/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Contents of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3327 - (show annotations) (download)
Sun Jul 23 18:18:30 2017 UTC (6 years, 8 months ago) by schoenebeck
File size: 284686 byte(s)
* gig.h/.cpp: Splitted the new DimensionRegion::EGOptions
  into EG1Options and EG2Options, so that this can be
  configured individually for the first two EGs.
* Bumped version (4.0.0.svn29).

1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file access library *
4 * *
5 * Copyright (C) 2003-2017 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #include "gig.h"
25
26 #include "helper.h"
27 #include "Serialization.h"
28
29 #include <algorithm>
30 #include <math.h>
31 #include <iostream>
32 #include <assert.h>
33
34 /// libgig's current file format version (for extending the original Giga file
35 /// format with libgig's own custom data / custom features).
36 #define GIG_FILE_EXT_VERSION 2
37
38 /// Initial size of the sample buffer which is used for decompression of
39 /// compressed sample wave streams - this value should always be bigger than
40 /// the biggest sample piece expected to be read by the sampler engine,
41 /// otherwise the buffer size will be raised at runtime and thus the buffer
42 /// reallocated which is time consuming and unefficient.
43 #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
44
45 /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
46 #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
47 #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
48 #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
49 #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
50 #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
51 #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
52 #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
53 #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
54 #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
55 #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
56 #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
57 #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
58
59 #define SRLZ(member) \
60 archive->serializeMember(*this, member, #member);
61
62 namespace gig {
63
64 // *************** Internal functions for sample decompression ***************
65 // *
66
67 namespace {
68
69 inline int get12lo(const unsigned char* pSrc)
70 {
71 const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
72 return x & 0x800 ? x - 0x1000 : x;
73 }
74
75 inline int get12hi(const unsigned char* pSrc)
76 {
77 const int x = pSrc[1] >> 4 | pSrc[2] << 4;
78 return x & 0x800 ? x - 0x1000 : x;
79 }
80
81 inline int16_t get16(const unsigned char* pSrc)
82 {
83 return int16_t(pSrc[0] | pSrc[1] << 8);
84 }
85
86 inline int get24(const unsigned char* pSrc)
87 {
88 const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
89 return x & 0x800000 ? x - 0x1000000 : x;
90 }
91
92 inline void store24(unsigned char* pDst, int x)
93 {
94 pDst[0] = x;
95 pDst[1] = x >> 8;
96 pDst[2] = x >> 16;
97 }
98
99 void Decompress16(int compressionmode, const unsigned char* params,
100 int srcStep, int dstStep,
101 const unsigned char* pSrc, int16_t* pDst,
102 file_offset_t currentframeoffset,
103 file_offset_t copysamples)
104 {
105 switch (compressionmode) {
106 case 0: // 16 bit uncompressed
107 pSrc += currentframeoffset * srcStep;
108 while (copysamples) {
109 *pDst = get16(pSrc);
110 pDst += dstStep;
111 pSrc += srcStep;
112 copysamples--;
113 }
114 break;
115
116 case 1: // 16 bit compressed to 8 bit
117 int y = get16(params);
118 int dy = get16(params + 2);
119 while (currentframeoffset) {
120 dy -= int8_t(*pSrc);
121 y -= dy;
122 pSrc += srcStep;
123 currentframeoffset--;
124 }
125 while (copysamples) {
126 dy -= int8_t(*pSrc);
127 y -= dy;
128 *pDst = y;
129 pDst += dstStep;
130 pSrc += srcStep;
131 copysamples--;
132 }
133 break;
134 }
135 }
136
137 void Decompress24(int compressionmode, const unsigned char* params,
138 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
139 file_offset_t currentframeoffset,
140 file_offset_t copysamples, int truncatedBits)
141 {
142 int y, dy, ddy, dddy;
143
144 #define GET_PARAMS(params) \
145 y = get24(params); \
146 dy = y - get24((params) + 3); \
147 ddy = get24((params) + 6); \
148 dddy = get24((params) + 9)
149
150 #define SKIP_ONE(x) \
151 dddy -= (x); \
152 ddy -= dddy; \
153 dy = -dy - ddy; \
154 y += dy
155
156 #define COPY_ONE(x) \
157 SKIP_ONE(x); \
158 store24(pDst, y << truncatedBits); \
159 pDst += dstStep
160
161 switch (compressionmode) {
162 case 2: // 24 bit uncompressed
163 pSrc += currentframeoffset * 3;
164 while (copysamples) {
165 store24(pDst, get24(pSrc) << truncatedBits);
166 pDst += dstStep;
167 pSrc += 3;
168 copysamples--;
169 }
170 break;
171
172 case 3: // 24 bit compressed to 16 bit
173 GET_PARAMS(params);
174 while (currentframeoffset) {
175 SKIP_ONE(get16(pSrc));
176 pSrc += 2;
177 currentframeoffset--;
178 }
179 while (copysamples) {
180 COPY_ONE(get16(pSrc));
181 pSrc += 2;
182 copysamples--;
183 }
184 break;
185
186 case 4: // 24 bit compressed to 12 bit
187 GET_PARAMS(params);
188 while (currentframeoffset > 1) {
189 SKIP_ONE(get12lo(pSrc));
190 SKIP_ONE(get12hi(pSrc));
191 pSrc += 3;
192 currentframeoffset -= 2;
193 }
194 if (currentframeoffset) {
195 SKIP_ONE(get12lo(pSrc));
196 currentframeoffset--;
197 if (copysamples) {
198 COPY_ONE(get12hi(pSrc));
199 pSrc += 3;
200 copysamples--;
201 }
202 }
203 while (copysamples > 1) {
204 COPY_ONE(get12lo(pSrc));
205 COPY_ONE(get12hi(pSrc));
206 pSrc += 3;
207 copysamples -= 2;
208 }
209 if (copysamples) {
210 COPY_ONE(get12lo(pSrc));
211 }
212 break;
213
214 case 5: // 24 bit compressed to 8 bit
215 GET_PARAMS(params);
216 while (currentframeoffset) {
217 SKIP_ONE(int8_t(*pSrc++));
218 currentframeoffset--;
219 }
220 while (copysamples) {
221 COPY_ONE(int8_t(*pSrc++));
222 copysamples--;
223 }
224 break;
225 }
226 }
227
228 const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
229 const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
230 const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
231 const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
232 }
233
234
235
236 // *************** Internal CRC-32 (Cyclic Redundancy Check) functions ***************
237 // *
238
239 static uint32_t* __initCRCTable() {
240 static uint32_t res[256];
241
242 for (int i = 0 ; i < 256 ; i++) {
243 uint32_t c = i;
244 for (int j = 0 ; j < 8 ; j++) {
245 c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
246 }
247 res[i] = c;
248 }
249 return res;
250 }
251
252 static const uint32_t* __CRCTable = __initCRCTable();
253
254 /**
255 * Initialize a CRC variable.
256 *
257 * @param crc - variable to be initialized
258 */
259 inline static void __resetCRC(uint32_t& crc) {
260 crc = 0xffffffff;
261 }
262
263 /**
264 * Used to calculate checksums of the sample data in a gig file. The
265 * checksums are stored in the 3crc chunk of the gig file and
266 * automatically updated when a sample is written with Sample::Write().
267 *
268 * One should call __resetCRC() to initialize the CRC variable to be
269 * used before calling this function the first time.
270 *
271 * After initializing the CRC variable one can call this function
272 * arbitrary times, i.e. to split the overall CRC calculation into
273 * steps.
274 *
275 * Once the whole data was processed by __calculateCRC(), one should
276 * call __finalizeCRC() to get the final CRC result.
277 *
278 * @param buf - pointer to data the CRC shall be calculated of
279 * @param bufSize - size of the data to be processed
280 * @param crc - variable the CRC sum shall be stored to
281 */
282 static void __calculateCRC(unsigned char* buf, size_t bufSize, uint32_t& crc) {
283 for (size_t i = 0 ; i < bufSize ; i++) {
284 crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
285 }
286 }
287
288 /**
289 * Returns the final CRC result.
290 *
291 * @param crc - variable previously passed to __calculateCRC()
292 */
293 inline static void __finalizeCRC(uint32_t& crc) {
294 crc ^= 0xffffffff;
295 }
296
297
298
299 // *************** Other Internal functions ***************
300 // *
301
302 static split_type_t __resolveSplitType(dimension_t dimension) {
303 return (
304 dimension == dimension_layer ||
305 dimension == dimension_samplechannel ||
306 dimension == dimension_releasetrigger ||
307 dimension == dimension_keyboard ||
308 dimension == dimension_roundrobin ||
309 dimension == dimension_random ||
310 dimension == dimension_smartmidi ||
311 dimension == dimension_roundrobinkeyboard
312 ) ? split_type_bit : split_type_normal;
313 }
314
315 static int __resolveZoneSize(dimension_def_t& dimension_definition) {
316 return (dimension_definition.split_type == split_type_normal)
317 ? int(128.0 / dimension_definition.zones) : 0;
318 }
319
320
321
322 // *************** leverage_ctrl_t ***************
323 // *
324
325 void leverage_ctrl_t::serialize(Serialization::Archive* archive) {
326 SRLZ(type);
327 SRLZ(controller_number);
328 }
329
330
331
332 // *************** crossfade_t ***************
333 // *
334
335 void crossfade_t::serialize(Serialization::Archive* archive) {
336 SRLZ(in_start);
337 SRLZ(in_end);
338 SRLZ(out_start);
339 SRLZ(out_end);
340 }
341
342
343
344 // *************** eg_opt_t ***************
345 // *
346
347 eg_opt_t::eg_opt_t() {
348 AttackCancel = true;
349 AttackHoldCancel = true;
350 Decay1Cancel = true;
351 Decay2Cancel = true;
352 ReleaseCancel = true;
353 }
354
355 void eg_opt_t::serialize(Serialization::Archive* archive) {
356 SRLZ(AttackCancel);
357 SRLZ(AttackHoldCancel);
358 SRLZ(Decay1Cancel);
359 SRLZ(Decay2Cancel);
360 SRLZ(ReleaseCancel);
361 }
362
363
364
365 // *************** Sample ***************
366 // *
367
368 size_t Sample::Instances = 0;
369 buffer_t Sample::InternalDecompressionBuffer;
370
371 /** @brief Constructor.
372 *
373 * Load an existing sample or create a new one. A 'wave' list chunk must
374 * be given to this constructor. In case the given 'wave' list chunk
375 * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
376 * format and sample data will be loaded from there, otherwise default
377 * values will be used and those chunks will be created when
378 * File::Save() will be called later on.
379 *
380 * @param pFile - pointer to gig::File where this sample is
381 * located (or will be located)
382 * @param waveList - pointer to 'wave' list chunk which is (or
383 * will be) associated with this sample
384 * @param WavePoolOffset - offset of this sample data from wave pool
385 * ('wvpl') list chunk
386 * @param fileNo - number of an extension file where this sample
387 * is located, 0 otherwise
388 * @param index - wave pool index of sample (may be -1 on new sample)
389 */
390 Sample::Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo, int index)
391 : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset)
392 {
393 static const DLS::Info::string_length_t fixedStringLengths[] = {
394 { CHUNK_ID_INAM, 64 },
395 { 0, 0 }
396 };
397 pInfo->SetFixedStringLengths(fixedStringLengths);
398 Instances++;
399 FileNo = fileNo;
400
401 __resetCRC(crc);
402 // if this is not a new sample, try to get the sample's already existing
403 // CRC32 checksum from disk, this checksum will reflect the sample's CRC32
404 // checksum of the time when the sample was consciously modified by the
405 // user for the last time (by calling Sample::Write() that is).
406 if (index >= 0) { // not a new file ...
407 try {
408 uint32_t crc = pFile->GetSampleChecksumByIndex(index);
409 this->crc = crc;
410 } catch (...) {}
411 }
412
413 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
414 if (pCk3gix) {
415 uint16_t iSampleGroup = pCk3gix->ReadInt16();
416 pGroup = pFile->GetGroup(iSampleGroup);
417 } else { // '3gix' chunk missing
418 // by default assigned to that mandatory "Default Group"
419 pGroup = pFile->GetGroup(0);
420 }
421
422 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
423 if (pCkSmpl) {
424 Manufacturer = pCkSmpl->ReadInt32();
425 Product = pCkSmpl->ReadInt32();
426 SamplePeriod = pCkSmpl->ReadInt32();
427 MIDIUnityNote = pCkSmpl->ReadInt32();
428 FineTune = pCkSmpl->ReadInt32();
429 pCkSmpl->Read(&SMPTEFormat, 1, 4);
430 SMPTEOffset = pCkSmpl->ReadInt32();
431 Loops = pCkSmpl->ReadInt32();
432 pCkSmpl->ReadInt32(); // manufByt
433 LoopID = pCkSmpl->ReadInt32();
434 pCkSmpl->Read(&LoopType, 1, 4);
435 LoopStart = pCkSmpl->ReadInt32();
436 LoopEnd = pCkSmpl->ReadInt32();
437 LoopFraction = pCkSmpl->ReadInt32();
438 LoopPlayCount = pCkSmpl->ReadInt32();
439 } else { // 'smpl' chunk missing
440 // use default values
441 Manufacturer = 0;
442 Product = 0;
443 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
444 MIDIUnityNote = 60;
445 FineTune = 0;
446 SMPTEFormat = smpte_format_no_offset;
447 SMPTEOffset = 0;
448 Loops = 0;
449 LoopID = 0;
450 LoopType = loop_type_normal;
451 LoopStart = 0;
452 LoopEnd = 0;
453 LoopFraction = 0;
454 LoopPlayCount = 0;
455 }
456
457 FrameTable = NULL;
458 SamplePos = 0;
459 RAMCache.Size = 0;
460 RAMCache.pStart = NULL;
461 RAMCache.NullExtensionSize = 0;
462
463 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
464
465 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
466 Compressed = ewav;
467 Dithered = false;
468 TruncatedBits = 0;
469 if (Compressed) {
470 uint32_t version = ewav->ReadInt32();
471 if (version == 3 && BitDepth == 24) {
472 Dithered = ewav->ReadInt32();
473 ewav->SetPos(Channels == 2 ? 84 : 64);
474 TruncatedBits = ewav->ReadInt32();
475 }
476 ScanCompressedSample();
477 }
478
479 // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
480 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
481 InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
482 InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
483 }
484 FrameOffset = 0; // just for streaming compressed samples
485
486 LoopSize = LoopEnd - LoopStart + 1;
487 }
488
489 /**
490 * Make a (semi) deep copy of the Sample object given by @a orig (without
491 * the actual waveform data) and assign it to this object.
492 *
493 * Discussion: copying .gig samples is a bit tricky. It requires three
494 * steps:
495 * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
496 * its new sample waveform data size.
497 * 2. Saving the file (done by File::Save()) so that it gains correct size
498 * and layout for writing the actual wave form data directly to disc
499 * in next step.
500 * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
501 *
502 * @param orig - original Sample object to be copied from
503 */
504 void Sample::CopyAssignMeta(const Sample* orig) {
505 // handle base classes
506 DLS::Sample::CopyAssignCore(orig);
507
508 // handle actual own attributes of this class
509 Manufacturer = orig->Manufacturer;
510 Product = orig->Product;
511 SamplePeriod = orig->SamplePeriod;
512 MIDIUnityNote = orig->MIDIUnityNote;
513 FineTune = orig->FineTune;
514 SMPTEFormat = orig->SMPTEFormat;
515 SMPTEOffset = orig->SMPTEOffset;
516 Loops = orig->Loops;
517 LoopID = orig->LoopID;
518 LoopType = orig->LoopType;
519 LoopStart = orig->LoopStart;
520 LoopEnd = orig->LoopEnd;
521 LoopSize = orig->LoopSize;
522 LoopFraction = orig->LoopFraction;
523 LoopPlayCount = orig->LoopPlayCount;
524
525 // schedule resizing this sample to the given sample's size
526 Resize(orig->GetSize());
527 }
528
529 /**
530 * Should be called after CopyAssignMeta() and File::Save() sequence.
531 * Read more about it in the discussion of CopyAssignMeta(). This method
532 * copies the actual waveform data by disk streaming.
533 *
534 * @e CAUTION: this method is currently not thread safe! During this
535 * operation the sample must not be used for other purposes by other
536 * threads!
537 *
538 * @param orig - original Sample object to be copied from
539 */
540 void Sample::CopyAssignWave(const Sample* orig) {
541 const int iReadAtOnce = 32*1024;
542 char* buf = new char[iReadAtOnce * orig->FrameSize];
543 Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
544 file_offset_t restorePos = pOrig->GetPos();
545 pOrig->SetPos(0);
546 SetPos(0);
547 for (file_offset_t n = pOrig->Read(buf, iReadAtOnce); n;
548 n = pOrig->Read(buf, iReadAtOnce))
549 {
550 Write(buf, n);
551 }
552 pOrig->SetPos(restorePos);
553 delete [] buf;
554 }
555
556 /**
557 * Apply sample and its settings to the respective RIFF chunks. You have
558 * to call File::Save() to make changes persistent.
559 *
560 * Usually there is absolutely no need to call this method explicitly.
561 * It will be called automatically when File::Save() was called.
562 *
563 * @param pProgress - callback function for progress notification
564 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
565 * was provided yet
566 * @throws gig::Exception if there is any invalid sample setting
567 */
568 void Sample::UpdateChunks(progress_t* pProgress) {
569 // first update base class's chunks
570 DLS::Sample::UpdateChunks(pProgress);
571
572 // make sure 'smpl' chunk exists
573 pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
574 if (!pCkSmpl) {
575 pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
576 memset(pCkSmpl->LoadChunkData(), 0, 60);
577 }
578 // update 'smpl' chunk
579 uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
580 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
581 store32(&pData[0], Manufacturer);
582 store32(&pData[4], Product);
583 store32(&pData[8], SamplePeriod);
584 store32(&pData[12], MIDIUnityNote);
585 store32(&pData[16], FineTune);
586 store32(&pData[20], SMPTEFormat);
587 store32(&pData[24], SMPTEOffset);
588 store32(&pData[28], Loops);
589
590 // we skip 'manufByt' for now (4 bytes)
591
592 store32(&pData[36], LoopID);
593 store32(&pData[40], LoopType);
594 store32(&pData[44], LoopStart);
595 store32(&pData[48], LoopEnd);
596 store32(&pData[52], LoopFraction);
597 store32(&pData[56], LoopPlayCount);
598
599 // make sure '3gix' chunk exists
600 pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
601 if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
602 // determine appropriate sample group index (to be stored in chunk)
603 uint16_t iSampleGroup = 0; // 0 refers to default sample group
604 File* pFile = static_cast<File*>(pParent);
605 if (pFile->pGroups) {
606 std::list<Group*>::iterator iter = pFile->pGroups->begin();
607 std::list<Group*>::iterator end = pFile->pGroups->end();
608 for (int i = 0; iter != end; i++, iter++) {
609 if (*iter == pGroup) {
610 iSampleGroup = i;
611 break; // found
612 }
613 }
614 }
615 // update '3gix' chunk
616 pData = (uint8_t*) pCk3gix->LoadChunkData();
617 store16(&pData[0], iSampleGroup);
618
619 // if the library user toggled the "Compressed" attribute from true to
620 // false, then the EWAV chunk associated with compressed samples needs
621 // to be deleted
622 RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
623 if (ewav && !Compressed) {
624 pWaveList->DeleteSubChunk(ewav);
625 }
626 }
627
628 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
629 void Sample::ScanCompressedSample() {
630 //TODO: we have to add some more scans here (e.g. determine compression rate)
631 this->SamplesTotal = 0;
632 std::list<file_offset_t> frameOffsets;
633
634 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
635 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
636
637 // Scanning
638 pCkData->SetPos(0);
639 if (Channels == 2) { // Stereo
640 for (int i = 0 ; ; i++) {
641 // for 24 bit samples every 8:th frame offset is
642 // stored, to save some memory
643 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
644
645 const int mode_l = pCkData->ReadUint8();
646 const int mode_r = pCkData->ReadUint8();
647 if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
648 const file_offset_t frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
649
650 if (pCkData->RemainingBytes() <= frameSize) {
651 SamplesInLastFrame =
652 ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
653 (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
654 SamplesTotal += SamplesInLastFrame;
655 break;
656 }
657 SamplesTotal += SamplesPerFrame;
658 pCkData->SetPos(frameSize, RIFF::stream_curpos);
659 }
660 }
661 else { // Mono
662 for (int i = 0 ; ; i++) {
663 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
664
665 const int mode = pCkData->ReadUint8();
666 if (mode > 5) throw gig::Exception("Unknown compression mode");
667 const file_offset_t frameSize = bytesPerFrame[mode];
668
669 if (pCkData->RemainingBytes() <= frameSize) {
670 SamplesInLastFrame =
671 ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
672 SamplesTotal += SamplesInLastFrame;
673 break;
674 }
675 SamplesTotal += SamplesPerFrame;
676 pCkData->SetPos(frameSize, RIFF::stream_curpos);
677 }
678 }
679 pCkData->SetPos(0);
680
681 // Build the frames table (which is used for fast resolving of a frame's chunk offset)
682 if (FrameTable) delete[] FrameTable;
683 FrameTable = new file_offset_t[frameOffsets.size()];
684 std::list<file_offset_t>::iterator end = frameOffsets.end();
685 std::list<file_offset_t>::iterator iter = frameOffsets.begin();
686 for (int i = 0; iter != end; i++, iter++) {
687 FrameTable[i] = *iter;
688 }
689 }
690
691 /**
692 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
693 * ReleaseSampleData() to free the memory if you don't need the cached
694 * sample data anymore.
695 *
696 * @returns buffer_t structure with start address and size of the buffer
697 * in bytes
698 * @see ReleaseSampleData(), Read(), SetPos()
699 */
700 buffer_t Sample::LoadSampleData() {
701 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
702 }
703
704 /**
705 * Reads (uncompresses if needed) and caches the first \a SampleCount
706 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
707 * memory space if you don't need the cached samples anymore. There is no
708 * guarantee that exactly \a SampleCount samples will be cached; this is
709 * not an error. The size will be eventually truncated e.g. to the
710 * beginning of a frame of a compressed sample. This is done for
711 * efficiency reasons while streaming the wave by your sampler engine
712 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
713 * that will be returned to determine the actual cached samples, but note
714 * that the size is given in bytes! You get the number of actually cached
715 * samples by dividing it by the frame size of the sample:
716 * @code
717 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
718 * long cachedsamples = buf.Size / pSample->FrameSize;
719 * @endcode
720 *
721 * @param SampleCount - number of sample points to load into RAM
722 * @returns buffer_t structure with start address and size of
723 * the cached sample data in bytes
724 * @see ReleaseSampleData(), Read(), SetPos()
725 */
726 buffer_t Sample::LoadSampleData(file_offset_t SampleCount) {
727 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
728 }
729
730 /**
731 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
732 * ReleaseSampleData() to free the memory if you don't need the cached
733 * sample data anymore.
734 * The method will add \a NullSamplesCount silence samples past the
735 * official buffer end (this won't affect the 'Size' member of the
736 * buffer_t structure, that means 'Size' always reflects the size of the
737 * actual sample data, the buffer might be bigger though). Silence
738 * samples past the official buffer are needed for differential
739 * algorithms that always have to take subsequent samples into account
740 * (resampling/interpolation would be an important example) and avoids
741 * memory access faults in such cases.
742 *
743 * @param NullSamplesCount - number of silence samples the buffer should
744 * be extended past it's data end
745 * @returns buffer_t structure with start address and
746 * size of the buffer in bytes
747 * @see ReleaseSampleData(), Read(), SetPos()
748 */
749 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
750 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
751 }
752
753 /**
754 * Reads (uncompresses if needed) and caches the first \a SampleCount
755 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
756 * memory space if you don't need the cached samples anymore. There is no
757 * guarantee that exactly \a SampleCount samples will be cached; this is
758 * not an error. The size will be eventually truncated e.g. to the
759 * beginning of a frame of a compressed sample. This is done for
760 * efficiency reasons while streaming the wave by your sampler engine
761 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
762 * that will be returned to determine the actual cached samples, but note
763 * that the size is given in bytes! You get the number of actually cached
764 * samples by dividing it by the frame size of the sample:
765 * @code
766 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
767 * long cachedsamples = buf.Size / pSample->FrameSize;
768 * @endcode
769 * The method will add \a NullSamplesCount silence samples past the
770 * official buffer end (this won't affect the 'Size' member of the
771 * buffer_t structure, that means 'Size' always reflects the size of the
772 * actual sample data, the buffer might be bigger though). Silence
773 * samples past the official buffer are needed for differential
774 * algorithms that always have to take subsequent samples into account
775 * (resampling/interpolation would be an important example) and avoids
776 * memory access faults in such cases.
777 *
778 * @param SampleCount - number of sample points to load into RAM
779 * @param NullSamplesCount - number of silence samples the buffer should
780 * be extended past it's data end
781 * @returns buffer_t structure with start address and
782 * size of the cached sample data in bytes
783 * @see ReleaseSampleData(), Read(), SetPos()
784 */
785 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount) {
786 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
787 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
788 file_offset_t allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
789 SetPos(0); // reset read position to begin of sample
790 RAMCache.pStart = new int8_t[allocationsize];
791 RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
792 RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
793 // fill the remaining buffer space with silence samples
794 memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
795 return GetCache();
796 }
797
798 /**
799 * Returns current cached sample points. A buffer_t structure will be
800 * returned which contains address pointer to the begin of the cache and
801 * the size of the cached sample data in bytes. Use
802 * <i>LoadSampleData()</i> to cache a specific amount of sample points in
803 * RAM.
804 *
805 * @returns buffer_t structure with current cached sample points
806 * @see LoadSampleData();
807 */
808 buffer_t Sample::GetCache() {
809 // return a copy of the buffer_t structure
810 buffer_t result;
811 result.Size = this->RAMCache.Size;
812 result.pStart = this->RAMCache.pStart;
813 result.NullExtensionSize = this->RAMCache.NullExtensionSize;
814 return result;
815 }
816
817 /**
818 * Frees the cached sample from RAM if loaded with
819 * <i>LoadSampleData()</i> previously.
820 *
821 * @see LoadSampleData();
822 */
823 void Sample::ReleaseSampleData() {
824 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
825 RAMCache.pStart = NULL;
826 RAMCache.Size = 0;
827 RAMCache.NullExtensionSize = 0;
828 }
829
830 /** @brief Resize sample.
831 *
832 * Resizes the sample's wave form data, that is the actual size of
833 * sample wave data possible to be written for this sample. This call
834 * will return immediately and just schedule the resize operation. You
835 * should call File::Save() to actually perform the resize operation(s)
836 * "physically" to the file. As this can take a while on large files, it
837 * is recommended to call Resize() first on all samples which have to be
838 * resized and finally to call File::Save() to perform all those resize
839 * operations in one rush.
840 *
841 * The actual size (in bytes) is dependant to the current FrameSize
842 * value. You may want to set FrameSize before calling Resize().
843 *
844 * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
845 * enlarged samples before calling File::Save() as this might exceed the
846 * current sample's boundary!
847 *
848 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
849 * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
850 * other formats will fail!
851 *
852 * @param NewSize - new sample wave data size in sample points (must be
853 * greater than zero)
854 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
855 * @throws DLS::Exception if \a NewSize is less than 1 or unrealistic large
856 * @throws gig::Exception if existing sample is compressed
857 * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
858 * DLS::Sample::FormatTag, File::Save()
859 */
860 void Sample::Resize(file_offset_t NewSize) {
861 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
862 DLS::Sample::Resize(NewSize);
863 }
864
865 /**
866 * Sets the position within the sample (in sample points, not in
867 * bytes). Use this method and <i>Read()</i> if you don't want to load
868 * the sample into RAM, thus for disk streaming.
869 *
870 * Although the original Gigasampler engine doesn't allow positioning
871 * within compressed samples, I decided to implement it. Even though
872 * the Gigasampler format doesn't allow to define loops for compressed
873 * samples at the moment, positioning within compressed samples might be
874 * interesting for some sampler engines though. The only drawback about
875 * my decision is that it takes longer to load compressed gig Files on
876 * startup, because it's neccessary to scan the samples for some
877 * mandatory informations. But I think as it doesn't affect the runtime
878 * efficiency, nobody will have a problem with that.
879 *
880 * @param SampleCount number of sample points to jump
881 * @param Whence optional: to which relation \a SampleCount refers
882 * to, if omited <i>RIFF::stream_start</i> is assumed
883 * @returns the new sample position
884 * @see Read()
885 */
886 file_offset_t Sample::SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence) {
887 if (Compressed) {
888 switch (Whence) {
889 case RIFF::stream_curpos:
890 this->SamplePos += SampleCount;
891 break;
892 case RIFF::stream_end:
893 this->SamplePos = this->SamplesTotal - 1 - SampleCount;
894 break;
895 case RIFF::stream_backward:
896 this->SamplePos -= SampleCount;
897 break;
898 case RIFF::stream_start: default:
899 this->SamplePos = SampleCount;
900 break;
901 }
902 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
903
904 file_offset_t frame = this->SamplePos / 2048; // to which frame to jump
905 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
906 pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
907 return this->SamplePos;
908 }
909 else { // not compressed
910 file_offset_t orderedBytes = SampleCount * this->FrameSize;
911 file_offset_t result = pCkData->SetPos(orderedBytes, Whence);
912 return (result == orderedBytes) ? SampleCount
913 : result / this->FrameSize;
914 }
915 }
916
917 /**
918 * Returns the current position in the sample (in sample points).
919 */
920 file_offset_t Sample::GetPos() const {
921 if (Compressed) return SamplePos;
922 else return pCkData->GetPos() / FrameSize;
923 }
924
925 /**
926 * Reads \a SampleCount number of sample points from the position stored
927 * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
928 * the position within the sample respectively, this method honors the
929 * looping informations of the sample (if any). The sample wave stream
930 * will be decompressed on the fly if using a compressed sample. Use this
931 * method if you don't want to load the sample into RAM, thus for disk
932 * streaming. All this methods needs to know to proceed with streaming
933 * for the next time you call this method is stored in \a pPlaybackState.
934 * You have to allocate and initialize the playback_state_t structure by
935 * yourself before you use it to stream a sample:
936 * @code
937 * gig::playback_state_t playbackstate;
938 * playbackstate.position = 0;
939 * playbackstate.reverse = false;
940 * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
941 * @endcode
942 * You don't have to take care of things like if there is actually a loop
943 * defined or if the current read position is located within a loop area.
944 * The method already handles such cases by itself.
945 *
946 * <b>Caution:</b> If you are using more than one streaming thread, you
947 * have to use an external decompression buffer for <b>EACH</b>
948 * streaming thread to avoid race conditions and crashes!
949 *
950 * @param pBuffer destination buffer
951 * @param SampleCount number of sample points to read
952 * @param pPlaybackState will be used to store and reload the playback
953 * state for the next ReadAndLoop() call
954 * @param pDimRgn dimension region with looping information
955 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
956 * @returns number of successfully read sample points
957 * @see CreateDecompressionBuffer()
958 */
959 file_offset_t Sample::ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState,
960 DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
961 file_offset_t samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
962 uint8_t* pDst = (uint8_t*) pBuffer;
963
964 SetPos(pPlaybackState->position); // recover position from the last time
965
966 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
967
968 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
969 const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
970
971 if (GetPos() <= loopEnd) {
972 switch (loop.LoopType) {
973
974 case loop_type_bidirectional: { //TODO: not tested yet!
975 do {
976 // if not endless loop check if max. number of loop cycles have been passed
977 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
978
979 if (!pPlaybackState->reverse) { // forward playback
980 do {
981 samplestoloopend = loopEnd - GetPos();
982 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
983 samplestoread -= readsamples;
984 totalreadsamples += readsamples;
985 if (readsamples == samplestoloopend) {
986 pPlaybackState->reverse = true;
987 break;
988 }
989 } while (samplestoread && readsamples);
990 }
991 else { // backward playback
992
993 // as we can only read forward from disk, we have to
994 // determine the end position within the loop first,
995 // read forward from that 'end' and finally after
996 // reading, swap all sample frames so it reflects
997 // backward playback
998
999 file_offset_t swapareastart = totalreadsamples;
1000 file_offset_t loopoffset = GetPos() - loop.LoopStart;
1001 file_offset_t samplestoreadinloop = Min(samplestoread, loopoffset);
1002 file_offset_t reverseplaybackend = GetPos() - samplestoreadinloop;
1003
1004 SetPos(reverseplaybackend);
1005
1006 // read samples for backward playback
1007 do {
1008 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
1009 samplestoreadinloop -= readsamples;
1010 samplestoread -= readsamples;
1011 totalreadsamples += readsamples;
1012 } while (samplestoreadinloop && readsamples);
1013
1014 SetPos(reverseplaybackend); // pretend we really read backwards
1015
1016 if (reverseplaybackend == loop.LoopStart) {
1017 pPlaybackState->loop_cycles_left--;
1018 pPlaybackState->reverse = false;
1019 }
1020
1021 // reverse the sample frames for backward playback
1022 if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
1023 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1024 }
1025 } while (samplestoread && readsamples);
1026 break;
1027 }
1028
1029 case loop_type_backward: { // TODO: not tested yet!
1030 // forward playback (not entered the loop yet)
1031 if (!pPlaybackState->reverse) do {
1032 samplestoloopend = loopEnd - GetPos();
1033 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1034 samplestoread -= readsamples;
1035 totalreadsamples += readsamples;
1036 if (readsamples == samplestoloopend) {
1037 pPlaybackState->reverse = true;
1038 break;
1039 }
1040 } while (samplestoread && readsamples);
1041
1042 if (!samplestoread) break;
1043
1044 // as we can only read forward from disk, we have to
1045 // determine the end position within the loop first,
1046 // read forward from that 'end' and finally after
1047 // reading, swap all sample frames so it reflects
1048 // backward playback
1049
1050 file_offset_t swapareastart = totalreadsamples;
1051 file_offset_t loopoffset = GetPos() - loop.LoopStart;
1052 file_offset_t samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1053 : samplestoread;
1054 file_offset_t reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1055
1056 SetPos(reverseplaybackend);
1057
1058 // read samples for backward playback
1059 do {
1060 // if not endless loop check if max. number of loop cycles have been passed
1061 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1062 samplestoloopend = loopEnd - GetPos();
1063 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1064 samplestoreadinloop -= readsamples;
1065 samplestoread -= readsamples;
1066 totalreadsamples += readsamples;
1067 if (readsamples == samplestoloopend) {
1068 pPlaybackState->loop_cycles_left--;
1069 SetPos(loop.LoopStart);
1070 }
1071 } while (samplestoreadinloop && readsamples);
1072
1073 SetPos(reverseplaybackend); // pretend we really read backwards
1074
1075 // reverse the sample frames for backward playback
1076 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1077 break;
1078 }
1079
1080 default: case loop_type_normal: {
1081 do {
1082 // if not endless loop check if max. number of loop cycles have been passed
1083 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1084 samplestoloopend = loopEnd - GetPos();
1085 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1086 samplestoread -= readsamples;
1087 totalreadsamples += readsamples;
1088 if (readsamples == samplestoloopend) {
1089 pPlaybackState->loop_cycles_left--;
1090 SetPos(loop.LoopStart);
1091 }
1092 } while (samplestoread && readsamples);
1093 break;
1094 }
1095 }
1096 }
1097 }
1098
1099 // read on without looping
1100 if (samplestoread) do {
1101 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
1102 samplestoread -= readsamples;
1103 totalreadsamples += readsamples;
1104 } while (readsamples && samplestoread);
1105
1106 // store current position
1107 pPlaybackState->position = GetPos();
1108
1109 return totalreadsamples;
1110 }
1111
1112 /**
1113 * Reads \a SampleCount number of sample points from the current
1114 * position into the buffer pointed by \a pBuffer and increments the
1115 * position within the sample. The sample wave stream will be
1116 * decompressed on the fly if using a compressed sample. Use this method
1117 * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1118 * thus for disk streaming.
1119 *
1120 * <b>Caution:</b> If you are using more than one streaming thread, you
1121 * have to use an external decompression buffer for <b>EACH</b>
1122 * streaming thread to avoid race conditions and crashes!
1123 *
1124 * For 16 bit samples, the data in the buffer will be int16_t
1125 * (using native endianness). For 24 bit, the buffer will
1126 * contain three bytes per sample, little-endian.
1127 *
1128 * @param pBuffer destination buffer
1129 * @param SampleCount number of sample points to read
1130 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
1131 * @returns number of successfully read sample points
1132 * @see SetPos(), CreateDecompressionBuffer()
1133 */
1134 file_offset_t Sample::Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer) {
1135 if (SampleCount == 0) return 0;
1136 if (!Compressed) {
1137 if (BitDepth == 24) {
1138 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1139 }
1140 else { // 16 bit
1141 // (pCkData->Read does endian correction)
1142 return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1143 : pCkData->Read(pBuffer, SampleCount, 2);
1144 }
1145 }
1146 else {
1147 if (this->SamplePos >= this->SamplesTotal) return 0;
1148 //TODO: efficiency: maybe we should test for an average compression rate
1149 file_offset_t assumedsize = GuessSize(SampleCount),
1150 remainingbytes = 0, // remaining bytes in the local buffer
1151 remainingsamples = SampleCount,
1152 copysamples, skipsamples,
1153 currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
1154 this->FrameOffset = 0;
1155
1156 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1157
1158 // if decompression buffer too small, then reduce amount of samples to read
1159 if (pDecompressionBuffer->Size < assumedsize) {
1160 std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1161 SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1162 remainingsamples = SampleCount;
1163 assumedsize = GuessSize(SampleCount);
1164 }
1165
1166 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1167 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1168 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1169 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1170
1171 while (remainingsamples && remainingbytes) {
1172 file_offset_t framesamples = SamplesPerFrame;
1173 file_offset_t framebytes, rightChannelOffset = 0, nextFrameOffset;
1174
1175 int mode_l = *pSrc++, mode_r = 0;
1176
1177 if (Channels == 2) {
1178 mode_r = *pSrc++;
1179 framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1180 rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1181 nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1182 if (remainingbytes < framebytes) { // last frame in sample
1183 framesamples = SamplesInLastFrame;
1184 if (mode_l == 4 && (framesamples & 1)) {
1185 rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1186 }
1187 else {
1188 rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1189 }
1190 }
1191 }
1192 else {
1193 framebytes = bytesPerFrame[mode_l] + 1;
1194 nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1195 if (remainingbytes < framebytes) {
1196 framesamples = SamplesInLastFrame;
1197 }
1198 }
1199
1200 // determine how many samples in this frame to skip and read
1201 if (currentframeoffset + remainingsamples >= framesamples) {
1202 if (currentframeoffset <= framesamples) {
1203 copysamples = framesamples - currentframeoffset;
1204 skipsamples = currentframeoffset;
1205 }
1206 else {
1207 copysamples = 0;
1208 skipsamples = framesamples;
1209 }
1210 }
1211 else {
1212 // This frame has enough data for pBuffer, but not
1213 // all of the frame is needed. Set file position
1214 // to start of this frame for next call to Read.
1215 copysamples = remainingsamples;
1216 skipsamples = currentframeoffset;
1217 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1218 this->FrameOffset = currentframeoffset + copysamples;
1219 }
1220 remainingsamples -= copysamples;
1221
1222 if (remainingbytes > framebytes) {
1223 remainingbytes -= framebytes;
1224 if (remainingsamples == 0 &&
1225 currentframeoffset + copysamples == framesamples) {
1226 // This frame has enough data for pBuffer, and
1227 // all of the frame is needed. Set file
1228 // position to start of next frame for next
1229 // call to Read. FrameOffset is 0.
1230 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1231 }
1232 }
1233 else remainingbytes = 0;
1234
1235 currentframeoffset -= skipsamples;
1236
1237 if (copysamples == 0) {
1238 // skip this frame
1239 pSrc += framebytes - Channels;
1240 }
1241 else {
1242 const unsigned char* const param_l = pSrc;
1243 if (BitDepth == 24) {
1244 if (mode_l != 2) pSrc += 12;
1245
1246 if (Channels == 2) { // Stereo
1247 const unsigned char* const param_r = pSrc;
1248 if (mode_r != 2) pSrc += 12;
1249
1250 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1251 skipsamples, copysamples, TruncatedBits);
1252 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1253 skipsamples, copysamples, TruncatedBits);
1254 pDst24 += copysamples * 6;
1255 }
1256 else { // Mono
1257 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1258 skipsamples, copysamples, TruncatedBits);
1259 pDst24 += copysamples * 3;
1260 }
1261 }
1262 else { // 16 bit
1263 if (mode_l) pSrc += 4;
1264
1265 int step;
1266 if (Channels == 2) { // Stereo
1267 const unsigned char* const param_r = pSrc;
1268 if (mode_r) pSrc += 4;
1269
1270 step = (2 - mode_l) + (2 - mode_r);
1271 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1272 Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1273 skipsamples, copysamples);
1274 pDst += copysamples << 1;
1275 }
1276 else { // Mono
1277 step = 2 - mode_l;
1278 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1279 pDst += copysamples;
1280 }
1281 }
1282 pSrc += nextFrameOffset;
1283 }
1284
1285 // reload from disk to local buffer if needed
1286 if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1287 assumedsize = GuessSize(remainingsamples);
1288 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1289 if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1290 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1291 pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1292 }
1293 } // while
1294
1295 this->SamplePos += (SampleCount - remainingsamples);
1296 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1297 return (SampleCount - remainingsamples);
1298 }
1299 }
1300
1301 /** @brief Write sample wave data.
1302 *
1303 * Writes \a SampleCount number of sample points from the buffer pointed
1304 * by \a pBuffer and increments the position within the sample. Use this
1305 * method to directly write the sample data to disk, i.e. if you don't
1306 * want or cannot load the whole sample data into RAM.
1307 *
1308 * You have to Resize() the sample to the desired size and call
1309 * File::Save() <b>before</b> using Write().
1310 *
1311 * Note: there is currently no support for writing compressed samples.
1312 *
1313 * For 16 bit samples, the data in the source buffer should be
1314 * int16_t (using native endianness). For 24 bit, the buffer
1315 * should contain three bytes per sample, little-endian.
1316 *
1317 * @param pBuffer - source buffer
1318 * @param SampleCount - number of sample points to write
1319 * @throws DLS::Exception if current sample size is too small
1320 * @throws gig::Exception if sample is compressed
1321 * @see DLS::LoadSampleData()
1322 */
1323 file_offset_t Sample::Write(void* pBuffer, file_offset_t SampleCount) {
1324 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1325
1326 // if this is the first write in this sample, reset the
1327 // checksum calculator
1328 if (pCkData->GetPos() == 0) {
1329 __resetCRC(crc);
1330 }
1331 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1332 file_offset_t res;
1333 if (BitDepth == 24) {
1334 res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1335 } else { // 16 bit
1336 res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1337 : pCkData->Write(pBuffer, SampleCount, 2);
1338 }
1339 __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1340
1341 // if this is the last write, update the checksum chunk in the
1342 // file
1343 if (pCkData->GetPos() == pCkData->GetSize()) {
1344 __finalizeCRC(crc);
1345 File* pFile = static_cast<File*>(GetParent());
1346 pFile->SetSampleChecksum(this, crc);
1347 }
1348 return res;
1349 }
1350
1351 /**
1352 * Allocates a decompression buffer for streaming (compressed) samples
1353 * with Sample::Read(). If you are using more than one streaming thread
1354 * in your application you <b>HAVE</b> to create a decompression buffer
1355 * for <b>EACH</b> of your streaming threads and provide it with the
1356 * Sample::Read() call in order to avoid race conditions and crashes.
1357 *
1358 * You should free the memory occupied by the allocated buffer(s) once
1359 * you don't need one of your streaming threads anymore by calling
1360 * DestroyDecompressionBuffer().
1361 *
1362 * @param MaxReadSize - the maximum size (in sample points) you ever
1363 * expect to read with one Read() call
1364 * @returns allocated decompression buffer
1365 * @see DestroyDecompressionBuffer()
1366 */
1367 buffer_t Sample::CreateDecompressionBuffer(file_offset_t MaxReadSize) {
1368 buffer_t result;
1369 const double worstCaseHeaderOverhead =
1370 (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1371 result.Size = (file_offset_t) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1372 result.pStart = new int8_t[result.Size];
1373 result.NullExtensionSize = 0;
1374 return result;
1375 }
1376
1377 /**
1378 * Free decompression buffer, previously created with
1379 * CreateDecompressionBuffer().
1380 *
1381 * @param DecompressionBuffer - previously allocated decompression
1382 * buffer to free
1383 */
1384 void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1385 if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1386 delete[] (int8_t*) DecompressionBuffer.pStart;
1387 DecompressionBuffer.pStart = NULL;
1388 DecompressionBuffer.Size = 0;
1389 DecompressionBuffer.NullExtensionSize = 0;
1390 }
1391 }
1392
1393 /**
1394 * Returns pointer to the Group this Sample belongs to. In the .gig
1395 * format a sample always belongs to one group. If it wasn't explicitly
1396 * assigned to a certain group, it will be automatically assigned to a
1397 * default group.
1398 *
1399 * @returns Sample's Group (never NULL)
1400 */
1401 Group* Sample::GetGroup() const {
1402 return pGroup;
1403 }
1404
1405 /**
1406 * Returns the CRC-32 checksum of the sample's raw wave form data at the
1407 * time when this sample's wave form data was modified for the last time
1408 * by calling Write(). This checksum only covers the raw wave form data,
1409 * not any meta informations like i.e. bit depth or loop points. Since
1410 * this method just returns the checksum stored for this sample i.e. when
1411 * the gig file was loaded, this method returns immediately. So it does no
1412 * recalcuation of the checksum with the currently available sample wave
1413 * form data.
1414 *
1415 * @see VerifyWaveData()
1416 */
1417 uint32_t Sample::GetWaveDataCRC32Checksum() {
1418 return crc;
1419 }
1420
1421 /**
1422 * Checks the integrity of this sample's raw audio wave data. Whenever a
1423 * Sample's raw wave data is intentionally modified (i.e. by calling
1424 * Write() and supplying the new raw audio wave form data) a CRC32 checksum
1425 * is calculated and stored/updated for this sample, along to the sample's
1426 * meta informations.
1427 *
1428 * Now by calling this method the current raw audio wave data is checked
1429 * against the already stored CRC32 check sum in order to check whether the
1430 * sample data had been damaged unintentionally for some reason. Since by
1431 * calling this method always the entire raw audio wave data has to be
1432 * read, verifying all samples this way may take a long time accordingly.
1433 * And that's also the reason why the sample integrity is not checked by
1434 * default whenever a gig file is loaded. So this method must be called
1435 * explicitly to fulfill this task.
1436 *
1437 * @param pActually - (optional) if provided, will be set to the actually
1438 * calculated checksum of the current raw wave form data,
1439 * you can get the expected checksum instead by calling
1440 * GetWaveDataCRC32Checksum()
1441 * @returns true if sample is OK or false if the sample is damaged
1442 * @throws Exception if no checksum had been stored to disk for this
1443 * sample yet, or on I/O issues
1444 * @see GetWaveDataCRC32Checksum()
1445 */
1446 bool Sample::VerifyWaveData(uint32_t* pActually) {
1447 //File* pFile = static_cast<File*>(GetParent());
1448 uint32_t crc = CalculateWaveDataChecksum();
1449 if (pActually) *pActually = crc;
1450 return crc == this->crc;
1451 }
1452
1453 uint32_t Sample::CalculateWaveDataChecksum() {
1454 const size_t sz = 20*1024; // 20kB buffer size
1455 std::vector<uint8_t> buffer(sz);
1456 buffer.resize(sz);
1457
1458 const size_t n = sz / FrameSize;
1459 SetPos(0);
1460 uint32_t crc = 0;
1461 __resetCRC(crc);
1462 while (true) {
1463 file_offset_t nRead = Read(&buffer[0], n);
1464 if (nRead <= 0) break;
1465 __calculateCRC(&buffer[0], nRead * FrameSize, crc);
1466 }
1467 __finalizeCRC(crc);
1468 return crc;
1469 }
1470
1471 Sample::~Sample() {
1472 Instances--;
1473 if (!Instances && InternalDecompressionBuffer.Size) {
1474 delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1475 InternalDecompressionBuffer.pStart = NULL;
1476 InternalDecompressionBuffer.Size = 0;
1477 }
1478 if (FrameTable) delete[] FrameTable;
1479 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1480 }
1481
1482
1483
1484 // *************** DimensionRegion ***************
1485 // *
1486
1487 size_t DimensionRegion::Instances = 0;
1488 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1489
1490 DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1491 Instances++;
1492
1493 pSample = NULL;
1494 pRegion = pParent;
1495
1496 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1497 else memset(&Crossfade, 0, 4);
1498
1499 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1500
1501 RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1502 if (_3ewa) { // if '3ewa' chunk exists
1503 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1504 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1505 EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1506 _3ewa->ReadInt16(); // unknown
1507 LFO1InternalDepth = _3ewa->ReadUint16();
1508 _3ewa->ReadInt16(); // unknown
1509 LFO3InternalDepth = _3ewa->ReadInt16();
1510 _3ewa->ReadInt16(); // unknown
1511 LFO1ControlDepth = _3ewa->ReadUint16();
1512 _3ewa->ReadInt16(); // unknown
1513 LFO3ControlDepth = _3ewa->ReadInt16();
1514 EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1515 EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1516 _3ewa->ReadInt16(); // unknown
1517 EG1Sustain = _3ewa->ReadUint16();
1518 EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1519 EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1520 uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1521 EG1ControllerInvert = eg1ctrloptions & 0x01;
1522 EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1523 EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1524 EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1525 EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1526 uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1527 EG2ControllerInvert = eg2ctrloptions & 0x01;
1528 EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1529 EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1530 EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1531 LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1532 EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1533 EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1534 _3ewa->ReadInt16(); // unknown
1535 EG2Sustain = _3ewa->ReadUint16();
1536 EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1537 _3ewa->ReadInt16(); // unknown
1538 LFO2ControlDepth = _3ewa->ReadUint16();
1539 LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1540 _3ewa->ReadInt16(); // unknown
1541 LFO2InternalDepth = _3ewa->ReadUint16();
1542 int32_t eg1decay2 = _3ewa->ReadInt32();
1543 EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1544 EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1545 _3ewa->ReadInt16(); // unknown
1546 EG1PreAttack = _3ewa->ReadUint16();
1547 int32_t eg2decay2 = _3ewa->ReadInt32();
1548 EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1549 EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1550 _3ewa->ReadInt16(); // unknown
1551 EG2PreAttack = _3ewa->ReadUint16();
1552 uint8_t velocityresponse = _3ewa->ReadUint8();
1553 if (velocityresponse < 5) {
1554 VelocityResponseCurve = curve_type_nonlinear;
1555 VelocityResponseDepth = velocityresponse;
1556 } else if (velocityresponse < 10) {
1557 VelocityResponseCurve = curve_type_linear;
1558 VelocityResponseDepth = velocityresponse - 5;
1559 } else if (velocityresponse < 15) {
1560 VelocityResponseCurve = curve_type_special;
1561 VelocityResponseDepth = velocityresponse - 10;
1562 } else {
1563 VelocityResponseCurve = curve_type_unknown;
1564 VelocityResponseDepth = 0;
1565 }
1566 uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1567 if (releasevelocityresponse < 5) {
1568 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1569 ReleaseVelocityResponseDepth = releasevelocityresponse;
1570 } else if (releasevelocityresponse < 10) {
1571 ReleaseVelocityResponseCurve = curve_type_linear;
1572 ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1573 } else if (releasevelocityresponse < 15) {
1574 ReleaseVelocityResponseCurve = curve_type_special;
1575 ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1576 } else {
1577 ReleaseVelocityResponseCurve = curve_type_unknown;
1578 ReleaseVelocityResponseDepth = 0;
1579 }
1580 VelocityResponseCurveScaling = _3ewa->ReadUint8();
1581 AttenuationControllerThreshold = _3ewa->ReadInt8();
1582 _3ewa->ReadInt32(); // unknown
1583 SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1584 _3ewa->ReadInt16(); // unknown
1585 uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1586 PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1587 if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1588 else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1589 else DimensionBypass = dim_bypass_ctrl_none;
1590 uint8_t pan = _3ewa->ReadUint8();
1591 Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1592 SelfMask = _3ewa->ReadInt8() & 0x01;
1593 _3ewa->ReadInt8(); // unknown
1594 uint8_t lfo3ctrl = _3ewa->ReadUint8();
1595 LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1596 LFO3Sync = lfo3ctrl & 0x20; // bit 5
1597 InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1598 AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1599 uint8_t lfo2ctrl = _3ewa->ReadUint8();
1600 LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1601 LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1602 LFO2Sync = lfo2ctrl & 0x20; // bit 5
1603 bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1604 uint8_t lfo1ctrl = _3ewa->ReadUint8();
1605 LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1606 LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1607 LFO1Sync = lfo1ctrl & 0x40; // bit 6
1608 VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1609 : vcf_res_ctrl_none;
1610 uint16_t eg3depth = _3ewa->ReadUint16();
1611 EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1612 : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1613 _3ewa->ReadInt16(); // unknown
1614 ChannelOffset = _3ewa->ReadUint8() / 4;
1615 uint8_t regoptions = _3ewa->ReadUint8();
1616 MSDecode = regoptions & 0x01; // bit 0
1617 SustainDefeat = regoptions & 0x02; // bit 1
1618 _3ewa->ReadInt16(); // unknown
1619 VelocityUpperLimit = _3ewa->ReadInt8();
1620 _3ewa->ReadInt8(); // unknown
1621 _3ewa->ReadInt16(); // unknown
1622 ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1623 _3ewa->ReadInt8(); // unknown
1624 _3ewa->ReadInt8(); // unknown
1625 EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1626 uint8_t vcfcutoff = _3ewa->ReadUint8();
1627 VCFEnabled = vcfcutoff & 0x80; // bit 7
1628 VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1629 VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1630 uint8_t vcfvelscale = _3ewa->ReadUint8();
1631 VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1632 VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1633 _3ewa->ReadInt8(); // unknown
1634 uint8_t vcfresonance = _3ewa->ReadUint8();
1635 VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1636 VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1637 uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1638 VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1639 VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1640 uint8_t vcfvelocity = _3ewa->ReadUint8();
1641 VCFVelocityDynamicRange = vcfvelocity % 5;
1642 VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1643 VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1644 if (VCFType == vcf_type_lowpass) {
1645 if (lfo3ctrl & 0x40) // bit 6
1646 VCFType = vcf_type_lowpassturbo;
1647 }
1648 if (_3ewa->RemainingBytes() >= 8) {
1649 _3ewa->Read(DimensionUpperLimits, 1, 8);
1650 } else {
1651 memset(DimensionUpperLimits, 0, 8);
1652 }
1653 } else { // '3ewa' chunk does not exist yet
1654 // use default values
1655 LFO3Frequency = 1.0;
1656 EG3Attack = 0.0;
1657 LFO1InternalDepth = 0;
1658 LFO3InternalDepth = 0;
1659 LFO1ControlDepth = 0;
1660 LFO3ControlDepth = 0;
1661 EG1Attack = 0.0;
1662 EG1Decay1 = 0.005;
1663 EG1Sustain = 1000;
1664 EG1Release = 0.3;
1665 EG1Controller.type = eg1_ctrl_t::type_none;
1666 EG1Controller.controller_number = 0;
1667 EG1ControllerInvert = false;
1668 EG1ControllerAttackInfluence = 0;
1669 EG1ControllerDecayInfluence = 0;
1670 EG1ControllerReleaseInfluence = 0;
1671 EG2Controller.type = eg2_ctrl_t::type_none;
1672 EG2Controller.controller_number = 0;
1673 EG2ControllerInvert = false;
1674 EG2ControllerAttackInfluence = 0;
1675 EG2ControllerDecayInfluence = 0;
1676 EG2ControllerReleaseInfluence = 0;
1677 LFO1Frequency = 1.0;
1678 EG2Attack = 0.0;
1679 EG2Decay1 = 0.005;
1680 EG2Sustain = 1000;
1681 EG2Release = 60;
1682 LFO2ControlDepth = 0;
1683 LFO2Frequency = 1.0;
1684 LFO2InternalDepth = 0;
1685 EG1Decay2 = 0.0;
1686 EG1InfiniteSustain = true;
1687 EG1PreAttack = 0;
1688 EG2Decay2 = 0.0;
1689 EG2InfiniteSustain = true;
1690 EG2PreAttack = 0;
1691 VelocityResponseCurve = curve_type_nonlinear;
1692 VelocityResponseDepth = 3;
1693 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1694 ReleaseVelocityResponseDepth = 3;
1695 VelocityResponseCurveScaling = 32;
1696 AttenuationControllerThreshold = 0;
1697 SampleStartOffset = 0;
1698 PitchTrack = true;
1699 DimensionBypass = dim_bypass_ctrl_none;
1700 Pan = 0;
1701 SelfMask = true;
1702 LFO3Controller = lfo3_ctrl_modwheel;
1703 LFO3Sync = false;
1704 InvertAttenuationController = false;
1705 AttenuationController.type = attenuation_ctrl_t::type_none;
1706 AttenuationController.controller_number = 0;
1707 LFO2Controller = lfo2_ctrl_internal;
1708 LFO2FlipPhase = false;
1709 LFO2Sync = false;
1710 LFO1Controller = lfo1_ctrl_internal;
1711 LFO1FlipPhase = false;
1712 LFO1Sync = false;
1713 VCFResonanceController = vcf_res_ctrl_none;
1714 EG3Depth = 0;
1715 ChannelOffset = 0;
1716 MSDecode = false;
1717 SustainDefeat = false;
1718 VelocityUpperLimit = 0;
1719 ReleaseTriggerDecay = 0;
1720 EG1Hold = false;
1721 VCFEnabled = false;
1722 VCFCutoff = 0;
1723 VCFCutoffController = vcf_cutoff_ctrl_none;
1724 VCFCutoffControllerInvert = false;
1725 VCFVelocityScale = 0;
1726 VCFResonance = 0;
1727 VCFResonanceDynamic = false;
1728 VCFKeyboardTracking = false;
1729 VCFKeyboardTrackingBreakpoint = 0;
1730 VCFVelocityDynamicRange = 0x04;
1731 VCFVelocityCurve = curve_type_linear;
1732 VCFType = vcf_type_lowpass;
1733 memset(DimensionUpperLimits, 127, 8);
1734 }
1735 // format extension for EG behavior options, these will *NOT* work with
1736 // Gigasampler/GigaStudio !
1737 RIFF::Chunk* lsde = _3ewl->GetSubChunk(CHUNK_ID_LSDE);
1738 if (lsde) {
1739 eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
1740 for (int i = 0; i < 2; ++i) {
1741 unsigned char byte = lsde->ReadUint8();
1742 pEGOpts[i]->AttackCancel = byte & 1;
1743 pEGOpts[i]->AttackHoldCancel = byte & (1 << 1);
1744 pEGOpts[i]->Decay1Cancel = byte & (1 << 2);
1745 pEGOpts[i]->Decay2Cancel = byte & (1 << 3);
1746 pEGOpts[i]->ReleaseCancel = byte & (1 << 4);
1747 }
1748 }
1749
1750 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1751 VelocityResponseDepth,
1752 VelocityResponseCurveScaling);
1753
1754 pVelocityReleaseTable = GetReleaseVelocityTable(
1755 ReleaseVelocityResponseCurve,
1756 ReleaseVelocityResponseDepth
1757 );
1758
1759 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1760 VCFVelocityDynamicRange,
1761 VCFVelocityScale,
1762 VCFCutoffController);
1763
1764 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1765 VelocityTable = 0;
1766 }
1767
1768 /*
1769 * Constructs a DimensionRegion by copying all parameters from
1770 * another DimensionRegion
1771 */
1772 DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1773 Instances++;
1774 //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1775 *this = src; // default memberwise shallow copy of all parameters
1776 pParentList = _3ewl; // restore the chunk pointer
1777
1778 // deep copy of owned structures
1779 if (src.VelocityTable) {
1780 VelocityTable = new uint8_t[128];
1781 for (int k = 0 ; k < 128 ; k++)
1782 VelocityTable[k] = src.VelocityTable[k];
1783 }
1784 if (src.pSampleLoops) {
1785 pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1786 for (int k = 0 ; k < src.SampleLoops ; k++)
1787 pSampleLoops[k] = src.pSampleLoops[k];
1788 }
1789 }
1790
1791 /**
1792 * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1793 * and assign it to this object.
1794 *
1795 * Note that all sample pointers referenced by @a orig are simply copied as
1796 * memory address. Thus the respective samples are shared, not duplicated!
1797 *
1798 * @param orig - original DimensionRegion object to be copied from
1799 */
1800 void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1801 CopyAssign(orig, NULL);
1802 }
1803
1804 /**
1805 * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1806 * and assign it to this object.
1807 *
1808 * @param orig - original DimensionRegion object to be copied from
1809 * @param mSamples - crosslink map between the foreign file's samples and
1810 * this file's samples
1811 */
1812 void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1813 // delete all allocated data first
1814 if (VelocityTable) delete [] VelocityTable;
1815 if (pSampleLoops) delete [] pSampleLoops;
1816
1817 // backup parent list pointer
1818 RIFF::List* p = pParentList;
1819
1820 gig::Sample* pOriginalSample = pSample;
1821 gig::Region* pOriginalRegion = pRegion;
1822
1823 //NOTE: copy code copied from assignment constructor above, see comment there as well
1824
1825 *this = *orig; // default memberwise shallow copy of all parameters
1826
1827 // restore members that shall not be altered
1828 pParentList = p; // restore the chunk pointer
1829 pRegion = pOriginalRegion;
1830
1831 // only take the raw sample reference reference if the
1832 // two DimensionRegion objects are part of the same file
1833 if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1834 pSample = pOriginalSample;
1835 }
1836
1837 if (mSamples && mSamples->count(orig->pSample)) {
1838 pSample = mSamples->find(orig->pSample)->second;
1839 }
1840
1841 // deep copy of owned structures
1842 if (orig->VelocityTable) {
1843 VelocityTable = new uint8_t[128];
1844 for (int k = 0 ; k < 128 ; k++)
1845 VelocityTable[k] = orig->VelocityTable[k];
1846 }
1847 if (orig->pSampleLoops) {
1848 pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1849 for (int k = 0 ; k < orig->SampleLoops ; k++)
1850 pSampleLoops[k] = orig->pSampleLoops[k];
1851 }
1852 }
1853
1854 void DimensionRegion::serialize(Serialization::Archive* archive) {
1855 // in case this class will become backward incompatible one day,
1856 // then set a version and minimum version for this class like:
1857 //archive->setVersion(*this, 2);
1858 //archive->setMinVersion(*this, 1);
1859
1860 SRLZ(VelocityUpperLimit);
1861 SRLZ(EG1PreAttack);
1862 SRLZ(EG1Attack);
1863 SRLZ(EG1Decay1);
1864 SRLZ(EG1Decay2);
1865 SRLZ(EG1InfiniteSustain);
1866 SRLZ(EG1Sustain);
1867 SRLZ(EG1Release);
1868 SRLZ(EG1Hold);
1869 SRLZ(EG1Controller);
1870 SRLZ(EG1ControllerInvert);
1871 SRLZ(EG1ControllerAttackInfluence);
1872 SRLZ(EG1ControllerDecayInfluence);
1873 SRLZ(EG1ControllerReleaseInfluence);
1874 SRLZ(LFO1Frequency);
1875 SRLZ(LFO1InternalDepth);
1876 SRLZ(LFO1ControlDepth);
1877 SRLZ(LFO1Controller);
1878 SRLZ(LFO1FlipPhase);
1879 SRLZ(LFO1Sync);
1880 SRLZ(EG2PreAttack);
1881 SRLZ(EG2Attack);
1882 SRLZ(EG2Decay1);
1883 SRLZ(EG2Decay2);
1884 SRLZ(EG2InfiniteSustain);
1885 SRLZ(EG2Sustain);
1886 SRLZ(EG2Release);
1887 SRLZ(EG2Controller);
1888 SRLZ(EG2ControllerInvert);
1889 SRLZ(EG2ControllerAttackInfluence);
1890 SRLZ(EG2ControllerDecayInfluence);
1891 SRLZ(EG2ControllerReleaseInfluence);
1892 SRLZ(LFO2Frequency);
1893 SRLZ(LFO2InternalDepth);
1894 SRLZ(LFO2ControlDepth);
1895 SRLZ(LFO2Controller);
1896 SRLZ(LFO2FlipPhase);
1897 SRLZ(LFO2Sync);
1898 SRLZ(EG3Attack);
1899 SRLZ(EG3Depth);
1900 SRLZ(LFO3Frequency);
1901 SRLZ(LFO3InternalDepth);
1902 SRLZ(LFO3ControlDepth);
1903 SRLZ(LFO3Controller);
1904 SRLZ(LFO3Sync);
1905 SRLZ(VCFEnabled);
1906 SRLZ(VCFType);
1907 SRLZ(VCFCutoffController);
1908 SRLZ(VCFCutoffControllerInvert);
1909 SRLZ(VCFCutoff);
1910 SRLZ(VCFVelocityCurve);
1911 SRLZ(VCFVelocityScale);
1912 SRLZ(VCFVelocityDynamicRange);
1913 SRLZ(VCFResonance);
1914 SRLZ(VCFResonanceDynamic);
1915 SRLZ(VCFResonanceController);
1916 SRLZ(VCFKeyboardTracking);
1917 SRLZ(VCFKeyboardTrackingBreakpoint);
1918 SRLZ(VelocityResponseCurve);
1919 SRLZ(VelocityResponseDepth);
1920 SRLZ(VelocityResponseCurveScaling);
1921 SRLZ(ReleaseVelocityResponseCurve);
1922 SRLZ(ReleaseVelocityResponseDepth);
1923 SRLZ(ReleaseTriggerDecay);
1924 SRLZ(Crossfade);
1925 SRLZ(PitchTrack);
1926 SRLZ(DimensionBypass);
1927 SRLZ(Pan);
1928 SRLZ(SelfMask);
1929 SRLZ(AttenuationController);
1930 SRLZ(InvertAttenuationController);
1931 SRLZ(AttenuationControllerThreshold);
1932 SRLZ(ChannelOffset);
1933 SRLZ(SustainDefeat);
1934 SRLZ(MSDecode);
1935 //SRLZ(SampleStartOffset);
1936 SRLZ(SampleAttenuation);
1937 SRLZ(EG1Options);
1938 SRLZ(EG2Options);
1939
1940 // derived attributes from DLS::Sampler
1941 SRLZ(FineTune);
1942 SRLZ(Gain);
1943 }
1944
1945 /**
1946 * Updates the respective member variable and updates @c SampleAttenuation
1947 * which depends on this value.
1948 */
1949 void DimensionRegion::SetGain(int32_t gain) {
1950 DLS::Sampler::SetGain(gain);
1951 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1952 }
1953
1954 /**
1955 * Apply dimension region settings to the respective RIFF chunks. You
1956 * have to call File::Save() to make changes persistent.
1957 *
1958 * Usually there is absolutely no need to call this method explicitly.
1959 * It will be called automatically when File::Save() was called.
1960 *
1961 * @param pProgress - callback function for progress notification
1962 */
1963 void DimensionRegion::UpdateChunks(progress_t* pProgress) {
1964 // first update base class's chunk
1965 DLS::Sampler::UpdateChunks(pProgress);
1966
1967 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1968 uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1969 pData[12] = Crossfade.in_start;
1970 pData[13] = Crossfade.in_end;
1971 pData[14] = Crossfade.out_start;
1972 pData[15] = Crossfade.out_end;
1973
1974 // make sure '3ewa' chunk exists
1975 RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1976 if (!_3ewa) {
1977 File* pFile = (File*) GetParent()->GetParent()->GetParent();
1978 bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1979 _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1980 }
1981 pData = (uint8_t*) _3ewa->LoadChunkData();
1982
1983 // update '3ewa' chunk with DimensionRegion's current settings
1984
1985 const uint32_t chunksize = (uint32_t) _3ewa->GetNewSize();
1986 store32(&pData[0], chunksize); // unknown, always chunk size?
1987
1988 const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1989 store32(&pData[4], lfo3freq);
1990
1991 const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1992 store32(&pData[8], eg3attack);
1993
1994 // next 2 bytes unknown
1995
1996 store16(&pData[14], LFO1InternalDepth);
1997
1998 // next 2 bytes unknown
1999
2000 store16(&pData[18], LFO3InternalDepth);
2001
2002 // next 2 bytes unknown
2003
2004 store16(&pData[22], LFO1ControlDepth);
2005
2006 // next 2 bytes unknown
2007
2008 store16(&pData[26], LFO3ControlDepth);
2009
2010 const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
2011 store32(&pData[28], eg1attack);
2012
2013 const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
2014 store32(&pData[32], eg1decay1);
2015
2016 // next 2 bytes unknown
2017
2018 store16(&pData[38], EG1Sustain);
2019
2020 const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
2021 store32(&pData[40], eg1release);
2022
2023 const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
2024 pData[44] = eg1ctl;
2025
2026 const uint8_t eg1ctrloptions =
2027 (EG1ControllerInvert ? 0x01 : 0x00) |
2028 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
2029 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
2030 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
2031 pData[45] = eg1ctrloptions;
2032
2033 const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
2034 pData[46] = eg2ctl;
2035
2036 const uint8_t eg2ctrloptions =
2037 (EG2ControllerInvert ? 0x01 : 0x00) |
2038 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
2039 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
2040 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
2041 pData[47] = eg2ctrloptions;
2042
2043 const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
2044 store32(&pData[48], lfo1freq);
2045
2046 const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
2047 store32(&pData[52], eg2attack);
2048
2049 const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
2050 store32(&pData[56], eg2decay1);
2051
2052 // next 2 bytes unknown
2053
2054 store16(&pData[62], EG2Sustain);
2055
2056 const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
2057 store32(&pData[64], eg2release);
2058
2059 // next 2 bytes unknown
2060
2061 store16(&pData[70], LFO2ControlDepth);
2062
2063 const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
2064 store32(&pData[72], lfo2freq);
2065
2066 // next 2 bytes unknown
2067
2068 store16(&pData[78], LFO2InternalDepth);
2069
2070 const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
2071 store32(&pData[80], eg1decay2);
2072
2073 // next 2 bytes unknown
2074
2075 store16(&pData[86], EG1PreAttack);
2076
2077 const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
2078 store32(&pData[88], eg2decay2);
2079
2080 // next 2 bytes unknown
2081
2082 store16(&pData[94], EG2PreAttack);
2083
2084 {
2085 if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
2086 uint8_t velocityresponse = VelocityResponseDepth;
2087 switch (VelocityResponseCurve) {
2088 case curve_type_nonlinear:
2089 break;
2090 case curve_type_linear:
2091 velocityresponse += 5;
2092 break;
2093 case curve_type_special:
2094 velocityresponse += 10;
2095 break;
2096 case curve_type_unknown:
2097 default:
2098 throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
2099 }
2100 pData[96] = velocityresponse;
2101 }
2102
2103 {
2104 if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
2105 uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
2106 switch (ReleaseVelocityResponseCurve) {
2107 case curve_type_nonlinear:
2108 break;
2109 case curve_type_linear:
2110 releasevelocityresponse += 5;
2111 break;
2112 case curve_type_special:
2113 releasevelocityresponse += 10;
2114 break;
2115 case curve_type_unknown:
2116 default:
2117 throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
2118 }
2119 pData[97] = releasevelocityresponse;
2120 }
2121
2122 pData[98] = VelocityResponseCurveScaling;
2123
2124 pData[99] = AttenuationControllerThreshold;
2125
2126 // next 4 bytes unknown
2127
2128 store16(&pData[104], SampleStartOffset);
2129
2130 // next 2 bytes unknown
2131
2132 {
2133 uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
2134 switch (DimensionBypass) {
2135 case dim_bypass_ctrl_94:
2136 pitchTrackDimensionBypass |= 0x10;
2137 break;
2138 case dim_bypass_ctrl_95:
2139 pitchTrackDimensionBypass |= 0x20;
2140 break;
2141 case dim_bypass_ctrl_none:
2142 //FIXME: should we set anything here?
2143 break;
2144 default:
2145 throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
2146 }
2147 pData[108] = pitchTrackDimensionBypass;
2148 }
2149
2150 const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
2151 pData[109] = pan;
2152
2153 const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
2154 pData[110] = selfmask;
2155
2156 // next byte unknown
2157
2158 {
2159 uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
2160 if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
2161 if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
2162 if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
2163 pData[112] = lfo3ctrl;
2164 }
2165
2166 const uint8_t attenctl = EncodeLeverageController(AttenuationController);
2167 pData[113] = attenctl;
2168
2169 {
2170 uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
2171 if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
2172 if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
2173 if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
2174 pData[114] = lfo2ctrl;
2175 }
2176
2177 {
2178 uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
2179 if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
2180 if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
2181 if (VCFResonanceController != vcf_res_ctrl_none)
2182 lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
2183 pData[115] = lfo1ctrl;
2184 }
2185
2186 const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
2187 : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
2188 store16(&pData[116], eg3depth);
2189
2190 // next 2 bytes unknown
2191
2192 const uint8_t channeloffset = ChannelOffset * 4;
2193 pData[120] = channeloffset;
2194
2195 {
2196 uint8_t regoptions = 0;
2197 if (MSDecode) regoptions |= 0x01; // bit 0
2198 if (SustainDefeat) regoptions |= 0x02; // bit 1
2199 pData[121] = regoptions;
2200 }
2201
2202 // next 2 bytes unknown
2203
2204 pData[124] = VelocityUpperLimit;
2205
2206 // next 3 bytes unknown
2207
2208 pData[128] = ReleaseTriggerDecay;
2209
2210 // next 2 bytes unknown
2211
2212 const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2213 pData[131] = eg1hold;
2214
2215 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
2216 (VCFCutoff & 0x7f); /* lower 7 bits */
2217 pData[132] = vcfcutoff;
2218
2219 pData[133] = VCFCutoffController;
2220
2221 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2222 (VCFVelocityScale & 0x7f); /* lower 7 bits */
2223 pData[134] = vcfvelscale;
2224
2225 // next byte unknown
2226
2227 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2228 (VCFResonance & 0x7f); /* lower 7 bits */
2229 pData[136] = vcfresonance;
2230
2231 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2232 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2233 pData[137] = vcfbreakpoint;
2234
2235 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2236 VCFVelocityCurve * 5;
2237 pData[138] = vcfvelocity;
2238
2239 const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2240 pData[139] = vcftype;
2241
2242 if (chunksize >= 148) {
2243 memcpy(&pData[140], DimensionUpperLimits, 8);
2244 }
2245
2246 // format extension for EG behavior options, these will *NOT* work with
2247 // Gigasampler/GigaStudio !
2248 RIFF::Chunk* lsde = pParentList->GetSubChunk(CHUNK_ID_LSDE);
2249 if (!lsde) {
2250 // only add this "LSDE" chunk if the EG options do not match the
2251 // default EG behavior
2252 eg_opt_t defaultOpt;
2253 if (memcmp(&EG1Options, &defaultOpt, sizeof(eg_opt_t)) ||
2254 memcmp(&EG2Options, &defaultOpt, sizeof(eg_opt_t)))
2255 {
2256 lsde = pParentList->AddSubChunk(CHUNK_ID_LSDE, 2);
2257 // move LSDE chunk to the end of parent list
2258 pParentList->MoveSubChunk(lsde, (RIFF::Chunk*)NULL);
2259 }
2260 }
2261 if (lsde) {
2262 unsigned char* pData = (unsigned char*) lsde->LoadChunkData();
2263 eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
2264 for (int i = 0; i < 2; ++i) {
2265 pData[i] =
2266 (pEGOpts[i]->AttackCancel ? 1 : 0) |
2267 (pEGOpts[i]->AttackHoldCancel ? (1<<1) : 0) |
2268 (pEGOpts[i]->Decay1Cancel ? (1<<2) : 0) |
2269 (pEGOpts[i]->Decay2Cancel ? (1<<3) : 0) |
2270 (pEGOpts[i]->ReleaseCancel ? (1<<4) : 0);
2271 }
2272 }
2273 }
2274
2275 double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2276 curve_type_t curveType = releaseVelocityResponseCurve;
2277 uint8_t depth = releaseVelocityResponseDepth;
2278 // this models a strange behaviour or bug in GSt: two of the
2279 // velocity response curves for release time are not used even
2280 // if specified, instead another curve is chosen.
2281 if ((curveType == curve_type_nonlinear && depth == 0) ||
2282 (curveType == curve_type_special && depth == 4)) {
2283 curveType = curve_type_nonlinear;
2284 depth = 3;
2285 }
2286 return GetVelocityTable(curveType, depth, 0);
2287 }
2288
2289 double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2290 uint8_t vcfVelocityDynamicRange,
2291 uint8_t vcfVelocityScale,
2292 vcf_cutoff_ctrl_t vcfCutoffController)
2293 {
2294 curve_type_t curveType = vcfVelocityCurve;
2295 uint8_t depth = vcfVelocityDynamicRange;
2296 // even stranger GSt: two of the velocity response curves for
2297 // filter cutoff are not used, instead another special curve
2298 // is chosen. This curve is not used anywhere else.
2299 if ((curveType == curve_type_nonlinear && depth == 0) ||
2300 (curveType == curve_type_special && depth == 4)) {
2301 curveType = curve_type_special;
2302 depth = 5;
2303 }
2304 return GetVelocityTable(curveType, depth,
2305 (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2306 ? vcfVelocityScale : 0);
2307 }
2308
2309 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2310 double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2311 {
2312 double* table;
2313 uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2314 if (pVelocityTables->count(tableKey)) { // if key exists
2315 table = (*pVelocityTables)[tableKey];
2316 }
2317 else {
2318 table = CreateVelocityTable(curveType, depth, scaling);
2319 (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
2320 }
2321 return table;
2322 }
2323
2324 Region* DimensionRegion::GetParent() const {
2325 return pRegion;
2326 }
2327
2328 // show error if some _lev_ctrl_* enum entry is not listed in the following function
2329 // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2330 // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2331 //#pragma GCC diagnostic push
2332 //#pragma GCC diagnostic error "-Wswitch"
2333
2334 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2335 leverage_ctrl_t decodedcontroller;
2336 switch (EncodedController) {
2337 // special controller
2338 case _lev_ctrl_none:
2339 decodedcontroller.type = leverage_ctrl_t::type_none;
2340 decodedcontroller.controller_number = 0;
2341 break;
2342 case _lev_ctrl_velocity:
2343 decodedcontroller.type = leverage_ctrl_t::type_velocity;
2344 decodedcontroller.controller_number = 0;
2345 break;
2346 case _lev_ctrl_channelaftertouch:
2347 decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
2348 decodedcontroller.controller_number = 0;
2349 break;
2350
2351 // ordinary MIDI control change controller
2352 case _lev_ctrl_modwheel:
2353 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2354 decodedcontroller.controller_number = 1;
2355 break;
2356 case _lev_ctrl_breath:
2357 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2358 decodedcontroller.controller_number = 2;
2359 break;
2360 case _lev_ctrl_foot:
2361 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2362 decodedcontroller.controller_number = 4;
2363 break;
2364 case _lev_ctrl_effect1:
2365 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2366 decodedcontroller.controller_number = 12;
2367 break;
2368 case _lev_ctrl_effect2:
2369 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2370 decodedcontroller.controller_number = 13;
2371 break;
2372 case _lev_ctrl_genpurpose1:
2373 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2374 decodedcontroller.controller_number = 16;
2375 break;
2376 case _lev_ctrl_genpurpose2:
2377 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2378 decodedcontroller.controller_number = 17;
2379 break;
2380 case _lev_ctrl_genpurpose3:
2381 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2382 decodedcontroller.controller_number = 18;
2383 break;
2384 case _lev_ctrl_genpurpose4:
2385 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2386 decodedcontroller.controller_number = 19;
2387 break;
2388 case _lev_ctrl_portamentotime:
2389 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2390 decodedcontroller.controller_number = 5;
2391 break;
2392 case _lev_ctrl_sustainpedal:
2393 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2394 decodedcontroller.controller_number = 64;
2395 break;
2396 case _lev_ctrl_portamento:
2397 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2398 decodedcontroller.controller_number = 65;
2399 break;
2400 case _lev_ctrl_sostenutopedal:
2401 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2402 decodedcontroller.controller_number = 66;
2403 break;
2404 case _lev_ctrl_softpedal:
2405 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2406 decodedcontroller.controller_number = 67;
2407 break;
2408 case _lev_ctrl_genpurpose5:
2409 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2410 decodedcontroller.controller_number = 80;
2411 break;
2412 case _lev_ctrl_genpurpose6:
2413 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2414 decodedcontroller.controller_number = 81;
2415 break;
2416 case _lev_ctrl_genpurpose7:
2417 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2418 decodedcontroller.controller_number = 82;
2419 break;
2420 case _lev_ctrl_genpurpose8:
2421 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2422 decodedcontroller.controller_number = 83;
2423 break;
2424 case _lev_ctrl_effect1depth:
2425 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2426 decodedcontroller.controller_number = 91;
2427 break;
2428 case _lev_ctrl_effect2depth:
2429 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2430 decodedcontroller.controller_number = 92;
2431 break;
2432 case _lev_ctrl_effect3depth:
2433 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2434 decodedcontroller.controller_number = 93;
2435 break;
2436 case _lev_ctrl_effect4depth:
2437 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2438 decodedcontroller.controller_number = 94;
2439 break;
2440 case _lev_ctrl_effect5depth:
2441 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2442 decodedcontroller.controller_number = 95;
2443 break;
2444
2445 // format extension (these controllers are so far only supported by
2446 // LinuxSampler & gigedit) they will *NOT* work with
2447 // Gigasampler/GigaStudio !
2448 case _lev_ctrl_CC3_EXT:
2449 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2450 decodedcontroller.controller_number = 3;
2451 break;
2452 case _lev_ctrl_CC6_EXT:
2453 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2454 decodedcontroller.controller_number = 6;
2455 break;
2456 case _lev_ctrl_CC7_EXT:
2457 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2458 decodedcontroller.controller_number = 7;
2459 break;
2460 case _lev_ctrl_CC8_EXT:
2461 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2462 decodedcontroller.controller_number = 8;
2463 break;
2464 case _lev_ctrl_CC9_EXT:
2465 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2466 decodedcontroller.controller_number = 9;
2467 break;
2468 case _lev_ctrl_CC10_EXT:
2469 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2470 decodedcontroller.controller_number = 10;
2471 break;
2472 case _lev_ctrl_CC11_EXT:
2473 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2474 decodedcontroller.controller_number = 11;
2475 break;
2476 case _lev_ctrl_CC14_EXT:
2477 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2478 decodedcontroller.controller_number = 14;
2479 break;
2480 case _lev_ctrl_CC15_EXT:
2481 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2482 decodedcontroller.controller_number = 15;
2483 break;
2484 case _lev_ctrl_CC20_EXT:
2485 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2486 decodedcontroller.controller_number = 20;
2487 break;
2488 case _lev_ctrl_CC21_EXT:
2489 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2490 decodedcontroller.controller_number = 21;
2491 break;
2492 case _lev_ctrl_CC22_EXT:
2493 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2494 decodedcontroller.controller_number = 22;
2495 break;
2496 case _lev_ctrl_CC23_EXT:
2497 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2498 decodedcontroller.controller_number = 23;
2499 break;
2500 case _lev_ctrl_CC24_EXT:
2501 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2502 decodedcontroller.controller_number = 24;
2503 break;
2504 case _lev_ctrl_CC25_EXT:
2505 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2506 decodedcontroller.controller_number = 25;
2507 break;
2508 case _lev_ctrl_CC26_EXT:
2509 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2510 decodedcontroller.controller_number = 26;
2511 break;
2512 case _lev_ctrl_CC27_EXT:
2513 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2514 decodedcontroller.controller_number = 27;
2515 break;
2516 case _lev_ctrl_CC28_EXT:
2517 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2518 decodedcontroller.controller_number = 28;
2519 break;
2520 case _lev_ctrl_CC29_EXT:
2521 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2522 decodedcontroller.controller_number = 29;
2523 break;
2524 case _lev_ctrl_CC30_EXT:
2525 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2526 decodedcontroller.controller_number = 30;
2527 break;
2528 case _lev_ctrl_CC31_EXT:
2529 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2530 decodedcontroller.controller_number = 31;
2531 break;
2532 case _lev_ctrl_CC68_EXT:
2533 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2534 decodedcontroller.controller_number = 68;
2535 break;
2536 case _lev_ctrl_CC69_EXT:
2537 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2538 decodedcontroller.controller_number = 69;
2539 break;
2540 case _lev_ctrl_CC70_EXT:
2541 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2542 decodedcontroller.controller_number = 70;
2543 break;
2544 case _lev_ctrl_CC71_EXT:
2545 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2546 decodedcontroller.controller_number = 71;
2547 break;
2548 case _lev_ctrl_CC72_EXT:
2549 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2550 decodedcontroller.controller_number = 72;
2551 break;
2552 case _lev_ctrl_CC73_EXT:
2553 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2554 decodedcontroller.controller_number = 73;
2555 break;
2556 case _lev_ctrl_CC74_EXT:
2557 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2558 decodedcontroller.controller_number = 74;
2559 break;
2560 case _lev_ctrl_CC75_EXT:
2561 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2562 decodedcontroller.controller_number = 75;
2563 break;
2564 case _lev_ctrl_CC76_EXT:
2565 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2566 decodedcontroller.controller_number = 76;
2567 break;
2568 case _lev_ctrl_CC77_EXT:
2569 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2570 decodedcontroller.controller_number = 77;
2571 break;
2572 case _lev_ctrl_CC78_EXT:
2573 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2574 decodedcontroller.controller_number = 78;
2575 break;
2576 case _lev_ctrl_CC79_EXT:
2577 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2578 decodedcontroller.controller_number = 79;
2579 break;
2580 case _lev_ctrl_CC84_EXT:
2581 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2582 decodedcontroller.controller_number = 84;
2583 break;
2584 case _lev_ctrl_CC85_EXT:
2585 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2586 decodedcontroller.controller_number = 85;
2587 break;
2588 case _lev_ctrl_CC86_EXT:
2589 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2590 decodedcontroller.controller_number = 86;
2591 break;
2592 case _lev_ctrl_CC87_EXT:
2593 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2594 decodedcontroller.controller_number = 87;
2595 break;
2596 case _lev_ctrl_CC89_EXT:
2597 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2598 decodedcontroller.controller_number = 89;
2599 break;
2600 case _lev_ctrl_CC90_EXT:
2601 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2602 decodedcontroller.controller_number = 90;
2603 break;
2604 case _lev_ctrl_CC96_EXT:
2605 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2606 decodedcontroller.controller_number = 96;
2607 break;
2608 case _lev_ctrl_CC97_EXT:
2609 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2610 decodedcontroller.controller_number = 97;
2611 break;
2612 case _lev_ctrl_CC102_EXT:
2613 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2614 decodedcontroller.controller_number = 102;
2615 break;
2616 case _lev_ctrl_CC103_EXT:
2617 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2618 decodedcontroller.controller_number = 103;
2619 break;
2620 case _lev_ctrl_CC104_EXT:
2621 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2622 decodedcontroller.controller_number = 104;
2623 break;
2624 case _lev_ctrl_CC105_EXT:
2625 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2626 decodedcontroller.controller_number = 105;
2627 break;
2628 case _lev_ctrl_CC106_EXT:
2629 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2630 decodedcontroller.controller_number = 106;
2631 break;
2632 case _lev_ctrl_CC107_EXT:
2633 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2634 decodedcontroller.controller_number = 107;
2635 break;
2636 case _lev_ctrl_CC108_EXT:
2637 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2638 decodedcontroller.controller_number = 108;
2639 break;
2640 case _lev_ctrl_CC109_EXT:
2641 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2642 decodedcontroller.controller_number = 109;
2643 break;
2644 case _lev_ctrl_CC110_EXT:
2645 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2646 decodedcontroller.controller_number = 110;
2647 break;
2648 case _lev_ctrl_CC111_EXT:
2649 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2650 decodedcontroller.controller_number = 111;
2651 break;
2652 case _lev_ctrl_CC112_EXT:
2653 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2654 decodedcontroller.controller_number = 112;
2655 break;
2656 case _lev_ctrl_CC113_EXT:
2657 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2658 decodedcontroller.controller_number = 113;
2659 break;
2660 case _lev_ctrl_CC114_EXT:
2661 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2662 decodedcontroller.controller_number = 114;
2663 break;
2664 case _lev_ctrl_CC115_EXT:
2665 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2666 decodedcontroller.controller_number = 115;
2667 break;
2668 case _lev_ctrl_CC116_EXT:
2669 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2670 decodedcontroller.controller_number = 116;
2671 break;
2672 case _lev_ctrl_CC117_EXT:
2673 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2674 decodedcontroller.controller_number = 117;
2675 break;
2676 case _lev_ctrl_CC118_EXT:
2677 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2678 decodedcontroller.controller_number = 118;
2679 break;
2680 case _lev_ctrl_CC119_EXT:
2681 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2682 decodedcontroller.controller_number = 119;
2683 break;
2684
2685 // unknown controller type
2686 default:
2687 decodedcontroller.type = leverage_ctrl_t::type_none;
2688 decodedcontroller.controller_number = 0;
2689 printf("Warning: Unknown leverage controller type (0x%x).\n", EncodedController);
2690 break;
2691 }
2692 return decodedcontroller;
2693 }
2694
2695 // see above (diagnostic push not supported prior GCC 4.6)
2696 //#pragma GCC diagnostic pop
2697
2698 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2699 _lev_ctrl_t encodedcontroller;
2700 switch (DecodedController.type) {
2701 // special controller
2702 case leverage_ctrl_t::type_none:
2703 encodedcontroller = _lev_ctrl_none;
2704 break;
2705 case leverage_ctrl_t::type_velocity:
2706 encodedcontroller = _lev_ctrl_velocity;
2707 break;
2708 case leverage_ctrl_t::type_channelaftertouch:
2709 encodedcontroller = _lev_ctrl_channelaftertouch;
2710 break;
2711
2712 // ordinary MIDI control change controller
2713 case leverage_ctrl_t::type_controlchange:
2714 switch (DecodedController.controller_number) {
2715 case 1:
2716 encodedcontroller = _lev_ctrl_modwheel;
2717 break;
2718 case 2:
2719 encodedcontroller = _lev_ctrl_breath;
2720 break;
2721 case 4:
2722 encodedcontroller = _lev_ctrl_foot;
2723 break;
2724 case 12:
2725 encodedcontroller = _lev_ctrl_effect1;
2726 break;
2727 case 13:
2728 encodedcontroller = _lev_ctrl_effect2;
2729 break;
2730 case 16:
2731 encodedcontroller = _lev_ctrl_genpurpose1;
2732 break;
2733 case 17:
2734 encodedcontroller = _lev_ctrl_genpurpose2;
2735 break;
2736 case 18:
2737 encodedcontroller = _lev_ctrl_genpurpose3;
2738 break;
2739 case 19:
2740 encodedcontroller = _lev_ctrl_genpurpose4;
2741 break;
2742 case 5:
2743 encodedcontroller = _lev_ctrl_portamentotime;
2744 break;
2745 case 64:
2746 encodedcontroller = _lev_ctrl_sustainpedal;
2747 break;
2748 case 65:
2749 encodedcontroller = _lev_ctrl_portamento;
2750 break;
2751 case 66:
2752 encodedcontroller = _lev_ctrl_sostenutopedal;
2753 break;
2754 case 67:
2755 encodedcontroller = _lev_ctrl_softpedal;
2756 break;
2757 case 80:
2758 encodedcontroller = _lev_ctrl_genpurpose5;
2759 break;
2760 case 81:
2761 encodedcontroller = _lev_ctrl_genpurpose6;
2762 break;
2763 case 82:
2764 encodedcontroller = _lev_ctrl_genpurpose7;
2765 break;
2766 case 83:
2767 encodedcontroller = _lev_ctrl_genpurpose8;
2768 break;
2769 case 91:
2770 encodedcontroller = _lev_ctrl_effect1depth;
2771 break;
2772 case 92:
2773 encodedcontroller = _lev_ctrl_effect2depth;
2774 break;
2775 case 93:
2776 encodedcontroller = _lev_ctrl_effect3depth;
2777 break;
2778 case 94:
2779 encodedcontroller = _lev_ctrl_effect4depth;
2780 break;
2781 case 95:
2782 encodedcontroller = _lev_ctrl_effect5depth;
2783 break;
2784
2785 // format extension (these controllers are so far only
2786 // supported by LinuxSampler & gigedit) they will *NOT*
2787 // work with Gigasampler/GigaStudio !
2788 case 3:
2789 encodedcontroller = _lev_ctrl_CC3_EXT;
2790 break;
2791 case 6:
2792 encodedcontroller = _lev_ctrl_CC6_EXT;
2793 break;
2794 case 7:
2795 encodedcontroller = _lev_ctrl_CC7_EXT;
2796 break;
2797 case 8:
2798 encodedcontroller = _lev_ctrl_CC8_EXT;
2799 break;
2800 case 9:
2801 encodedcontroller = _lev_ctrl_CC9_EXT;
2802 break;
2803 case 10:
2804 encodedcontroller = _lev_ctrl_CC10_EXT;
2805 break;
2806 case 11:
2807 encodedcontroller = _lev_ctrl_CC11_EXT;
2808 break;
2809 case 14:
2810 encodedcontroller = _lev_ctrl_CC14_EXT;
2811 break;
2812 case 15:
2813 encodedcontroller = _lev_ctrl_CC15_EXT;
2814 break;
2815 case 20:
2816 encodedcontroller = _lev_ctrl_CC20_EXT;
2817 break;
2818 case 21:
2819 encodedcontroller = _lev_ctrl_CC21_EXT;
2820 break;
2821 case 22:
2822 encodedcontroller = _lev_ctrl_CC22_EXT;
2823 break;
2824 case 23:
2825 encodedcontroller = _lev_ctrl_CC23_EXT;
2826 break;
2827 case 24:
2828 encodedcontroller = _lev_ctrl_CC24_EXT;
2829 break;
2830 case 25:
2831 encodedcontroller = _lev_ctrl_CC25_EXT;
2832 break;
2833 case 26:
2834 encodedcontroller = _lev_ctrl_CC26_EXT;
2835 break;
2836 case 27:
2837 encodedcontroller = _lev_ctrl_CC27_EXT;
2838 break;
2839 case 28:
2840 encodedcontroller = _lev_ctrl_CC28_EXT;
2841 break;
2842 case 29:
2843 encodedcontroller = _lev_ctrl_CC29_EXT;
2844 break;
2845 case 30:
2846 encodedcontroller = _lev_ctrl_CC30_EXT;
2847 break;
2848 case 31:
2849 encodedcontroller = _lev_ctrl_CC31_EXT;
2850 break;
2851 case 68:
2852 encodedcontroller = _lev_ctrl_CC68_EXT;
2853 break;
2854 case 69:
2855 encodedcontroller = _lev_ctrl_CC69_EXT;
2856 break;
2857 case 70:
2858 encodedcontroller = _lev_ctrl_CC70_EXT;
2859 break;
2860 case 71:
2861 encodedcontroller = _lev_ctrl_CC71_EXT;
2862 break;
2863 case 72:
2864 encodedcontroller = _lev_ctrl_CC72_EXT;
2865 break;
2866 case 73:
2867 encodedcontroller = _lev_ctrl_CC73_EXT;
2868 break;
2869 case 74:
2870 encodedcontroller = _lev_ctrl_CC74_EXT;
2871 break;
2872 case 75:
2873 encodedcontroller = _lev_ctrl_CC75_EXT;
2874 break;
2875 case 76:
2876 encodedcontroller = _lev_ctrl_CC76_EXT;
2877 break;
2878 case 77:
2879 encodedcontroller = _lev_ctrl_CC77_EXT;
2880 break;
2881 case 78:
2882 encodedcontroller = _lev_ctrl_CC78_EXT;
2883 break;
2884 case 79:
2885 encodedcontroller = _lev_ctrl_CC79_EXT;
2886 break;
2887 case 84:
2888 encodedcontroller = _lev_ctrl_CC84_EXT;
2889 break;
2890 case 85:
2891 encodedcontroller = _lev_ctrl_CC85_EXT;
2892 break;
2893 case 86:
2894 encodedcontroller = _lev_ctrl_CC86_EXT;
2895 break;
2896 case 87:
2897 encodedcontroller = _lev_ctrl_CC87_EXT;
2898 break;
2899 case 89:
2900 encodedcontroller = _lev_ctrl_CC89_EXT;
2901 break;
2902 case 90:
2903 encodedcontroller = _lev_ctrl_CC90_EXT;
2904 break;
2905 case 96:
2906 encodedcontroller = _lev_ctrl_CC96_EXT;
2907 break;
2908 case 97:
2909 encodedcontroller = _lev_ctrl_CC97_EXT;
2910 break;
2911 case 102:
2912 encodedcontroller = _lev_ctrl_CC102_EXT;
2913 break;
2914 case 103:
2915 encodedcontroller = _lev_ctrl_CC103_EXT;
2916 break;
2917 case 104:
2918 encodedcontroller = _lev_ctrl_CC104_EXT;
2919 break;
2920 case 105:
2921 encodedcontroller = _lev_ctrl_CC105_EXT;
2922 break;
2923 case 106:
2924 encodedcontroller = _lev_ctrl_CC106_EXT;
2925 break;
2926 case 107:
2927 encodedcontroller = _lev_ctrl_CC107_EXT;
2928 break;
2929 case 108:
2930 encodedcontroller = _lev_ctrl_CC108_EXT;
2931 break;
2932 case 109:
2933 encodedcontroller = _lev_ctrl_CC109_EXT;
2934 break;
2935 case 110:
2936 encodedcontroller = _lev_ctrl_CC110_EXT;
2937 break;
2938 case 111:
2939 encodedcontroller = _lev_ctrl_CC111_EXT;
2940 break;
2941 case 112:
2942 encodedcontroller = _lev_ctrl_CC112_EXT;
2943 break;
2944 case 113:
2945 encodedcontroller = _lev_ctrl_CC113_EXT;
2946 break;
2947 case 114:
2948 encodedcontroller = _lev_ctrl_CC114_EXT;
2949 break;
2950 case 115:
2951 encodedcontroller = _lev_ctrl_CC115_EXT;
2952 break;
2953 case 116:
2954 encodedcontroller = _lev_ctrl_CC116_EXT;
2955 break;
2956 case 117:
2957 encodedcontroller = _lev_ctrl_CC117_EXT;
2958 break;
2959 case 118:
2960 encodedcontroller = _lev_ctrl_CC118_EXT;
2961 break;
2962 case 119:
2963 encodedcontroller = _lev_ctrl_CC119_EXT;
2964 break;
2965
2966 default:
2967 throw gig::Exception("leverage controller number is not supported by the gig format");
2968 }
2969 break;
2970 default:
2971 throw gig::Exception("Unknown leverage controller type.");
2972 }
2973 return encodedcontroller;
2974 }
2975
2976 DimensionRegion::~DimensionRegion() {
2977 Instances--;
2978 if (!Instances) {
2979 // delete the velocity->volume tables
2980 VelocityTableMap::iterator iter;
2981 for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
2982 double* pTable = iter->second;
2983 if (pTable) delete[] pTable;
2984 }
2985 pVelocityTables->clear();
2986 delete pVelocityTables;
2987 pVelocityTables = NULL;
2988 }
2989 if (VelocityTable) delete[] VelocityTable;
2990 }
2991
2992 /**
2993 * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
2994 * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
2995 * and VelocityResponseCurveScaling) involved are taken into account to
2996 * calculate the amplitude factor. Use this method when a key was
2997 * triggered to get the volume with which the sample should be played
2998 * back.
2999 *
3000 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
3001 * @returns amplitude factor (between 0.0 and 1.0)
3002 */
3003 double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
3004 return pVelocityAttenuationTable[MIDIKeyVelocity];
3005 }
3006
3007 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
3008 return pVelocityReleaseTable[MIDIKeyVelocity];
3009 }
3010
3011 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
3012 return pVelocityCutoffTable[MIDIKeyVelocity];
3013 }
3014
3015 /**
3016 * Updates the respective member variable and the lookup table / cache
3017 * that depends on this value.
3018 */
3019 void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
3020 pVelocityAttenuationTable =
3021 GetVelocityTable(
3022 curve, VelocityResponseDepth, VelocityResponseCurveScaling
3023 );
3024 VelocityResponseCurve = curve;
3025 }
3026
3027 /**
3028 * Updates the respective member variable and the lookup table / cache
3029 * that depends on this value.
3030 */
3031 void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
3032 pVelocityAttenuationTable =
3033 GetVelocityTable(
3034 VelocityResponseCurve, depth, VelocityResponseCurveScaling
3035 );
3036 VelocityResponseDepth = depth;
3037 }
3038
3039 /**
3040 * Updates the respective member variable and the lookup table / cache
3041 * that depends on this value.
3042 */
3043 void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
3044 pVelocityAttenuationTable =
3045 GetVelocityTable(
3046 VelocityResponseCurve, VelocityResponseDepth, scaling
3047 );
3048 VelocityResponseCurveScaling = scaling;
3049 }
3050
3051 /**
3052 * Updates the respective member variable and the lookup table / cache
3053 * that depends on this value.
3054 */
3055 void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
3056 pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
3057 ReleaseVelocityResponseCurve = curve;
3058 }
3059
3060 /**
3061 * Updates the respective member variable and the lookup table / cache
3062 * that depends on this value.
3063 */
3064 void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
3065 pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
3066 ReleaseVelocityResponseDepth = depth;
3067 }
3068
3069 /**
3070 * Updates the respective member variable and the lookup table / cache
3071 * that depends on this value.
3072 */
3073 void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
3074 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
3075 VCFCutoffController = controller;
3076 }
3077
3078 /**
3079 * Updates the respective member variable and the lookup table / cache
3080 * that depends on this value.
3081 */
3082 void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
3083 pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
3084 VCFVelocityCurve = curve;
3085 }
3086
3087 /**
3088 * Updates the respective member variable and the lookup table / cache
3089 * that depends on this value.
3090 */
3091 void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
3092 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
3093 VCFVelocityDynamicRange = range;
3094 }
3095
3096 /**
3097 * Updates the respective member variable and the lookup table / cache
3098 * that depends on this value.
3099 */
3100 void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
3101 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
3102 VCFVelocityScale = scaling;
3103 }
3104
3105 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
3106
3107 // line-segment approximations of the 15 velocity curves
3108
3109 // linear
3110 const int lin0[] = { 1, 1, 127, 127 };
3111 const int lin1[] = { 1, 21, 127, 127 };
3112 const int lin2[] = { 1, 45, 127, 127 };
3113 const int lin3[] = { 1, 74, 127, 127 };
3114 const int lin4[] = { 1, 127, 127, 127 };
3115
3116 // non-linear
3117 const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
3118 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
3119 127, 127 };
3120 const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
3121 127, 127 };
3122 const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
3123 127, 127 };
3124 const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
3125
3126 // special
3127 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
3128 113, 127, 127, 127 };
3129 const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
3130 118, 127, 127, 127 };
3131 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
3132 85, 90, 91, 127, 127, 127 };
3133 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
3134 117, 127, 127, 127 };
3135 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
3136 127, 127 };
3137
3138 // this is only used by the VCF velocity curve
3139 const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
3140 91, 127, 127, 127 };
3141
3142 const int* const curves[] = { non0, non1, non2, non3, non4,
3143 lin0, lin1, lin2, lin3, lin4,
3144 spe0, spe1, spe2, spe3, spe4, spe5 };
3145
3146 double* const table = new double[128];
3147
3148 const int* curve = curves[curveType * 5 + depth];
3149 const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
3150
3151 table[0] = 0;
3152 for (int x = 1 ; x < 128 ; x++) {
3153
3154 if (x > curve[2]) curve += 2;
3155 double y = curve[1] + (x - curve[0]) *
3156 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
3157 y = y / 127;
3158
3159 // Scale up for s > 20, down for s < 20. When
3160 // down-scaling, the curve still ends at 1.0.
3161 if (s < 20 && y >= 0.5)
3162 y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
3163 else
3164 y = y * (s / 20.0);
3165 if (y > 1) y = 1;
3166
3167 table[x] = y;
3168 }
3169 return table;
3170 }
3171
3172
3173 // *************** Region ***************
3174 // *
3175
3176 Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
3177 // Initialization
3178 Dimensions = 0;
3179 for (int i = 0; i < 256; i++) {
3180 pDimensionRegions[i] = NULL;
3181 }
3182 Layers = 1;
3183 File* file = (File*) GetParent()->GetParent();
3184 int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
3185
3186 // Actual Loading
3187
3188 if (!file->GetAutoLoad()) return;
3189
3190 LoadDimensionRegions(rgnList);
3191
3192 RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
3193 if (_3lnk) {
3194 DimensionRegions = _3lnk->ReadUint32();
3195 for (int i = 0; i < dimensionBits; i++) {
3196 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
3197 uint8_t bits = _3lnk->ReadUint8();
3198 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
3199 _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
3200 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
3201 if (dimension == dimension_none) { // inactive dimension
3202 pDimensionDefinitions[i].dimension = dimension_none;
3203 pDimensionDefinitions[i].bits = 0;
3204 pDimensionDefinitions[i].zones = 0;
3205 pDimensionDefinitions[i].split_type = split_type_bit;
3206 pDimensionDefinitions[i].zone_size = 0;
3207 }
3208 else { // active dimension
3209 pDimensionDefinitions[i].dimension = dimension;
3210 pDimensionDefinitions[i].bits = bits;
3211 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
3212 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
3213 pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
3214 Dimensions++;
3215
3216 // if this is a layer dimension, remember the amount of layers
3217 if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
3218 }
3219 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
3220 }
3221 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
3222
3223 // if there's a velocity dimension and custom velocity zone splits are used,
3224 // update the VelocityTables in the dimension regions
3225 UpdateVelocityTable();
3226
3227 // jump to start of the wave pool indices (if not already there)
3228 if (file->pVersion && file->pVersion->major == 3)
3229 _3lnk->SetPos(68); // version 3 has a different 3lnk structure
3230 else
3231 _3lnk->SetPos(44);
3232
3233 // load sample references (if auto loading is enabled)
3234 if (file->GetAutoLoad()) {
3235 for (uint i = 0; i < DimensionRegions; i++) {
3236 uint32_t wavepoolindex = _3lnk->ReadUint32();
3237 if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
3238 }
3239 GetSample(); // load global region sample reference
3240 }
3241 } else {
3242 DimensionRegions = 0;
3243 for (int i = 0 ; i < 8 ; i++) {
3244 pDimensionDefinitions[i].dimension = dimension_none;
3245 pDimensionDefinitions[i].bits = 0;
3246 pDimensionDefinitions[i].zones = 0;
3247 }
3248 }
3249
3250 // make sure there is at least one dimension region
3251 if (!DimensionRegions) {
3252 RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
3253 if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
3254 RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
3255 pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
3256 DimensionRegions = 1;
3257 }
3258 }
3259
3260 /**
3261 * Apply Region settings and all its DimensionRegions to the respective
3262 * RIFF chunks. You have to call File::Save() to make changes persistent.
3263 *
3264 * Usually there is absolutely no need to call this method explicitly.
3265 * It will be called automatically when File::Save() was called.
3266 *
3267 * @param pProgress - callback function for progress notification
3268 * @throws gig::Exception if samples cannot be dereferenced
3269 */
3270 void Region::UpdateChunks(progress_t* pProgress) {
3271 // in the gig format we don't care about the Region's sample reference
3272 // but we still have to provide some existing one to not corrupt the
3273 // file, so to avoid the latter we simply always assign the sample of
3274 // the first dimension region of this region
3275 pSample = pDimensionRegions[0]->pSample;
3276
3277 // first update base class's chunks
3278 DLS::Region::UpdateChunks(pProgress);
3279
3280 // update dimension region's chunks
3281 for (int i = 0; i < DimensionRegions; i++) {
3282 pDimensionRegions[i]->UpdateChunks(pProgress);
3283 }
3284
3285 File* pFile = (File*) GetParent()->GetParent();
3286 bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
3287 const int iMaxDimensions = version3 ? 8 : 5;
3288 const int iMaxDimensionRegions = version3 ? 256 : 32;
3289
3290 // make sure '3lnk' chunk exists
3291 RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3292 if (!_3lnk) {
3293 const int _3lnkChunkSize = version3 ? 1092 : 172;
3294 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3295 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3296
3297 // move 3prg to last position
3298 pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), (RIFF::Chunk*)NULL);
3299 }
3300
3301 // update dimension definitions in '3lnk' chunk
3302 uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3303 store32(&pData[0], DimensionRegions);
3304 int shift = 0;
3305 for (int i = 0; i < iMaxDimensions; i++) {
3306 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3307 pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3308 pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3309 pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3310 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3311 // next 3 bytes unknown, always zero?
3312
3313 shift += pDimensionDefinitions[i].bits;
3314 }
3315
3316 // update wave pool table in '3lnk' chunk
3317 const int iWavePoolOffset = version3 ? 68 : 44;
3318 for (uint i = 0; i < iMaxDimensionRegions; i++) {
3319 int iWaveIndex = -1;
3320 if (i < DimensionRegions) {
3321 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
3322 File::SampleList::iterator iter = pFile->pSamples->begin();
3323 File::SampleList::iterator end = pFile->pSamples->end();
3324 for (int index = 0; iter != end; ++iter, ++index) {
3325 if (*iter == pDimensionRegions[i]->pSample) {
3326 iWaveIndex = index;
3327 break;
3328 }
3329 }
3330 }
3331 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3332 }
3333 }
3334
3335 void Region::LoadDimensionRegions(RIFF::List* rgn) {
3336 RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
3337 if (_3prg) {
3338 int dimensionRegionNr = 0;
3339 RIFF::List* _3ewl = _3prg->GetFirstSubList();
3340 while (_3ewl) {
3341 if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3342 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3343 dimensionRegionNr++;
3344 }
3345 _3ewl = _3prg->GetNextSubList();
3346 }
3347 if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
3348 }
3349 }
3350
3351 void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3352 // update KeyRange struct and make sure regions are in correct order
3353 DLS::Region::SetKeyRange(Low, High);
3354 // update Region key table for fast lookup
3355 ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3356 }
3357
3358 void Region::UpdateVelocityTable() {
3359 // get velocity dimension's index
3360 int veldim = -1;
3361 for (int i = 0 ; i < Dimensions ; i++) {
3362 if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
3363 veldim = i;
3364 break;
3365 }
3366 }
3367 if (veldim == -1) return;
3368
3369 int step = 1;
3370 for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3371 int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
3372
3373 // loop through all dimension regions for all dimensions except the velocity dimension
3374 int dim[8] = { 0 };
3375 for (int i = 0 ; i < DimensionRegions ; i++) {
3376 const int end = i + step * pDimensionDefinitions[veldim].zones;
3377
3378 // create a velocity table for all cases where the velocity zone is zero
3379 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3380 pDimensionRegions[i]->VelocityUpperLimit) {
3381 // create the velocity table
3382 uint8_t* table = pDimensionRegions[i]->VelocityTable;
3383 if (!table) {
3384 table = new uint8_t[128];
3385 pDimensionRegions[i]->VelocityTable = table;
3386 }
3387 int tableidx = 0;
3388 int velocityZone = 0;
3389 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
3390 for (int k = i ; k < end ; k += step) {
3391 DimensionRegion *d = pDimensionRegions[k];
3392 for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
3393 velocityZone++;
3394 }
3395 } else { // gig2
3396 for (int k = i ; k < end ; k += step) {
3397 DimensionRegion *d = pDimensionRegions[k];
3398 for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
3399 velocityZone++;
3400 }
3401 }
3402 } else {
3403 if (pDimensionRegions[i]->VelocityTable) {
3404 delete[] pDimensionRegions[i]->VelocityTable;
3405 pDimensionRegions[i]->VelocityTable = 0;
3406 }
3407 }
3408
3409 // jump to the next case where the velocity zone is zero
3410 int j;
3411 int shift = 0;
3412 for (j = 0 ; j < Dimensions ; j++) {
3413 if (j == veldim) i += skipveldim; // skip velocity dimension
3414 else {
3415 dim[j]++;
3416 if (dim[j] < pDimensionDefinitions[j].zones) break;
3417 else {
3418 // skip unused dimension regions
3419 dim[j] = 0;
3420 i += ((1 << pDimensionDefinitions[j].bits) -
3421 pDimensionDefinitions[j].zones) << shift;
3422 }
3423 }
3424 shift += pDimensionDefinitions[j].bits;
3425 }
3426 if (j == Dimensions) break;
3427 }
3428 }
3429
3430 /** @brief Einstein would have dreamed of it - create a new dimension.
3431 *
3432 * Creates a new dimension with the dimension definition given by
3433 * \a pDimDef. The appropriate amount of DimensionRegions will be created.
3434 * There is a hard limit of dimensions and total amount of "bits" all
3435 * dimensions can have. This limit is dependant to what gig file format
3436 * version this file refers to. The gig v2 (and lower) format has a
3437 * dimension limit and total amount of bits limit of 5, whereas the gig v3
3438 * format has a limit of 8.
3439 *
3440 * @param pDimDef - defintion of the new dimension
3441 * @throws gig::Exception if dimension of the same type exists already
3442 * @throws gig::Exception if amount of dimensions or total amount of
3443 * dimension bits limit is violated
3444 */
3445 void Region::AddDimension(dimension_def_t* pDimDef) {
3446 // some initial sanity checks of the given dimension definition
3447 if (pDimDef->zones < 2)
3448 throw gig::Exception("Could not add new dimension, amount of requested zones must always be at least two");
3449 if (pDimDef->bits < 1)
3450 throw gig::Exception("Could not add new dimension, amount of requested requested zone bits must always be at least one");
3451 if (pDimDef->dimension == dimension_samplechannel) {
3452 if (pDimDef->zones != 2)
3453 throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zones must always be 2 for this dimension type");
3454 if (pDimDef->bits != 1)
3455 throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zone bits must always be 1 for this dimension type");
3456 }
3457
3458 // check if max. amount of dimensions reached
3459 File* file = (File*) GetParent()->GetParent();
3460 const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
3461 if (Dimensions >= iMaxDimensions)
3462 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
3463 // check if max. amount of dimension bits reached
3464 int iCurrentBits = 0;
3465 for (int i = 0; i < Dimensions; i++)
3466 iCurrentBits += pDimensionDefinitions[i].bits;
3467 if (iCurrentBits >= iMaxDimensions)
3468 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
3469 const int iNewBits = iCurrentBits + pDimDef->bits;
3470 if (iNewBits > iMaxDimensions)
3471 throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
3472 // check if there's already a dimensions of the same type
3473 for (int i = 0; i < Dimensions; i++)
3474 if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3475 throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3476
3477 // pos is where the new dimension should be placed, normally
3478 // last in list, except for the samplechannel dimension which
3479 // has to be first in list
3480 int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3481 int bitpos = 0;
3482 for (int i = 0 ; i < pos ; i++)
3483 bitpos += pDimensionDefinitions[i].bits;
3484
3485 // make room for the new dimension
3486 for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3487 for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3488 for (int j = Dimensions ; j > pos ; j--) {
3489 pDimensionRegions[i]->DimensionUpperLimits[j] =
3490 pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3491 }
3492 }
3493
3494 // assign definition of new dimension
3495 pDimensionDefinitions[pos] = *pDimDef;
3496
3497 // auto correct certain dimension definition fields (where possible)
3498 pDimensionDefinitions[pos].split_type =
3499 __resolveSplitType(pDimensionDefinitions[pos].dimension);
3500 pDimensionDefinitions[pos].zone_size =
3501 __resolveZoneSize(pDimensionDefinitions[pos]);
3502
3503 // create new dimension region(s) for this new dimension, and make
3504 // sure that the dimension regions are placed correctly in both the
3505 // RIFF list and the pDimensionRegions array
3506 RIFF::Chunk* moveTo = NULL;
3507 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3508 for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3509 for (int k = 0 ; k < (1 << bitpos) ; k++) {
3510 pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3511 }
3512 for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3513 for (int k = 0 ; k < (1 << bitpos) ; k++) {
3514 RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3515 if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3516 // create a new dimension region and copy all parameter values from
3517 // an existing dimension region
3518 pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3519 new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3520
3521 DimensionRegions++;
3522 }
3523 }
3524 moveTo = pDimensionRegions[i]->pParentList;
3525 }
3526
3527 // initialize the upper limits for this dimension
3528 int mask = (1 << bitpos) - 1;
3529 for (int z = 0 ; z < pDimDef->zones ; z++) {
3530 uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3531 for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3532 pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3533 (z << bitpos) |
3534 (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3535 }
3536 }
3537
3538 Dimensions++;
3539
3540 // if this is a layer dimension, update 'Layers' attribute
3541 if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
3542
3543 UpdateVelocityTable();
3544 }
3545
3546 /** @brief Delete an existing dimension.
3547 *
3548 * Deletes the dimension given by \a pDimDef and deletes all respective
3549 * dimension regions, that is all dimension regions where the dimension's
3550 * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
3551 * for example this would delete all dimension regions for the case(s)
3552 * where the sustain pedal is pressed down.
3553 *
3554 * @param pDimDef - dimension to delete
3555 * @throws gig::Exception if given dimension cannot be found
3556 */
3557 void Region::DeleteDimension(dimension_def_t* pDimDef) {
3558 // get dimension's index
3559 int iDimensionNr = -1;
3560 for (int i = 0; i < Dimensions; i++) {
3561 if (&pDimensionDefinitions[i] == pDimDef) {
3562 iDimensionNr = i;
3563 break;
3564 }
3565 }
3566 if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
3567
3568 // get amount of bits below the dimension to delete
3569 int iLowerBits = 0;
3570 for (int i = 0; i < iDimensionNr; i++)
3571 iLowerBits += pDimensionDefinitions[i].bits;
3572
3573 // get amount ot bits above the dimension to delete
3574 int iUpperBits = 0;
3575 for (int i = iDimensionNr + 1; i < Dimensions; i++)
3576 iUpperBits += pDimensionDefinitions[i].bits;
3577
3578 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3579
3580 // delete dimension regions which belong to the given dimension
3581 // (that is where the dimension's bit > 0)
3582 for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
3583 for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
3584 for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
3585 int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3586 iObsoleteBit << iLowerBits |
3587 iLowerBit;
3588
3589 _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3590 delete pDimensionRegions[iToDelete];
3591 pDimensionRegions[iToDelete] = NULL;
3592 DimensionRegions--;
3593 }
3594 }
3595 }
3596
3597 // defrag pDimensionRegions array
3598 // (that is remove the NULL spaces within the pDimensionRegions array)
3599 for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
3600 if (!pDimensionRegions[iTo]) {
3601 if (iFrom <= iTo) iFrom = iTo + 1;
3602 while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
3603 if (iFrom < 256 && pDimensionRegions[iFrom]) {
3604 pDimensionRegions[iTo] = pDimensionRegions[iFrom];
3605 pDimensionRegions[iFrom] = NULL;
3606 }
3607 }
3608 }
3609
3610 // remove the this dimension from the upper limits arrays
3611 for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3612 DimensionRegion* d = pDimensionRegions[j];
3613 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3614 d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3615 }
3616 d->DimensionUpperLimits[Dimensions - 1] = 127;
3617 }
3618
3619 // 'remove' dimension definition
3620 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3621 pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
3622 }
3623 pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
3624 pDimensionDefinitions[Dimensions - 1].bits = 0;
3625 pDimensionDefinitions[Dimensions - 1].zones = 0;
3626
3627 Dimensions--;
3628
3629 // if this was a layer dimension, update 'Layers' attribute
3630 if (pDimDef->dimension == dimension_layer) Layers = 1;
3631 }
3632
3633 /** @brief Delete one split zone of a dimension (decrement zone amount).
3634 *
3635 * Instead of deleting an entire dimensions, this method will only delete
3636 * one particular split zone given by @a zone of the Region's dimension
3637 * given by @a type. So this method will simply decrement the amount of
3638 * zones by one of the dimension in question. To be able to do that, the
3639 * respective dimension must exist on this Region and it must have at least
3640 * 3 zones. All DimensionRegion objects associated with the zone will be
3641 * deleted.
3642 *
3643 * @param type - identifies the dimension where a zone shall be deleted
3644 * @param zone - index of the dimension split zone that shall be deleted
3645 * @throws gig::Exception if requested zone could not be deleted
3646 */
3647 void Region::DeleteDimensionZone(dimension_t type, int zone) {
3648 dimension_def_t* oldDef = GetDimensionDefinition(type);
3649 if (!oldDef)
3650 throw gig::Exception("Could not delete dimension zone, no such dimension of given type");
3651 if (oldDef->zones <= 2)
3652 throw gig::Exception("Could not delete dimension zone, because it would end up with only one zone.");
3653 if (zone < 0 || zone >= oldDef->zones)
3654 throw gig::Exception("Could not delete dimension zone, requested zone index out of bounds.");
3655
3656 const int newZoneSize = oldDef->zones - 1;
3657
3658 // create a temporary Region which just acts as a temporary copy
3659 // container and will be deleted at the end of this function and will
3660 // also not be visible through the API during this process
3661 gig::Region* tempRgn = NULL;
3662 {
3663 // adding these temporary chunks is probably not even necessary
3664 Instrument* instr = static_cast<Instrument*>(GetParent());
3665 RIFF::List* pCkInstrument = instr->pCkInstrument;
3666 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3667 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3668 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3669 tempRgn = new Region(instr, rgn);
3670 }
3671
3672 // copy this region's dimensions (with already the dimension split size
3673 // requested by the arguments of this method call) to the temporary
3674 // region, and don't use Region::CopyAssign() here for this task, since
3675 // it would also alter fast lookup helper variables here and there
3676 dimension_def_t newDef;
3677 for (int i = 0; i < Dimensions; ++i) {
3678 dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3679 // is this the dimension requested by the method arguments? ...
3680 if (def.dimension == type) { // ... if yes, decrement zone amount by one
3681 def.zones = newZoneSize;
3682 if ((1 << (def.bits - 1)) == def.zones) def.bits--;
3683 newDef = def;
3684 }
3685 tempRgn->AddDimension(&def);
3686 }
3687
3688 // find the dimension index in the tempRegion which is the dimension
3689 // type passed to this method (paranoidly expecting different order)
3690 int tempReducedDimensionIndex = -1;
3691 for (int d = 0; d < tempRgn->Dimensions; ++d) {
3692 if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3693 tempReducedDimensionIndex = d;
3694 break;
3695 }
3696 }
3697
3698 // copy dimension regions from this region to the temporary region
3699 for (int iDst = 0; iDst < 256; ++iDst) {
3700 DimensionRegion* dstDimRgn = tempRgn->pDimensionRegions[iDst];
3701 if (!dstDimRgn) continue;
3702 std::map<dimension_t,int> dimCase;
3703 bool isValidZone = true;
3704 for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3705 const int dstBits = tempRgn->pDimensionDefinitions[d].bits;
3706 dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3707 (iDst >> baseBits) & ((1 << dstBits) - 1);
3708 baseBits += dstBits;
3709 // there are also DimensionRegion objects of unused zones, skip them
3710 if (dimCase[tempRgn->pDimensionDefinitions[d].dimension] >= tempRgn->pDimensionDefinitions[d].zones) {
3711 isValidZone = false;
3712 break;
3713 }
3714 }
3715 if (!isValidZone) continue;
3716 // a bit paranoid: cope with the chance that the dimensions would
3717 // have different order in source and destination regions
3718 const bool isLastZone = (dimCase[type] == newZoneSize - 1);
3719 if (dimCase[type] >= zone) dimCase[type]++;
3720 DimensionRegion* srcDimRgn = GetDimensionRegionByBit(dimCase);
3721 dstDimRgn->CopyAssign(srcDimRgn);
3722 // if this is the upper most zone of the dimension passed to this
3723 // method, then correct (raise) its upper limit to 127
3724 if (newDef.split_type == split_type_normal && isLastZone)
3725 dstDimRgn->DimensionUpperLimits[tempReducedDimensionIndex] = 127;
3726 }
3727
3728 // now tempRegion's dimensions and DimensionRegions basically reflect
3729 // what we wanted to get for this actual Region here, so we now just
3730 // delete and recreate the dimension in question with the new amount
3731 // zones and then copy back from tempRegion
3732 DeleteDimension(oldDef);
3733 AddDimension(&newDef);
3734 for (int iSrc = 0; iSrc < 256; ++iSrc) {
3735 DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3736 if (!srcDimRgn) continue;
3737 std::map<dimension_t,int> dimCase;
3738 for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3739 const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3740 dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3741 (iSrc >> baseBits) & ((1 << srcBits) - 1);
3742 baseBits += srcBits;
3743 }
3744 // a bit paranoid: cope with the chance that the dimensions would
3745 // have different order in source and destination regions
3746 DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3747 if (!dstDimRgn) continue;
3748 dstDimRgn->CopyAssign(srcDimRgn);
3749 }
3750
3751 // delete temporary region
3752 delete tempRgn;
3753
3754 UpdateVelocityTable();
3755 }
3756
3757 /** @brief Divide split zone of a dimension in two (increment zone amount).
3758 *
3759 * This will increment the amount of zones for the dimension (given by
3760 * @a type) by one. It will do so by dividing the zone (given by @a zone)
3761 * in the middle of its zone range in two. So the two zones resulting from
3762 * the zone being splitted, will be an equivalent copy regarding all their
3763 * articulation informations and sample reference. The two zones will only
3764 * differ in their zone's upper limit
3765 * (DimensionRegion::DimensionUpperLimits).
3766 *
3767 * @param type - identifies the dimension where a zone shall be splitted
3768 * @param zone - index of the dimension split zone that shall be splitted
3769 * @throws gig::Exception if requested zone could not be splitted
3770 */
3771 void Region::SplitDimensionZone(dimension_t type, int zone) {
3772 dimension_def_t* oldDef = GetDimensionDefinition(type);
3773 if (!oldDef)
3774 throw gig::Exception("Could not split dimension zone, no such dimension of given type");
3775 if (zone < 0 || zone >= oldDef->zones)
3776 throw gig::Exception("Could not split dimension zone, requested zone index out of bounds.");
3777
3778 const int newZoneSize = oldDef->zones + 1;
3779
3780 // create a temporary Region which just acts as a temporary copy
3781 // container and will be deleted at the end of this function and will
3782 // also not be visible through the API during this process
3783 gig::Region* tempRgn = NULL;
3784 {
3785 // adding these temporary chunks is probably not even necessary
3786 Instrument* instr = static_cast<Instrument*>(GetParent());
3787 RIFF::List* pCkInstrument = instr->pCkInstrument;
3788 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3789 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3790 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3791 tempRgn = new Region(instr, rgn);
3792 }
3793
3794 // copy this region's dimensions (with already the dimension split size
3795 // requested by the arguments of this method call) to the temporary
3796 // region, and don't use Region::CopyAssign() here for this task, since
3797 // it would also alter fast lookup helper variables here and there
3798 dimension_def_t newDef;
3799 for (int i = 0; i < Dimensions; ++i) {
3800 dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3801 // is this the dimension requested by the method arguments? ...
3802 if (def.dimension == type) { // ... if yes, increment zone amount by one
3803 def.zones = newZoneSize;
3804 if ((1 << oldDef->bits) < newZoneSize) def.bits++;
3805 newDef = def;
3806 }
3807 tempRgn->AddDimension(&def);
3808 }
3809
3810 // find the dimension index in the tempRegion which is the dimension
3811 // type passed to this method (paranoidly expecting different order)
3812 int tempIncreasedDimensionIndex = -1;
3813 for (int d = 0; d < tempRgn->Dimensions; ++d) {
3814 if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3815 tempIncreasedDimensionIndex = d;
3816 break;
3817 }
3818 }
3819
3820 // copy dimension regions from this region to the temporary region
3821 for (int iSrc = 0; iSrc < 256; ++iSrc) {
3822 DimensionRegion* srcDimRgn = pDimensionRegions[iSrc];
3823 if (!srcDimRgn) continue;
3824 std::map<dimension_t,int> dimCase;
3825 bool isValidZone = true;
3826 for (int d = 0, baseBits = 0; d < Dimensions; ++d) {
3827 const int srcBits = pDimensionDefinitions[d].bits;
3828 dimCase[pDimensionDefinitions[d].dimension] =
3829 (iSrc >> baseBits) & ((1 << srcBits) - 1);
3830 // there are also DimensionRegion objects for unused zones, skip them
3831 if (dimCase[pDimensionDefinitions[d].dimension] >= pDimensionDefinitions[d].zones) {
3832 isValidZone = false;
3833 break;
3834 }
3835 baseBits += srcBits;
3836 }
3837 if (!isValidZone) continue;
3838 // a bit paranoid: cope with the chance that the dimensions would
3839 // have different order in source and destination regions
3840 if (dimCase[type] > zone) dimCase[type]++;
3841 DimensionRegion* dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3842 dstDimRgn->CopyAssign(srcDimRgn);
3843 // if this is the requested zone to be splitted, then also copy
3844 // the source DimensionRegion to the newly created target zone
3845 // and set the old zones upper limit lower
3846 if (dimCase[type] == zone) {
3847 // lower old zones upper limit
3848 if (newDef.split_type == split_type_normal) {
3849 const int high =
3850 dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex];
3851 int low = 0;
3852 if (zone > 0) {
3853 std::map<dimension_t,int> lowerCase = dimCase;
3854 lowerCase[type]--;
3855 DimensionRegion* dstDimRgnLow = tempRgn->GetDimensionRegionByBit(lowerCase);
3856 low = dstDimRgnLow->DimensionUpperLimits[tempIncreasedDimensionIndex];
3857 }
3858 dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex] = low + (high - low) / 2;
3859 }
3860 // fill the newly created zone of the divided zone as well
3861 dimCase[type]++;
3862 dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3863 dstDimRgn->CopyAssign(srcDimRgn);
3864 }
3865 }
3866
3867 // now tempRegion's dimensions and DimensionRegions basically reflect
3868 // what we wanted to get for this actual Region here, so we now just
3869 // delete and recreate the dimension in question with the new amount
3870 // zones and then copy back from tempRegion
3871 DeleteDimension(oldDef);
3872 AddDimension(&newDef);
3873 for (int iSrc = 0; iSrc < 256; ++iSrc) {
3874 DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3875 if (!srcDimRgn) continue;
3876 std::map<dimension_t,int> dimCase;
3877 for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3878 const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3879 dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3880 (iSrc >> baseBits) & ((1 << srcBits) - 1);
3881 baseBits += srcBits;
3882 }
3883 // a bit paranoid: cope with the chance that the dimensions would
3884 // have different order in source and destination regions
3885 DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3886 if (!dstDimRgn) continue;
3887 dstDimRgn->CopyAssign(srcDimRgn);
3888 }
3889
3890 // delete temporary region
3891 delete tempRgn;
3892
3893 UpdateVelocityTable();
3894 }
3895
3896 /** @brief Change type of an existing dimension.
3897 *
3898 * Alters the dimension type of a dimension already existing on this
3899 * region. If there is currently no dimension on this Region with type
3900 * @a oldType, then this call with throw an Exception. Likewise there are
3901 * cases where the requested dimension type cannot be performed. For example
3902 * if the new dimension type shall be gig::dimension_samplechannel, and the
3903 * current dimension has more than 2 zones. In such cases an Exception is
3904 * thrown as well.
3905 *
3906 * @param oldType - identifies the existing dimension to be changed
3907 * @param newType - to which dimension type it should be changed to
3908 * @throws gig::Exception if requested change cannot be performed
3909 */
3910 void Region::SetDimensionType(dimension_t oldType, dimension_t newType) {
3911 if (oldType == newType) return;
3912 dimension_def_t* def = GetDimensionDefinition(oldType);
3913 if (!def)
3914 throw gig::Exception("No dimension with provided old dimension type exists on this region");
3915 if (newType == dimension_samplechannel && def->zones != 2)
3916 throw gig::Exception("Cannot change to dimension type 'sample channel', because existing dimension does not have 2 zones");
3917 if (GetDimensionDefinition(newType))
3918 throw gig::Exception("There is already a dimension with requested new dimension type on this region");
3919 def->dimension = newType;
3920 def->split_type = __resolveSplitType(newType);
3921 }
3922
3923 DimensionRegion* Region::GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase) {
3924 uint8_t bits[8] = {};
3925 for (std::map<dimension_t,int>::const_iterator it = DimCase.begin();
3926 it != DimCase.end(); ++it)
3927 {
3928 for (int d = 0; d < Dimensions; ++d) {
3929 if (pDimensionDefinitions[d].dimension == it->first) {
3930 bits[d] = it->second;
3931 goto nextDimCaseSlice;
3932 }
3933 }
3934 assert(false); // do crash ... too harsh maybe ? ignore it instead ?
3935 nextDimCaseSlice:
3936 ; // noop
3937 }
3938 return GetDimensionRegionByBit(bits);
3939 }
3940
3941 /**
3942 * Searches in the current Region for a dimension of the given dimension
3943 * type and returns the precise configuration of that dimension in this
3944 * Region.
3945 *
3946 * @param type - dimension type of the sought dimension
3947 * @returns dimension definition or NULL if there is no dimension with
3948 * sought type in this Region.
3949 */
3950 dimension_def_t* Region::GetDimensionDefinition(dimension_t type) {
3951 for (int i = 0; i < Dimensions; ++i)
3952 if (pDimensionDefinitions[i].dimension == type)
3953 return &pDimensionDefinitions[i];
3954 return NULL;
3955 }
3956
3957 Region::~Region() {
3958 for (int i = 0; i < 256; i++) {
3959 if (pDimensionRegions[i]) delete pDimensionRegions[i];
3960 }
3961 }
3962
3963 /**
3964 * Use this method in your audio engine to get the appropriate dimension
3965 * region with it's articulation data for the current situation. Just
3966 * call the method with the current MIDI controller values and you'll get
3967 * the DimensionRegion with the appropriate articulation data for the
3968 * current situation (for this Region of course only). To do that you'll
3969 * first have to look which dimensions with which controllers and in
3970 * which order are defined for this Region when you load the .gig file.
3971 * Special cases are e.g. layer or channel dimensions where you just put
3972 * in the index numbers instead of a MIDI controller value (means 0 for
3973 * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
3974 * etc.).
3975 *
3976 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
3977 * @returns adress to the DimensionRegion for the given situation
3978 * @see pDimensionDefinitions
3979 * @see Dimensions
3980 */
3981 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
3982 uint8_t bits;
3983 int veldim = -1;
3984 int velbitpos = 0;
3985 int bitpos = 0;
3986 int dimregidx = 0;
3987 for (uint i = 0; i < Dimensions; i++) {
3988 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
3989 // the velocity dimension must be handled after the other dimensions
3990 veldim = i;
3991 velbitpos = bitpos;
3992 } else {
3993 switch (pDimensionDefinitions[i].split_type) {
3994 case split_type_normal:
3995 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
3996 // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
3997 for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
3998 if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
3999 }
4000 } else {
4001 // gig2: evenly sized zones
4002 bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
4003 }
4004 break;
4005 case split_type_bit: // the value is already the sought dimension bit number
4006 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
4007 bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
4008 break;
4009 }
4010 dimregidx |= bits << bitpos;
4011 }
4012 bitpos += pDimensionDefinitions[i].bits;
4013 }
4014 DimensionRegion* dimreg = pDimensionRegions[dimregidx & 255];
4015 if (!dimreg) return NULL;
4016 if (veldim != -1) {
4017 // (dimreg is now the dimension region for the lowest velocity)
4018 if (dimreg->VelocityTable) // custom defined zone ranges
4019 bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4020 else // normal split type
4021 bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4022
4023 const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4024 dimregidx |= (bits & limiter_mask) << velbitpos;
4025 dimreg = pDimensionRegions[dimregidx & 255];
4026 }
4027 return dimreg;
4028 }
4029
4030 int Region::GetDimensionRegionIndexByValue(const uint DimValues[8]) {
4031 uint8_t bits;
4032 int veldim = -1;
4033 int velbitpos = 0;
4034 int bitpos = 0;
4035 int dimregidx = 0;
4036 for (uint i = 0; i < Dimensions; i++) {
4037 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
4038 // the velocity dimension must be handled after the other dimensions
4039 veldim = i;
4040 velbitpos = bitpos;
4041 } else {
4042 switch (pDimensionDefinitions[i].split_type) {
4043 case split_type_normal:
4044 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
4045 // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
4046 for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
4047 if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
4048 }
4049 } else {
4050 // gig2: evenly sized zones
4051 bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
4052 }
4053 break;
4054 case split_type_bit: // the value is already the sought dimension bit number
4055 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
4056 bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
4057 break;
4058 }
4059 dimregidx |= bits << bitpos;
4060 }
4061 bitpos += pDimensionDefinitions[i].bits;
4062 }
4063 dimregidx &= 255;
4064 DimensionRegion* dimreg = pDimensionRegions[dimregidx];
4065 if (!dimreg) return -1;
4066 if (veldim != -1) {
4067 // (dimreg is now the dimension region for the lowest velocity)
4068 if (dimreg->VelocityTable) // custom defined zone ranges
4069 bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4070 else // normal split type
4071 bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4072
4073 const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4074 dimregidx |= (bits & limiter_mask) << velbitpos;
4075 dimregidx &= 255;
4076 }
4077 return dimregidx;
4078 }
4079
4080 /**
4081 * Returns the appropriate DimensionRegion for the given dimension bit
4082 * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
4083 * instead of calling this method directly!
4084 *
4085 * @param DimBits Bit numbers for dimension 0 to 7
4086 * @returns adress to the DimensionRegion for the given dimension
4087 * bit numbers
4088 * @see GetDimensionRegionByValue()
4089 */
4090 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
4091 return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
4092 << pDimensionDefinitions[5].bits | DimBits[5])
4093 << pDimensionDefinitions[4].bits | DimBits[4])
4094 << pDimensionDefinitions[3].bits | DimBits[3])
4095 << pDimensionDefinitions[2].bits | DimBits[2])
4096 << pDimensionDefinitions[1].bits | DimBits[1])
4097 << pDimensionDefinitions[0].bits | DimBits[0]];
4098 }
4099
4100 /**
4101 * Returns pointer address to the Sample referenced with this region.
4102 * This is the global Sample for the entire Region (not sure if this is
4103 * actually used by the Gigasampler engine - I would only use the Sample
4104 * referenced by the appropriate DimensionRegion instead of this sample).
4105 *
4106 * @returns address to Sample or NULL if there is no reference to a
4107 * sample saved in the .gig file
4108 */
4109 Sample* Region::GetSample() {
4110 if (pSample) return static_cast<gig::Sample*>(pSample);
4111 else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
4112 }
4113
4114 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
4115 if ((int32_t)WavePoolTableIndex == -1) return NULL;
4116 File* file = (File*) GetParent()->GetParent();
4117 if (!file->pWavePoolTable) return NULL;
4118 // for new files or files >= 2 GB use 64 bit wave pool offsets
4119 if (file->pRIFF->IsNew() || (file->pRIFF->GetCurrentFileSize() >> 31)) {
4120 // use 64 bit wave pool offsets (treating this as large file)
4121 uint64_t soughtoffset =
4122 uint64_t(file->pWavePoolTable[WavePoolTableIndex]) |
4123 uint64_t(file->pWavePoolTableHi[WavePoolTableIndex]) << 32;
4124 Sample* sample = file->GetFirstSample(pProgress);
4125 while (sample) {
4126 if (sample->ullWavePoolOffset == soughtoffset)
4127 return static_cast<gig::Sample*>(sample);
4128 sample = file->GetNextSample();
4129 }
4130 } else {
4131 // use extension files and 32 bit wave pool offsets
4132 file_offset_t soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
4133 file_offset_t soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
4134 Sample* sample = file->GetFirstSample(pProgress);
4135 while (sample) {
4136 if (sample->ullWavePoolOffset == soughtoffset &&
4137 sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
4138 sample = file->GetNextSample();
4139 }
4140 }
4141 return NULL;
4142 }
4143
4144 /**
4145 * Make a (semi) deep copy of the Region object given by @a orig
4146 * and assign it to this object.
4147 *
4148 * Note that all sample pointers referenced by @a orig are simply copied as
4149 * memory address. Thus the respective samples are shared, not duplicated!
4150 *
4151 * @param orig - original Region object to be copied from
4152 */
4153 void Region::CopyAssign(const Region* orig) {
4154 CopyAssign(orig, NULL);
4155 }
4156
4157 /**
4158 * Make a (semi) deep copy of the Region object given by @a orig and
4159 * assign it to this object
4160 *
4161 * @param mSamples - crosslink map between the foreign file's samples and
4162 * this file's samples
4163 */
4164 void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
4165 // handle base classes
4166 DLS::Region::CopyAssign(orig);
4167
4168 if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
4169 pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
4170 }
4171
4172 // handle own member variables
4173 for (int i = Dimensions - 1; i >= 0; --i) {
4174 DeleteDimension(&pDimensionDefinitions[i]);
4175 }
4176 Layers = 0; // just to be sure
4177 for (int i = 0; i < orig->Dimensions; i++) {
4178 // we need to copy the dim definition here, to avoid the compiler
4179 // complaining about const-ness issue
4180 dimension_def_t def = orig->pDimensionDefinitions[i];
4181 AddDimension(&def);
4182 }
4183 for (int i = 0; i < 256; i++) {
4184 if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
4185 pDimensionRegions[i]->CopyAssign(
4186 orig->pDimensionRegions[i],
4187 mSamples
4188 );
4189 }
4190 }
4191 Layers = orig->Layers;
4192 }
4193
4194
4195 // *************** MidiRule ***************
4196 // *
4197
4198 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
4199 _3ewg->SetPos(36);
4200 Triggers = _3ewg->ReadUint8();
4201 _3ewg->SetPos(40);
4202 ControllerNumber = _3ewg->ReadUint8();
4203 _3ewg->SetPos(46);
4204 for (int i = 0 ; i < Triggers ; i++) {
4205 pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
4206 pTriggers[i].Descending = _3ewg->ReadUint8();
4207 pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
4208 pTriggers[i].Key = _3ewg->ReadUint8();
4209 pTriggers[i].NoteOff = _3ewg->ReadUint8();
4210 pTriggers[i].Velocity = _3ewg->ReadUint8();
4211 pTriggers[i].OverridePedal = _3ewg->ReadUint8();
4212 _3ewg->ReadUint8();
4213 }
4214 }
4215
4216 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
4217 ControllerNumber(0),
4218 Triggers(0) {
4219 }
4220
4221 void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
4222 pData[32] = 4;
4223 pData[33] = 16;
4224 pData[36] = Triggers;
4225 pData[40] = ControllerNumber;
4226 for (int i = 0 ; i < Triggers ; i++) {
4227 pData[46 + i * 8] = pTriggers[i].TriggerPoint;
4228 pData[47 + i * 8] = pTriggers[i].Descending;
4229 pData[48 + i * 8] = pTriggers[i].VelSensitivity;
4230 pData[49 + i * 8] = pTriggers[i].Key;
4231 pData[50 + i * 8] = pTriggers[i].NoteOff;
4232 pData[51 + i * 8] = pTriggers[i].Velocity;
4233 pData[52 + i * 8] = pTriggers[i].OverridePedal;
4234 }
4235 }
4236
4237 MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
4238 _3ewg->SetPos(36);
4239 LegatoSamples = _3ewg->ReadUint8(); // always 12
4240 _3ewg->SetPos(40);
4241 BypassUseController = _3ewg->ReadUint8();
4242 BypassKey = _3ewg->ReadUint8();
4243 BypassController = _3ewg->ReadUint8();
4244 ThresholdTime = _3ewg->ReadUint16();
4245 _3ewg->ReadInt16();
4246 ReleaseTime = _3ewg->ReadUint16();
4247 _3ewg->ReadInt16();
4248 KeyRange.low = _3ewg->ReadUint8();
4249 KeyRange.high = _3ewg->ReadUint8();
4250 _3ewg->SetPos(64);
4251 ReleaseTriggerKey = _3ewg->ReadUint8();
4252 AltSustain1Key = _3ewg->ReadUint8();
4253 AltSustain2Key = _3ewg->ReadUint8();
4254 }
4255
4256 MidiRuleLegato::MidiRuleLegato() :
4257 LegatoSamples(12),
4258 BypassUseController(false),
4259 BypassKey(0),
4260 BypassController(1),
4261 ThresholdTime(20),
4262 ReleaseTime(20),
4263 ReleaseTriggerKey(0),
4264 AltSustain1Key(0),
4265 AltSustain2Key(0)
4266 {
4267 KeyRange.low = KeyRange.high = 0;
4268 }
4269
4270 void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
4271 pData[32] = 0;
4272 pData[33] = 16;
4273 pData[36] = LegatoSamples;
4274 pData[40] = BypassUseController;
4275 pData[41] = BypassKey;
4276 pData[42] = BypassController;
4277 store16(&pData[43], ThresholdTime);
4278 store16(&pData[47], ReleaseTime);
4279 pData[51] = KeyRange.low;
4280 pData[52] = KeyRange.high;
4281 pData[64] = ReleaseTriggerKey;
4282 pData[65] = AltSustain1Key;
4283 pData[66] = AltSustain2Key;
4284 }
4285
4286 MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
4287 _3ewg->SetPos(36);
4288 Articulations = _3ewg->ReadUint8();
4289 int flags = _3ewg->ReadUint8();
4290 Polyphonic = flags & 8;
4291 Chained = flags & 4;
4292 Selector = (flags & 2) ? selector_controller :
4293 (flags & 1) ? selector_key_switch : selector_none;
4294 Patterns = _3ewg->ReadUint8();
4295 _3ewg->ReadUint8(); // chosen row
4296 _3ewg->ReadUint8(); // unknown
4297 _3ewg->ReadUint8(); // unknown
4298 _3ewg->ReadUint8(); // unknown
4299 KeySwitchRange.low = _3ewg->ReadUint8();
4300 KeySwitchRange.high = _3ewg->ReadUint8();
4301 Controller = _3ewg->ReadUint8();
4302 PlayRange.low = _3ewg->ReadUint8();
4303 PlayRange.high = _3ewg->ReadUint8();
4304
4305 int n = std::min(int(Articulations), 32);
4306 for (int i = 0 ; i < n ; i++) {
4307 _3ewg->ReadString(pArticulations[i], 32);
4308 }
4309 _3ewg->SetPos(1072);
4310 n = std::min(int(Patterns), 32);
4311 for (int i = 0 ; i < n ; i++) {
4312 _3ewg->ReadString(pPatterns[i].Name, 16);
4313 pPatterns[i].Size = _3ewg->ReadUint8();
4314 _3ewg->Read(&pPatterns[i][0], 1, 32);
4315 }
4316 }
4317
4318 MidiRuleAlternator::MidiRuleAlternator() :
4319 Articulations(0),
4320 Patterns(0),
4321 Selector(selector_none),
4322 Controller(0),
4323 Polyphonic(false),
4324 Chained(false)
4325 {
4326 PlayRange.low = PlayRange.high = 0;
4327 KeySwitchRange.low = KeySwitchRange.high = 0;
4328 }
4329
4330 void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
4331 pData[32] = 3;
4332 pData[33] = 16;
4333 pData[36] = Articulations;
4334 pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
4335 (Selector == selector_controller ? 2 :
4336 (Selector == selector_key_switch ? 1 : 0));
4337 pData[38] = Patterns;
4338
4339 pData[43] = KeySwitchRange.low;
4340 pData[44] = KeySwitchRange.high;
4341 pData[45] = Controller;
4342 pData[46] = PlayRange.low;
4343 pData[47] = PlayRange.high;
4344
4345 char* str = reinterpret_cast<char*>(pData);
4346 int pos = 48;
4347 int n = std::min(int(Articulations), 32);
4348 for (int i = 0 ; i < n ; i++, pos += 32) {
4349 strncpy(&str[pos], pArticulations[i].c_str(), 32);
4350 }
4351
4352 pos = 1072;
4353 n = std::min(int(Patterns), 32);
4354 for (int i = 0 ; i < n ; i++, pos += 49) {
4355 strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
4356 pData[pos + 16] = pPatterns[i].Size;
4357 memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
4358 }
4359 }
4360
4361 // *************** Script ***************
4362 // *
4363
4364 Script::Script(ScriptGroup* group, RIFF::Chunk* ckScri) {
4365 pGroup = group;
4366 pChunk = ckScri;
4367 if (ckScri) { // object is loaded from file ...
4368 // read header
4369 uint32_t headerSize = ckScri->ReadUint32();
4370 Compression = (Compression_t) ckScri->ReadUint32();
4371 Encoding = (Encoding_t) ckScri->ReadUint32();
4372 Language = (Language_t) ckScri->ReadUint32();
4373 Bypass = (Language_t) ckScri->ReadUint32() & 1;
4374 crc = ckScri->ReadUint32();
4375 uint32_t nameSize = ckScri->ReadUint32();
4376 Name.resize(nameSize, ' ');
4377 for (int i = 0; i < nameSize; ++i)
4378 Name[i] = ckScri->ReadUint8();
4379 // to handle potential future extensions of the header
4380 ckScri->SetPos(sizeof(int32_t) + headerSize);
4381 // read actual script data
4382 uint32_t scriptSize = uint32_t(ckScri->GetSize() - ckScri->GetPos());
4383 data.resize(scriptSize);
4384 for (int i = 0; i < scriptSize; ++i)
4385 data[i] = ckScri->ReadUint8();
4386 } else { // this is a new script object, so just initialize it as such ...
4387 Compression = COMPRESSION_NONE;
4388 Encoding = ENCODING_ASCII;
4389 Language = LANGUAGE_NKSP;
4390 Bypass = false;
4391 crc = 0;
4392 Name = "Unnamed Script";
4393 }
4394 }
4395
4396 Script::~Script() {
4397 }
4398
4399 /**
4400 * Returns the current script (i.e. as source code) in text format.
4401 */
4402 String Script::GetScriptAsText() {
4403 String s;
4404 s.resize(data.size(), ' ');
4405 memcpy(&s[0], &data[0], data.size());
4406 return s;
4407 }
4408
4409 /**
4410 * Replaces the current script with the new script source code text given
4411 * by @a text.
4412 *
4413 * @param text - new script source code
4414 */
4415 void Script::SetScriptAsText(const String& text) {
4416 data.resize(text.size());
4417 memcpy(&data[0], &text[0], text.size());
4418 }
4419
4420 /**
4421 * Apply this script to the respective RIFF chunks. You have to call
4422 * File::Save() to make changes persistent.
4423 *
4424 * Usually there is absolutely no need to call this method explicitly.
4425 * It will be called automatically when File::Save() was called.
4426 *
4427 * @param pProgress - callback function for progress notification
4428 */
4429 void Script::UpdateChunks(progress_t* pProgress) {
4430 // recalculate CRC32 check sum
4431 __resetCRC(crc);
4432 __calculateCRC(&data[0], data.size(), crc);
4433 __finalizeCRC(crc);
4434 // make sure chunk exists and has the required size
4435 const file_offset_t chunkSize = (file_offset_t) 7*sizeof(int32_t) + Name.size() + data.size();
4436 if (!pChunk) pChunk = pGroup->pList->AddSubChunk(CHUNK_ID_SCRI, chunkSize);
4437 else pChunk->Resize(chunkSize);
4438 // fill the chunk data to be written to disk
4439 uint8_t* pData = (uint8_t*) pChunk->LoadChunkData();
4440 int pos = 0;
4441 store32(&pData[pos], uint32_t(6*sizeof(int32_t) + Name.size())); // total header size
4442 pos += sizeof(int32_t);
4443 store32(&pData[pos], Compression);
4444 pos += sizeof(int32_t);
4445 store32(&pData[pos], Encoding);
4446 pos += sizeof(int32_t);
4447 store32(&pData[pos], Language);
4448 pos += sizeof(int32_t);
4449 store32(&pData[pos], Bypass ? 1 : 0);
4450 pos += sizeof(int32_t);
4451 store32(&pData[pos], crc);
4452 pos += sizeof(int32_t);
4453 store32(&pData[pos], (uint32_t) Name.size());
4454 pos += sizeof(int32_t);
4455 for (int i = 0; i < Name.size(); ++i, ++pos)
4456 pData[pos] = Name[i];
4457 for (int i = 0; i < data.size(); ++i, ++pos)
4458 pData[pos] = data[i];
4459 }
4460
4461 /**
4462 * Move this script from its current ScriptGroup to another ScriptGroup
4463 * given by @a pGroup.
4464 *
4465 * @param pGroup - script's new group
4466 */
4467 void Script::SetGroup(ScriptGroup* pGroup) {
4468 if (this->pGroup == pGroup) return;
4469 if (pChunk)
4470 pChunk->GetParent()->MoveSubChunk(pChunk, pGroup->pList);
4471 this->pGroup = pGroup;
4472 }
4473
4474 /**
4475 * Returns the script group this script currently belongs to. Each script
4476 * is a member of exactly one ScriptGroup.
4477 *
4478 * @returns current script group
4479 */
4480 ScriptGroup* Script::GetGroup() const {
4481 return pGroup;
4482 }
4483
4484 /**
4485 * Make a (semi) deep copy of the Script object given by @a orig
4486 * and assign it to this object. Note: the ScriptGroup this Script
4487 * object belongs to remains untouched by this call.
4488 *
4489 * @param orig - original Script object to be copied from
4490 */
4491 void Script::CopyAssign(const Script* orig) {
4492 Name = orig->Name;
4493 Compression = orig->Compression;
4494 Encoding = orig->Encoding;
4495 Language = orig->Language;
4496 Bypass = orig->Bypass;
4497 data = orig->data;
4498 }
4499
4500 void Script::RemoveAllScriptReferences() {
4501 File* pFile = pGroup->pFile;
4502 for (int i = 0; pFile->GetInstrument(i); ++i) {
4503 Instrument* instr = pFile->GetInstrument(i);
4504 instr->RemoveScript(this);
4505 }
4506 }
4507
4508 // *************** ScriptGroup ***************
4509 // *
4510
4511 ScriptGroup::ScriptGroup(File* file, RIFF::List* lstRTIS) {
4512 pFile = file;
4513 pList = lstRTIS;
4514 pScripts = NULL;
4515 if (lstRTIS) {
4516 RIFF::Chunk* ckName = lstRTIS->GetSubChunk(CHUNK_ID_LSNM);
4517 ::LoadString(ckName, Name);
4518 } else {
4519 Name = "Default Group";
4520 }
4521 }
4522
4523 ScriptGroup::~ScriptGroup() {
4524 if (pScripts) {
4525 std::list<Script*>::iterator iter = pScripts->begin();
4526 std::list<Script*>::iterator end = pScripts->end();
4527 while (iter != end) {
4528 delete *iter;
4529 ++iter;
4530 }
4531 delete pScripts;
4532 }
4533 }
4534
4535 /**
4536 * Apply this script group to the respective RIFF chunks. You have to call
4537 * File::Save() to make changes persistent.
4538 *
4539 * Usually there is absolutely no need to call this method explicitly.
4540 * It will be called automatically when File::Save() was called.
4541 *
4542 * @param pProgress - callback function for progress notification
4543 */
4544 void ScriptGroup::UpdateChunks(progress_t* pProgress) {
4545 if (pScripts) {
4546 if (!pList)
4547 pList = pFile->pRIFF->GetSubList(LIST_TYPE_3LS)->AddSubList(LIST_TYPE_RTIS);
4548
4549 // now store the name of this group as <LSNM> chunk as subchunk of the <RTIS> list chunk
4550 ::SaveString(CHUNK_ID_LSNM, NULL, pList, Name, String("Unnamed Group"), true, 64);
4551
4552 for (std::list<Script*>::iterator it = pScripts->begin();
4553 it != pScripts->end(); ++it)
4554 {
4555 (*it)->UpdateChunks(pProgress);
4556 }
4557 }
4558 }
4559
4560 /** @brief Get instrument script.
4561 *
4562 * Returns the real-time instrument script with the given index.
4563 *
4564 * @param index - number of the sought script (0..n)
4565 * @returns sought script or NULL if there's no such script
4566 */
4567 Script* ScriptGroup::GetScript(uint index) {
4568 if (!pScripts) LoadScripts();
4569 std::list<Script*>::iterator it = pScripts->begin();
4570 for (uint i = 0; it != pScripts->end(); ++i, ++it)
4571 if (i == index) return *it;
4572 return NULL;
4573 }
4574
4575 /** @brief Add new instrument script.
4576 *
4577 * Adds a new real-time instrument script to the file. The script is not
4578 * actually used / executed unless it is referenced by an instrument to be
4579 * used. This is similar to samples, which you can add to a file, without
4580 * an instrument necessarily actually using it.
4581 *
4582 * You have to call Save() to make this persistent to the file.
4583 *
4584 * @return new empty script object
4585 */
4586 Script* ScriptGroup::AddScript() {
4587 if (!pScripts) LoadScripts();
4588 Script* pScript = new Script(this, NULL);
4589 pScripts->push_back(pScript);
4590 return pScript;
4591 }
4592
4593 /** @brief Delete an instrument script.
4594 *
4595 * This will delete the given real-time instrument script. References of
4596 * instruments that are using that script will be removed accordingly.
4597 *
4598 * You have to call Save() to make this persistent to the file.
4599 *
4600 * @param pScript - script to delete
4601 * @throws gig::Exception if given script could not be found
4602 */
4603 void ScriptGroup::DeleteScript(Script* pScript) {
4604 if (!pScripts) LoadScripts();
4605 std::list<Script*>::iterator iter =
4606 find(pScripts->begin(), pScripts->end(), pScript);
4607 if (iter == pScripts->end())
4608 throw gig::Exception("Could not delete script, could not find given script");
4609 pScripts->erase(iter);
4610 pScript->RemoveAllScriptReferences();
4611 if (pScript->pChunk)
4612 pScript->pChunk->GetParent()->DeleteSubChunk(pScript->pChunk);
4613 delete pScript;
4614 }
4615
4616 void ScriptGroup::LoadScripts() {
4617 if (pScripts) return;
4618 pScripts = new std::list<Script*>;
4619 if (!pList) return;
4620
4621 for (RIFF::Chunk* ck = pList->GetFirstSubChunk(); ck;
4622 ck = pList->GetNextSubChunk())
4623 {
4624 if (ck->GetChunkID() == CHUNK_ID_SCRI) {
4625 pScripts->push_back(new Script(this, ck));
4626 }
4627 }
4628 }
4629
4630 // *************** Instrument ***************
4631 // *
4632
4633 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
4634 static const DLS::Info::string_length_t fixedStringLengths[] = {
4635 { CHUNK_ID_INAM, 64 },
4636 { CHUNK_ID_ISFT, 12 },
4637 { 0, 0 }
4638 };
4639 pInfo->SetFixedStringLengths(fixedStringLengths);
4640
4641 // Initialization
4642 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4643 EffectSend = 0;
4644 Attenuation = 0;
4645 FineTune = 0;
4646 PitchbendRange = 2;
4647 PianoReleaseMode = false;
4648 DimensionKeyRange.low = 0;
4649 DimensionKeyRange.high = 0;
4650 pMidiRules = new MidiRule*[3];
4651 pMidiRules[0] = NULL;
4652 pScriptRefs = NULL;
4653
4654 // Loading
4655 RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
4656 if (lart) {
4657 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4658 if (_3ewg) {
4659 EffectSend = _3ewg->ReadUint16();
4660 Attenuation = _3ewg->ReadInt32();
4661 FineTune = _3ewg->ReadInt16();
4662 PitchbendRange = _3ewg->ReadInt16();
4663 uint8_t dimkeystart = _3ewg->ReadUint8();
4664 PianoReleaseMode = dimkeystart & 0x01;
4665 DimensionKeyRange.low = dimkeystart >> 1;
4666 DimensionKeyRange.high = _3ewg->ReadUint8();
4667
4668 if (_3ewg->GetSize() > 32) {
4669 // read MIDI rules
4670 int i = 0;
4671 _3ewg->SetPos(32);
4672 uint8_t id1 = _3ewg->ReadUint8();
4673 uint8_t id2 = _3ewg->ReadUint8();
4674
4675 if (id2 == 16) {
4676 if (id1 == 4) {
4677 pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
4678 } else if (id1 == 0) {
4679 pMidiRules[i++] = new MidiRuleLegato(_3ewg);
4680 } else if (id1 == 3) {
4681 pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
4682 } else {
4683 pMidiRules[i++] = new MidiRuleUnknown;
4684 }
4685 }
4686 else if (id1 != 0 || id2 != 0) {
4687 pMidiRules[i++] = new MidiRuleUnknown;
4688 }
4689 //TODO: all the other types of rules
4690
4691 pMidiRules[i] = NULL;
4692 }
4693 }
4694 }
4695
4696 if (pFile->GetAutoLoad()) {
4697 if (!pRegions) pRegions = new RegionList;
4698 RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
4699 if (lrgn) {
4700 RIFF::List* rgn = lrgn->GetFirstSubList();
4701 while (rgn) {
4702 if (rgn->GetListType() == LIST_TYPE_RGN) {
4703 __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
4704 pRegions->push_back(new Region(this, rgn));
4705 }
4706 rgn = lrgn->GetNextSubList();
4707 }
4708 // Creating Region Key Table for fast lookup
4709 UpdateRegionKeyTable();
4710 }
4711 }
4712
4713 // own gig format extensions
4714 RIFF::List* lst3LS = insList->GetSubList(LIST_TYPE_3LS);
4715 if (lst3LS) {
4716 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4717 if (ckSCSL) {
4718 int headerSize = ckSCSL->ReadUint32();
4719 int slotCount = ckSCSL->ReadUint32();
4720 if (slotCount) {
4721 int slotSize = ckSCSL->ReadUint32();
4722 ckSCSL->SetPos(headerSize); // in case of future header extensions
4723 int unknownSpace = slotSize - 2*sizeof(uint32_t); // in case of future slot extensions
4724 for (int i = 0; i < slotCount; ++i) {
4725 _ScriptPooolEntry e;
4726 e.fileOffset = ckSCSL->ReadUint32();
4727 e.bypass = ckSCSL->ReadUint32() & 1;
4728 if (unknownSpace) ckSCSL->SetPos(unknownSpace, RIFF::stream_curpos); // in case of future extensions
4729 scriptPoolFileOffsets.push_back(e);
4730 }
4731 }
4732 }
4733 }
4734
4735 __notify_progress(pProgress, 1.0f); // notify done
4736 }
4737
4738 void Instrument::UpdateRegionKeyTable() {
4739 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4740 RegionList::iterator iter = pRegions->begin();
4741 RegionList::iterator end = pRegions->end();
4742 for (; iter != end; ++iter) {
4743 gig::Region* pRegion = static_cast<gig::Region*>(*iter);
4744 for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
4745 RegionKeyTable[iKey] = pRegion;
4746 }
4747 }
4748 }
4749
4750 Instrument::~Instrument() {
4751 for (int i = 0 ; pMidiRules[i] ; i++) {
4752 delete pMidiRules[i];
4753 }
4754 delete[] pMidiRules;
4755 if (pScriptRefs) delete pScriptRefs;
4756 }
4757
4758 /**
4759 * Apply Instrument with all its Regions to the respective RIFF chunks.
4760 * You have to call File::Save() to make changes persistent.
4761 *
4762 * Usually there is absolutely no need to call this method explicitly.
4763 * It will be called automatically when File::Save() was called.
4764 *
4765 * @param pProgress - callback function for progress notification
4766 * @throws gig::Exception if samples cannot be dereferenced
4767 */
4768 void Instrument::UpdateChunks(progress_t* pProgress) {
4769 // first update base classes' chunks
4770 DLS::Instrument::UpdateChunks(pProgress);
4771
4772 // update Regions' chunks
4773 {
4774 RegionList::iterator iter = pRegions->begin();
4775 RegionList::iterator end = pRegions->end();
4776 for (; iter != end; ++iter)
4777 (*iter)->UpdateChunks(pProgress);
4778 }
4779
4780 // make sure 'lart' RIFF list chunk exists
4781 RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
4782 if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
4783 // make sure '3ewg' RIFF chunk exists
4784 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4785 if (!_3ewg) {
4786 File* pFile = (File*) GetParent();
4787
4788 // 3ewg is bigger in gig3, as it includes the iMIDI rules
4789 int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
4790 _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
4791 memset(_3ewg->LoadChunkData(), 0, size);
4792 }
4793 // update '3ewg' RIFF chunk
4794 uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
4795 store16(&pData[0], EffectSend);
4796 store32(&pData[2], Attenuation);
4797 store16(&pData[6], FineTune);
4798 store16(&pData[8], PitchbendRange);
4799 const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
4800 DimensionKeyRange.low << 1;
4801 pData[10] = dimkeystart;
4802 pData[11] = DimensionKeyRange.high;
4803
4804 if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
4805 pData[32] = 0;
4806 pData[33] = 0;
4807 } else {
4808 for (int i = 0 ; pMidiRules[i] ; i++) {
4809 pMidiRules[i]->UpdateChunks(pData);
4810 }
4811 }
4812
4813 // own gig format extensions
4814 if (ScriptSlotCount()) {
4815 // make sure we have converted the original loaded script file
4816 // offsets into valid Script object pointers
4817 LoadScripts();
4818
4819 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4820 if (!lst3LS) lst3LS = pCkInstrument->AddSubList(LIST_TYPE_3LS);
4821 const int slotCount = (int) pScriptRefs->size();
4822 const int headerSize = 3 * sizeof(uint32_t);
4823 const int slotSize = 2 * sizeof(uint32_t);
4824 const int totalChunkSize = headerSize + slotCount * slotSize;
4825 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4826 if (!ckSCSL) ckSCSL = lst3LS->AddSubChunk(CHUNK_ID_SCSL, totalChunkSize);
4827 else ckSCSL->Resize(totalChunkSize);
4828 uint8_t* pData = (uint8_t*) ckSCSL->LoadChunkData();
4829 int pos = 0;
4830 store32(&pData[pos], headerSize);
4831 pos += sizeof(uint32_t);
4832 store32(&pData[pos], slotCount);
4833 pos += sizeof(uint32_t);
4834 store32(&pData[pos], slotSize);
4835 pos += sizeof(uint32_t);
4836 for (int i = 0; i < slotCount; ++i) {
4837 // arbitrary value, the actual file offset will be updated in
4838 // UpdateScriptFileOffsets() after the file has been resized
4839 int bogusFileOffset = 0;
4840 store32(&pData[pos], bogusFileOffset);
4841 pos += sizeof(uint32_t);
4842 store32(&pData[pos], (*pScriptRefs)[i].bypass ? 1 : 0);
4843 pos += sizeof(uint32_t);
4844 }
4845 } else {
4846 // no script slots, so get rid of any LS custom RIFF chunks (if any)
4847 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4848 if (lst3LS) pCkInstrument->DeleteSubChunk(lst3LS);
4849 }
4850 }
4851
4852 void Instrument::UpdateScriptFileOffsets() {
4853 // own gig format extensions
4854 if (pScriptRefs && pScriptRefs->size() > 0) {
4855 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4856 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4857 const int slotCount = (int) pScriptRefs->size();
4858 const int headerSize = 3 * sizeof(uint32_t);
4859 ckSCSL->SetPos(headerSize);
4860 for (int i = 0; i < slotCount; ++i) {
4861 uint32_t fileOffset = uint32_t(
4862 (*pScriptRefs)[i].script->pChunk->GetFilePos() -
4863 (*pScriptRefs)[i].script->pChunk->GetPos() -
4864 CHUNK_HEADER_SIZE(ckSCSL->GetFile()->GetFileOffsetSize())
4865 );
4866 ckSCSL->WriteUint32(&fileOffset);
4867 // jump over flags entry (containing the bypass flag)
4868 ckSCSL->SetPos(sizeof(uint32_t), RIFF::stream_curpos);
4869 }
4870 }
4871 }
4872
4873 /**
4874 * Returns the appropriate Region for a triggered note.
4875 *
4876 * @param Key MIDI Key number of triggered note / key (0 - 127)
4877 * @returns pointer adress to the appropriate Region or NULL if there
4878 * there is no Region defined for the given \a Key
4879 */
4880 Region* Instrument::GetRegion(unsigned int Key) {
4881 if (!pRegions || pRegions->empty() || Key > 127) return NULL;
4882 return RegionKeyTable[Key];
4883
4884 /*for (int i = 0; i < Regions; i++) {
4885 if (Key <= pRegions[i]->KeyRange.high &&
4886 Key >= pRegions[i]->KeyRange.low) return pRegions[i];
4887 }
4888 return NULL;*/
4889 }
4890
4891 /**
4892 * Returns the first Region of the instrument. You have to call this
4893 * method once before you use GetNextRegion().
4894 *
4895 * @returns pointer address to first region or NULL if there is none
4896 * @see GetNextRegion()
4897 */
4898 Region* Instrument::GetFirstRegion() {
4899 if (!pRegions) return NULL;
4900 RegionsIterator = pRegions->begin();
4901 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4902 }
4903
4904 /**
4905 * Returns the next Region of the instrument. You have to call
4906 * GetFirstRegion() once before you can use this method. By calling this
4907 * method multiple times it iterates through the available Regions.
4908 *
4909 * @returns pointer address to the next region or NULL if end reached
4910 * @see GetFirstRegion()
4911 */
4912 Region* Instrument::GetNextRegion() {
4913 if (!pRegions) return NULL;
4914 RegionsIterator++;
4915 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4916 }
4917
4918 Region* Instrument::AddRegion() {
4919 // create new Region object (and its RIFF chunks)
4920 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
4921 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
4922 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
4923 Region* pNewRegion = new Region(this, rgn);
4924 pRegions->push_back(pNewRegion);
4925 Regions = (uint32_t) pRegions->size();
4926 // update Region key table for fast lookup
4927 UpdateRegionKeyTable();
4928 // done
4929 return pNewRegion;
4930 }
4931
4932 void Instrument::DeleteRegion(Region* pRegion) {
4933 if (!pRegions) return;
4934 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
4935 // update Region key table for fast lookup
4936 UpdateRegionKeyTable();
4937 }
4938
4939 /**
4940 * Move this instrument at the position before @arg dst.
4941 *
4942 * This method can be used to reorder the sequence of instruments in a
4943 * .gig file. This might be helpful especially on large .gig files which
4944 * contain a large number of instruments within the same .gig file. So
4945 * grouping such instruments to similar ones, can help to keep track of them
4946 * when working with such complex .gig files.
4947 *
4948 * When calling this method, this instrument will be removed from in its
4949 * current position in the instruments list and moved to the requested
4950 * target position provided by @param dst. You may also pass NULL as
4951 * argument to this method, in that case this intrument will be moved to the
4952 * very end of the .gig file's instrument list.
4953 *
4954 * You have to call Save() to make the order change persistent to the .gig
4955 * file.
4956 *
4957 * Currently this method is limited to moving the instrument within the same
4958 * .gig file. Trying to move it to another .gig file by calling this method
4959 * will throw an exception.
4960 *
4961 * @param dst - destination instrument at which this instrument will be
4962 * moved to, or pass NULL for moving to end of list
4963 * @throw gig::Exception if this instrument and target instrument are not
4964 * part of the same file
4965 */
4966 void Instrument::MoveTo(Instrument* dst) {
4967 if (dst && GetParent() != dst->GetParent())
4968 throw Exception(
4969 "gig::Instrument::MoveTo() can only be used for moving within "
4970 "the same gig file."
4971 );
4972
4973 File* pFile = (File*) GetParent();
4974
4975 // move this instrument within the instrument list
4976 {
4977 File::InstrumentList& list = *pFile->pInstruments;
4978
4979 File::InstrumentList::iterator itFrom =
4980 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(this));
4981
4982 File::InstrumentList::iterator itTo =
4983 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(dst));
4984
4985 list.splice(itTo, list, itFrom);
4986 }
4987
4988 // move the instrument's actual list RIFF chunk appropriately
4989 RIFF::List* lstCkInstruments = pFile->pRIFF->GetSubList(LIST_TYPE_LINS);
4990 lstCkInstruments->MoveSubChunk(
4991 this->pCkInstrument,
4992 (RIFF::Chunk*) ((dst) ? dst->pCkInstrument : NULL)
4993 );
4994 }
4995
4996 /**
4997 * Returns a MIDI rule of the instrument.
4998 *
4999 * The list of MIDI rules, at least in gig v3, always contains at
5000 * most two rules. The second rule can only be the DEF filter
5001 * (which currently isn't supported by libgig).
5002 *
5003 * @param i - MIDI rule number
5004 * @returns pointer address to MIDI rule number i or NULL if there is none
5005 */
5006 MidiRule* Instrument::GetMidiRule(int i) {
5007 return pMidiRules[i];
5008 }
5009
5010 /**
5011 * Adds the "controller trigger" MIDI rule to the instrument.
5012 *
5013 * @returns the new MIDI rule
5014 */
5015 MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
5016 delete pMidiRules[0];
5017 MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
5018 pMidiRules[0] = r;
5019 pMidiRules[1] = 0;
5020 return r;
5021 }
5022
5023 /**
5024 * Adds the legato MIDI rule to the instrument.
5025 *
5026 * @returns the new MIDI rule
5027 */
5028 MidiRuleLegato* Instrument::AddMidiRuleLegato() {
5029 delete pMidiRules[0];
5030 MidiRuleLegato* r = new MidiRuleLegato;
5031 pMidiRules[0] = r;
5032 pMidiRules[1] = 0;
5033 return r;
5034 }
5035
5036 /**
5037 * Adds the alternator MIDI rule to the instrument.
5038 *
5039 * @returns the new MIDI rule
5040 */
5041 MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
5042 delete pMidiRules[0];
5043 MidiRuleAlternator* r = new MidiRuleAlternator;
5044 pMidiRules[0] = r;
5045 pMidiRules[1] = 0;
5046 return r;
5047 }
5048
5049 /**
5050 * Deletes a MIDI rule from the instrument.
5051 *
5052 * @param i - MIDI rule number
5053 */
5054 void Instrument::DeleteMidiRule(int i) {
5055 delete pMidiRules[i];
5056 pMidiRules[i] = 0;
5057 }
5058
5059 void Instrument::LoadScripts() {
5060 if (pScriptRefs) return;
5061 pScriptRefs = new std::vector<_ScriptPooolRef>;
5062 if (scriptPoolFileOffsets.empty()) return;
5063 File* pFile = (File*) GetParent();
5064 for (uint k = 0; k < scriptPoolFileOffsets.size(); ++k) {
5065 uint32_t soughtOffset = scriptPoolFileOffsets[k].fileOffset;
5066 for (uint i = 0; pFile->GetScriptGroup(i); ++i) {
5067 ScriptGroup* group = pFile->GetScriptGroup(i);
5068 for (uint s = 0; group->GetScript(s); ++s) {
5069 Script* script = group->GetScript(s);
5070 if (script->pChunk) {
5071 uint32_t offset = uint32_t(
5072 script->pChunk->GetFilePos() -
5073 script->pChunk->GetPos() -
5074 CHUNK_HEADER_SIZE(script->pChunk->GetFile()->GetFileOffsetSize())
5075 );
5076 if (offset == soughtOffset)
5077 {
5078 _ScriptPooolRef ref;
5079 ref.script = script;
5080 ref.bypass = scriptPoolFileOffsets[k].bypass;
5081 pScriptRefs->push_back(ref);
5082 break;
5083 }
5084 }
5085 }
5086 }
5087 }
5088 // we don't need that anymore
5089 scriptPoolFileOffsets.clear();
5090 }
5091
5092 /** @brief Get instrument script (gig format extension).
5093 *
5094 * Returns the real-time instrument script of instrument script slot
5095 * @a index.
5096 *
5097 * @note This is an own format extension which did not exist i.e. in the
5098 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5099 * gigedit.
5100 *
5101 * @param index - instrument script slot index
5102 * @returns script or NULL if index is out of bounds
5103 */
5104 Script* Instrument::GetScriptOfSlot(uint index) {
5105 LoadScripts();
5106 if (index >= pScriptRefs->size()) return NULL;
5107 return pScriptRefs->at(index).script;
5108 }
5109
5110 /** @brief Add new instrument script slot (gig format extension).
5111 *
5112 * Add the given real-time instrument script reference to this instrument,
5113 * which shall be executed by the sampler for for this instrument. The
5114 * script will be added to the end of the script list of this instrument.
5115 * The positions of the scripts in the Instrument's Script list are
5116 * relevant, because they define in which order they shall be executed by
5117 * the sampler. For this reason it is also legal to add the same script
5118 * twice to an instrument, for example you might have a script called
5119 * "MyFilter" which performs an event filter task, and you might have
5120 * another script called "MyNoteTrigger" which triggers new notes, then you
5121 * might for example have the following list of scripts on the instrument:
5122 *
5123 * 1. Script "MyFilter"
5124 * 2. Script "MyNoteTrigger"
5125 * 3. Script "MyFilter"
5126 *
5127 * Which would make sense, because the 2nd script launched new events, which
5128 * you might need to filter as well.
5129 *
5130 * There are two ways to disable / "bypass" scripts. You can either disable
5131 * a script locally for the respective script slot on an instrument (i.e. by
5132 * passing @c false to the 2nd argument of this method, or by calling
5133 * SetScriptBypassed()). Or you can disable a script globally for all slots
5134 * and all instruments by setting Script::Bypass.
5135 *
5136 * @note This is an own format extension which did not exist i.e. in the
5137 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5138 * gigedit.
5139 *
5140 * @param pScript - script that shall be executed for this instrument
5141 * @param bypass - if enabled, the sampler shall skip executing this
5142 * script (in the respective list position)
5143 * @see SetScriptBypassed()
5144 */
5145 void Instrument::AddScriptSlot(Script* pScript, bool bypass) {
5146 LoadScripts();
5147 _ScriptPooolRef ref = { pScript, bypass };
5148 pScriptRefs->push_back(ref);
5149 }
5150
5151 /** @brief Flip two script slots with each other (gig format extension).
5152 *
5153 * Swaps the position of the two given scripts in the Instrument's Script
5154 * list. The positions of the scripts in the Instrument's Script list are
5155 * relevant, because they define in which order they shall be executed by
5156 * the sampler.
5157 *
5158 * @note This is an own format extension which did not exist i.e. in the
5159 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5160 * gigedit.
5161 *
5162 * @param index1 - index of the first script slot to swap
5163 * @param index2 - index of the second script slot to swap
5164 */
5165 void Instrument::SwapScriptSlots(uint index1, uint index2) {
5166 LoadScripts();
5167 if (index1 >= pScriptRefs->size() || index2 >= pScriptRefs->size())
5168 return;
5169 _ScriptPooolRef tmp = (*pScriptRefs)[index1];
5170 (*pScriptRefs)[index1] = (*pScriptRefs)[index2];
5171 (*pScriptRefs)[index2] = tmp;
5172 }
5173
5174 /** @brief Remove script slot.
5175 *
5176 * Removes the script slot with the given slot index.
5177 *
5178 * @param index - index of script slot to remove
5179 */
5180 void Instrument::RemoveScriptSlot(uint index) {
5181 LoadScripts();
5182 if (index >= pScriptRefs->size()) return;
5183 pScriptRefs->erase( pScriptRefs->begin() + index );
5184 }
5185
5186 /** @brief Remove reference to given Script (gig format extension).
5187 *
5188 * This will remove all script slots on the instrument which are referencing
5189 * the given script.
5190 *
5191 * @note This is an own format extension which did not exist i.e. in the
5192 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5193 * gigedit.
5194 *
5195 * @param pScript - script reference to remove from this instrument
5196 * @see RemoveScriptSlot()
5197 */
5198 void Instrument::RemoveScript(Script* pScript) {
5199 LoadScripts();
5200 for (ssize_t i = pScriptRefs->size() - 1; i >= 0; --i) {
5201 if ((*pScriptRefs)[i].script == pScript) {
5202 pScriptRefs->erase( pScriptRefs->begin() + i );
5203 }
5204 }
5205 }
5206
5207 /** @brief Instrument's amount of script slots.
5208 *
5209 * This method returns the amount of script slots this instrument currently
5210 * uses.
5211 *
5212 * A script slot is a reference of a real-time instrument script to be
5213 * executed by the sampler. The scripts will be executed by the sampler in
5214 * sequence of the slots. One (same) script may be referenced multiple
5215 * times in different slots.
5216 *
5217 * @note This is an own format extension which did not exist i.e. in the
5218 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5219 * gigedit.
5220 */
5221 uint Instrument::ScriptSlotCount() const {
5222 return uint(pScriptRefs ? pScriptRefs->size() : scriptPoolFileOffsets.size());
5223 }
5224
5225 /** @brief Whether script execution shall be skipped.
5226 *
5227 * Defines locally for the Script reference slot in the Instrument's Script
5228 * list, whether the script shall be skipped by the sampler regarding
5229 * execution.
5230 *
5231 * It is also possible to ignore exeuction of the script globally, for all
5232 * slots and for all instruments by setting Script::Bypass.
5233 *
5234 * @note This is an own format extension which did not exist i.e. in the
5235 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5236 * gigedit.
5237 *
5238 * @param index - index of the script slot on this instrument
5239 * @see Script::Bypass
5240 */
5241 bool Instrument::IsScriptSlotBypassed(uint index) {
5242 if (index >= ScriptSlotCount()) return false;
5243 return pScriptRefs ? pScriptRefs->at(index).bypass
5244 : scriptPoolFileOffsets.at(index).bypass;
5245
5246 }
5247
5248 /** @brief Defines whether execution shall be skipped.
5249 *
5250 * You can call this method to define locally whether or whether not the
5251 * given script slot shall be executed by the sampler.
5252 *
5253 * @note This is an own format extension which did not exist i.e. in the
5254 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5255 * gigedit.
5256 *
5257 * @param index - script slot index on this instrument
5258 * @param bBypass - if true, the script slot will be skipped by the sampler
5259 * @see Script::Bypass
5260 */
5261 void Instrument::SetScriptSlotBypassed(uint index, bool bBypass) {
5262 if (index >= ScriptSlotCount()) return;
5263 if (pScriptRefs)
5264 pScriptRefs->at(index).bypass = bBypass;
5265 else
5266 scriptPoolFileOffsets.at(index).bypass = bBypass;
5267 }
5268
5269 /**
5270 * Make a (semi) deep copy of the Instrument object given by @a orig
5271 * and assign it to this object.
5272 *
5273 * Note that all sample pointers referenced by @a orig are simply copied as
5274 * memory address. Thus the respective samples are shared, not duplicated!
5275 *
5276 * @param orig - original Instrument object to be copied from
5277 */
5278 void Instrument::CopyAssign(const Instrument* orig) {
5279 CopyAssign(orig, NULL);
5280 }
5281
5282 /**
5283 * Make a (semi) deep copy of the Instrument object given by @a orig
5284 * and assign it to this object.
5285 *
5286 * @param orig - original Instrument object to be copied from
5287 * @param mSamples - crosslink map between the foreign file's samples and
5288 * this file's samples
5289 */
5290 void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
5291 // handle base class
5292 // (without copying DLS region stuff)
5293 DLS::Instrument::CopyAssignCore(orig);
5294
5295 // handle own member variables
5296 Attenuation = orig->Attenuation;
5297 EffectSend = orig->EffectSend;
5298 FineTune = orig->FineTune;
5299 PitchbendRange = orig->PitchbendRange;
5300 PianoReleaseMode = orig->PianoReleaseMode;
5301 DimensionKeyRange = orig->DimensionKeyRange;
5302 scriptPoolFileOffsets = orig->scriptPoolFileOffsets;
5303 pScriptRefs = orig->pScriptRefs;
5304
5305 // free old midi rules
5306 for (int i = 0 ; pMidiRules[i] ; i++) {
5307 delete pMidiRules[i];
5308 }
5309 //TODO: MIDI rule copying
5310 pMidiRules[0] = NULL;
5311
5312 // delete all old regions
5313 while (Regions) DeleteRegion(GetFirstRegion());
5314 // create new regions and copy them from original
5315 {
5316 RegionList::const_iterator it = orig->pRegions->begin();
5317 for (int i = 0; i < orig->Regions; ++i, ++it) {
5318 Region* dstRgn = AddRegion();
5319 //NOTE: Region does semi-deep copy !
5320 dstRgn->CopyAssign(
5321 static_cast<gig::Region*>(*it),
5322 mSamples
5323 );
5324 }
5325 }
5326
5327 UpdateRegionKeyTable();
5328 }
5329
5330
5331 // *************** Group ***************
5332 // *
5333
5334 /** @brief Constructor.
5335 *
5336 * @param file - pointer to the gig::File object
5337 * @param ck3gnm - pointer to 3gnm chunk associated with this group or
5338 * NULL if this is a new Group
5339 */
5340 Group::Group(File* file, RIFF::Chunk* ck3gnm) {
5341 pFile = file;
5342 pNameChunk = ck3gnm;
5343 ::LoadString(pNameChunk, Name);
5344 }
5345
5346 Group::~Group() {
5347 // remove the chunk associated with this group (if any)
5348 if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
5349 }
5350
5351 /** @brief Update chunks with current group settings.
5352 *
5353 * Apply current Group field values to the respective chunks. You have
5354 * to call File::Save() to make changes persistent.
5355 *
5356 * Usually there is absolutely no need to call this method explicitly.
5357 * It will be called automatically when File::Save() was called.
5358 *
5359 * @param pProgress - callback function for progress notification
5360 */
5361 void Group::UpdateChunks(progress_t* pProgress) {
5362 // make sure <3gri> and <3gnl> list chunks exist
5363 RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
5364 if (!_3gri) {
5365 _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
5366 pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
5367 }
5368 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
5369 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
5370
5371 if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
5372 // v3 has a fixed list of 128 strings, find a free one
5373 for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
5374 if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
5375 pNameChunk = ck;
5376 break;
5377 }
5378 }
5379 }
5380
5381 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
5382 ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
5383 }
5384
5385 /**
5386 * Returns the first Sample of this Group. You have to call this method
5387 * once before you use GetNextSample().
5388 *
5389 * <b>Notice:</b> this method might block for a long time, in case the
5390 * samples of this .gig file were not scanned yet
5391 *
5392 * @returns pointer address to first Sample or NULL if there is none
5393 * applied to this Group
5394 * @see GetNextSample()
5395 */
5396 Sample* Group::GetFirstSample() {
5397 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5398 for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
5399 if (pSample->GetGroup() == this) return pSample;
5400 }
5401 return NULL;
5402 }
5403
5404 /**
5405 * Returns the next Sample of the Group. You have to call
5406 * GetFirstSample() once before you can use this method. By calling this
5407 * method multiple times it iterates through the Samples assigned to
5408 * this Group.
5409 *
5410 * @returns pointer address to the next Sample of this Group or NULL if
5411 * end reached
5412 * @see GetFirstSample()
5413 */
5414 Sample* Group::GetNextSample() {
5415 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5416 for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
5417 if (pSample->GetGroup() == this) return pSample;
5418 }
5419 return NULL;
5420 }
5421
5422 /**
5423 * Move Sample given by \a pSample from another Group to this Group.
5424 */
5425 void Group::AddSample(Sample* pSample) {
5426 pSample->pGroup = this;
5427 }
5428
5429 /**
5430 * Move all members of this group to another group (preferably the 1st
5431 * one except this). This method is called explicitly by
5432 * File::DeleteGroup() thus when a Group was deleted. This code was
5433 * intentionally not placed in the destructor!
5434 */
5435 void Group::MoveAll() {
5436 // get "that" other group first
5437 Group* pOtherGroup = NULL;
5438 for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
5439 if (pOtherGroup != this) break;
5440 }
5441 if (!pOtherGroup) throw Exception(
5442 "Could not move samples to another group, since there is no "
5443 "other Group. This is a bug, report it!"
5444 );
5445 // now move all samples of this group to the other group
5446 for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
5447 pOtherGroup->AddSample(pSample);
5448 }
5449 }
5450
5451
5452
5453 // *************** File ***************
5454 // *
5455
5456 /// Reflects Gigasampler file format version 2.0 (1998-06-28).
5457 const DLS::version_t File::VERSION_2 = {
5458 0, 2, 19980628 & 0xffff, 19980628 >> 16
5459 };
5460
5461 /// Reflects Gigasampler file format version 3.0 (2003-03-31).
5462 const DLS::version_t File::VERSION_3 = {
5463 0, 3, 20030331 & 0xffff, 20030331 >> 16
5464 };
5465
5466 static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
5467 { CHUNK_ID_IARL, 256 },
5468 { CHUNK_ID_IART, 128 },
5469 { CHUNK_ID_ICMS, 128 },
5470 { CHUNK_ID_ICMT, 1024 },
5471 { CHUNK_ID_ICOP, 128 },
5472 { CHUNK_ID_ICRD, 128 },
5473 { CHUNK_ID_IENG, 128 },
5474 { CHUNK_ID_IGNR, 128 },
5475 { CHUNK_ID_IKEY, 128 },
5476 { CHUNK_ID_IMED, 128 },
5477 { CHUNK_ID_INAM, 128 },
5478 { CHUNK_ID_IPRD, 128 },
5479 { CHUNK_ID_ISBJ, 128 },
5480 { CHUNK_ID_ISFT, 128 },
5481 { CHUNK_ID_ISRC, 128 },
5482 { CHUNK_ID_ISRF, 128 },
5483 { CHUNK_ID_ITCH, 128 },
5484 { 0, 0 }
5485 };
5486
5487 File::File() : DLS::File() {
5488 bAutoLoad = true;
5489 *pVersion = VERSION_3;
5490 pGroups = NULL;
5491 pScriptGroups = NULL;
5492 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5493 pInfo->ArchivalLocation = String(256, ' ');
5494
5495 // add some mandatory chunks to get the file chunks in right
5496 // order (INFO chunk will be moved to first position later)
5497 pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
5498 pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
5499 pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
5500
5501 GenerateDLSID();
5502 }
5503
5504 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
5505 bAutoLoad = true;
5506 pGroups = NULL;
5507 pScriptGroups = NULL;
5508 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5509 }
5510
5511 File::~File() {
5512 if (pGroups) {
5513 std::list<Group*>::iterator iter = pGroups->begin();
5514 std::list<Group*>::iterator end = pGroups->end();
5515 while (iter != end) {
5516 delete *iter;
5517 ++iter;
5518 }
5519 delete pGroups;
5520 }
5521 if (pScriptGroups) {
5522 std::list<ScriptGroup*>::iterator iter = pScriptGroups->begin();
5523 std::list<ScriptGroup*>::iterator end = pScriptGroups->end();
5524 while (iter != end) {
5525 delete *iter;
5526 ++iter;
5527 }
5528 delete pScriptGroups;
5529 }
5530 }
5531
5532 Sample* File::GetFirstSample(progress_t* pProgress) {
5533 if (!pSamples) LoadSamples(pProgress);
5534 if (!pSamples) return NULL;
5535 SamplesIterator = pSamples->begin();
5536 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5537 }
5538
5539 Sample* File::GetNextSample() {
5540 if (!pSamples) return NULL;
5541 SamplesIterator++;
5542 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5543 }
5544
5545 /**
5546 * Returns Sample object of @a index.
5547 *
5548 * @returns sample object or NULL if index is out of bounds
5549 */
5550 Sample* File::GetSample(uint index) {
5551 if (!pSamples) LoadSamples();
5552 if (!pSamples) return NULL;
5553 DLS::File::SampleList::iterator it = pSamples->begin();
5554 for (int i = 0; i < index; ++i) {
5555 ++it;
5556 if (it == pSamples->end()) return NULL;
5557 }
5558 if (it == pSamples->end()) return NULL;
5559 return static_cast<gig::Sample*>( *it );
5560 }
5561
5562 /** @brief Add a new sample.
5563 *
5564 * This will create a new Sample object for the gig file. You have to
5565 * call Save() to make this persistent to the file.
5566 *
5567 * @returns pointer to new Sample object
5568 */
5569 Sample* File::AddSample() {
5570 if (!pSamples) LoadSamples();
5571 __ensureMandatoryChunksExist();
5572 RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
5573 // create new Sample object and its respective 'wave' list chunk
5574 RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
5575 Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
5576
5577 // add mandatory chunks to get the chunks in right order
5578 wave->AddSubChunk(CHUNK_ID_FMT, 16);
5579 wave->AddSubList(LIST_TYPE_INFO);
5580
5581 pSamples->push_back(pSample);
5582 return pSample;
5583 }
5584
5585 /** @brief Delete a sample.
5586 *
5587 * This will delete the given Sample object from the gig file. Any
5588 * references to this sample from Regions and DimensionRegions will be
5589 * removed. You have to call Save() to make this persistent to the file.
5590 *
5591 * @param pSample - sample to delete
5592 * @throws gig::Exception if given sample could not be found
5593 */
5594 void File::DeleteSample(Sample* pSample) {
5595 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
5596 SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
5597 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
5598 if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
5599 pSamples->erase(iter);
5600 delete pSample;
5601
5602 SampleList::iterator tmp = SamplesIterator;
5603 // remove all references to the sample
5604 for (Instrument* instrument = GetFirstInstrument() ; instrument ;
5605 instrument = GetNextInstrument()) {
5606 for (Region* region = instrument->GetFirstRegion() ; region ;
5607 region = instrument->GetNextRegion()) {
5608
5609 if (region->GetSample() == pSample) region->SetSample(NULL);
5610
5611 for (int i = 0 ; i < region->DimensionRegions ; i++) {
5612 gig::DimensionRegion *d = region->pDimensionRegions[i];
5613 if (d->pSample == pSample) d->pSample = NULL;
5614 }
5615 }
5616 }
5617 SamplesIterator = tmp; // restore iterator
5618 }
5619
5620 void File::LoadSamples() {
5621 LoadSamples(NULL);
5622 }
5623
5624 void File::LoadSamples(progress_t* pProgress) {
5625 // Groups must be loaded before samples, because samples will try
5626 // to resolve the group they belong to
5627 if (!pGroups) LoadGroups();
5628
5629 if (!pSamples) pSamples = new SampleList;
5630
5631 RIFF::File* file = pRIFF;
5632
5633 // just for progress calculation
5634 int iSampleIndex = 0;
5635 int iTotalSamples = WavePoolCount;
5636
5637 // check if samples should be loaded from extension files
5638 // (only for old gig files < 2 GB)
5639 int lastFileNo = 0;
5640 if (!file->IsNew() && !(file->GetCurrentFileSize() >> 31)) {
5641 for (int i = 0 ; i < WavePoolCount ; i++) {
5642 if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
5643 }
5644 }
5645 String name(pRIFF->GetFileName());
5646 int nameLen = (int) name.length();
5647 char suffix[6];
5648 if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
5649
5650 for (int fileNo = 0 ; ; ) {
5651 RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
5652 if (wvpl) {
5653 file_offset_t wvplFileOffset = wvpl->GetFilePos();
5654 RIFF::List* wave = wvpl->GetFirstSubList();
5655 while (wave) {
5656 if (wave->GetListType() == LIST_TYPE_WAVE) {
5657 // notify current progress
5658 const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
5659 __notify_progress(pProgress, subprogress);
5660
5661 file_offset_t waveFileOffset = wave->GetFilePos();
5662 pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo, iSampleIndex));
5663
5664 iSampleIndex++;
5665 }
5666 wave = wvpl->GetNextSubList();
5667 }
5668
5669 if (fileNo == lastFileNo) break;
5670
5671 // open extension file (*.gx01, *.gx02, ...)
5672 fileNo++;
5673 sprintf(suffix, ".gx%02d", fileNo);
5674 name.replace(nameLen, 5, suffix);
5675 file = new RIFF::File(name);
5676 ExtensionFiles.push_back(file);
5677 } else break;
5678 }
5679
5680 __notify_progress(pProgress, 1.0); // notify done
5681 }
5682
5683 Instrument* File::GetFirstInstrument() {
5684 if (!pInstruments) LoadInstruments();
5685 if (!pInstruments) return NULL;
5686 InstrumentsIterator = pInstruments->begin();
5687 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5688 }
5689
5690 Instrument* File::GetNextInstrument() {
5691 if (!pInstruments) return NULL;
5692 InstrumentsIterator++;
5693 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5694 }
5695
5696 /**
5697 * Returns the instrument with the given index.
5698 *
5699 * @param index - number of the sought instrument (0..n)
5700 * @param pProgress - optional: callback function for progress notification
5701 * @returns sought instrument or NULL if there's no such instrument
5702 */
5703 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
5704 if (!pInstruments) {
5705 // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
5706
5707 // sample loading subtask
5708 progress_t subprogress;
5709 __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
5710 __notify_progress(&subprogress, 0.0f);
5711 if (GetAutoLoad())
5712 GetFirstSample(&subprogress); // now force all samples to be loaded
5713 __notify_progress(&subprogress, 1.0f);
5714
5715 // instrument loading subtask
5716 if (pProgress && pProgress->callback) {
5717 subprogress.__range_min = subprogress.__range_max;
5718 subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
5719 }
5720 __notify_progress(&subprogress, 0.0f);
5721 LoadInstruments(&subprogress);
5722 __notify_progress(&subprogress, 1.0f);
5723 }
5724 if (!pInstruments) return NULL;
5725 InstrumentsIterator = pInstruments->begin();
5726 for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
5727 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
5728 InstrumentsIterator++;
5729 }
5730 return NULL;
5731 }
5732
5733 /** @brief Add a new instrument definition.
5734 *
5735 * This will create a new Instrument object for the gig file. You have
5736 * to call Save() to make this persistent to the file.
5737 *
5738 * @returns pointer to new Instrument object
5739 */
5740 Instrument* File::AddInstrument() {
5741 if (!pInstruments) LoadInstruments();
5742 __ensureMandatoryChunksExist();
5743 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5744 RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
5745
5746 // add mandatory chunks to get the chunks in right order
5747 lstInstr->AddSubList(LIST_TYPE_INFO);
5748 lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
5749
5750 Instrument* pInstrument = new Instrument(this, lstInstr);
5751 pInstrument->GenerateDLSID();
5752
5753 lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
5754
5755 // this string is needed for the gig to be loadable in GSt:
5756 pInstrument->pInfo->Software = "Endless Wave";
5757
5758 pInstruments->push_back(pInstrument);
5759 return pInstrument;
5760 }
5761
5762 /** @brief Add a duplicate of an existing instrument.
5763 *
5764 * Duplicates the instrument definition given by @a orig and adds it
5765 * to this file. This allows in an instrument editor application to
5766 * easily create variations of an instrument, which will be stored in
5767 * the same .gig file, sharing i.e. the same samples.
5768 *
5769 * Note that all sample pointers referenced by @a orig are simply copied as
5770 * memory address. Thus the respective samples are shared, not duplicated!
5771 *
5772 * You have to call Save() to make this persistent to the file.
5773 *
5774 * @param orig - original instrument to be copied
5775 * @returns duplicated copy of the given instrument
5776 */
5777 Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
5778 Instrument* instr = AddInstrument();
5779 instr->CopyAssign(orig);
5780 return instr;
5781 }
5782
5783 /** @brief Add content of another existing file.
5784 *
5785 * Duplicates the samples, groups and instruments of the original file
5786 * given by @a pFile and adds them to @c this File. In case @c this File is
5787 * a new one that you haven't saved before, then you have to call
5788 * SetFileName() before calling AddContentOf(), because this method will
5789 * automatically save this file during operation, which is required for
5790 * writing the sample waveform data by disk streaming.
5791 *
5792 * @param pFile - original file whose's content shall be copied from
5793 */
5794 void File::AddContentOf(File* pFile) {
5795 static int iCallCount = -1;
5796 iCallCount++;
5797 std::map<Group*,Group*> mGroups;
5798 std::map<Sample*,Sample*> mSamples;
5799
5800 // clone sample groups
5801 for (int i = 0; pFile->GetGroup(i); ++i) {
5802 Group* g = AddGroup();
5803 g->Name =
5804 "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
5805 mGroups[pFile->GetGroup(i)] = g;
5806 }
5807
5808 // clone samples (not waveform data here yet)
5809 for (int i = 0; pFile->GetSample(i); ++i) {
5810 Sample* s = AddSample();
5811 s->CopyAssignMeta(pFile->GetSample(i));
5812 mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
5813 mSamples[pFile->GetSample(i)] = s;
5814 }
5815
5816 // clone script groups and their scripts
5817 for (int iGroup = 0; pFile->GetScriptGroup(iGroup); ++iGroup) {
5818 ScriptGroup* sg = pFile->GetScriptGroup(iGroup);
5819 ScriptGroup* dg = AddScriptGroup();
5820 dg->Name = "COPY" + ToString(iCallCount) + "_" + sg->Name;
5821 for (int iScript = 0; sg->GetScript(iScript); ++iScript) {
5822 Script* ss = sg->GetScript(iScript);
5823 Script* ds = dg->AddScript();
5824 ds->CopyAssign(ss);
5825 }
5826 }
5827
5828 //BUG: For some reason this method only works with this additional
5829 // Save() call in between here.
5830 //
5831 // Important: The correct one of the 2 Save() methods has to be called
5832 // here, depending on whether the file is completely new or has been
5833 // saved to disk already, otherwise it will result in data corruption.
5834 if (pRIFF->IsNew())
5835 Save(GetFileName());
5836 else
5837 Save();
5838
5839 // clone instruments
5840 // (passing the crosslink table here for the cloned samples)
5841 for (int i = 0; pFile->GetInstrument(i); ++i) {
5842 Instrument* instr = AddInstrument();
5843 instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
5844 }
5845
5846 // Mandatory: file needs to be saved to disk at this point, so this
5847 // file has the correct size and data layout for writing the samples'
5848 // waveform data to disk.
5849 Save();
5850
5851 // clone samples' waveform data
5852 // (using direct read & write disk streaming)
5853 for (int i = 0; pFile->GetSample(i); ++i) {
5854 mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
5855 }
5856 }
5857
5858 /** @brief Delete an instrument.
5859 *
5860 * This will delete the given Instrument object from the gig file. You
5861 * have to call Save() to make this persistent to the file.
5862 *
5863 * @param pInstrument - instrument to delete
5864 * @throws gig::Exception if given instrument could not be found
5865 */
5866 void File::DeleteInstrument(Instrument* pInstrument) {
5867 if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
5868 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
5869 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
5870 pInstruments->erase(iter);
5871 delete pInstrument;
5872 }
5873
5874 void File::LoadInstruments() {
5875 LoadInstruments(NULL);
5876 }
5877
5878 void File::LoadInstruments(progress_t* pProgress) {
5879 if (!pInstruments) pInstruments = new InstrumentList;
5880 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5881 if (lstInstruments) {
5882 int iInstrumentIndex = 0;
5883 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
5884 while (lstInstr) {
5885 if (lstInstr->GetListType() == LIST_TYPE_INS) {
5886 // notify current progress
5887 const float localProgress = (float) iInstrumentIndex / (float) Instruments;
5888 __notify_progress(pProgress, localProgress);
5889
5890 // divide local progress into subprogress for loading current Instrument
5891 progress_t subprogress;
5892 __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
5893
5894 pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
5895
5896 iInstrumentIndex++;
5897 }
5898 lstInstr = lstInstruments->GetNextSubList();
5899 }
5900 __notify_progress(pProgress, 1.0); // notify done
5901 }
5902 }
5903
5904 /// Updates the 3crc chunk with the checksum of a sample. The
5905 /// update is done directly to disk, as this method is called
5906 /// after File::Save()
5907 void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
5908 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5909 if (!_3crc) return;
5910
5911 // get the index of the sample
5912 int iWaveIndex = GetWaveTableIndexOf(pSample);
5913 if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
5914
5915 // write the CRC-32 checksum to disk
5916 _3crc->SetPos(iWaveIndex * 8);
5917 uint32_t one = 1;
5918 _3crc->WriteUint32(&one); // always 1
5919 _3crc->WriteUint32(&crc);
5920 }
5921
5922 uint32_t File::GetSampleChecksum(Sample* pSample) {
5923 // get the index of the sample
5924 int iWaveIndex = GetWaveTableIndexOf(pSample);
5925 if (iWaveIndex < 0) throw gig::Exception("Could not retrieve reference crc of sample, could not resolve sample's wave table index");
5926
5927 return GetSampleChecksumByIndex(iWaveIndex);
5928 }
5929
5930 uint32_t File::GetSampleChecksumByIndex(int index) {
5931 if (index < 0) throw gig::Exception("Could not retrieve reference crc of sample, invalid wave pool index of sample");
5932
5933 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5934 if (!_3crc) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
5935 uint8_t* pData = (uint8_t*) _3crc->LoadChunkData();
5936 if (!pData) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
5937
5938 // read the CRC-32 checksum directly from disk
5939 size_t pos = index * 8;
5940 if (pos + 8 > _3crc->GetNewSize())
5941 throw gig::Exception("Could not retrieve reference crc of sample, could not seek to required position in crc chunk");
5942
5943 uint32_t one = load32(&pData[pos]); // always 1
5944 if (one != 1)
5945 throw gig::Exception("Could not retrieve reference crc of sample, because reference checksum table is damaged");
5946
5947 return load32(&pData[pos+4]);
5948 }
5949
5950 int File::GetWaveTableIndexOf(gig::Sample* pSample) {
5951 if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
5952 File::SampleList::iterator iter = pSamples->begin();
5953 File::SampleList::iterator end = pSamples->end();
5954 for (int index = 0; iter != end; ++iter, ++index)
5955 if (*iter == pSample)
5956 return index;
5957 return -1;
5958 }
5959
5960 /**
5961 * Checks whether the file's "3CRC" chunk was damaged. This chunk contains
5962 * the CRC32 check sums of all samples' raw wave data.
5963 *
5964 * @return true if 3CRC chunk is OK, or false if 3CRC chunk is damaged
5965 */
5966 bool File::VerifySampleChecksumTable() {
5967 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5968 if (!_3crc) return false;
5969 if (_3crc->GetNewSize() <= 0) return false;
5970 if (_3crc->GetNewSize() % 8) return false;
5971 if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
5972 if (_3crc->GetNewSize() != pSamples->size() * 8) return false;
5973
5974 const file_offset_t n = _3crc->GetNewSize() / 8;
5975
5976 uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
5977 if (!pData) return false;
5978
5979 for (file_offset_t i = 0; i < n; ++i) {
5980 uint32_t one = pData[i*2];
5981 if (one != 1) return false;
5982 }
5983
5984 return true;
5985 }
5986
5987 /**
5988 * Recalculates CRC32 checksums for all samples and rebuilds this gig
5989 * file's checksum table with those new checksums. This might usually
5990 * just be necessary if the checksum table was damaged.
5991 *
5992 * @e IMPORTANT: The current implementation of this method only works
5993 * with files that have not been modified since it was loaded, because
5994 * it expects that no externally caused file structure changes are
5995 * required!
5996 *
5997 * Due to the expectation above, this method is currently protected
5998 * and actually only used by the command line tool "gigdump" yet.
5999 *
6000 * @returns true if Save() is required to be called after this call,
6001 * false if no further action is required
6002 */
6003 bool File::RebuildSampleChecksumTable() {
6004 // make sure sample chunks were scanned
6005 if (!pSamples) GetFirstSample();
6006
6007 bool bRequiresSave = false;
6008
6009 // make sure "3CRC" chunk exists with required size
6010 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6011 if (!_3crc) {
6012 _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6013 // the order of einf and 3crc is not the same in v2 and v3
6014 RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6015 if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
6016 bRequiresSave = true;
6017 } else if (_3crc->GetNewSize() != pSamples->size() * 8) {
6018 _3crc->Resize(pSamples->size() * 8);
6019 bRequiresSave = true;
6020 }
6021
6022 if (bRequiresSave) { // refill CRC table for all samples in RAM ...
6023 uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6024 {
6025 File::SampleList::iterator iter = pSamples->begin();
6026 File::SampleList::iterator end = pSamples->end();
6027 for (; iter != end; ++iter) {
6028 gig::Sample* pSample = (gig::Sample*) *iter;
6029 int index = GetWaveTableIndexOf(pSample);
6030 if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6031 pData[index*2] = 1; // always 1
6032 pData[index*2+1] = pSample->CalculateWaveDataChecksum();
6033 }
6034 }
6035 } else { // no file structure changes necessary, so directly write to disk and we are done ...
6036 // make sure file is in write mode
6037 pRIFF->SetMode(RIFF::stream_mode_read_write);
6038 {
6039 File::SampleList::iterator iter = pSamples->begin();
6040 File::SampleList::iterator end = pSamples->end();
6041 for (; iter != end; ++iter) {
6042 gig::Sample* pSample = (gig::Sample*) *iter;
6043 int index = GetWaveTableIndexOf(pSample);
6044 if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6045 pSample->crc = pSample->CalculateWaveDataChecksum();
6046 SetSampleChecksum(pSample, pSample->crc);
6047 }
6048 }
6049 }
6050
6051 return bRequiresSave;
6052 }
6053
6054 Group* File::GetFirstGroup() {
6055 if (!pGroups) LoadGroups();
6056 // there must always be at least one group
6057 GroupsIterator = pGroups->begin();
6058 return *GroupsIterator;
6059 }
6060
6061 Group* File::GetNextGroup() {
6062 if (!pGroups) return NULL;
6063 ++GroupsIterator;
6064 return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
6065 }
6066
6067 /**
6068 * Returns the group with the given index.
6069 *
6070 * @param index - number of the sought group (0..n)
6071 * @returns sought group or NULL if there's no such group
6072 */
6073 Group* File::GetGroup(uint index) {
6074 if (!pGroups) LoadGroups();
6075 GroupsIterator = pGroups->begin();
6076 for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
6077 if (i == index) return *GroupsIterator;
6078 ++GroupsIterator;
6079 }
6080 return NULL;
6081 }
6082
6083 /**
6084 * Returns the group with the given group name.
6085 *
6086 * Note: group names don't have to be unique in the gig format! So there
6087 * can be multiple groups with the same name. This method will simply
6088 * return the first group found with the given name.
6089 *
6090 * @param name - name of the sought group
6091 * @returns sought group or NULL if there's no group with that name
6092 */
6093 Group* File::GetGroup(String name) {
6094 if (!pGroups) LoadGroups();
6095 GroupsIterator = pGroups->begin();
6096 for (uint i = 0; GroupsIterator != pGroups->end(); ++GroupsIterator, ++i)
6097 if ((*GroupsIterator)->Name == name) return *GroupsIterator;
6098 return NULL;
6099 }
6100
6101 Group* File::AddGroup() {
6102 if (!pGroups) LoadGroups();
6103 // there must always be at least one group
6104 __ensureMandatoryChunksExist();
6105 Group* pGroup = new Group(this, NULL);
6106 pGroups->push_back(pGroup);
6107 return pGroup;
6108 }
6109
6110 /** @brief Delete a group and its samples.
6111 *
6112 * This will delete the given Group object and all the samples that
6113 * belong to this group from the gig file. You have to call Save() to
6114 * make this persistent to the file.
6115 *
6116 * @param pGroup - group to delete
6117 * @throws gig::Exception if given group could not be found
6118 */
6119 void File::DeleteGroup(Group* pGroup) {
6120 if (!pGroups) LoadGroups();
6121 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6122 if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6123 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6124 // delete all members of this group
6125 for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
6126 DeleteSample(pSample);
6127 }
6128 // now delete this group object
6129 pGroups->erase(iter);
6130 delete pGroup;
6131 }
6132
6133 /** @brief Delete a group.
6134 *
6135 * This will delete the given Group object from the gig file. All the
6136 * samples that belong to this group will not be deleted, but instead
6137 * be moved to another group. You have to call Save() to make this
6138 * persistent to the file.
6139 *
6140 * @param pGroup - group to delete
6141 * @throws gig::Exception if given group could not be found
6142 */
6143 void File::DeleteGroupOnly(Group* pGroup) {
6144 if (!pGroups) LoadGroups();
6145 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6146 if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6147 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6148 // move all members of this group to another group
6149 pGroup->MoveAll();
6150 pGroups->erase(iter);
6151 delete pGroup;
6152 }
6153
6154 void File::LoadGroups() {
6155 if (!pGroups) pGroups = new std::list<Group*>;
6156 // try to read defined groups from file
6157 RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6158 if (lst3gri) {
6159 RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
6160 if (lst3gnl) {
6161 RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
6162 while (ck) {
6163 if (ck->GetChunkID() == CHUNK_ID_3GNM) {
6164 if (pVersion && pVersion->major == 3 &&
6165 strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
6166
6167 pGroups->push_back(new Group(this, ck));
6168 }
6169 ck = lst3gnl->GetNextSubChunk();
6170 }
6171 }
6172 }
6173 // if there were no group(s), create at least the mandatory default group
6174 if (!pGroups->size()) {
6175 Group* pGroup = new Group(this, NULL);
6176 pGroup->Name = "Default Group";
6177 pGroups->push_back(pGroup);
6178 }
6179 }
6180
6181 /** @brief Get instrument script group (by index).
6182 *
6183 * Returns the real-time instrument script group with the given index.
6184 *
6185 * @param index - number of the sought group (0..n)
6186 * @returns sought script group or NULL if there's no such group
6187 */
6188 ScriptGroup* File::GetScriptGroup(uint index) {
6189 if (!pScriptGroups) LoadScriptGroups();
6190 std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6191 for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6192 if (i == index) return *it;
6193 return NULL;
6194 }
6195
6196 /** @brief Get instrument script group (by name).
6197 *
6198 * Returns the first real-time instrument script group found with the given
6199 * group name. Note that group names may not necessarily be unique.
6200 *
6201 * @param name - name of the sought script group
6202 * @returns sought script group or NULL if there's no such group
6203 */
6204 ScriptGroup* File::GetScriptGroup(const String& name) {
6205 if (!pScriptGroups) LoadScriptGroups();
6206 std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6207 for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6208 if ((*it)->Name == name) return *it;
6209 return NULL;
6210 }
6211
6212 /** @brief Add new instrument script group.
6213 *
6214 * Adds a new, empty real-time instrument script group to the file.
6215 *
6216 * You have to call Save() to make this persistent to the file.
6217 *
6218 * @return new empty script group
6219 */
6220 ScriptGroup* File::AddScriptGroup() {
6221 if (!pScriptGroups) LoadScriptGroups();
6222 ScriptGroup* pScriptGroup = new ScriptGroup(this, NULL);
6223 pScriptGroups->push_back(pScriptGroup);
6224 return pScriptGroup;
6225 }
6226
6227 /** @brief Delete an instrument script group.
6228 *
6229 * This will delete the given real-time instrument script group and all its
6230 * instrument scripts it contains. References inside instruments that are
6231 * using the deleted scripts will be removed from the respective instruments
6232 * accordingly.
6233 *
6234 * You have to call Save() to make this persistent to the file.
6235 *
6236 * @param pScriptGroup - script group to delete
6237 * @throws gig::Exception if given script group could not be found
6238 */
6239 void File::DeleteScriptGroup(ScriptGroup* pScriptGroup) {
6240 if (!pScriptGroups) LoadScriptGroups();
6241 std::list<ScriptGroup*>::iterator iter =
6242 find(pScriptGroups->begin(), pScriptGroups->end(), pScriptGroup);
6243 if (iter == pScriptGroups->end())
6244 throw gig::Exception("Could not delete script group, could not find given script group");
6245 pScriptGroups->erase(iter);
6246 for (int i = 0; pScriptGroup->GetScript(i); ++i)
6247 pScriptGroup->DeleteScript(pScriptGroup->GetScript(i));
6248 if (pScriptGroup->pList)
6249 pScriptGroup->pList->GetParent()->DeleteSubChunk(pScriptGroup->pList);
6250 delete pScriptGroup;
6251 }
6252
6253 void File::LoadScriptGroups() {
6254 if (pScriptGroups) return;
6255 pScriptGroups = new std::list<ScriptGroup*>;
6256 RIFF::List* lstLS = pRIFF->GetSubList(LIST_TYPE_3LS);
6257 if (lstLS) {
6258 for (RIFF::List* lst = lstLS->GetFirstSubList(); lst;
6259 lst = lstLS->GetNextSubList())
6260 {
6261 if (lst->GetListType() == LIST_TYPE_RTIS) {
6262 pScriptGroups->push_back(new ScriptGroup(this, lst));
6263 }
6264 }
6265 }
6266 }
6267
6268 /**
6269 * Apply all the gig file's current instruments, samples, groups and settings
6270 * to the respective RIFF chunks. You have to call Save() to make changes
6271 * persistent.
6272 *
6273 * Usually there is absolutely no need to call this method explicitly.
6274 * It will be called automatically when File::Save() was called.
6275 *
6276 * @param pProgress - callback function for progress notification
6277 * @throws Exception - on errors
6278 */
6279 void File::UpdateChunks(progress_t* pProgress) {
6280 bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
6281
6282 // update own gig format extension chunks
6283 // (not part of the GigaStudio 4 format)
6284 RIFF::List* lst3LS = pRIFF->GetSubList(LIST_TYPE_3LS);
6285 if (!lst3LS) {
6286 lst3LS = pRIFF->AddSubList(LIST_TYPE_3LS);
6287 }
6288 // Make sure <3LS > chunk is placed before <ptbl> chunk. The precise
6289 // location of <3LS > is irrelevant, however it should be located
6290 // before the actual wave data
6291 RIFF::Chunk* ckPTBL = pRIFF->GetSubChunk(CHUNK_ID_PTBL);
6292 pRIFF->MoveSubChunk(lst3LS, ckPTBL);
6293
6294 // This must be performed before writing the chunks for instruments,
6295 // because the instruments' script slots will write the file offsets
6296 // of the respective instrument script chunk as reference.
6297 if (pScriptGroups) {
6298 // Update instrument script (group) chunks.
6299 for (std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6300 it != pScriptGroups->end(); ++it)
6301 {
6302 (*it)->UpdateChunks(pProgress);
6303 }
6304 }
6305
6306 // in case no libgig custom format data was added, then remove the
6307 // custom "3LS " chunk again
6308 if (!lst3LS->CountSubChunks()) {
6309 pRIFF->DeleteSubChunk(lst3LS);
6310 lst3LS = NULL;
6311 }
6312
6313 // first update base class's chunks
6314 DLS::File::UpdateChunks(pProgress);
6315
6316 if (newFile) {
6317 // INFO was added by Resource::UpdateChunks - make sure it
6318 // is placed first in file
6319 RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
6320 RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
6321 if (first != info) {
6322 pRIFF->MoveSubChunk(info, first);
6323 }
6324 }
6325
6326 // update group's chunks
6327 if (pGroups) {
6328 // make sure '3gri' and '3gnl' list chunks exist
6329 // (before updating the Group chunks)
6330 RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6331 if (!_3gri) {
6332 _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
6333 pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
6334 }
6335 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
6336 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
6337
6338 // v3: make sure the file has 128 3gnm chunks
6339 // (before updating the Group chunks)
6340 if (pVersion && pVersion->major == 3) {
6341 RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
6342 for (int i = 0 ; i < 128 ; i++) {
6343 if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
6344 if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
6345 }
6346 }
6347
6348 std::list<Group*>::iterator iter = pGroups->begin();
6349 std::list<Group*>::iterator end = pGroups->end();
6350 for (; iter != end; ++iter) {
6351 (*iter)->UpdateChunks(pProgress);
6352 }
6353 }
6354
6355 // update einf chunk
6356
6357 // The einf chunk contains statistics about the gig file, such
6358 // as the number of regions and samples used by each
6359 // instrument. It is divided in equally sized parts, where the
6360 // first part contains information about the whole gig file,
6361 // and the rest of the parts map to each instrument in the
6362 // file.
6363 //
6364 // At the end of each part there is a bit map of each sample
6365 // in the file, where a set bit means that the sample is used
6366 // by the file/instrument.
6367 //
6368 // Note that there are several fields with unknown use. These
6369 // are set to zero.
6370
6371 int sublen = int(pSamples->size() / 8 + 49);
6372 int einfSize = (Instruments + 1) * sublen;
6373
6374 RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6375 if (einf) {
6376 if (einf->GetSize() != einfSize) {
6377 einf->Resize(einfSize);
6378 memset(einf->LoadChunkData(), 0, einfSize);
6379 }
6380 } else if (newFile) {
6381 einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
6382 }
6383 if (einf) {
6384 uint8_t* pData = (uint8_t*) einf->LoadChunkData();
6385
6386 std::map<gig::Sample*,int> sampleMap;
6387 int sampleIdx = 0;
6388 for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
6389 sampleMap[pSample] = sampleIdx++;
6390 }
6391
6392 int totnbusedsamples = 0;
6393 int totnbusedchannels = 0;
6394 int totnbregions = 0;
6395 int totnbdimregions = 0;
6396 int totnbloops = 0;
6397 int instrumentIdx = 0;
6398
6399 memset(&pData[48], 0, sublen - 48);
6400
6401 for (Instrument* instrument = GetFirstInstrument() ; instrument ;
6402 instrument = GetNextInstrument()) {
6403 int nbusedsamples = 0;
6404 int nbusedchannels = 0;
6405 int nbdimregions = 0;
6406 int nbloops = 0;
6407
6408 memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
6409
6410 for (Region* region = instrument->GetFirstRegion() ; region ;
6411 region = instrument->GetNextRegion()) {
6412 for (int i = 0 ; i < region->DimensionRegions ; i++) {
6413 gig::DimensionRegion *d = region->pDimensionRegions[i];
6414 if (d->pSample) {
6415 int sampleIdx = sampleMap[d->pSample];
6416 int byte = 48 + sampleIdx / 8;
6417 int bit = 1 << (sampleIdx & 7);
6418 if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
6419 pData[(instrumentIdx + 1) * sublen + byte] |= bit;
6420 nbusedsamples++;
6421 nbusedchannels += d->pSample->Channels;
6422
6423 if ((pData[byte] & bit) == 0) {
6424 pData[byte] |= bit;
6425 totnbusedsamples++;
6426 totnbusedchannels += d->pSample->Channels;
6427 }
6428 }
6429 }
6430 if (d->SampleLoops) nbloops++;
6431 }
6432 nbdimregions += region->DimensionRegions;
6433 }
6434 // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6435 // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
6436 store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
6437 store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
6438 store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
6439 store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
6440 store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
6441 store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
6442 // next 8 bytes unknown
6443 store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
6444 store32(&pData[(instrumentIdx + 1) * sublen + 40], (uint32_t) pSamples->size());
6445 // next 4 bytes unknown
6446
6447 totnbregions += instrument->Regions;
6448 totnbdimregions += nbdimregions;
6449 totnbloops += nbloops;
6450 instrumentIdx++;
6451 }
6452 // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6453 // store32(&pData[0], sublen);
6454 store32(&pData[4], totnbusedchannels);
6455 store32(&pData[8], totnbusedsamples);
6456 store32(&pData[12], Instruments);
6457 store32(&pData[16], totnbregions);
6458 store32(&pData[20], totnbdimregions);
6459 store32(&pData[24], totnbloops);
6460 // next 8 bytes unknown
6461 // next 4 bytes unknown, not always 0
6462 store32(&pData[40], (uint32_t) pSamples->size());
6463 // next 4 bytes unknown
6464 }
6465
6466 // update 3crc chunk
6467
6468 // The 3crc chunk contains CRC-32 checksums for the
6469 // samples. When saving a gig file to disk, we first update the 3CRC
6470 // chunk here (in RAM) with the old crc values which we read from the
6471 // 3CRC chunk when we opened the file (available with gig::Sample::crc
6472 // member variable). This step is required, because samples might have
6473 // been deleted by the user since the file was opened, which in turn
6474 // changes the order of the (i.e. old) checksums within the 3crc chunk.
6475 // If a sample was conciously modified by the user (that is if
6476 // Sample::Write() was called later on) then Sample::Write() will just
6477 // update the respective individual checksum(s) directly on disk and
6478 // leaves all other sample checksums untouched.
6479
6480 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6481 if (_3crc) {
6482 _3crc->Resize(pSamples->size() * 8);
6483 } else /*if (newFile)*/ {
6484 _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6485 // the order of einf and 3crc is not the same in v2 and v3
6486 if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
6487 }
6488 { // must be performed in RAM here ...
6489 uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6490 if (pData) {
6491 File::SampleList::iterator iter = pSamples->begin();
6492 File::SampleList::iterator end = pSamples->end();
6493 for (int index = 0; iter != end; ++iter, ++index) {
6494 gig::Sample* pSample = (gig::Sample*) *iter;
6495 pData[index*2] = 1; // always 1
6496 pData[index*2+1] = pSample->crc;
6497 }
6498 }
6499 }
6500 }
6501
6502 void File::UpdateFileOffsets() {
6503 DLS::File::UpdateFileOffsets();
6504
6505 for (Instrument* instrument = GetFirstInstrument(); instrument;
6506 instrument = GetNextInstrument())
6507 {
6508 instrument->UpdateScriptFileOffsets();
6509 }
6510 }
6511
6512 /**
6513 * Enable / disable automatic loading. By default this properyt is
6514 * enabled and all informations are loaded automatically. However
6515 * loading all Regions, DimensionRegions and especially samples might
6516 * take a long time for large .gig files, and sometimes one might only
6517 * be interested in retrieving very superficial informations like the
6518 * amount of instruments and their names. In this case one might disable
6519 * automatic loading to avoid very slow response times.
6520 *
6521 * @e CAUTION: by disabling this property many pointers (i.e. sample
6522 * references) and informations will have invalid or even undefined
6523 * data! This feature is currently only intended for retrieving very
6524 * superficial informations in a very fast way. Don't use it to retrieve
6525 * details like synthesis informations or even to modify .gig files!
6526 */
6527 void File::SetAutoLoad(bool b) {
6528 bAutoLoad = b;
6529 }
6530
6531 /**
6532 * Returns whether automatic loading is enabled.
6533 * @see SetAutoLoad()
6534 */
6535 bool File::GetAutoLoad() {
6536 return bAutoLoad;
6537 }
6538
6539
6540
6541 // *************** Exception ***************
6542 // *
6543
6544 Exception::Exception() : DLS::Exception() {
6545 }
6546
6547 Exception::Exception(String format, ...) : DLS::Exception() {
6548 va_list arg;
6549 va_start(arg, format);
6550 Message = assemble(format, arg);
6551 va_end(arg);
6552 }
6553
6554 Exception::Exception(String format, va_list arg) : DLS::Exception() {
6555 Message = assemble(format, arg);
6556 }
6557
6558 void Exception::PrintMessage() {
6559 std::cout << "gig::Exception: " << Message << std::endl;
6560 }
6561
6562
6563 // *************** functions ***************
6564 // *
6565
6566 /**
6567 * Returns the name of this C++ library. This is usually "libgig" of
6568 * course. This call is equivalent to RIFF::libraryName() and
6569 * DLS::libraryName().
6570 */
6571 String libraryName() {
6572 return PACKAGE;
6573 }
6574
6575 /**
6576 * Returns version of this C++ library. This call is equivalent to
6577 * RIFF::libraryVersion() and DLS::libraryVersion().
6578 */
6579 String libraryVersion() {
6580 return VERSION;
6581 }
6582
6583 } // namespace gig

  ViewVC Help
Powered by ViewVC