/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Contents of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3656 - (show annotations) (download)
Sat Dec 14 17:04:28 2019 UTC (4 years, 3 months ago) by schoenebeck
File size: 296985 byte(s)
* Compatibility fix (gig.cpp): GigaStudio always expects 128 '3gnm' RIFF
  chunks (patch by Ivan Maguidhir).

1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file access library *
4 * *
5 * Copyright (C) 2003-2019 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #include "gig.h"
25
26 #include "helper.h"
27 #include "Serialization.h"
28
29 #include <algorithm>
30 #include <math.h>
31 #include <iostream>
32 #include <assert.h>
33
34 /// libgig's current file format version (for extending the original Giga file
35 /// format with libgig's own custom data / custom features).
36 #define GIG_FILE_EXT_VERSION 2
37
38 /// Initial size of the sample buffer which is used for decompression of
39 /// compressed sample wave streams - this value should always be bigger than
40 /// the biggest sample piece expected to be read by the sampler engine,
41 /// otherwise the buffer size will be raised at runtime and thus the buffer
42 /// reallocated which is time consuming and unefficient.
43 #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
44
45 /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
46 #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
47 #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
48 #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
49 #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
50 #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
51 #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
52 #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
53 #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
54 #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
55 #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
56 #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
57 #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
58
59 #define SRLZ(member) \
60 archive->serializeMember(*this, member, #member);
61
62 namespace gig {
63
64 // *************** Internal functions for sample decompression ***************
65 // *
66
67 namespace {
68
69 inline int get12lo(const unsigned char* pSrc)
70 {
71 const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
72 return x & 0x800 ? x - 0x1000 : x;
73 }
74
75 inline int get12hi(const unsigned char* pSrc)
76 {
77 const int x = pSrc[1] >> 4 | pSrc[2] << 4;
78 return x & 0x800 ? x - 0x1000 : x;
79 }
80
81 inline int16_t get16(const unsigned char* pSrc)
82 {
83 return int16_t(pSrc[0] | pSrc[1] << 8);
84 }
85
86 inline int get24(const unsigned char* pSrc)
87 {
88 const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
89 return x & 0x800000 ? x - 0x1000000 : x;
90 }
91
92 inline void store24(unsigned char* pDst, int x)
93 {
94 pDst[0] = x;
95 pDst[1] = x >> 8;
96 pDst[2] = x >> 16;
97 }
98
99 void Decompress16(int compressionmode, const unsigned char* params,
100 int srcStep, int dstStep,
101 const unsigned char* pSrc, int16_t* pDst,
102 file_offset_t currentframeoffset,
103 file_offset_t copysamples)
104 {
105 switch (compressionmode) {
106 case 0: // 16 bit uncompressed
107 pSrc += currentframeoffset * srcStep;
108 while (copysamples) {
109 *pDst = get16(pSrc);
110 pDst += dstStep;
111 pSrc += srcStep;
112 copysamples--;
113 }
114 break;
115
116 case 1: // 16 bit compressed to 8 bit
117 int y = get16(params);
118 int dy = get16(params + 2);
119 while (currentframeoffset) {
120 dy -= int8_t(*pSrc);
121 y -= dy;
122 pSrc += srcStep;
123 currentframeoffset--;
124 }
125 while (copysamples) {
126 dy -= int8_t(*pSrc);
127 y -= dy;
128 *pDst = y;
129 pDst += dstStep;
130 pSrc += srcStep;
131 copysamples--;
132 }
133 break;
134 }
135 }
136
137 void Decompress24(int compressionmode, const unsigned char* params,
138 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
139 file_offset_t currentframeoffset,
140 file_offset_t copysamples, int truncatedBits)
141 {
142 int y, dy, ddy, dddy;
143
144 #define GET_PARAMS(params) \
145 y = get24(params); \
146 dy = y - get24((params) + 3); \
147 ddy = get24((params) + 6); \
148 dddy = get24((params) + 9)
149
150 #define SKIP_ONE(x) \
151 dddy -= (x); \
152 ddy -= dddy; \
153 dy = -dy - ddy; \
154 y += dy
155
156 #define COPY_ONE(x) \
157 SKIP_ONE(x); \
158 store24(pDst, y << truncatedBits); \
159 pDst += dstStep
160
161 switch (compressionmode) {
162 case 2: // 24 bit uncompressed
163 pSrc += currentframeoffset * 3;
164 while (copysamples) {
165 store24(pDst, get24(pSrc) << truncatedBits);
166 pDst += dstStep;
167 pSrc += 3;
168 copysamples--;
169 }
170 break;
171
172 case 3: // 24 bit compressed to 16 bit
173 GET_PARAMS(params);
174 while (currentframeoffset) {
175 SKIP_ONE(get16(pSrc));
176 pSrc += 2;
177 currentframeoffset--;
178 }
179 while (copysamples) {
180 COPY_ONE(get16(pSrc));
181 pSrc += 2;
182 copysamples--;
183 }
184 break;
185
186 case 4: // 24 bit compressed to 12 bit
187 GET_PARAMS(params);
188 while (currentframeoffset > 1) {
189 SKIP_ONE(get12lo(pSrc));
190 SKIP_ONE(get12hi(pSrc));
191 pSrc += 3;
192 currentframeoffset -= 2;
193 }
194 if (currentframeoffset) {
195 SKIP_ONE(get12lo(pSrc));
196 currentframeoffset--;
197 if (copysamples) {
198 COPY_ONE(get12hi(pSrc));
199 pSrc += 3;
200 copysamples--;
201 }
202 }
203 while (copysamples > 1) {
204 COPY_ONE(get12lo(pSrc));
205 COPY_ONE(get12hi(pSrc));
206 pSrc += 3;
207 copysamples -= 2;
208 }
209 if (copysamples) {
210 COPY_ONE(get12lo(pSrc));
211 }
212 break;
213
214 case 5: // 24 bit compressed to 8 bit
215 GET_PARAMS(params);
216 while (currentframeoffset) {
217 SKIP_ONE(int8_t(*pSrc++));
218 currentframeoffset--;
219 }
220 while (copysamples) {
221 COPY_ONE(int8_t(*pSrc++));
222 copysamples--;
223 }
224 break;
225 }
226 }
227
228 const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
229 const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
230 const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
231 const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
232 }
233
234
235
236 // *************** Internal CRC-32 (Cyclic Redundancy Check) functions ***************
237 // *
238
239 static uint32_t* __initCRCTable() {
240 static uint32_t res[256];
241
242 for (int i = 0 ; i < 256 ; i++) {
243 uint32_t c = i;
244 for (int j = 0 ; j < 8 ; j++) {
245 c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
246 }
247 res[i] = c;
248 }
249 return res;
250 }
251
252 static const uint32_t* __CRCTable = __initCRCTable();
253
254 /**
255 * Initialize a CRC variable.
256 *
257 * @param crc - variable to be initialized
258 */
259 inline static void __resetCRC(uint32_t& crc) {
260 crc = 0xffffffff;
261 }
262
263 /**
264 * Used to calculate checksums of the sample data in a gig file. The
265 * checksums are stored in the 3crc chunk of the gig file and
266 * automatically updated when a sample is written with Sample::Write().
267 *
268 * One should call __resetCRC() to initialize the CRC variable to be
269 * used before calling this function the first time.
270 *
271 * After initializing the CRC variable one can call this function
272 * arbitrary times, i.e. to split the overall CRC calculation into
273 * steps.
274 *
275 * Once the whole data was processed by __calculateCRC(), one should
276 * call __finalizeCRC() to get the final CRC result.
277 *
278 * @param buf - pointer to data the CRC shall be calculated of
279 * @param bufSize - size of the data to be processed
280 * @param crc - variable the CRC sum shall be stored to
281 */
282 static void __calculateCRC(unsigned char* buf, size_t bufSize, uint32_t& crc) {
283 for (size_t i = 0 ; i < bufSize ; i++) {
284 crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
285 }
286 }
287
288 /**
289 * Returns the final CRC result.
290 *
291 * @param crc - variable previously passed to __calculateCRC()
292 */
293 inline static void __finalizeCRC(uint32_t& crc) {
294 crc ^= 0xffffffff;
295 }
296
297
298
299 // *************** Other Internal functions ***************
300 // *
301
302 static split_type_t __resolveSplitType(dimension_t dimension) {
303 return (
304 dimension == dimension_layer ||
305 dimension == dimension_samplechannel ||
306 dimension == dimension_releasetrigger ||
307 dimension == dimension_keyboard ||
308 dimension == dimension_roundrobin ||
309 dimension == dimension_random ||
310 dimension == dimension_smartmidi ||
311 dimension == dimension_roundrobinkeyboard
312 ) ? split_type_bit : split_type_normal;
313 }
314
315 static int __resolveZoneSize(dimension_def_t& dimension_definition) {
316 return (dimension_definition.split_type == split_type_normal)
317 ? int(128.0 / dimension_definition.zones) : 0;
318 }
319
320
321
322 // *************** leverage_ctrl_t ***************
323 // *
324
325 void leverage_ctrl_t::serialize(Serialization::Archive* archive) {
326 SRLZ(type);
327 SRLZ(controller_number);
328 }
329
330
331
332 // *************** crossfade_t ***************
333 // *
334
335 void crossfade_t::serialize(Serialization::Archive* archive) {
336 SRLZ(in_start);
337 SRLZ(in_end);
338 SRLZ(out_start);
339 SRLZ(out_end);
340 }
341
342
343
344 // *************** eg_opt_t ***************
345 // *
346
347 eg_opt_t::eg_opt_t() {
348 AttackCancel = true;
349 AttackHoldCancel = true;
350 Decay1Cancel = true;
351 Decay2Cancel = true;
352 ReleaseCancel = true;
353 }
354
355 void eg_opt_t::serialize(Serialization::Archive* archive) {
356 SRLZ(AttackCancel);
357 SRLZ(AttackHoldCancel);
358 SRLZ(Decay1Cancel);
359 SRLZ(Decay2Cancel);
360 SRLZ(ReleaseCancel);
361 }
362
363
364
365 // *************** Sample ***************
366 // *
367
368 size_t Sample::Instances = 0;
369 buffer_t Sample::InternalDecompressionBuffer;
370
371 /** @brief Constructor.
372 *
373 * Load an existing sample or create a new one. A 'wave' list chunk must
374 * be given to this constructor. In case the given 'wave' list chunk
375 * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
376 * format and sample data will be loaded from there, otherwise default
377 * values will be used and those chunks will be created when
378 * File::Save() will be called later on.
379 *
380 * @param pFile - pointer to gig::File where this sample is
381 * located (or will be located)
382 * @param waveList - pointer to 'wave' list chunk which is (or
383 * will be) associated with this sample
384 * @param WavePoolOffset - offset of this sample data from wave pool
385 * ('wvpl') list chunk
386 * @param fileNo - number of an extension file where this sample
387 * is located, 0 otherwise
388 * @param index - wave pool index of sample (may be -1 on new sample)
389 */
390 Sample::Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo, int index)
391 : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset)
392 {
393 static const DLS::Info::string_length_t fixedStringLengths[] = {
394 { CHUNK_ID_INAM, 64 },
395 { 0, 0 }
396 };
397 pInfo->SetFixedStringLengths(fixedStringLengths);
398 Instances++;
399 FileNo = fileNo;
400
401 __resetCRC(crc);
402 // if this is not a new sample, try to get the sample's already existing
403 // CRC32 checksum from disk, this checksum will reflect the sample's CRC32
404 // checksum of the time when the sample was consciously modified by the
405 // user for the last time (by calling Sample::Write() that is).
406 if (index >= 0) { // not a new file ...
407 try {
408 uint32_t crc = pFile->GetSampleChecksumByIndex(index);
409 this->crc = crc;
410 } catch (...) {}
411 }
412
413 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
414 if (pCk3gix) {
415 pCk3gix->SetPos(0);
416
417 uint16_t iSampleGroup = pCk3gix->ReadInt16();
418 pGroup = pFile->GetGroup(iSampleGroup);
419 } else { // '3gix' chunk missing
420 // by default assigned to that mandatory "Default Group"
421 pGroup = pFile->GetGroup(0);
422 }
423
424 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
425 if (pCkSmpl) {
426 pCkSmpl->SetPos(0);
427
428 Manufacturer = pCkSmpl->ReadInt32();
429 Product = pCkSmpl->ReadInt32();
430 SamplePeriod = pCkSmpl->ReadInt32();
431 MIDIUnityNote = pCkSmpl->ReadInt32();
432 FineTune = pCkSmpl->ReadInt32();
433 pCkSmpl->Read(&SMPTEFormat, 1, 4);
434 SMPTEOffset = pCkSmpl->ReadInt32();
435 Loops = pCkSmpl->ReadInt32();
436 pCkSmpl->ReadInt32(); // manufByt
437 LoopID = pCkSmpl->ReadInt32();
438 pCkSmpl->Read(&LoopType, 1, 4);
439 LoopStart = pCkSmpl->ReadInt32();
440 LoopEnd = pCkSmpl->ReadInt32();
441 LoopFraction = pCkSmpl->ReadInt32();
442 LoopPlayCount = pCkSmpl->ReadInt32();
443 } else { // 'smpl' chunk missing
444 // use default values
445 Manufacturer = 0;
446 Product = 0;
447 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
448 MIDIUnityNote = 60;
449 FineTune = 0;
450 SMPTEFormat = smpte_format_no_offset;
451 SMPTEOffset = 0;
452 Loops = 0;
453 LoopID = 0;
454 LoopType = loop_type_normal;
455 LoopStart = 0;
456 LoopEnd = 0;
457 LoopFraction = 0;
458 LoopPlayCount = 0;
459 }
460
461 FrameTable = NULL;
462 SamplePos = 0;
463 RAMCache.Size = 0;
464 RAMCache.pStart = NULL;
465 RAMCache.NullExtensionSize = 0;
466
467 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
468
469 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
470 Compressed = ewav;
471 Dithered = false;
472 TruncatedBits = 0;
473 if (Compressed) {
474 ewav->SetPos(0);
475
476 uint32_t version = ewav->ReadInt32();
477 if (version > 2 && BitDepth == 24) {
478 Dithered = ewav->ReadInt32();
479 ewav->SetPos(Channels == 2 ? 84 : 64);
480 TruncatedBits = ewav->ReadInt32();
481 }
482 ScanCompressedSample();
483 }
484
485 // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
486 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
487 InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
488 InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
489 }
490 FrameOffset = 0; // just for streaming compressed samples
491
492 LoopSize = LoopEnd - LoopStart + 1;
493 }
494
495 /**
496 * Make a (semi) deep copy of the Sample object given by @a orig (without
497 * the actual waveform data) and assign it to this object.
498 *
499 * Discussion: copying .gig samples is a bit tricky. It requires three
500 * steps:
501 * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
502 * its new sample waveform data size.
503 * 2. Saving the file (done by File::Save()) so that it gains correct size
504 * and layout for writing the actual wave form data directly to disc
505 * in next step.
506 * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
507 *
508 * @param orig - original Sample object to be copied from
509 */
510 void Sample::CopyAssignMeta(const Sample* orig) {
511 // handle base classes
512 DLS::Sample::CopyAssignCore(orig);
513
514 // handle actual own attributes of this class
515 Manufacturer = orig->Manufacturer;
516 Product = orig->Product;
517 SamplePeriod = orig->SamplePeriod;
518 MIDIUnityNote = orig->MIDIUnityNote;
519 FineTune = orig->FineTune;
520 SMPTEFormat = orig->SMPTEFormat;
521 SMPTEOffset = orig->SMPTEOffset;
522 Loops = orig->Loops;
523 LoopID = orig->LoopID;
524 LoopType = orig->LoopType;
525 LoopStart = orig->LoopStart;
526 LoopEnd = orig->LoopEnd;
527 LoopSize = orig->LoopSize;
528 LoopFraction = orig->LoopFraction;
529 LoopPlayCount = orig->LoopPlayCount;
530
531 // schedule resizing this sample to the given sample's size
532 Resize(orig->GetSize());
533 }
534
535 /**
536 * Should be called after CopyAssignMeta() and File::Save() sequence.
537 * Read more about it in the discussion of CopyAssignMeta(). This method
538 * copies the actual waveform data by disk streaming.
539 *
540 * @e CAUTION: this method is currently not thread safe! During this
541 * operation the sample must not be used for other purposes by other
542 * threads!
543 *
544 * @param orig - original Sample object to be copied from
545 */
546 void Sample::CopyAssignWave(const Sample* orig) {
547 const int iReadAtOnce = 32*1024;
548 char* buf = new char[iReadAtOnce * orig->FrameSize];
549 Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
550 file_offset_t restorePos = pOrig->GetPos();
551 pOrig->SetPos(0);
552 SetPos(0);
553 for (file_offset_t n = pOrig->Read(buf, iReadAtOnce); n;
554 n = pOrig->Read(buf, iReadAtOnce))
555 {
556 Write(buf, n);
557 }
558 pOrig->SetPos(restorePos);
559 delete [] buf;
560 }
561
562 /**
563 * Apply sample and its settings to the respective RIFF chunks. You have
564 * to call File::Save() to make changes persistent.
565 *
566 * Usually there is absolutely no need to call this method explicitly.
567 * It will be called automatically when File::Save() was called.
568 *
569 * @param pProgress - callback function for progress notification
570 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
571 * was provided yet
572 * @throws gig::Exception if there is any invalid sample setting
573 */
574 void Sample::UpdateChunks(progress_t* pProgress) {
575 // first update base class's chunks
576 DLS::Sample::UpdateChunks(pProgress);
577
578 // make sure 'smpl' chunk exists
579 pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
580 if (!pCkSmpl) {
581 pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
582 memset(pCkSmpl->LoadChunkData(), 0, 60);
583 }
584 // update 'smpl' chunk
585 uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
586 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
587 store32(&pData[0], Manufacturer);
588 store32(&pData[4], Product);
589 store32(&pData[8], SamplePeriod);
590 store32(&pData[12], MIDIUnityNote);
591 store32(&pData[16], FineTune);
592 store32(&pData[20], SMPTEFormat);
593 store32(&pData[24], SMPTEOffset);
594 store32(&pData[28], Loops);
595
596 // we skip 'manufByt' for now (4 bytes)
597
598 store32(&pData[36], LoopID);
599 store32(&pData[40], LoopType);
600 store32(&pData[44], LoopStart);
601 store32(&pData[48], LoopEnd);
602 store32(&pData[52], LoopFraction);
603 store32(&pData[56], LoopPlayCount);
604
605 // make sure '3gix' chunk exists
606 pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
607 if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
608 // determine appropriate sample group index (to be stored in chunk)
609 uint16_t iSampleGroup = 0; // 0 refers to default sample group
610 File* pFile = static_cast<File*>(pParent);
611 if (pFile->pGroups) {
612 std::list<Group*>::iterator iter = pFile->pGroups->begin();
613 std::list<Group*>::iterator end = pFile->pGroups->end();
614 for (int i = 0; iter != end; i++, iter++) {
615 if (*iter == pGroup) {
616 iSampleGroup = i;
617 break; // found
618 }
619 }
620 }
621 // update '3gix' chunk
622 pData = (uint8_t*) pCk3gix->LoadChunkData();
623 store16(&pData[0], iSampleGroup);
624
625 // if the library user toggled the "Compressed" attribute from true to
626 // false, then the EWAV chunk associated with compressed samples needs
627 // to be deleted
628 RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
629 if (ewav && !Compressed) {
630 pWaveList->DeleteSubChunk(ewav);
631 }
632 }
633
634 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
635 void Sample::ScanCompressedSample() {
636 //TODO: we have to add some more scans here (e.g. determine compression rate)
637 this->SamplesTotal = 0;
638 std::list<file_offset_t> frameOffsets;
639
640 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
641 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
642
643 // Scanning
644 pCkData->SetPos(0);
645 if (Channels == 2) { // Stereo
646 for (int i = 0 ; ; i++) {
647 // for 24 bit samples every 8:th frame offset is
648 // stored, to save some memory
649 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
650
651 const int mode_l = pCkData->ReadUint8();
652 const int mode_r = pCkData->ReadUint8();
653 if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
654 const file_offset_t frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
655
656 if (pCkData->RemainingBytes() <= frameSize) {
657 SamplesInLastFrame =
658 ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
659 (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
660 SamplesTotal += SamplesInLastFrame;
661 break;
662 }
663 SamplesTotal += SamplesPerFrame;
664 pCkData->SetPos(frameSize, RIFF::stream_curpos);
665 }
666 }
667 else { // Mono
668 for (int i = 0 ; ; i++) {
669 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
670
671 const int mode = pCkData->ReadUint8();
672 if (mode > 5) throw gig::Exception("Unknown compression mode");
673 const file_offset_t frameSize = bytesPerFrame[mode];
674
675 if (pCkData->RemainingBytes() <= frameSize) {
676 SamplesInLastFrame =
677 ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
678 SamplesTotal += SamplesInLastFrame;
679 break;
680 }
681 SamplesTotal += SamplesPerFrame;
682 pCkData->SetPos(frameSize, RIFF::stream_curpos);
683 }
684 }
685 pCkData->SetPos(0);
686
687 // Build the frames table (which is used for fast resolving of a frame's chunk offset)
688 if (FrameTable) delete[] FrameTable;
689 FrameTable = new file_offset_t[frameOffsets.size()];
690 std::list<file_offset_t>::iterator end = frameOffsets.end();
691 std::list<file_offset_t>::iterator iter = frameOffsets.begin();
692 for (int i = 0; iter != end; i++, iter++) {
693 FrameTable[i] = *iter;
694 }
695 }
696
697 /**
698 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
699 * ReleaseSampleData() to free the memory if you don't need the cached
700 * sample data anymore.
701 *
702 * @returns buffer_t structure with start address and size of the buffer
703 * in bytes
704 * @see ReleaseSampleData(), Read(), SetPos()
705 */
706 buffer_t Sample::LoadSampleData() {
707 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
708 }
709
710 /**
711 * Reads (uncompresses if needed) and caches the first \a SampleCount
712 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
713 * memory space if you don't need the cached samples anymore. There is no
714 * guarantee that exactly \a SampleCount samples will be cached; this is
715 * not an error. The size will be eventually truncated e.g. to the
716 * beginning of a frame of a compressed sample. This is done for
717 * efficiency reasons while streaming the wave by your sampler engine
718 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
719 * that will be returned to determine the actual cached samples, but note
720 * that the size is given in bytes! You get the number of actually cached
721 * samples by dividing it by the frame size of the sample:
722 * @code
723 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
724 * long cachedsamples = buf.Size / pSample->FrameSize;
725 * @endcode
726 *
727 * @param SampleCount - number of sample points to load into RAM
728 * @returns buffer_t structure with start address and size of
729 * the cached sample data in bytes
730 * @see ReleaseSampleData(), Read(), SetPos()
731 */
732 buffer_t Sample::LoadSampleData(file_offset_t SampleCount) {
733 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
734 }
735
736 /**
737 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
738 * ReleaseSampleData() to free the memory if you don't need the cached
739 * sample data anymore.
740 * The method will add \a NullSamplesCount silence samples past the
741 * official buffer end (this won't affect the 'Size' member of the
742 * buffer_t structure, that means 'Size' always reflects the size of the
743 * actual sample data, the buffer might be bigger though). Silence
744 * samples past the official buffer are needed for differential
745 * algorithms that always have to take subsequent samples into account
746 * (resampling/interpolation would be an important example) and avoids
747 * memory access faults in such cases.
748 *
749 * @param NullSamplesCount - number of silence samples the buffer should
750 * be extended past it's data end
751 * @returns buffer_t structure with start address and
752 * size of the buffer in bytes
753 * @see ReleaseSampleData(), Read(), SetPos()
754 */
755 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
756 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
757 }
758
759 /**
760 * Reads (uncompresses if needed) and caches the first \a SampleCount
761 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
762 * memory space if you don't need the cached samples anymore. There is no
763 * guarantee that exactly \a SampleCount samples will be cached; this is
764 * not an error. The size will be eventually truncated e.g. to the
765 * beginning of a frame of a compressed sample. This is done for
766 * efficiency reasons while streaming the wave by your sampler engine
767 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
768 * that will be returned to determine the actual cached samples, but note
769 * that the size is given in bytes! You get the number of actually cached
770 * samples by dividing it by the frame size of the sample:
771 * @code
772 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
773 * long cachedsamples = buf.Size / pSample->FrameSize;
774 * @endcode
775 * The method will add \a NullSamplesCount silence samples past the
776 * official buffer end (this won't affect the 'Size' member of the
777 * buffer_t structure, that means 'Size' always reflects the size of the
778 * actual sample data, the buffer might be bigger though). Silence
779 * samples past the official buffer are needed for differential
780 * algorithms that always have to take subsequent samples into account
781 * (resampling/interpolation would be an important example) and avoids
782 * memory access faults in such cases.
783 *
784 * @param SampleCount - number of sample points to load into RAM
785 * @param NullSamplesCount - number of silence samples the buffer should
786 * be extended past it's data end
787 * @returns buffer_t structure with start address and
788 * size of the cached sample data in bytes
789 * @see ReleaseSampleData(), Read(), SetPos()
790 */
791 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount) {
792 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
793 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
794 file_offset_t allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
795 SetPos(0); // reset read position to begin of sample
796 RAMCache.pStart = new int8_t[allocationsize];
797 RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
798 RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
799 // fill the remaining buffer space with silence samples
800 memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
801 return GetCache();
802 }
803
804 /**
805 * Returns current cached sample points. A buffer_t structure will be
806 * returned which contains address pointer to the begin of the cache and
807 * the size of the cached sample data in bytes. Use
808 * <i>LoadSampleData()</i> to cache a specific amount of sample points in
809 * RAM.
810 *
811 * @returns buffer_t structure with current cached sample points
812 * @see LoadSampleData();
813 */
814 buffer_t Sample::GetCache() {
815 // return a copy of the buffer_t structure
816 buffer_t result;
817 result.Size = this->RAMCache.Size;
818 result.pStart = this->RAMCache.pStart;
819 result.NullExtensionSize = this->RAMCache.NullExtensionSize;
820 return result;
821 }
822
823 /**
824 * Frees the cached sample from RAM if loaded with
825 * <i>LoadSampleData()</i> previously.
826 *
827 * @see LoadSampleData();
828 */
829 void Sample::ReleaseSampleData() {
830 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
831 RAMCache.pStart = NULL;
832 RAMCache.Size = 0;
833 RAMCache.NullExtensionSize = 0;
834 }
835
836 /** @brief Resize sample.
837 *
838 * Resizes the sample's wave form data, that is the actual size of
839 * sample wave data possible to be written for this sample. This call
840 * will return immediately and just schedule the resize operation. You
841 * should call File::Save() to actually perform the resize operation(s)
842 * "physically" to the file. As this can take a while on large files, it
843 * is recommended to call Resize() first on all samples which have to be
844 * resized and finally to call File::Save() to perform all those resize
845 * operations in one rush.
846 *
847 * The actual size (in bytes) is dependant to the current FrameSize
848 * value. You may want to set FrameSize before calling Resize().
849 *
850 * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
851 * enlarged samples before calling File::Save() as this might exceed the
852 * current sample's boundary!
853 *
854 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
855 * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
856 * other formats will fail!
857 *
858 * @param NewSize - new sample wave data size in sample points (must be
859 * greater than zero)
860 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
861 * @throws DLS::Exception if \a NewSize is less than 1 or unrealistic large
862 * @throws gig::Exception if existing sample is compressed
863 * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
864 * DLS::Sample::FormatTag, File::Save()
865 */
866 void Sample::Resize(file_offset_t NewSize) {
867 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
868 DLS::Sample::Resize(NewSize);
869 }
870
871 /**
872 * Sets the position within the sample (in sample points, not in
873 * bytes). Use this method and <i>Read()</i> if you don't want to load
874 * the sample into RAM, thus for disk streaming.
875 *
876 * Although the original Gigasampler engine doesn't allow positioning
877 * within compressed samples, I decided to implement it. Even though
878 * the Gigasampler format doesn't allow to define loops for compressed
879 * samples at the moment, positioning within compressed samples might be
880 * interesting for some sampler engines though. The only drawback about
881 * my decision is that it takes longer to load compressed gig Files on
882 * startup, because it's neccessary to scan the samples for some
883 * mandatory informations. But I think as it doesn't affect the runtime
884 * efficiency, nobody will have a problem with that.
885 *
886 * @param SampleCount number of sample points to jump
887 * @param Whence optional: to which relation \a SampleCount refers
888 * to, if omited <i>RIFF::stream_start</i> is assumed
889 * @returns the new sample position
890 * @see Read()
891 */
892 file_offset_t Sample::SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence) {
893 if (Compressed) {
894 switch (Whence) {
895 case RIFF::stream_curpos:
896 this->SamplePos += SampleCount;
897 break;
898 case RIFF::stream_end:
899 this->SamplePos = this->SamplesTotal - 1 - SampleCount;
900 break;
901 case RIFF::stream_backward:
902 this->SamplePos -= SampleCount;
903 break;
904 case RIFF::stream_start: default:
905 this->SamplePos = SampleCount;
906 break;
907 }
908 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
909
910 file_offset_t frame = this->SamplePos / 2048; // to which frame to jump
911 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
912 pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
913 return this->SamplePos;
914 }
915 else { // not compressed
916 file_offset_t orderedBytes = SampleCount * this->FrameSize;
917 file_offset_t result = pCkData->SetPos(orderedBytes, Whence);
918 return (result == orderedBytes) ? SampleCount
919 : result / this->FrameSize;
920 }
921 }
922
923 /**
924 * Returns the current position in the sample (in sample points).
925 */
926 file_offset_t Sample::GetPos() const {
927 if (Compressed) return SamplePos;
928 else return pCkData->GetPos() / FrameSize;
929 }
930
931 /**
932 * Reads \a SampleCount number of sample points from the position stored
933 * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
934 * the position within the sample respectively, this method honors the
935 * looping informations of the sample (if any). The sample wave stream
936 * will be decompressed on the fly if using a compressed sample. Use this
937 * method if you don't want to load the sample into RAM, thus for disk
938 * streaming. All this methods needs to know to proceed with streaming
939 * for the next time you call this method is stored in \a pPlaybackState.
940 * You have to allocate and initialize the playback_state_t structure by
941 * yourself before you use it to stream a sample:
942 * @code
943 * gig::playback_state_t playbackstate;
944 * playbackstate.position = 0;
945 * playbackstate.reverse = false;
946 * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
947 * @endcode
948 * You don't have to take care of things like if there is actually a loop
949 * defined or if the current read position is located within a loop area.
950 * The method already handles such cases by itself.
951 *
952 * <b>Caution:</b> If you are using more than one streaming thread, you
953 * have to use an external decompression buffer for <b>EACH</b>
954 * streaming thread to avoid race conditions and crashes!
955 *
956 * @param pBuffer destination buffer
957 * @param SampleCount number of sample points to read
958 * @param pPlaybackState will be used to store and reload the playback
959 * state for the next ReadAndLoop() call
960 * @param pDimRgn dimension region with looping information
961 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
962 * @returns number of successfully read sample points
963 * @see CreateDecompressionBuffer()
964 */
965 file_offset_t Sample::ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState,
966 DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
967 file_offset_t samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
968 uint8_t* pDst = (uint8_t*) pBuffer;
969
970 SetPos(pPlaybackState->position); // recover position from the last time
971
972 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
973
974 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
975 const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
976
977 if (GetPos() <= loopEnd) {
978 switch (loop.LoopType) {
979
980 case loop_type_bidirectional: { //TODO: not tested yet!
981 do {
982 // if not endless loop check if max. number of loop cycles have been passed
983 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
984
985 if (!pPlaybackState->reverse) { // forward playback
986 do {
987 samplestoloopend = loopEnd - GetPos();
988 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
989 samplestoread -= readsamples;
990 totalreadsamples += readsamples;
991 if (readsamples == samplestoloopend) {
992 pPlaybackState->reverse = true;
993 break;
994 }
995 } while (samplestoread && readsamples);
996 }
997 else { // backward playback
998
999 // as we can only read forward from disk, we have to
1000 // determine the end position within the loop first,
1001 // read forward from that 'end' and finally after
1002 // reading, swap all sample frames so it reflects
1003 // backward playback
1004
1005 file_offset_t swapareastart = totalreadsamples;
1006 file_offset_t loopoffset = GetPos() - loop.LoopStart;
1007 file_offset_t samplestoreadinloop = Min(samplestoread, loopoffset);
1008 file_offset_t reverseplaybackend = GetPos() - samplestoreadinloop;
1009
1010 SetPos(reverseplaybackend);
1011
1012 // read samples for backward playback
1013 do {
1014 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
1015 samplestoreadinloop -= readsamples;
1016 samplestoread -= readsamples;
1017 totalreadsamples += readsamples;
1018 } while (samplestoreadinloop && readsamples);
1019
1020 SetPos(reverseplaybackend); // pretend we really read backwards
1021
1022 if (reverseplaybackend == loop.LoopStart) {
1023 pPlaybackState->loop_cycles_left--;
1024 pPlaybackState->reverse = false;
1025 }
1026
1027 // reverse the sample frames for backward playback
1028 if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
1029 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1030 }
1031 } while (samplestoread && readsamples);
1032 break;
1033 }
1034
1035 case loop_type_backward: { // TODO: not tested yet!
1036 // forward playback (not entered the loop yet)
1037 if (!pPlaybackState->reverse) do {
1038 samplestoloopend = loopEnd - GetPos();
1039 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1040 samplestoread -= readsamples;
1041 totalreadsamples += readsamples;
1042 if (readsamples == samplestoloopend) {
1043 pPlaybackState->reverse = true;
1044 break;
1045 }
1046 } while (samplestoread && readsamples);
1047
1048 if (!samplestoread) break;
1049
1050 // as we can only read forward from disk, we have to
1051 // determine the end position within the loop first,
1052 // read forward from that 'end' and finally after
1053 // reading, swap all sample frames so it reflects
1054 // backward playback
1055
1056 file_offset_t swapareastart = totalreadsamples;
1057 file_offset_t loopoffset = GetPos() - loop.LoopStart;
1058 file_offset_t samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1059 : samplestoread;
1060 file_offset_t reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1061
1062 SetPos(reverseplaybackend);
1063
1064 // read samples for backward playback
1065 do {
1066 // if not endless loop check if max. number of loop cycles have been passed
1067 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1068 samplestoloopend = loopEnd - GetPos();
1069 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1070 samplestoreadinloop -= readsamples;
1071 samplestoread -= readsamples;
1072 totalreadsamples += readsamples;
1073 if (readsamples == samplestoloopend) {
1074 pPlaybackState->loop_cycles_left--;
1075 SetPos(loop.LoopStart);
1076 }
1077 } while (samplestoreadinloop && readsamples);
1078
1079 SetPos(reverseplaybackend); // pretend we really read backwards
1080
1081 // reverse the sample frames for backward playback
1082 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1083 break;
1084 }
1085
1086 default: case loop_type_normal: {
1087 do {
1088 // if not endless loop check if max. number of loop cycles have been passed
1089 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1090 samplestoloopend = loopEnd - GetPos();
1091 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1092 samplestoread -= readsamples;
1093 totalreadsamples += readsamples;
1094 if (readsamples == samplestoloopend) {
1095 pPlaybackState->loop_cycles_left--;
1096 SetPos(loop.LoopStart);
1097 }
1098 } while (samplestoread && readsamples);
1099 break;
1100 }
1101 }
1102 }
1103 }
1104
1105 // read on without looping
1106 if (samplestoread) do {
1107 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
1108 samplestoread -= readsamples;
1109 totalreadsamples += readsamples;
1110 } while (readsamples && samplestoread);
1111
1112 // store current position
1113 pPlaybackState->position = GetPos();
1114
1115 return totalreadsamples;
1116 }
1117
1118 /**
1119 * Reads \a SampleCount number of sample points from the current
1120 * position into the buffer pointed by \a pBuffer and increments the
1121 * position within the sample. The sample wave stream will be
1122 * decompressed on the fly if using a compressed sample. Use this method
1123 * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1124 * thus for disk streaming.
1125 *
1126 * <b>Caution:</b> If you are using more than one streaming thread, you
1127 * have to use an external decompression buffer for <b>EACH</b>
1128 * streaming thread to avoid race conditions and crashes!
1129 *
1130 * For 16 bit samples, the data in the buffer will be int16_t
1131 * (using native endianness). For 24 bit, the buffer will
1132 * contain three bytes per sample, little-endian.
1133 *
1134 * @param pBuffer destination buffer
1135 * @param SampleCount number of sample points to read
1136 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
1137 * @returns number of successfully read sample points
1138 * @see SetPos(), CreateDecompressionBuffer()
1139 */
1140 file_offset_t Sample::Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer) {
1141 if (SampleCount == 0) return 0;
1142 if (!Compressed) {
1143 if (BitDepth == 24) {
1144 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1145 }
1146 else { // 16 bit
1147 // (pCkData->Read does endian correction)
1148 return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1149 : pCkData->Read(pBuffer, SampleCount, 2);
1150 }
1151 }
1152 else {
1153 if (this->SamplePos >= this->SamplesTotal) return 0;
1154 //TODO: efficiency: maybe we should test for an average compression rate
1155 file_offset_t assumedsize = GuessSize(SampleCount),
1156 remainingbytes = 0, // remaining bytes in the local buffer
1157 remainingsamples = SampleCount,
1158 copysamples, skipsamples,
1159 currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
1160 this->FrameOffset = 0;
1161
1162 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1163
1164 // if decompression buffer too small, then reduce amount of samples to read
1165 if (pDecompressionBuffer->Size < assumedsize) {
1166 std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1167 SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1168 remainingsamples = SampleCount;
1169 assumedsize = GuessSize(SampleCount);
1170 }
1171
1172 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1173 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1174 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1175 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1176
1177 while (remainingsamples && remainingbytes) {
1178 file_offset_t framesamples = SamplesPerFrame;
1179 file_offset_t framebytes, rightChannelOffset = 0, nextFrameOffset;
1180
1181 int mode_l = *pSrc++, mode_r = 0;
1182
1183 if (Channels == 2) {
1184 mode_r = *pSrc++;
1185 framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1186 rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1187 nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1188 if (remainingbytes < framebytes) { // last frame in sample
1189 framesamples = SamplesInLastFrame;
1190 if (mode_l == 4 && (framesamples & 1)) {
1191 rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1192 }
1193 else {
1194 rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1195 }
1196 }
1197 }
1198 else {
1199 framebytes = bytesPerFrame[mode_l] + 1;
1200 nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1201 if (remainingbytes < framebytes) {
1202 framesamples = SamplesInLastFrame;
1203 }
1204 }
1205
1206 // determine how many samples in this frame to skip and read
1207 if (currentframeoffset + remainingsamples >= framesamples) {
1208 if (currentframeoffset <= framesamples) {
1209 copysamples = framesamples - currentframeoffset;
1210 skipsamples = currentframeoffset;
1211 }
1212 else {
1213 copysamples = 0;
1214 skipsamples = framesamples;
1215 }
1216 }
1217 else {
1218 // This frame has enough data for pBuffer, but not
1219 // all of the frame is needed. Set file position
1220 // to start of this frame for next call to Read.
1221 copysamples = remainingsamples;
1222 skipsamples = currentframeoffset;
1223 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1224 this->FrameOffset = currentframeoffset + copysamples;
1225 }
1226 remainingsamples -= copysamples;
1227
1228 if (remainingbytes > framebytes) {
1229 remainingbytes -= framebytes;
1230 if (remainingsamples == 0 &&
1231 currentframeoffset + copysamples == framesamples) {
1232 // This frame has enough data for pBuffer, and
1233 // all of the frame is needed. Set file
1234 // position to start of next frame for next
1235 // call to Read. FrameOffset is 0.
1236 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1237 }
1238 }
1239 else remainingbytes = 0;
1240
1241 currentframeoffset -= skipsamples;
1242
1243 if (copysamples == 0) {
1244 // skip this frame
1245 pSrc += framebytes - Channels;
1246 }
1247 else {
1248 const unsigned char* const param_l = pSrc;
1249 if (BitDepth == 24) {
1250 if (mode_l != 2) pSrc += 12;
1251
1252 if (Channels == 2) { // Stereo
1253 const unsigned char* const param_r = pSrc;
1254 if (mode_r != 2) pSrc += 12;
1255
1256 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1257 skipsamples, copysamples, TruncatedBits);
1258 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1259 skipsamples, copysamples, TruncatedBits);
1260 pDst24 += copysamples * 6;
1261 }
1262 else { // Mono
1263 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1264 skipsamples, copysamples, TruncatedBits);
1265 pDst24 += copysamples * 3;
1266 }
1267 }
1268 else { // 16 bit
1269 if (mode_l) pSrc += 4;
1270
1271 int step;
1272 if (Channels == 2) { // Stereo
1273 const unsigned char* const param_r = pSrc;
1274 if (mode_r) pSrc += 4;
1275
1276 step = (2 - mode_l) + (2 - mode_r);
1277 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1278 Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1279 skipsamples, copysamples);
1280 pDst += copysamples << 1;
1281 }
1282 else { // Mono
1283 step = 2 - mode_l;
1284 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1285 pDst += copysamples;
1286 }
1287 }
1288 pSrc += nextFrameOffset;
1289 }
1290
1291 // reload from disk to local buffer if needed
1292 if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1293 assumedsize = GuessSize(remainingsamples);
1294 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1295 if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1296 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1297 pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1298 }
1299 } // while
1300
1301 this->SamplePos += (SampleCount - remainingsamples);
1302 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1303 return (SampleCount - remainingsamples);
1304 }
1305 }
1306
1307 /** @brief Write sample wave data.
1308 *
1309 * Writes \a SampleCount number of sample points from the buffer pointed
1310 * by \a pBuffer and increments the position within the sample. Use this
1311 * method to directly write the sample data to disk, i.e. if you don't
1312 * want or cannot load the whole sample data into RAM.
1313 *
1314 * You have to Resize() the sample to the desired size and call
1315 * File::Save() <b>before</b> using Write().
1316 *
1317 * Note: there is currently no support for writing compressed samples.
1318 *
1319 * For 16 bit samples, the data in the source buffer should be
1320 * int16_t (using native endianness). For 24 bit, the buffer
1321 * should contain three bytes per sample, little-endian.
1322 *
1323 * @param pBuffer - source buffer
1324 * @param SampleCount - number of sample points to write
1325 * @throws DLS::Exception if current sample size is too small
1326 * @throws gig::Exception if sample is compressed
1327 * @see DLS::LoadSampleData()
1328 */
1329 file_offset_t Sample::Write(void* pBuffer, file_offset_t SampleCount) {
1330 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1331
1332 // if this is the first write in this sample, reset the
1333 // checksum calculator
1334 if (pCkData->GetPos() == 0) {
1335 __resetCRC(crc);
1336 }
1337 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1338 file_offset_t res;
1339 if (BitDepth == 24) {
1340 res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1341 } else { // 16 bit
1342 res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1343 : pCkData->Write(pBuffer, SampleCount, 2);
1344 }
1345 __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1346
1347 // if this is the last write, update the checksum chunk in the
1348 // file
1349 if (pCkData->GetPos() == pCkData->GetSize()) {
1350 __finalizeCRC(crc);
1351 File* pFile = static_cast<File*>(GetParent());
1352 pFile->SetSampleChecksum(this, crc);
1353 }
1354 return res;
1355 }
1356
1357 /**
1358 * Allocates a decompression buffer for streaming (compressed) samples
1359 * with Sample::Read(). If you are using more than one streaming thread
1360 * in your application you <b>HAVE</b> to create a decompression buffer
1361 * for <b>EACH</b> of your streaming threads and provide it with the
1362 * Sample::Read() call in order to avoid race conditions and crashes.
1363 *
1364 * You should free the memory occupied by the allocated buffer(s) once
1365 * you don't need one of your streaming threads anymore by calling
1366 * DestroyDecompressionBuffer().
1367 *
1368 * @param MaxReadSize - the maximum size (in sample points) you ever
1369 * expect to read with one Read() call
1370 * @returns allocated decompression buffer
1371 * @see DestroyDecompressionBuffer()
1372 */
1373 buffer_t Sample::CreateDecompressionBuffer(file_offset_t MaxReadSize) {
1374 buffer_t result;
1375 const double worstCaseHeaderOverhead =
1376 (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1377 result.Size = (file_offset_t) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1378 result.pStart = new int8_t[result.Size];
1379 result.NullExtensionSize = 0;
1380 return result;
1381 }
1382
1383 /**
1384 * Free decompression buffer, previously created with
1385 * CreateDecompressionBuffer().
1386 *
1387 * @param DecompressionBuffer - previously allocated decompression
1388 * buffer to free
1389 */
1390 void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1391 if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1392 delete[] (int8_t*) DecompressionBuffer.pStart;
1393 DecompressionBuffer.pStart = NULL;
1394 DecompressionBuffer.Size = 0;
1395 DecompressionBuffer.NullExtensionSize = 0;
1396 }
1397 }
1398
1399 /**
1400 * Returns pointer to the Group this Sample belongs to. In the .gig
1401 * format a sample always belongs to one group. If it wasn't explicitly
1402 * assigned to a certain group, it will be automatically assigned to a
1403 * default group.
1404 *
1405 * @returns Sample's Group (never NULL)
1406 */
1407 Group* Sample::GetGroup() const {
1408 return pGroup;
1409 }
1410
1411 /**
1412 * Returns the CRC-32 checksum of the sample's raw wave form data at the
1413 * time when this sample's wave form data was modified for the last time
1414 * by calling Write(). This checksum only covers the raw wave form data,
1415 * not any meta informations like i.e. bit depth or loop points. Since
1416 * this method just returns the checksum stored for this sample i.e. when
1417 * the gig file was loaded, this method returns immediately. So it does no
1418 * recalcuation of the checksum with the currently available sample wave
1419 * form data.
1420 *
1421 * @see VerifyWaveData()
1422 */
1423 uint32_t Sample::GetWaveDataCRC32Checksum() {
1424 return crc;
1425 }
1426
1427 /**
1428 * Checks the integrity of this sample's raw audio wave data. Whenever a
1429 * Sample's raw wave data is intentionally modified (i.e. by calling
1430 * Write() and supplying the new raw audio wave form data) a CRC32 checksum
1431 * is calculated and stored/updated for this sample, along to the sample's
1432 * meta informations.
1433 *
1434 * Now by calling this method the current raw audio wave data is checked
1435 * against the already stored CRC32 check sum in order to check whether the
1436 * sample data had been damaged unintentionally for some reason. Since by
1437 * calling this method always the entire raw audio wave data has to be
1438 * read, verifying all samples this way may take a long time accordingly.
1439 * And that's also the reason why the sample integrity is not checked by
1440 * default whenever a gig file is loaded. So this method must be called
1441 * explicitly to fulfill this task.
1442 *
1443 * @param pActually - (optional) if provided, will be set to the actually
1444 * calculated checksum of the current raw wave form data,
1445 * you can get the expected checksum instead by calling
1446 * GetWaveDataCRC32Checksum()
1447 * @returns true if sample is OK or false if the sample is damaged
1448 * @throws Exception if no checksum had been stored to disk for this
1449 * sample yet, or on I/O issues
1450 * @see GetWaveDataCRC32Checksum()
1451 */
1452 bool Sample::VerifyWaveData(uint32_t* pActually) {
1453 //File* pFile = static_cast<File*>(GetParent());
1454 uint32_t crc = CalculateWaveDataChecksum();
1455 if (pActually) *pActually = crc;
1456 return crc == this->crc;
1457 }
1458
1459 uint32_t Sample::CalculateWaveDataChecksum() {
1460 const size_t sz = 20*1024; // 20kB buffer size
1461 std::vector<uint8_t> buffer(sz);
1462 buffer.resize(sz);
1463
1464 const size_t n = sz / FrameSize;
1465 SetPos(0);
1466 uint32_t crc = 0;
1467 __resetCRC(crc);
1468 while (true) {
1469 file_offset_t nRead = Read(&buffer[0], n);
1470 if (nRead <= 0) break;
1471 __calculateCRC(&buffer[0], nRead * FrameSize, crc);
1472 }
1473 __finalizeCRC(crc);
1474 return crc;
1475 }
1476
1477 Sample::~Sample() {
1478 Instances--;
1479 if (!Instances && InternalDecompressionBuffer.Size) {
1480 delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1481 InternalDecompressionBuffer.pStart = NULL;
1482 InternalDecompressionBuffer.Size = 0;
1483 }
1484 if (FrameTable) delete[] FrameTable;
1485 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1486 }
1487
1488
1489
1490 // *************** DimensionRegion ***************
1491 // *
1492
1493 size_t DimensionRegion::Instances = 0;
1494 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1495
1496 DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1497 Instances++;
1498
1499 pSample = NULL;
1500 pRegion = pParent;
1501
1502 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1503 else memset(&Crossfade, 0, 4);
1504
1505 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1506
1507 RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1508 if (_3ewa) { // if '3ewa' chunk exists
1509 _3ewa->SetPos(0);
1510
1511 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1512 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1513 EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1514 _3ewa->ReadInt16(); // unknown
1515 LFO1InternalDepth = _3ewa->ReadUint16();
1516 _3ewa->ReadInt16(); // unknown
1517 LFO3InternalDepth = _3ewa->ReadInt16();
1518 _3ewa->ReadInt16(); // unknown
1519 LFO1ControlDepth = _3ewa->ReadUint16();
1520 _3ewa->ReadInt16(); // unknown
1521 LFO3ControlDepth = _3ewa->ReadInt16();
1522 EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1523 EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1524 _3ewa->ReadInt16(); // unknown
1525 EG1Sustain = _3ewa->ReadUint16();
1526 EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1527 EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1528 uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1529 EG1ControllerInvert = eg1ctrloptions & 0x01;
1530 EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1531 EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1532 EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1533 EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1534 uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1535 EG2ControllerInvert = eg2ctrloptions & 0x01;
1536 EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1537 EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1538 EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1539 LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1540 EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1541 EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1542 _3ewa->ReadInt16(); // unknown
1543 EG2Sustain = _3ewa->ReadUint16();
1544 EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1545 _3ewa->ReadInt16(); // unknown
1546 LFO2ControlDepth = _3ewa->ReadUint16();
1547 LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1548 _3ewa->ReadInt16(); // unknown
1549 LFO2InternalDepth = _3ewa->ReadUint16();
1550 int32_t eg1decay2 = _3ewa->ReadInt32();
1551 EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1552 EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1553 _3ewa->ReadInt16(); // unknown
1554 EG1PreAttack = _3ewa->ReadUint16();
1555 int32_t eg2decay2 = _3ewa->ReadInt32();
1556 EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1557 EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1558 _3ewa->ReadInt16(); // unknown
1559 EG2PreAttack = _3ewa->ReadUint16();
1560 uint8_t velocityresponse = _3ewa->ReadUint8();
1561 if (velocityresponse < 5) {
1562 VelocityResponseCurve = curve_type_nonlinear;
1563 VelocityResponseDepth = velocityresponse;
1564 } else if (velocityresponse < 10) {
1565 VelocityResponseCurve = curve_type_linear;
1566 VelocityResponseDepth = velocityresponse - 5;
1567 } else if (velocityresponse < 15) {
1568 VelocityResponseCurve = curve_type_special;
1569 VelocityResponseDepth = velocityresponse - 10;
1570 } else {
1571 VelocityResponseCurve = curve_type_unknown;
1572 VelocityResponseDepth = 0;
1573 }
1574 uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1575 if (releasevelocityresponse < 5) {
1576 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1577 ReleaseVelocityResponseDepth = releasevelocityresponse;
1578 } else if (releasevelocityresponse < 10) {
1579 ReleaseVelocityResponseCurve = curve_type_linear;
1580 ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1581 } else if (releasevelocityresponse < 15) {
1582 ReleaseVelocityResponseCurve = curve_type_special;
1583 ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1584 } else {
1585 ReleaseVelocityResponseCurve = curve_type_unknown;
1586 ReleaseVelocityResponseDepth = 0;
1587 }
1588 VelocityResponseCurveScaling = _3ewa->ReadUint8();
1589 AttenuationControllerThreshold = _3ewa->ReadInt8();
1590 _3ewa->ReadInt32(); // unknown
1591 SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1592 _3ewa->ReadInt16(); // unknown
1593 uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1594 PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1595 if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1596 else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1597 else DimensionBypass = dim_bypass_ctrl_none;
1598 uint8_t pan = _3ewa->ReadUint8();
1599 Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1600 SelfMask = _3ewa->ReadInt8() & 0x01;
1601 _3ewa->ReadInt8(); // unknown
1602 uint8_t lfo3ctrl = _3ewa->ReadUint8();
1603 LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1604 LFO3Sync = lfo3ctrl & 0x20; // bit 5
1605 InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1606 AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1607 uint8_t lfo2ctrl = _3ewa->ReadUint8();
1608 LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1609 LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1610 LFO2Sync = lfo2ctrl & 0x20; // bit 5
1611 bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1612 uint8_t lfo1ctrl = _3ewa->ReadUint8();
1613 LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1614 LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1615 LFO1Sync = lfo1ctrl & 0x40; // bit 6
1616 VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1617 : vcf_res_ctrl_none;
1618 uint16_t eg3depth = _3ewa->ReadUint16();
1619 EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1620 : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1621 _3ewa->ReadInt16(); // unknown
1622 ChannelOffset = _3ewa->ReadUint8() / 4;
1623 uint8_t regoptions = _3ewa->ReadUint8();
1624 MSDecode = regoptions & 0x01; // bit 0
1625 SustainDefeat = regoptions & 0x02; // bit 1
1626 _3ewa->ReadInt16(); // unknown
1627 VelocityUpperLimit = _3ewa->ReadInt8();
1628 _3ewa->ReadInt8(); // unknown
1629 _3ewa->ReadInt16(); // unknown
1630 ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1631 _3ewa->ReadInt8(); // unknown
1632 _3ewa->ReadInt8(); // unknown
1633 EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1634 uint8_t vcfcutoff = _3ewa->ReadUint8();
1635 VCFEnabled = vcfcutoff & 0x80; // bit 7
1636 VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1637 VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1638 uint8_t vcfvelscale = _3ewa->ReadUint8();
1639 VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1640 VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1641 _3ewa->ReadInt8(); // unknown
1642 uint8_t vcfresonance = _3ewa->ReadUint8();
1643 VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1644 VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1645 uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1646 VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1647 VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1648 uint8_t vcfvelocity = _3ewa->ReadUint8();
1649 VCFVelocityDynamicRange = vcfvelocity % 5;
1650 VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1651 VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1652 if (VCFType == vcf_type_lowpass) {
1653 if (lfo3ctrl & 0x40) // bit 6
1654 VCFType = vcf_type_lowpassturbo;
1655 }
1656 if (_3ewa->RemainingBytes() >= 8) {
1657 _3ewa->Read(DimensionUpperLimits, 1, 8);
1658 } else {
1659 memset(DimensionUpperLimits, 0, 8);
1660 }
1661 } else { // '3ewa' chunk does not exist yet
1662 // use default values
1663 LFO3Frequency = 1.0;
1664 EG3Attack = 0.0;
1665 LFO1InternalDepth = 0;
1666 LFO3InternalDepth = 0;
1667 LFO1ControlDepth = 0;
1668 LFO3ControlDepth = 0;
1669 EG1Attack = 0.0;
1670 EG1Decay1 = 0.005;
1671 EG1Sustain = 1000;
1672 EG1Release = 0.3;
1673 EG1Controller.type = eg1_ctrl_t::type_none;
1674 EG1Controller.controller_number = 0;
1675 EG1ControllerInvert = false;
1676 EG1ControllerAttackInfluence = 0;
1677 EG1ControllerDecayInfluence = 0;
1678 EG1ControllerReleaseInfluence = 0;
1679 EG2Controller.type = eg2_ctrl_t::type_none;
1680 EG2Controller.controller_number = 0;
1681 EG2ControllerInvert = false;
1682 EG2ControllerAttackInfluence = 0;
1683 EG2ControllerDecayInfluence = 0;
1684 EG2ControllerReleaseInfluence = 0;
1685 LFO1Frequency = 1.0;
1686 EG2Attack = 0.0;
1687 EG2Decay1 = 0.005;
1688 EG2Sustain = 1000;
1689 EG2Release = 60;
1690 LFO2ControlDepth = 0;
1691 LFO2Frequency = 1.0;
1692 LFO2InternalDepth = 0;
1693 EG1Decay2 = 0.0;
1694 EG1InfiniteSustain = true;
1695 EG1PreAttack = 0;
1696 EG2Decay2 = 0.0;
1697 EG2InfiniteSustain = true;
1698 EG2PreAttack = 0;
1699 VelocityResponseCurve = curve_type_nonlinear;
1700 VelocityResponseDepth = 3;
1701 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1702 ReleaseVelocityResponseDepth = 3;
1703 VelocityResponseCurveScaling = 32;
1704 AttenuationControllerThreshold = 0;
1705 SampleStartOffset = 0;
1706 PitchTrack = true;
1707 DimensionBypass = dim_bypass_ctrl_none;
1708 Pan = 0;
1709 SelfMask = true;
1710 LFO3Controller = lfo3_ctrl_modwheel;
1711 LFO3Sync = false;
1712 InvertAttenuationController = false;
1713 AttenuationController.type = attenuation_ctrl_t::type_none;
1714 AttenuationController.controller_number = 0;
1715 LFO2Controller = lfo2_ctrl_internal;
1716 LFO2FlipPhase = false;
1717 LFO2Sync = false;
1718 LFO1Controller = lfo1_ctrl_internal;
1719 LFO1FlipPhase = false;
1720 LFO1Sync = false;
1721 VCFResonanceController = vcf_res_ctrl_none;
1722 EG3Depth = 0;
1723 ChannelOffset = 0;
1724 MSDecode = false;
1725 SustainDefeat = false;
1726 VelocityUpperLimit = 0;
1727 ReleaseTriggerDecay = 0;
1728 EG1Hold = false;
1729 VCFEnabled = false;
1730 VCFCutoff = 0;
1731 VCFCutoffController = vcf_cutoff_ctrl_none;
1732 VCFCutoffControllerInvert = false;
1733 VCFVelocityScale = 0;
1734 VCFResonance = 0;
1735 VCFResonanceDynamic = false;
1736 VCFKeyboardTracking = false;
1737 VCFKeyboardTrackingBreakpoint = 0;
1738 VCFVelocityDynamicRange = 0x04;
1739 VCFVelocityCurve = curve_type_linear;
1740 VCFType = vcf_type_lowpass;
1741 memset(DimensionUpperLimits, 127, 8);
1742 }
1743
1744 // chunk for own format extensions, these will *NOT* work with Gigasampler/GigaStudio !
1745 RIFF::Chunk* lsde = _3ewl->GetSubChunk(CHUNK_ID_LSDE);
1746 if (lsde) { // format extension for EG behavior options
1747 lsde->SetPos(0);
1748
1749 eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
1750 for (int i = 0; i < 2; ++i) { // NOTE: we reserved a 3rd byte for a potential future EG3 option
1751 unsigned char byte = lsde->ReadUint8();
1752 pEGOpts[i]->AttackCancel = byte & 1;
1753 pEGOpts[i]->AttackHoldCancel = byte & (1 << 1);
1754 pEGOpts[i]->Decay1Cancel = byte & (1 << 2);
1755 pEGOpts[i]->Decay2Cancel = byte & (1 << 3);
1756 pEGOpts[i]->ReleaseCancel = byte & (1 << 4);
1757 }
1758 }
1759 // format extension for sustain pedal up effect on release trigger samples
1760 if (lsde && lsde->GetSize() > 3) { // NOTE: we reserved the 3rd byte for a potential future EG3 option
1761 lsde->SetPos(3);
1762 uint8_t byte = lsde->ReadUint8();
1763 SustainReleaseTrigger = static_cast<sust_rel_trg_t>(byte & 0x03);
1764 NoNoteOffReleaseTrigger = byte >> 7;
1765 } else {
1766 SustainReleaseTrigger = sust_rel_trg_none;
1767 NoNoteOffReleaseTrigger = false;
1768 }
1769 // format extension for LFOs' wave form, phase displacement and for
1770 // LFO3's flip phase
1771 if (lsde && lsde->GetSize() > 4) {
1772 lsde->SetPos(4);
1773 LFO1WaveForm = static_cast<lfo_wave_t>( lsde->ReadUint16() );
1774 LFO2WaveForm = static_cast<lfo_wave_t>( lsde->ReadUint16() );
1775 LFO3WaveForm = static_cast<lfo_wave_t>( lsde->ReadUint16() );
1776 lsde->ReadUint16(); // unused 16 bits, reserved for potential future use
1777 LFO1Phase = (double) GIG_EXP_DECODE( lsde->ReadInt32() );
1778 LFO2Phase = (double) GIG_EXP_DECODE( lsde->ReadInt32() );
1779 LFO3Phase = (double) GIG_EXP_DECODE( lsde->ReadInt32() );
1780 const uint32_t flags = lsde->ReadInt32();
1781 LFO3FlipPhase = flags & 1;
1782 } else {
1783 LFO1WaveForm = lfo_wave_sine;
1784 LFO2WaveForm = lfo_wave_sine;
1785 LFO3WaveForm = lfo_wave_sine;
1786 LFO1Phase = 0.0;
1787 LFO2Phase = 0.0;
1788 LFO3Phase = 0.0;
1789 LFO3FlipPhase = false;
1790 }
1791
1792 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1793 VelocityResponseDepth,
1794 VelocityResponseCurveScaling);
1795
1796 pVelocityReleaseTable = GetReleaseVelocityTable(
1797 ReleaseVelocityResponseCurve,
1798 ReleaseVelocityResponseDepth
1799 );
1800
1801 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1802 VCFVelocityDynamicRange,
1803 VCFVelocityScale,
1804 VCFCutoffController);
1805
1806 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1807 VelocityTable = 0;
1808 }
1809
1810 /*
1811 * Constructs a DimensionRegion by copying all parameters from
1812 * another DimensionRegion
1813 */
1814 DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1815 Instances++;
1816 //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1817 *this = src; // default memberwise shallow copy of all parameters
1818 pParentList = _3ewl; // restore the chunk pointer
1819
1820 // deep copy of owned structures
1821 if (src.VelocityTable) {
1822 VelocityTable = new uint8_t[128];
1823 for (int k = 0 ; k < 128 ; k++)
1824 VelocityTable[k] = src.VelocityTable[k];
1825 }
1826 if (src.pSampleLoops) {
1827 pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1828 for (int k = 0 ; k < src.SampleLoops ; k++)
1829 pSampleLoops[k] = src.pSampleLoops[k];
1830 }
1831 }
1832
1833 /**
1834 * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1835 * and assign it to this object.
1836 *
1837 * Note that all sample pointers referenced by @a orig are simply copied as
1838 * memory address. Thus the respective samples are shared, not duplicated!
1839 *
1840 * @param orig - original DimensionRegion object to be copied from
1841 */
1842 void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1843 CopyAssign(orig, NULL);
1844 }
1845
1846 /**
1847 * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1848 * and assign it to this object.
1849 *
1850 * @param orig - original DimensionRegion object to be copied from
1851 * @param mSamples - crosslink map between the foreign file's samples and
1852 * this file's samples
1853 */
1854 void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1855 // delete all allocated data first
1856 if (VelocityTable) delete [] VelocityTable;
1857 if (pSampleLoops) delete [] pSampleLoops;
1858
1859 // backup parent list pointer
1860 RIFF::List* p = pParentList;
1861
1862 gig::Sample* pOriginalSample = pSample;
1863 gig::Region* pOriginalRegion = pRegion;
1864
1865 //NOTE: copy code copied from assignment constructor above, see comment there as well
1866
1867 *this = *orig; // default memberwise shallow copy of all parameters
1868
1869 // restore members that shall not be altered
1870 pParentList = p; // restore the chunk pointer
1871 pRegion = pOriginalRegion;
1872
1873 // only take the raw sample reference reference if the
1874 // two DimensionRegion objects are part of the same file
1875 if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1876 pSample = pOriginalSample;
1877 }
1878
1879 if (mSamples && mSamples->count(orig->pSample)) {
1880 pSample = mSamples->find(orig->pSample)->second;
1881 }
1882
1883 // deep copy of owned structures
1884 if (orig->VelocityTable) {
1885 VelocityTable = new uint8_t[128];
1886 for (int k = 0 ; k < 128 ; k++)
1887 VelocityTable[k] = orig->VelocityTable[k];
1888 }
1889 if (orig->pSampleLoops) {
1890 pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1891 for (int k = 0 ; k < orig->SampleLoops ; k++)
1892 pSampleLoops[k] = orig->pSampleLoops[k];
1893 }
1894 }
1895
1896 void DimensionRegion::serialize(Serialization::Archive* archive) {
1897 // in case this class will become backward incompatible one day,
1898 // then set a version and minimum version for this class like:
1899 //archive->setVersion(*this, 2);
1900 //archive->setMinVersion(*this, 1);
1901
1902 SRLZ(VelocityUpperLimit);
1903 SRLZ(EG1PreAttack);
1904 SRLZ(EG1Attack);
1905 SRLZ(EG1Decay1);
1906 SRLZ(EG1Decay2);
1907 SRLZ(EG1InfiniteSustain);
1908 SRLZ(EG1Sustain);
1909 SRLZ(EG1Release);
1910 SRLZ(EG1Hold);
1911 SRLZ(EG1Controller);
1912 SRLZ(EG1ControllerInvert);
1913 SRLZ(EG1ControllerAttackInfluence);
1914 SRLZ(EG1ControllerDecayInfluence);
1915 SRLZ(EG1ControllerReleaseInfluence);
1916 SRLZ(LFO1WaveForm);
1917 SRLZ(LFO1Frequency);
1918 SRLZ(LFO1Phase);
1919 SRLZ(LFO1InternalDepth);
1920 SRLZ(LFO1ControlDepth);
1921 SRLZ(LFO1Controller);
1922 SRLZ(LFO1FlipPhase);
1923 SRLZ(LFO1Sync);
1924 SRLZ(EG2PreAttack);
1925 SRLZ(EG2Attack);
1926 SRLZ(EG2Decay1);
1927 SRLZ(EG2Decay2);
1928 SRLZ(EG2InfiniteSustain);
1929 SRLZ(EG2Sustain);
1930 SRLZ(EG2Release);
1931 SRLZ(EG2Controller);
1932 SRLZ(EG2ControllerInvert);
1933 SRLZ(EG2ControllerAttackInfluence);
1934 SRLZ(EG2ControllerDecayInfluence);
1935 SRLZ(EG2ControllerReleaseInfluence);
1936 SRLZ(LFO2WaveForm);
1937 SRLZ(LFO2Frequency);
1938 SRLZ(LFO2Phase);
1939 SRLZ(LFO2InternalDepth);
1940 SRLZ(LFO2ControlDepth);
1941 SRLZ(LFO2Controller);
1942 SRLZ(LFO2FlipPhase);
1943 SRLZ(LFO2Sync);
1944 SRLZ(EG3Attack);
1945 SRLZ(EG3Depth);
1946 SRLZ(LFO3WaveForm);
1947 SRLZ(LFO3Frequency);
1948 SRLZ(LFO3Phase);
1949 SRLZ(LFO3InternalDepth);
1950 SRLZ(LFO3ControlDepth);
1951 SRLZ(LFO3Controller);
1952 SRLZ(LFO3FlipPhase);
1953 SRLZ(LFO3Sync);
1954 SRLZ(VCFEnabled);
1955 SRLZ(VCFType);
1956 SRLZ(VCFCutoffController);
1957 SRLZ(VCFCutoffControllerInvert);
1958 SRLZ(VCFCutoff);
1959 SRLZ(VCFVelocityCurve);
1960 SRLZ(VCFVelocityScale);
1961 SRLZ(VCFVelocityDynamicRange);
1962 SRLZ(VCFResonance);
1963 SRLZ(VCFResonanceDynamic);
1964 SRLZ(VCFResonanceController);
1965 SRLZ(VCFKeyboardTracking);
1966 SRLZ(VCFKeyboardTrackingBreakpoint);
1967 SRLZ(VelocityResponseCurve);
1968 SRLZ(VelocityResponseDepth);
1969 SRLZ(VelocityResponseCurveScaling);
1970 SRLZ(ReleaseVelocityResponseCurve);
1971 SRLZ(ReleaseVelocityResponseDepth);
1972 SRLZ(ReleaseTriggerDecay);
1973 SRLZ(Crossfade);
1974 SRLZ(PitchTrack);
1975 SRLZ(DimensionBypass);
1976 SRLZ(Pan);
1977 SRLZ(SelfMask);
1978 SRLZ(AttenuationController);
1979 SRLZ(InvertAttenuationController);
1980 SRLZ(AttenuationControllerThreshold);
1981 SRLZ(ChannelOffset);
1982 SRLZ(SustainDefeat);
1983 SRLZ(MSDecode);
1984 //SRLZ(SampleStartOffset);
1985 SRLZ(SampleAttenuation);
1986 SRLZ(EG1Options);
1987 SRLZ(EG2Options);
1988 SRLZ(SustainReleaseTrigger);
1989 SRLZ(NoNoteOffReleaseTrigger);
1990
1991 // derived attributes from DLS::Sampler
1992 SRLZ(FineTune);
1993 SRLZ(Gain);
1994 }
1995
1996 /**
1997 * Updates the respective member variable and updates @c SampleAttenuation
1998 * which depends on this value.
1999 */
2000 void DimensionRegion::SetGain(int32_t gain) {
2001 DLS::Sampler::SetGain(gain);
2002 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
2003 }
2004
2005 /**
2006 * Apply dimension region settings to the respective RIFF chunks. You
2007 * have to call File::Save() to make changes persistent.
2008 *
2009 * Usually there is absolutely no need to call this method explicitly.
2010 * It will be called automatically when File::Save() was called.
2011 *
2012 * @param pProgress - callback function for progress notification
2013 */
2014 void DimensionRegion::UpdateChunks(progress_t* pProgress) {
2015 // first update base class's chunk
2016 DLS::Sampler::UpdateChunks(pProgress);
2017
2018 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
2019 uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
2020 pData[12] = Crossfade.in_start;
2021 pData[13] = Crossfade.in_end;
2022 pData[14] = Crossfade.out_start;
2023 pData[15] = Crossfade.out_end;
2024
2025 // make sure '3ewa' chunk exists
2026 RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
2027 if (!_3ewa) {
2028 File* pFile = (File*) GetParent()->GetParent()->GetParent();
2029 bool versiongt2 = pFile->pVersion && pFile->pVersion->major > 2;
2030 _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, versiongt2 ? 148 : 140);
2031 }
2032 pData = (uint8_t*) _3ewa->LoadChunkData();
2033
2034 // update '3ewa' chunk with DimensionRegion's current settings
2035
2036 const uint32_t chunksize = (uint32_t) _3ewa->GetNewSize();
2037 store32(&pData[0], chunksize); // unknown, always chunk size?
2038
2039 const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
2040 store32(&pData[4], lfo3freq);
2041
2042 const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
2043 store32(&pData[8], eg3attack);
2044
2045 // next 2 bytes unknown
2046
2047 store16(&pData[14], LFO1InternalDepth);
2048
2049 // next 2 bytes unknown
2050
2051 store16(&pData[18], LFO3InternalDepth);
2052
2053 // next 2 bytes unknown
2054
2055 store16(&pData[22], LFO1ControlDepth);
2056
2057 // next 2 bytes unknown
2058
2059 store16(&pData[26], LFO3ControlDepth);
2060
2061 const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
2062 store32(&pData[28], eg1attack);
2063
2064 const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
2065 store32(&pData[32], eg1decay1);
2066
2067 // next 2 bytes unknown
2068
2069 store16(&pData[38], EG1Sustain);
2070
2071 const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
2072 store32(&pData[40], eg1release);
2073
2074 const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
2075 pData[44] = eg1ctl;
2076
2077 const uint8_t eg1ctrloptions =
2078 (EG1ControllerInvert ? 0x01 : 0x00) |
2079 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
2080 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
2081 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
2082 pData[45] = eg1ctrloptions;
2083
2084 const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
2085 pData[46] = eg2ctl;
2086
2087 const uint8_t eg2ctrloptions =
2088 (EG2ControllerInvert ? 0x01 : 0x00) |
2089 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
2090 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
2091 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
2092 pData[47] = eg2ctrloptions;
2093
2094 const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
2095 store32(&pData[48], lfo1freq);
2096
2097 const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
2098 store32(&pData[52], eg2attack);
2099
2100 const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
2101 store32(&pData[56], eg2decay1);
2102
2103 // next 2 bytes unknown
2104
2105 store16(&pData[62], EG2Sustain);
2106
2107 const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
2108 store32(&pData[64], eg2release);
2109
2110 // next 2 bytes unknown
2111
2112 store16(&pData[70], LFO2ControlDepth);
2113
2114 const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
2115 store32(&pData[72], lfo2freq);
2116
2117 // next 2 bytes unknown
2118
2119 store16(&pData[78], LFO2InternalDepth);
2120
2121 const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
2122 store32(&pData[80], eg1decay2);
2123
2124 // next 2 bytes unknown
2125
2126 store16(&pData[86], EG1PreAttack);
2127
2128 const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
2129 store32(&pData[88], eg2decay2);
2130
2131 // next 2 bytes unknown
2132
2133 store16(&pData[94], EG2PreAttack);
2134
2135 {
2136 if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
2137 uint8_t velocityresponse = VelocityResponseDepth;
2138 switch (VelocityResponseCurve) {
2139 case curve_type_nonlinear:
2140 break;
2141 case curve_type_linear:
2142 velocityresponse += 5;
2143 break;
2144 case curve_type_special:
2145 velocityresponse += 10;
2146 break;
2147 case curve_type_unknown:
2148 default:
2149 throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
2150 }
2151 pData[96] = velocityresponse;
2152 }
2153
2154 {
2155 if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
2156 uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
2157 switch (ReleaseVelocityResponseCurve) {
2158 case curve_type_nonlinear:
2159 break;
2160 case curve_type_linear:
2161 releasevelocityresponse += 5;
2162 break;
2163 case curve_type_special:
2164 releasevelocityresponse += 10;
2165 break;
2166 case curve_type_unknown:
2167 default:
2168 throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
2169 }
2170 pData[97] = releasevelocityresponse;
2171 }
2172
2173 pData[98] = VelocityResponseCurveScaling;
2174
2175 pData[99] = AttenuationControllerThreshold;
2176
2177 // next 4 bytes unknown
2178
2179 store16(&pData[104], SampleStartOffset);
2180
2181 // next 2 bytes unknown
2182
2183 {
2184 uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
2185 switch (DimensionBypass) {
2186 case dim_bypass_ctrl_94:
2187 pitchTrackDimensionBypass |= 0x10;
2188 break;
2189 case dim_bypass_ctrl_95:
2190 pitchTrackDimensionBypass |= 0x20;
2191 break;
2192 case dim_bypass_ctrl_none:
2193 //FIXME: should we set anything here?
2194 break;
2195 default:
2196 throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
2197 }
2198 pData[108] = pitchTrackDimensionBypass;
2199 }
2200
2201 const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
2202 pData[109] = pan;
2203
2204 const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
2205 pData[110] = selfmask;
2206
2207 // next byte unknown
2208
2209 {
2210 uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
2211 if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
2212 if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
2213 if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
2214 pData[112] = lfo3ctrl;
2215 }
2216
2217 const uint8_t attenctl = EncodeLeverageController(AttenuationController);
2218 pData[113] = attenctl;
2219
2220 {
2221 uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
2222 if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
2223 if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
2224 if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
2225 pData[114] = lfo2ctrl;
2226 }
2227
2228 {
2229 uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
2230 if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
2231 if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
2232 if (VCFResonanceController != vcf_res_ctrl_none)
2233 lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
2234 pData[115] = lfo1ctrl;
2235 }
2236
2237 const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
2238 : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
2239 store16(&pData[116], eg3depth);
2240
2241 // next 2 bytes unknown
2242
2243 const uint8_t channeloffset = ChannelOffset * 4;
2244 pData[120] = channeloffset;
2245
2246 {
2247 uint8_t regoptions = 0;
2248 if (MSDecode) regoptions |= 0x01; // bit 0
2249 if (SustainDefeat) regoptions |= 0x02; // bit 1
2250 pData[121] = regoptions;
2251 }
2252
2253 // next 2 bytes unknown
2254
2255 pData[124] = VelocityUpperLimit;
2256
2257 // next 3 bytes unknown
2258
2259 pData[128] = ReleaseTriggerDecay;
2260
2261 // next 2 bytes unknown
2262
2263 const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2264 pData[131] = eg1hold;
2265
2266 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
2267 (VCFCutoff & 0x7f); /* lower 7 bits */
2268 pData[132] = vcfcutoff;
2269
2270 pData[133] = VCFCutoffController;
2271
2272 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2273 (VCFVelocityScale & 0x7f); /* lower 7 bits */
2274 pData[134] = vcfvelscale;
2275
2276 // next byte unknown
2277
2278 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2279 (VCFResonance & 0x7f); /* lower 7 bits */
2280 pData[136] = vcfresonance;
2281
2282 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2283 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2284 pData[137] = vcfbreakpoint;
2285
2286 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2287 VCFVelocityCurve * 5;
2288 pData[138] = vcfvelocity;
2289
2290 const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2291 pData[139] = vcftype;
2292
2293 if (chunksize >= 148) {
2294 memcpy(&pData[140], DimensionUpperLimits, 8);
2295 }
2296
2297 // chunk for own format extensions, these will *NOT* work with
2298 // Gigasampler/GigaStudio !
2299 RIFF::Chunk* lsde = pParentList->GetSubChunk(CHUNK_ID_LSDE);
2300 const int lsdeSize =
2301 3 /* EG cancel options */ +
2302 1 /* sustain pedal up on release trigger option */ +
2303 8 /* LFOs' wave forms */ + 12 /* LFOs' phase */ + 4 /* flags (LFO3FlipPhase) */;
2304 if (!lsde && UsesAnyGigFormatExtension()) {
2305 // only add this "LSDE" chunk if there is some (format extension)
2306 // setting effective that would require our "LSDE" format extension
2307 // chunk to be stored
2308 lsde = pParentList->AddSubChunk(CHUNK_ID_LSDE, lsdeSize);
2309 // move LSDE chunk to the end of parent list
2310 pParentList->MoveSubChunk(lsde, (RIFF::Chunk*)NULL);
2311 }
2312 if (lsde) {
2313 if (lsde->GetNewSize() < lsdeSize)
2314 lsde->Resize(lsdeSize);
2315 // format extension for EG behavior options
2316 unsigned char* pData = (unsigned char*) lsde->LoadChunkData();
2317 eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
2318 for (int i = 0; i < 2; ++i) { // NOTE: we reserved the 3rd byte for a potential future EG3 option
2319 pData[i] =
2320 (pEGOpts[i]->AttackCancel ? 1 : 0) |
2321 (pEGOpts[i]->AttackHoldCancel ? (1<<1) : 0) |
2322 (pEGOpts[i]->Decay1Cancel ? (1<<2) : 0) |
2323 (pEGOpts[i]->Decay2Cancel ? (1<<3) : 0) |
2324 (pEGOpts[i]->ReleaseCancel ? (1<<4) : 0);
2325 }
2326 // format extension for release trigger options
2327 pData[3] = static_cast<uint8_t>(SustainReleaseTrigger) | (NoNoteOffReleaseTrigger ? (1<<7) : 0);
2328 // format extension for LFOs' wave form, phase displacement and for
2329 // LFO3's flip phase
2330 store16(&pData[4], LFO1WaveForm);
2331 store16(&pData[6], LFO2WaveForm);
2332 store16(&pData[8], LFO3WaveForm);
2333 //NOTE: 16 bits reserved here for potential future use !
2334 const int32_t lfo1Phase = (int32_t) GIG_EXP_ENCODE(LFO1Phase);
2335 const int32_t lfo2Phase = (int32_t) GIG_EXP_ENCODE(LFO2Phase);
2336 const int32_t lfo3Phase = (int32_t) GIG_EXP_ENCODE(LFO3Phase);
2337 store32(&pData[12], lfo1Phase);
2338 store32(&pData[16], lfo2Phase);
2339 store32(&pData[20], lfo3Phase);
2340 const int32_t flags = LFO3FlipPhase ? 1 : 0;
2341 store32(&pData[24], flags);
2342
2343 // compile time sanity check: is our last store access here
2344 // consistent with the initial lsdeSize value assignment?
2345 static_assert(lsdeSize == 28, "Inconsistency in assumed 'LSDE' RIFF chunk size");
2346 }
2347 }
2348
2349 /**
2350 * Returns @c true in case this DimensionRegion object uses any gig format
2351 * extension, that is whether this DimensionRegion object currently has any
2352 * setting effective that would require our "LSDE" RIFF chunk to be stored
2353 * to the gig file.
2354 *
2355 * Right now this is a private method. It is considerable though this method
2356 * to become (in slightly modified form) a public API method in future, i.e.
2357 * to allow instrument editors to visualize and/or warn the user of any
2358 * format extension being used. Right now this method really just serves to
2359 * answer the question whether an LSDE chunk is required, for the public API
2360 * purpose this method would also need to check whether any other setting
2361 * stored to the regular value '3ewa' chunk, is actually a format extension
2362 * as well.
2363 */
2364 bool DimensionRegion::UsesAnyGigFormatExtension() const {
2365 eg_opt_t defaultOpt;
2366 return memcmp(&EG1Options, &defaultOpt, sizeof(eg_opt_t)) ||
2367 memcmp(&EG2Options, &defaultOpt, sizeof(eg_opt_t)) ||
2368 SustainReleaseTrigger || NoNoteOffReleaseTrigger ||
2369 LFO1WaveForm || LFO2WaveForm || LFO3WaveForm ||
2370 LFO1Phase || LFO2Phase || LFO3Phase ||
2371 LFO3FlipPhase;
2372 }
2373
2374 double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2375 curve_type_t curveType = releaseVelocityResponseCurve;
2376 uint8_t depth = releaseVelocityResponseDepth;
2377 // this models a strange behaviour or bug in GSt: two of the
2378 // velocity response curves for release time are not used even
2379 // if specified, instead another curve is chosen.
2380 if ((curveType == curve_type_nonlinear && depth == 0) ||
2381 (curveType == curve_type_special && depth == 4)) {
2382 curveType = curve_type_nonlinear;
2383 depth = 3;
2384 }
2385 return GetVelocityTable(curveType, depth, 0);
2386 }
2387
2388 double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2389 uint8_t vcfVelocityDynamicRange,
2390 uint8_t vcfVelocityScale,
2391 vcf_cutoff_ctrl_t vcfCutoffController)
2392 {
2393 curve_type_t curveType = vcfVelocityCurve;
2394 uint8_t depth = vcfVelocityDynamicRange;
2395 // even stranger GSt: two of the velocity response curves for
2396 // filter cutoff are not used, instead another special curve
2397 // is chosen. This curve is not used anywhere else.
2398 if ((curveType == curve_type_nonlinear && depth == 0) ||
2399 (curveType == curve_type_special && depth == 4)) {
2400 curveType = curve_type_special;
2401 depth = 5;
2402 }
2403 return GetVelocityTable(curveType, depth,
2404 (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2405 ? vcfVelocityScale : 0);
2406 }
2407
2408 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2409 double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2410 {
2411 // sanity check input parameters
2412 // (fallback to some default parameters on ill input)
2413 switch (curveType) {
2414 case curve_type_nonlinear:
2415 case curve_type_linear:
2416 if (depth > 4) {
2417 printf("Warning: Invalid depth (0x%x) for velocity curve type (0x%x).\n", depth, curveType);
2418 depth = 0;
2419 scaling = 0;
2420 }
2421 break;
2422 case curve_type_special:
2423 if (depth > 5) {
2424 printf("Warning: Invalid depth (0x%x) for velocity curve type 'special'.\n", depth);
2425 depth = 0;
2426 scaling = 0;
2427 }
2428 break;
2429 case curve_type_unknown:
2430 default:
2431 printf("Warning: Unknown velocity curve type (0x%x).\n", curveType);
2432 curveType = curve_type_linear;
2433 depth = 0;
2434 scaling = 0;
2435 break;
2436 }
2437
2438 double* table;
2439 uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2440 if (pVelocityTables->count(tableKey)) { // if key exists
2441 table = (*pVelocityTables)[tableKey];
2442 }
2443 else {
2444 table = CreateVelocityTable(curveType, depth, scaling);
2445 (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
2446 }
2447 return table;
2448 }
2449
2450 Region* DimensionRegion::GetParent() const {
2451 return pRegion;
2452 }
2453
2454 // show error if some _lev_ctrl_* enum entry is not listed in the following function
2455 // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2456 // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2457 //#pragma GCC diagnostic push
2458 //#pragma GCC diagnostic error "-Wswitch"
2459
2460 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2461 leverage_ctrl_t decodedcontroller;
2462 switch (EncodedController) {
2463 // special controller
2464 case _lev_ctrl_none:
2465 decodedcontroller.type = leverage_ctrl_t::type_none;
2466 decodedcontroller.controller_number = 0;
2467 break;
2468 case _lev_ctrl_velocity:
2469 decodedcontroller.type = leverage_ctrl_t::type_velocity;
2470 decodedcontroller.controller_number = 0;
2471 break;
2472 case _lev_ctrl_channelaftertouch:
2473 decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
2474 decodedcontroller.controller_number = 0;
2475 break;
2476
2477 // ordinary MIDI control change controller
2478 case _lev_ctrl_modwheel:
2479 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2480 decodedcontroller.controller_number = 1;
2481 break;
2482 case _lev_ctrl_breath:
2483 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2484 decodedcontroller.controller_number = 2;
2485 break;
2486 case _lev_ctrl_foot:
2487 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2488 decodedcontroller.controller_number = 4;
2489 break;
2490 case _lev_ctrl_effect1:
2491 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2492 decodedcontroller.controller_number = 12;
2493 break;
2494 case _lev_ctrl_effect2:
2495 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2496 decodedcontroller.controller_number = 13;
2497 break;
2498 case _lev_ctrl_genpurpose1:
2499 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2500 decodedcontroller.controller_number = 16;
2501 break;
2502 case _lev_ctrl_genpurpose2:
2503 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2504 decodedcontroller.controller_number = 17;
2505 break;
2506 case _lev_ctrl_genpurpose3:
2507 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2508 decodedcontroller.controller_number = 18;
2509 break;
2510 case _lev_ctrl_genpurpose4:
2511 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2512 decodedcontroller.controller_number = 19;
2513 break;
2514 case _lev_ctrl_portamentotime:
2515 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2516 decodedcontroller.controller_number = 5;
2517 break;
2518 case _lev_ctrl_sustainpedal:
2519 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2520 decodedcontroller.controller_number = 64;
2521 break;
2522 case _lev_ctrl_portamento:
2523 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2524 decodedcontroller.controller_number = 65;
2525 break;
2526 case _lev_ctrl_sostenutopedal:
2527 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2528 decodedcontroller.controller_number = 66;
2529 break;
2530 case _lev_ctrl_softpedal:
2531 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2532 decodedcontroller.controller_number = 67;
2533 break;
2534 case _lev_ctrl_genpurpose5:
2535 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2536 decodedcontroller.controller_number = 80;
2537 break;
2538 case _lev_ctrl_genpurpose6:
2539 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2540 decodedcontroller.controller_number = 81;
2541 break;
2542 case _lev_ctrl_genpurpose7:
2543 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2544 decodedcontroller.controller_number = 82;
2545 break;
2546 case _lev_ctrl_genpurpose8:
2547 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2548 decodedcontroller.controller_number = 83;
2549 break;
2550 case _lev_ctrl_effect1depth:
2551 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2552 decodedcontroller.controller_number = 91;
2553 break;
2554 case _lev_ctrl_effect2depth:
2555 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2556 decodedcontroller.controller_number = 92;
2557 break;
2558 case _lev_ctrl_effect3depth:
2559 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2560 decodedcontroller.controller_number = 93;
2561 break;
2562 case _lev_ctrl_effect4depth:
2563 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2564 decodedcontroller.controller_number = 94;
2565 break;
2566 case _lev_ctrl_effect5depth:
2567 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2568 decodedcontroller.controller_number = 95;
2569 break;
2570
2571 // format extension (these controllers are so far only supported by
2572 // LinuxSampler & gigedit) they will *NOT* work with
2573 // Gigasampler/GigaStudio !
2574 case _lev_ctrl_CC3_EXT:
2575 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2576 decodedcontroller.controller_number = 3;
2577 break;
2578 case _lev_ctrl_CC6_EXT:
2579 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2580 decodedcontroller.controller_number = 6;
2581 break;
2582 case _lev_ctrl_CC7_EXT:
2583 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2584 decodedcontroller.controller_number = 7;
2585 break;
2586 case _lev_ctrl_CC8_EXT:
2587 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2588 decodedcontroller.controller_number = 8;
2589 break;
2590 case _lev_ctrl_CC9_EXT:
2591 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2592 decodedcontroller.controller_number = 9;
2593 break;
2594 case _lev_ctrl_CC10_EXT:
2595 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2596 decodedcontroller.controller_number = 10;
2597 break;
2598 case _lev_ctrl_CC11_EXT:
2599 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2600 decodedcontroller.controller_number = 11;
2601 break;
2602 case _lev_ctrl_CC14_EXT:
2603 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2604 decodedcontroller.controller_number = 14;
2605 break;
2606 case _lev_ctrl_CC15_EXT:
2607 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2608 decodedcontroller.controller_number = 15;
2609 break;
2610 case _lev_ctrl_CC20_EXT:
2611 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2612 decodedcontroller.controller_number = 20;
2613 break;
2614 case _lev_ctrl_CC21_EXT:
2615 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2616 decodedcontroller.controller_number = 21;
2617 break;
2618 case _lev_ctrl_CC22_EXT:
2619 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2620 decodedcontroller.controller_number = 22;
2621 break;
2622 case _lev_ctrl_CC23_EXT:
2623 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2624 decodedcontroller.controller_number = 23;
2625 break;
2626 case _lev_ctrl_CC24_EXT:
2627 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2628 decodedcontroller.controller_number = 24;
2629 break;
2630 case _lev_ctrl_CC25_EXT:
2631 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2632 decodedcontroller.controller_number = 25;
2633 break;
2634 case _lev_ctrl_CC26_EXT:
2635 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2636 decodedcontroller.controller_number = 26;
2637 break;
2638 case _lev_ctrl_CC27_EXT:
2639 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2640 decodedcontroller.controller_number = 27;
2641 break;
2642 case _lev_ctrl_CC28_EXT:
2643 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2644 decodedcontroller.controller_number = 28;
2645 break;
2646 case _lev_ctrl_CC29_EXT:
2647 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2648 decodedcontroller.controller_number = 29;
2649 break;
2650 case _lev_ctrl_CC30_EXT:
2651 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2652 decodedcontroller.controller_number = 30;
2653 break;
2654 case _lev_ctrl_CC31_EXT:
2655 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2656 decodedcontroller.controller_number = 31;
2657 break;
2658 case _lev_ctrl_CC68_EXT:
2659 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2660 decodedcontroller.controller_number = 68;
2661 break;
2662 case _lev_ctrl_CC69_EXT:
2663 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2664 decodedcontroller.controller_number = 69;
2665 break;
2666 case _lev_ctrl_CC70_EXT:
2667 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2668 decodedcontroller.controller_number = 70;
2669 break;
2670 case _lev_ctrl_CC71_EXT:
2671 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2672 decodedcontroller.controller_number = 71;
2673 break;
2674 case _lev_ctrl_CC72_EXT:
2675 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2676 decodedcontroller.controller_number = 72;
2677 break;
2678 case _lev_ctrl_CC73_EXT:
2679 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2680 decodedcontroller.controller_number = 73;
2681 break;
2682 case _lev_ctrl_CC74_EXT:
2683 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2684 decodedcontroller.controller_number = 74;
2685 break;
2686 case _lev_ctrl_CC75_EXT:
2687 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2688 decodedcontroller.controller_number = 75;
2689 break;
2690 case _lev_ctrl_CC76_EXT:
2691 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2692 decodedcontroller.controller_number = 76;
2693 break;
2694 case _lev_ctrl_CC77_EXT:
2695 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2696 decodedcontroller.controller_number = 77;
2697 break;
2698 case _lev_ctrl_CC78_EXT:
2699 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2700 decodedcontroller.controller_number = 78;
2701 break;
2702 case _lev_ctrl_CC79_EXT:
2703 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2704 decodedcontroller.controller_number = 79;
2705 break;
2706 case _lev_ctrl_CC84_EXT:
2707 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2708 decodedcontroller.controller_number = 84;
2709 break;
2710 case _lev_ctrl_CC85_EXT:
2711 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2712 decodedcontroller.controller_number = 85;
2713 break;
2714 case _lev_ctrl_CC86_EXT:
2715 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2716 decodedcontroller.controller_number = 86;
2717 break;
2718 case _lev_ctrl_CC87_EXT:
2719 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2720 decodedcontroller.controller_number = 87;
2721 break;
2722 case _lev_ctrl_CC89_EXT:
2723 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2724 decodedcontroller.controller_number = 89;
2725 break;
2726 case _lev_ctrl_CC90_EXT:
2727 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2728 decodedcontroller.controller_number = 90;
2729 break;
2730 case _lev_ctrl_CC96_EXT:
2731 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2732 decodedcontroller.controller_number = 96;
2733 break;
2734 case _lev_ctrl_CC97_EXT:
2735 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2736 decodedcontroller.controller_number = 97;
2737 break;
2738 case _lev_ctrl_CC102_EXT:
2739 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2740 decodedcontroller.controller_number = 102;
2741 break;
2742 case _lev_ctrl_CC103_EXT:
2743 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2744 decodedcontroller.controller_number = 103;
2745 break;
2746 case _lev_ctrl_CC104_EXT:
2747 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2748 decodedcontroller.controller_number = 104;
2749 break;
2750 case _lev_ctrl_CC105_EXT:
2751 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2752 decodedcontroller.controller_number = 105;
2753 break;
2754 case _lev_ctrl_CC106_EXT:
2755 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2756 decodedcontroller.controller_number = 106;
2757 break;
2758 case _lev_ctrl_CC107_EXT:
2759 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2760 decodedcontroller.controller_number = 107;
2761 break;
2762 case _lev_ctrl_CC108_EXT:
2763 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2764 decodedcontroller.controller_number = 108;
2765 break;
2766 case _lev_ctrl_CC109_EXT:
2767 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2768 decodedcontroller.controller_number = 109;
2769 break;
2770 case _lev_ctrl_CC110_EXT:
2771 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2772 decodedcontroller.controller_number = 110;
2773 break;
2774 case _lev_ctrl_CC111_EXT:
2775 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2776 decodedcontroller.controller_number = 111;
2777 break;
2778 case _lev_ctrl_CC112_EXT:
2779 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2780 decodedcontroller.controller_number = 112;
2781 break;
2782 case _lev_ctrl_CC113_EXT:
2783 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2784 decodedcontroller.controller_number = 113;
2785 break;
2786 case _lev_ctrl_CC114_EXT:
2787 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2788 decodedcontroller.controller_number = 114;
2789 break;
2790 case _lev_ctrl_CC115_EXT:
2791 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2792 decodedcontroller.controller_number = 115;
2793 break;
2794 case _lev_ctrl_CC116_EXT:
2795 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2796 decodedcontroller.controller_number = 116;
2797 break;
2798 case _lev_ctrl_CC117_EXT:
2799 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2800 decodedcontroller.controller_number = 117;
2801 break;
2802 case _lev_ctrl_CC118_EXT:
2803 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2804 decodedcontroller.controller_number = 118;
2805 break;
2806 case _lev_ctrl_CC119_EXT:
2807 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2808 decodedcontroller.controller_number = 119;
2809 break;
2810
2811 // unknown controller type
2812 default:
2813 decodedcontroller.type = leverage_ctrl_t::type_none;
2814 decodedcontroller.controller_number = 0;
2815 printf("Warning: Unknown leverage controller type (0x%x).\n", EncodedController);
2816 break;
2817 }
2818 return decodedcontroller;
2819 }
2820
2821 // see above (diagnostic push not supported prior GCC 4.6)
2822 //#pragma GCC diagnostic pop
2823
2824 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2825 _lev_ctrl_t encodedcontroller;
2826 switch (DecodedController.type) {
2827 // special controller
2828 case leverage_ctrl_t::type_none:
2829 encodedcontroller = _lev_ctrl_none;
2830 break;
2831 case leverage_ctrl_t::type_velocity:
2832 encodedcontroller = _lev_ctrl_velocity;
2833 break;
2834 case leverage_ctrl_t::type_channelaftertouch:
2835 encodedcontroller = _lev_ctrl_channelaftertouch;
2836 break;
2837
2838 // ordinary MIDI control change controller
2839 case leverage_ctrl_t::type_controlchange:
2840 switch (DecodedController.controller_number) {
2841 case 1:
2842 encodedcontroller = _lev_ctrl_modwheel;
2843 break;
2844 case 2:
2845 encodedcontroller = _lev_ctrl_breath;
2846 break;
2847 case 4:
2848 encodedcontroller = _lev_ctrl_foot;
2849 break;
2850 case 12:
2851 encodedcontroller = _lev_ctrl_effect1;
2852 break;
2853 case 13:
2854 encodedcontroller = _lev_ctrl_effect2;
2855 break;
2856 case 16:
2857 encodedcontroller = _lev_ctrl_genpurpose1;
2858 break;
2859 case 17:
2860 encodedcontroller = _lev_ctrl_genpurpose2;
2861 break;
2862 case 18:
2863 encodedcontroller = _lev_ctrl_genpurpose3;
2864 break;
2865 case 19:
2866 encodedcontroller = _lev_ctrl_genpurpose4;
2867 break;
2868 case 5:
2869 encodedcontroller = _lev_ctrl_portamentotime;
2870 break;
2871 case 64:
2872 encodedcontroller = _lev_ctrl_sustainpedal;
2873 break;
2874 case 65:
2875 encodedcontroller = _lev_ctrl_portamento;
2876 break;
2877 case 66:
2878 encodedcontroller = _lev_ctrl_sostenutopedal;
2879 break;
2880 case 67:
2881 encodedcontroller = _lev_ctrl_softpedal;
2882 break;
2883 case 80:
2884 encodedcontroller = _lev_ctrl_genpurpose5;
2885 break;
2886 case 81:
2887 encodedcontroller = _lev_ctrl_genpurpose6;
2888 break;
2889 case 82:
2890 encodedcontroller = _lev_ctrl_genpurpose7;
2891 break;
2892 case 83:
2893 encodedcontroller = _lev_ctrl_genpurpose8;
2894 break;
2895 case 91:
2896 encodedcontroller = _lev_ctrl_effect1depth;
2897 break;
2898 case 92:
2899 encodedcontroller = _lev_ctrl_effect2depth;
2900 break;
2901 case 93:
2902 encodedcontroller = _lev_ctrl_effect3depth;
2903 break;
2904 case 94:
2905 encodedcontroller = _lev_ctrl_effect4depth;
2906 break;
2907 case 95:
2908 encodedcontroller = _lev_ctrl_effect5depth;
2909 break;
2910
2911 // format extension (these controllers are so far only
2912 // supported by LinuxSampler & gigedit) they will *NOT*
2913 // work with Gigasampler/GigaStudio !
2914 case 3:
2915 encodedcontroller = _lev_ctrl_CC3_EXT;
2916 break;
2917 case 6:
2918 encodedcontroller = _lev_ctrl_CC6_EXT;
2919 break;
2920 case 7:
2921 encodedcontroller = _lev_ctrl_CC7_EXT;
2922 break;
2923 case 8:
2924 encodedcontroller = _lev_ctrl_CC8_EXT;
2925 break;
2926 case 9:
2927 encodedcontroller = _lev_ctrl_CC9_EXT;
2928 break;
2929 case 10:
2930 encodedcontroller = _lev_ctrl_CC10_EXT;
2931 break;
2932 case 11:
2933 encodedcontroller = _lev_ctrl_CC11_EXT;
2934 break;
2935 case 14:
2936 encodedcontroller = _lev_ctrl_CC14_EXT;
2937 break;
2938 case 15:
2939 encodedcontroller = _lev_ctrl_CC15_EXT;
2940 break;
2941 case 20:
2942 encodedcontroller = _lev_ctrl_CC20_EXT;
2943 break;
2944 case 21:
2945 encodedcontroller = _lev_ctrl_CC21_EXT;
2946 break;
2947 case 22:
2948 encodedcontroller = _lev_ctrl_CC22_EXT;
2949 break;
2950 case 23:
2951 encodedcontroller = _lev_ctrl_CC23_EXT;
2952 break;
2953 case 24:
2954 encodedcontroller = _lev_ctrl_CC24_EXT;
2955 break;
2956 case 25:
2957 encodedcontroller = _lev_ctrl_CC25_EXT;
2958 break;
2959 case 26:
2960 encodedcontroller = _lev_ctrl_CC26_EXT;
2961 break;
2962 case 27:
2963 encodedcontroller = _lev_ctrl_CC27_EXT;
2964 break;
2965 case 28:
2966 encodedcontroller = _lev_ctrl_CC28_EXT;
2967 break;
2968 case 29:
2969 encodedcontroller = _lev_ctrl_CC29_EXT;
2970 break;
2971 case 30:
2972 encodedcontroller = _lev_ctrl_CC30_EXT;
2973 break;
2974 case 31:
2975 encodedcontroller = _lev_ctrl_CC31_EXT;
2976 break;
2977 case 68:
2978 encodedcontroller = _lev_ctrl_CC68_EXT;
2979 break;
2980 case 69:
2981 encodedcontroller = _lev_ctrl_CC69_EXT;
2982 break;
2983 case 70:
2984 encodedcontroller = _lev_ctrl_CC70_EXT;
2985 break;
2986 case 71:
2987 encodedcontroller = _lev_ctrl_CC71_EXT;
2988 break;
2989 case 72:
2990 encodedcontroller = _lev_ctrl_CC72_EXT;
2991 break;
2992 case 73:
2993 encodedcontroller = _lev_ctrl_CC73_EXT;
2994 break;
2995 case 74:
2996 encodedcontroller = _lev_ctrl_CC74_EXT;
2997 break;
2998 case 75:
2999 encodedcontroller = _lev_ctrl_CC75_EXT;
3000 break;
3001 case 76:
3002 encodedcontroller = _lev_ctrl_CC76_EXT;
3003 break;
3004 case 77:
3005 encodedcontroller = _lev_ctrl_CC77_EXT;
3006 break;
3007 case 78:
3008 encodedcontroller = _lev_ctrl_CC78_EXT;
3009 break;
3010 case 79:
3011 encodedcontroller = _lev_ctrl_CC79_EXT;
3012 break;
3013 case 84:
3014 encodedcontroller = _lev_ctrl_CC84_EXT;
3015 break;
3016 case 85:
3017 encodedcontroller = _lev_ctrl_CC85_EXT;
3018 break;
3019 case 86:
3020 encodedcontroller = _lev_ctrl_CC86_EXT;
3021 break;
3022 case 87:
3023 encodedcontroller = _lev_ctrl_CC87_EXT;
3024 break;
3025 case 89:
3026 encodedcontroller = _lev_ctrl_CC89_EXT;
3027 break;
3028 case 90:
3029 encodedcontroller = _lev_ctrl_CC90_EXT;
3030 break;
3031 case 96:
3032 encodedcontroller = _lev_ctrl_CC96_EXT;
3033 break;
3034 case 97:
3035 encodedcontroller = _lev_ctrl_CC97_EXT;
3036 break;
3037 case 102:
3038 encodedcontroller = _lev_ctrl_CC102_EXT;
3039 break;
3040 case 103:
3041 encodedcontroller = _lev_ctrl_CC103_EXT;
3042 break;
3043 case 104:
3044 encodedcontroller = _lev_ctrl_CC104_EXT;
3045 break;
3046 case 105:
3047 encodedcontroller = _lev_ctrl_CC105_EXT;
3048 break;
3049 case 106:
3050 encodedcontroller = _lev_ctrl_CC106_EXT;
3051 break;
3052 case 107:
3053 encodedcontroller = _lev_ctrl_CC107_EXT;
3054 break;
3055 case 108:
3056 encodedcontroller = _lev_ctrl_CC108_EXT;
3057 break;
3058 case 109:
3059 encodedcontroller = _lev_ctrl_CC109_EXT;
3060 break;
3061 case 110:
3062 encodedcontroller = _lev_ctrl_CC110_EXT;
3063 break;
3064 case 111:
3065 encodedcontroller = _lev_ctrl_CC111_EXT;
3066 break;
3067 case 112:
3068 encodedcontroller = _lev_ctrl_CC112_EXT;
3069 break;
3070 case 113:
3071 encodedcontroller = _lev_ctrl_CC113_EXT;
3072 break;
3073 case 114:
3074 encodedcontroller = _lev_ctrl_CC114_EXT;
3075 break;
3076 case 115:
3077 encodedcontroller = _lev_ctrl_CC115_EXT;
3078 break;
3079 case 116:
3080 encodedcontroller = _lev_ctrl_CC116_EXT;
3081 break;
3082 case 117:
3083 encodedcontroller = _lev_ctrl_CC117_EXT;
3084 break;
3085 case 118:
3086 encodedcontroller = _lev_ctrl_CC118_EXT;
3087 break;
3088 case 119:
3089 encodedcontroller = _lev_ctrl_CC119_EXT;
3090 break;
3091
3092 default:
3093 throw gig::Exception("leverage controller number is not supported by the gig format");
3094 }
3095 break;
3096 default:
3097 throw gig::Exception("Unknown leverage controller type.");
3098 }
3099 return encodedcontroller;
3100 }
3101
3102 DimensionRegion::~DimensionRegion() {
3103 Instances--;
3104 if (!Instances) {
3105 // delete the velocity->volume tables
3106 VelocityTableMap::iterator iter;
3107 for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
3108 double* pTable = iter->second;
3109 if (pTable) delete[] pTable;
3110 }
3111 pVelocityTables->clear();
3112 delete pVelocityTables;
3113 pVelocityTables = NULL;
3114 }
3115 if (VelocityTable) delete[] VelocityTable;
3116 }
3117
3118 /**
3119 * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
3120 * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
3121 * and VelocityResponseCurveScaling) involved are taken into account to
3122 * calculate the amplitude factor. Use this method when a key was
3123 * triggered to get the volume with which the sample should be played
3124 * back.
3125 *
3126 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
3127 * @returns amplitude factor (between 0.0 and 1.0)
3128 */
3129 double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
3130 return pVelocityAttenuationTable[MIDIKeyVelocity];
3131 }
3132
3133 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
3134 return pVelocityReleaseTable[MIDIKeyVelocity];
3135 }
3136
3137 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
3138 return pVelocityCutoffTable[MIDIKeyVelocity];
3139 }
3140
3141 /**
3142 * Updates the respective member variable and the lookup table / cache
3143 * that depends on this value.
3144 */
3145 void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
3146 pVelocityAttenuationTable =
3147 GetVelocityTable(
3148 curve, VelocityResponseDepth, VelocityResponseCurveScaling
3149 );
3150 VelocityResponseCurve = curve;
3151 }
3152
3153 /**
3154 * Updates the respective member variable and the lookup table / cache
3155 * that depends on this value.
3156 */
3157 void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
3158 pVelocityAttenuationTable =
3159 GetVelocityTable(
3160 VelocityResponseCurve, depth, VelocityResponseCurveScaling
3161 );
3162 VelocityResponseDepth = depth;
3163 }
3164
3165 /**
3166 * Updates the respective member variable and the lookup table / cache
3167 * that depends on this value.
3168 */
3169 void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
3170 pVelocityAttenuationTable =
3171 GetVelocityTable(
3172 VelocityResponseCurve, VelocityResponseDepth, scaling
3173 );
3174 VelocityResponseCurveScaling = scaling;
3175 }
3176
3177 /**
3178 * Updates the respective member variable and the lookup table / cache
3179 * that depends on this value.
3180 */
3181 void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
3182 pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
3183 ReleaseVelocityResponseCurve = curve;
3184 }
3185
3186 /**
3187 * Updates the respective member variable and the lookup table / cache
3188 * that depends on this value.
3189 */
3190 void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
3191 pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
3192 ReleaseVelocityResponseDepth = depth;
3193 }
3194
3195 /**
3196 * Updates the respective member variable and the lookup table / cache
3197 * that depends on this value.
3198 */
3199 void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
3200 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
3201 VCFCutoffController = controller;
3202 }
3203
3204 /**
3205 * Updates the respective member variable and the lookup table / cache
3206 * that depends on this value.
3207 */
3208 void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
3209 pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
3210 VCFVelocityCurve = curve;
3211 }
3212
3213 /**
3214 * Updates the respective member variable and the lookup table / cache
3215 * that depends on this value.
3216 */
3217 void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
3218 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
3219 VCFVelocityDynamicRange = range;
3220 }
3221
3222 /**
3223 * Updates the respective member variable and the lookup table / cache
3224 * that depends on this value.
3225 */
3226 void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
3227 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
3228 VCFVelocityScale = scaling;
3229 }
3230
3231 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
3232
3233 // line-segment approximations of the 15 velocity curves
3234
3235 // linear
3236 const int lin0[] = { 1, 1, 127, 127 };
3237 const int lin1[] = { 1, 21, 127, 127 };
3238 const int lin2[] = { 1, 45, 127, 127 };
3239 const int lin3[] = { 1, 74, 127, 127 };
3240 const int lin4[] = { 1, 127, 127, 127 };
3241
3242 // non-linear
3243 const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
3244 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
3245 127, 127 };
3246 const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
3247 127, 127 };
3248 const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
3249 127, 127 };
3250 const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
3251
3252 // special
3253 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
3254 113, 127, 127, 127 };
3255 const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
3256 118, 127, 127, 127 };
3257 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
3258 85, 90, 91, 127, 127, 127 };
3259 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
3260 117, 127, 127, 127 };
3261 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
3262 127, 127 };
3263
3264 // this is only used by the VCF velocity curve
3265 const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
3266 91, 127, 127, 127 };
3267
3268 const int* const curves[] = { non0, non1, non2, non3, non4,
3269 lin0, lin1, lin2, lin3, lin4,
3270 spe0, spe1, spe2, spe3, spe4, spe5 };
3271
3272 double* const table = new double[128];
3273
3274 const int* curve = curves[curveType * 5 + depth];
3275 const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
3276
3277 table[0] = 0;
3278 for (int x = 1 ; x < 128 ; x++) {
3279
3280 if (x > curve[2]) curve += 2;
3281 double y = curve[1] + (x - curve[0]) *
3282 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
3283 y = y / 127;
3284
3285 // Scale up for s > 20, down for s < 20. When
3286 // down-scaling, the curve still ends at 1.0.
3287 if (s < 20 && y >= 0.5)
3288 y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
3289 else
3290 y = y * (s / 20.0);
3291 if (y > 1) y = 1;
3292
3293 table[x] = y;
3294 }
3295 return table;
3296 }
3297
3298
3299 // *************** Region ***************
3300 // *
3301
3302 Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
3303 // Initialization
3304 Dimensions = 0;
3305 for (int i = 0; i < 256; i++) {
3306 pDimensionRegions[i] = NULL;
3307 }
3308 Layers = 1;
3309 File* file = (File*) GetParent()->GetParent();
3310 int dimensionBits = (file->pVersion && file->pVersion->major > 2) ? 8 : 5;
3311
3312 // Actual Loading
3313
3314 if (!file->GetAutoLoad()) return;
3315
3316 LoadDimensionRegions(rgnList);
3317
3318 RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
3319 if (_3lnk) {
3320 _3lnk->SetPos(0);
3321
3322 DimensionRegions = _3lnk->ReadUint32();
3323 for (int i = 0; i < dimensionBits; i++) {
3324 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
3325 uint8_t bits = _3lnk->ReadUint8();
3326 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
3327 _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
3328 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
3329 if (dimension == dimension_none) { // inactive dimension
3330 pDimensionDefinitions[i].dimension = dimension_none;
3331 pDimensionDefinitions[i].bits = 0;
3332 pDimensionDefinitions[i].zones = 0;
3333 pDimensionDefinitions[i].split_type = split_type_bit;
3334 pDimensionDefinitions[i].zone_size = 0;
3335 }
3336 else { // active dimension
3337 pDimensionDefinitions[i].dimension = dimension;
3338 pDimensionDefinitions[i].bits = bits;
3339 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
3340 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
3341 pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
3342 Dimensions++;
3343
3344 // if this is a layer dimension, remember the amount of layers
3345 if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
3346 }
3347 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
3348 }
3349 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
3350
3351 // if there's a velocity dimension and custom velocity zone splits are used,
3352 // update the VelocityTables in the dimension regions
3353 UpdateVelocityTable();
3354
3355 // jump to start of the wave pool indices (if not already there)
3356 if (file->pVersion && file->pVersion->major > 2)
3357 _3lnk->SetPos(68); // version 3 has a different 3lnk structure
3358 else
3359 _3lnk->SetPos(44);
3360
3361 // load sample references (if auto loading is enabled)
3362 if (file->GetAutoLoad()) {
3363 for (uint i = 0; i < DimensionRegions; i++) {
3364 uint32_t wavepoolindex = _3lnk->ReadUint32();
3365 if (file->pWavePoolTable && pDimensionRegions[i])
3366 pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
3367 }
3368 GetSample(); // load global region sample reference
3369 }
3370 } else {
3371 DimensionRegions = 0;
3372 for (int i = 0 ; i < 8 ; i++) {
3373 pDimensionDefinitions[i].dimension = dimension_none;
3374 pDimensionDefinitions[i].bits = 0;
3375 pDimensionDefinitions[i].zones = 0;
3376 }
3377 }
3378
3379 // make sure there is at least one dimension region
3380 if (!DimensionRegions) {
3381 RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
3382 if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
3383 RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
3384 pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
3385 DimensionRegions = 1;
3386 }
3387 }
3388
3389 /**
3390 * Apply Region settings and all its DimensionRegions to the respective
3391 * RIFF chunks. You have to call File::Save() to make changes persistent.
3392 *
3393 * Usually there is absolutely no need to call this method explicitly.
3394 * It will be called automatically when File::Save() was called.
3395 *
3396 * @param pProgress - callback function for progress notification
3397 * @throws gig::Exception if samples cannot be dereferenced
3398 */
3399 void Region::UpdateChunks(progress_t* pProgress) {
3400 // in the gig format we don't care about the Region's sample reference
3401 // but we still have to provide some existing one to not corrupt the
3402 // file, so to avoid the latter we simply always assign the sample of
3403 // the first dimension region of this region
3404 pSample = pDimensionRegions[0]->pSample;
3405
3406 // first update base class's chunks
3407 DLS::Region::UpdateChunks(pProgress);
3408
3409 // update dimension region's chunks
3410 for (int i = 0; i < DimensionRegions; i++) {
3411 pDimensionRegions[i]->UpdateChunks(pProgress);
3412 }
3413
3414 File* pFile = (File*) GetParent()->GetParent();
3415 bool versiongt2 = pFile->pVersion && pFile->pVersion->major > 2;
3416 const int iMaxDimensions = versiongt2 ? 8 : 5;
3417 const int iMaxDimensionRegions = versiongt2 ? 256 : 32;
3418
3419 // make sure '3lnk' chunk exists
3420 RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3421 if (!_3lnk) {
3422 const int _3lnkChunkSize = versiongt2 ? 1092 : 172;
3423 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3424 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3425
3426 // move 3prg to last position
3427 pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), (RIFF::Chunk*)NULL);
3428 }
3429
3430 // update dimension definitions in '3lnk' chunk
3431 uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3432 store32(&pData[0], DimensionRegions);
3433 int shift = 0;
3434 for (int i = 0; i < iMaxDimensions; i++) {
3435 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3436 pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3437 pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3438 pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3439 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3440 // next 3 bytes unknown, always zero?
3441
3442 shift += pDimensionDefinitions[i].bits;
3443 }
3444
3445 // update wave pool table in '3lnk' chunk
3446 const int iWavePoolOffset = versiongt2 ? 68 : 44;
3447 for (uint i = 0; i < iMaxDimensionRegions; i++) {
3448 int iWaveIndex = -1;
3449 if (i < DimensionRegions) {
3450 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
3451 File::SampleList::iterator iter = pFile->pSamples->begin();
3452 File::SampleList::iterator end = pFile->pSamples->end();
3453 for (int index = 0; iter != end; ++iter, ++index) {
3454 if (*iter == pDimensionRegions[i]->pSample) {
3455 iWaveIndex = index;
3456 break;
3457 }
3458 }
3459 }
3460 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3461 }
3462 }
3463
3464 void Region::LoadDimensionRegions(RIFF::List* rgn) {
3465 RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
3466 if (_3prg) {
3467 int dimensionRegionNr = 0;
3468 RIFF::List* _3ewl = _3prg->GetFirstSubList();
3469 while (_3ewl) {
3470 if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3471 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3472 dimensionRegionNr++;
3473 }
3474 _3ewl = _3prg->GetNextSubList();
3475 }
3476 if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
3477 }
3478 }
3479
3480 void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3481 // update KeyRange struct and make sure regions are in correct order
3482 DLS::Region::SetKeyRange(Low, High);
3483 // update Region key table for fast lookup
3484 ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3485 }
3486
3487 void Region::UpdateVelocityTable() {
3488 // get velocity dimension's index
3489 int veldim = -1;
3490 for (int i = 0 ; i < Dimensions ; i++) {
3491 if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
3492 veldim = i;
3493 break;
3494 }
3495 }
3496 if (veldim == -1) return;
3497
3498 int step = 1;
3499 for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3500 int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
3501
3502 // loop through all dimension regions for all dimensions except the velocity dimension
3503 int dim[8] = { 0 };
3504 for (int i = 0 ; i < DimensionRegions ; i++) {
3505 const int end = i + step * pDimensionDefinitions[veldim].zones;
3506
3507 // create a velocity table for all cases where the velocity zone is zero
3508 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3509 pDimensionRegions[i]->VelocityUpperLimit) {
3510 // create the velocity table
3511 uint8_t* table = pDimensionRegions[i]->VelocityTable;
3512 if (!table) {
3513 table = new uint8_t[128];
3514 pDimensionRegions[i]->VelocityTable = table;
3515 }
3516 int tableidx = 0;
3517 int velocityZone = 0;
3518 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
3519 for (int k = i ; k < end ; k += step) {
3520 DimensionRegion *d = pDimensionRegions[k];
3521 for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
3522 velocityZone++;
3523 }
3524 } else { // gig2
3525 for (int k = i ; k < end ; k += step) {
3526 DimensionRegion *d = pDimensionRegions[k];
3527 for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
3528 velocityZone++;
3529 }
3530 }
3531 } else {
3532 if (pDimensionRegions[i]->VelocityTable) {
3533 delete[] pDimensionRegions[i]->VelocityTable;
3534 pDimensionRegions[i]->VelocityTable = 0;
3535 }
3536 }
3537
3538 // jump to the next case where the velocity zone is zero
3539 int j;
3540 int shift = 0;
3541 for (j = 0 ; j < Dimensions ; j++) {
3542 if (j == veldim) i += skipveldim; // skip velocity dimension
3543 else {
3544 dim[j]++;
3545 if (dim[j] < pDimensionDefinitions[j].zones) break;
3546 else {
3547 // skip unused dimension regions
3548 dim[j] = 0;
3549 i += ((1 << pDimensionDefinitions[j].bits) -
3550 pDimensionDefinitions[j].zones) << shift;
3551 }
3552 }
3553 shift += pDimensionDefinitions[j].bits;
3554 }
3555 if (j == Dimensions) break;
3556 }
3557 }
3558
3559 /** @brief Einstein would have dreamed of it - create a new dimension.
3560 *
3561 * Creates a new dimension with the dimension definition given by
3562 * \a pDimDef. The appropriate amount of DimensionRegions will be created.
3563 * There is a hard limit of dimensions and total amount of "bits" all
3564 * dimensions can have. This limit is dependant to what gig file format
3565 * version this file refers to. The gig v2 (and lower) format has a
3566 * dimension limit and total amount of bits limit of 5, whereas the gig v3
3567 * format has a limit of 8.
3568 *
3569 * @param pDimDef - defintion of the new dimension
3570 * @throws gig::Exception if dimension of the same type exists already
3571 * @throws gig::Exception if amount of dimensions or total amount of
3572 * dimension bits limit is violated
3573 */
3574 void Region::AddDimension(dimension_def_t* pDimDef) {
3575 // some initial sanity checks of the given dimension definition
3576 if (pDimDef->zones < 2)
3577 throw gig::Exception("Could not add new dimension, amount of requested zones must always be at least two");
3578 if (pDimDef->bits < 1)
3579 throw gig::Exception("Could not add new dimension, amount of requested requested zone bits must always be at least one");
3580 if (pDimDef->dimension == dimension_samplechannel) {
3581 if (pDimDef->zones != 2)
3582 throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zones must always be 2 for this dimension type");
3583 if (pDimDef->bits != 1)
3584 throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zone bits must always be 1 for this dimension type");
3585 }
3586
3587 // check if max. amount of dimensions reached
3588 File* file = (File*) GetParent()->GetParent();
3589 const int iMaxDimensions = (file->pVersion && file->pVersion->major > 2) ? 8 : 5;
3590 if (Dimensions >= iMaxDimensions)
3591 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
3592 // check if max. amount of dimension bits reached
3593 int iCurrentBits = 0;
3594 for (int i = 0; i < Dimensions; i++)
3595 iCurrentBits += pDimensionDefinitions[i].bits;
3596 if (iCurrentBits >= iMaxDimensions)
3597 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
3598 const int iNewBits = iCurrentBits + pDimDef->bits;
3599 if (iNewBits > iMaxDimensions)
3600 throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
3601 // check if there's already a dimensions of the same type
3602 for (int i = 0; i < Dimensions; i++)
3603 if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3604 throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3605
3606 // pos is where the new dimension should be placed, normally
3607 // last in list, except for the samplechannel dimension which
3608 // has to be first in list
3609 int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3610 int bitpos = 0;
3611 for (int i = 0 ; i < pos ; i++)
3612 bitpos += pDimensionDefinitions[i].bits;
3613
3614 // make room for the new dimension
3615 for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3616 for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3617 for (int j = Dimensions ; j > pos ; j--) {
3618 pDimensionRegions[i]->DimensionUpperLimits[j] =
3619 pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3620 }
3621 }
3622
3623 // assign definition of new dimension
3624 pDimensionDefinitions[pos] = *pDimDef;
3625
3626 // auto correct certain dimension definition fields (where possible)
3627 pDimensionDefinitions[pos].split_type =
3628 __resolveSplitType(pDimensionDefinitions[pos].dimension);
3629 pDimensionDefinitions[pos].zone_size =
3630 __resolveZoneSize(pDimensionDefinitions[pos]);
3631
3632 // create new dimension region(s) for this new dimension, and make
3633 // sure that the dimension regions are placed correctly in both the
3634 // RIFF list and the pDimensionRegions array
3635 RIFF::Chunk* moveTo = NULL;
3636 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3637 for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3638 for (int k = 0 ; k < (1 << bitpos) ; k++) {
3639 pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3640 }
3641 for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3642 for (int k = 0 ; k < (1 << bitpos) ; k++) {
3643 RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3644 if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3645 // create a new dimension region and copy all parameter values from
3646 // an existing dimension region
3647 pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3648 new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3649
3650 DimensionRegions++;
3651 }
3652 }
3653 moveTo = pDimensionRegions[i]->pParentList;
3654 }
3655
3656 // initialize the upper limits for this dimension
3657 int mask = (1 << bitpos) - 1;
3658 for (int z = 0 ; z < pDimDef->zones ; z++) {
3659 uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3660 for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3661 pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3662 (z << bitpos) |
3663 (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3664 }
3665 }
3666
3667 Dimensions++;
3668
3669 // if this is a layer dimension, update 'Layers' attribute
3670 if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
3671
3672 UpdateVelocityTable();
3673 }
3674
3675 /** @brief Delete an existing dimension.
3676 *
3677 * Deletes the dimension given by \a pDimDef and deletes all respective
3678 * dimension regions, that is all dimension regions where the dimension's
3679 * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
3680 * for example this would delete all dimension regions for the case(s)
3681 * where the sustain pedal is pressed down.
3682 *
3683 * @param pDimDef - dimension to delete
3684 * @throws gig::Exception if given dimension cannot be found
3685 */
3686 void Region::DeleteDimension(dimension_def_t* pDimDef) {
3687 // get dimension's index
3688 int iDimensionNr = -1;
3689 for (int i = 0; i < Dimensions; i++) {
3690 if (&pDimensionDefinitions[i] == pDimDef) {
3691 iDimensionNr = i;
3692 break;
3693 }
3694 }
3695 if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
3696
3697 // get amount of bits below the dimension to delete
3698 int iLowerBits = 0;
3699 for (int i = 0; i < iDimensionNr; i++)
3700 iLowerBits += pDimensionDefinitions[i].bits;
3701
3702 // get amount ot bits above the dimension to delete
3703 int iUpperBits = 0;
3704 for (int i = iDimensionNr + 1; i < Dimensions; i++)
3705 iUpperBits += pDimensionDefinitions[i].bits;
3706
3707 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3708
3709 // delete dimension regions which belong to the given dimension
3710 // (that is where the dimension's bit > 0)
3711 for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
3712 for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
3713 for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
3714 int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3715 iObsoleteBit << iLowerBits |
3716 iLowerBit;
3717
3718 _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3719 delete pDimensionRegions[iToDelete];
3720 pDimensionRegions[iToDelete] = NULL;
3721 DimensionRegions--;
3722 }
3723 }
3724 }
3725
3726 // defrag pDimensionRegions array
3727 // (that is remove the NULL spaces within the pDimensionRegions array)
3728 for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
3729 if (!pDimensionRegions[iTo]) {
3730 if (iFrom <= iTo) iFrom = iTo + 1;
3731 while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
3732 if (iFrom < 256 && pDimensionRegions[iFrom]) {
3733 pDimensionRegions[iTo] = pDimensionRegions[iFrom];
3734 pDimensionRegions[iFrom] = NULL;
3735 }
3736 }
3737 }
3738
3739 // remove the this dimension from the upper limits arrays
3740 for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3741 DimensionRegion* d = pDimensionRegions[j];
3742 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3743 d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3744 }
3745 d->DimensionUpperLimits[Dimensions - 1] = 127;
3746 }
3747
3748 // 'remove' dimension definition
3749 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3750 pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
3751 }
3752 pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
3753 pDimensionDefinitions[Dimensions - 1].bits = 0;
3754 pDimensionDefinitions[Dimensions - 1].zones = 0;
3755
3756 Dimensions--;
3757
3758 // if this was a layer dimension, update 'Layers' attribute
3759 if (pDimDef->dimension == dimension_layer) Layers = 1;
3760 }
3761
3762 /** @brief Delete one split zone of a dimension (decrement zone amount).
3763 *
3764 * Instead of deleting an entire dimensions, this method will only delete
3765 * one particular split zone given by @a zone of the Region's dimension
3766 * given by @a type. So this method will simply decrement the amount of
3767 * zones by one of the dimension in question. To be able to do that, the
3768 * respective dimension must exist on this Region and it must have at least
3769 * 3 zones. All DimensionRegion objects associated with the zone will be
3770 * deleted.
3771 *
3772 * @param type - identifies the dimension where a zone shall be deleted
3773 * @param zone - index of the dimension split zone that shall be deleted
3774 * @throws gig::Exception if requested zone could not be deleted
3775 */
3776 void Region::DeleteDimensionZone(dimension_t type, int zone) {
3777 dimension_def_t* oldDef = GetDimensionDefinition(type);
3778 if (!oldDef)
3779 throw gig::Exception("Could not delete dimension zone, no such dimension of given type");
3780 if (oldDef->zones <= 2)
3781 throw gig::Exception("Could not delete dimension zone, because it would end up with only one zone.");
3782 if (zone < 0 || zone >= oldDef->zones)
3783 throw gig::Exception("Could not delete dimension zone, requested zone index out of bounds.");
3784
3785 const int newZoneSize = oldDef->zones - 1;
3786
3787 // create a temporary Region which just acts as a temporary copy
3788 // container and will be deleted at the end of this function and will
3789 // also not be visible through the API during this process
3790 gig::Region* tempRgn = NULL;
3791 {
3792 // adding these temporary chunks is probably not even necessary
3793 Instrument* instr = static_cast<Instrument*>(GetParent());
3794 RIFF::List* pCkInstrument = instr->pCkInstrument;
3795 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3796 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3797 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3798 tempRgn = new Region(instr, rgn);
3799 }
3800
3801 // copy this region's dimensions (with already the dimension split size
3802 // requested by the arguments of this method call) to the temporary
3803 // region, and don't use Region::CopyAssign() here for this task, since
3804 // it would also alter fast lookup helper variables here and there
3805 dimension_def_t newDef;
3806 for (int i = 0; i < Dimensions; ++i) {
3807 dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3808 // is this the dimension requested by the method arguments? ...
3809 if (def.dimension == type) { // ... if yes, decrement zone amount by one
3810 def.zones = newZoneSize;
3811 if ((1 << (def.bits - 1)) == def.zones) def.bits--;
3812 newDef = def;
3813 }
3814 tempRgn->AddDimension(&def);
3815 }
3816
3817 // find the dimension index in the tempRegion which is the dimension
3818 // type passed to this method (paranoidly expecting different order)
3819 int tempReducedDimensionIndex = -1;
3820 for (int d = 0; d < tempRgn->Dimensions; ++d) {
3821 if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3822 tempReducedDimensionIndex = d;
3823 break;
3824 }
3825 }
3826
3827 // copy dimension regions from this region to the temporary region
3828 for (int iDst = 0; iDst < 256; ++iDst) {
3829 DimensionRegion* dstDimRgn = tempRgn->pDimensionRegions[iDst];
3830 if (!dstDimRgn) continue;
3831 std::map<dimension_t,int> dimCase;
3832 bool isValidZone = true;
3833 for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3834 const int dstBits = tempRgn->pDimensionDefinitions[d].bits;
3835 dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3836 (iDst >> baseBits) & ((1 << dstBits) - 1);
3837 baseBits += dstBits;
3838 // there are also DimensionRegion objects of unused zones, skip them
3839 if (dimCase[tempRgn->pDimensionDefinitions[d].dimension] >= tempRgn->pDimensionDefinitions[d].zones) {
3840 isValidZone = false;
3841 break;
3842 }
3843 }
3844 if (!isValidZone) continue;
3845 // a bit paranoid: cope with the chance that the dimensions would
3846 // have different order in source and destination regions
3847 const bool isLastZone = (dimCase[type] == newZoneSize - 1);
3848 if (dimCase[type] >= zone) dimCase[type]++;
3849 DimensionRegion* srcDimRgn = GetDimensionRegionByBit(dimCase);
3850 dstDimRgn->CopyAssign(srcDimRgn);
3851 // if this is the upper most zone of the dimension passed to this
3852 // method, then correct (raise) its upper limit to 127
3853 if (newDef.split_type == split_type_normal && isLastZone)
3854 dstDimRgn->DimensionUpperLimits[tempReducedDimensionIndex] = 127;
3855 }
3856
3857 // now tempRegion's dimensions and DimensionRegions basically reflect
3858 // what we wanted to get for this actual Region here, so we now just
3859 // delete and recreate the dimension in question with the new amount
3860 // zones and then copy back from tempRegion
3861 DeleteDimension(oldDef);
3862 AddDimension(&newDef);
3863 for (int iSrc = 0; iSrc < 256; ++iSrc) {
3864 DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3865 if (!srcDimRgn) continue;
3866 std::map<dimension_t,int> dimCase;
3867 for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3868 const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3869 dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3870 (iSrc >> baseBits) & ((1 << srcBits) - 1);
3871 baseBits += srcBits;
3872 }
3873 // a bit paranoid: cope with the chance that the dimensions would
3874 // have different order in source and destination regions
3875 DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3876 if (!dstDimRgn) continue;
3877 dstDimRgn->CopyAssign(srcDimRgn);
3878 }
3879
3880 // delete temporary region
3881 tempRgn->DeleteChunks();
3882 delete tempRgn;
3883
3884 UpdateVelocityTable();
3885 }
3886
3887 /** @brief Divide split zone of a dimension in two (increment zone amount).
3888 *
3889 * This will increment the amount of zones for the dimension (given by
3890 * @a type) by one. It will do so by dividing the zone (given by @a zone)
3891 * in the middle of its zone range in two. So the two zones resulting from
3892 * the zone being splitted, will be an equivalent copy regarding all their
3893 * articulation informations and sample reference. The two zones will only
3894 * differ in their zone's upper limit
3895 * (DimensionRegion::DimensionUpperLimits).
3896 *
3897 * @param type - identifies the dimension where a zone shall be splitted
3898 * @param zone - index of the dimension split zone that shall be splitted
3899 * @throws gig::Exception if requested zone could not be splitted
3900 */
3901 void Region::SplitDimensionZone(dimension_t type, int zone) {
3902 dimension_def_t* oldDef = GetDimensionDefinition(type);
3903 if (!oldDef)
3904 throw gig::Exception("Could not split dimension zone, no such dimension of given type");
3905 if (zone < 0 || zone >= oldDef->zones)
3906 throw gig::Exception("Could not split dimension zone, requested zone index out of bounds.");
3907
3908 const int newZoneSize = oldDef->zones + 1;
3909
3910 // create a temporary Region which just acts as a temporary copy
3911 // container and will be deleted at the end of this function and will
3912 // also not be visible through the API during this process
3913 gig::Region* tempRgn = NULL;
3914 {
3915 // adding these temporary chunks is probably not even necessary
3916 Instrument* instr = static_cast<Instrument*>(GetParent());
3917 RIFF::List* pCkInstrument = instr->pCkInstrument;
3918 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3919 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3920 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3921 tempRgn = new Region(instr, rgn);
3922 }
3923
3924 // copy this region's dimensions (with already the dimension split size
3925 // requested by the arguments of this method call) to the temporary
3926 // region, and don't use Region::CopyAssign() here for this task, since
3927 // it would also alter fast lookup helper variables here and there
3928 dimension_def_t newDef;
3929 for (int i = 0; i < Dimensions; ++i) {
3930 dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3931 // is this the dimension requested by the method arguments? ...
3932 if (def.dimension == type) { // ... if yes, increment zone amount by one
3933 def.zones = newZoneSize;
3934 if ((1 << oldDef->bits) < newZoneSize) def.bits++;
3935 newDef = def;
3936 }
3937 tempRgn->AddDimension(&def);
3938 }
3939
3940 // find the dimension index in the tempRegion which is the dimension
3941 // type passed to this method (paranoidly expecting different order)
3942 int tempIncreasedDimensionIndex = -1;
3943 for (int d = 0; d < tempRgn->Dimensions; ++d) {
3944 if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3945 tempIncreasedDimensionIndex = d;
3946 break;
3947 }
3948 }
3949
3950 // copy dimension regions from this region to the temporary region
3951 for (int iSrc = 0; iSrc < 256; ++iSrc) {
3952 DimensionRegion* srcDimRgn = pDimensionRegions[iSrc];
3953 if (!srcDimRgn) continue;
3954 std::map<dimension_t,int> dimCase;
3955 bool isValidZone = true;
3956 for (int d = 0, baseBits = 0; d < Dimensions; ++d) {
3957 const int srcBits = pDimensionDefinitions[d].bits;
3958 dimCase[pDimensionDefinitions[d].dimension] =
3959 (iSrc >> baseBits) & ((1 << srcBits) - 1);
3960 // there are also DimensionRegion objects for unused zones, skip them
3961 if (dimCase[pDimensionDefinitions[d].dimension] >= pDimensionDefinitions[d].zones) {
3962 isValidZone = false;
3963 break;
3964 }
3965 baseBits += srcBits;
3966 }
3967 if (!isValidZone) continue;
3968 // a bit paranoid: cope with the chance that the dimensions would
3969 // have different order in source and destination regions
3970 if (dimCase[type] > zone) dimCase[type]++;
3971 DimensionRegion* dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3972 dstDimRgn->CopyAssign(srcDimRgn);
3973 // if this is the requested zone to be splitted, then also copy
3974 // the source DimensionRegion to the newly created target zone
3975 // and set the old zones upper limit lower
3976 if (dimCase[type] == zone) {
3977 // lower old zones upper limit
3978 if (newDef.split_type == split_type_normal) {
3979 const int high =
3980 dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex];
3981 int low = 0;
3982 if (zone > 0) {
3983 std::map<dimension_t,int> lowerCase = dimCase;
3984 lowerCase[type]--;
3985 DimensionRegion* dstDimRgnLow = tempRgn->GetDimensionRegionByBit(lowerCase);
3986 low = dstDimRgnLow->DimensionUpperLimits[tempIncreasedDimensionIndex];
3987 }
3988 dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex] = low + (high - low) / 2;
3989 }
3990 // fill the newly created zone of the divided zone as well
3991 dimCase[type]++;
3992 dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3993 dstDimRgn->CopyAssign(srcDimRgn);
3994 }
3995 }
3996
3997 // now tempRegion's dimensions and DimensionRegions basically reflect
3998 // what we wanted to get for this actual Region here, so we now just
3999 // delete and recreate the dimension in question with the new amount
4000 // zones and then copy back from tempRegion
4001 DeleteDimension(oldDef);
4002 AddDimension(&newDef);
4003 for (int iSrc = 0; iSrc < 256; ++iSrc) {
4004 DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
4005 if (!srcDimRgn) continue;
4006 std::map<dimension_t,int> dimCase;
4007 for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
4008 const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
4009 dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
4010 (iSrc >> baseBits) & ((1 << srcBits) - 1);
4011 baseBits += srcBits;
4012 }
4013 // a bit paranoid: cope with the chance that the dimensions would
4014 // have different order in source and destination regions
4015 DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
4016 if (!dstDimRgn) continue;
4017 dstDimRgn->CopyAssign(srcDimRgn);
4018 }
4019
4020 // delete temporary region
4021 tempRgn->DeleteChunks();
4022 delete tempRgn;
4023
4024 UpdateVelocityTable();
4025 }
4026
4027 /** @brief Change type of an existing dimension.
4028 *
4029 * Alters the dimension type of a dimension already existing on this
4030 * region. If there is currently no dimension on this Region with type
4031 * @a oldType, then this call with throw an Exception. Likewise there are
4032 * cases where the requested dimension type cannot be performed. For example
4033 * if the new dimension type shall be gig::dimension_samplechannel, and the
4034 * current dimension has more than 2 zones. In such cases an Exception is
4035 * thrown as well.
4036 *
4037 * @param oldType - identifies the existing dimension to be changed
4038 * @param newType - to which dimension type it should be changed to
4039 * @throws gig::Exception if requested change cannot be performed
4040 */
4041 void Region::SetDimensionType(dimension_t oldType, dimension_t newType) {
4042 if (oldType == newType) return;
4043 dimension_def_t* def = GetDimensionDefinition(oldType);
4044 if (!def)
4045 throw gig::Exception("No dimension with provided old dimension type exists on this region");
4046 if (newType == dimension_samplechannel && def->zones != 2)
4047 throw gig::Exception("Cannot change to dimension type 'sample channel', because existing dimension does not have 2 zones");
4048 if (GetDimensionDefinition(newType))
4049 throw gig::Exception("There is already a dimension with requested new dimension type on this region");
4050 def->dimension = newType;
4051 def->split_type = __resolveSplitType(newType);
4052 }
4053
4054 DimensionRegion* Region::GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase) {
4055 uint8_t bits[8] = {};
4056 for (std::map<dimension_t,int>::const_iterator it = DimCase.begin();
4057 it != DimCase.end(); ++it)
4058 {
4059 for (int d = 0; d < Dimensions; ++d) {
4060 if (pDimensionDefinitions[d].dimension == it->first) {
4061 bits[d] = it->second;
4062 goto nextDimCaseSlice;
4063 }
4064 }
4065 assert(false); // do crash ... too harsh maybe ? ignore it instead ?
4066 nextDimCaseSlice:
4067 ; // noop
4068 }
4069 return GetDimensionRegionByBit(bits);
4070 }
4071
4072 /**
4073 * Searches in the current Region for a dimension of the given dimension
4074 * type and returns the precise configuration of that dimension in this
4075 * Region.
4076 *
4077 * @param type - dimension type of the sought dimension
4078 * @returns dimension definition or NULL if there is no dimension with
4079 * sought type in this Region.
4080 */
4081 dimension_def_t* Region::GetDimensionDefinition(dimension_t type) {
4082 for (int i = 0; i < Dimensions; ++i)
4083 if (pDimensionDefinitions[i].dimension == type)
4084 return &pDimensionDefinitions[i];
4085 return NULL;
4086 }
4087
4088 Region::~Region() {
4089 for (int i = 0; i < 256; i++) {
4090 if (pDimensionRegions[i]) delete pDimensionRegions[i];
4091 }
4092 }
4093
4094 /**
4095 * Use this method in your audio engine to get the appropriate dimension
4096 * region with it's articulation data for the current situation. Just
4097 * call the method with the current MIDI controller values and you'll get
4098 * the DimensionRegion with the appropriate articulation data for the
4099 * current situation (for this Region of course only). To do that you'll
4100 * first have to look which dimensions with which controllers and in
4101 * which order are defined for this Region when you load the .gig file.
4102 * Special cases are e.g. layer or channel dimensions where you just put
4103 * in the index numbers instead of a MIDI controller value (means 0 for
4104 * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
4105 * etc.).
4106 *
4107 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
4108 * @returns adress to the DimensionRegion for the given situation
4109 * @see pDimensionDefinitions
4110 * @see Dimensions
4111 */
4112 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
4113 uint8_t bits;
4114 int veldim = -1;
4115 int velbitpos = 0;
4116 int bitpos = 0;
4117 int dimregidx = 0;
4118 for (uint i = 0; i < Dimensions; i++) {
4119 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
4120 // the velocity dimension must be handled after the other dimensions
4121 veldim = i;
4122 velbitpos = bitpos;
4123 } else {
4124 switch (pDimensionDefinitions[i].split_type) {
4125 case split_type_normal:
4126 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
4127 // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
4128 for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
4129 if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
4130 }
4131 } else {
4132 // gig2: evenly sized zones
4133 bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
4134 }
4135 break;
4136 case split_type_bit: // the value is already the sought dimension bit number
4137 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
4138 bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
4139 break;
4140 }
4141 dimregidx |= bits << bitpos;
4142 }
4143 bitpos += pDimensionDefinitions[i].bits;
4144 }
4145 DimensionRegion* dimreg = pDimensionRegions[dimregidx & 255];
4146 if (!dimreg) return NULL;
4147 if (veldim != -1) {
4148 // (dimreg is now the dimension region for the lowest velocity)
4149 if (dimreg->VelocityTable) // custom defined zone ranges
4150 bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4151 else // normal split type
4152 bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4153
4154 const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4155 dimregidx |= (bits & limiter_mask) << velbitpos;
4156 dimreg = pDimensionRegions[dimregidx & 255];
4157 }
4158 return dimreg;
4159 }
4160
4161 int Region::GetDimensionRegionIndexByValue(const uint DimValues[8]) {
4162 uint8_t bits;
4163 int veldim = -1;
4164 int velbitpos = 0;
4165 int bitpos = 0;
4166 int dimregidx = 0;
4167 for (uint i = 0; i < Dimensions; i++) {
4168 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
4169 // the velocity dimension must be handled after the other dimensions
4170 veldim = i;
4171 velbitpos = bitpos;
4172 } else {
4173 switch (pDimensionDefinitions[i].split_type) {
4174 case split_type_normal:
4175 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
4176 // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
4177 for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
4178 if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
4179 }
4180 } else {
4181 // gig2: evenly sized zones
4182 bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
4183 }
4184 break;
4185 case split_type_bit: // the value is already the sought dimension bit number
4186 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
4187 bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
4188 break;
4189 }
4190 dimregidx |= bits << bitpos;
4191 }
4192 bitpos += pDimensionDefinitions[i].bits;
4193 }
4194 dimregidx &= 255;
4195 DimensionRegion* dimreg = pDimensionRegions[dimregidx];
4196 if (!dimreg) return -1;
4197 if (veldim != -1) {
4198 // (dimreg is now the dimension region for the lowest velocity)
4199 if (dimreg->VelocityTable) // custom defined zone ranges
4200 bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4201 else // normal split type
4202 bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4203
4204 const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4205 dimregidx |= (bits & limiter_mask) << velbitpos;
4206 dimregidx &= 255;
4207 }
4208 return dimregidx;
4209 }
4210
4211 /**
4212 * Returns the appropriate DimensionRegion for the given dimension bit
4213 * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
4214 * instead of calling this method directly!
4215 *
4216 * @param DimBits Bit numbers for dimension 0 to 7
4217 * @returns adress to the DimensionRegion for the given dimension
4218 * bit numbers
4219 * @see GetDimensionRegionByValue()
4220 */
4221 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
4222 return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
4223 << pDimensionDefinitions[5].bits | DimBits[5])
4224 << pDimensionDefinitions[4].bits | DimBits[4])
4225 << pDimensionDefinitions[3].bits | DimBits[3])
4226 << pDimensionDefinitions[2].bits | DimBits[2])
4227 << pDimensionDefinitions[1].bits | DimBits[1])
4228 << pDimensionDefinitions[0].bits | DimBits[0]];
4229 }
4230
4231 /**
4232 * Returns pointer address to the Sample referenced with this region.
4233 * This is the global Sample for the entire Region (not sure if this is
4234 * actually used by the Gigasampler engine - I would only use the Sample
4235 * referenced by the appropriate DimensionRegion instead of this sample).
4236 *
4237 * @returns address to Sample or NULL if there is no reference to a
4238 * sample saved in the .gig file
4239 */
4240 Sample* Region::GetSample() {
4241 if (pSample) return static_cast<gig::Sample*>(pSample);
4242 else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
4243 }
4244
4245 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
4246 if ((int32_t)WavePoolTableIndex == -1) return NULL;
4247 File* file = (File*) GetParent()->GetParent();
4248 if (!file->pWavePoolTable) return NULL;
4249 if (WavePoolTableIndex + 1 > file->WavePoolCount) return NULL;
4250 // for new files or files >= 2 GB use 64 bit wave pool offsets
4251 if (file->pRIFF->IsNew() || (file->pRIFF->GetCurrentFileSize() >> 31)) {
4252 // use 64 bit wave pool offsets (treating this as large file)
4253 uint64_t soughtoffset =
4254 uint64_t(file->pWavePoolTable[WavePoolTableIndex]) |
4255 uint64_t(file->pWavePoolTableHi[WavePoolTableIndex]) << 32;
4256 Sample* sample = file->GetFirstSample(pProgress);
4257 while (sample) {
4258 if (sample->ullWavePoolOffset == soughtoffset)
4259 return static_cast<gig::Sample*>(sample);
4260 sample = file->GetNextSample();
4261 }
4262 } else {
4263 // use extension files and 32 bit wave pool offsets
4264 file_offset_t soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
4265 file_offset_t soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
4266 Sample* sample = file->GetFirstSample(pProgress);
4267 while (sample) {
4268 if (sample->ullWavePoolOffset == soughtoffset &&
4269 sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
4270 sample = file->GetNextSample();
4271 }
4272 }
4273 return NULL;
4274 }
4275
4276 /**
4277 * Make a (semi) deep copy of the Region object given by @a orig
4278 * and assign it to this object.
4279 *
4280 * Note that all sample pointers referenced by @a orig are simply copied as
4281 * memory address. Thus the respective samples are shared, not duplicated!
4282 *
4283 * @param orig - original Region object to be copied from
4284 */
4285 void Region::CopyAssign(const Region* orig) {
4286 CopyAssign(orig, NULL);
4287 }
4288
4289 /**
4290 * Make a (semi) deep copy of the Region object given by @a orig and
4291 * assign it to this object
4292 *
4293 * @param mSamples - crosslink map between the foreign file's samples and
4294 * this file's samples
4295 */
4296 void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
4297 // handle base classes
4298 DLS::Region::CopyAssign(orig);
4299
4300 if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
4301 pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
4302 }
4303
4304 // handle own member variables
4305 for (int i = Dimensions - 1; i >= 0; --i) {
4306 DeleteDimension(&pDimensionDefinitions[i]);
4307 }
4308 Layers = 0; // just to be sure
4309 for (int i = 0; i < orig->Dimensions; i++) {
4310 // we need to copy the dim definition here, to avoid the compiler
4311 // complaining about const-ness issue
4312 dimension_def_t def = orig->pDimensionDefinitions[i];
4313 AddDimension(&def);
4314 }
4315 for (int i = 0; i < 256; i++) {
4316 if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
4317 pDimensionRegions[i]->CopyAssign(
4318 orig->pDimensionRegions[i],
4319 mSamples
4320 );
4321 }
4322 }
4323 Layers = orig->Layers;
4324 }
4325
4326
4327 // *************** MidiRule ***************
4328 // *
4329
4330 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
4331 _3ewg->SetPos(36);
4332 Triggers = _3ewg->ReadUint8();
4333 _3ewg->SetPos(40);
4334 ControllerNumber = _3ewg->ReadUint8();
4335 _3ewg->SetPos(46);
4336 for (int i = 0 ; i < Triggers ; i++) {
4337 pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
4338 pTriggers[i].Descending = _3ewg->ReadUint8();
4339 pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
4340 pTriggers[i].Key = _3ewg->ReadUint8();
4341 pTriggers[i].NoteOff = _3ewg->ReadUint8();
4342 pTriggers[i].Velocity = _3ewg->ReadUint8();
4343 pTriggers[i].OverridePedal = _3ewg->ReadUint8();
4344 _3ewg->ReadUint8();
4345 }
4346 }
4347
4348 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
4349 ControllerNumber(0),
4350 Triggers(0) {
4351 }
4352
4353 void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
4354 pData[32] = 4;
4355 pData[33] = 16;
4356 pData[36] = Triggers;
4357 pData[40] = ControllerNumber;
4358 for (int i = 0 ; i < Triggers ; i++) {
4359 pData[46 + i * 8] = pTriggers[i].TriggerPoint;
4360 pData[47 + i * 8] = pTriggers[i].Descending;
4361 pData[48 + i * 8] = pTriggers[i].VelSensitivity;
4362 pData[49 + i * 8] = pTriggers[i].Key;
4363 pData[50 + i * 8] = pTriggers[i].NoteOff;
4364 pData[51 + i * 8] = pTriggers[i].Velocity;
4365 pData[52 + i * 8] = pTriggers[i].OverridePedal;
4366 }
4367 }
4368
4369 MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
4370 _3ewg->SetPos(36);
4371 LegatoSamples = _3ewg->ReadUint8(); // always 12
4372 _3ewg->SetPos(40);
4373 BypassUseController = _3ewg->ReadUint8();
4374 BypassKey = _3ewg->ReadUint8();
4375 BypassController = _3ewg->ReadUint8();
4376 ThresholdTime = _3ewg->ReadUint16();
4377 _3ewg->ReadInt16();
4378 ReleaseTime = _3ewg->ReadUint16();
4379 _3ewg->ReadInt16();
4380 KeyRange.low = _3ewg->ReadUint8();
4381 KeyRange.high = _3ewg->ReadUint8();
4382 _3ewg->SetPos(64);
4383 ReleaseTriggerKey = _3ewg->ReadUint8();
4384 AltSustain1Key = _3ewg->ReadUint8();
4385 AltSustain2Key = _3ewg->ReadUint8();
4386 }
4387
4388 MidiRuleLegato::MidiRuleLegato() :
4389 LegatoSamples(12),
4390 BypassUseController(false),
4391 BypassKey(0),
4392 BypassController(1),
4393 ThresholdTime(20),
4394 ReleaseTime(20),
4395 ReleaseTriggerKey(0),
4396 AltSustain1Key(0),
4397 AltSustain2Key(0)
4398 {
4399 KeyRange.low = KeyRange.high = 0;
4400 }
4401
4402 void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
4403 pData[32] = 0;
4404 pData[33] = 16;
4405 pData[36] = LegatoSamples;
4406 pData[40] = BypassUseController;
4407 pData[41] = BypassKey;
4408 pData[42] = BypassController;
4409 store16(&pData[43], ThresholdTime);
4410 store16(&pData[47], ReleaseTime);
4411 pData[51] = KeyRange.low;
4412 pData[52] = KeyRange.high;
4413 pData[64] = ReleaseTriggerKey;
4414 pData[65] = AltSustain1Key;
4415 pData[66] = AltSustain2Key;
4416 }
4417
4418 MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
4419 _3ewg->SetPos(36);
4420 Articulations = _3ewg->ReadUint8();
4421 int flags = _3ewg->ReadUint8();
4422 Polyphonic = flags & 8;
4423 Chained = flags & 4;
4424 Selector = (flags & 2) ? selector_controller :
4425 (flags & 1) ? selector_key_switch : selector_none;
4426 Patterns = _3ewg->ReadUint8();
4427 _3ewg->ReadUint8(); // chosen row
4428 _3ewg->ReadUint8(); // unknown
4429 _3ewg->ReadUint8(); // unknown
4430 _3ewg->ReadUint8(); // unknown
4431 KeySwitchRange.low = _3ewg->ReadUint8();
4432 KeySwitchRange.high = _3ewg->ReadUint8();
4433 Controller = _3ewg->ReadUint8();
4434 PlayRange.low = _3ewg->ReadUint8();
4435 PlayRange.high = _3ewg->ReadUint8();
4436
4437 int n = std::min(int(Articulations), 32);
4438 for (int i = 0 ; i < n ; i++) {
4439 _3ewg->ReadString(pArticulations[i], 32);
4440 }
4441 _3ewg->SetPos(1072);
4442 n = std::min(int(Patterns), 32);
4443 for (int i = 0 ; i < n ; i++) {
4444 _3ewg->ReadString(pPatterns[i].Name, 16);
4445 pPatterns[i].Size = _3ewg->ReadUint8();
4446 _3ewg->Read(&pPatterns[i][0], 1, 32);
4447 }
4448 }
4449
4450 MidiRuleAlternator::MidiRuleAlternator() :
4451 Articulations(0),
4452 Patterns(0),
4453 Selector(selector_none),
4454 Controller(0),
4455 Polyphonic(false),
4456 Chained(false)
4457 {
4458 PlayRange.low = PlayRange.high = 0;
4459 KeySwitchRange.low = KeySwitchRange.high = 0;
4460 }
4461
4462 void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
4463 pData[32] = 3;
4464 pData[33] = 16;
4465 pData[36] = Articulations;
4466 pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
4467 (Selector == selector_controller ? 2 :
4468 (Selector == selector_key_switch ? 1 : 0));
4469 pData[38] = Patterns;
4470
4471 pData[43] = KeySwitchRange.low;
4472 pData[44] = KeySwitchRange.high;
4473 pData[45] = Controller;
4474 pData[46] = PlayRange.low;
4475 pData[47] = PlayRange.high;
4476
4477 char* str = reinterpret_cast<char*>(pData);
4478 int pos = 48;
4479 int n = std::min(int(Articulations), 32);
4480 for (int i = 0 ; i < n ; i++, pos += 32) {
4481 strncpy(&str[pos], pArticulations[i].c_str(), 32);
4482 }
4483
4484 pos = 1072;
4485 n = std::min(int(Patterns), 32);
4486 for (int i = 0 ; i < n ; i++, pos += 49) {
4487 strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
4488 pData[pos + 16] = pPatterns[i].Size;
4489 memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
4490 }
4491 }
4492
4493 // *************** Script ***************
4494 // *
4495
4496 Script::Script(ScriptGroup* group, RIFF::Chunk* ckScri) {
4497 pGroup = group;
4498 pChunk = ckScri;
4499 if (ckScri) { // object is loaded from file ...
4500 ckScri->SetPos(0);
4501
4502 // read header
4503 uint32_t headerSize = ckScri->ReadUint32();
4504 Compression = (Compression_t) ckScri->ReadUint32();
4505 Encoding = (Encoding_t) ckScri->ReadUint32();
4506 Language = (Language_t) ckScri->ReadUint32();
4507 Bypass = (Language_t) ckScri->ReadUint32() & 1;
4508 crc = ckScri->ReadUint32();
4509 uint32_t nameSize = ckScri->ReadUint32();
4510 Name.resize(nameSize, ' ');
4511 for (int i = 0; i < nameSize; ++i)
4512 Name[i] = ckScri->ReadUint8();
4513 // to handle potential future extensions of the header
4514 ckScri->SetPos(sizeof(int32_t) + headerSize);
4515 // read actual script data
4516 uint32_t scriptSize = uint32_t(ckScri->GetSize() - ckScri->GetPos());
4517 data.resize(scriptSize);
4518 for (int i = 0; i < scriptSize; ++i)
4519 data[i] = ckScri->ReadUint8();
4520 } else { // this is a new script object, so just initialize it as such ...
4521 Compression = COMPRESSION_NONE;
4522 Encoding = ENCODING_ASCII;
4523 Language = LANGUAGE_NKSP;
4524 Bypass = false;
4525 crc = 0;
4526 Name = "Unnamed Script";
4527 }
4528 }
4529
4530 Script::~Script() {
4531 }
4532
4533 /**
4534 * Returns the current script (i.e. as source code) in text format.
4535 */
4536 String Script::GetScriptAsText() {
4537 String s;
4538 s.resize(data.size(), ' ');
4539 memcpy(&s[0], &data[0], data.size());
4540 return s;
4541 }
4542
4543 /**
4544 * Replaces the current script with the new script source code text given
4545 * by @a text.
4546 *
4547 * @param text - new script source code
4548 */
4549 void Script::SetScriptAsText(const String& text) {
4550 data.resize(text.size());
4551 memcpy(&data[0], &text[0], text.size());
4552 }
4553
4554 /** @brief Remove all RIFF chunks associated with this Script object.
4555 *
4556 * At the moment Script::DeleteChunks() does nothing. It is
4557 * recommended to call this method explicitly though from deriving classes's
4558 * own overridden implementation of this method to avoid potential future
4559 * compatiblity issues.
4560 *
4561 * See DLS::Storage::DeleteChunks() for details.
4562 */
4563 void Script::DeleteChunks() {
4564 }
4565
4566 /**
4567 * Apply this script to the respective RIFF chunks. You have to call
4568 * File::Save() to make changes persistent.
4569 *
4570 * Usually there is absolutely no need to call this method explicitly.
4571 * It will be called automatically when File::Save() was called.
4572 *
4573 * @param pProgress - callback function for progress notification
4574 */
4575 void Script::UpdateChunks(progress_t* pProgress) {
4576 // recalculate CRC32 check sum
4577 __resetCRC(crc);
4578 __calculateCRC(&data[0], data.size(), crc);
4579 __finalizeCRC(crc);
4580 // make sure chunk exists and has the required size
4581 const file_offset_t chunkSize = (file_offset_t) 7*sizeof(int32_t) + Name.size() + data.size();
4582 if (!pChunk) pChunk = pGroup->pList->AddSubChunk(CHUNK_ID_SCRI, chunkSize);
4583 else pChunk->Resize(chunkSize);
4584 // fill the chunk data to be written to disk
4585 uint8_t* pData = (uint8_t*) pChunk->LoadChunkData();
4586 int pos = 0;
4587 store32(&pData[pos], uint32_t(6*sizeof(int32_t) + Name.size())); // total header size
4588 pos += sizeof(int32_t);
4589 store32(&pData[pos], Compression);
4590 pos += sizeof(int32_t);
4591 store32(&pData[pos], Encoding);
4592 pos += sizeof(int32_t);
4593 store32(&pData[pos], Language);
4594 pos += sizeof(int32_t);
4595 store32(&pData[pos], Bypass ? 1 : 0);
4596 pos += sizeof(int32_t);
4597 store32(&pData[pos], crc);
4598 pos += sizeof(int32_t);
4599 store32(&pData[pos], (uint32_t) Name.size());
4600 pos += sizeof(int32_t);
4601 for (int i = 0; i < Name.size(); ++i, ++pos)
4602 pData[pos] = Name[i];
4603 for (int i = 0; i < data.size(); ++i, ++pos)
4604 pData[pos] = data[i];
4605 }
4606
4607 /**
4608 * Move this script from its current ScriptGroup to another ScriptGroup
4609 * given by @a pGroup.
4610 *
4611 * @param pGroup - script's new group
4612 */
4613 void Script::SetGroup(ScriptGroup* pGroup) {
4614 if (this->pGroup == pGroup) return;
4615 if (pChunk)
4616 pChunk->GetParent()->MoveSubChunk(pChunk, pGroup->pList);
4617 this->pGroup = pGroup;
4618 }
4619
4620 /**
4621 * Returns the script group this script currently belongs to. Each script
4622 * is a member of exactly one ScriptGroup.
4623 *
4624 * @returns current script group
4625 */
4626 ScriptGroup* Script::GetGroup() const {
4627 return pGroup;
4628 }
4629
4630 /**
4631 * Make a (semi) deep copy of the Script object given by @a orig
4632 * and assign it to this object. Note: the ScriptGroup this Script
4633 * object belongs to remains untouched by this call.
4634 *
4635 * @param orig - original Script object to be copied from
4636 */
4637 void Script::CopyAssign(const Script* orig) {
4638 Name = orig->Name;
4639 Compression = orig->Compression;
4640 Encoding = orig->Encoding;
4641 Language = orig->Language;
4642 Bypass = orig->Bypass;
4643 data = orig->data;
4644 }
4645
4646 void Script::RemoveAllScriptReferences() {
4647 File* pFile = pGroup->pFile;
4648 for (int i = 0; pFile->GetInstrument(i); ++i) {
4649 Instrument* instr = pFile->GetInstrument(i);
4650 instr->RemoveScript(this);
4651 }
4652 }
4653
4654 // *************** ScriptGroup ***************
4655 // *
4656
4657 ScriptGroup::ScriptGroup(File* file, RIFF::List* lstRTIS) {
4658 pFile = file;
4659 pList = lstRTIS;
4660 pScripts = NULL;
4661 if (lstRTIS) {
4662 RIFF::Chunk* ckName = lstRTIS->GetSubChunk(CHUNK_ID_LSNM);
4663 ::LoadString(ckName, Name);
4664 } else {
4665 Name = "Default Group";
4666 }
4667 }
4668
4669 ScriptGroup::~ScriptGroup() {
4670 if (pScripts) {
4671 std::list<Script*>::iterator iter = pScripts->begin();
4672 std::list<Script*>::iterator end = pScripts->end();
4673 while (iter != end) {
4674 delete *iter;
4675 ++iter;
4676 }
4677 delete pScripts;
4678 }
4679 }
4680
4681 /** @brief Remove all RIFF chunks associated with this ScriptGroup object.
4682 *
4683 * At the moment ScriptGroup::DeleteChunks() does nothing. It is
4684 * recommended to call this method explicitly though from deriving classes's
4685 * own overridden implementation of this method to avoid potential future
4686 * compatiblity issues.
4687 *
4688 * See DLS::Storage::DeleteChunks() for details.
4689 */
4690 void ScriptGroup::DeleteChunks() {
4691 }
4692
4693 /**
4694 * Apply this script group to the respective RIFF chunks. You have to call
4695 * File::Save() to make changes persistent.
4696 *
4697 * Usually there is absolutely no need to call this method explicitly.
4698 * It will be called automatically when File::Save() was called.
4699 *
4700 * @param pProgress - callback function for progress notification
4701 */
4702 void ScriptGroup::UpdateChunks(progress_t* pProgress) {
4703 if (pScripts) {
4704 if (!pList)
4705 pList = pFile->pRIFF->GetSubList(LIST_TYPE_3LS)->AddSubList(LIST_TYPE_RTIS);
4706
4707 // now store the name of this group as <LSNM> chunk as subchunk of the <RTIS> list chunk
4708 ::SaveString(CHUNK_ID_LSNM, NULL, pList, Name, String("Unnamed Group"), true, 64);
4709
4710 for (std::list<Script*>::iterator it = pScripts->begin();
4711 it != pScripts->end(); ++it)
4712 {
4713 (*it)->UpdateChunks(pProgress);
4714 }
4715 }
4716 }
4717
4718 /** @brief Get instrument script.
4719 *
4720 * Returns the real-time instrument script with the given index.
4721 *
4722 * @param index - number of the sought script (0..n)
4723 * @returns sought script or NULL if there's no such script
4724 */
4725 Script* ScriptGroup::GetScript(uint index) {
4726 if (!pScripts) LoadScripts();
4727 std::list<Script*>::iterator it = pScripts->begin();
4728 for (uint i = 0; it != pScripts->end(); ++i, ++it)
4729 if (i == index) return *it;
4730 return NULL;
4731 }
4732
4733 /** @brief Add new instrument script.
4734 *
4735 * Adds a new real-time instrument script to the file. The script is not
4736 * actually used / executed unless it is referenced by an instrument to be
4737 * used. This is similar to samples, which you can add to a file, without
4738 * an instrument necessarily actually using it.
4739 *
4740 * You have to call Save() to make this persistent to the file.
4741 *
4742 * @return new empty script object
4743 */
4744 Script* ScriptGroup::AddScript() {
4745 if (!pScripts) LoadScripts();
4746 Script* pScript = new Script(this, NULL);
4747 pScripts->push_back(pScript);
4748 return pScript;
4749 }
4750
4751 /** @brief Delete an instrument script.
4752 *
4753 * This will delete the given real-time instrument script. References of
4754 * instruments that are using that script will be removed accordingly.
4755 *
4756 * You have to call Save() to make this persistent to the file.
4757 *
4758 * @param pScript - script to delete
4759 * @throws gig::Exception if given script could not be found
4760 */
4761 void ScriptGroup::DeleteScript(Script* pScript) {
4762 if (!pScripts) LoadScripts();
4763 std::list<Script*>::iterator iter =
4764 find(pScripts->begin(), pScripts->end(), pScript);
4765 if (iter == pScripts->end())
4766 throw gig::Exception("Could not delete script, could not find given script");
4767 pScripts->erase(iter);
4768 pScript->RemoveAllScriptReferences();
4769 if (pScript->pChunk)
4770 pScript->pChunk->GetParent()->DeleteSubChunk(pScript->pChunk);
4771 delete pScript;
4772 }
4773
4774 void ScriptGroup::LoadScripts() {
4775 if (pScripts) return;
4776 pScripts = new std::list<Script*>;
4777 if (!pList) return;
4778
4779 for (RIFF::Chunk* ck = pList->GetFirstSubChunk(); ck;
4780 ck = pList->GetNextSubChunk())
4781 {
4782 if (ck->GetChunkID() == CHUNK_ID_SCRI) {
4783 pScripts->push_back(new Script(this, ck));
4784 }
4785 }
4786 }
4787
4788 // *************** Instrument ***************
4789 // *
4790
4791 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
4792 static const DLS::Info::string_length_t fixedStringLengths[] = {
4793 { CHUNK_ID_INAM, 64 },
4794 { CHUNK_ID_ISFT, 12 },
4795 { 0, 0 }
4796 };
4797 pInfo->SetFixedStringLengths(fixedStringLengths);
4798
4799 // Initialization
4800 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4801 EffectSend = 0;
4802 Attenuation = 0;
4803 FineTune = 0;
4804 PitchbendRange = 2;
4805 PianoReleaseMode = false;
4806 DimensionKeyRange.low = 0;
4807 DimensionKeyRange.high = 0;
4808 pMidiRules = new MidiRule*[3];
4809 pMidiRules[0] = NULL;
4810 pScriptRefs = NULL;
4811
4812 // Loading
4813 RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
4814 if (lart) {
4815 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4816 if (_3ewg) {
4817 _3ewg->SetPos(0);
4818
4819 EffectSend = _3ewg->ReadUint16();
4820 Attenuation = _3ewg->ReadInt32();
4821 FineTune = _3ewg->ReadInt16();
4822 PitchbendRange = _3ewg->ReadInt16();
4823 uint8_t dimkeystart = _3ewg->ReadUint8();
4824 PianoReleaseMode = dimkeystart & 0x01;
4825 DimensionKeyRange.low = dimkeystart >> 1;
4826 DimensionKeyRange.high = _3ewg->ReadUint8();
4827
4828 if (_3ewg->GetSize() > 32) {
4829 // read MIDI rules
4830 int i = 0;
4831 _3ewg->SetPos(32);
4832 uint8_t id1 = _3ewg->ReadUint8();
4833 uint8_t id2 = _3ewg->ReadUint8();
4834
4835 if (id2 == 16) {
4836 if (id1 == 4) {
4837 pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
4838 } else if (id1 == 0) {
4839 pMidiRules[i++] = new MidiRuleLegato(_3ewg);
4840 } else if (id1 == 3) {
4841 pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
4842 } else {
4843 pMidiRules[i++] = new MidiRuleUnknown;
4844 }
4845 }
4846 else if (id1 != 0 || id2 != 0) {
4847 pMidiRules[i++] = new MidiRuleUnknown;
4848 }
4849 //TODO: all the other types of rules
4850
4851 pMidiRules[i] = NULL;
4852 }
4853 }
4854 }
4855
4856 if (pFile->GetAutoLoad()) {
4857 if (!pRegions) pRegions = new RegionList;
4858 RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
4859 if (lrgn) {
4860 RIFF::List* rgn = lrgn->GetFirstSubList();
4861 while (rgn) {
4862 if (rgn->GetListType() == LIST_TYPE_RGN) {
4863 if (pProgress)
4864 __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
4865 pRegions->push_back(new Region(this, rgn));
4866 }
4867 rgn = lrgn->GetNextSubList();
4868 }
4869 // Creating Region Key Table for fast lookup
4870 UpdateRegionKeyTable();
4871 }
4872 }
4873
4874 // own gig format extensions
4875 RIFF::List* lst3LS = insList->GetSubList(LIST_TYPE_3LS);
4876 if (lst3LS) {
4877 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4878 if (ckSCSL) {
4879 ckSCSL->SetPos(0);
4880
4881 int headerSize = ckSCSL->ReadUint32();
4882 int slotCount = ckSCSL->ReadUint32();
4883 if (slotCount) {
4884 int slotSize = ckSCSL->ReadUint32();
4885 ckSCSL->SetPos(headerSize); // in case of future header extensions
4886 int unknownSpace = slotSize - 2*sizeof(uint32_t); // in case of future slot extensions
4887 for (int i = 0; i < slotCount; ++i) {
4888 _ScriptPooolEntry e;
4889 e.fileOffset = ckSCSL->ReadUint32();
4890 e.bypass = ckSCSL->ReadUint32() & 1;
4891 if (unknownSpace) ckSCSL->SetPos(unknownSpace, RIFF::stream_curpos); // in case of future extensions
4892 scriptPoolFileOffsets.push_back(e);
4893 }
4894 }
4895 }
4896 }
4897
4898 if (pProgress)
4899 __notify_progress(pProgress, 1.0f); // notify done
4900 }
4901
4902 void Instrument::UpdateRegionKeyTable() {
4903 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4904 RegionList::iterator iter = pRegions->begin();
4905 RegionList::iterator end = pRegions->end();
4906 for (; iter != end; ++iter) {
4907 gig::Region* pRegion = static_cast<gig::Region*>(*iter);
4908 const int low = std::max(int(pRegion->KeyRange.low), 0);
4909 const int high = std::min(int(pRegion->KeyRange.high), 127);
4910 for (int iKey = low; iKey <= high; iKey++) {
4911 RegionKeyTable[iKey] = pRegion;
4912 }
4913 }
4914 }
4915
4916 Instrument::~Instrument() {
4917 for (int i = 0 ; pMidiRules[i] ; i++) {
4918 delete pMidiRules[i];
4919 }
4920 delete[] pMidiRules;
4921 if (pScriptRefs) delete pScriptRefs;
4922 }
4923
4924 /**
4925 * Apply Instrument with all its Regions to the respective RIFF chunks.
4926 * You have to call File::Save() to make changes persistent.
4927 *
4928 * Usually there is absolutely no need to call this method explicitly.
4929 * It will be called automatically when File::Save() was called.
4930 *
4931 * @param pProgress - callback function for progress notification
4932 * @throws gig::Exception if samples cannot be dereferenced
4933 */
4934 void Instrument::UpdateChunks(progress_t* pProgress) {
4935 // first update base classes' chunks
4936 DLS::Instrument::UpdateChunks(pProgress);
4937
4938 // update Regions' chunks
4939 {
4940 RegionList::iterator iter = pRegions->begin();
4941 RegionList::iterator end = pRegions->end();
4942 for (; iter != end; ++iter)
4943 (*iter)->UpdateChunks(pProgress);
4944 }
4945
4946 // make sure 'lart' RIFF list chunk exists
4947 RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
4948 if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
4949 // make sure '3ewg' RIFF chunk exists
4950 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4951 if (!_3ewg) {
4952 File* pFile = (File*) GetParent();
4953
4954 // 3ewg is bigger in gig3, as it includes the iMIDI rules
4955 int size = (pFile->pVersion && pFile->pVersion->major > 2) ? 16416 : 12;
4956 _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
4957 memset(_3ewg->LoadChunkData(), 0, size);
4958 }
4959 // update '3ewg' RIFF chunk
4960 uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
4961 store16(&pData[0], EffectSend);
4962 store32(&pData[2], Attenuation);
4963 store16(&pData[6], FineTune);
4964 store16(&pData[8], PitchbendRange);
4965 const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
4966 DimensionKeyRange.low << 1;
4967 pData[10] = dimkeystart;
4968 pData[11] = DimensionKeyRange.high;
4969
4970 if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
4971 pData[32] = 0;
4972 pData[33] = 0;
4973 } else {
4974 for (int i = 0 ; pMidiRules[i] ; i++) {
4975 pMidiRules[i]->UpdateChunks(pData);
4976 }
4977 }
4978
4979 // own gig format extensions
4980 if (ScriptSlotCount()) {
4981 // make sure we have converted the original loaded script file
4982 // offsets into valid Script object pointers
4983 LoadScripts();
4984
4985 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4986 if (!lst3LS) lst3LS = pCkInstrument->AddSubList(LIST_TYPE_3LS);
4987 const int slotCount = (int) pScriptRefs->size();
4988 const int headerSize = 3 * sizeof(uint32_t);
4989 const int slotSize = 2 * sizeof(uint32_t);
4990 const int totalChunkSize = headerSize + slotCount * slotSize;
4991 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4992 if (!ckSCSL) ckSCSL = lst3LS->AddSubChunk(CHUNK_ID_SCSL, totalChunkSize);
4993 else ckSCSL->Resize(totalChunkSize);
4994 uint8_t* pData = (uint8_t*) ckSCSL->LoadChunkData();
4995 int pos = 0;
4996 store32(&pData[pos], headerSize);
4997 pos += sizeof(uint32_t);
4998 store32(&pData[pos], slotCount);
4999 pos += sizeof(uint32_t);
5000 store32(&pData[pos], slotSize);
5001 pos += sizeof(uint32_t);
5002 for (int i = 0; i < slotCount; ++i) {
5003 // arbitrary value, the actual file offset will be updated in
5004 // UpdateScriptFileOffsets() after the file has been resized
5005 int bogusFileOffset = 0;
5006 store32(&pData[pos], bogusFileOffset);
5007 pos += sizeof(uint32_t);
5008 store32(&pData[pos], (*pScriptRefs)[i].bypass ? 1 : 0);
5009 pos += sizeof(uint32_t);
5010 }
5011 } else {
5012 // no script slots, so get rid of any LS custom RIFF chunks (if any)
5013 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
5014 if (lst3LS) pCkInstrument->DeleteSubChunk(lst3LS);
5015 }
5016 }
5017
5018 void Instrument::UpdateScriptFileOffsets() {
5019 // own gig format extensions
5020 if (pScriptRefs && pScriptRefs->size() > 0) {
5021 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
5022 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
5023 const int slotCount = (int) pScriptRefs->size();
5024 const int headerSize = 3 * sizeof(uint32_t);
5025 ckSCSL->SetPos(headerSize);
5026 for (int i = 0; i < slotCount; ++i) {
5027 uint32_t fileOffset = uint32_t(
5028 (*pScriptRefs)[i].script->pChunk->GetFilePos() -
5029 (*pScriptRefs)[i].script->pChunk->GetPos() -
5030 CHUNK_HEADER_SIZE(ckSCSL->GetFile()->GetFileOffsetSize())
5031 );
5032 ckSCSL->WriteUint32(&fileOffset);
5033 // jump over flags entry (containing the bypass flag)
5034 ckSCSL->SetPos(sizeof(uint32_t), RIFF::stream_curpos);
5035 }
5036 }
5037 }
5038
5039 /**
5040 * Returns the appropriate Region for a triggered note.
5041 *
5042 * @param Key MIDI Key number of triggered note / key (0 - 127)
5043 * @returns pointer adress to the appropriate Region or NULL if there
5044 * there is no Region defined for the given \a Key
5045 */
5046 Region* Instrument::GetRegion(unsigned int Key) {
5047 if (!pRegions || pRegions->empty() || Key > 127) return NULL;
5048 return RegionKeyTable[Key];
5049
5050 /*for (int i = 0; i < Regions; i++) {
5051 if (Key <= pRegions[i]->KeyRange.high &&
5052 Key >= pRegions[i]->KeyRange.low) return pRegions[i];
5053 }
5054 return NULL;*/
5055 }
5056
5057 /**
5058 * Returns the first Region of the instrument. You have to call this
5059 * method once before you use GetNextRegion().
5060 *
5061 * @returns pointer address to first region or NULL if there is none
5062 * @see GetNextRegion()
5063 */
5064 Region* Instrument::GetFirstRegion() {
5065 if (!pRegions) return NULL;
5066 RegionsIterator = pRegions->begin();
5067 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
5068 }
5069
5070 /**
5071 * Returns the next Region of the instrument. You have to call
5072 * GetFirstRegion() once before you can use this method. By calling this
5073 * method multiple times it iterates through the available Regions.
5074 *
5075 * @returns pointer address to the next region or NULL if end reached
5076 * @see GetFirstRegion()
5077 */
5078 Region* Instrument::GetNextRegion() {
5079 if (!pRegions) return NULL;
5080 RegionsIterator++;
5081 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
5082 }
5083
5084 Region* Instrument::AddRegion() {
5085 // create new Region object (and its RIFF chunks)
5086 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
5087 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
5088 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
5089 Region* pNewRegion = new Region(this, rgn);
5090 pRegions->push_back(pNewRegion);
5091 Regions = (uint32_t) pRegions->size();
5092 // update Region key table for fast lookup
5093 UpdateRegionKeyTable();
5094 // done
5095 return pNewRegion;
5096 }
5097
5098 void Instrument::DeleteRegion(Region* pRegion) {
5099 if (!pRegions) return;
5100 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
5101 // update Region key table for fast lookup
5102 UpdateRegionKeyTable();
5103 }
5104
5105 /**
5106 * Move this instrument at the position before @arg dst.
5107 *
5108 * This method can be used to reorder the sequence of instruments in a
5109 * .gig file. This might be helpful especially on large .gig files which
5110 * contain a large number of instruments within the same .gig file. So
5111 * grouping such instruments to similar ones, can help to keep track of them
5112 * when working with such complex .gig files.
5113 *
5114 * When calling this method, this instrument will be removed from in its
5115 * current position in the instruments list and moved to the requested
5116 * target position provided by @param dst. You may also pass NULL as
5117 * argument to this method, in that case this intrument will be moved to the
5118 * very end of the .gig file's instrument list.
5119 *
5120 * You have to call Save() to make the order change persistent to the .gig
5121 * file.
5122 *
5123 * Currently this method is limited to moving the instrument within the same
5124 * .gig file. Trying to move it to another .gig file by calling this method
5125 * will throw an exception.
5126 *
5127 * @param dst - destination instrument at which this instrument will be
5128 * moved to, or pass NULL for moving to end of list
5129 * @throw gig::Exception if this instrument and target instrument are not
5130 * part of the same file
5131 */
5132 void Instrument::MoveTo(Instrument* dst) {
5133 if (dst && GetParent() != dst->GetParent())
5134 throw Exception(
5135 "gig::Instrument::MoveTo() can only be used for moving within "
5136 "the same gig file."
5137 );
5138
5139 File* pFile = (File*) GetParent();
5140
5141 // move this instrument within the instrument list
5142 {
5143 File::InstrumentList& list = *pFile->pInstruments;
5144
5145 File::InstrumentList::iterator itFrom =
5146 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(this));
5147
5148 File::InstrumentList::iterator itTo =
5149 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(dst));
5150
5151 list.splice(itTo, list, itFrom);
5152 }
5153
5154 // move the instrument's actual list RIFF chunk appropriately
5155 RIFF::List* lstCkInstruments = pFile->pRIFF->GetSubList(LIST_TYPE_LINS);
5156 lstCkInstruments->MoveSubChunk(
5157 this->pCkInstrument,
5158 (RIFF::Chunk*) ((dst) ? dst->pCkInstrument : NULL)
5159 );
5160 }
5161
5162 /**
5163 * Returns a MIDI rule of the instrument.
5164 *
5165 * The list of MIDI rules, at least in gig v3, always contains at
5166 * most two rules. The second rule can only be the DEF filter
5167 * (which currently isn't supported by libgig).
5168 *
5169 * @param i - MIDI rule number
5170 * @returns pointer address to MIDI rule number i or NULL if there is none
5171 */
5172 MidiRule* Instrument::GetMidiRule(int i) {
5173 return pMidiRules[i];
5174 }
5175
5176 /**
5177 * Adds the "controller trigger" MIDI rule to the instrument.
5178 *
5179 * @returns the new MIDI rule
5180 */
5181 MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
5182 delete pMidiRules[0];
5183 MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
5184 pMidiRules[0] = r;
5185 pMidiRules[1] = 0;
5186 return r;
5187 }
5188
5189 /**
5190 * Adds the legato MIDI rule to the instrument.
5191 *
5192 * @returns the new MIDI rule
5193 */
5194 MidiRuleLegato* Instrument::AddMidiRuleLegato() {
5195 delete pMidiRules[0];
5196 MidiRuleLegato* r = new MidiRuleLegato;
5197 pMidiRules[0] = r;
5198 pMidiRules[1] = 0;
5199 return r;
5200 }
5201
5202 /**
5203 * Adds the alternator MIDI rule to the instrument.
5204 *
5205 * @returns the new MIDI rule
5206 */
5207 MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
5208 delete pMidiRules[0];
5209 MidiRuleAlternator* r = new MidiRuleAlternator;
5210 pMidiRules[0] = r;
5211 pMidiRules[1] = 0;
5212 return r;
5213 }
5214
5215 /**
5216 * Deletes a MIDI rule from the instrument.
5217 *
5218 * @param i - MIDI rule number
5219 */
5220 void Instrument::DeleteMidiRule(int i) {
5221 delete pMidiRules[i];
5222 pMidiRules[i] = 0;
5223 }
5224
5225 void Instrument::LoadScripts() {
5226 if (pScriptRefs) return;
5227 pScriptRefs = new std::vector<_ScriptPooolRef>;
5228 if (scriptPoolFileOffsets.empty()) return;
5229 File* pFile = (File*) GetParent();
5230 for (uint k = 0; k < scriptPoolFileOffsets.size(); ++k) {
5231 uint32_t soughtOffset = scriptPoolFileOffsets[k].fileOffset;
5232 for (uint i = 0; pFile->GetScriptGroup(i); ++i) {
5233 ScriptGroup* group = pFile->GetScriptGroup(i);
5234 for (uint s = 0; group->GetScript(s); ++s) {
5235 Script* script = group->GetScript(s);
5236 if (script->pChunk) {
5237 uint32_t offset = uint32_t(
5238 script->pChunk->GetFilePos() -
5239 script->pChunk->GetPos() -
5240 CHUNK_HEADER_SIZE(script->pChunk->GetFile()->GetFileOffsetSize())
5241 );
5242 if (offset == soughtOffset)
5243 {
5244 _ScriptPooolRef ref;
5245 ref.script = script;
5246 ref.bypass = scriptPoolFileOffsets[k].bypass;
5247 pScriptRefs->push_back(ref);
5248 break;
5249 }
5250 }
5251 }
5252 }
5253 }
5254 // we don't need that anymore
5255 scriptPoolFileOffsets.clear();
5256 }
5257
5258 /** @brief Get instrument script (gig format extension).
5259 *
5260 * Returns the real-time instrument script of instrument script slot
5261 * @a index.
5262 *
5263 * @note This is an own format extension which did not exist i.e. in the
5264 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5265 * gigedit.
5266 *
5267 * @param index - instrument script slot index
5268 * @returns script or NULL if index is out of bounds
5269 */
5270 Script* Instrument::GetScriptOfSlot(uint index) {
5271 LoadScripts();
5272 if (index >= pScriptRefs->size()) return NULL;
5273 return pScriptRefs->at(index).script;
5274 }
5275
5276 /** @brief Add new instrument script slot (gig format extension).
5277 *
5278 * Add the given real-time instrument script reference to this instrument,
5279 * which shall be executed by the sampler for for this instrument. The
5280 * script will be added to the end of the script list of this instrument.
5281 * The positions of the scripts in the Instrument's Script list are
5282 * relevant, because they define in which order they shall be executed by
5283 * the sampler. For this reason it is also legal to add the same script
5284 * twice to an instrument, for example you might have a script called
5285 * "MyFilter" which performs an event filter task, and you might have
5286 * another script called "MyNoteTrigger" which triggers new notes, then you
5287 * might for example have the following list of scripts on the instrument:
5288 *
5289 * 1. Script "MyFilter"
5290 * 2. Script "MyNoteTrigger"
5291 * 3. Script "MyFilter"
5292 *
5293 * Which would make sense, because the 2nd script launched new events, which
5294 * you might need to filter as well.
5295 *
5296 * There are two ways to disable / "bypass" scripts. You can either disable
5297 * a script locally for the respective script slot on an instrument (i.e. by
5298 * passing @c false to the 2nd argument of this method, or by calling
5299 * SetScriptBypassed()). Or you can disable a script globally for all slots
5300 * and all instruments by setting Script::Bypass.
5301 *
5302 * @note This is an own format extension which did not exist i.e. in the
5303 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5304 * gigedit.
5305 *
5306 * @param pScript - script that shall be executed for this instrument
5307 * @param bypass - if enabled, the sampler shall skip executing this
5308 * script (in the respective list position)
5309 * @see SetScriptBypassed()
5310 */
5311 void Instrument::AddScriptSlot(Script* pScript, bool bypass) {
5312 LoadScripts();
5313 _ScriptPooolRef ref = { pScript, bypass };
5314 pScriptRefs->push_back(ref);
5315 }
5316
5317 /** @brief Flip two script slots with each other (gig format extension).
5318 *
5319 * Swaps the position of the two given scripts in the Instrument's Script
5320 * list. The positions of the scripts in the Instrument's Script list are
5321 * relevant, because they define in which order they shall be executed by
5322 * the sampler.
5323 *
5324 * @note This is an own format extension which did not exist i.e. in the
5325 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5326 * gigedit.
5327 *
5328 * @param index1 - index of the first script slot to swap
5329 * @param index2 - index of the second script slot to swap
5330 */
5331 void Instrument::SwapScriptSlots(uint index1, uint index2) {
5332 LoadScripts();
5333 if (index1 >= pScriptRefs->size() || index2 >= pScriptRefs->size())
5334 return;
5335 _ScriptPooolRef tmp = (*pScriptRefs)[index1];
5336 (*pScriptRefs)[index1] = (*pScriptRefs)[index2];
5337 (*pScriptRefs)[index2] = tmp;
5338 }
5339
5340 /** @brief Remove script slot.
5341 *
5342 * Removes the script slot with the given slot index.
5343 *
5344 * @param index - index of script slot to remove
5345 */
5346 void Instrument::RemoveScriptSlot(uint index) {
5347 LoadScripts();
5348 if (index >= pScriptRefs->size()) return;
5349 pScriptRefs->erase( pScriptRefs->begin() + index );
5350 }
5351
5352 /** @brief Remove reference to given Script (gig format extension).
5353 *
5354 * This will remove all script slots on the instrument which are referencing
5355 * the given script.
5356 *
5357 * @note This is an own format extension which did not exist i.e. in the
5358 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5359 * gigedit.
5360 *
5361 * @param pScript - script reference to remove from this instrument
5362 * @see RemoveScriptSlot()
5363 */
5364 void Instrument::RemoveScript(Script* pScript) {
5365 LoadScripts();
5366 for (ssize_t i = pScriptRefs->size() - 1; i >= 0; --i) {
5367 if ((*pScriptRefs)[i].script == pScript) {
5368 pScriptRefs->erase( pScriptRefs->begin() + i );
5369 }
5370 }
5371 }
5372
5373 /** @brief Instrument's amount of script slots.
5374 *
5375 * This method returns the amount of script slots this instrument currently
5376 * uses.
5377 *
5378 * A script slot is a reference of a real-time instrument script to be
5379 * executed by the sampler. The scripts will be executed by the sampler in
5380 * sequence of the slots. One (same) script may be referenced multiple
5381 * times in different slots.
5382 *
5383 * @note This is an own format extension which did not exist i.e. in the
5384 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5385 * gigedit.
5386 */
5387 uint Instrument::ScriptSlotCount() const {
5388 return uint(pScriptRefs ? pScriptRefs->size() : scriptPoolFileOffsets.size());
5389 }
5390
5391 /** @brief Whether script execution shall be skipped.
5392 *
5393 * Defines locally for the Script reference slot in the Instrument's Script
5394 * list, whether the script shall be skipped by the sampler regarding
5395 * execution.
5396 *
5397 * It is also possible to ignore exeuction of the script globally, for all
5398 * slots and for all instruments by setting Script::Bypass.
5399 *
5400 * @note This is an own format extension which did not exist i.e. in the
5401 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5402 * gigedit.
5403 *
5404 * @param index - index of the script slot on this instrument
5405 * @see Script::Bypass
5406 */
5407 bool Instrument::IsScriptSlotBypassed(uint index) {
5408 if (index >= ScriptSlotCount()) return false;
5409 return pScriptRefs ? pScriptRefs->at(index).bypass
5410 : scriptPoolFileOffsets.at(index).bypass;
5411
5412 }
5413
5414 /** @brief Defines whether execution shall be skipped.
5415 *
5416 * You can call this method to define locally whether or whether not the
5417 * given script slot shall be executed by the sampler.
5418 *
5419 * @note This is an own format extension which did not exist i.e. in the
5420 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5421 * gigedit.
5422 *
5423 * @param index - script slot index on this instrument
5424 * @param bBypass - if true, the script slot will be skipped by the sampler
5425 * @see Script::Bypass
5426 */
5427 void Instrument::SetScriptSlotBypassed(uint index, bool bBypass) {
5428 if (index >= ScriptSlotCount()) return;
5429 if (pScriptRefs)
5430 pScriptRefs->at(index).bypass = bBypass;
5431 else
5432 scriptPoolFileOffsets.at(index).bypass = bBypass;
5433 }
5434
5435 /**
5436 * Make a (semi) deep copy of the Instrument object given by @a orig
5437 * and assign it to this object.
5438 *
5439 * Note that all sample pointers referenced by @a orig are simply copied as
5440 * memory address. Thus the respective samples are shared, not duplicated!
5441 *
5442 * @param orig - original Instrument object to be copied from
5443 */
5444 void Instrument::CopyAssign(const Instrument* orig) {
5445 CopyAssign(orig, NULL);
5446 }
5447
5448 /**
5449 * Make a (semi) deep copy of the Instrument object given by @a orig
5450 * and assign it to this object.
5451 *
5452 * @param orig - original Instrument object to be copied from
5453 * @param mSamples - crosslink map between the foreign file's samples and
5454 * this file's samples
5455 */
5456 void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
5457 // handle base class
5458 // (without copying DLS region stuff)
5459 DLS::Instrument::CopyAssignCore(orig);
5460
5461 // handle own member variables
5462 Attenuation = orig->Attenuation;
5463 EffectSend = orig->EffectSend;
5464 FineTune = orig->FineTune;
5465 PitchbendRange = orig->PitchbendRange;
5466 PianoReleaseMode = orig->PianoReleaseMode;
5467 DimensionKeyRange = orig->DimensionKeyRange;
5468 scriptPoolFileOffsets = orig->scriptPoolFileOffsets;
5469 pScriptRefs = orig->pScriptRefs;
5470
5471 // free old midi rules
5472 for (int i = 0 ; pMidiRules[i] ; i++) {
5473 delete pMidiRules[i];
5474 }
5475 //TODO: MIDI rule copying
5476 pMidiRules[0] = NULL;
5477
5478 // delete all old regions
5479 while (Regions) DeleteRegion(GetFirstRegion());
5480 // create new regions and copy them from original
5481 {
5482 RegionList::const_iterator it = orig->pRegions->begin();
5483 for (int i = 0; i < orig->Regions; ++i, ++it) {
5484 Region* dstRgn = AddRegion();
5485 //NOTE: Region does semi-deep copy !
5486 dstRgn->CopyAssign(
5487 static_cast<gig::Region*>(*it),
5488 mSamples
5489 );
5490 }
5491 }
5492
5493 UpdateRegionKeyTable();
5494 }
5495
5496
5497 // *************** Group ***************
5498 // *
5499
5500 /** @brief Constructor.
5501 *
5502 * @param file - pointer to the gig::File object
5503 * @param ck3gnm - pointer to 3gnm chunk associated with this group or
5504 * NULL if this is a new Group
5505 */
5506 Group::Group(File* file, RIFF::Chunk* ck3gnm) {
5507 pFile = file;
5508 pNameChunk = ck3gnm;
5509 ::LoadString(pNameChunk, Name);
5510 }
5511
5512 /** @brief Destructor.
5513 *
5514 * Currently this destructor implementation does nothing.
5515 */
5516 Group::~Group() {
5517 }
5518
5519 /** @brief Remove all RIFF chunks associated with this Group object.
5520 *
5521 * See DLS::Storage::DeleteChunks() for details.
5522 */
5523 void Group::DeleteChunks() {
5524 // handle own RIFF chunks
5525 if (pNameChunk) {
5526 pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
5527 pNameChunk = NULL;
5528 }
5529 }
5530
5531 /** @brief Update chunks with current group settings.
5532 *
5533 * Apply current Group field values to the respective chunks. You have
5534 * to call File::Save() to make changes persistent.
5535 *
5536 * Usually there is absolutely no need to call this method explicitly.
5537 * It will be called automatically when File::Save() was called.
5538 *
5539 * @param pProgress - callback function for progress notification
5540 */
5541 void Group::UpdateChunks(progress_t* pProgress) {
5542 // make sure <3gri> and <3gnl> list chunks exist
5543 RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
5544 if (!_3gri) {
5545 _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
5546 pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
5547 }
5548 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
5549 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
5550
5551 if (!pNameChunk && pFile->pVersion && pFile->pVersion->major > 2) {
5552 // v3 has a fixed list of 128 strings, find a free one
5553 for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
5554 if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
5555 pNameChunk = ck;
5556 break;
5557 }
5558 }
5559 }
5560
5561 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
5562 ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
5563 }
5564
5565 /**
5566 * Returns the first Sample of this Group. You have to call this method
5567 * once before you use GetNextSample().
5568 *
5569 * <b>Notice:</b> this method might block for a long time, in case the
5570 * samples of this .gig file were not scanned yet
5571 *
5572 * @returns pointer address to first Sample or NULL if there is none
5573 * applied to this Group
5574 * @see GetNextSample()
5575 */
5576 Sample* Group::GetFirstSample() {
5577 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5578 for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
5579 if (pSample->GetGroup() == this) return pSample;
5580 }
5581 return NULL;
5582 }
5583
5584 /**
5585 * Returns the next Sample of the Group. You have to call
5586 * GetFirstSample() once before you can use this method. By calling this
5587 * method multiple times it iterates through the Samples assigned to
5588 * this Group.
5589 *
5590 * @returns pointer address to the next Sample of this Group or NULL if
5591 * end reached
5592 * @see GetFirstSample()
5593 */
5594 Sample* Group::GetNextSample() {
5595 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5596 for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
5597 if (pSample->GetGroup() == this) return pSample;
5598 }
5599 return NULL;
5600 }
5601
5602 /**
5603 * Move Sample given by \a pSample from another Group to this Group.
5604 */
5605 void Group::AddSample(Sample* pSample) {
5606 pSample->pGroup = this;
5607 }
5608
5609 /**
5610 * Move all members of this group to another group (preferably the 1st
5611 * one except this). This method is called explicitly by
5612 * File::DeleteGroup() thus when a Group was deleted. This code was
5613 * intentionally not placed in the destructor!
5614 */
5615 void Group::MoveAll() {
5616 // get "that" other group first
5617 Group* pOtherGroup = NULL;
5618 for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
5619 if (pOtherGroup != this) break;
5620 }
5621 if (!pOtherGroup) throw Exception(
5622 "Could not move samples to another group, since there is no "
5623 "other Group. This is a bug, report it!"
5624 );
5625 // now move all samples of this group to the other group
5626 for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
5627 pOtherGroup->AddSample(pSample);
5628 }
5629 }
5630
5631
5632
5633 // *************** File ***************
5634 // *
5635
5636 /// Reflects Gigasampler file format version 2.0 (1998-06-28).
5637 const DLS::version_t File::VERSION_2 = {
5638 0, 2, 19980628 & 0xffff, 19980628 >> 16
5639 };
5640
5641 /// Reflects Gigasampler file format version 3.0 (2003-03-31).
5642 const DLS::version_t File::VERSION_3 = {
5643 0, 3, 20030331 & 0xffff, 20030331 >> 16
5644 };
5645
5646 /// Reflects Gigasampler file format version 4.0 (2007-10-12).
5647 const DLS::version_t File::VERSION_4 = {
5648 0, 4, 20071012 & 0xffff, 20071012 >> 16
5649 };
5650
5651 static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
5652 { CHUNK_ID_IARL, 256 },
5653 { CHUNK_ID_IART, 128 },
5654 { CHUNK_ID_ICMS, 128 },
5655 { CHUNK_ID_ICMT, 1024 },
5656 { CHUNK_ID_ICOP, 128 },
5657 { CHUNK_ID_ICRD, 128 },
5658 { CHUNK_ID_IENG, 128 },
5659 { CHUNK_ID_IGNR, 128 },
5660 { CHUNK_ID_IKEY, 128 },
5661 { CHUNK_ID_IMED, 128 },
5662 { CHUNK_ID_INAM, 128 },
5663 { CHUNK_ID_IPRD, 128 },
5664 { CHUNK_ID_ISBJ, 128 },
5665 { CHUNK_ID_ISFT, 128 },
5666 { CHUNK_ID_ISRC, 128 },
5667 { CHUNK_ID_ISRF, 128 },
5668 { CHUNK_ID_ITCH, 128 },
5669 { 0, 0 }
5670 };
5671
5672 File::File() : DLS::File() {
5673 bAutoLoad = true;
5674 *pVersion = VERSION_3;
5675 pGroups = NULL;
5676 pScriptGroups = NULL;
5677 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5678 pInfo->ArchivalLocation = String(256, ' ');
5679
5680 // add some mandatory chunks to get the file chunks in right
5681 // order (INFO chunk will be moved to first position later)
5682 pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
5683 pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
5684 pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
5685
5686 GenerateDLSID();
5687 }
5688
5689 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
5690 bAutoLoad = true;
5691 pGroups = NULL;
5692 pScriptGroups = NULL;
5693 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5694 }
5695
5696 File::~File() {
5697 if (pGroups) {
5698 std::list<Group*>::iterator iter = pGroups->begin();
5699 std::list<Group*>::iterator end = pGroups->end();
5700 while (iter != end) {
5701 delete *iter;
5702 ++iter;
5703 }
5704 delete pGroups;
5705 }
5706 if (pScriptGroups) {
5707 std::list<ScriptGroup*>::iterator iter = pScriptGroups->begin();
5708 std::list<ScriptGroup*>::iterator end = pScriptGroups->end();
5709 while (iter != end) {
5710 delete *iter;
5711 ++iter;
5712 }
5713 delete pScriptGroups;
5714 }
5715 }
5716
5717 Sample* File::GetFirstSample(progress_t* pProgress) {
5718 if (!pSamples) LoadSamples(pProgress);
5719 if (!pSamples) return NULL;
5720 SamplesIterator = pSamples->begin();
5721 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5722 }
5723
5724 Sample* File::GetNextSample() {
5725 if (!pSamples) return NULL;
5726 SamplesIterator++;
5727 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5728 }
5729
5730 /**
5731 * Returns Sample object of @a index.
5732 *
5733 * @returns sample object or NULL if index is out of bounds
5734 */
5735 Sample* File::GetSample(uint index) {
5736 if (!pSamples) LoadSamples();
5737 if (!pSamples) return NULL;
5738 DLS::File::SampleList::iterator it = pSamples->begin();
5739 for (int i = 0; i < index; ++i) {
5740 ++it;
5741 if (it == pSamples->end()) return NULL;
5742 }
5743 if (it == pSamples->end()) return NULL;
5744 return static_cast<gig::Sample*>( *it );
5745 }
5746
5747 /**
5748 * Returns the total amount of samples of this gig file.
5749 *
5750 * Note that this method might block for a long time in case it is required
5751 * to load the sample info for the first time.
5752 *
5753 * @returns total amount of samples
5754 */
5755 size_t File::CountSamples() {
5756 if (!pSamples) LoadSamples();
5757 if (!pSamples) return 0;
5758 return pSamples->size();
5759 }
5760
5761 /** @brief Add a new sample.
5762 *
5763 * This will create a new Sample object for the gig file. You have to
5764 * call Save() to make this persistent to the file.
5765 *
5766 * @returns pointer to new Sample object
5767 */
5768 Sample* File::AddSample() {
5769 if (!pSamples) LoadSamples();
5770 __ensureMandatoryChunksExist();
5771 RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
5772 // create new Sample object and its respective 'wave' list chunk
5773 RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
5774 Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
5775
5776 // add mandatory chunks to get the chunks in right order
5777 wave->AddSubChunk(CHUNK_ID_FMT, 16);
5778 wave->AddSubList(LIST_TYPE_INFO);
5779
5780 pSamples->push_back(pSample);
5781 return pSample;
5782 }
5783
5784 /** @brief Delete a sample.
5785 *
5786 * This will delete the given Sample object from the gig file. Any
5787 * references to this sample from Regions and DimensionRegions will be
5788 * removed. You have to call Save() to make this persistent to the file.
5789 *
5790 * @param pSample - sample to delete
5791 * @throws gig::Exception if given sample could not be found
5792 */
5793 void File::DeleteSample(Sample* pSample) {
5794 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
5795 SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
5796 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
5797 if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
5798 pSamples->erase(iter);
5799 pSample->DeleteChunks();
5800 delete pSample;
5801
5802 SampleList::iterator tmp = SamplesIterator;
5803 // remove all references to the sample
5804 for (Instrument* instrument = GetFirstInstrument() ; instrument ;
5805 instrument = GetNextInstrument()) {
5806 for (Region* region = instrument->GetFirstRegion() ; region ;
5807 region = instrument->GetNextRegion()) {
5808
5809 if (region->GetSample() == pSample) region->SetSample(NULL);
5810
5811 for (int i = 0 ; i < region->DimensionRegions ; i++) {
5812 gig::DimensionRegion *d = region->pDimensionRegions[i];
5813 if (d->pSample == pSample) d->pSample = NULL;
5814 }
5815 }
5816 }
5817 SamplesIterator = tmp; // restore iterator
5818 }
5819
5820 void File::LoadSamples() {
5821 LoadSamples(NULL);
5822 }
5823
5824 void File::LoadSamples(progress_t* pProgress) {
5825 // Groups must be loaded before samples, because samples will try
5826 // to resolve the group they belong to
5827 if (!pGroups) LoadGroups();
5828
5829 if (!pSamples) pSamples = new SampleList;
5830
5831 RIFF::File* file = pRIFF;
5832
5833 // just for progress calculation
5834 int iSampleIndex = 0;
5835 int iTotalSamples = WavePoolCount;
5836
5837 // just for assembling path of optional extension files to be read
5838 const std::string folder = parentPath(pRIFF->GetFileName());
5839 const std::string baseName = pathWithoutExtension(pRIFF->GetFileName());
5840
5841 // the main gig file and the extension files (.gx01, ... , .gx98) may
5842 // contain wave data (wave pool)
5843 std::vector<RIFF::File*> poolFiles;
5844 poolFiles.push_back(pRIFF);
5845
5846 // get info about all extension files
5847 RIFF::Chunk* ckXfil = pRIFF->GetSubChunk(CHUNK_ID_XFIL);
5848 if (ckXfil) { // there are extension files (.gx01, ... , .gx98) ...
5849 const uint32_t n = ckXfil->ReadInt32();
5850 for (int i = 0; i < n; i++) {
5851 // read the filename and load the extension file
5852 std::string name;
5853 ckXfil->ReadString(name, 128);
5854 std::string path = concatPath(folder, name);
5855 RIFF::File* pExtFile = new RIFF::File(path);
5856 // check that the dlsids match
5857 RIFF::Chunk* ckDLSID = pExtFile->GetSubChunk(CHUNK_ID_DLID);
5858 if (ckDLSID) {
5859 ::DLS::dlsid_t idExpected;
5860 idExpected.ulData1 = ckXfil->ReadInt32();
5861 idExpected.usData2 = ckXfil->ReadInt16();
5862 idExpected.usData3 = ckXfil->ReadInt16();
5863 ckXfil->Read(idExpected.abData, 8, 1);
5864 ::DLS::dlsid_t idFound;
5865 ckDLSID->Read(&idFound.ulData1, 1, 4);
5866 ckDLSID->Read(&idFound.usData2, 1, 2);
5867 ckDLSID->Read(&idFound.usData3, 1, 2);
5868 ckDLSID->Read(idFound.abData, 8, 1);
5869 if (memcmp(&idExpected, &idFound, 16) != 0)
5870 throw gig::Exception("dlsid mismatch for extension file: %s", path.c_str());
5871 }
5872 poolFiles.push_back(pExtFile);
5873 ExtensionFiles.push_back(pExtFile);
5874 }
5875 }
5876
5877 // check if a .gx99 (GigaPulse) file exists
5878 RIFF::Chunk* ckDoxf = pRIFF->GetSubChunk(CHUNK_ID_DOXF);
5879 if (ckDoxf) { // there is a .gx99 (GigaPulse) file ...
5880 std::string path = baseName + ".gx99";
5881 RIFF::File* pExtFile = new RIFF::File(path);
5882
5883 // skip unused int and filename
5884 ckDoxf->SetPos(132, RIFF::stream_curpos);
5885
5886 // check that the dlsids match
5887 RIFF::Chunk* ckDLSID = pExtFile->GetSubChunk(CHUNK_ID_DLID);
5888 if (ckDLSID) {
5889 ::DLS::dlsid_t idExpected;
5890 idExpected.ulData1 = ckDoxf->ReadInt32();
5891 idExpected.usData2 = ckDoxf->ReadInt16();
5892 idExpected.usData3 = ckDoxf->ReadInt16();
5893 ckDoxf->Read(idExpected.abData, 8, 1);
5894 ::DLS::dlsid_t idFound;
5895 ckDLSID->Read(&idFound.ulData1, 1, 4);
5896 ckDLSID->Read(&idFound.usData2, 1, 2);
5897 ckDLSID->Read(&idFound.usData3, 1, 2);
5898 ckDLSID->Read(idFound.abData, 8, 1);
5899 if (memcmp(&idExpected, &idFound, 16) != 0)
5900 throw gig::Exception("dlsid mismatch for GigaPulse file: %s", path.c_str());
5901 }
5902 poolFiles.push_back(pExtFile);
5903 ExtensionFiles.push_back(pExtFile);
5904 }
5905
5906 // load samples from extension files (if required)
5907 for (int i = 0; i < poolFiles.size(); i++) {
5908 RIFF::File* file = poolFiles[i];
5909 RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
5910 if (wvpl) {
5911 file_offset_t wvplFileOffset = wvpl->GetFilePos() -
5912 wvpl->GetPos(); // should be zero, but just to be sure
5913 RIFF::List* wave = wvpl->GetFirstSubList();
5914 while (wave) {
5915 if (wave->GetListType() == LIST_TYPE_WAVE) {
5916 // notify current progress
5917 if (pProgress) {
5918 const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
5919 __notify_progress(pProgress, subprogress);
5920 }
5921
5922 file_offset_t waveFileOffset = wave->GetFilePos();
5923 pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, i, iSampleIndex));
5924
5925 iSampleIndex++;
5926 }
5927 wave = wvpl->GetNextSubList();
5928 }
5929 }
5930 }
5931
5932 if (pProgress)
5933 __notify_progress(pProgress, 1.0); // notify done
5934 }
5935
5936 Instrument* File::GetFirstInstrument() {
5937 if (!pInstruments) LoadInstruments();
5938 if (!pInstruments) return NULL;
5939 InstrumentsIterator = pInstruments->begin();
5940 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5941 }
5942
5943 Instrument* File::GetNextInstrument() {
5944 if (!pInstruments) return NULL;
5945 InstrumentsIterator++;
5946 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5947 }
5948
5949 /**
5950 * Returns the total amount of instruments of this gig file.
5951 *
5952 * Note that this method might block for a long time in case it is required
5953 * to load the instruments info for the first time.
5954 *
5955 * @returns total amount of instruments
5956 */
5957 size_t File::CountInstruments() {
5958 if (!pInstruments) LoadInstruments();
5959 if (!pInstruments) return 0;
5960 return pInstruments->size();
5961 }
5962
5963 /**
5964 * Returns the instrument with the given index.
5965 *
5966 * @param index - number of the sought instrument (0..n)
5967 * @param pProgress - optional: callback function for progress notification
5968 * @returns sought instrument or NULL if there's no such instrument
5969 */
5970 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
5971 if (!pInstruments) {
5972 // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
5973
5974 if (pProgress) {
5975 // sample loading subtask
5976 progress_t subprogress;
5977 __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
5978 __notify_progress(&subprogress, 0.0f);
5979 if (GetAutoLoad())
5980 GetFirstSample(&subprogress); // now force all samples to be loaded
5981 __notify_progress(&subprogress, 1.0f);
5982
5983 // instrument loading subtask
5984 if (pProgress->callback) {
5985 subprogress.__range_min = subprogress.__range_max;
5986 subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
5987 }
5988 __notify_progress(&subprogress, 0.0f);
5989 LoadInstruments(&subprogress);
5990 __notify_progress(&subprogress, 1.0f);
5991 } else {
5992 // sample loading subtask
5993 if (GetAutoLoad())
5994 GetFirstSample(); // now force all samples to be loaded
5995
5996 // instrument loading subtask
5997 LoadInstruments();
5998 }
5999 }
6000 if (!pInstruments) return NULL;
6001 InstrumentsIterator = pInstruments->begin();
6002 for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
6003 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
6004 InstrumentsIterator++;
6005 }
6006 return NULL;
6007 }
6008
6009 /** @brief Add a new instrument definition.
6010 *
6011 * This will create a new Instrument object for the gig file. You have
6012 * to call Save() to make this persistent to the file.
6013 *
6014 * @returns pointer to new Instrument object
6015 */
6016 Instrument* File::AddInstrument() {
6017 if (!pInstruments) LoadInstruments();
6018 __ensureMandatoryChunksExist();
6019 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
6020 RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
6021
6022 // add mandatory chunks to get the chunks in right order
6023 lstInstr->AddSubList(LIST_TYPE_INFO);
6024 lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
6025
6026 Instrument* pInstrument = new Instrument(this, lstInstr);
6027 pInstrument->GenerateDLSID();
6028
6029 lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
6030
6031 // this string is needed for the gig to be loadable in GSt:
6032 pInstrument->pInfo->Software = "Endless Wave";
6033
6034 pInstruments->push_back(pInstrument);
6035 return pInstrument;
6036 }
6037
6038 /** @brief Add a duplicate of an existing instrument.
6039 *
6040 * Duplicates the instrument definition given by @a orig and adds it
6041 * to this file. This allows in an instrument editor application to
6042 * easily create variations of an instrument, which will be stored in
6043 * the same .gig file, sharing i.e. the same samples.
6044 *
6045 * Note that all sample pointers referenced by @a orig are simply copied as
6046 * memory address. Thus the respective samples are shared, not duplicated!
6047 *
6048 * You have to call Save() to make this persistent to the file.
6049 *
6050 * @param orig - original instrument to be copied
6051 * @returns duplicated copy of the given instrument
6052 */
6053 Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
6054 Instrument* instr = AddInstrument();
6055 instr->CopyAssign(orig);
6056 return instr;
6057 }
6058
6059 /** @brief Add content of another existing file.
6060 *
6061 * Duplicates the samples, groups and instruments of the original file
6062 * given by @a pFile and adds them to @c this File. In case @c this File is
6063 * a new one that you haven't saved before, then you have to call
6064 * SetFileName() before calling AddContentOf(), because this method will
6065 * automatically save this file during operation, which is required for
6066 * writing the sample waveform data by disk streaming.
6067 *
6068 * @param pFile - original file whose's content shall be copied from
6069 */
6070 void File::AddContentOf(File* pFile) {
6071 static int iCallCount = -1;
6072 iCallCount++;
6073 std::map<Group*,Group*> mGroups;
6074 std::map<Sample*,Sample*> mSamples;
6075
6076 // clone sample groups
6077 for (int i = 0; pFile->GetGroup(i); ++i) {
6078 Group* g = AddGroup();
6079 g->Name =
6080 "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
6081 mGroups[pFile->GetGroup(i)] = g;
6082 }
6083
6084 // clone samples (not waveform data here yet)
6085 for (int i = 0; pFile->GetSample(i); ++i) {
6086 Sample* s = AddSample();
6087 s->CopyAssignMeta(pFile->GetSample(i));
6088 mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
6089 mSamples[pFile->GetSample(i)] = s;
6090 }
6091
6092 // clone script groups and their scripts
6093 for (int iGroup = 0; pFile->GetScriptGroup(iGroup); ++iGroup) {
6094 ScriptGroup* sg = pFile->GetScriptGroup(iGroup);
6095 ScriptGroup* dg = AddScriptGroup();
6096 dg->Name = "COPY" + ToString(iCallCount) + "_" + sg->Name;
6097 for (int iScript = 0; sg->GetScript(iScript); ++iScript) {
6098 Script* ss = sg->GetScript(iScript);
6099 Script* ds = dg->AddScript();
6100 ds->CopyAssign(ss);
6101 }
6102 }
6103
6104 //BUG: For some reason this method only works with this additional
6105 // Save() call in between here.
6106 //
6107 // Important: The correct one of the 2 Save() methods has to be called
6108 // here, depending on whether the file is completely new or has been
6109 // saved to disk already, otherwise it will result in data corruption.
6110 if (pRIFF->IsNew())
6111 Save(GetFileName());
6112 else
6113 Save();
6114
6115 // clone instruments
6116 // (passing the crosslink table here for the cloned samples)
6117 for (int i = 0; pFile->GetInstrument(i); ++i) {
6118 Instrument* instr = AddInstrument();
6119 instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
6120 }
6121
6122 // Mandatory: file needs to be saved to disk at this point, so this
6123 // file has the correct size and data layout for writing the samples'
6124 // waveform data to disk.
6125 Save();
6126
6127 // clone samples' waveform data
6128 // (using direct read & write disk streaming)
6129 for (int i = 0; pFile->GetSample(i); ++i) {
6130 mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
6131 }
6132 }
6133
6134 /** @brief Delete an instrument.
6135 *
6136 * This will delete the given Instrument object from the gig file. You
6137 * have to call Save() to make this persistent to the file.
6138 *
6139 * @param pInstrument - instrument to delete
6140 * @throws gig::Exception if given instrument could not be found
6141 */
6142 void File::DeleteInstrument(Instrument* pInstrument) {
6143 if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
6144 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
6145 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
6146 pInstruments->erase(iter);
6147 pInstrument->DeleteChunks();
6148 delete pInstrument;
6149 }
6150
6151 void File::LoadInstruments() {
6152 LoadInstruments(NULL);
6153 }
6154
6155 void File::LoadInstruments(progress_t* pProgress) {
6156 if (!pInstruments) pInstruments = new InstrumentList;
6157 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
6158 if (lstInstruments) {
6159 int iInstrumentIndex = 0;
6160 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
6161 while (lstInstr) {
6162 if (lstInstr->GetListType() == LIST_TYPE_INS) {
6163 if (pProgress) {
6164 // notify current progress
6165 const float localProgress = (float) iInstrumentIndex / (float) Instruments;
6166 __notify_progress(pProgress, localProgress);
6167
6168 // divide local progress into subprogress for loading current Instrument
6169 progress_t subprogress;
6170 __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
6171
6172 pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
6173 } else {
6174 pInstruments->push_back(new Instrument(this, lstInstr));
6175 }
6176
6177 iInstrumentIndex++;
6178 }
6179 lstInstr = lstInstruments->GetNextSubList();
6180 }
6181 if (pProgress)
6182 __notify_progress(pProgress, 1.0); // notify done
6183 }
6184 }
6185
6186 /// Updates the 3crc chunk with the checksum of a sample. The
6187 /// update is done directly to disk, as this method is called
6188 /// after File::Save()
6189 void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
6190 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6191 if (!_3crc) return;
6192
6193 // get the index of the sample
6194 int iWaveIndex = GetWaveTableIndexOf(pSample);
6195 if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
6196
6197 // write the CRC-32 checksum to disk
6198 _3crc->SetPos(iWaveIndex * 8);
6199 uint32_t one = 1;
6200 _3crc->WriteUint32(&one); // always 1
6201 _3crc->WriteUint32(&crc);
6202 }
6203
6204 uint32_t File::GetSampleChecksum(Sample* pSample) {
6205 // get the index of the sample
6206 int iWaveIndex = GetWaveTableIndexOf(pSample);
6207 if (iWaveIndex < 0) throw gig::Exception("Could not retrieve reference crc of sample, could not resolve sample's wave table index");
6208
6209 return GetSampleChecksumByIndex(iWaveIndex);
6210 }
6211
6212 uint32_t File::GetSampleChecksumByIndex(int index) {
6213 if (index < 0) throw gig::Exception("Could not retrieve reference crc of sample, invalid wave pool index of sample");
6214
6215 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6216 if (!_3crc) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
6217 uint8_t* pData = (uint8_t*) _3crc->LoadChunkData();
6218 if (!pData) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
6219
6220 // read the CRC-32 checksum directly from disk
6221 size_t pos = index * 8;
6222 if (pos + 8 > _3crc->GetNewSize())
6223 throw gig::Exception("Could not retrieve reference crc of sample, could not seek to required position in crc chunk");
6224
6225 uint32_t one = load32(&pData[pos]); // always 1
6226 if (one != 1)
6227 throw gig::Exception("Could not retrieve reference crc of sample, because reference checksum table is damaged");
6228
6229 return load32(&pData[pos+4]);
6230 }
6231
6232 int File::GetWaveTableIndexOf(gig::Sample* pSample) {
6233 if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
6234 File::SampleList::iterator iter = pSamples->begin();
6235 File::SampleList::iterator end = pSamples->end();
6236 for (int index = 0; iter != end; ++iter, ++index)
6237 if (*iter == pSample)
6238 return index;
6239 return -1;
6240 }
6241
6242 /**
6243 * Checks whether the file's "3CRC" chunk was damaged. This chunk contains
6244 * the CRC32 check sums of all samples' raw wave data.
6245 *
6246 * @return true if 3CRC chunk is OK, or false if 3CRC chunk is damaged
6247 */
6248 bool File::VerifySampleChecksumTable() {
6249 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6250 if (!_3crc) return false;
6251 if (_3crc->GetNewSize() <= 0) return false;
6252 if (_3crc->GetNewSize() % 8) return false;
6253 if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
6254 if (_3crc->GetNewSize() != pSamples->size() * 8) return false;
6255
6256 const file_offset_t n = _3crc->GetNewSize() / 8;
6257
6258 uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6259 if (!pData) return false;
6260
6261 for (file_offset_t i = 0; i < n; ++i) {
6262 uint32_t one = pData[i*2];
6263 if (one != 1) return false;
6264 }
6265
6266 return true;
6267 }
6268
6269 /**
6270 * Recalculates CRC32 checksums for all samples and rebuilds this gig
6271 * file's checksum table with those new checksums. This might usually
6272 * just be necessary if the checksum table was damaged.
6273 *
6274 * @e IMPORTANT: The current implementation of this method only works
6275 * with files that have not been modified since it was loaded, because
6276 * it expects that no externally caused file structure changes are
6277 * required!
6278 *
6279 * Due to the expectation above, this method is currently protected
6280 * and actually only used by the command line tool "gigdump" yet.
6281 *
6282 * @returns true if Save() is required to be called after this call,
6283 * false if no further action is required
6284 */
6285 bool File::RebuildSampleChecksumTable() {
6286 // make sure sample chunks were scanned
6287 if (!pSamples) GetFirstSample();
6288
6289 bool bRequiresSave = false;
6290
6291 // make sure "3CRC" chunk exists with required size
6292 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6293 if (!_3crc) {
6294 _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6295 // the order of einf and 3crc is not the same in v2 and v3
6296 RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6297 if (einf && pVersion && pVersion->major > 2) pRIFF->MoveSubChunk(_3crc, einf);
6298 bRequiresSave = true;
6299 } else if (_3crc->GetNewSize() != pSamples->size() * 8) {
6300 _3crc->Resize(pSamples->size() * 8);
6301 bRequiresSave = true;
6302 }
6303
6304 if (bRequiresSave) { // refill CRC table for all samples in RAM ...
6305 uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6306 {
6307 File::SampleList::iterator iter = pSamples->begin();
6308 File::SampleList::iterator end = pSamples->end();
6309 for (; iter != end; ++iter) {
6310 gig::Sample* pSample = (gig::Sample*) *iter;
6311 int index = GetWaveTableIndexOf(pSample);
6312 if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6313 pData[index*2] = 1; // always 1
6314 pData[index*2+1] = pSample->CalculateWaveDataChecksum();
6315 }
6316 }
6317 } else { // no file structure changes necessary, so directly write to disk and we are done ...
6318 // make sure file is in write mode
6319 pRIFF->SetMode(RIFF::stream_mode_read_write);
6320 {
6321 File::SampleList::iterator iter = pSamples->begin();
6322 File::SampleList::iterator end = pSamples->end();
6323 for (; iter != end; ++iter) {
6324 gig::Sample* pSample = (gig::Sample*) *iter;
6325 int index = GetWaveTableIndexOf(pSample);
6326 if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6327 pSample->crc = pSample->CalculateWaveDataChecksum();
6328 SetSampleChecksum(pSample, pSample->crc);
6329 }
6330 }
6331 }
6332
6333 return bRequiresSave;
6334 }
6335
6336 Group* File::GetFirstGroup() {
6337 if (!pGroups) LoadGroups();
6338 // there must always be at least one group
6339 GroupsIterator = pGroups->begin();
6340 return *GroupsIterator;
6341 }
6342
6343 Group* File::GetNextGroup() {
6344 if (!pGroups) return NULL;
6345 ++GroupsIterator;
6346 return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
6347 }
6348
6349 /**
6350 * Returns the group with the given index.
6351 *
6352 * @param index - number of the sought group (0..n)
6353 * @returns sought group or NULL if there's no such group
6354 */
6355 Group* File::GetGroup(uint index) {
6356 if (!pGroups) LoadGroups();
6357 GroupsIterator = pGroups->begin();
6358 for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
6359 if (i == index) return *GroupsIterator;
6360 ++GroupsIterator;
6361 }
6362 return NULL;
6363 }
6364
6365 /**
6366 * Returns the group with the given group name.
6367 *
6368 * Note: group names don't have to be unique in the gig format! So there
6369 * can be multiple groups with the same name. This method will simply
6370 * return the first group found with the given name.
6371 *
6372 * @param name - name of the sought group
6373 * @returns sought group or NULL if there's no group with that name
6374 */
6375 Group* File::GetGroup(String name) {
6376 if (!pGroups) LoadGroups();
6377 GroupsIterator = pGroups->begin();
6378 for (uint i = 0; GroupsIterator != pGroups->end(); ++GroupsIterator, ++i)
6379 if ((*GroupsIterator)->Name == name) return *GroupsIterator;
6380 return NULL;
6381 }
6382
6383 Group* File::AddGroup() {
6384 if (!pGroups) LoadGroups();
6385 // there must always be at least one group
6386 __ensureMandatoryChunksExist();
6387 Group* pGroup = new Group(this, NULL);
6388 pGroups->push_back(pGroup);
6389 return pGroup;
6390 }
6391
6392 /** @brief Delete a group and its samples.
6393 *
6394 * This will delete the given Group object and all the samples that
6395 * belong to this group from the gig file. You have to call Save() to
6396 * make this persistent to the file.
6397 *
6398 * @param pGroup - group to delete
6399 * @throws gig::Exception if given group could not be found
6400 */
6401 void File::DeleteGroup(Group* pGroup) {
6402 if (!pGroups) LoadGroups();
6403 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6404 if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6405 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6406 // delete all members of this group
6407 for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
6408 DeleteSample(pSample);
6409 }
6410 // now delete this group object
6411 pGroups->erase(iter);
6412 pGroup->DeleteChunks();
6413 delete pGroup;
6414 }
6415
6416 /** @brief Delete a group.
6417 *
6418 * This will delete the given Group object from the gig file. All the
6419 * samples that belong to this group will not be deleted, but instead
6420 * be moved to another group. You have to call Save() to make this
6421 * persistent to the file.
6422 *
6423 * @param pGroup - group to delete
6424 * @throws gig::Exception if given group could not be found
6425 */
6426 void File::DeleteGroupOnly(Group* pGroup) {
6427 if (!pGroups) LoadGroups();
6428 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6429 if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6430 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6431 // move all members of this group to another group
6432 pGroup->MoveAll();
6433 pGroups->erase(iter);
6434 pGroup->DeleteChunks();
6435 delete pGroup;
6436 }
6437
6438 void File::LoadGroups() {
6439 if (!pGroups) pGroups = new std::list<Group*>;
6440 // try to read defined groups from file
6441 RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6442 if (lst3gri) {
6443 RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
6444 if (lst3gnl) {
6445 RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
6446 while (ck) {
6447 if (ck->GetChunkID() == CHUNK_ID_3GNM) {
6448 if (pVersion && pVersion->major > 2 &&
6449 strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
6450
6451 pGroups->push_back(new Group(this, ck));
6452 }
6453 ck = lst3gnl->GetNextSubChunk();
6454 }
6455 }
6456 }
6457 // if there were no group(s), create at least the mandatory default group
6458 if (!pGroups->size()) {
6459 Group* pGroup = new Group(this, NULL);
6460 pGroup->Name = "Default Group";
6461 pGroups->push_back(pGroup);
6462 }
6463 }
6464
6465 /** @brief Get instrument script group (by index).
6466 *
6467 * Returns the real-time instrument script group with the given index.
6468 *
6469 * @param index - number of the sought group (0..n)
6470 * @returns sought script group or NULL if there's no such group
6471 */
6472 ScriptGroup* File::GetScriptGroup(uint index) {
6473 if (!pScriptGroups) LoadScriptGroups();
6474 std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6475 for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6476 if (i == index) return *it;
6477 return NULL;
6478 }
6479
6480 /** @brief Get instrument script group (by name).
6481 *
6482 * Returns the first real-time instrument script group found with the given
6483 * group name. Note that group names may not necessarily be unique.
6484 *
6485 * @param name - name of the sought script group
6486 * @returns sought script group or NULL if there's no such group
6487 */
6488 ScriptGroup* File::GetScriptGroup(const String& name) {
6489 if (!pScriptGroups) LoadScriptGroups();
6490 std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6491 for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6492 if ((*it)->Name == name) return *it;
6493 return NULL;
6494 }
6495
6496 /** @brief Add new instrument script group.
6497 *
6498 * Adds a new, empty real-time instrument script group to the file.
6499 *
6500 * You have to call Save() to make this persistent to the file.
6501 *
6502 * @return new empty script group
6503 */
6504 ScriptGroup* File::AddScriptGroup() {
6505 if (!pScriptGroups) LoadScriptGroups();
6506 ScriptGroup* pScriptGroup = new ScriptGroup(this, NULL);
6507 pScriptGroups->push_back(pScriptGroup);
6508 return pScriptGroup;
6509 }
6510
6511 /** @brief Delete an instrument script group.
6512 *
6513 * This will delete the given real-time instrument script group and all its
6514 * instrument scripts it contains. References inside instruments that are
6515 * using the deleted scripts will be removed from the respective instruments
6516 * accordingly.
6517 *
6518 * You have to call Save() to make this persistent to the file.
6519 *
6520 * @param pScriptGroup - script group to delete
6521 * @throws gig::Exception if given script group could not be found
6522 */
6523 void File::DeleteScriptGroup(ScriptGroup* pScriptGroup) {
6524 if (!pScriptGroups) LoadScriptGroups();
6525 std::list<ScriptGroup*>::iterator iter =
6526 find(pScriptGroups->begin(), pScriptGroups->end(), pScriptGroup);
6527 if (iter == pScriptGroups->end())
6528 throw gig::Exception("Could not delete script group, could not find given script group");
6529 pScriptGroups->erase(iter);
6530 for (int i = 0; pScriptGroup->GetScript(i); ++i)
6531 pScriptGroup->DeleteScript(pScriptGroup->GetScript(i));
6532 if (pScriptGroup->pList)
6533 pScriptGroup->pList->GetParent()->DeleteSubChunk(pScriptGroup->pList);
6534 pScriptGroup->DeleteChunks();
6535 delete pScriptGroup;
6536 }
6537
6538 void File::LoadScriptGroups() {
6539 if (pScriptGroups) return;
6540 pScriptGroups = new std::list<ScriptGroup*>;
6541 RIFF::List* lstLS = pRIFF->GetSubList(LIST_TYPE_3LS);
6542 if (lstLS) {
6543 for (RIFF::List* lst = lstLS->GetFirstSubList(); lst;
6544 lst = lstLS->GetNextSubList())
6545 {
6546 if (lst->GetListType() == LIST_TYPE_RTIS) {
6547 pScriptGroups->push_back(new ScriptGroup(this, lst));
6548 }
6549 }
6550 }
6551 }
6552
6553 /**
6554 * Apply all the gig file's current instruments, samples, groups and settings
6555 * to the respective RIFF chunks. You have to call Save() to make changes
6556 * persistent.
6557 *
6558 * Usually there is absolutely no need to call this method explicitly.
6559 * It will be called automatically when File::Save() was called.
6560 *
6561 * @param pProgress - callback function for progress notification
6562 * @throws Exception - on errors
6563 */
6564 void File::UpdateChunks(progress_t* pProgress) {
6565 bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
6566
6567 // update own gig format extension chunks
6568 // (not part of the GigaStudio 4 format)
6569 RIFF::List* lst3LS = pRIFF->GetSubList(LIST_TYPE_3LS);
6570 if (!lst3LS) {
6571 lst3LS = pRIFF->AddSubList(LIST_TYPE_3LS);
6572 }
6573 // Make sure <3LS > chunk is placed before <ptbl> chunk. The precise
6574 // location of <3LS > is irrelevant, however it should be located
6575 // before the actual wave data
6576 RIFF::Chunk* ckPTBL = pRIFF->GetSubChunk(CHUNK_ID_PTBL);
6577 pRIFF->MoveSubChunk(lst3LS, ckPTBL);
6578
6579 // This must be performed before writing the chunks for instruments,
6580 // because the instruments' script slots will write the file offsets
6581 // of the respective instrument script chunk as reference.
6582 if (pScriptGroups) {
6583 // Update instrument script (group) chunks.
6584 for (std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6585 it != pScriptGroups->end(); ++it)
6586 {
6587 (*it)->UpdateChunks(pProgress);
6588 }
6589 }
6590
6591 // in case no libgig custom format data was added, then remove the
6592 // custom "3LS " chunk again
6593 if (!lst3LS->CountSubChunks()) {
6594 pRIFF->DeleteSubChunk(lst3LS);
6595 lst3LS = NULL;
6596 }
6597
6598 // first update base class's chunks
6599 DLS::File::UpdateChunks(pProgress);
6600
6601 if (newFile) {
6602 // INFO was added by Resource::UpdateChunks - make sure it
6603 // is placed first in file
6604 RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
6605 RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
6606 if (first != info) {
6607 pRIFF->MoveSubChunk(info, first);
6608 }
6609 }
6610
6611 // update group's chunks
6612 if (pGroups) {
6613 // make sure '3gri' and '3gnl' list chunks exist
6614 // (before updating the Group chunks)
6615 RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6616 if (!_3gri) {
6617 _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
6618 pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
6619 }
6620 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
6621 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
6622
6623 // v3: make sure the file has 128 3gnm chunks
6624 // (before updating the Group chunks)
6625 if (pVersion && pVersion->major > 2) {
6626 RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
6627 for (int i = 0 ; i < 128 ; i++) {
6628 // create 128 empty placeholder strings which will either
6629 // be filled by Group::UpdateChunks below or left empty.
6630 ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
6631 if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
6632 }
6633 }
6634
6635 std::list<Group*>::iterator iter = pGroups->begin();
6636 std::list<Group*>::iterator end = pGroups->end();
6637 for (; iter != end; ++iter) {
6638 (*iter)->UpdateChunks(pProgress);
6639 }
6640 }
6641
6642 // update einf chunk
6643
6644 // The einf chunk contains statistics about the gig file, such
6645 // as the number of regions and samples used by each
6646 // instrument. It is divided in equally sized parts, where the
6647 // first part contains information about the whole gig file,
6648 // and the rest of the parts map to each instrument in the
6649 // file.
6650 //
6651 // At the end of each part there is a bit map of each sample
6652 // in the file, where a set bit means that the sample is used
6653 // by the file/instrument.
6654 //
6655 // Note that there are several fields with unknown use. These
6656 // are set to zero.
6657
6658 int sublen = int(pSamples->size() / 8 + 49);
6659 int einfSize = (Instruments + 1) * sublen;
6660
6661 RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6662 if (einf) {
6663 if (einf->GetSize() != einfSize) {
6664 einf->Resize(einfSize);
6665 memset(einf->LoadChunkData(), 0, einfSize);
6666 }
6667 } else if (newFile) {
6668 einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
6669 }
6670 if (einf) {
6671 uint8_t* pData = (uint8_t*) einf->LoadChunkData();
6672
6673 std::map<gig::Sample*,int> sampleMap;
6674 int sampleIdx = 0;
6675 for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
6676 sampleMap[pSample] = sampleIdx++;
6677 }
6678
6679 int totnbusedsamples = 0;
6680 int totnbusedchannels = 0;
6681 int totnbregions = 0;
6682 int totnbdimregions = 0;
6683 int totnbloops = 0;
6684 int instrumentIdx = 0;
6685
6686 memset(&pData[48], 0, sublen - 48);
6687
6688 for (Instrument* instrument = GetFirstInstrument() ; instrument ;
6689 instrument = GetNextInstrument()) {
6690 int nbusedsamples = 0;
6691 int nbusedchannels = 0;
6692 int nbdimregions = 0;
6693 int nbloops = 0;
6694
6695 memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
6696
6697 for (Region* region = instrument->GetFirstRegion() ; region ;
6698 region = instrument->GetNextRegion()) {
6699 for (int i = 0 ; i < region->DimensionRegions ; i++) {
6700 gig::DimensionRegion *d = region->pDimensionRegions[i];
6701 if (d->pSample) {
6702 int sampleIdx = sampleMap[d->pSample];
6703 int byte = 48 + sampleIdx / 8;
6704 int bit = 1 << (sampleIdx & 7);
6705 if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
6706 pData[(instrumentIdx + 1) * sublen + byte] |= bit;
6707 nbusedsamples++;
6708 nbusedchannels += d->pSample->Channels;
6709
6710 if ((pData[byte] & bit) == 0) {
6711 pData[byte] |= bit;
6712 totnbusedsamples++;
6713 totnbusedchannels += d->pSample->Channels;
6714 }
6715 }
6716 }
6717 if (d->SampleLoops) nbloops++;
6718 }
6719 nbdimregions += region->DimensionRegions;
6720 }
6721 // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6722 // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
6723 store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
6724 store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
6725 store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
6726 store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
6727 store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
6728 store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
6729 // next 8 bytes unknown
6730 store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
6731 store32(&pData[(instrumentIdx + 1) * sublen + 40], (uint32_t) pSamples->size());
6732 // next 4 bytes unknown
6733
6734 totnbregions += instrument->Regions;
6735 totnbdimregions += nbdimregions;
6736 totnbloops += nbloops;
6737 instrumentIdx++;
6738 }
6739 // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6740 // store32(&pData[0], sublen);
6741 store32(&pData[4], totnbusedchannels);
6742 store32(&pData[8], totnbusedsamples);
6743 store32(&pData[12], Instruments);
6744 store32(&pData[16], totnbregions);
6745 store32(&pData[20], totnbdimregions);
6746 store32(&pData[24], totnbloops);
6747 // next 8 bytes unknown
6748 // next 4 bytes unknown, not always 0
6749 store32(&pData[40], (uint32_t) pSamples->size());
6750 // next 4 bytes unknown
6751 }
6752
6753 // update 3crc chunk
6754
6755 // The 3crc chunk contains CRC-32 checksums for the
6756 // samples. When saving a gig file to disk, we first update the 3CRC
6757 // chunk here (in RAM) with the old crc values which we read from the
6758 // 3CRC chunk when we opened the file (available with gig::Sample::crc
6759 // member variable). This step is required, because samples might have
6760 // been deleted by the user since the file was opened, which in turn
6761 // changes the order of the (i.e. old) checksums within the 3crc chunk.
6762 // If a sample was conciously modified by the user (that is if
6763 // Sample::Write() was called later on) then Sample::Write() will just
6764 // update the respective individual checksum(s) directly on disk and
6765 // leaves all other sample checksums untouched.
6766
6767 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6768 if (_3crc) {
6769 _3crc->Resize(pSamples->size() * 8);
6770 } else /*if (newFile)*/ {
6771 _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6772 // the order of einf and 3crc is not the same in v2 and v3
6773 if (einf && pVersion && pVersion->major > 2) pRIFF->MoveSubChunk(_3crc, einf);
6774 }
6775 { // must be performed in RAM here ...
6776 uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6777 if (pData) {
6778 File::SampleList::iterator iter = pSamples->begin();
6779 File::SampleList::iterator end = pSamples->end();
6780 for (int index = 0; iter != end; ++iter, ++index) {
6781 gig::Sample* pSample = (gig::Sample*) *iter;
6782 pData[index*2] = 1; // always 1
6783 pData[index*2+1] = pSample->crc;
6784 }
6785 }
6786 }
6787 }
6788
6789 void File::UpdateFileOffsets() {
6790 DLS::File::UpdateFileOffsets();
6791
6792 for (Instrument* instrument = GetFirstInstrument(); instrument;
6793 instrument = GetNextInstrument())
6794 {
6795 instrument->UpdateScriptFileOffsets();
6796 }
6797 }
6798
6799 /**
6800 * Enable / disable automatic loading. By default this property is
6801 * enabled and every information is loaded automatically. However
6802 * loading all Regions, DimensionRegions and especially samples might
6803 * take a long time for large .gig files, and sometimes one might only
6804 * be interested in retrieving very superficial informations like the
6805 * amount of instruments and their names. In this case one might disable
6806 * automatic loading to avoid very slow response times.
6807 *
6808 * @e CAUTION: by disabling this property many pointers (i.e. sample
6809 * references) and attributes will have invalid or even undefined
6810 * data! This feature is currently only intended for retrieving very
6811 * superficial information in a very fast way. Don't use it to retrieve
6812 * details like synthesis information or even to modify .gig files!
6813 */
6814 void File::SetAutoLoad(bool b) {
6815 bAutoLoad = b;
6816 }
6817
6818 /**
6819 * Returns whether automatic loading is enabled.
6820 * @see SetAutoLoad()
6821 */
6822 bool File::GetAutoLoad() {
6823 return bAutoLoad;
6824 }
6825
6826
6827
6828 // *************** Exception ***************
6829 // *
6830
6831 Exception::Exception() : DLS::Exception() {
6832 }
6833
6834 Exception::Exception(String format, ...) : DLS::Exception() {
6835 va_list arg;
6836 va_start(arg, format);
6837 Message = assemble(format, arg);
6838 va_end(arg);
6839 }
6840
6841 Exception::Exception(String format, va_list arg) : DLS::Exception() {
6842 Message = assemble(format, arg);
6843 }
6844
6845 void Exception::PrintMessage() {
6846 std::cout << "gig::Exception: " << Message << std::endl;
6847 }
6848
6849
6850 // *************** functions ***************
6851 // *
6852
6853 /**
6854 * Returns the name of this C++ library. This is usually "libgig" of
6855 * course. This call is equivalent to RIFF::libraryName() and
6856 * DLS::libraryName().
6857 */
6858 String libraryName() {
6859 return PACKAGE;
6860 }
6861
6862 /**
6863 * Returns version of this C++ library. This call is equivalent to
6864 * RIFF::libraryVersion() and DLS::libraryVersion().
6865 */
6866 String libraryVersion() {
6867 return VERSION;
6868 }
6869
6870 } // namespace gig

  ViewVC Help
Powered by ViewVC