 (*pScriptRefs)[i].script->pChunk->GetPos() -
4851 CHUNK_HEADER_SIZE(ckSCSL->GetFile()->GetFileOffsetSize())
4852 );
4853 ckSCSL->WriteUint32(&fileOffset);
4854 // jump over flags entry (containing the bypass flag)
4855 ckSCSL->SetPos(sizeof(uint32_t), RIFF::stream_curpos);
4856 }
4857 }
4858 }
4859
4860 /**
4861 * Returns the appropriate Region for a triggered note.
4862 *
4863 * @param Key MIDI Key number of triggered note / key (0 - 127)
4864 * @returns pointer adress to the appropriate Region or NULL if there
4865 * there is no Region defined for the given \a Key
4866 */
4867 Region* Instrument::GetRegion(unsigned int Key) {
4868 if (!pRegions || pRegions->empty() || Key > 127) return NULL;
4869 return RegionKeyTable[Key];
4870
4871 /*for (int i = 0; i < Regions; i++) {
4872 if (Key <= pRegions[i]->KeyRange.high &&
4873 Key >= pRegions[i]->KeyRange.low) return pRegions[i];
4874 }
4875 return NULL;*/
4876 }
4877
4878 /**
4879 * Returns the first Region of the instrument. You have to call this
4880 * method once before you use GetNextRegion().
4881 *
4882 * @returns pointer address to first region or NULL if there is none
4883 * @see GetNextRegion()
4884 */
4885 Region* Instrument::GetFirstRegion() {
4886 if (!pRegions) return NULL;
4887 RegionsIterator = pRegions->begin();
4888 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4889 }
4890
4891 /**
4892 * Returns the next Region of the instrument. You have to call
4893 * GetFirstRegion() once before you can use this method. By calling this
4894 * method multiple times it iterates through the available Regions.
4895 *
4896 * @returns pointer address to the next region or NULL if end reached
4897 * @see GetFirstRegion()
4898 */
4899 Region* Instrument::GetNextRegion() {
4900 if (!pRegions) return NULL;
4901 RegionsIterator++;
4902 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4903 }
4904
4905 Region* Instrument::AddRegion() {
4906 // create new Region object (and its RIFF chunks)
4907 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
4908 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
4909 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
4910 Region* pNewRegion = new Region(this, rgn);
4911 pRegions->push_back(pNewRegion);
4912 Regions = (uint32_t) pRegions->size();
4913 // update Region key table for fast lookup
4914 UpdateRegionKeyTable();
4915 // done
4916 return pNewRegion;
4917 }
4918
4919 void Instrument::DeleteRegion(Region* pRegion) {
4920 if (!pRegions) return;
4921 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
4922 // update Region key table for fast lookup
4923 UpdateRegionKeyTable();
4924 }
4925
4926 /**
4927 * Move this instrument at the position before @arg dst.
4928 *
4929 * This method can be used to reorder the sequence of instruments in a
4930 * .gig file. This might be helpful especially on large .gig files which
4931 * contain a large number of instruments within the same .gig file. So
4932 * grouping such instruments to similar ones, can help to keep track of them
4933 * when working with such complex .gig files.
4934 *
4935 * When calling this method, this instrument will be removed from in its
4936 * current position in the instruments list and moved to the requested
4937 * target position provided by @param dst. You may also pass NULL as
4938 * argument to this method, in that case this intrument will be moved to the
4939 * very end of the .gig file's instrument list.
4940 *
4941 * You have to call Save() to make the order change persistent to the .gig
4942 * file.
4943 *
4944 * Currently this method is limited to moving the instrument within the same
4945 * .gig file. Trying to move it to another .gig file by calling this method
4946 * will throw an exception.
4947 *
4948 * @param dst - destination instrument at which this instrument will be
4949 * moved to, or pass NULL for moving to end of list
4950 * @throw gig::Exception if this instrument and target instrument are not
4951 * part of the same file
4952 */
4953 void Instrument::MoveTo(Instrument* dst) {
4954 if (dst && GetParent() != dst->GetParent())
4955 throw Exception(
4956 "gig::Instrument::MoveTo() can only be used for moving within "
4957 "the same gig file."
4958 );
4959
4960 File* pFile = (File*) GetParent();
4961
4962 // move this instrument within the instrument list
4963 {
4964 File::InstrumentList& list = *pFile->pInstruments;
4965
4966 File::InstrumentList::iterator itFrom =
4967 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(this));
4968
4969 File::InstrumentList::iterator itTo =
4970 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(dst));
4971
4972 list.splice(itTo, list, itFrom);
4973 }
4974
4975 // move the instrument's actual list RIFF chunk appropriately
4976 RIFF::List* lstCkInstruments = pFile->pRIFF->GetSubList(LIST_TYPE_LINS);
4977 lstCkInstruments->MoveSubChunk(
4978 this->pCkInstrument,
4979 (RIFF::Chunk*) ((dst) ? dst->pCkInstrument : NULL)
4980 );
4981 }
4982
4983 /**
4984 * Returns a MIDI rule of the instrument.
4985 *
4986 * The list of MIDI rules, at least in gig v3, always contains at
4987 * most two rules. The second rule can only be the DEF filter
4988 * (which currently isn't supported by libgig).
4989 *
4990 * @param i - MIDI rule number
4991 * @returns pointer address to MIDI rule number i or NULL if there is none
4992 */
4993 MidiRule* Instrument::GetMidiRule(int i) {
4994 return pMidiRules[i];
4995 }
4996
4997 /**
4998 * Adds the "controller trigger" MIDI rule to the instrument.
4999 *
5000 * @returns the new MIDI rule
5001 */
5002 MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
5003 delete pMidiRules[0];
5004 MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
5005 pMidiRules[0] = r;
5006 pMidiRules[1] = 0;
5007 return r;
5008 }
5009
5010 /**
5011 * Adds the legato MIDI rule to the instrument.
5012 *
5013 * @returns the new MIDI rule
5014 */
5015 MidiRuleLegato* Instrument::AddMidiRuleLegato() {
5016 delete pMidiRules[0];
5017 MidiRuleLegato* r = new MidiRuleLegato;
5018 pMidiRules[0] = r;
5019 pMidiRules[1] = 0;
5020 return r;
5021 }
5022
5023 /**
5024 * Adds the alternator MIDI rule to the instrument.
5025 *
5026 * @returns the new MIDI rule
5027 */
5028 MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
5029 delete pMidiRules[0];
5030 MidiRuleAlternator* r = new MidiRuleAlternator;
5031 pMidiRules[0] = r;
5032 pMidiRules[1] = 0;
5033 return r;
5034 }
5035
5036 /**
5037 * Deletes a MIDI rule from the instrument.
5038 *
5039 * @param i - MIDI rule number
5040 */
5041 void Instrument::DeleteMidiRule(int i) {
5042 delete pMidiRules[i];
5043 pMidiRules[i] = 0;
5044 }
5045
5046 void Instrument::LoadScripts() {
5047 if (pScriptRefs) return;
5048 pScriptRefs = new std::vector<_ScriptPooolRef>;
5049 if (scriptPoolFileOffsets.empty()) return;
5050 File* pFile = (File*) GetParent();
5051 for (uint k = 0; k < scriptPoolFileOffsets.size(); ++k) {
5052 uint32_t soughtOffset = scriptPoolFileOffsets[k].fileOffset;
5053 for (uint i = 0; pFile->GetScriptGroup(i); ++i) {
5054 ScriptGroup* group = pFile->GetScriptGroup(i);
5055 for (uint s = 0; group->GetScript(s); ++s) {
5056 Script* script = group->GetScript(s);
5057 if (script->pChunk) {
5058 uint32_t offset = uint32_t(
5059 script->pChunk->GetFilePos() -
5060 script->pChunk->GetPos() -
5061 CHUNK_HEADER_SIZE(script->pChunk->GetFile()->GetFileOffsetSize())
5062 );
5063 if (offset == soughtOffset)
5064 {
5065 _ScriptPooolRef ref;
5066 ref.script = script;
5067 ref.bypass = scriptPoolFileOffsets[k].bypass;
5068 pScriptRefs->push_back(ref);
5069 break;
5070 }
5071 }
5072 }
5073 }
5074 }
5075 // we don't need that anymore
5076 scriptPoolFileOffsets.clear();
5077 }
5078
5079 /** @brief Get instrument script (gig format extension).
5080 *
5081 * Returns the real-time instrument script of instrument script slot
5082 * @a index.
5083 *
5084 * @note This is an own format extension which did not exist i.e. in the
5085 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5086 * gigedit.
5087 *
5088 * @param index - instrument script slot index
5089 * @returns script or NULL if index is out of bounds
5090 */
5091 Script* Instrument::GetScriptOfSlot(uint index) {
5092 LoadScripts();
5093 if (index >= pScriptRefs->size()) return NULL;
5094 return pScriptRefs->at(index).script;
5095 }
5096
5097 /** @brief Add new instrument script slot (gig format extension).
5098 *
5099 * Add the given real-time instrument script reference to this instrument,
5100 * which shall be executed by the sampler for for this instrument. The
5101 * script will be added to the end of the script list of this instrument.
5102 * The positions of the scripts in the Instrument's Script list are
5103 * relevant, because they define in which order they shall be executed by
5104 * the sampler. For this reason it is also legal to add the same script
5105 * twice to an instrument, for example you might have a script called
5106 * "MyFilter" which performs an event filter task, and you might have
5107 * another script called "MyNoteTrigger" which triggers new notes, then you
5108 * might for example have the following list of scripts on the instrument:
5109 *
5110 * 1. Script "MyFilter"
5111 * 2. Script "MyNoteTrigger"
5112 * 3. Script "MyFilter"
5113 *
5114 * Which would make sense, because the 2nd script launched new events, which
5115 * you might need to filter as well.
5116 *
5117 * There are two ways to disable / "bypass" scripts. You can either disable
5118 * a script locally for the respective script slot on an instrument (i.e. by
5119 * passing @c false to the 2nd argument of this method, or by calling
5120 * SetScriptBypassed()). Or you can disable a script globally for all slots
5121 * and all instruments by setting Script::Bypass.
5122 *
5123 * @note This is an own format extension which did not exist i.e. in the
5124 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5125 * gigedit.
5126 *
5127 * @param pScript - script that shall be executed for this instrument
5128 * @param bypass - if enabled, the sampler shall skip executing this
5129 * script (in the respective list position)
5130 * @see SetScriptBypassed()
5131 */
5132 void Instrument::AddScriptSlot(Script* pScript, bool bypass) {
5133 LoadScripts();
5134 _ScriptPooolRef ref = { pScript, bypass };
5135 pScriptRefs->push_back(ref);
5136 }
5137
5138 /** @brief Flip two script slots with each other (gig format extension).
5139 *
5140 * Swaps the position of the two given scripts in the Instrument's Script
5141 * list. The positions of the scripts in the Instrument's Script list are
5142 * relevant, because they define in which order they shall be executed by
5143 * the sampler.
5144 *
5145 * @note This is an own format extension which did not exist i.e. in the
5146 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5147 * gigedit.
5148 *
5149 * @param index1 - index of the first script slot to swap
5150 * @param index2 - index of the second script slot to swap
5151 */
5152 void Instrument::SwapScriptSlots(uint index1, uint index2) {
5153 LoadScripts();
5154 if (index1 >= pScriptRefs->size() || index2 >= pScriptRefs->size())
5155 return;
5156 _ScriptPooolRef tmp = (*pScriptRefs)[index1];
5157 (*pScriptRefs)[index1] = (*pScriptRefs)[index2];
5158 (*pScriptRefs)[index2] = tmp;
5159 }
5160
5161 /** @brief Remove script slot.
5162 *
5163 * Removes the script slot with the given slot index.
5164 *
5165 * @param index - index of script slot to remove
5166 */
5167 void Instrument::RemoveScriptSlot(uint index) {
5168 LoadScripts();
5169 if (index >= pScriptRefs->size()) return;
5170 pScriptRefs->erase( pScriptRefs->begin() + index );
5171 }
5172
5173 /** @brief Remove reference to given Script (gig format extension).
5174 *
5175 * This will remove all script slots on the instrument which are referencing
5176 * the given script.
5177 *
5178 * @note This is an own format extension which did not exist i.e. in the
5179 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5180 * gigedit.
5181 *
5182 * @param pScript - script reference to remove from this instrument
5183 * @see RemoveScriptSlot()
5184 */
5185 void Instrument::RemoveScript(Script* pScript) {
5186 LoadScripts();
5187 for (ssize_t i = pScriptRefs->size() - 1; i >= 0; --i) {
5188 if ((*pScriptRefs)[i].script == pScript) {
5189 pScriptRefs->erase( pScriptRefs->begin() + i );
5190 }
5191 }
5192 }
5193
5194 /** @brief Instrument's amount of script slots.
5195 *
5196 * This method returns the amount of script slots this instrument currently
5197 * uses.
5198 *
5199 * A script slot is a reference of a real-time instrument script to be
5200 * executed by the sampler. The scripts will be executed by the sampler in
5201 * sequence of the slots. One (same) script may be referenced multiple
5202 * times in different slots.
5203 *
5204 * @note This is an own format extension which did not exist i.e. in the
5205 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5206 * gigedit.
5207 */
5208 uint Instrument::ScriptSlotCount() const {
5209 return uint(pScriptRefs ? pScriptRefs->size() : scriptPoolFileOffsets.size());
5210 }
5211
5212 /** @brief Whether script execution shall be skipped.
5213 *
5214 * Defines locally for the Script reference slot in the Instrument's Script
5215 * list, whether the script shall be skipped by the sampler regarding
5216 * execution.
5217 *
5218 * It is also possible to ignore exeuction of the script globally, for all
5219 * slots and for all instruments by setting Script::Bypass.
5220 *
5221 * @note This is an own format extension which did not exist i.e. in the
5222 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5223 * gigedit.
5224 *
5225 * @param index - index of the script slot on this instrument
5226 * @see Script::Bypass
5227 */
5228 bool Instrument::IsScriptSlotBypassed(uint index) {
5229 if (index >= ScriptSlotCount()) return false;
5230 return pScriptRefs ? pScriptRefs->at(index).bypass
5231 : scriptPoolFileOffsets.at(index).bypass;
5232
5233 }
5234
5235 /** @brief Defines whether execution shall be skipped.
5236 *
5237 * You can call this method to define locally whether or whether not the
5238 * given script slot shall be executed by the sampler.
5239 *
5240 * @note This is an own format extension which did not exist i.e. in the
5241 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5242 * gigedit.
5243 *
5244 * @param index - script slot index on this instrument
5245 * @param bBypass - if true, the script slot will be skipped by the sampler
5246 * @see Script::Bypass
5247 */
5248 void Instrument::SetScriptSlotBypassed(uint index, bool bBypass) {
5249 if (index >= ScriptSlotCount()) return;
5250 if (pScriptRefs)
5251 pScriptRefs->at(index).bypass = bBypass;
5252 else
5253 scriptPoolFileOffsets.at(index).bypass = bBypass;
5254 }
5255
5256 /**
5257 * Make a (semi) deep copy of the Instrument object given by @a orig
5258 * and assign it to this object.
5259 *
5260 * Note that all sample pointers referenced by @a orig are simply copied as
5261 * memory address. Thus the respective samples are shared, not duplicated!
5262 *
5263 * @param orig - original Instrument object to be copied from
5264 */
5265 void Instrument::CopyAssign(const Instrument* orig) {
5266 CopyAssign(orig, NULL);
5267 }
5268
5269 /**
5270 * Make a (semi) deep copy of the Instrument object given by @a orig
5271 * and assign it to this object.
5272 *
5273 * @param orig - original Instrument object to be copied from
5274 * @param mSamples - crosslink map between the foreign file's samples and
5275 * this file's samples
5276 */
5277 void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
5278 // handle base class
5279 // (without copying DLS region stuff)
5280 DLS::Instrument::CopyAssignCore(orig);
5281
5282 // handle own member variables
5283 Attenuation = orig->Attenuation;
5284 EffectSend = orig->EffectSend;
5285 FineTune = orig->FineTune;
5286 PitchbendRange = orig->PitchbendRange;
5287 PianoReleaseMode = orig->PianoReleaseMode;
5288 DimensionKeyRange = orig->DimensionKeyRange;
5289 scriptPoolFileOffsets = orig->scriptPoolFileOffsets;
5290 pScriptRefs = orig->pScriptRefs;
5291
5292 // free old midi rules
5293 for (int i = 0 ; pMidiRules[i] ; i++) {
5294 delete pMidiRules[i];
5295 }
5296 //TODO: MIDI rule copying
5297 pMidiRules[0] = NULL;
5298
5299 // delete all old regions
5300 while (Regions) DeleteRegion(GetFirstRegion());
5301 // create new regions and copy them from original
5302 {
5303 RegionList::const_iterator it = orig->pRegions->begin();
5304 for (int i = 0; i < orig->Regions; ++i, ++it) {
5305 Region* dstRgn = AddRegion();
5306 //NOTE: Region does semi-deep copy !
5307 dstRgn->CopyAssign(
5308 static_cast<gig::Region*>(*it),
5309 mSamples
5310 );
5311 }
5312 }
5313
5314 UpdateRegionKeyTable();
5315 }
5316
5317
5318 // *************** Group ***************
5319 // *
5320
5321 /** @brief Constructor.
5322 *
5323 * @param file - pointer to the gig::File object
5324 * @param ck3gnm - pointer to 3gnm chunk associated with this group or
5325 * NULL if this is a new Group
5326 */
5327 Group::Group(File* file, RIFF::Chunk* ck3gnm) {
5328 pFile = file;
5329 pNameChunk = ck3gnm;
5330 ::LoadString(pNameChunk, Name);
5331 }
5332
5333 Group::~Group() {
5334 // remove the chunk associated with this group (if any)
5335 if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
5336 }
5337
5338 /** @brief Update chunks with current group settings.
5339 *
5340 * Apply current Group field values to the respective chunks. You have
5341 * to call File::Save() to make changes persistent.
5342 *
5343 * Usually there is absolutely no need to call this method explicitly.
5344 * It will be called automatically when File::Save() was called.
5345 *
5346 * @param pProgress - callback function for progress notification
5347 */
5348 void Group::UpdateChunks(progress_t* pProgress) {
5349 // make sure <3gri> and <3gnl> list chunks exist
5350 RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
5351 if (!_3gri) {
5352 _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
5353 pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
5354 }
5355 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
5356 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
5357
5358 if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
5359 // v3 has a fixed list of 128 strings, find a free one
5360 for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
5361 if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
5362 pNameChunk = ck;
5363 break;
5364 }
5365 }
5366 }
5367
5368 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
5369 ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
5370 }
5371
5372 /**
5373 * Returns the first Sample of this Group. You have to call this method
5374 * once before you use GetNextSample().
5375 *
5376 * <b>Notice:</b> this method might block for a long time, in case the
5377 * samples of this .gig file were not scanned yet
5378 *
5379 * @returns pointer address to first Sample or NULL if there is none
5380 * applied to this Group
5381 * @see GetNextSample()
5382 */
5383 Sample* Group::GetFirstSample() {
5384 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5385 for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
5386 if (pSample->GetGroup() == this) return pSample;
5387 }
5388 return NULL;
5389 }
5390
5391 /**
5392 * Returns the next Sample of the Group. You have to call
5393 * GetFirstSample() once before you can use this method. By calling this
5394 * method multiple times it iterates through the Samples assigned to
5395 * this Group.
5396 *
5397 * @returns pointer address to the next Sample of this Group or NULL if
5398 * end reached
5399 * @see GetFirstSample()
5400 */
5401 Sample* Group::GetNextSample() {
5402 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5403 for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
5404 if (pSample->GetGroup() == this) return pSample;
5405 }
5406 return NULL;
5407 }
5408
5409 /**
5410 * Move Sample given by \a pSample from another Group to this Group.
5411 */
5412 void Group::AddSample(Sample* pSample) {
5413 pSample->pGroup = this;
5414 }
5415
5416 /**
5417 * Move all members of this group to another group (preferably the 1st
5418 * one except this). This method is called explicitly by
5419 * File::DeleteGroup() thus when a Group was deleted. This code was
5420 * intentionally not placed in the destructor!
5421 */
5422 void Group::MoveAll() {
5423 // get "that" other group first
5424 Group* pOtherGroup = NULL;
5425 for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
5426 if (pOtherGroup != this) break;
5427 }
5428 if (!pOtherGroup) throw Exception(
5429 "Could not move samples to another group, since there is no "
5430 "other Group. This is a bug, report it!"
5431 );
5432 // now move all samples of this group to the other group
5433 for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
5434 pOtherGroup->AddSample(pSample);
5435 }
5436 }
5437
5438
5439
5440 // *************** File ***************
5441 // *
5442
5443 /// Reflects Gigasampler file format version 2.0 (1998-06-28).
5444 const DLS::version_t File::VERSION_2 = {
5445 0, 2, 19980628 & 0xffff, 19980628 >> 16
5446 };
5447
5448 /// Reflects Gigasampler file format version 3.0 (2003-03-31).
5449 const DLS::version_t File::VERSION_3 = {
5450 0, 3, 20030331 & 0xffff, 20030331 >> 16
5451 };
5452
5453 static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
5454 { CHUNK_ID_IARL, 256 },
5455 { CHUNK_ID_IART, 128 },
5456 { CHUNK_ID_ICMS, 128 },
5457 { CHUNK_ID_ICMT, 1024 },
5458 { CHUNK_ID_ICOP, 128 },
5459 { CHUNK_ID_ICRD, 128 },
5460 { CHUNK_ID_IENG, 128 },
5461 { CHUNK_ID_IGNR, 128 },
5462 { CHUNK_ID_IKEY, 128 },
5463 { CHUNK_ID_IMED, 128 },
5464 { CHUNK_ID_INAM, 128 },
5465 { CHUNK_ID_IPRD, 128 },
5466 { CHUNK_ID_ISBJ, 128 },
5467 { CHUNK_ID_ISFT, 128 },
5468 { CHUNK_ID_ISRC, 128 },
5469 { CHUNK_ID_ISRF, 128 },
5470 { CHUNK_ID_ITCH, 128 },
5471 { 0, 0 }
5472 };
5473
5474 File::File() : DLS::File() {
5475 bAutoLoad = true;
5476 *pVersion = VERSION_3;
5477 pGroups = NULL;
5478 pScriptGroups = NULL;
5479 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5480 pInfo->ArchivalLocation = String(256, ' ');
5481
5482 // add some mandatory chunks to get the file chunks in right
5483 // order (INFO chunk will be moved to first position later)
5484 pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
5485 pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
5486 pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
5487
5488 GenerateDLSID();
5489 }
5490
5491 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
5492 bAutoLoad = true;
5493 pGroups = NULL;
5494 pScriptGroups = NULL;
5495 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5496 }
5497
5498 File::~File() {
5499 if (pGroups) {
5500 std::list<Group*>::iterator iter = pGroups->begin();
5501 std::list<Group*>::iterator end = pGroups->end();
5502 while (iter != end) {
5503 delete *iter;
5504 ++iter;
5505 }
5506 delete pGroups;
5507 }
5508 if (pScriptGroups) {
5509 std::list<ScriptGroup*>::iterator iter = pScriptGroups->begin();
5510 std::list<ScriptGroup*>::iterator end = pScriptGroups->end();
5511 while (iter != end) {
5512 delete *iter;
5513 ++iter;
5514 }
5515 delete pScriptGroups;
5516 }
5517 }
5518
5519 Sample* File::GetFirstSample(progress_t* pProgress) {
5520 if (!pSamples) LoadSamples(pProgress);
5521 if (!pSamples) return NULL;
5522 SamplesIterator = pSamples->begin();
5523 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5524 }
5525
5526 Sample* File::GetNextSample() {
5527 if (!pSamples) return NULL;
5528 SamplesIterator++;
5529 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5530 }
5531
5532 /**
5533 * Returns Sample object of @a index.
5534 *
5535 * @returns sample object or NULL if index is out of bounds
5536 */
5537 Sample* File::GetSample(uint index) {
5538 if (!pSamples) LoadSamples();
5539 if (!pSamples) return NULL;
5540 DLS::File::SampleList::iterator it = pSamples->begin();
5541 for (int i = 0; i < index; ++i) {
5542 ++it;
5543 if (it == pSamples->end()) return NULL;
5544 }
5545 if (it == pSamples->end()) return NULL;
5546 return static_cast<gig::Sample*>( *it );
5547 }
5548
5549 /** @brief Add a new sample.
5550 *
5551 * This will create a new Sample object for the gig file. You have to
5552 * call Save() to make this persistent to the file.
5553 *
5554 * @returns pointer to new Sample object
5555 */
5556 Sample* File::AddSample() {
5557 if (!pSamples) LoadSamples();
5558 __ensureMandatoryChunksExist();
5559 RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
5560 // create new Sample object and its respective 'wave' list chunk
5561 RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
5562 Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
5563
5564 // add mandatory chunks to get the chunks in right order
5565 wave->AddSubChunk(CHUNK_ID_FMT, 16);
5566 wave->AddSubList(LIST_TYPE_INFO);
5567
5568 pSamples->push_back(pSample);
5569 return pSample;
5570 }
5571
5572 /** @brief Delete a sample.
5573 *
5574 * This will delete the given Sample object from the gig file. Any
5575 * references to this sample from Regions and DimensionRegions will be
5576 * removed. You have to call Save() to make this persistent to the file.
5577 *
5578 * @param pSample - sample to delete
5579 * @throws gig::Exception if given sample could not be found
5580 */
5581 void File::DeleteSample(Sample* pSample) {
5582 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
5583 SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
5584 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
5585 if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
5586 pSamples->erase(iter);
5587 delete pSample;
5588
5589 SampleList::iterator tmp = SamplesIterator;
5590 // remove all references to the sample
5591 for (Instrument* instrument = GetFirstInstrument() ; instrument ;
5592 instrument = GetNextInstrument()) {
5593 for (Region* region = instrument->GetFirstRegion() ; region ;
5594 region = instrument->GetNextRegion()) {
5595
5596 if (region->GetSample() == pSample) region->SetSample(NULL);
5597
5598 for (int i = 0 ; i < region->DimensionRegions ; i++) {
5599 gig::DimensionRegion *d = region->pDimensionRegions[i];
5600 if (d->pSample == pSample) d->pSample = NULL;
5601 }
5602 }
5603 }
5604 SamplesIterator = tmp; // restore iterator
5605 }
5606
5607 void File::LoadSamples() {
5608 LoadSamples(NULL);
5609 }
5610
5611 void File::LoadSamples(progress_t* pProgress) {
5612 // Groups must be loaded before samples, because samples will try
5613 // to resolve the group they belong to
5614 if (!pGroups) LoadGroups();
5615
5616 if (!pSamples) pSamples = new SampleList;
5617
5618 RIFF::File* file = pRIFF;
5619
5620 // just for progress calculation
5621 int iSampleIndex = 0;
5622 int iTotalSamples = WavePoolCount;
5623
5624 // check if samples should be loaded from extension files
5625 // (only for old gig files < 2 GB)
5626 int lastFileNo = 0;
5627 if (!file->IsNew() && !(file->GetCurrentFileSize() >> 31)) {
5628 for (int i = 0 ; i < WavePoolCount ; i++) {
5629 if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
5630 }
5631 }
5632 String name(pRIFF->GetFileName());
5633 int nameLen = (int) name.length();
5634 char suffix[6];
5635 if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
5636
5637 for (int fileNo = 0 ; ; ) {
5638 RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
5639 if (wvpl) {
5640 file_offset_t wvplFileOffset = wvpl->GetFilePos();
5641 RIFF::List* wave = wvpl->GetFirstSubList();
5642 while (wave) {
5643 if (wave->GetListType() == LIST_TYPE_WAVE) {
5644 // notify current progress
5645 const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
5646 __notify_progress(pProgress, subprogress);
5647
5648 file_offset_t waveFileOffset = wave->GetFilePos();
5649 pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo, iSampleIndex));
5650
5651 iSampleIndex++;
5652 }
5653 wave = wvpl->GetNextSubList();
5654 }
5655
5656 if (fileNo == lastFileNo) break;
5657
5658 // open extension file (*.gx01, *.gx02, ...)
5659 fileNo++;
5660 sprintf(suffix, ".gx%02d", fileNo);
5661 name.replace(nameLen, 5, suffix);
5662 file = new RIFF::File(name);
5663 ExtensionFiles.push_back(file);
5664 } else break;
5665 }
5666
5667 __notify_progress(pProgress, 1.0); // notify done
5668 }
5669
5670 Instrument* File::GetFirstInstrument() {
5671 if (!pInstruments) LoadInstruments();
5672 if (!pInstruments) return NULL;
5673 InstrumentsIterator = pInstruments->begin();
5674 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5675 }
5676
5677 Instrument* File::GetNextInstrument() {
5678 if (!pInstruments) return NULL;
5679 InstrumentsIterator++;
5680 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5681 }
5682
5683 /**
5684 * Returns the instrument with the given index.
5685 *
5686 * @param index - number of the sought instrument (0..n)
5687 * @param pProgress - optional: callback function for progress notification
5688 * @returns sought instrument or NULL if there's no such instrument
5689 */
5690 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
5691 if (!pInstruments) {
5692 // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
5693
5694 // sample loading subtask
5695 progress_t subprogress;
5696 __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
5697 __notify_progress(&subprogress, 0.0f);
5698 if (GetAutoLoad())
5699 GetFirstSample(&subprogress); // now force all samples to be loaded
5700 __notify_progress(&subprogress, 1.0f);
5701
5702 // instrument loading subtask
5703 if (pProgress && pProgress->callback) {
5704 subprogress.__range_min = subprogress.__range_max;
5705 subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
5706 }
5707 __notify_progress(&subprogress, 0.0f);
5708 LoadInstruments(&subprogress);
5709 __notify_progress(&subprogress, 1.0f);
5710 }
5711 if (!pInstruments) return NULL;
5712 InstrumentsIterator = pInstruments->begin();
5713 for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
5714 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
5715 InstrumentsIterator++;
5716 }
5717 return NULL;
5718 }
5719
5720 /** @brief Add a new instrument definition.
5721 *
5722 * This will create a new Instrument object for the gig file. You have
5723 * to call Save() to make this persistent to the file.
5724 *
5725 * @returns pointer to new Instrument object
5726 */
5727 Instrument* File::AddInstrument() {
5728 if (!pInstruments) LoadInstruments();
5729 __ensureMandatoryChunksExist();
5730 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5731 RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
5732
5733 // add mandatory chunks to get the chunks in right order
5734 lstInstr->AddSubList(LIST_TYPE_INFO);
5735 lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
5736
5737 Instrument* pInstrument = new Instrument(this, lstInstr);
5738 pInstrument->GenerateDLSID();
5739
5740 lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
5741
5742 // this string is needed for the gig to be loadable in GSt:
5743 pInstrument->pInfo->Software = "Endless Wave";
5744
5745 pInstruments->push_back(pInstrument);
5746 return pInstrument;
5747 }
5748
5749 /** @brief Add a duplicate of an existing instrument.
5750 *
5751 * Duplicates the instrument definition given by @a orig and adds it
5752 * to this file. This allows in an instrument editor application to
5753 * easily create variations of an instrument, which will be stored in
5754 * the same .gig file, sharing i.e. the same samples.
5755 *
5756 * Note that all sample pointers referenced by @a orig are simply copied as
5757 * memory address. Thus the respective samples are shared, not duplicated!
5758 *
5759 * You have to call Save() to make this persistent to the file.
5760 *
5761 * @param orig - original instrument to be copied
5762 * @returns duplicated copy of the given instrument
5763 */
5764 Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
5765 Instrument* instr = AddInstrument();
5766 instr->CopyAssign(orig);
5767 return instr;
5768 }
5769
5770 /** @brief Add content of another existing file.
5771 *
5772 * Duplicates the samples, groups and instruments of the original file
5773 * given by @a pFile and adds them to @c this File. In case @c this File is
5774 * a new one that you haven't saved before, then you have to call
5775 * SetFileName() before calling AddContentOf(), because this method will
5776 * automatically save this file during operation, which is required for
5777 * writing the sample waveform data by disk streaming.
5778 *
5779 * @param pFile - original file whose's content shall be copied from
5780 */
5781 void File::AddContentOf(File* pFile) {
5782 static int iCallCount = -1;
5783 iCallCount++;
5784 std::map<Group*,Group*> mGroups;
5785 std::map<Sample*,Sample*> mSamples;
5786
5787 // clone sample groups
5788 for (int i = 0; pFile->GetGroup(i); ++i) {
5789 Group* g = AddGroup();
5790 g->Name =
5791 "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
5792 mGroups[pFile->GetGroup(i)] = g;
5793 }
5794
5795 // clone samples (not waveform data here yet)
5796 for (int i = 0; pFile->GetSample(i); ++i) {
5797 Sample* s = AddSample();
5798 s->CopyAssignMeta(pFile->GetSample(i));
5799 mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
5800 mSamples[pFile->GetSample(i)] = s;
5801 }
5802
5803 // clone script groups and their scripts
5804 for (int iGroup = 0; pFile->GetScriptGroup(iGroup); ++iGroup) {
5805 ScriptGroup* sg = pFile->GetScriptGroup(iGroup);
5806 ScriptGroup* dg = AddScriptGroup();
5807 dg->Name = "COPY" + ToString(iCallCount) + "_" + sg->Name;
5808 for (int iScript = 0; sg->GetScript(iScript); ++iScript) {
5809 Script* ss = sg->GetScript(iScript);
5810 Script* ds = dg->AddScript();
5811 ds->CopyAssign(ss);
5812 }
5813 }
5814
5815 //BUG: For some reason this method only works with this additional
5816 // Save() call in between here.
5817 //
5818 // Important: The correct one of the 2 Save() methods has to be called
5819 // here, depending on whether the file is completely new or has been
5820 // saved to disk already, otherwise it will result in data corruption.
5821 if (pRIFF->IsNew())
5822 Save(GetFileName());
5823 else
5824 Save();
5825
5826 // clone instruments
5827 // (passing the crosslink table here for the cloned samples)
5828 for (int i = 0; pFile->GetInstrument(i); ++i) {
5829 Instrument* instr = AddInstrument();
5830 instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
5831 }
5832
5833 // Mandatory: file needs to be saved to disk at this point, so this
5834 // file has the correct size and data layout for writing the samples'
5835 // waveform data to disk.
5836 Save();
5837
5838 // clone samples' waveform data
5839 // (using direct read & write disk streaming)
5840 for (int i = 0; pFile->GetSample(i); ++i) {
5841 mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
5842 }
5843 }
5844
5845 /** @brief Delete an instrument.
5846 *
5847 * This will delete the given Instrument object from the gig file. You
5848 * have to call Save() to make this persistent to the file.
5849 *
5850 * @param pInstrument - instrument to delete
5851 * @throws gig::Exception if given instrument could not be found
5852 */
5853 void File::DeleteInstrument(Instrument* pInstrument) {
5854 if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
5855 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
5856 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
5857 pInstruments->erase(iter);
5858 delete pInstrument;
5859 }
5860
5861 void File::LoadInstruments() {
5862 LoadInstruments(NULL);
5863 }
5864
5865 void File::LoadInstruments(progress_t* pProgress) {
5866 if (!pInstruments) pInstruments = new InstrumentList;
5867 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5868 if (lstInstruments) {
5869 int iInstrumentIndex = 0;
5870 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
5871 while (lstInstr) {
5872 if (lstInstr->GetListType() == LIST_TYPE_INS) {
5873 // notify current progress
5874 const float localProgress = (float) iInstrumentIndex / (float) Instruments;
5875 __notify_progress(pProgress, localProgress);
5876
5877 // divide local progress into subprogress for loading current Instrument
5878 progress_t subprogress;
5879 __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
5880
5881 pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
5882
5883 iInstrumentIndex++;
5884 }
5885 lstInstr = lstInstruments->GetNextSubList();
5886 }
5887 __notify_progress(pProgress, 1.0); // notify done
5888 }
5889 }
5890
5891 /// Updates the 3crc chunk with the checksum of a sample. The
5892 /// update is done directly to disk, as this method is called
5893 /// after File::Save()
5894 void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
5895 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5896 if (!_3crc) return;
5897
5898 // get the index of the sample
5899 int iWaveIndex = GetWaveTableIndexOf(pSample);
5900 if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
5901
5902 // write the CRC-32 checksum to disk
5903 _3crc->SetPos(iWaveIndex * 8);
5904 uint32_t one = 1;
5905 _3crc->WriteUint32(&one); // always 1
5906 _3crc->WriteUint32(&crc);
5907 }
5908
5909 uint32_t File::GetSampleChecksum(Sample* pSample) {
5910 // get the index of the sample
5911 int iWaveIndex = GetWaveTableIndexOf(pSample);
5912 if (iWaveIndex < 0) throw gig::Exception("Could not retrieve reference crc of sample, could not resolve sample's wave table index");
5913
5914 return GetSampleChecksumByIndex(iWaveIndex);
5915 }
5916
5917 uint32_t File::GetSampleChecksumByIndex(int index) {
5918 if (index < 0) throw gig::Exception("Could not retrieve reference crc of sample, invalid wave pool index of sample");
5919
5920 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5921 if (!_3crc) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
5922 uint8_t* pData = (uint8_t*) _3crc->LoadChunkData();
5923 if (!pData) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
5924
5925 // read the CRC-32 checksum directly from disk
5926 size_t pos = index * 8;
5927 if (pos + 8 > _3crc->GetNewSize())
5928 throw gig::Exception("Could not retrieve reference crc of sample, could not seek to required position in crc chunk");
5929
5930 uint32_t one = load32(&pData[pos]); // always 1
5931 if (one != 1)
5932 throw gig::Exception("Could not retrieve reference crc of sample, because reference checksum table is damaged");
5933
5934 return load32(&pData[pos+4]);
5935 }
5936
5937 int File::GetWaveTableIndexOf(gig::Sample* pSample) {
5938 if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
5939 File::SampleList::iterator iter = pSamples->begin();
5940 File::SampleList::iterator end = pSamples->end();
5941 for (int index = 0; iter != end; ++iter, ++index)
5942 if (*iter == pSample)
5943 return index;
5944 return -1;
5945 }
5946
5947 /**
5948 * Checks whether the file's "3CRC" chunk was damaged. This chunk contains
5949 * the CRC32 check sums of all samples' raw wave data.
5950 *
5951 * @return true if 3CRC chunk is OK, or false if 3CRC chunk is damaged
5952 */
5953 bool File::VerifySampleChecksumTable() {
5954 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5955 if (!_3crc) return false;
5956 if (_3crc->GetNewSize() <= 0) return false;
5957 if (_3crc->GetNewSize() % 8) return false;
5958 if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
5959 if (_3crc->GetNewSize() != pSamples->size() * 8) return false;
5960
5961 const file_offset_t n = _3crc->GetNewSize() / 8;
5962
5963 uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
5964 if (!pData) return false;
5965
5966 for (file_offset_t i = 0; i < n; ++i) {
5967 uint32_t one = pData[i*2];
5968 if (one != 1) return false;
5969 }
5970
5971 return true;
5972 }
5973
5974 /**
5975 * Recalculates CRC32 checksums for all samples and rebuilds this gig
5976 * file's checksum table with those new checksums. This might usually
5977 * just be necessary if the checksum table was damaged.
5978 *
5979 * @e IMPORTANT: The current implementation of this method only works
5980 * with files that have not been modified since it was loaded, because
5981 * it expects that no externally caused file structure changes are
5982 * required!
5983 *
5984 * Due to the expectation above, this method is currently protected
5985 * and actually only used by the command line tool "gigdump" yet.
5986 *
5987 * @returns true if Save() is required to be called after this call,
5988 * false if no further action is required
5989 */
5990 bool File::RebuildSampleChecksumTable() {
5991 // make sure sample chunks were scanned
5992 if (!pSamples) GetFirstSample();
5993
5994 bool bRequiresSave = false;
5995
5996 // make sure "3CRC" chunk exists with required size
5997 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5998 if (!_3crc) {
5999 _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6000 // the order of einf and 3crc is not the same in v2 and v3
6001 RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6002 if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
6003 bRequiresSave = true;
6004 } else if (_3crc->GetNewSize() != pSamples->size() * 8) {
6005 _3crc->Resize(pSamples->size() * 8);
6006 bRequiresSave = true;
6007 }
6008
6009 if (bRequiresSave) { // refill CRC table for all samples in RAM ...
6010 uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6011 {
6012 File::SampleList::iterator iter = pSamples->begin();
6013 File::SampleList::iterator end = pSamples->end();
6014 for (; iter != end; ++iter) {
6015 gig::Sample* pSample = (gig::Sample*) *iter;
6016 int index = GetWaveTableIndexOf(pSample);
6017 if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6018 pData[index*2] = 1; // always 1
6019 pData[index*2+1] = pSample->CalculateWaveDataChecksum();
6020 }
6021 }
6022 } else { // no file structure changes necessary, so directly write to disk and we are done ...
6023 // make sure file is in write mode
6024 pRIFF->SetMode(RIFF::stream_mode_read_write);
6025 {
6026 File::SampleList::iterator iter = pSamples->begin();
6027 File::SampleList::iterator end = pSamples->end();
6028 for (; iter != end; ++iter) {
6029 gig::Sample* pSample = (gig::Sample*) *iter;
6030 int index = GetWaveTableIndexOf(pSample);
6031 if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6032 pSample->crc = pSample->CalculateWaveDataChecksum();
6033 SetSampleChecksum(pSample, pSample->crc);
6034 }
6035 }
6036 }
6037
6038 return bRequiresSave;
6039 }
6040
6041 Group* File::GetFirstGroup() {
6042 if (!pGroups) LoadGroups();
6043 // there must always be at least one group
6044 GroupsIterator = pGroups->begin();
6045 return *GroupsIterator;
6046 }
6047
6048 Group* File::GetNextGroup() {
6049 if (!pGroups) return NULL;
6050 ++GroupsIterator;
6051 return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
6052 }
6053
6054 /**
6055 * Returns the group with the given index.
6056 *
6057 * @param index - number of the sought group (0..n)
6058 * @returns sought group or NULL if there's no such group
6059 */
6060 Group* File::GetGroup(uint index) {
6061 if (!pGroups) LoadGroups();
6062 GroupsIterator = pGroups->begin();
6063 for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
6064 if (i == index) return *GroupsIterator;
6065 ++GroupsIterator;
6066 }
6067 return NULL;
6068 }
6069
6070 /**
6071 * Returns the group with the given group name.
6072 *
6073 * Note: group names don't have to be unique in the gig format! So there
6074 * can be multiple groups with the same name. This method will simply
6075 * return the first group found with the given name.
6076 *
6077 * @param name - name of the sought group
6078 * @returns sought group or NULL if there's no group with that name
6079 */
6080 Group* File::GetGroup(String name) {
6081 if (!pGroups) LoadGroups();
6082 GroupsIterator = pGroups->begin();
6083 for (uint i = 0; GroupsIterator != pGroups->end(); ++GroupsIterator, ++i)
6084 if ((*GroupsIterator)->Name == name) return *GroupsIterator;
6085 return NULL;
6086 }
6087
6088 Group* File::AddGroup() {
6089 if (!pGroups) LoadGroups();
6090 // there must always be at least one group
6091 __ensureMandatoryChunksExist();
6092 Group* pGroup = new Group(this, NULL);
6093 pGroups->push_back(pGroup);
6094 return pGroup;
6095 }
6096
6097 /** @brief Delete a group and its samples.
6098 *
6099 * This will delete the given Group object and all the samples that
6100 * belong to this group from the gig file. You have to call Save() to
6101 * make this persistent to the file.
6102 *
6103 * @param pGroup - group to delete
6104 * @throws gig::Exception if given group could not be found
6105 */
6106 void File::DeleteGroup(Group* pGroup) {
6107 if (!pGroups) LoadGroups();
6108 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6109 if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6110 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6111 // delete all members of this group
6112 for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
6113 DeleteSample(pSample);
6114 }
6115 // now delete this group object
6116 pGroups->erase(iter);
6117 delete pGroup;
6118 }
6119
6120 /** @brief Delete a group.
6121 *
6122 * This will delete the given Group object from the gig file. All the
6123 * samples that belong to this group will not be deleted, but instead
6124 * be moved to another group. You have to call Save() to make this
6125 * persistent to the file.
6126 *
6127 * @param pGroup - group to delete
6128 * @throws gig::Exception if given group could not be found
6129 */
6130 void File::DeleteGroupOnly(Group* pGroup) {
6131 if (!pGroups) LoadGroups();
6132 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6133 if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6134 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6135 // move all members of this group to another group
6136 pGroup->MoveAll();
6137 pGroups->erase(iter);
6138 delete pGroup;
6139 }
6140
6141 void File::LoadGroups() {
6142 if (!pGroups) pGroups = new std::list<Group*>;
6143 // try to read defined groups from file
6144 RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6145 if (lst3gri) {
6146 RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
6147 if (lst3gnl) {
6148 RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
6149 while (ck) {
6150 if (ck->GetChunkID() == CHUNK_ID_3GNM) {
6151 if (pVersion && pVersion->major == 3 &&
6152 strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
6153
6154 pGroups->push_back(new Group(this, ck));
6155 }
6156 ck = lst3gnl->GetNextSubChunk();
6157 }
6158 }
6159 }
6160 // if there were no group(s), create at least the mandatory default group
6161 if (!pGroups->size()) {
6162 Group* pGroup = new Group(this, NULL);
6163 pGroup->Name = "Default Group";
6164 pGroups->push_back(pGroup);
6165 }
6166 }
6167
6168 /** @brief Get instrument script group (by index).
6169 *
6170 * Returns the real-time instrument script group with the given index.
6171 *
6172 * @param index - number of the sought group (0..n)
6173 * @returns sought script group or NULL if there's no such group
6174 */
6175 ScriptGroup* File::GetScriptGroup(uint index) {
6176 if (!pScriptGroups) LoadScriptGroups();
6177 std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6178 for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6179 if (i == index) return *it;
6180 return NULL;
6181 }
6182
6183 /** @brief Get instrument script group (by name).
6184 *
6185 * Returns the first real-time instrument script group found with the given
6186 * group name. Note that group names may not necessarily be unique.
6187 *
6188 * @param name - name of the sought script group
6189 * @returns sought script group or NULL if there's no such group
6190 */
6191 ScriptGroup* File::GetScriptGroup(const String& name) {
6192 if (!pScriptGroups) LoadScriptGroups();
6193 std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6194 for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6195 if ((*it)->Name == name) return *it;
6196 return NULL;
6197 }
6198
6199 /** @brief Add new instrument script group.
6200 *
6201 * Adds a new, empty real-time instrument script group to the file.
6202 *
6203 * You have to call Save() to make this persistent to the file.
6204 *
6205 * @return new empty script group
6206 */
6207 ScriptGroup* File::AddScriptGroup() {
6208 if (!pScriptGroups) LoadScriptGroups();
6209 ScriptGroup* pScriptGroup = new ScriptGroup(this, NULL);
6210 pScriptGroups->push_back(pScriptGroup);
6211 return pScriptGroup;
6212 }
6213
6214 /** @brief Delete an instrument script group.
6215 *
6216 * This will delete the given real-time instrument script group and all its
6217 * instrument scripts it contains. References inside instruments that are
6218 * using the deleted scripts will be removed from the respective instruments
6219 * accordingly.
6220 *
6221 * You have to call Save() to make this persistent to the file.
6222 *
6223 * @param pScriptGroup - script group to delete
6224 * @throws gig::Exception if given script group could not be found
6225 */
6226 void File::DeleteScriptGroup(ScriptGroup* pScriptGroup) {
6227 if (!pScriptGroups) LoadScriptGroups();
6228 std::list<ScriptGroup*>::iterator iter =
6229 find(pScriptGroups->begin(), pScriptGroups->end(), pScriptGroup);
6230 if (iter == pScriptGroups->end())
6231 throw gig::Exception("Could not delete script group, could not find given script group");
6232 pScriptGroups->erase(iter);
6233 for (int i = 0; pScriptGroup->GetScript(i); ++i)
6234 pScriptGroup->DeleteScript(pScriptGroup->GetScript(i));
6235 if (pScriptGroup->pList)
6236 pScriptGroup->pList->GetParent()->DeleteSubChunk(pScriptGroup->pList);
6237 delete pScriptGroup;
6238 }
6239
6240 void File::LoadScriptGroups() {
6241 if (pScriptGroups) return;
6242 pScriptGroups = new std::list<ScriptGroup*>;
6243 RIFF::List* lstLS = pRIFF->GetSubList(LIST_TYPE_3LS);
6244 if (lstLS) {
6245 for (RIFF::List* lst = lstLS->GetFirstSubList(); lst;
6246 lst = lstLS->GetNextSubList())
6247 {
6248 if (lst->GetListType() == LIST_TYPE_RTIS) {
6249 pScriptGroups->push_back(new ScriptGroup(this, lst));
6250 }
6251 }
6252 }
6253 }
6254
6255 /**
6256 * Apply all the gig file's current instruments, samples, groups and settings
6257 * to the respective RIFF chunks. You have to call Save() to make changes
6258 * persistent.
6259 *
6260 * Usually there is absolutely no need to call this method explicitly.
6261 * It will be called automatically when File::Save() was called.
6262 *
6263 * @param pProgress - callback function for progress notification
6264 * @throws Exception - on errors
6265 */
6266 void File::UpdateChunks(progress_t* pProgress) {
6267 bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
6268
6269 // update own gig format extension chunks
6270 // (not part of the GigaStudio 4 format)
6271 RIFF::List* lst3LS = pRIFF->GetSubList(LIST_TYPE_3LS);
6272 if (!lst3LS) {
6273 lst3LS = pRIFF->AddSubList(LIST_TYPE_3LS);
6274 }
6275 // Make sure <3LS > chunk is placed before <ptbl> chunk. The precise
6276 // location of <3LS > is irrelevant, however it should be located
6277 // before the actual wave data
6278 RIFF::Chunk* ckPTBL = pRIFF->GetSubChunk(CHUNK_ID_PTBL);
6279 pRIFF->MoveSubChunk(lst3LS, ckPTBL);
6280
6281 // This must be performed before writing the chunks for instruments,
6282 // because the instruments' script slots will write the file offsets
6283 // of the respective instrument script chunk as reference.
6284 if (pScriptGroups) {
6285 // Update instrument script (group) chunks.
6286 for (std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6287 it != pScriptGroups->end(); ++it)
6288 {
6289 (*it)->UpdateChunks(pProgress);
6290 }
6291 }
6292
6293 // in case no libgig custom format data was added, then remove the
6294 // custom "3LS " chunk again
6295 if (!lst3LS->CountSubChunks()) {
6296 pRIFF->DeleteSubChunk(lst3LS);
6297 lst3LS = NULL;
6298 }
6299
6300 // first update base class's chunks
6301 DLS::File::UpdateChunks(pProgress);
6302
6303 if (newFile) {
6304 // INFO was added by Resource::UpdateChunks - make sure it
6305 // is placed first in file
6306 RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
6307 RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
6308 if (first != info) {
6309 pRIFF->MoveSubChunk(info, first);
6310 }
6311 }
6312
6313 // update group's chunks
6314 if (pGroups) {
6315 // make sure '3gri' and '3gnl' list chunks exist
6316 // (before updating the Group chunks)
6317 RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6318 if (!_3gri) {
6319 _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
6320 pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
6321 }
6322 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
6323 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
6324
6325 // v3: make sure the file has 128 3gnm chunks
6326 // (before updating the Group chunks)
6327 if (pVersion && pVersion->major == 3) {
6328 RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
6329 for (int i = 0 ; i < 128 ; i++) {
6330 if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
6331 if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
6332 }
6333 }
6334
6335 std::list<Group*>::iterator iter = pGroups->begin();
6336 std::list<Group*>::iterator end = pGroups->end();
6337 for (; iter != end; ++iter) {
6338 (*iter)->UpdateChunks(pProgress);
6339 }
6340 }
6341
6342 // update einf chunk
6343
6344 // The einf chunk contains statistics about the gig file, such
6345 // as the number of regions and samples used by each
6346 // instrument. It is divided in equally sized parts, where the
6347 // first part contains information about the whole gig file,
6348 // and the rest of the parts map to each instrument in the
6349 // file.
6350 //
6351 // At the end of each part there is a bit map of each sample
6352 // in the file, where a set bit means that the sample is used
6353 // by the file/instrument.
6354 //
6355 // Note that there are several fields with unknown use. These
6356 // are set to zero.
6357
6358 int sublen = int(pSamples->size() / 8 + 49);
6359 int einfSize = (Instruments + 1) * sublen;
6360
6361 RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6362 if (einf) {
6363 if (einf->GetSize() != einfSize) {
6364 einf->Resize(einfSize);
6365 memset(einf->LoadChunkData(), 0, einfSize);
6366 }
6367 } else if (newFile) {
6368 einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
6369 }
6370 if (einf) {
6371 uint8_t* pData = (uint8_t*) einf->LoadChunkData();
6372
6373 std::map<gig::Sample*,int> sampleMap;
6374 int sampleIdx = 0;
6375 for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
6376 sampleMap[pSample] = sampleIdx++;
6377 }
6378
6379 int totnbusedsamples = 0;
6380 int totnbusedchannels = 0;
6381 int totnbregions = 0;
6382 int totnbdimregions = 0;
6383 int totnbloops = 0;
6384 int instrumentIdx = 0;
6385
6386 memset(&pData[48], 0, sublen - 48);
6387
6388 for (Instrument* instrument = GetFirstInstrument() ; instrument ;
6389 instrument = GetNextInstrument()) {
6390 int nbusedsamples = 0;
6391 int nbusedchannels = 0;
6392 int nbdimregions = 0;
6393 int nbloops = 0;
6394
6395 memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
6396
6397 for (Region* region = instrument->GetFirstRegion() ; region ;
6398 region = instrument->GetNextRegion()) {
6399 for (int i = 0 ; i < region->DimensionRegions ; i++) {
6400 gig::DimensionRegion *d = region->pDimensionRegions[i];
6401 if (d->pSample) {
6402 int sampleIdx = sampleMap[d->pSample];
6403 int byte = 48 + sampleIdx / 8;
6404 int bit = 1 << (sampleIdx & 7);
6405 if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
6406 pData[(instrumentIdx + 1) * sublen + byte] |= bit;
6407 nbusedsamples++;
6408 nbusedchannels += d->pSample->Channels;
6409
6410 if ((pData[byte] & bit) == 0) {
6411 pData[byte] |= bit;
6412 totnbusedsamples++;
6413 totnbusedchannels += d->pSample->Channels;
6414 }
6415 }
6416 }
6417 if (d->SampleLoops) nbloops++;
6418 }
6419 nbdimregions += region->DimensionRegions;
6420 }
6421 // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6422 // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
6423 store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
6424 store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
6425 store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
6426 store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
6427 store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
6428 store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
6429 // next 8 bytes unknown
6430 store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
6431 store32(&pData[(instrumentIdx + 1) * sublen + 40], (uint32_t) pSamples->size());
6432 // next 4 bytes unknown
6433
6434 totnbregions += instrument->Regions;
6435 totnbdimregions += nbdimregions;
6436 totnbloops += nbloops;
6437 instrumentIdx++;
6438 }
6439 // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6440 // store32(&pData[0], sublen);
6441 store32(&pData[4], totnbusedchannels);
6442 store32(&pData[8], totnbusedsamples);
6443 store32(&pData[12], Instruments);
6444 store32(&pData[16], totnbregions);
6445 store32(&pData[20], totnbdimregions);
6446 store32(&pData[24], totnbloops);
6447 // next 8 bytes unknown
6448 // next 4 bytes unknown, not always 0
6449 store32(&pData[40], (uint32_t) pSamples->size());
6450 // next 4 bytes unknown
6451 }
6452
6453 // update 3crc chunk
6454
6455 // The 3crc chunk contains CRC-32 checksums for the
6456 // samples. When saving a gig file to disk, we first update the 3CRC
6457 // chunk here (in RAM) with the old crc values which we read from the
6458 // 3CRC chunk when we opened the file (available with gig::Sample::crc
6459 // member variable). This step is required, because samples might have
6460 // been deleted by the user since the file was opened, which in turn
6461 // changes the order of the (i.e. old) checksums within the 3crc chunk.
6462 // If a sample was conciously modified by the user (that is if
6463 // Sample::Write() was called later on) then Sample::Write() will just
6464 // update the respective individual checksum(s) directly on disk and
6465 // leaves all other sample checksums untouched.
6466
6467 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6468 if (_3crc) {
6469 _3crc->Resize(pSamples->size() * 8);
6470 } else /*if (newFile)*/ {
6471 _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6472 // the order of einf and 3crc is not the same in v2 and v3
6473 if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
6474 }
6475 { // must be performed in RAM here ...
6476 uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6477 if (pData) {
6478 File::SampleList::iterator iter = pSamples->begin();
6479 File::SampleList::iterator end = pSamples->end();
6480 for (int index = 0; iter != end; ++iter, ++index) {
6481 gig::Sample* pSample = (gig::Sample*) *iter;
6482 pData[index*2] = 1; // always 1
6483 pData[index*2+1] = pSample->crc;
6484 }
6485 }
6486 }
6487 }
6488
6489 void File::UpdateFileOffsets() {
6490 DLS::File::UpdateFileOffsets();
6491
6492 for (Instrument* instrument = GetFirstInstrument(); instrument;
6493 instrument = GetNextInstrument())
6494 {
6495 instrument->UpdateScriptFileOffsets();
6496 }
6497 }
6498
6499 /**
6500 * Enable / disable automatic loading. By default this properyt is
6501 * enabled and all informations are loaded automatically. However
6502 * loading all Regions, DimensionRegions and especially samples might
6503 * take a long time for large .gig files, and sometimes one might only
6504 * be interested in retrieving very superficial informations like the
6505 * amount of instruments and their names. In this case one might disable
6506 * automatic loading to avoid very slow response times.
6507 *
6508 * @e CAUTION: by disabling this property many pointers (i.e. sample
6509 * references) and informations will have invalid or even undefined
6510 * data! This feature is currently only intended for retrieving very
6511 * superficial informations in a very fast way. Don't use it to retrieve
6512 * details like synthesis informations or even to modify .gig files!
6513 */
6514 void File::SetAutoLoad(bool b) {
6515 bAutoLoad = b;
6516 }
6517
6518 /**
6519 * Returns whether automatic loading is enabled.
6520 * @see SetAutoLoad()
6521 */
6522 bool File::GetAutoLoad() {
6523 return bAutoLoad;
6524 }
6525
6526
6527
6528 // *************** Exception ***************
6529 // *
6530
6531 Exception::Exception() : DLS::Exception() {
6532 }
6533
6534 Exception::Exception(String format, ...) : DLS::Exception() {
6535 va_list arg;
6536 va_start(arg, format);
6537 Message = assemble(format, arg);
6538 va_end(arg);
6539 }
6540
6541 Exception::Exception(String format, va_list arg) : DLS::Exception() {
6542 Message = assemble(format, arg);
6543 }
6544
6545 void Exception::PrintMessage() {
6546 std::cout << "gig::Exception: " << Message << std::endl;
6547 }
6548
6549
6550 // *************** functions ***************
6551 // *
6552
6553 /**
6554 * Returns the name of this C++ library. This is usually "libgig" of
6555 * course. This call is equivalent to RIFF::libraryName() and
6556 * DLS::libraryName().
6557 */
6558 String libraryName() {
6559 return PACKAGE;
6560 }
6561
6562 /**
6563 * Returns version of this C++ library. This call is equivalent to
6564 * RIFF::libraryVersion() and DLS::libraryVersion().
6565 */
6566 String libraryVersion() {
6567 return VERSION;
6568 }
6569
6570 } // namespace gig

  ViewVC Help
Powered by ViewVC