/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Contents of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3720 - (show annotations) (download)
Sun Jan 19 21:04:04 2020 UTC (4 years, 2 months ago) by schoenebeck
File size: 303569 byte(s)
Another dimension order fix.

1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file access library *
4 * *
5 * Copyright (C) 2003-2020 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #include "gig.h"
25
26 #include "helper.h"
27 #include "Serialization.h"
28
29 #include <algorithm>
30 #include <math.h>
31 #include <iostream>
32 #include <assert.h>
33
34 /// libgig's current file format version (for extending the original Giga file
35 /// format with libgig's own custom data / custom features).
36 #define GIG_FILE_EXT_VERSION 2
37
38 /// Initial size of the sample buffer which is used for decompression of
39 /// compressed sample wave streams - this value should always be bigger than
40 /// the biggest sample piece expected to be read by the sampler engine,
41 /// otherwise the buffer size will be raised at runtime and thus the buffer
42 /// reallocated which is time consuming and unefficient.
43 #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
44
45 /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
46 #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
47 #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
48 #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
49 #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
50 #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
51 #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
52 #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
53 #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
54 #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
55 #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
56 #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
57 #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
58
59 #define SRLZ(member) \
60 archive->serializeMember(*this, member, #member);
61
62 namespace gig {
63
64 // *************** Internal functions for sample decompression ***************
65 // *
66
67 namespace {
68
69 inline int get12lo(const unsigned char* pSrc)
70 {
71 const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
72 return x & 0x800 ? x - 0x1000 : x;
73 }
74
75 inline int get12hi(const unsigned char* pSrc)
76 {
77 const int x = pSrc[1] >> 4 | pSrc[2] << 4;
78 return x & 0x800 ? x - 0x1000 : x;
79 }
80
81 inline int16_t get16(const unsigned char* pSrc)
82 {
83 return int16_t(pSrc[0] | pSrc[1] << 8);
84 }
85
86 inline int get24(const unsigned char* pSrc)
87 {
88 const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
89 return x & 0x800000 ? x - 0x1000000 : x;
90 }
91
92 inline void store24(unsigned char* pDst, int x)
93 {
94 pDst[0] = x;
95 pDst[1] = x >> 8;
96 pDst[2] = x >> 16;
97 }
98
99 void Decompress16(int compressionmode, const unsigned char* params,
100 int srcStep, int dstStep,
101 const unsigned char* pSrc, int16_t* pDst,
102 file_offset_t currentframeoffset,
103 file_offset_t copysamples)
104 {
105 switch (compressionmode) {
106 case 0: // 16 bit uncompressed
107 pSrc += currentframeoffset * srcStep;
108 while (copysamples) {
109 *pDst = get16(pSrc);
110 pDst += dstStep;
111 pSrc += srcStep;
112 copysamples--;
113 }
114 break;
115
116 case 1: // 16 bit compressed to 8 bit
117 int y = get16(params);
118 int dy = get16(params + 2);
119 while (currentframeoffset) {
120 dy -= int8_t(*pSrc);
121 y -= dy;
122 pSrc += srcStep;
123 currentframeoffset--;
124 }
125 while (copysamples) {
126 dy -= int8_t(*pSrc);
127 y -= dy;
128 *pDst = y;
129 pDst += dstStep;
130 pSrc += srcStep;
131 copysamples--;
132 }
133 break;
134 }
135 }
136
137 void Decompress24(int compressionmode, const unsigned char* params,
138 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
139 file_offset_t currentframeoffset,
140 file_offset_t copysamples, int truncatedBits)
141 {
142 int y, dy, ddy, dddy;
143
144 #define GET_PARAMS(params) \
145 y = get24(params); \
146 dy = y - get24((params) + 3); \
147 ddy = get24((params) + 6); \
148 dddy = get24((params) + 9)
149
150 #define SKIP_ONE(x) \
151 dddy -= (x); \
152 ddy -= dddy; \
153 dy = -dy - ddy; \
154 y += dy
155
156 #define COPY_ONE(x) \
157 SKIP_ONE(x); \
158 store24(pDst, y << truncatedBits); \
159 pDst += dstStep
160
161 switch (compressionmode) {
162 case 2: // 24 bit uncompressed
163 pSrc += currentframeoffset * 3;
164 while (copysamples) {
165 store24(pDst, get24(pSrc) << truncatedBits);
166 pDst += dstStep;
167 pSrc += 3;
168 copysamples--;
169 }
170 break;
171
172 case 3: // 24 bit compressed to 16 bit
173 GET_PARAMS(params);
174 while (currentframeoffset) {
175 SKIP_ONE(get16(pSrc));
176 pSrc += 2;
177 currentframeoffset--;
178 }
179 while (copysamples) {
180 COPY_ONE(get16(pSrc));
181 pSrc += 2;
182 copysamples--;
183 }
184 break;
185
186 case 4: // 24 bit compressed to 12 bit
187 GET_PARAMS(params);
188 while (currentframeoffset > 1) {
189 SKIP_ONE(get12lo(pSrc));
190 SKIP_ONE(get12hi(pSrc));
191 pSrc += 3;
192 currentframeoffset -= 2;
193 }
194 if (currentframeoffset) {
195 SKIP_ONE(get12lo(pSrc));
196 currentframeoffset--;
197 if (copysamples) {
198 COPY_ONE(get12hi(pSrc));
199 pSrc += 3;
200 copysamples--;
201 }
202 }
203 while (copysamples > 1) {
204 COPY_ONE(get12lo(pSrc));
205 COPY_ONE(get12hi(pSrc));
206 pSrc += 3;
207 copysamples -= 2;
208 }
209 if (copysamples) {
210 COPY_ONE(get12lo(pSrc));
211 }
212 break;
213
214 case 5: // 24 bit compressed to 8 bit
215 GET_PARAMS(params);
216 while (currentframeoffset) {
217 SKIP_ONE(int8_t(*pSrc++));
218 currentframeoffset--;
219 }
220 while (copysamples) {
221 COPY_ONE(int8_t(*pSrc++));
222 copysamples--;
223 }
224 break;
225 }
226 }
227
228 const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
229 const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
230 const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
231 const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
232 }
233
234
235
236 // *************** Internal CRC-32 (Cyclic Redundancy Check) functions ***************
237 // *
238
239 static uint32_t* __initCRCTable() {
240 static uint32_t res[256];
241
242 for (int i = 0 ; i < 256 ; i++) {
243 uint32_t c = i;
244 for (int j = 0 ; j < 8 ; j++) {
245 c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
246 }
247 res[i] = c;
248 }
249 return res;
250 }
251
252 static const uint32_t* __CRCTable = __initCRCTable();
253
254 /**
255 * Initialize a CRC variable.
256 *
257 * @param crc - variable to be initialized
258 */
259 inline static void __resetCRC(uint32_t& crc) {
260 crc = 0xffffffff;
261 }
262
263 /**
264 * Used to calculate checksums of the sample data in a gig file. The
265 * checksums are stored in the 3crc chunk of the gig file and
266 * automatically updated when a sample is written with Sample::Write().
267 *
268 * One should call __resetCRC() to initialize the CRC variable to be
269 * used before calling this function the first time.
270 *
271 * After initializing the CRC variable one can call this function
272 * arbitrary times, i.e. to split the overall CRC calculation into
273 * steps.
274 *
275 * Once the whole data was processed by __calculateCRC(), one should
276 * call __finalizeCRC() to get the final CRC result.
277 *
278 * @param buf - pointer to data the CRC shall be calculated of
279 * @param bufSize - size of the data to be processed
280 * @param crc - variable the CRC sum shall be stored to
281 */
282 static void __calculateCRC(unsigned char* buf, size_t bufSize, uint32_t& crc) {
283 for (size_t i = 0 ; i < bufSize ; i++) {
284 crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
285 }
286 }
287
288 /**
289 * Returns the final CRC result.
290 *
291 * @param crc - variable previously passed to __calculateCRC()
292 */
293 inline static void __finalizeCRC(uint32_t& crc) {
294 crc ^= 0xffffffff;
295 }
296
297
298
299 // *************** Other Internal functions ***************
300 // *
301
302 static split_type_t __resolveSplitType(dimension_t dimension) {
303 return (
304 dimension == dimension_layer ||
305 dimension == dimension_samplechannel ||
306 dimension == dimension_releasetrigger ||
307 dimension == dimension_keyboard ||
308 dimension == dimension_roundrobin ||
309 dimension == dimension_random ||
310 dimension == dimension_smartmidi ||
311 dimension == dimension_roundrobinkeyboard
312 ) ? split_type_bit : split_type_normal;
313 }
314
315 static int __resolveZoneSize(dimension_def_t& dimension_definition) {
316 return (dimension_definition.split_type == split_type_normal)
317 ? int(128.0 / dimension_definition.zones) : 0;
318 }
319
320
321
322 // *************** leverage_ctrl_t ***************
323 // *
324
325 void leverage_ctrl_t::serialize(Serialization::Archive* archive) {
326 SRLZ(type);
327 SRLZ(controller_number);
328 }
329
330
331
332 // *************** crossfade_t ***************
333 // *
334
335 void crossfade_t::serialize(Serialization::Archive* archive) {
336 SRLZ(in_start);
337 SRLZ(in_end);
338 SRLZ(out_start);
339 SRLZ(out_end);
340 }
341
342
343
344 // *************** eg_opt_t ***************
345 // *
346
347 eg_opt_t::eg_opt_t() {
348 AttackCancel = true;
349 AttackHoldCancel = true;
350 Decay1Cancel = true;
351 Decay2Cancel = true;
352 ReleaseCancel = true;
353 }
354
355 void eg_opt_t::serialize(Serialization::Archive* archive) {
356 SRLZ(AttackCancel);
357 SRLZ(AttackHoldCancel);
358 SRLZ(Decay1Cancel);
359 SRLZ(Decay2Cancel);
360 SRLZ(ReleaseCancel);
361 }
362
363
364
365 // *************** Sample ***************
366 // *
367
368 size_t Sample::Instances = 0;
369 buffer_t Sample::InternalDecompressionBuffer;
370
371 /** @brief Constructor.
372 *
373 * Load an existing sample or create a new one. A 'wave' list chunk must
374 * be given to this constructor. In case the given 'wave' list chunk
375 * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
376 * format and sample data will be loaded from there, otherwise default
377 * values will be used and those chunks will be created when
378 * File::Save() will be called later on.
379 *
380 * @param pFile - pointer to gig::File where this sample is
381 * located (or will be located)
382 * @param waveList - pointer to 'wave' list chunk which is (or
383 * will be) associated with this sample
384 * @param WavePoolOffset - offset of this sample data from wave pool
385 * ('wvpl') list chunk
386 * @param fileNo - number of an extension file where this sample
387 * is located, 0 otherwise
388 * @param index - wave pool index of sample (may be -1 on new sample)
389 */
390 Sample::Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo, int index)
391 : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset)
392 {
393 static const DLS::Info::string_length_t fixedStringLengths[] = {
394 { CHUNK_ID_INAM, 64 },
395 { 0, 0 }
396 };
397 pInfo->SetFixedStringLengths(fixedStringLengths);
398 Instances++;
399 FileNo = fileNo;
400
401 __resetCRC(crc);
402 // if this is not a new sample, try to get the sample's already existing
403 // CRC32 checksum from disk, this checksum will reflect the sample's CRC32
404 // checksum of the time when the sample was consciously modified by the
405 // user for the last time (by calling Sample::Write() that is).
406 if (index >= 0) { // not a new file ...
407 try {
408 uint32_t crc = pFile->GetSampleChecksumByIndex(index);
409 this->crc = crc;
410 } catch (...) {}
411 }
412
413 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
414 if (pCk3gix) {
415 pCk3gix->SetPos(0);
416
417 uint16_t iSampleGroup = pCk3gix->ReadInt16();
418 pGroup = pFile->GetGroup(iSampleGroup);
419 } else { // '3gix' chunk missing
420 // by default assigned to that mandatory "Default Group"
421 pGroup = pFile->GetGroup(0);
422 }
423
424 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
425 if (pCkSmpl) {
426 pCkSmpl->SetPos(0);
427
428 Manufacturer = pCkSmpl->ReadInt32();
429 Product = pCkSmpl->ReadInt32();
430 SamplePeriod = pCkSmpl->ReadInt32();
431 MIDIUnityNote = pCkSmpl->ReadInt32();
432 FineTune = pCkSmpl->ReadInt32();
433 pCkSmpl->Read(&SMPTEFormat, 1, 4);
434 SMPTEOffset = pCkSmpl->ReadInt32();
435 Loops = pCkSmpl->ReadInt32();
436 pCkSmpl->ReadInt32(); // manufByt
437 LoopID = pCkSmpl->ReadInt32();
438 pCkSmpl->Read(&LoopType, 1, 4);
439 LoopStart = pCkSmpl->ReadInt32();
440 LoopEnd = pCkSmpl->ReadInt32();
441 LoopFraction = pCkSmpl->ReadInt32();
442 LoopPlayCount = pCkSmpl->ReadInt32();
443 } else { // 'smpl' chunk missing
444 // use default values
445 Manufacturer = 0;
446 Product = 0;
447 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
448 MIDIUnityNote = 60;
449 FineTune = 0;
450 SMPTEFormat = smpte_format_no_offset;
451 SMPTEOffset = 0;
452 Loops = 0;
453 LoopID = 0;
454 LoopType = loop_type_normal;
455 LoopStart = 0;
456 LoopEnd = 0;
457 LoopFraction = 0;
458 LoopPlayCount = 0;
459 }
460
461 FrameTable = NULL;
462 SamplePos = 0;
463 RAMCache.Size = 0;
464 RAMCache.pStart = NULL;
465 RAMCache.NullExtensionSize = 0;
466
467 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
468
469 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
470 Compressed = ewav;
471 Dithered = false;
472 TruncatedBits = 0;
473 if (Compressed) {
474 ewav->SetPos(0);
475
476 uint32_t version = ewav->ReadInt32();
477 if (version > 2 && BitDepth == 24) {
478 Dithered = ewav->ReadInt32();
479 ewav->SetPos(Channels == 2 ? 84 : 64);
480 TruncatedBits = ewav->ReadInt32();
481 }
482 ScanCompressedSample();
483 }
484
485 // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
486 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
487 InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
488 InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
489 }
490 FrameOffset = 0; // just for streaming compressed samples
491
492 LoopSize = LoopEnd - LoopStart + 1;
493 }
494
495 /**
496 * Make a (semi) deep copy of the Sample object given by @a orig (without
497 * the actual waveform data) and assign it to this object.
498 *
499 * Discussion: copying .gig samples is a bit tricky. It requires three
500 * steps:
501 * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
502 * its new sample waveform data size.
503 * 2. Saving the file (done by File::Save()) so that it gains correct size
504 * and layout for writing the actual wave form data directly to disc
505 * in next step.
506 * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
507 *
508 * @param orig - original Sample object to be copied from
509 */
510 void Sample::CopyAssignMeta(const Sample* orig) {
511 // handle base classes
512 DLS::Sample::CopyAssignCore(orig);
513
514 // handle actual own attributes of this class
515 Manufacturer = orig->Manufacturer;
516 Product = orig->Product;
517 SamplePeriod = orig->SamplePeriod;
518 MIDIUnityNote = orig->MIDIUnityNote;
519 FineTune = orig->FineTune;
520 SMPTEFormat = orig->SMPTEFormat;
521 SMPTEOffset = orig->SMPTEOffset;
522 Loops = orig->Loops;
523 LoopID = orig->LoopID;
524 LoopType = orig->LoopType;
525 LoopStart = orig->LoopStart;
526 LoopEnd = orig->LoopEnd;
527 LoopSize = orig->LoopSize;
528 LoopFraction = orig->LoopFraction;
529 LoopPlayCount = orig->LoopPlayCount;
530
531 // schedule resizing this sample to the given sample's size
532 Resize(orig->GetSize());
533 }
534
535 /**
536 * Should be called after CopyAssignMeta() and File::Save() sequence.
537 * Read more about it in the discussion of CopyAssignMeta(). This method
538 * copies the actual waveform data by disk streaming.
539 *
540 * @e CAUTION: this method is currently not thread safe! During this
541 * operation the sample must not be used for other purposes by other
542 * threads!
543 *
544 * @param orig - original Sample object to be copied from
545 */
546 void Sample::CopyAssignWave(const Sample* orig) {
547 const int iReadAtOnce = 32*1024;
548 char* buf = new char[iReadAtOnce * orig->FrameSize];
549 Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
550 file_offset_t restorePos = pOrig->GetPos();
551 pOrig->SetPos(0);
552 SetPos(0);
553 for (file_offset_t n = pOrig->Read(buf, iReadAtOnce); n;
554 n = pOrig->Read(buf, iReadAtOnce))
555 {
556 Write(buf, n);
557 }
558 pOrig->SetPos(restorePos);
559 delete [] buf;
560 }
561
562 /**
563 * Apply sample and its settings to the respective RIFF chunks. You have
564 * to call File::Save() to make changes persistent.
565 *
566 * Usually there is absolutely no need to call this method explicitly.
567 * It will be called automatically when File::Save() was called.
568 *
569 * @param pProgress - callback function for progress notification
570 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
571 * was provided yet
572 * @throws gig::Exception if there is any invalid sample setting
573 */
574 void Sample::UpdateChunks(progress_t* pProgress) {
575 // first update base class's chunks
576 DLS::Sample::UpdateChunks(pProgress);
577
578 // make sure 'smpl' chunk exists
579 pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
580 if (!pCkSmpl) {
581 pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
582 memset(pCkSmpl->LoadChunkData(), 0, 60);
583 }
584 // update 'smpl' chunk
585 uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
586 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
587 store32(&pData[0], Manufacturer);
588 store32(&pData[4], Product);
589 store32(&pData[8], SamplePeriod);
590 store32(&pData[12], MIDIUnityNote);
591 store32(&pData[16], FineTune);
592 store32(&pData[20], SMPTEFormat);
593 store32(&pData[24], SMPTEOffset);
594 store32(&pData[28], Loops);
595
596 // we skip 'manufByt' for now (4 bytes)
597
598 store32(&pData[36], LoopID);
599 store32(&pData[40], LoopType);
600 store32(&pData[44], LoopStart);
601 store32(&pData[48], LoopEnd);
602 store32(&pData[52], LoopFraction);
603 store32(&pData[56], LoopPlayCount);
604
605 // make sure '3gix' chunk exists
606 pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
607 if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
608 // determine appropriate sample group index (to be stored in chunk)
609 uint16_t iSampleGroup = 0; // 0 refers to default sample group
610 File* pFile = static_cast<File*>(pParent);
611 if (pFile->pGroups) {
612 std::list<Group*>::iterator iter = pFile->pGroups->begin();
613 std::list<Group*>::iterator end = pFile->pGroups->end();
614 for (int i = 0; iter != end; i++, iter++) {
615 if (*iter == pGroup) {
616 iSampleGroup = i;
617 break; // found
618 }
619 }
620 }
621 // update '3gix' chunk
622 pData = (uint8_t*) pCk3gix->LoadChunkData();
623 store16(&pData[0], iSampleGroup);
624
625 // if the library user toggled the "Compressed" attribute from true to
626 // false, then the EWAV chunk associated with compressed samples needs
627 // to be deleted
628 RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
629 if (ewav && !Compressed) {
630 pWaveList->DeleteSubChunk(ewav);
631 }
632 }
633
634 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
635 void Sample::ScanCompressedSample() {
636 //TODO: we have to add some more scans here (e.g. determine compression rate)
637 this->SamplesTotal = 0;
638 std::list<file_offset_t> frameOffsets;
639
640 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
641 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
642
643 // Scanning
644 pCkData->SetPos(0);
645 if (Channels == 2) { // Stereo
646 for (int i = 0 ; ; i++) {
647 // for 24 bit samples every 8:th frame offset is
648 // stored, to save some memory
649 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
650
651 const int mode_l = pCkData->ReadUint8();
652 const int mode_r = pCkData->ReadUint8();
653 if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
654 const file_offset_t frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
655
656 if (pCkData->RemainingBytes() <= frameSize) {
657 SamplesInLastFrame =
658 ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
659 (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
660 SamplesTotal += SamplesInLastFrame;
661 break;
662 }
663 SamplesTotal += SamplesPerFrame;
664 pCkData->SetPos(frameSize, RIFF::stream_curpos);
665 }
666 }
667 else { // Mono
668 for (int i = 0 ; ; i++) {
669 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
670
671 const int mode = pCkData->ReadUint8();
672 if (mode > 5) throw gig::Exception("Unknown compression mode");
673 const file_offset_t frameSize = bytesPerFrame[mode];
674
675 if (pCkData->RemainingBytes() <= frameSize) {
676 SamplesInLastFrame =
677 ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
678 SamplesTotal += SamplesInLastFrame;
679 break;
680 }
681 SamplesTotal += SamplesPerFrame;
682 pCkData->SetPos(frameSize, RIFF::stream_curpos);
683 }
684 }
685 pCkData->SetPos(0);
686
687 // Build the frames table (which is used for fast resolving of a frame's chunk offset)
688 if (FrameTable) delete[] FrameTable;
689 FrameTable = new file_offset_t[frameOffsets.size()];
690 std::list<file_offset_t>::iterator end = frameOffsets.end();
691 std::list<file_offset_t>::iterator iter = frameOffsets.begin();
692 for (int i = 0; iter != end; i++, iter++) {
693 FrameTable[i] = *iter;
694 }
695 }
696
697 /**
698 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
699 * ReleaseSampleData() to free the memory if you don't need the cached
700 * sample data anymore.
701 *
702 * @returns buffer_t structure with start address and size of the buffer
703 * in bytes
704 * @see ReleaseSampleData(), Read(), SetPos()
705 */
706 buffer_t Sample::LoadSampleData() {
707 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
708 }
709
710 /**
711 * Reads (uncompresses if needed) and caches the first \a SampleCount
712 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
713 * memory space if you don't need the cached samples anymore. There is no
714 * guarantee that exactly \a SampleCount samples will be cached; this is
715 * not an error. The size will be eventually truncated e.g. to the
716 * beginning of a frame of a compressed sample. This is done for
717 * efficiency reasons while streaming the wave by your sampler engine
718 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
719 * that will be returned to determine the actual cached samples, but note
720 * that the size is given in bytes! You get the number of actually cached
721 * samples by dividing it by the frame size of the sample:
722 * @code
723 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
724 * long cachedsamples = buf.Size / pSample->FrameSize;
725 * @endcode
726 *
727 * @param SampleCount - number of sample points to load into RAM
728 * @returns buffer_t structure with start address and size of
729 * the cached sample data in bytes
730 * @see ReleaseSampleData(), Read(), SetPos()
731 */
732 buffer_t Sample::LoadSampleData(file_offset_t SampleCount) {
733 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
734 }
735
736 /**
737 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
738 * ReleaseSampleData() to free the memory if you don't need the cached
739 * sample data anymore.
740 * The method will add \a NullSamplesCount silence samples past the
741 * official buffer end (this won't affect the 'Size' member of the
742 * buffer_t structure, that means 'Size' always reflects the size of the
743 * actual sample data, the buffer might be bigger though). Silence
744 * samples past the official buffer are needed for differential
745 * algorithms that always have to take subsequent samples into account
746 * (resampling/interpolation would be an important example) and avoids
747 * memory access faults in such cases.
748 *
749 * @param NullSamplesCount - number of silence samples the buffer should
750 * be extended past it's data end
751 * @returns buffer_t structure with start address and
752 * size of the buffer in bytes
753 * @see ReleaseSampleData(), Read(), SetPos()
754 */
755 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
756 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
757 }
758
759 /**
760 * Reads (uncompresses if needed) and caches the first \a SampleCount
761 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
762 * memory space if you don't need the cached samples anymore. There is no
763 * guarantee that exactly \a SampleCount samples will be cached; this is
764 * not an error. The size will be eventually truncated e.g. to the
765 * beginning of a frame of a compressed sample. This is done for
766 * efficiency reasons while streaming the wave by your sampler engine
767 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
768 * that will be returned to determine the actual cached samples, but note
769 * that the size is given in bytes! You get the number of actually cached
770 * samples by dividing it by the frame size of the sample:
771 * @code
772 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
773 * long cachedsamples = buf.Size / pSample->FrameSize;
774 * @endcode
775 * The method will add \a NullSamplesCount silence samples past the
776 * official buffer end (this won't affect the 'Size' member of the
777 * buffer_t structure, that means 'Size' always reflects the size of the
778 * actual sample data, the buffer might be bigger though). Silence
779 * samples past the official buffer are needed for differential
780 * algorithms that always have to take subsequent samples into account
781 * (resampling/interpolation would be an important example) and avoids
782 * memory access faults in such cases.
783 *
784 * @param SampleCount - number of sample points to load into RAM
785 * @param NullSamplesCount - number of silence samples the buffer should
786 * be extended past it's data end
787 * @returns buffer_t structure with start address and
788 * size of the cached sample data in bytes
789 * @see ReleaseSampleData(), Read(), SetPos()
790 */
791 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount) {
792 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
793 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
794 file_offset_t allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
795 SetPos(0); // reset read position to begin of sample
796 RAMCache.pStart = new int8_t[allocationsize];
797 RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
798 RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
799 // fill the remaining buffer space with silence samples
800 memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
801 return GetCache();
802 }
803
804 /**
805 * Returns current cached sample points. A buffer_t structure will be
806 * returned which contains address pointer to the begin of the cache and
807 * the size of the cached sample data in bytes. Use
808 * <i>LoadSampleData()</i> to cache a specific amount of sample points in
809 * RAM.
810 *
811 * @returns buffer_t structure with current cached sample points
812 * @see LoadSampleData();
813 */
814 buffer_t Sample::GetCache() {
815 // return a copy of the buffer_t structure
816 buffer_t result;
817 result.Size = this->RAMCache.Size;
818 result.pStart = this->RAMCache.pStart;
819 result.NullExtensionSize = this->RAMCache.NullExtensionSize;
820 return result;
821 }
822
823 /**
824 * Frees the cached sample from RAM if loaded with
825 * <i>LoadSampleData()</i> previously.
826 *
827 * @see LoadSampleData();
828 */
829 void Sample::ReleaseSampleData() {
830 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
831 RAMCache.pStart = NULL;
832 RAMCache.Size = 0;
833 RAMCache.NullExtensionSize = 0;
834 }
835
836 /** @brief Resize sample.
837 *
838 * Resizes the sample's wave form data, that is the actual size of
839 * sample wave data possible to be written for this sample. This call
840 * will return immediately and just schedule the resize operation. You
841 * should call File::Save() to actually perform the resize operation(s)
842 * "physically" to the file. As this can take a while on large files, it
843 * is recommended to call Resize() first on all samples which have to be
844 * resized and finally to call File::Save() to perform all those resize
845 * operations in one rush.
846 *
847 * The actual size (in bytes) is dependant to the current FrameSize
848 * value. You may want to set FrameSize before calling Resize().
849 *
850 * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
851 * enlarged samples before calling File::Save() as this might exceed the
852 * current sample's boundary!
853 *
854 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
855 * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
856 * other formats will fail!
857 *
858 * @param NewSize - new sample wave data size in sample points (must be
859 * greater than zero)
860 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
861 * @throws DLS::Exception if \a NewSize is less than 1 or unrealistic large
862 * @throws gig::Exception if existing sample is compressed
863 * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
864 * DLS::Sample::FormatTag, File::Save()
865 */
866 void Sample::Resize(file_offset_t NewSize) {
867 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
868 DLS::Sample::Resize(NewSize);
869 }
870
871 /**
872 * Sets the position within the sample (in sample points, not in
873 * bytes). Use this method and <i>Read()</i> if you don't want to load
874 * the sample into RAM, thus for disk streaming.
875 *
876 * Although the original Gigasampler engine doesn't allow positioning
877 * within compressed samples, I decided to implement it. Even though
878 * the Gigasampler format doesn't allow to define loops for compressed
879 * samples at the moment, positioning within compressed samples might be
880 * interesting for some sampler engines though. The only drawback about
881 * my decision is that it takes longer to load compressed gig Files on
882 * startup, because it's neccessary to scan the samples for some
883 * mandatory informations. But I think as it doesn't affect the runtime
884 * efficiency, nobody will have a problem with that.
885 *
886 * @param SampleCount number of sample points to jump
887 * @param Whence optional: to which relation \a SampleCount refers
888 * to, if omited <i>RIFF::stream_start</i> is assumed
889 * @returns the new sample position
890 * @see Read()
891 */
892 file_offset_t Sample::SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence) {
893 if (Compressed) {
894 switch (Whence) {
895 case RIFF::stream_curpos:
896 this->SamplePos += SampleCount;
897 break;
898 case RIFF::stream_end:
899 this->SamplePos = this->SamplesTotal - 1 - SampleCount;
900 break;
901 case RIFF::stream_backward:
902 this->SamplePos -= SampleCount;
903 break;
904 case RIFF::stream_start: default:
905 this->SamplePos = SampleCount;
906 break;
907 }
908 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
909
910 file_offset_t frame = this->SamplePos / 2048; // to which frame to jump
911 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
912 pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
913 return this->SamplePos;
914 }
915 else { // not compressed
916 file_offset_t orderedBytes = SampleCount * this->FrameSize;
917 file_offset_t result = pCkData->SetPos(orderedBytes, Whence);
918 return (result == orderedBytes) ? SampleCount
919 : result / this->FrameSize;
920 }
921 }
922
923 /**
924 * Returns the current position in the sample (in sample points).
925 */
926 file_offset_t Sample::GetPos() const {
927 if (Compressed) return SamplePos;
928 else return pCkData->GetPos() / FrameSize;
929 }
930
931 /**
932 * Reads \a SampleCount number of sample points from the position stored
933 * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
934 * the position within the sample respectively, this method honors the
935 * looping informations of the sample (if any). The sample wave stream
936 * will be decompressed on the fly if using a compressed sample. Use this
937 * method if you don't want to load the sample into RAM, thus for disk
938 * streaming. All this methods needs to know to proceed with streaming
939 * for the next time you call this method is stored in \a pPlaybackState.
940 * You have to allocate and initialize the playback_state_t structure by
941 * yourself before you use it to stream a sample:
942 * @code
943 * gig::playback_state_t playbackstate;
944 * playbackstate.position = 0;
945 * playbackstate.reverse = false;
946 * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
947 * @endcode
948 * You don't have to take care of things like if there is actually a loop
949 * defined or if the current read position is located within a loop area.
950 * The method already handles such cases by itself.
951 *
952 * <b>Caution:</b> If you are using more than one streaming thread, you
953 * have to use an external decompression buffer for <b>EACH</b>
954 * streaming thread to avoid race conditions and crashes!
955 *
956 * @param pBuffer destination buffer
957 * @param SampleCount number of sample points to read
958 * @param pPlaybackState will be used to store and reload the playback
959 * state for the next ReadAndLoop() call
960 * @param pDimRgn dimension region with looping information
961 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
962 * @returns number of successfully read sample points
963 * @see CreateDecompressionBuffer()
964 */
965 file_offset_t Sample::ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState,
966 DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
967 file_offset_t samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
968 uint8_t* pDst = (uint8_t*) pBuffer;
969
970 SetPos(pPlaybackState->position); // recover position from the last time
971
972 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
973
974 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
975 const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
976
977 if (GetPos() <= loopEnd) {
978 switch (loop.LoopType) {
979
980 case loop_type_bidirectional: { //TODO: not tested yet!
981 do {
982 // if not endless loop check if max. number of loop cycles have been passed
983 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
984
985 if (!pPlaybackState->reverse) { // forward playback
986 do {
987 samplestoloopend = loopEnd - GetPos();
988 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
989 samplestoread -= readsamples;
990 totalreadsamples += readsamples;
991 if (readsamples == samplestoloopend) {
992 pPlaybackState->reverse = true;
993 break;
994 }
995 } while (samplestoread && readsamples);
996 }
997 else { // backward playback
998
999 // as we can only read forward from disk, we have to
1000 // determine the end position within the loop first,
1001 // read forward from that 'end' and finally after
1002 // reading, swap all sample frames so it reflects
1003 // backward playback
1004
1005 file_offset_t swapareastart = totalreadsamples;
1006 file_offset_t loopoffset = GetPos() - loop.LoopStart;
1007 file_offset_t samplestoreadinloop = Min(samplestoread, loopoffset);
1008 file_offset_t reverseplaybackend = GetPos() - samplestoreadinloop;
1009
1010 SetPos(reverseplaybackend);
1011
1012 // read samples for backward playback
1013 do {
1014 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
1015 samplestoreadinloop -= readsamples;
1016 samplestoread -= readsamples;
1017 totalreadsamples += readsamples;
1018 } while (samplestoreadinloop && readsamples);
1019
1020 SetPos(reverseplaybackend); // pretend we really read backwards
1021
1022 if (reverseplaybackend == loop.LoopStart) {
1023 pPlaybackState->loop_cycles_left--;
1024 pPlaybackState->reverse = false;
1025 }
1026
1027 // reverse the sample frames for backward playback
1028 if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
1029 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1030 }
1031 } while (samplestoread && readsamples);
1032 break;
1033 }
1034
1035 case loop_type_backward: { // TODO: not tested yet!
1036 // forward playback (not entered the loop yet)
1037 if (!pPlaybackState->reverse) do {
1038 samplestoloopend = loopEnd - GetPos();
1039 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1040 samplestoread -= readsamples;
1041 totalreadsamples += readsamples;
1042 if (readsamples == samplestoloopend) {
1043 pPlaybackState->reverse = true;
1044 break;
1045 }
1046 } while (samplestoread && readsamples);
1047
1048 if (!samplestoread) break;
1049
1050 // as we can only read forward from disk, we have to
1051 // determine the end position within the loop first,
1052 // read forward from that 'end' and finally after
1053 // reading, swap all sample frames so it reflects
1054 // backward playback
1055
1056 file_offset_t swapareastart = totalreadsamples;
1057 file_offset_t loopoffset = GetPos() - loop.LoopStart;
1058 file_offset_t samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1059 : samplestoread;
1060 file_offset_t reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1061
1062 SetPos(reverseplaybackend);
1063
1064 // read samples for backward playback
1065 do {
1066 // if not endless loop check if max. number of loop cycles have been passed
1067 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1068 samplestoloopend = loopEnd - GetPos();
1069 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1070 samplestoreadinloop -= readsamples;
1071 samplestoread -= readsamples;
1072 totalreadsamples += readsamples;
1073 if (readsamples == samplestoloopend) {
1074 pPlaybackState->loop_cycles_left--;
1075 SetPos(loop.LoopStart);
1076 }
1077 } while (samplestoreadinloop && readsamples);
1078
1079 SetPos(reverseplaybackend); // pretend we really read backwards
1080
1081 // reverse the sample frames for backward playback
1082 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1083 break;
1084 }
1085
1086 default: case loop_type_normal: {
1087 do {
1088 // if not endless loop check if max. number of loop cycles have been passed
1089 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1090 samplestoloopend = loopEnd - GetPos();
1091 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1092 samplestoread -= readsamples;
1093 totalreadsamples += readsamples;
1094 if (readsamples == samplestoloopend) {
1095 pPlaybackState->loop_cycles_left--;
1096 SetPos(loop.LoopStart);
1097 }
1098 } while (samplestoread && readsamples);
1099 break;
1100 }
1101 }
1102 }
1103 }
1104
1105 // read on without looping
1106 if (samplestoread) do {
1107 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
1108 samplestoread -= readsamples;
1109 totalreadsamples += readsamples;
1110 } while (readsamples && samplestoread);
1111
1112 // store current position
1113 pPlaybackState->position = GetPos();
1114
1115 return totalreadsamples;
1116 }
1117
1118 /**
1119 * Reads \a SampleCount number of sample points from the current
1120 * position into the buffer pointed by \a pBuffer and increments the
1121 * position within the sample. The sample wave stream will be
1122 * decompressed on the fly if using a compressed sample. Use this method
1123 * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1124 * thus for disk streaming.
1125 *
1126 * <b>Caution:</b> If you are using more than one streaming thread, you
1127 * have to use an external decompression buffer for <b>EACH</b>
1128 * streaming thread to avoid race conditions and crashes!
1129 *
1130 * For 16 bit samples, the data in the buffer will be int16_t
1131 * (using native endianness). For 24 bit, the buffer will
1132 * contain three bytes per sample, little-endian.
1133 *
1134 * @param pBuffer destination buffer
1135 * @param SampleCount number of sample points to read
1136 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
1137 * @returns number of successfully read sample points
1138 * @see SetPos(), CreateDecompressionBuffer()
1139 */
1140 file_offset_t Sample::Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer) {
1141 if (SampleCount == 0) return 0;
1142 if (!Compressed) {
1143 if (BitDepth == 24) {
1144 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1145 }
1146 else { // 16 bit
1147 // (pCkData->Read does endian correction)
1148 return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1149 : pCkData->Read(pBuffer, SampleCount, 2);
1150 }
1151 }
1152 else {
1153 if (this->SamplePos >= this->SamplesTotal) return 0;
1154 //TODO: efficiency: maybe we should test for an average compression rate
1155 file_offset_t assumedsize = GuessSize(SampleCount),
1156 remainingbytes = 0, // remaining bytes in the local buffer
1157 remainingsamples = SampleCount,
1158 copysamples, skipsamples,
1159 currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
1160 this->FrameOffset = 0;
1161
1162 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1163
1164 // if decompression buffer too small, then reduce amount of samples to read
1165 if (pDecompressionBuffer->Size < assumedsize) {
1166 std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1167 SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1168 remainingsamples = SampleCount;
1169 assumedsize = GuessSize(SampleCount);
1170 }
1171
1172 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1173 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1174 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1175 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1176
1177 while (remainingsamples && remainingbytes) {
1178 file_offset_t framesamples = SamplesPerFrame;
1179 file_offset_t framebytes, rightChannelOffset = 0, nextFrameOffset;
1180
1181 int mode_l = *pSrc++, mode_r = 0;
1182
1183 if (Channels == 2) {
1184 mode_r = *pSrc++;
1185 framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1186 rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1187 nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1188 if (remainingbytes < framebytes) { // last frame in sample
1189 framesamples = SamplesInLastFrame;
1190 if (mode_l == 4 && (framesamples & 1)) {
1191 rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1192 }
1193 else {
1194 rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1195 }
1196 }
1197 }
1198 else {
1199 framebytes = bytesPerFrame[mode_l] + 1;
1200 nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1201 if (remainingbytes < framebytes) {
1202 framesamples = SamplesInLastFrame;
1203 }
1204 }
1205
1206 // determine how many samples in this frame to skip and read
1207 if (currentframeoffset + remainingsamples >= framesamples) {
1208 if (currentframeoffset <= framesamples) {
1209 copysamples = framesamples - currentframeoffset;
1210 skipsamples = currentframeoffset;
1211 }
1212 else {
1213 copysamples = 0;
1214 skipsamples = framesamples;
1215 }
1216 }
1217 else {
1218 // This frame has enough data for pBuffer, but not
1219 // all of the frame is needed. Set file position
1220 // to start of this frame for next call to Read.
1221 copysamples = remainingsamples;
1222 skipsamples = currentframeoffset;
1223 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1224 this->FrameOffset = currentframeoffset + copysamples;
1225 }
1226 remainingsamples -= copysamples;
1227
1228 if (remainingbytes > framebytes) {
1229 remainingbytes -= framebytes;
1230 if (remainingsamples == 0 &&
1231 currentframeoffset + copysamples == framesamples) {
1232 // This frame has enough data for pBuffer, and
1233 // all of the frame is needed. Set file
1234 // position to start of next frame for next
1235 // call to Read. FrameOffset is 0.
1236 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1237 }
1238 }
1239 else remainingbytes = 0;
1240
1241 currentframeoffset -= skipsamples;
1242
1243 if (copysamples == 0) {
1244 // skip this frame
1245 pSrc += framebytes - Channels;
1246 }
1247 else {
1248 const unsigned char* const param_l = pSrc;
1249 if (BitDepth == 24) {
1250 if (mode_l != 2) pSrc += 12;
1251
1252 if (Channels == 2) { // Stereo
1253 const unsigned char* const param_r = pSrc;
1254 if (mode_r != 2) pSrc += 12;
1255
1256 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1257 skipsamples, copysamples, TruncatedBits);
1258 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1259 skipsamples, copysamples, TruncatedBits);
1260 pDst24 += copysamples * 6;
1261 }
1262 else { // Mono
1263 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1264 skipsamples, copysamples, TruncatedBits);
1265 pDst24 += copysamples * 3;
1266 }
1267 }
1268 else { // 16 bit
1269 if (mode_l) pSrc += 4;
1270
1271 int step;
1272 if (Channels == 2) { // Stereo
1273 const unsigned char* const param_r = pSrc;
1274 if (mode_r) pSrc += 4;
1275
1276 step = (2 - mode_l) + (2 - mode_r);
1277 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1278 Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1279 skipsamples, copysamples);
1280 pDst += copysamples << 1;
1281 }
1282 else { // Mono
1283 step = 2 - mode_l;
1284 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1285 pDst += copysamples;
1286 }
1287 }
1288 pSrc += nextFrameOffset;
1289 }
1290
1291 // reload from disk to local buffer if needed
1292 if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1293 assumedsize = GuessSize(remainingsamples);
1294 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1295 if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1296 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1297 pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1298 }
1299 } // while
1300
1301 this->SamplePos += (SampleCount - remainingsamples);
1302 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1303 return (SampleCount - remainingsamples);
1304 }
1305 }
1306
1307 /** @brief Write sample wave data.
1308 *
1309 * Writes \a SampleCount number of sample points from the buffer pointed
1310 * by \a pBuffer and increments the position within the sample. Use this
1311 * method to directly write the sample data to disk, i.e. if you don't
1312 * want or cannot load the whole sample data into RAM.
1313 *
1314 * You have to Resize() the sample to the desired size and call
1315 * File::Save() <b>before</b> using Write().
1316 *
1317 * Note: there is currently no support for writing compressed samples.
1318 *
1319 * For 16 bit samples, the data in the source buffer should be
1320 * int16_t (using native endianness). For 24 bit, the buffer
1321 * should contain three bytes per sample, little-endian.
1322 *
1323 * @param pBuffer - source buffer
1324 * @param SampleCount - number of sample points to write
1325 * @throws DLS::Exception if current sample size is too small
1326 * @throws gig::Exception if sample is compressed
1327 * @see DLS::LoadSampleData()
1328 */
1329 file_offset_t Sample::Write(void* pBuffer, file_offset_t SampleCount) {
1330 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1331
1332 // if this is the first write in this sample, reset the
1333 // checksum calculator
1334 if (pCkData->GetPos() == 0) {
1335 __resetCRC(crc);
1336 }
1337 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1338 file_offset_t res;
1339 if (BitDepth == 24) {
1340 res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1341 } else { // 16 bit
1342 res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1343 : pCkData->Write(pBuffer, SampleCount, 2);
1344 }
1345 __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1346
1347 // if this is the last write, update the checksum chunk in the
1348 // file
1349 if (pCkData->GetPos() == pCkData->GetSize()) {
1350 __finalizeCRC(crc);
1351 File* pFile = static_cast<File*>(GetParent());
1352 pFile->SetSampleChecksum(this, crc);
1353 }
1354 return res;
1355 }
1356
1357 /**
1358 * Allocates a decompression buffer for streaming (compressed) samples
1359 * with Sample::Read(). If you are using more than one streaming thread
1360 * in your application you <b>HAVE</b> to create a decompression buffer
1361 * for <b>EACH</b> of your streaming threads and provide it with the
1362 * Sample::Read() call in order to avoid race conditions and crashes.
1363 *
1364 * You should free the memory occupied by the allocated buffer(s) once
1365 * you don't need one of your streaming threads anymore by calling
1366 * DestroyDecompressionBuffer().
1367 *
1368 * @param MaxReadSize - the maximum size (in sample points) you ever
1369 * expect to read with one Read() call
1370 * @returns allocated decompression buffer
1371 * @see DestroyDecompressionBuffer()
1372 */
1373 buffer_t Sample::CreateDecompressionBuffer(file_offset_t MaxReadSize) {
1374 buffer_t result;
1375 const double worstCaseHeaderOverhead =
1376 (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1377 result.Size = (file_offset_t) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1378 result.pStart = new int8_t[result.Size];
1379 result.NullExtensionSize = 0;
1380 return result;
1381 }
1382
1383 /**
1384 * Free decompression buffer, previously created with
1385 * CreateDecompressionBuffer().
1386 *
1387 * @param DecompressionBuffer - previously allocated decompression
1388 * buffer to free
1389 */
1390 void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1391 if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1392 delete[] (int8_t*) DecompressionBuffer.pStart;
1393 DecompressionBuffer.pStart = NULL;
1394 DecompressionBuffer.Size = 0;
1395 DecompressionBuffer.NullExtensionSize = 0;
1396 }
1397 }
1398
1399 /**
1400 * Returns pointer to the Group this Sample belongs to. In the .gig
1401 * format a sample always belongs to one group. If it wasn't explicitly
1402 * assigned to a certain group, it will be automatically assigned to a
1403 * default group.
1404 *
1405 * @returns Sample's Group (never NULL)
1406 */
1407 Group* Sample::GetGroup() const {
1408 return pGroup;
1409 }
1410
1411 /**
1412 * Returns the CRC-32 checksum of the sample's raw wave form data at the
1413 * time when this sample's wave form data was modified for the last time
1414 * by calling Write(). This checksum only covers the raw wave form data,
1415 * not any meta informations like i.e. bit depth or loop points. Since
1416 * this method just returns the checksum stored for this sample i.e. when
1417 * the gig file was loaded, this method returns immediately. So it does no
1418 * recalcuation of the checksum with the currently available sample wave
1419 * form data.
1420 *
1421 * @see VerifyWaveData()
1422 */
1423 uint32_t Sample::GetWaveDataCRC32Checksum() {
1424 return crc;
1425 }
1426
1427 /**
1428 * Checks the integrity of this sample's raw audio wave data. Whenever a
1429 * Sample's raw wave data is intentionally modified (i.e. by calling
1430 * Write() and supplying the new raw audio wave form data) a CRC32 checksum
1431 * is calculated and stored/updated for this sample, along to the sample's
1432 * meta informations.
1433 *
1434 * Now by calling this method the current raw audio wave data is checked
1435 * against the already stored CRC32 check sum in order to check whether the
1436 * sample data had been damaged unintentionally for some reason. Since by
1437 * calling this method always the entire raw audio wave data has to be
1438 * read, verifying all samples this way may take a long time accordingly.
1439 * And that's also the reason why the sample integrity is not checked by
1440 * default whenever a gig file is loaded. So this method must be called
1441 * explicitly to fulfill this task.
1442 *
1443 * @param pActually - (optional) if provided, will be set to the actually
1444 * calculated checksum of the current raw wave form data,
1445 * you can get the expected checksum instead by calling
1446 * GetWaveDataCRC32Checksum()
1447 * @returns true if sample is OK or false if the sample is damaged
1448 * @throws Exception if no checksum had been stored to disk for this
1449 * sample yet, or on I/O issues
1450 * @see GetWaveDataCRC32Checksum()
1451 */
1452 bool Sample::VerifyWaveData(uint32_t* pActually) {
1453 //File* pFile = static_cast<File*>(GetParent());
1454 uint32_t crc = CalculateWaveDataChecksum();
1455 if (pActually) *pActually = crc;
1456 return crc == this->crc;
1457 }
1458
1459 uint32_t Sample::CalculateWaveDataChecksum() {
1460 const size_t sz = 20*1024; // 20kB buffer size
1461 std::vector<uint8_t> buffer(sz);
1462 buffer.resize(sz);
1463
1464 const size_t n = sz / FrameSize;
1465 SetPos(0);
1466 uint32_t crc = 0;
1467 __resetCRC(crc);
1468 while (true) {
1469 file_offset_t nRead = Read(&buffer[0], n);
1470 if (nRead <= 0) break;
1471 __calculateCRC(&buffer[0], nRead * FrameSize, crc);
1472 }
1473 __finalizeCRC(crc);
1474 return crc;
1475 }
1476
1477 Sample::~Sample() {
1478 Instances--;
1479 if (!Instances && InternalDecompressionBuffer.Size) {
1480 delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1481 InternalDecompressionBuffer.pStart = NULL;
1482 InternalDecompressionBuffer.Size = 0;
1483 }
1484 if (FrameTable) delete[] FrameTable;
1485 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1486 }
1487
1488
1489
1490 // *************** DimensionRegion ***************
1491 // *
1492
1493 size_t DimensionRegion::Instances = 0;
1494 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1495
1496 DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1497 Instances++;
1498
1499 pSample = NULL;
1500 pRegion = pParent;
1501
1502 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1503 else memset(&Crossfade, 0, 4);
1504
1505 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1506
1507 RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1508 if (_3ewa) { // if '3ewa' chunk exists
1509 _3ewa->SetPos(0);
1510
1511 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1512 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1513 EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1514 _3ewa->ReadInt16(); // unknown
1515 LFO1InternalDepth = _3ewa->ReadUint16();
1516 _3ewa->ReadInt16(); // unknown
1517 LFO3InternalDepth = _3ewa->ReadInt16();
1518 _3ewa->ReadInt16(); // unknown
1519 LFO1ControlDepth = _3ewa->ReadUint16();
1520 _3ewa->ReadInt16(); // unknown
1521 LFO3ControlDepth = _3ewa->ReadInt16();
1522 EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1523 EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1524 _3ewa->ReadInt16(); // unknown
1525 EG1Sustain = _3ewa->ReadUint16();
1526 EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1527 EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1528 uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1529 EG1ControllerInvert = eg1ctrloptions & 0x01;
1530 EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1531 EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1532 EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1533 EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1534 uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1535 EG2ControllerInvert = eg2ctrloptions & 0x01;
1536 EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1537 EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1538 EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1539 LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1540 EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1541 EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1542 _3ewa->ReadInt16(); // unknown
1543 EG2Sustain = _3ewa->ReadUint16();
1544 EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1545 _3ewa->ReadInt16(); // unknown
1546 LFO2ControlDepth = _3ewa->ReadUint16();
1547 LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1548 _3ewa->ReadInt16(); // unknown
1549 LFO2InternalDepth = _3ewa->ReadUint16();
1550 int32_t eg1decay2 = _3ewa->ReadInt32();
1551 EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1552 EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1553 _3ewa->ReadInt16(); // unknown
1554 EG1PreAttack = _3ewa->ReadUint16();
1555 int32_t eg2decay2 = _3ewa->ReadInt32();
1556 EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1557 EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1558 _3ewa->ReadInt16(); // unknown
1559 EG2PreAttack = _3ewa->ReadUint16();
1560 uint8_t velocityresponse = _3ewa->ReadUint8();
1561 if (velocityresponse < 5) {
1562 VelocityResponseCurve = curve_type_nonlinear;
1563 VelocityResponseDepth = velocityresponse;
1564 } else if (velocityresponse < 10) {
1565 VelocityResponseCurve = curve_type_linear;
1566 VelocityResponseDepth = velocityresponse - 5;
1567 } else if (velocityresponse < 15) {
1568 VelocityResponseCurve = curve_type_special;
1569 VelocityResponseDepth = velocityresponse - 10;
1570 } else {
1571 VelocityResponseCurve = curve_type_unknown;
1572 VelocityResponseDepth = 0;
1573 }
1574 uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1575 if (releasevelocityresponse < 5) {
1576 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1577 ReleaseVelocityResponseDepth = releasevelocityresponse;
1578 } else if (releasevelocityresponse < 10) {
1579 ReleaseVelocityResponseCurve = curve_type_linear;
1580 ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1581 } else if (releasevelocityresponse < 15) {
1582 ReleaseVelocityResponseCurve = curve_type_special;
1583 ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1584 } else {
1585 ReleaseVelocityResponseCurve = curve_type_unknown;
1586 ReleaseVelocityResponseDepth = 0;
1587 }
1588 VelocityResponseCurveScaling = _3ewa->ReadUint8();
1589 AttenuationControllerThreshold = _3ewa->ReadInt8();
1590 _3ewa->ReadInt32(); // unknown
1591 SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1592 _3ewa->ReadInt16(); // unknown
1593 uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1594 PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1595 if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1596 else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1597 else DimensionBypass = dim_bypass_ctrl_none;
1598 uint8_t pan = _3ewa->ReadUint8();
1599 Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1600 SelfMask = _3ewa->ReadInt8() & 0x01;
1601 _3ewa->ReadInt8(); // unknown
1602 uint8_t lfo3ctrl = _3ewa->ReadUint8();
1603 LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1604 LFO3Sync = lfo3ctrl & 0x20; // bit 5
1605 InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1606 AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1607 uint8_t lfo2ctrl = _3ewa->ReadUint8();
1608 LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1609 LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1610 LFO2Sync = lfo2ctrl & 0x20; // bit 5
1611 bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1612 uint8_t lfo1ctrl = _3ewa->ReadUint8();
1613 LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1614 LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1615 LFO1Sync = lfo1ctrl & 0x40; // bit 6
1616 VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1617 : vcf_res_ctrl_none;
1618 uint16_t eg3depth = _3ewa->ReadUint16();
1619 EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1620 : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1621 _3ewa->ReadInt16(); // unknown
1622 ChannelOffset = _3ewa->ReadUint8() / 4;
1623 uint8_t regoptions = _3ewa->ReadUint8();
1624 MSDecode = regoptions & 0x01; // bit 0
1625 SustainDefeat = regoptions & 0x02; // bit 1
1626 _3ewa->ReadInt16(); // unknown
1627 VelocityUpperLimit = _3ewa->ReadInt8();
1628 _3ewa->ReadInt8(); // unknown
1629 _3ewa->ReadInt16(); // unknown
1630 ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1631 _3ewa->ReadInt8(); // unknown
1632 _3ewa->ReadInt8(); // unknown
1633 EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1634 uint8_t vcfcutoff = _3ewa->ReadUint8();
1635 VCFEnabled = vcfcutoff & 0x80; // bit 7
1636 VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1637 VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1638 uint8_t vcfvelscale = _3ewa->ReadUint8();
1639 VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1640 VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1641 _3ewa->ReadInt8(); // unknown
1642 uint8_t vcfresonance = _3ewa->ReadUint8();
1643 VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1644 VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1645 uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1646 VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1647 VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1648 uint8_t vcfvelocity = _3ewa->ReadUint8();
1649 VCFVelocityDynamicRange = vcfvelocity % 5;
1650 VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1651 VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1652 if (VCFType == vcf_type_lowpass) {
1653 if (lfo3ctrl & 0x40) // bit 6
1654 VCFType = vcf_type_lowpassturbo;
1655 }
1656 if (_3ewa->RemainingBytes() >= 8) {
1657 _3ewa->Read(DimensionUpperLimits, 1, 8);
1658 } else {
1659 memset(DimensionUpperLimits, 0, 8);
1660 }
1661 } else { // '3ewa' chunk does not exist yet
1662 // use default values
1663 LFO3Frequency = 1.0;
1664 EG3Attack = 0.0;
1665 LFO1InternalDepth = 0;
1666 LFO3InternalDepth = 0;
1667 LFO1ControlDepth = 0;
1668 LFO3ControlDepth = 0;
1669 EG1Attack = 0.0;
1670 EG1Decay1 = 0.005;
1671 EG1Sustain = 1000;
1672 EG1Release = 0.3;
1673 EG1Controller.type = eg1_ctrl_t::type_none;
1674 EG1Controller.controller_number = 0;
1675 EG1ControllerInvert = false;
1676 EG1ControllerAttackInfluence = 0;
1677 EG1ControllerDecayInfluence = 0;
1678 EG1ControllerReleaseInfluence = 0;
1679 EG2Controller.type = eg2_ctrl_t::type_none;
1680 EG2Controller.controller_number = 0;
1681 EG2ControllerInvert = false;
1682 EG2ControllerAttackInfluence = 0;
1683 EG2ControllerDecayInfluence = 0;
1684 EG2ControllerReleaseInfluence = 0;
1685 LFO1Frequency = 1.0;
1686 EG2Attack = 0.0;
1687 EG2Decay1 = 0.005;
1688 EG2Sustain = 1000;
1689 EG2Release = 60;
1690 LFO2ControlDepth = 0;
1691 LFO2Frequency = 1.0;
1692 LFO2InternalDepth = 0;
1693 EG1Decay2 = 0.0;
1694 EG1InfiniteSustain = true;
1695 EG1PreAttack = 0;
1696 EG2Decay2 = 0.0;
1697 EG2InfiniteSustain = true;
1698 EG2PreAttack = 0;
1699 VelocityResponseCurve = curve_type_nonlinear;
1700 VelocityResponseDepth = 3;
1701 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1702 ReleaseVelocityResponseDepth = 3;
1703 VelocityResponseCurveScaling = 32;
1704 AttenuationControllerThreshold = 0;
1705 SampleStartOffset = 0;
1706 PitchTrack = true;
1707 DimensionBypass = dim_bypass_ctrl_none;
1708 Pan = 0;
1709 SelfMask = true;
1710 LFO3Controller = lfo3_ctrl_modwheel;
1711 LFO3Sync = false;
1712 InvertAttenuationController = false;
1713 AttenuationController.type = attenuation_ctrl_t::type_none;
1714 AttenuationController.controller_number = 0;
1715 LFO2Controller = lfo2_ctrl_internal;
1716 LFO2FlipPhase = false;
1717 LFO2Sync = false;
1718 LFO1Controller = lfo1_ctrl_internal;
1719 LFO1FlipPhase = false;
1720 LFO1Sync = false;
1721 VCFResonanceController = vcf_res_ctrl_none;
1722 EG3Depth = 0;
1723 ChannelOffset = 0;
1724 MSDecode = false;
1725 SustainDefeat = false;
1726 VelocityUpperLimit = 0;
1727 ReleaseTriggerDecay = 0;
1728 EG1Hold = false;
1729 VCFEnabled = false;
1730 VCFCutoff = 0;
1731 VCFCutoffController = vcf_cutoff_ctrl_none;
1732 VCFCutoffControllerInvert = false;
1733 VCFVelocityScale = 0;
1734 VCFResonance = 0;
1735 VCFResonanceDynamic = false;
1736 VCFKeyboardTracking = false;
1737 VCFKeyboardTrackingBreakpoint = 0;
1738 VCFVelocityDynamicRange = 0x04;
1739 VCFVelocityCurve = curve_type_linear;
1740 VCFType = vcf_type_lowpass;
1741 memset(DimensionUpperLimits, 127, 8);
1742 }
1743
1744 // chunk for own format extensions, these will *NOT* work with Gigasampler/GigaStudio !
1745 RIFF::Chunk* lsde = _3ewl->GetSubChunk(CHUNK_ID_LSDE);
1746 if (lsde) { // format extension for EG behavior options
1747 lsde->SetPos(0);
1748
1749 eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
1750 for (int i = 0; i < 2; ++i) { // NOTE: we reserved a 3rd byte for a potential future EG3 option
1751 unsigned char byte = lsde->ReadUint8();
1752 pEGOpts[i]->AttackCancel = byte & 1;
1753 pEGOpts[i]->AttackHoldCancel = byte & (1 << 1);
1754 pEGOpts[i]->Decay1Cancel = byte & (1 << 2);
1755 pEGOpts[i]->Decay2Cancel = byte & (1 << 3);
1756 pEGOpts[i]->ReleaseCancel = byte & (1 << 4);
1757 }
1758 }
1759 // format extension for sustain pedal up effect on release trigger samples
1760 if (lsde && lsde->GetSize() > 3) { // NOTE: we reserved the 3rd byte for a potential future EG3 option
1761 lsde->SetPos(3);
1762 uint8_t byte = lsde->ReadUint8();
1763 SustainReleaseTrigger = static_cast<sust_rel_trg_t>(byte & 0x03);
1764 NoNoteOffReleaseTrigger = byte >> 7;
1765 } else {
1766 SustainReleaseTrigger = sust_rel_trg_none;
1767 NoNoteOffReleaseTrigger = false;
1768 }
1769 // format extension for LFOs' wave form, phase displacement and for
1770 // LFO3's flip phase
1771 if (lsde && lsde->GetSize() > 4) {
1772 lsde->SetPos(4);
1773 LFO1WaveForm = static_cast<lfo_wave_t>( lsde->ReadUint16() );
1774 LFO2WaveForm = static_cast<lfo_wave_t>( lsde->ReadUint16() );
1775 LFO3WaveForm = static_cast<lfo_wave_t>( lsde->ReadUint16() );
1776 lsde->ReadUint16(); // unused 16 bits, reserved for potential future use
1777 LFO1Phase = (double) GIG_EXP_DECODE( lsde->ReadInt32() );
1778 LFO2Phase = (double) GIG_EXP_DECODE( lsde->ReadInt32() );
1779 LFO3Phase = (double) GIG_EXP_DECODE( lsde->ReadInt32() );
1780 const uint32_t flags = lsde->ReadInt32();
1781 LFO3FlipPhase = flags & 1;
1782 } else {
1783 LFO1WaveForm = lfo_wave_sine;
1784 LFO2WaveForm = lfo_wave_sine;
1785 LFO3WaveForm = lfo_wave_sine;
1786 LFO1Phase = 0.0;
1787 LFO2Phase = 0.0;
1788 LFO3Phase = 0.0;
1789 LFO3FlipPhase = false;
1790 }
1791
1792 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1793 VelocityResponseDepth,
1794 VelocityResponseCurveScaling);
1795
1796 pVelocityReleaseTable = GetReleaseVelocityTable(
1797 ReleaseVelocityResponseCurve,
1798 ReleaseVelocityResponseDepth
1799 );
1800
1801 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1802 VCFVelocityDynamicRange,
1803 VCFVelocityScale,
1804 VCFCutoffController);
1805
1806 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1807 VelocityTable = 0;
1808 }
1809
1810 /*
1811 * Constructs a DimensionRegion by copying all parameters from
1812 * another DimensionRegion
1813 */
1814 DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1815 Instances++;
1816 //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1817 *this = src; // default memberwise shallow copy of all parameters
1818 pParentList = _3ewl; // restore the chunk pointer
1819
1820 // deep copy of owned structures
1821 if (src.VelocityTable) {
1822 VelocityTable = new uint8_t[128];
1823 for (int k = 0 ; k < 128 ; k++)
1824 VelocityTable[k] = src.VelocityTable[k];
1825 }
1826 if (src.pSampleLoops) {
1827 pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1828 for (int k = 0 ; k < src.SampleLoops ; k++)
1829 pSampleLoops[k] = src.pSampleLoops[k];
1830 }
1831 }
1832
1833 /**
1834 * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1835 * and assign it to this object.
1836 *
1837 * Note that all sample pointers referenced by @a orig are simply copied as
1838 * memory address. Thus the respective samples are shared, not duplicated!
1839 *
1840 * @param orig - original DimensionRegion object to be copied from
1841 */
1842 void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1843 CopyAssign(orig, NULL);
1844 }
1845
1846 /**
1847 * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1848 * and assign it to this object.
1849 *
1850 * @param orig - original DimensionRegion object to be copied from
1851 * @param mSamples - crosslink map between the foreign file's samples and
1852 * this file's samples
1853 */
1854 void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1855 // delete all allocated data first
1856 if (VelocityTable) delete [] VelocityTable;
1857 if (pSampleLoops) delete [] pSampleLoops;
1858
1859 // backup parent list pointer
1860 RIFF::List* p = pParentList;
1861
1862 gig::Sample* pOriginalSample = pSample;
1863 gig::Region* pOriginalRegion = pRegion;
1864
1865 //NOTE: copy code copied from assignment constructor above, see comment there as well
1866
1867 *this = *orig; // default memberwise shallow copy of all parameters
1868
1869 // restore members that shall not be altered
1870 pParentList = p; // restore the chunk pointer
1871 pRegion = pOriginalRegion;
1872
1873 // only take the raw sample reference reference if the
1874 // two DimensionRegion objects are part of the same file
1875 if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1876 pSample = pOriginalSample;
1877 }
1878
1879 if (mSamples && mSamples->count(orig->pSample)) {
1880 pSample = mSamples->find(orig->pSample)->second;
1881 }
1882
1883 // deep copy of owned structures
1884 if (orig->VelocityTable) {
1885 VelocityTable = new uint8_t[128];
1886 for (int k = 0 ; k < 128 ; k++)
1887 VelocityTable[k] = orig->VelocityTable[k];
1888 }
1889 if (orig->pSampleLoops) {
1890 pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1891 for (int k = 0 ; k < orig->SampleLoops ; k++)
1892 pSampleLoops[k] = orig->pSampleLoops[k];
1893 }
1894 }
1895
1896 void DimensionRegion::serialize(Serialization::Archive* archive) {
1897 // in case this class will become backward incompatible one day,
1898 // then set a version and minimum version for this class like:
1899 //archive->setVersion(*this, 2);
1900 //archive->setMinVersion(*this, 1);
1901
1902 SRLZ(VelocityUpperLimit);
1903 SRLZ(EG1PreAttack);
1904 SRLZ(EG1Attack);
1905 SRLZ(EG1Decay1);
1906 SRLZ(EG1Decay2);
1907 SRLZ(EG1InfiniteSustain);
1908 SRLZ(EG1Sustain);
1909 SRLZ(EG1Release);
1910 SRLZ(EG1Hold);
1911 SRLZ(EG1Controller);
1912 SRLZ(EG1ControllerInvert);
1913 SRLZ(EG1ControllerAttackInfluence);
1914 SRLZ(EG1ControllerDecayInfluence);
1915 SRLZ(EG1ControllerReleaseInfluence);
1916 SRLZ(LFO1WaveForm);
1917 SRLZ(LFO1Frequency);
1918 SRLZ(LFO1Phase);
1919 SRLZ(LFO1InternalDepth);
1920 SRLZ(LFO1ControlDepth);
1921 SRLZ(LFO1Controller);
1922 SRLZ(LFO1FlipPhase);
1923 SRLZ(LFO1Sync);
1924 SRLZ(EG2PreAttack);
1925 SRLZ(EG2Attack);
1926 SRLZ(EG2Decay1);
1927 SRLZ(EG2Decay2);
1928 SRLZ(EG2InfiniteSustain);
1929 SRLZ(EG2Sustain);
1930 SRLZ(EG2Release);
1931 SRLZ(EG2Controller);
1932 SRLZ(EG2ControllerInvert);
1933 SRLZ(EG2ControllerAttackInfluence);
1934 SRLZ(EG2ControllerDecayInfluence);
1935 SRLZ(EG2ControllerReleaseInfluence);
1936 SRLZ(LFO2WaveForm);
1937 SRLZ(LFO2Frequency);
1938 SRLZ(LFO2Phase);
1939 SRLZ(LFO2InternalDepth);
1940 SRLZ(LFO2ControlDepth);
1941 SRLZ(LFO2Controller);
1942 SRLZ(LFO2FlipPhase);
1943 SRLZ(LFO2Sync);
1944 SRLZ(EG3Attack);
1945 SRLZ(EG3Depth);
1946 SRLZ(LFO3WaveForm);
1947 SRLZ(LFO3Frequency);
1948 SRLZ(LFO3Phase);
1949 SRLZ(LFO3InternalDepth);
1950 SRLZ(LFO3ControlDepth);
1951 SRLZ(LFO3Controller);
1952 SRLZ(LFO3FlipPhase);
1953 SRLZ(LFO3Sync);
1954 SRLZ(VCFEnabled);
1955 SRLZ(VCFType);
1956 SRLZ(VCFCutoffController);
1957 SRLZ(VCFCutoffControllerInvert);
1958 SRLZ(VCFCutoff);
1959 SRLZ(VCFVelocityCurve);
1960 SRLZ(VCFVelocityScale);
1961 SRLZ(VCFVelocityDynamicRange);
1962 SRLZ(VCFResonance);
1963 SRLZ(VCFResonanceDynamic);
1964 SRLZ(VCFResonanceController);
1965 SRLZ(VCFKeyboardTracking);
1966 SRLZ(VCFKeyboardTrackingBreakpoint);
1967 SRLZ(VelocityResponseCurve);
1968 SRLZ(VelocityResponseDepth);
1969 SRLZ(VelocityResponseCurveScaling);
1970 SRLZ(ReleaseVelocityResponseCurve);
1971 SRLZ(ReleaseVelocityResponseDepth);
1972 SRLZ(ReleaseTriggerDecay);
1973 SRLZ(Crossfade);
1974 SRLZ(PitchTrack);
1975 SRLZ(DimensionBypass);
1976 SRLZ(Pan);
1977 SRLZ(SelfMask);
1978 SRLZ(AttenuationController);
1979 SRLZ(InvertAttenuationController);
1980 SRLZ(AttenuationControllerThreshold);
1981 SRLZ(ChannelOffset);
1982 SRLZ(SustainDefeat);
1983 SRLZ(MSDecode);
1984 //SRLZ(SampleStartOffset);
1985 SRLZ(SampleAttenuation);
1986 SRLZ(EG1Options);
1987 SRLZ(EG2Options);
1988 SRLZ(SustainReleaseTrigger);
1989 SRLZ(NoNoteOffReleaseTrigger);
1990
1991 // derived attributes from DLS::Sampler
1992 SRLZ(FineTune);
1993 SRLZ(Gain);
1994 }
1995
1996 /**
1997 * Updates the respective member variable and updates @c SampleAttenuation
1998 * which depends on this value.
1999 */
2000 void DimensionRegion::SetGain(int32_t gain) {
2001 DLS::Sampler::SetGain(gain);
2002 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
2003 }
2004
2005 /**
2006 * Apply dimension region settings to the respective RIFF chunks. You
2007 * have to call File::Save() to make changes persistent.
2008 *
2009 * Usually there is absolutely no need to call this method explicitly.
2010 * It will be called automatically when File::Save() was called.
2011 *
2012 * @param pProgress - callback function for progress notification
2013 */
2014 void DimensionRegion::UpdateChunks(progress_t* pProgress) {
2015 // first update base class's chunk
2016 DLS::Sampler::UpdateChunks(pProgress);
2017
2018 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
2019 uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
2020 pData[12] = Crossfade.in_start;
2021 pData[13] = Crossfade.in_end;
2022 pData[14] = Crossfade.out_start;
2023 pData[15] = Crossfade.out_end;
2024
2025 // make sure '3ewa' chunk exists
2026 RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
2027 if (!_3ewa) {
2028 File* pFile = (File*) GetParent()->GetParent()->GetParent();
2029 bool versiongt2 = pFile->pVersion && pFile->pVersion->major > 2;
2030 _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, versiongt2 ? 148 : 140);
2031 }
2032 pData = (uint8_t*) _3ewa->LoadChunkData();
2033
2034 // update '3ewa' chunk with DimensionRegion's current settings
2035
2036 const uint32_t chunksize = (uint32_t) _3ewa->GetNewSize();
2037 store32(&pData[0], chunksize); // unknown, always chunk size?
2038
2039 const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
2040 store32(&pData[4], lfo3freq);
2041
2042 const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
2043 store32(&pData[8], eg3attack);
2044
2045 // next 2 bytes unknown
2046
2047 store16(&pData[14], LFO1InternalDepth);
2048
2049 // next 2 bytes unknown
2050
2051 store16(&pData[18], LFO3InternalDepth);
2052
2053 // next 2 bytes unknown
2054
2055 store16(&pData[22], LFO1ControlDepth);
2056
2057 // next 2 bytes unknown
2058
2059 store16(&pData[26], LFO3ControlDepth);
2060
2061 const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
2062 store32(&pData[28], eg1attack);
2063
2064 const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
2065 store32(&pData[32], eg1decay1);
2066
2067 // next 2 bytes unknown
2068
2069 store16(&pData[38], EG1Sustain);
2070
2071 const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
2072 store32(&pData[40], eg1release);
2073
2074 const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
2075 pData[44] = eg1ctl;
2076
2077 const uint8_t eg1ctrloptions =
2078 (EG1ControllerInvert ? 0x01 : 0x00) |
2079 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
2080 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
2081 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
2082 pData[45] = eg1ctrloptions;
2083
2084 const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
2085 pData[46] = eg2ctl;
2086
2087 const uint8_t eg2ctrloptions =
2088 (EG2ControllerInvert ? 0x01 : 0x00) |
2089 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
2090 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
2091 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
2092 pData[47] = eg2ctrloptions;
2093
2094 const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
2095 store32(&pData[48], lfo1freq);
2096
2097 const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
2098 store32(&pData[52], eg2attack);
2099
2100 const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
2101 store32(&pData[56], eg2decay1);
2102
2103 // next 2 bytes unknown
2104
2105 store16(&pData[62], EG2Sustain);
2106
2107 const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
2108 store32(&pData[64], eg2release);
2109
2110 // next 2 bytes unknown
2111
2112 store16(&pData[70], LFO2ControlDepth);
2113
2114 const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
2115 store32(&pData[72], lfo2freq);
2116
2117 // next 2 bytes unknown
2118
2119 store16(&pData[78], LFO2InternalDepth);
2120
2121 const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
2122 store32(&pData[80], eg1decay2);
2123
2124 // next 2 bytes unknown
2125
2126 store16(&pData[86], EG1PreAttack);
2127
2128 const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
2129 store32(&pData[88], eg2decay2);
2130
2131 // next 2 bytes unknown
2132
2133 store16(&pData[94], EG2PreAttack);
2134
2135 {
2136 if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
2137 uint8_t velocityresponse = VelocityResponseDepth;
2138 switch (VelocityResponseCurve) {
2139 case curve_type_nonlinear:
2140 break;
2141 case curve_type_linear:
2142 velocityresponse += 5;
2143 break;
2144 case curve_type_special:
2145 velocityresponse += 10;
2146 break;
2147 case curve_type_unknown:
2148 default:
2149 throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
2150 }
2151 pData[96] = velocityresponse;
2152 }
2153
2154 {
2155 if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
2156 uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
2157 switch (ReleaseVelocityResponseCurve) {
2158 case curve_type_nonlinear:
2159 break;
2160 case curve_type_linear:
2161 releasevelocityresponse += 5;
2162 break;
2163 case curve_type_special:
2164 releasevelocityresponse += 10;
2165 break;
2166 case curve_type_unknown:
2167 default:
2168 throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
2169 }
2170 pData[97] = releasevelocityresponse;
2171 }
2172
2173 pData[98] = VelocityResponseCurveScaling;
2174
2175 pData[99] = AttenuationControllerThreshold;
2176
2177 // next 4 bytes unknown
2178
2179 store16(&pData[104], SampleStartOffset);
2180
2181 // next 2 bytes unknown
2182
2183 {
2184 uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
2185 switch (DimensionBypass) {
2186 case dim_bypass_ctrl_94:
2187 pitchTrackDimensionBypass |= 0x10;
2188 break;
2189 case dim_bypass_ctrl_95:
2190 pitchTrackDimensionBypass |= 0x20;
2191 break;
2192 case dim_bypass_ctrl_none:
2193 //FIXME: should we set anything here?
2194 break;
2195 default:
2196 throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
2197 }
2198 pData[108] = pitchTrackDimensionBypass;
2199 }
2200
2201 const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
2202 pData[109] = pan;
2203
2204 const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
2205 pData[110] = selfmask;
2206
2207 // next byte unknown
2208
2209 {
2210 uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
2211 if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
2212 if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
2213 if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
2214 pData[112] = lfo3ctrl;
2215 }
2216
2217 const uint8_t attenctl = EncodeLeverageController(AttenuationController);
2218 pData[113] = attenctl;
2219
2220 {
2221 uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
2222 if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
2223 if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
2224 if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
2225 pData[114] = lfo2ctrl;
2226 }
2227
2228 {
2229 uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
2230 if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
2231 if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
2232 if (VCFResonanceController != vcf_res_ctrl_none)
2233 lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
2234 pData[115] = lfo1ctrl;
2235 }
2236
2237 const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
2238 : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
2239 store16(&pData[116], eg3depth);
2240
2241 // next 2 bytes unknown
2242
2243 const uint8_t channeloffset = ChannelOffset * 4;
2244 pData[120] = channeloffset;
2245
2246 {
2247 uint8_t regoptions = 0;
2248 if (MSDecode) regoptions |= 0x01; // bit 0
2249 if (SustainDefeat) regoptions |= 0x02; // bit 1
2250 pData[121] = regoptions;
2251 }
2252
2253 // next 2 bytes unknown
2254
2255 pData[124] = VelocityUpperLimit;
2256
2257 // next 3 bytes unknown
2258
2259 pData[128] = ReleaseTriggerDecay;
2260
2261 // next 2 bytes unknown
2262
2263 const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2264 pData[131] = eg1hold;
2265
2266 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
2267 (VCFCutoff & 0x7f); /* lower 7 bits */
2268 pData[132] = vcfcutoff;
2269
2270 pData[133] = VCFCutoffController;
2271
2272 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2273 (VCFVelocityScale & 0x7f); /* lower 7 bits */
2274 pData[134] = vcfvelscale;
2275
2276 // next byte unknown
2277
2278 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2279 (VCFResonance & 0x7f); /* lower 7 bits */
2280 pData[136] = vcfresonance;
2281
2282 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2283 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2284 pData[137] = vcfbreakpoint;
2285
2286 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2287 VCFVelocityCurve * 5;
2288 pData[138] = vcfvelocity;
2289
2290 const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2291 pData[139] = vcftype;
2292
2293 if (chunksize >= 148) {
2294 memcpy(&pData[140], DimensionUpperLimits, 8);
2295 }
2296
2297 // chunk for own format extensions, these will *NOT* work with
2298 // Gigasampler/GigaStudio !
2299 RIFF::Chunk* lsde = pParentList->GetSubChunk(CHUNK_ID_LSDE);
2300 const int lsdeSize =
2301 3 /* EG cancel options */ +
2302 1 /* sustain pedal up on release trigger option */ +
2303 8 /* LFOs' wave forms */ + 12 /* LFOs' phase */ + 4 /* flags (LFO3FlipPhase) */;
2304 if (!lsde && UsesAnyGigFormatExtension()) {
2305 // only add this "LSDE" chunk if there is some (format extension)
2306 // setting effective that would require our "LSDE" format extension
2307 // chunk to be stored
2308 lsde = pParentList->AddSubChunk(CHUNK_ID_LSDE, lsdeSize);
2309 // move LSDE chunk to the end of parent list
2310 pParentList->MoveSubChunk(lsde, (RIFF::Chunk*)NULL);
2311 }
2312 if (lsde) {
2313 if (lsde->GetNewSize() < lsdeSize)
2314 lsde->Resize(lsdeSize);
2315 // format extension for EG behavior options
2316 unsigned char* pData = (unsigned char*) lsde->LoadChunkData();
2317 eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
2318 for (int i = 0; i < 2; ++i) { // NOTE: we reserved the 3rd byte for a potential future EG3 option
2319 pData[i] =
2320 (pEGOpts[i]->AttackCancel ? 1 : 0) |
2321 (pEGOpts[i]->AttackHoldCancel ? (1<<1) : 0) |
2322 (pEGOpts[i]->Decay1Cancel ? (1<<2) : 0) |
2323 (pEGOpts[i]->Decay2Cancel ? (1<<3) : 0) |
2324 (pEGOpts[i]->ReleaseCancel ? (1<<4) : 0);
2325 }
2326 // format extension for release trigger options
2327 pData[3] = static_cast<uint8_t>(SustainReleaseTrigger) | (NoNoteOffReleaseTrigger ? (1<<7) : 0);
2328 // format extension for LFOs' wave form, phase displacement and for
2329 // LFO3's flip phase
2330 store16(&pData[4], LFO1WaveForm);
2331 store16(&pData[6], LFO2WaveForm);
2332 store16(&pData[8], LFO3WaveForm);
2333 //NOTE: 16 bits reserved here for potential future use !
2334 const int32_t lfo1Phase = (int32_t) GIG_EXP_ENCODE(LFO1Phase);
2335 const int32_t lfo2Phase = (int32_t) GIG_EXP_ENCODE(LFO2Phase);
2336 const int32_t lfo3Phase = (int32_t) GIG_EXP_ENCODE(LFO3Phase);
2337 store32(&pData[12], lfo1Phase);
2338 store32(&pData[16], lfo2Phase);
2339 store32(&pData[20], lfo3Phase);
2340 const int32_t flags = LFO3FlipPhase ? 1 : 0;
2341 store32(&pData[24], flags);
2342
2343 // compile time sanity check: is our last store access here
2344 // consistent with the initial lsdeSize value assignment?
2345 static_assert(lsdeSize == 28, "Inconsistency in assumed 'LSDE' RIFF chunk size");
2346 }
2347 }
2348
2349 /**
2350 * Returns @c true in case this DimensionRegion object uses any gig format
2351 * extension, that is whether this DimensionRegion object currently has any
2352 * setting effective that would require our "LSDE" RIFF chunk to be stored
2353 * to the gig file.
2354 *
2355 * Right now this is a private method. It is considerable though this method
2356 * to become (in slightly modified form) a public API method in future, i.e.
2357 * to allow instrument editors to visualize and/or warn the user of any
2358 * format extension being used. Right now this method really just serves to
2359 * answer the question whether an LSDE chunk is required, for the public API
2360 * purpose this method would also need to check whether any other setting
2361 * stored to the regular value '3ewa' chunk, is actually a format extension
2362 * as well.
2363 */
2364 bool DimensionRegion::UsesAnyGigFormatExtension() const {
2365 eg_opt_t defaultOpt;
2366 return memcmp(&EG1Options, &defaultOpt, sizeof(eg_opt_t)) ||
2367 memcmp(&EG2Options, &defaultOpt, sizeof(eg_opt_t)) ||
2368 SustainReleaseTrigger || NoNoteOffReleaseTrigger ||
2369 LFO1WaveForm || LFO2WaveForm || LFO3WaveForm ||
2370 LFO1Phase || LFO2Phase || LFO3Phase ||
2371 LFO3FlipPhase;
2372 }
2373
2374 double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2375 curve_type_t curveType = releaseVelocityResponseCurve;
2376 uint8_t depth = releaseVelocityResponseDepth;
2377 // this models a strange behaviour or bug in GSt: two of the
2378 // velocity response curves for release time are not used even
2379 // if specified, instead another curve is chosen.
2380 if ((curveType == curve_type_nonlinear && depth == 0) ||
2381 (curveType == curve_type_special && depth == 4)) {
2382 curveType = curve_type_nonlinear;
2383 depth = 3;
2384 }
2385 return GetVelocityTable(curveType, depth, 0);
2386 }
2387
2388 double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2389 uint8_t vcfVelocityDynamicRange,
2390 uint8_t vcfVelocityScale,
2391 vcf_cutoff_ctrl_t vcfCutoffController)
2392 {
2393 curve_type_t curveType = vcfVelocityCurve;
2394 uint8_t depth = vcfVelocityDynamicRange;
2395 // even stranger GSt: two of the velocity response curves for
2396 // filter cutoff are not used, instead another special curve
2397 // is chosen. This curve is not used anywhere else.
2398 if ((curveType == curve_type_nonlinear && depth == 0) ||
2399 (curveType == curve_type_special && depth == 4)) {
2400 curveType = curve_type_special;
2401 depth = 5;
2402 }
2403 return GetVelocityTable(curveType, depth,
2404 (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2405 ? vcfVelocityScale : 0);
2406 }
2407
2408 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2409 double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2410 {
2411 // sanity check input parameters
2412 // (fallback to some default parameters on ill input)
2413 switch (curveType) {
2414 case curve_type_nonlinear:
2415 case curve_type_linear:
2416 if (depth > 4) {
2417 printf("Warning: Invalid depth (0x%x) for velocity curve type (0x%x).\n", depth, curveType);
2418 depth = 0;
2419 scaling = 0;
2420 }
2421 break;
2422 case curve_type_special:
2423 if (depth > 5) {
2424 printf("Warning: Invalid depth (0x%x) for velocity curve type 'special'.\n", depth);
2425 depth = 0;
2426 scaling = 0;
2427 }
2428 break;
2429 case curve_type_unknown:
2430 default:
2431 printf("Warning: Unknown velocity curve type (0x%x).\n", curveType);
2432 curveType = curve_type_linear;
2433 depth = 0;
2434 scaling = 0;
2435 break;
2436 }
2437
2438 double* table;
2439 uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2440 if (pVelocityTables->count(tableKey)) { // if key exists
2441 table = (*pVelocityTables)[tableKey];
2442 }
2443 else {
2444 table = CreateVelocityTable(curveType, depth, scaling);
2445 (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
2446 }
2447 return table;
2448 }
2449
2450 Region* DimensionRegion::GetParent() const {
2451 return pRegion;
2452 }
2453
2454 // show error if some _lev_ctrl_* enum entry is not listed in the following function
2455 // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2456 // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2457 //#pragma GCC diagnostic push
2458 //#pragma GCC diagnostic error "-Wswitch"
2459
2460 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2461 leverage_ctrl_t decodedcontroller;
2462 switch (EncodedController) {
2463 // special controller
2464 case _lev_ctrl_none:
2465 decodedcontroller.type = leverage_ctrl_t::type_none;
2466 decodedcontroller.controller_number = 0;
2467 break;
2468 case _lev_ctrl_velocity:
2469 decodedcontroller.type = leverage_ctrl_t::type_velocity;
2470 decodedcontroller.controller_number = 0;
2471 break;
2472 case _lev_ctrl_channelaftertouch:
2473 decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
2474 decodedcontroller.controller_number = 0;
2475 break;
2476
2477 // ordinary MIDI control change controller
2478 case _lev_ctrl_modwheel:
2479 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2480 decodedcontroller.controller_number = 1;
2481 break;
2482 case _lev_ctrl_breath:
2483 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2484 decodedcontroller.controller_number = 2;
2485 break;
2486 case _lev_ctrl_foot:
2487 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2488 decodedcontroller.controller_number = 4;
2489 break;
2490 case _lev_ctrl_effect1:
2491 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2492 decodedcontroller.controller_number = 12;
2493 break;
2494 case _lev_ctrl_effect2:
2495 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2496 decodedcontroller.controller_number = 13;
2497 break;
2498 case _lev_ctrl_genpurpose1:
2499 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2500 decodedcontroller.controller_number = 16;
2501 break;
2502 case _lev_ctrl_genpurpose2:
2503 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2504 decodedcontroller.controller_number = 17;
2505 break;
2506 case _lev_ctrl_genpurpose3:
2507 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2508 decodedcontroller.controller_number = 18;
2509 break;
2510 case _lev_ctrl_genpurpose4:
2511 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2512 decodedcontroller.controller_number = 19;
2513 break;
2514 case _lev_ctrl_portamentotime:
2515 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2516 decodedcontroller.controller_number = 5;
2517 break;
2518 case _lev_ctrl_sustainpedal:
2519 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2520 decodedcontroller.controller_number = 64;
2521 break;
2522 case _lev_ctrl_portamento:
2523 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2524 decodedcontroller.controller_number = 65;
2525 break;
2526 case _lev_ctrl_sostenutopedal:
2527 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2528 decodedcontroller.controller_number = 66;
2529 break;
2530 case _lev_ctrl_softpedal:
2531 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2532 decodedcontroller.controller_number = 67;
2533 break;
2534 case _lev_ctrl_genpurpose5:
2535 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2536 decodedcontroller.controller_number = 80;
2537 break;
2538 case _lev_ctrl_genpurpose6:
2539 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2540 decodedcontroller.controller_number = 81;
2541 break;
2542 case _lev_ctrl_genpurpose7:
2543 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2544 decodedcontroller.controller_number = 82;
2545 break;
2546 case _lev_ctrl_genpurpose8:
2547 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2548 decodedcontroller.controller_number = 83;
2549 break;
2550 case _lev_ctrl_effect1depth:
2551 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2552 decodedcontroller.controller_number = 91;
2553 break;
2554 case _lev_ctrl_effect2depth:
2555 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2556 decodedcontroller.controller_number = 92;
2557 break;
2558 case _lev_ctrl_effect3depth:
2559 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2560 decodedcontroller.controller_number = 93;
2561 break;
2562 case _lev_ctrl_effect4depth:
2563 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2564 decodedcontroller.controller_number = 94;
2565 break;
2566 case _lev_ctrl_effect5depth:
2567 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2568 decodedcontroller.controller_number = 95;
2569 break;
2570
2571 // format extension (these controllers are so far only supported by
2572 // LinuxSampler & gigedit) they will *NOT* work with
2573 // Gigasampler/GigaStudio !
2574 case _lev_ctrl_CC3_EXT:
2575 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2576 decodedcontroller.controller_number = 3;
2577 break;
2578 case _lev_ctrl_CC6_EXT:
2579 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2580 decodedcontroller.controller_number = 6;
2581 break;
2582 case _lev_ctrl_CC7_EXT:
2583 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2584 decodedcontroller.controller_number = 7;
2585 break;
2586 case _lev_ctrl_CC8_EXT:
2587 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2588 decodedcontroller.controller_number = 8;
2589 break;
2590 case _lev_ctrl_CC9_EXT:
2591 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2592 decodedcontroller.controller_number = 9;
2593 break;
2594 case _lev_ctrl_CC10_EXT:
2595 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2596 decodedcontroller.controller_number = 10;
2597 break;
2598 case _lev_ctrl_CC11_EXT:
2599 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2600 decodedcontroller.controller_number = 11;
2601 break;
2602 case _lev_ctrl_CC14_EXT:
2603 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2604 decodedcontroller.controller_number = 14;
2605 break;
2606 case _lev_ctrl_CC15_EXT:
2607 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2608 decodedcontroller.controller_number = 15;
2609 break;
2610 case _lev_ctrl_CC20_EXT:
2611 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2612 decodedcontroller.controller_number = 20;
2613 break;
2614 case _lev_ctrl_CC21_EXT:
2615 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2616 decodedcontroller.controller_number = 21;
2617 break;
2618 case _lev_ctrl_CC22_EXT:
2619 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2620 decodedcontroller.controller_number = 22;
2621 break;
2622 case _lev_ctrl_CC23_EXT:
2623 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2624 decodedcontroller.controller_number = 23;
2625 break;
2626 case _lev_ctrl_CC24_EXT:
2627 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2628 decodedcontroller.controller_number = 24;
2629 break;
2630 case _lev_ctrl_CC25_EXT:
2631 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2632 decodedcontroller.controller_number = 25;
2633 break;
2634 case _lev_ctrl_CC26_EXT:
2635 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2636 decodedcontroller.controller_number = 26;
2637 break;
2638 case _lev_ctrl_CC27_EXT:
2639 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2640 decodedcontroller.controller_number = 27;
2641 break;
2642 case _lev_ctrl_CC28_EXT:
2643 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2644 decodedcontroller.controller_number = 28;
2645 break;
2646 case _lev_ctrl_CC29_EXT:
2647 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2648 decodedcontroller.controller_number = 29;
2649 break;
2650 case _lev_ctrl_CC30_EXT:
2651 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2652 decodedcontroller.controller_number = 30;
2653 break;
2654 case _lev_ctrl_CC31_EXT:
2655 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2656 decodedcontroller.controller_number = 31;
2657 break;
2658 case _lev_ctrl_CC68_EXT:
2659 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2660 decodedcontroller.controller_number = 68;
2661 break;
2662 case _lev_ctrl_CC69_EXT:
2663 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2664 decodedcontroller.controller_number = 69;
2665 break;
2666 case _lev_ctrl_CC70_EXT:
2667 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2668 decodedcontroller.controller_number = 70;
2669 break;
2670 case _lev_ctrl_CC71_EXT:
2671 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2672 decodedcontroller.controller_number = 71;
2673 break;
2674 case _lev_ctrl_CC72_EXT:
2675 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2676 decodedcontroller.controller_number = 72;
2677 break;
2678 case _lev_ctrl_CC73_EXT:
2679 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2680 decodedcontroller.controller_number = 73;
2681 break;
2682 case _lev_ctrl_CC74_EXT:
2683 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2684 decodedcontroller.controller_number = 74;
2685 break;
2686 case _lev_ctrl_CC75_EXT:
2687 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2688 decodedcontroller.controller_number = 75;
2689 break;
2690 case _lev_ctrl_CC76_EXT:
2691 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2692 decodedcontroller.controller_number = 76;
2693 break;
2694 case _lev_ctrl_CC77_EXT:
2695 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2696 decodedcontroller.controller_number = 77;
2697 break;
2698 case _lev_ctrl_CC78_EXT:
2699 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2700 decodedcontroller.controller_number = 78;
2701 break;
2702 case _lev_ctrl_CC79_EXT:
2703 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2704 decodedcontroller.controller_number = 79;
2705 break;
2706 case _lev_ctrl_CC84_EXT:
2707 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2708 decodedcontroller.controller_number = 84;
2709 break;
2710 case _lev_ctrl_CC85_EXT:
2711 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2712 decodedcontroller.controller_number = 85;
2713 break;
2714 case _lev_ctrl_CC86_EXT:
2715 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2716 decodedcontroller.controller_number = 86;
2717 break;
2718 case _lev_ctrl_CC87_EXT:
2719 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2720 decodedcontroller.controller_number = 87;
2721 break;
2722 case _lev_ctrl_CC89_EXT:
2723 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2724 decodedcontroller.controller_number = 89;
2725 break;
2726 case _lev_ctrl_CC90_EXT:
2727 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2728 decodedcontroller.controller_number = 90;
2729 break;
2730 case _lev_ctrl_CC96_EXT:
2731 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2732 decodedcontroller.controller_number = 96;
2733 break;
2734 case _lev_ctrl_CC97_EXT:
2735 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2736 decodedcontroller.controller_number = 97;
2737 break;
2738 case _lev_ctrl_CC102_EXT:
2739 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2740 decodedcontroller.controller_number = 102;
2741 break;
2742 case _lev_ctrl_CC103_EXT:
2743 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2744 decodedcontroller.controller_number = 103;
2745 break;
2746 case _lev_ctrl_CC104_EXT:
2747 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2748 decodedcontroller.controller_number = 104;
2749 break;
2750 case _lev_ctrl_CC105_EXT:
2751 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2752 decodedcontroller.controller_number = 105;
2753 break;
2754 case _lev_ctrl_CC106_EXT:
2755 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2756 decodedcontroller.controller_number = 106;
2757 break;
2758 case _lev_ctrl_CC107_EXT:
2759 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2760 decodedcontroller.controller_number = 107;
2761 break;
2762 case _lev_ctrl_CC108_EXT:
2763 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2764 decodedcontroller.controller_number = 108;
2765 break;
2766 case _lev_ctrl_CC109_EXT:
2767 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2768 decodedcontroller.controller_number = 109;
2769 break;
2770 case _lev_ctrl_CC110_EXT:
2771 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2772 decodedcontroller.controller_number = 110;
2773 break;
2774 case _lev_ctrl_CC111_EXT:
2775 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2776 decodedcontroller.controller_number = 111;
2777 break;
2778 case _lev_ctrl_CC112_EXT:
2779 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2780 decodedcontroller.controller_number = 112;
2781 break;
2782 case _lev_ctrl_CC113_EXT:
2783 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2784 decodedcontroller.controller_number = 113;
2785 break;
2786 case _lev_ctrl_CC114_EXT:
2787 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2788 decodedcontroller.controller_number = 114;
2789 break;
2790 case _lev_ctrl_CC115_EXT:
2791 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2792 decodedcontroller.controller_number = 115;
2793 break;
2794 case _lev_ctrl_CC116_EXT:
2795 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2796 decodedcontroller.controller_number = 116;
2797 break;
2798 case _lev_ctrl_CC117_EXT:
2799 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2800 decodedcontroller.controller_number = 117;
2801 break;
2802 case _lev_ctrl_CC118_EXT:
2803 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2804 decodedcontroller.controller_number = 118;
2805 break;
2806 case _lev_ctrl_CC119_EXT:
2807 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2808 decodedcontroller.controller_number = 119;
2809 break;
2810
2811 // unknown controller type
2812 default:
2813 decodedcontroller.type = leverage_ctrl_t::type_none;
2814 decodedcontroller.controller_number = 0;
2815 printf("Warning: Unknown leverage controller type (0x%x).\n", EncodedController);
2816 break;
2817 }
2818 return decodedcontroller;
2819 }
2820
2821 // see above (diagnostic push not supported prior GCC 4.6)
2822 //#pragma GCC diagnostic pop
2823
2824 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2825 _lev_ctrl_t encodedcontroller;
2826 switch (DecodedController.type) {
2827 // special controller
2828 case leverage_ctrl_t::type_none:
2829 encodedcontroller = _lev_ctrl_none;
2830 break;
2831 case leverage_ctrl_t::type_velocity:
2832 encodedcontroller = _lev_ctrl_velocity;
2833 break;
2834 case leverage_ctrl_t::type_channelaftertouch:
2835 encodedcontroller = _lev_ctrl_channelaftertouch;
2836 break;
2837
2838 // ordinary MIDI control change controller
2839 case leverage_ctrl_t::type_controlchange:
2840 switch (DecodedController.controller_number) {
2841 case 1:
2842 encodedcontroller = _lev_ctrl_modwheel;
2843 break;
2844 case 2:
2845 encodedcontroller = _lev_ctrl_breath;
2846 break;
2847 case 4:
2848 encodedcontroller = _lev_ctrl_foot;
2849 break;
2850 case 12:
2851 encodedcontroller = _lev_ctrl_effect1;
2852 break;
2853 case 13:
2854 encodedcontroller = _lev_ctrl_effect2;
2855 break;
2856 case 16:
2857 encodedcontroller = _lev_ctrl_genpurpose1;
2858 break;
2859 case 17:
2860 encodedcontroller = _lev_ctrl_genpurpose2;
2861 break;
2862 case 18:
2863 encodedcontroller = _lev_ctrl_genpurpose3;
2864 break;
2865 case 19:
2866 encodedcontroller = _lev_ctrl_genpurpose4;
2867 break;
2868 case 5:
2869 encodedcontroller = _lev_ctrl_portamentotime;
2870 break;
2871 case 64:
2872 encodedcontroller = _lev_ctrl_sustainpedal;
2873 break;
2874 case 65:
2875 encodedcontroller = _lev_ctrl_portamento;
2876 break;
2877 case 66:
2878 encodedcontroller = _lev_ctrl_sostenutopedal;
2879 break;
2880 case 67:
2881 encodedcontroller = _lev_ctrl_softpedal;
2882 break;
2883 case 80:
2884 encodedcontroller = _lev_ctrl_genpurpose5;
2885 break;
2886 case 81:
2887 encodedcontroller = _lev_ctrl_genpurpose6;
2888 break;
2889 case 82:
2890 encodedcontroller = _lev_ctrl_genpurpose7;
2891 break;
2892 case 83:
2893 encodedcontroller = _lev_ctrl_genpurpose8;
2894 break;
2895 case 91:
2896 encodedcontroller = _lev_ctrl_effect1depth;
2897 break;
2898 case 92:
2899 encodedcontroller = _lev_ctrl_effect2depth;
2900 break;
2901 case 93:
2902 encodedcontroller = _lev_ctrl_effect3depth;
2903 break;
2904 case 94:
2905 encodedcontroller = _lev_ctrl_effect4depth;
2906 break;
2907 case 95:
2908 encodedcontroller = _lev_ctrl_effect5depth;
2909 break;
2910
2911 // format extension (these controllers are so far only
2912 // supported by LinuxSampler & gigedit) they will *NOT*
2913 // work with Gigasampler/GigaStudio !
2914 case 3:
2915 encodedcontroller = _lev_ctrl_CC3_EXT;
2916 break;
2917 case 6:
2918 encodedcontroller = _lev_ctrl_CC6_EXT;
2919 break;
2920 case 7:
2921 encodedcontroller = _lev_ctrl_CC7_EXT;
2922 break;
2923 case 8:
2924 encodedcontroller = _lev_ctrl_CC8_EXT;
2925 break;
2926 case 9:
2927 encodedcontroller = _lev_ctrl_CC9_EXT;
2928 break;
2929 case 10:
2930 encodedcontroller = _lev_ctrl_CC10_EXT;
2931 break;
2932 case 11:
2933 encodedcontroller = _lev_ctrl_CC11_EXT;
2934 break;
2935 case 14:
2936 encodedcontroller = _lev_ctrl_CC14_EXT;
2937 break;
2938 case 15:
2939 encodedcontroller = _lev_ctrl_CC15_EXT;
2940 break;
2941 case 20:
2942 encodedcontroller = _lev_ctrl_CC20_EXT;
2943 break;
2944 case 21:
2945 encodedcontroller = _lev_ctrl_CC21_EXT;
2946 break;
2947 case 22:
2948 encodedcontroller = _lev_ctrl_CC22_EXT;
2949 break;
2950 case 23:
2951 encodedcontroller = _lev_ctrl_CC23_EXT;
2952 break;
2953 case 24:
2954 encodedcontroller = _lev_ctrl_CC24_EXT;
2955 break;
2956 case 25:
2957 encodedcontroller = _lev_ctrl_CC25_EXT;
2958 break;
2959 case 26:
2960 encodedcontroller = _lev_ctrl_CC26_EXT;
2961 break;
2962 case 27:
2963 encodedcontroller = _lev_ctrl_CC27_EXT;
2964 break;
2965 case 28:
2966 encodedcontroller = _lev_ctrl_CC28_EXT;
2967 break;
2968 case 29:
2969 encodedcontroller = _lev_ctrl_CC29_EXT;
2970 break;
2971 case 30:
2972 encodedcontroller = _lev_ctrl_CC30_EXT;
2973 break;
2974 case 31:
2975 encodedcontroller = _lev_ctrl_CC31_EXT;
2976 break;
2977 case 68:
2978 encodedcontroller = _lev_ctrl_CC68_EXT;
2979 break;
2980 case 69:
2981 encodedcontroller = _lev_ctrl_CC69_EXT;
2982 break;
2983 case 70:
2984 encodedcontroller = _lev_ctrl_CC70_EXT;
2985 break;
2986 case 71:
2987 encodedcontroller = _lev_ctrl_CC71_EXT;
2988 break;
2989 case 72:
2990 encodedcontroller = _lev_ctrl_CC72_EXT;
2991 break;
2992 case 73:
2993 encodedcontroller = _lev_ctrl_CC73_EXT;
2994 break;
2995 case 74:
2996 encodedcontroller = _lev_ctrl_CC74_EXT;
2997 break;
2998 case 75:
2999 encodedcontroller = _lev_ctrl_CC75_EXT;
3000 break;
3001 case 76:
3002 encodedcontroller = _lev_ctrl_CC76_EXT;
3003 break;
3004 case 77:
3005 encodedcontroller = _lev_ctrl_CC77_EXT;
3006 break;
3007 case 78:
3008 encodedcontroller = _lev_ctrl_CC78_EXT;
3009 break;
3010 case 79:
3011 encodedcontroller = _lev_ctrl_CC79_EXT;
3012 break;
3013 case 84:
3014 encodedcontroller = _lev_ctrl_CC84_EXT;
3015 break;
3016 case 85:
3017 encodedcontroller = _lev_ctrl_CC85_EXT;
3018 break;
3019 case 86:
3020 encodedcontroller = _lev_ctrl_CC86_EXT;
3021 break;
3022 case 87:
3023 encodedcontroller = _lev_ctrl_CC87_EXT;
3024 break;
3025 case 89:
3026 encodedcontroller = _lev_ctrl_CC89_EXT;
3027 break;
3028 case 90:
3029 encodedcontroller = _lev_ctrl_CC90_EXT;
3030 break;
3031 case 96:
3032 encodedcontroller = _lev_ctrl_CC96_EXT;
3033 break;
3034 case 97:
3035 encodedcontroller = _lev_ctrl_CC97_EXT;
3036 break;
3037 case 102:
3038 encodedcontroller = _lev_ctrl_CC102_EXT;
3039 break;
3040 case 103:
3041 encodedcontroller = _lev_ctrl_CC103_EXT;
3042 break;
3043 case 104:
3044 encodedcontroller = _lev_ctrl_CC104_EXT;
3045 break;
3046 case 105:
3047 encodedcontroller = _lev_ctrl_CC105_EXT;
3048 break;
3049 case 106:
3050 encodedcontroller = _lev_ctrl_CC106_EXT;
3051 break;
3052 case 107:
3053 encodedcontroller = _lev_ctrl_CC107_EXT;
3054 break;
3055 case 108:
3056 encodedcontroller = _lev_ctrl_CC108_EXT;
3057 break;
3058 case 109:
3059 encodedcontroller = _lev_ctrl_CC109_EXT;
3060 break;
3061 case 110:
3062 encodedcontroller = _lev_ctrl_CC110_EXT;
3063 break;
3064 case 111:
3065 encodedcontroller = _lev_ctrl_CC111_EXT;
3066 break;
3067 case 112:
3068 encodedcontroller = _lev_ctrl_CC112_EXT;
3069 break;
3070 case 113:
3071 encodedcontroller = _lev_ctrl_CC113_EXT;
3072 break;
3073 case 114:
3074 encodedcontroller = _lev_ctrl_CC114_EXT;
3075 break;
3076 case 115:
3077 encodedcontroller = _lev_ctrl_CC115_EXT;
3078 break;
3079 case 116:
3080 encodedcontroller = _lev_ctrl_CC116_EXT;
3081 break;
3082 case 117:
3083 encodedcontroller = _lev_ctrl_CC117_EXT;
3084 break;
3085 case 118:
3086 encodedcontroller = _lev_ctrl_CC118_EXT;
3087 break;
3088 case 119:
3089 encodedcontroller = _lev_ctrl_CC119_EXT;
3090 break;
3091
3092 default:
3093 throw gig::Exception("leverage controller number is not supported by the gig format");
3094 }
3095 break;
3096 default:
3097 throw gig::Exception("Unknown leverage controller type.");
3098 }
3099 return encodedcontroller;
3100 }
3101
3102 DimensionRegion::~DimensionRegion() {
3103 Instances--;
3104 if (!Instances) {
3105 // delete the velocity->volume tables
3106 VelocityTableMap::iterator iter;
3107 for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
3108 double* pTable = iter->second;
3109 if (pTable) delete[] pTable;
3110 }
3111 pVelocityTables->clear();
3112 delete pVelocityTables;
3113 pVelocityTables = NULL;
3114 }
3115 if (VelocityTable) delete[] VelocityTable;
3116 }
3117
3118 /**
3119 * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
3120 * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
3121 * and VelocityResponseCurveScaling) involved are taken into account to
3122 * calculate the amplitude factor. Use this method when a key was
3123 * triggered to get the volume with which the sample should be played
3124 * back.
3125 *
3126 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
3127 * @returns amplitude factor (between 0.0 and 1.0)
3128 */
3129 double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
3130 return pVelocityAttenuationTable[MIDIKeyVelocity];
3131 }
3132
3133 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
3134 return pVelocityReleaseTable[MIDIKeyVelocity];
3135 }
3136
3137 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
3138 return pVelocityCutoffTable[MIDIKeyVelocity];
3139 }
3140
3141 /**
3142 * Updates the respective member variable and the lookup table / cache
3143 * that depends on this value.
3144 */
3145 void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
3146 pVelocityAttenuationTable =
3147 GetVelocityTable(
3148 curve, VelocityResponseDepth, VelocityResponseCurveScaling
3149 );
3150 VelocityResponseCurve = curve;
3151 }
3152
3153 /**
3154 * Updates the respective member variable and the lookup table / cache
3155 * that depends on this value.
3156 */
3157 void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
3158 pVelocityAttenuationTable =
3159 GetVelocityTable(
3160 VelocityResponseCurve, depth, VelocityResponseCurveScaling
3161 );
3162 VelocityResponseDepth = depth;
3163 }
3164
3165 /**
3166 * Updates the respective member variable and the lookup table / cache
3167 * that depends on this value.
3168 */
3169 void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
3170 pVelocityAttenuationTable =
3171 GetVelocityTable(
3172 VelocityResponseCurve, VelocityResponseDepth, scaling
3173 );
3174 VelocityResponseCurveScaling = scaling;
3175 }
3176
3177 /**
3178 * Updates the respective member variable and the lookup table / cache
3179 * that depends on this value.
3180 */
3181 void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
3182 pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
3183 ReleaseVelocityResponseCurve = curve;
3184 }
3185
3186 /**
3187 * Updates the respective member variable and the lookup table / cache
3188 * that depends on this value.
3189 */
3190 void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
3191 pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
3192 ReleaseVelocityResponseDepth = depth;
3193 }
3194
3195 /**
3196 * Updates the respective member variable and the lookup table / cache
3197 * that depends on this value.
3198 */
3199 void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
3200 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
3201 VCFCutoffController = controller;
3202 }
3203
3204 /**
3205 * Updates the respective member variable and the lookup table / cache
3206 * that depends on this value.
3207 */
3208 void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
3209 pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
3210 VCFVelocityCurve = curve;
3211 }
3212
3213 /**
3214 * Updates the respective member variable and the lookup table / cache
3215 * that depends on this value.
3216 */
3217 void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
3218 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
3219 VCFVelocityDynamicRange = range;
3220 }
3221
3222 /**
3223 * Updates the respective member variable and the lookup table / cache
3224 * that depends on this value.
3225 */
3226 void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
3227 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
3228 VCFVelocityScale = scaling;
3229 }
3230
3231 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
3232
3233 // line-segment approximations of the 15 velocity curves
3234
3235 // linear
3236 const int lin0[] = { 1, 1, 127, 127 };
3237 const int lin1[] = { 1, 21, 127, 127 };
3238 const int lin2[] = { 1, 45, 127, 127 };
3239 const int lin3[] = { 1, 74, 127, 127 };
3240 const int lin4[] = { 1, 127, 127, 127 };
3241
3242 // non-linear
3243 const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
3244 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
3245 127, 127 };
3246 const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
3247 127, 127 };
3248 const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
3249 127, 127 };
3250 const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
3251
3252 // special
3253 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
3254 113, 127, 127, 127 };
3255 const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
3256 118, 127, 127, 127 };
3257 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
3258 85, 90, 91, 127, 127, 127 };
3259 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
3260 117, 127, 127, 127 };
3261 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
3262 127, 127 };
3263
3264 // this is only used by the VCF velocity curve
3265 const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
3266 91, 127, 127, 127 };
3267
3268 const int* const curves[] = { non0, non1, non2, non3, non4,
3269 lin0, lin1, lin2, lin3, lin4,
3270 spe0, spe1, spe2, spe3, spe4, spe5 };
3271
3272 double* const table = new double[128];
3273
3274 const int* curve = curves[curveType * 5 + depth];
3275 const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
3276
3277 table[0] = 0;
3278 for (int x = 1 ; x < 128 ; x++) {
3279
3280 if (x > curve[2]) curve += 2;
3281 double y = curve[1] + (x - curve[0]) *
3282 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
3283 y = y / 127;
3284
3285 // Scale up for s > 20, down for s < 20. When
3286 // down-scaling, the curve still ends at 1.0.
3287 if (s < 20 && y >= 0.5)
3288 y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
3289 else
3290 y = y * (s / 20.0);
3291 if (y > 1) y = 1;
3292
3293 table[x] = y;
3294 }
3295 return table;
3296 }
3297
3298
3299 // *************** Region ***************
3300 // *
3301
3302 Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
3303 // Initialization
3304 Dimensions = 0;
3305 for (int i = 0; i < 256; i++) {
3306 pDimensionRegions[i] = NULL;
3307 }
3308 Layers = 1;
3309 File* file = (File*) GetParent()->GetParent();
3310 int dimensionBits = (file->pVersion && file->pVersion->major > 2) ? 8 : 5;
3311
3312 // Actual Loading
3313
3314 if (!file->GetAutoLoad()) return;
3315
3316 LoadDimensionRegions(rgnList);
3317
3318 RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
3319 if (_3lnk) {
3320 _3lnk->SetPos(0);
3321
3322 DimensionRegions = _3lnk->ReadUint32();
3323 for (int i = 0; i < dimensionBits; i++) {
3324 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
3325 uint8_t bits = _3lnk->ReadUint8();
3326 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
3327 _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
3328 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
3329 if (dimension == dimension_none) { // inactive dimension
3330 pDimensionDefinitions[i].dimension = dimension_none;
3331 pDimensionDefinitions[i].bits = 0;
3332 pDimensionDefinitions[i].zones = 0;
3333 pDimensionDefinitions[i].split_type = split_type_bit;
3334 pDimensionDefinitions[i].zone_size = 0;
3335 }
3336 else { // active dimension
3337 pDimensionDefinitions[i].dimension = dimension;
3338 pDimensionDefinitions[i].bits = bits;
3339 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
3340 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
3341 pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
3342 Dimensions++;
3343
3344 // if this is a layer dimension, remember the amount of layers
3345 if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
3346 }
3347 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
3348 }
3349 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
3350
3351 // if there's a velocity dimension and custom velocity zone splits are used,
3352 // update the VelocityTables in the dimension regions
3353 UpdateVelocityTable();
3354
3355 // jump to start of the wave pool indices (if not already there)
3356 if (file->pVersion && file->pVersion->major > 2)
3357 _3lnk->SetPos(68); // version 3 has a different 3lnk structure
3358 else
3359 _3lnk->SetPos(44);
3360
3361 // load sample references (if auto loading is enabled)
3362 if (file->GetAutoLoad()) {
3363 for (uint i = 0; i < DimensionRegions; i++) {
3364 uint32_t wavepoolindex = _3lnk->ReadUint32();
3365 if (file->pWavePoolTable && pDimensionRegions[i])
3366 pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
3367 }
3368 GetSample(); // load global region sample reference
3369 }
3370 } else {
3371 DimensionRegions = 0;
3372 for (int i = 0 ; i < 8 ; i++) {
3373 pDimensionDefinitions[i].dimension = dimension_none;
3374 pDimensionDefinitions[i].bits = 0;
3375 pDimensionDefinitions[i].zones = 0;
3376 }
3377 }
3378
3379 // make sure there is at least one dimension region
3380 if (!DimensionRegions) {
3381 RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
3382 if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
3383 RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
3384 pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
3385 DimensionRegions = 1;
3386 }
3387 }
3388
3389 /**
3390 * Apply Region settings and all its DimensionRegions to the respective
3391 * RIFF chunks. You have to call File::Save() to make changes persistent.
3392 *
3393 * Usually there is absolutely no need to call this method explicitly.
3394 * It will be called automatically when File::Save() was called.
3395 *
3396 * @param pProgress - callback function for progress notification
3397 * @throws gig::Exception if samples cannot be dereferenced
3398 */
3399 void Region::UpdateChunks(progress_t* pProgress) {
3400 // in the gig format we don't care about the Region's sample reference
3401 // but we still have to provide some existing one to not corrupt the
3402 // file, so to avoid the latter we simply always assign the sample of
3403 // the first dimension region of this region
3404 pSample = pDimensionRegions[0]->pSample;
3405
3406 // first update base class's chunks
3407 DLS::Region::UpdateChunks(pProgress);
3408
3409 // update dimension region's chunks
3410 for (int i = 0; i < DimensionRegions; i++) {
3411 pDimensionRegions[i]->UpdateChunks(pProgress);
3412 }
3413
3414 File* pFile = (File*) GetParent()->GetParent();
3415 const bool versiongt2 = pFile->pVersion && pFile->pVersion->major > 2;
3416 const int iMaxDimensions = versiongt2 ? 8 : 5;
3417 const int iMaxDimensionRegions = versiongt2 ? 256 : 32;
3418
3419 // make sure '3lnk' chunk exists
3420 RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3421 if (!_3lnk) {
3422 const int _3lnkChunkSize = versiongt2 ? 1092 : 172;
3423 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3424 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3425
3426 // move 3prg to last position
3427 pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), (RIFF::Chunk*)NULL);
3428 }
3429
3430 // update dimension definitions in '3lnk' chunk
3431 uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3432 store32(&pData[0], DimensionRegions);
3433 int shift = 0;
3434 for (int i = 0; i < iMaxDimensions; i++) {
3435 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3436 pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3437 pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3438 pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3439 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3440 // next 3 bytes unknown, always zero?
3441
3442 shift += pDimensionDefinitions[i].bits;
3443 }
3444
3445 // update wave pool table in '3lnk' chunk
3446 const int iWavePoolOffset = versiongt2 ? 68 : 44;
3447 for (uint i = 0; i < iMaxDimensionRegions; i++) {
3448 int iWaveIndex = -1;
3449 if (i < DimensionRegions) {
3450 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
3451 File::SampleList::iterator iter = pFile->pSamples->begin();
3452 File::SampleList::iterator end = pFile->pSamples->end();
3453 for (int index = 0; iter != end; ++iter, ++index) {
3454 if (*iter == pDimensionRegions[i]->pSample) {
3455 iWaveIndex = index;
3456 break;
3457 }
3458 }
3459 }
3460 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3461 }
3462
3463 // The following chunks are just added for compatibility with the
3464 // GigaStudio software, which would show a warning if these were
3465 // missing. However currently these chunks don't cover any useful
3466 // data. So if this gig file uses any of our own gig format
3467 // extensions which would cause this gig file to be unloadable
3468 // with GSt software anyway, then just skip these GSt compatibility
3469 // chunks here as well.
3470 if (versiongt2 && !UsesAnyGigFormatExtension()) {
3471 // add 3dnm list which always seems to be empty
3472 RIFF::List* _3dnm = pCkRegion->GetSubList(LIST_TYPE_3DNM);
3473 if (!_3dnm) _3dnm = pCkRegion->AddSubList(LIST_TYPE_3DNM);
3474
3475 // add 3ddp chunk which always seems to have 16 bytes of 0xFF
3476 RIFF::Chunk* _3ddp = pCkRegion->GetSubChunk(CHUNK_ID_3DDP);
3477 if (!_3ddp) _3ddp = pCkRegion->AddSubChunk(CHUNK_ID_3DDP, 16);
3478 uint8_t* pData = (uint8_t*) _3ddp->LoadChunkData();
3479 for (int i = 0; i < 16; i += 4) {
3480 store32(&pData[i], 0xFFFFFFFF);
3481 }
3482
3483 // move 3dnm and 3ddp to the end of the region list
3484 pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3DNM), (RIFF::Chunk*)NULL);
3485 pCkRegion->MoveSubChunk(pCkRegion->GetSubChunk(CHUNK_ID_3DDP), (RIFF::Chunk*)NULL);
3486 } else {
3487 // this is intended for the user switching from GSt >= 3 version
3488 // back to an older format version, delete GSt3 chunks ...
3489 RIFF::List* _3dnm = pCkRegion->GetSubList(LIST_TYPE_3DNM);
3490 if (_3dnm) pCkRegion->DeleteSubChunk(_3dnm);
3491
3492 RIFF::Chunk* _3ddp = pCkRegion->GetSubChunk(CHUNK_ID_3DDP);
3493 if (_3ddp) pCkRegion->DeleteSubChunk(_3ddp);
3494 }
3495 }
3496
3497 void Region::LoadDimensionRegions(RIFF::List* rgn) {
3498 RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
3499 if (_3prg) {
3500 int dimensionRegionNr = 0;
3501 RIFF::List* _3ewl = _3prg->GetFirstSubList();
3502 while (_3ewl) {
3503 if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3504 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3505 dimensionRegionNr++;
3506 }
3507 _3ewl = _3prg->GetNextSubList();
3508 }
3509 if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
3510 }
3511 }
3512
3513 void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3514 // update KeyRange struct and make sure regions are in correct order
3515 DLS::Region::SetKeyRange(Low, High);
3516 // update Region key table for fast lookup
3517 ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3518 }
3519
3520 void Region::UpdateVelocityTable() {
3521 // get velocity dimension's index
3522 int veldim = -1;
3523 for (int i = 0 ; i < Dimensions ; i++) {
3524 if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
3525 veldim = i;
3526 break;
3527 }
3528 }
3529 if (veldim == -1) return;
3530
3531 int step = 1;
3532 for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3533 int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
3534
3535 // loop through all dimension regions for all dimensions except the velocity dimension
3536 int dim[8] = { 0 };
3537 for (int i = 0 ; i < DimensionRegions ; i++) {
3538 const int end = i + step * pDimensionDefinitions[veldim].zones;
3539
3540 // create a velocity table for all cases where the velocity zone is zero
3541 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3542 pDimensionRegions[i]->VelocityUpperLimit) {
3543 // create the velocity table
3544 uint8_t* table = pDimensionRegions[i]->VelocityTable;
3545 if (!table) {
3546 table = new uint8_t[128];
3547 pDimensionRegions[i]->VelocityTable = table;
3548 }
3549 int tableidx = 0;
3550 int velocityZone = 0;
3551 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
3552 for (int k = i ; k < end ; k += step) {
3553 DimensionRegion *d = pDimensionRegions[k];
3554 for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
3555 velocityZone++;
3556 }
3557 } else { // gig2
3558 for (int k = i ; k < end ; k += step) {
3559 DimensionRegion *d = pDimensionRegions[k];
3560 for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
3561 velocityZone++;
3562 }
3563 }
3564 } else {
3565 if (pDimensionRegions[i]->VelocityTable) {
3566 delete[] pDimensionRegions[i]->VelocityTable;
3567 pDimensionRegions[i]->VelocityTable = 0;
3568 }
3569 }
3570
3571 // jump to the next case where the velocity zone is zero
3572 int j;
3573 int shift = 0;
3574 for (j = 0 ; j < Dimensions ; j++) {
3575 if (j == veldim) i += skipveldim; // skip velocity dimension
3576 else {
3577 dim[j]++;
3578 if (dim[j] < pDimensionDefinitions[j].zones) break;
3579 else {
3580 // skip unused dimension regions
3581 dim[j] = 0;
3582 i += ((1 << pDimensionDefinitions[j].bits) -
3583 pDimensionDefinitions[j].zones) << shift;
3584 }
3585 }
3586 shift += pDimensionDefinitions[j].bits;
3587 }
3588 if (j == Dimensions) break;
3589 }
3590 }
3591
3592 /** @brief Einstein would have dreamed of it - create a new dimension.
3593 *
3594 * Creates a new dimension with the dimension definition given by
3595 * \a pDimDef. The appropriate amount of DimensionRegions will be created.
3596 * There is a hard limit of dimensions and total amount of "bits" all
3597 * dimensions can have. This limit is dependant to what gig file format
3598 * version this file refers to. The gig v2 (and lower) format has a
3599 * dimension limit and total amount of bits limit of 5, whereas the gig v3
3600 * format has a limit of 8.
3601 *
3602 * @param pDimDef - defintion of the new dimension
3603 * @throws gig::Exception if dimension of the same type exists already
3604 * @throws gig::Exception if amount of dimensions or total amount of
3605 * dimension bits limit is violated
3606 */
3607 void Region::AddDimension(dimension_def_t* pDimDef) {
3608 // some initial sanity checks of the given dimension definition
3609 if (pDimDef->zones < 2)
3610 throw gig::Exception("Could not add new dimension, amount of requested zones must always be at least two");
3611 if (pDimDef->bits < 1)
3612 throw gig::Exception("Could not add new dimension, amount of requested requested zone bits must always be at least one");
3613 if (pDimDef->dimension == dimension_samplechannel) {
3614 if (pDimDef->zones != 2)
3615 throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zones must always be 2 for this dimension type");
3616 if (pDimDef->bits != 1)
3617 throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zone bits must always be 1 for this dimension type");
3618 }
3619
3620 // check if max. amount of dimensions reached
3621 File* file = (File*) GetParent()->GetParent();
3622 const int iMaxDimensions = (file->pVersion && file->pVersion->major > 2) ? 8 : 5;
3623 if (Dimensions >= iMaxDimensions)
3624 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
3625 // check if max. amount of dimension bits reached
3626 int iCurrentBits = 0;
3627 for (int i = 0; i < Dimensions; i++)
3628 iCurrentBits += pDimensionDefinitions[i].bits;
3629 if (iCurrentBits >= iMaxDimensions)
3630 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
3631 const int iNewBits = iCurrentBits + pDimDef->bits;
3632 if (iNewBits > iMaxDimensions)
3633 throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
3634 // check if there's already a dimensions of the same type
3635 for (int i = 0; i < Dimensions; i++)
3636 if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3637 throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3638
3639 // pos is where the new dimension should be placed, normally
3640 // last in list, except for the samplechannel dimension which
3641 // has to be first in list
3642 int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3643 int bitpos = 0;
3644 for (int i = 0 ; i < pos ; i++)
3645 bitpos += pDimensionDefinitions[i].bits;
3646
3647 // make room for the new dimension
3648 for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3649 for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3650 for (int j = Dimensions ; j > pos ; j--) {
3651 pDimensionRegions[i]->DimensionUpperLimits[j] =
3652 pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3653 }
3654 }
3655
3656 // assign definition of new dimension
3657 pDimensionDefinitions[pos] = *pDimDef;
3658
3659 // auto correct certain dimension definition fields (where possible)
3660 pDimensionDefinitions[pos].split_type =
3661 __resolveSplitType(pDimensionDefinitions[pos].dimension);
3662 pDimensionDefinitions[pos].zone_size =
3663 __resolveZoneSize(pDimensionDefinitions[pos]);
3664
3665 // create new dimension region(s) for this new dimension, and make
3666 // sure that the dimension regions are placed correctly in both the
3667 // RIFF list and the pDimensionRegions array
3668 RIFF::Chunk* moveTo = NULL;
3669 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3670 for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3671 for (int k = 0 ; k < (1 << bitpos) ; k++) {
3672 pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3673 }
3674 for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3675 for (int k = 0 ; k < (1 << bitpos) ; k++) {
3676 RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3677 if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3678 // create a new dimension region and copy all parameter values from
3679 // an existing dimension region
3680 pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3681 new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3682
3683 DimensionRegions++;
3684 }
3685 }
3686 moveTo = pDimensionRegions[i]->pParentList;
3687 }
3688
3689 // initialize the upper limits for this dimension
3690 int mask = (1 << bitpos) - 1;
3691 for (int z = 0 ; z < pDimDef->zones ; z++) {
3692 uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3693 for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3694 pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3695 (z << bitpos) |
3696 (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3697 }
3698 }
3699
3700 Dimensions++;
3701
3702 // if this is a layer dimension, update 'Layers' attribute
3703 if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
3704
3705 UpdateVelocityTable();
3706 }
3707
3708 /** @brief Delete an existing dimension.
3709 *
3710 * Deletes the dimension given by \a pDimDef and deletes all respective
3711 * dimension regions, that is all dimension regions where the dimension's
3712 * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
3713 * for example this would delete all dimension regions for the case(s)
3714 * where the sustain pedal is pressed down.
3715 *
3716 * @param pDimDef - dimension to delete
3717 * @throws gig::Exception if given dimension cannot be found
3718 */
3719 void Region::DeleteDimension(dimension_def_t* pDimDef) {
3720 // get dimension's index
3721 int iDimensionNr = -1;
3722 for (int i = 0; i < Dimensions; i++) {
3723 if (&pDimensionDefinitions[i] == pDimDef) {
3724 iDimensionNr = i;
3725 break;
3726 }
3727 }
3728 if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
3729
3730 // get amount of bits below the dimension to delete
3731 int iLowerBits = 0;
3732 for (int i = 0; i < iDimensionNr; i++)
3733 iLowerBits += pDimensionDefinitions[i].bits;
3734
3735 // get amount ot bits above the dimension to delete
3736 int iUpperBits = 0;
3737 for (int i = iDimensionNr + 1; i < Dimensions; i++)
3738 iUpperBits += pDimensionDefinitions[i].bits;
3739
3740 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3741
3742 // delete dimension regions which belong to the given dimension
3743 // (that is where the dimension's bit > 0)
3744 for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
3745 for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
3746 for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
3747 int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3748 iObsoleteBit << iLowerBits |
3749 iLowerBit;
3750
3751 _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3752 delete pDimensionRegions[iToDelete];
3753 pDimensionRegions[iToDelete] = NULL;
3754 DimensionRegions--;
3755 }
3756 }
3757 }
3758
3759 // defrag pDimensionRegions array
3760 // (that is remove the NULL spaces within the pDimensionRegions array)
3761 for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
3762 if (!pDimensionRegions[iTo]) {
3763 if (iFrom <= iTo) iFrom = iTo + 1;
3764 while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
3765 if (iFrom < 256 && pDimensionRegions[iFrom]) {
3766 pDimensionRegions[iTo] = pDimensionRegions[iFrom];
3767 pDimensionRegions[iFrom] = NULL;
3768 }
3769 }
3770 }
3771
3772 // remove the this dimension from the upper limits arrays
3773 for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3774 DimensionRegion* d = pDimensionRegions[j];
3775 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3776 d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3777 }
3778 d->DimensionUpperLimits[Dimensions - 1] = 127;
3779 }
3780
3781 // 'remove' dimension definition
3782 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3783 pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
3784 }
3785 pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
3786 pDimensionDefinitions[Dimensions - 1].bits = 0;
3787 pDimensionDefinitions[Dimensions - 1].zones = 0;
3788
3789 Dimensions--;
3790
3791 // if this was a layer dimension, update 'Layers' attribute
3792 if (pDimDef->dimension == dimension_layer) Layers = 1;
3793 }
3794
3795 /** @brief Delete one split zone of a dimension (decrement zone amount).
3796 *
3797 * Instead of deleting an entire dimensions, this method will only delete
3798 * one particular split zone given by @a zone of the Region's dimension
3799 * given by @a type. So this method will simply decrement the amount of
3800 * zones by one of the dimension in question. To be able to do that, the
3801 * respective dimension must exist on this Region and it must have at least
3802 * 3 zones. All DimensionRegion objects associated with the zone will be
3803 * deleted.
3804 *
3805 * @param type - identifies the dimension where a zone shall be deleted
3806 * @param zone - index of the dimension split zone that shall be deleted
3807 * @throws gig::Exception if requested zone could not be deleted
3808 */
3809 void Region::DeleteDimensionZone(dimension_t type, int zone) {
3810 dimension_def_t* oldDef = GetDimensionDefinition(type);
3811 if (!oldDef)
3812 throw gig::Exception("Could not delete dimension zone, no such dimension of given type");
3813 if (oldDef->zones <= 2)
3814 throw gig::Exception("Could not delete dimension zone, because it would end up with only one zone.");
3815 if (zone < 0 || zone >= oldDef->zones)
3816 throw gig::Exception("Could not delete dimension zone, requested zone index out of bounds.");
3817
3818 const int newZoneSize = oldDef->zones - 1;
3819
3820 // create a temporary Region which just acts as a temporary copy
3821 // container and will be deleted at the end of this function and will
3822 // also not be visible through the API during this process
3823 gig::Region* tempRgn = NULL;
3824 {
3825 // adding these temporary chunks is probably not even necessary
3826 Instrument* instr = static_cast<Instrument*>(GetParent());
3827 RIFF::List* pCkInstrument = instr->pCkInstrument;
3828 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3829 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3830 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3831 tempRgn = new Region(instr, rgn);
3832 }
3833
3834 // copy this region's dimensions (with already the dimension split size
3835 // requested by the arguments of this method call) to the temporary
3836 // region, and don't use Region::CopyAssign() here for this task, since
3837 // it would also alter fast lookup helper variables here and there
3838 dimension_def_t newDef;
3839 for (int i = 0; i < Dimensions; ++i) {
3840 dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3841 // is this the dimension requested by the method arguments? ...
3842 if (def.dimension == type) { // ... if yes, decrement zone amount by one
3843 def.zones = newZoneSize;
3844 if ((1 << (def.bits - 1)) == def.zones) def.bits--;
3845 newDef = def;
3846 }
3847 tempRgn->AddDimension(&def);
3848 }
3849
3850 // find the dimension index in the tempRegion which is the dimension
3851 // type passed to this method (paranoidly expecting different order)
3852 int tempReducedDimensionIndex = -1;
3853 for (int d = 0; d < tempRgn->Dimensions; ++d) {
3854 if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3855 tempReducedDimensionIndex = d;
3856 break;
3857 }
3858 }
3859
3860 // copy dimension regions from this region to the temporary region
3861 for (int iDst = 0; iDst < 256; ++iDst) {
3862 DimensionRegion* dstDimRgn = tempRgn->pDimensionRegions[iDst];
3863 if (!dstDimRgn) continue;
3864 std::map<dimension_t,int> dimCase;
3865 bool isValidZone = true;
3866 for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3867 const int dstBits = tempRgn->pDimensionDefinitions[d].bits;
3868 dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3869 (iDst >> baseBits) & ((1 << dstBits) - 1);
3870 baseBits += dstBits;
3871 // there are also DimensionRegion objects of unused zones, skip them
3872 if (dimCase[tempRgn->pDimensionDefinitions[d].dimension] >= tempRgn->pDimensionDefinitions[d].zones) {
3873 isValidZone = false;
3874 break;
3875 }
3876 }
3877 if (!isValidZone) continue;
3878 // a bit paranoid: cope with the chance that the dimensions would
3879 // have different order in source and destination regions
3880 const bool isLastZone = (dimCase[type] == newZoneSize - 1);
3881 if (dimCase[type] >= zone) dimCase[type]++;
3882 DimensionRegion* srcDimRgn = GetDimensionRegionByBit(dimCase);
3883 dstDimRgn->CopyAssign(srcDimRgn);
3884 // if this is the upper most zone of the dimension passed to this
3885 // method, then correct (raise) its upper limit to 127
3886 if (newDef.split_type == split_type_normal && isLastZone)
3887 dstDimRgn->DimensionUpperLimits[tempReducedDimensionIndex] = 127;
3888 }
3889
3890 // now tempRegion's dimensions and DimensionRegions basically reflect
3891 // what we wanted to get for this actual Region here, so we now just
3892 // delete and recreate the dimension in question with the new amount
3893 // zones and then copy back from tempRegion. we're actually deleting and
3894 // recreating all dimensions here, to avoid altering the precise order
3895 // of the dimensions (which would not be an error per se, but it would
3896 // cause usability issues with instrument editors)
3897 {
3898 std::vector<dimension_def_t> oldDefs;
3899 for (int i = 0; i < Dimensions; ++i)
3900 oldDefs.push_back(pDimensionDefinitions[i]); // copy, don't reference
3901 for (int i = Dimensions - 1; i >= 0; --i)
3902 DeleteDimension(&pDimensionDefinitions[i]);
3903 for (int i = 0; i < oldDefs.size(); ++i) {
3904 dimension_def_t& def = oldDefs[i];
3905 AddDimension(
3906 (def.dimension == newDef.dimension) ? &newDef : &def
3907 );
3908 }
3909 }
3910 for (int iSrc = 0; iSrc < 256; ++iSrc) {
3911 DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3912 if (!srcDimRgn) continue;
3913 std::map<dimension_t,int> dimCase;
3914 for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3915 const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3916 dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3917 (iSrc >> baseBits) & ((1 << srcBits) - 1);
3918 baseBits += srcBits;
3919 }
3920 // a bit paranoid: cope with the chance that the dimensions would
3921 // have different order in source and destination regions
3922 DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3923 if (!dstDimRgn) continue;
3924 dstDimRgn->CopyAssign(srcDimRgn);
3925 }
3926
3927 // delete temporary region
3928 tempRgn->DeleteChunks();
3929 delete tempRgn;
3930
3931 UpdateVelocityTable();
3932 }
3933
3934 /** @brief Divide split zone of a dimension in two (increment zone amount).
3935 *
3936 * This will increment the amount of zones for the dimension (given by
3937 * @a type) by one. It will do so by dividing the zone (given by @a zone)
3938 * in the middle of its zone range in two. So the two zones resulting from
3939 * the zone being splitted, will be an equivalent copy regarding all their
3940 * articulation informations and sample reference. The two zones will only
3941 * differ in their zone's upper limit
3942 * (DimensionRegion::DimensionUpperLimits).
3943 *
3944 * @param type - identifies the dimension where a zone shall be splitted
3945 * @param zone - index of the dimension split zone that shall be splitted
3946 * @throws gig::Exception if requested zone could not be splitted
3947 */
3948 void Region::SplitDimensionZone(dimension_t type, int zone) {
3949 dimension_def_t* oldDef = GetDimensionDefinition(type);
3950 if (!oldDef)
3951 throw gig::Exception("Could not split dimension zone, no such dimension of given type");
3952 if (zone < 0 || zone >= oldDef->zones)
3953 throw gig::Exception("Could not split dimension zone, requested zone index out of bounds.");
3954
3955 const int newZoneSize = oldDef->zones + 1;
3956
3957 // create a temporary Region which just acts as a temporary copy
3958 // container and will be deleted at the end of this function and will
3959 // also not be visible through the API during this process
3960 gig::Region* tempRgn = NULL;
3961 {
3962 // adding these temporary chunks is probably not even necessary
3963 Instrument* instr = static_cast<Instrument*>(GetParent());
3964 RIFF::List* pCkInstrument = instr->pCkInstrument;
3965 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3966 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3967 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3968 tempRgn = new Region(instr, rgn);
3969 }
3970
3971 // copy this region's dimensions (with already the dimension split size
3972 // requested by the arguments of this method call) to the temporary
3973 // region, and don't use Region::CopyAssign() here for this task, since
3974 // it would also alter fast lookup helper variables here and there
3975 dimension_def_t newDef;
3976 for (int i = 0; i < Dimensions; ++i) {
3977 dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3978 // is this the dimension requested by the method arguments? ...
3979 if (def.dimension == type) { // ... if yes, increment zone amount by one
3980 def.zones = newZoneSize;
3981 if ((1 << oldDef->bits) < newZoneSize) def.bits++;
3982 newDef = def;
3983 }
3984 tempRgn->AddDimension(&def);
3985 }
3986
3987 // find the dimension index in the tempRegion which is the dimension
3988 // type passed to this method (paranoidly expecting different order)
3989 int tempIncreasedDimensionIndex = -1;
3990 for (int d = 0; d < tempRgn->Dimensions; ++d) {
3991 if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3992 tempIncreasedDimensionIndex = d;
3993 break;
3994 }
3995 }
3996
3997 // copy dimension regions from this region to the temporary region
3998 for (int iSrc = 0; iSrc < 256; ++iSrc) {
3999 DimensionRegion* srcDimRgn = pDimensionRegions[iSrc];
4000 if (!srcDimRgn) continue;
4001 std::map<dimension_t,int> dimCase;
4002 bool isValidZone = true;
4003 for (int d = 0, baseBits = 0; d < Dimensions; ++d) {
4004 const int srcBits = pDimensionDefinitions[d].bits;
4005 dimCase[pDimensionDefinitions[d].dimension] =
4006 (iSrc >> baseBits) & ((1 << srcBits) - 1);
4007 // there are also DimensionRegion objects for unused zones, skip them
4008 if (dimCase[pDimensionDefinitions[d].dimension] >= pDimensionDefinitions[d].zones) {
4009 isValidZone = false;
4010 break;
4011 }
4012 baseBits += srcBits;
4013 }
4014 if (!isValidZone) continue;
4015 // a bit paranoid: cope with the chance that the dimensions would
4016 // have different order in source and destination regions
4017 if (dimCase[type] > zone) dimCase[type]++;
4018 DimensionRegion* dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
4019 dstDimRgn->CopyAssign(srcDimRgn);
4020 // if this is the requested zone to be splitted, then also copy
4021 // the source DimensionRegion to the newly created target zone
4022 // and set the old zones upper limit lower
4023 if (dimCase[type] == zone) {
4024 // lower old zones upper limit
4025 if (newDef.split_type == split_type_normal) {
4026 const int high =
4027 dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex];
4028 int low = 0;
4029 if (zone > 0) {
4030 std::map<dimension_t,int> lowerCase = dimCase;
4031 lowerCase[type]--;
4032 DimensionRegion* dstDimRgnLow = tempRgn->GetDimensionRegionByBit(lowerCase);
4033 low = dstDimRgnLow->DimensionUpperLimits[tempIncreasedDimensionIndex];
4034 }
4035 dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex] = low + (high - low) / 2;
4036 }
4037 // fill the newly created zone of the divided zone as well
4038 dimCase[type]++;
4039 dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
4040 dstDimRgn->CopyAssign(srcDimRgn);
4041 }
4042 }
4043
4044 // now tempRegion's dimensions and DimensionRegions basically reflect
4045 // what we wanted to get for this actual Region here, so we now just
4046 // delete and recreate the dimension in question with the new amount
4047 // zones and then copy back from tempRegion. we're actually deleting and
4048 // recreating all dimensions here, to avoid altering the precise order
4049 // of the dimensions (which would not be an error per se, but it would
4050 // cause usability issues with instrument editors)
4051 {
4052 std::vector<dimension_def_t> oldDefs;
4053 for (int i = 0; i < Dimensions; ++i)
4054 oldDefs.push_back(pDimensionDefinitions[i]); // copy, don't reference
4055 for (int i = Dimensions - 1; i >= 0; --i)
4056 DeleteDimension(&pDimensionDefinitions[i]);
4057 for (int i = 0; i < oldDefs.size(); ++i) {
4058 dimension_def_t& def = oldDefs[i];
4059 AddDimension(
4060 (def.dimension == newDef.dimension) ? &newDef : &def
4061 );
4062 }
4063 }
4064 for (int iSrc = 0; iSrc < 256; ++iSrc) {
4065 DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
4066 if (!srcDimRgn) continue;
4067 std::map<dimension_t,int> dimCase;
4068 for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
4069 const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
4070 dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
4071 (iSrc >> baseBits) & ((1 << srcBits) - 1);
4072 baseBits += srcBits;
4073 }
4074 // a bit paranoid: cope with the chance that the dimensions would
4075 // have different order in source and destination regions
4076 DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
4077 if (!dstDimRgn) continue;
4078 dstDimRgn->CopyAssign(srcDimRgn);
4079 }
4080
4081 // delete temporary region
4082 tempRgn->DeleteChunks();
4083 delete tempRgn;
4084
4085 UpdateVelocityTable();
4086 }
4087
4088 /** @brief Change type of an existing dimension.
4089 *
4090 * Alters the dimension type of a dimension already existing on this
4091 * region. If there is currently no dimension on this Region with type
4092 * @a oldType, then this call with throw an Exception. Likewise there are
4093 * cases where the requested dimension type cannot be performed. For example
4094 * if the new dimension type shall be gig::dimension_samplechannel, and the
4095 * current dimension has more than 2 zones. In such cases an Exception is
4096 * thrown as well.
4097 *
4098 * @param oldType - identifies the existing dimension to be changed
4099 * @param newType - to which dimension type it should be changed to
4100 * @throws gig::Exception if requested change cannot be performed
4101 */
4102 void Region::SetDimensionType(dimension_t oldType, dimension_t newType) {
4103 if (oldType == newType) return;
4104 dimension_def_t* def = GetDimensionDefinition(oldType);
4105 if (!def)
4106 throw gig::Exception("No dimension with provided old dimension type exists on this region");
4107 if (newType == dimension_samplechannel && def->zones != 2)
4108 throw gig::Exception("Cannot change to dimension type 'sample channel', because existing dimension does not have 2 zones");
4109 if (GetDimensionDefinition(newType))
4110 throw gig::Exception("There is already a dimension with requested new dimension type on this region");
4111 def->dimension = newType;
4112 def->split_type = __resolveSplitType(newType);
4113 }
4114
4115 DimensionRegion* Region::GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase) {
4116 uint8_t bits[8] = {};
4117 for (std::map<dimension_t,int>::const_iterator it = DimCase.begin();
4118 it != DimCase.end(); ++it)
4119 {
4120 for (int d = 0; d < Dimensions; ++d) {
4121 if (pDimensionDefinitions[d].dimension == it->first) {
4122 bits[d] = it->second;
4123 goto nextDimCaseSlice;
4124 }
4125 }
4126 assert(false); // do crash ... too harsh maybe ? ignore it instead ?
4127 nextDimCaseSlice:
4128 ; // noop
4129 }
4130 return GetDimensionRegionByBit(bits);
4131 }
4132
4133 /**
4134 * Searches in the current Region for a dimension of the given dimension
4135 * type and returns the precise configuration of that dimension in this
4136 * Region.
4137 *
4138 * @param type - dimension type of the sought dimension
4139 * @returns dimension definition or NULL if there is no dimension with
4140 * sought type in this Region.
4141 */
4142 dimension_def_t* Region::GetDimensionDefinition(dimension_t type) {
4143 for (int i = 0; i < Dimensions; ++i)
4144 if (pDimensionDefinitions[i].dimension == type)
4145 return &pDimensionDefinitions[i];
4146 return NULL;
4147 }
4148
4149 Region::~Region() {
4150 for (int i = 0; i < 256; i++) {
4151 if (pDimensionRegions[i]) delete pDimensionRegions[i];
4152 }
4153 }
4154
4155 /**
4156 * Use this method in your audio engine to get the appropriate dimension
4157 * region with it's articulation data for the current situation. Just
4158 * call the method with the current MIDI controller values and you'll get
4159 * the DimensionRegion with the appropriate articulation data for the
4160 * current situation (for this Region of course only). To do that you'll
4161 * first have to look which dimensions with which controllers and in
4162 * which order are defined for this Region when you load the .gig file.
4163 * Special cases are e.g. layer or channel dimensions where you just put
4164 * in the index numbers instead of a MIDI controller value (means 0 for
4165 * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
4166 * etc.).
4167 *
4168 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
4169 * @returns adress to the DimensionRegion for the given situation
4170 * @see pDimensionDefinitions
4171 * @see Dimensions
4172 */
4173 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
4174 uint8_t bits;
4175 int veldim = -1;
4176 int velbitpos = 0;
4177 int bitpos = 0;
4178 int dimregidx = 0;
4179 for (uint i = 0; i < Dimensions; i++) {
4180 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
4181 // the velocity dimension must be handled after the other dimensions
4182 veldim = i;
4183 velbitpos = bitpos;
4184 } else {
4185 switch (pDimensionDefinitions[i].split_type) {
4186 case split_type_normal:
4187 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
4188 // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
4189 for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
4190 if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
4191 }
4192 } else {
4193 // gig2: evenly sized zones
4194 bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
4195 }
4196 break;
4197 case split_type_bit: // the value is already the sought dimension bit number
4198 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
4199 bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
4200 break;
4201 }
4202 dimregidx |= bits << bitpos;
4203 }
4204 bitpos += pDimensionDefinitions[i].bits;
4205 }
4206 DimensionRegion* dimreg = pDimensionRegions[dimregidx & 255];
4207 if (!dimreg) return NULL;
4208 if (veldim != -1) {
4209 // (dimreg is now the dimension region for the lowest velocity)
4210 if (dimreg->VelocityTable) // custom defined zone ranges
4211 bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4212 else // normal split type
4213 bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4214
4215 const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4216 dimregidx |= (bits & limiter_mask) << velbitpos;
4217 dimreg = pDimensionRegions[dimregidx & 255];
4218 }
4219 return dimreg;
4220 }
4221
4222 int Region::GetDimensionRegionIndexByValue(const uint DimValues[8]) {
4223 uint8_t bits;
4224 int veldim = -1;
4225 int velbitpos = 0;
4226 int bitpos = 0;
4227 int dimregidx = 0;
4228 for (uint i = 0; i < Dimensions; i++) {
4229 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
4230 // the velocity dimension must be handled after the other dimensions
4231 veldim = i;
4232 velbitpos = bitpos;
4233 } else {
4234 switch (pDimensionDefinitions[i].split_type) {
4235 case split_type_normal:
4236 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
4237 // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
4238 for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
4239 if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
4240 }
4241 } else {
4242 // gig2: evenly sized zones
4243 bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
4244 }
4245 break;
4246 case split_type_bit: // the value is already the sought dimension bit number
4247 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
4248 bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
4249 break;
4250 }
4251 dimregidx |= bits << bitpos;
4252 }
4253 bitpos += pDimensionDefinitions[i].bits;
4254 }
4255 dimregidx &= 255;
4256 DimensionRegion* dimreg = pDimensionRegions[dimregidx];
4257 if (!dimreg) return -1;
4258 if (veldim != -1) {
4259 // (dimreg is now the dimension region for the lowest velocity)
4260 if (dimreg->VelocityTable) // custom defined zone ranges
4261 bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4262 else // normal split type
4263 bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4264
4265 const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4266 dimregidx |= (bits & limiter_mask) << velbitpos;
4267 dimregidx &= 255;
4268 }
4269 return dimregidx;
4270 }
4271
4272 /**
4273 * Returns the appropriate DimensionRegion for the given dimension bit
4274 * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
4275 * instead of calling this method directly!
4276 *
4277 * @param DimBits Bit numbers for dimension 0 to 7
4278 * @returns adress to the DimensionRegion for the given dimension
4279 * bit numbers
4280 * @see GetDimensionRegionByValue()
4281 */
4282 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
4283 return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
4284 << pDimensionDefinitions[5].bits | DimBits[5])
4285 << pDimensionDefinitions[4].bits | DimBits[4])
4286 << pDimensionDefinitions[3].bits | DimBits[3])
4287 << pDimensionDefinitions[2].bits | DimBits[2])
4288 << pDimensionDefinitions[1].bits | DimBits[1])
4289 << pDimensionDefinitions[0].bits | DimBits[0]];
4290 }
4291
4292 /**
4293 * Returns pointer address to the Sample referenced with this region.
4294 * This is the global Sample for the entire Region (not sure if this is
4295 * actually used by the Gigasampler engine - I would only use the Sample
4296 * referenced by the appropriate DimensionRegion instead of this sample).
4297 *
4298 * @returns address to Sample or NULL if there is no reference to a
4299 * sample saved in the .gig file
4300 */
4301 Sample* Region::GetSample() {
4302 if (pSample) return static_cast<gig::Sample*>(pSample);
4303 else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
4304 }
4305
4306 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
4307 if ((int32_t)WavePoolTableIndex == -1) return NULL;
4308 File* file = (File*) GetParent()->GetParent();
4309 if (!file->pWavePoolTable) return NULL;
4310 if (WavePoolTableIndex + 1 > file->WavePoolCount) return NULL;
4311 // for new files or files >= 2 GB use 64 bit wave pool offsets
4312 if (file->pRIFF->IsNew() || (file->pRIFF->GetCurrentFileSize() >> 31)) {
4313 // use 64 bit wave pool offsets (treating this as large file)
4314 uint64_t soughtoffset =
4315 uint64_t(file->pWavePoolTable[WavePoolTableIndex]) |
4316 uint64_t(file->pWavePoolTableHi[WavePoolTableIndex]) << 32;
4317 Sample* sample = file->GetFirstSample(pProgress);
4318 while (sample) {
4319 if (sample->ullWavePoolOffset == soughtoffset)
4320 return static_cast<gig::Sample*>(sample);
4321 sample = file->GetNextSample();
4322 }
4323 } else {
4324 // use extension files and 32 bit wave pool offsets
4325 file_offset_t soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
4326 file_offset_t soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
4327 Sample* sample = file->GetFirstSample(pProgress);
4328 while (sample) {
4329 if (sample->ullWavePoolOffset == soughtoffset &&
4330 sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
4331 sample = file->GetNextSample();
4332 }
4333 }
4334 return NULL;
4335 }
4336
4337 /**
4338 * Make a (semi) deep copy of the Region object given by @a orig
4339 * and assign it to this object.
4340 *
4341 * Note that all sample pointers referenced by @a orig are simply copied as
4342 * memory address. Thus the respective samples are shared, not duplicated!
4343 *
4344 * @param orig - original Region object to be copied from
4345 */
4346 void Region::CopyAssign(const Region* orig) {
4347 CopyAssign(orig, NULL);
4348 }
4349
4350 /**
4351 * Make a (semi) deep copy of the Region object given by @a orig and
4352 * assign it to this object
4353 *
4354 * @param mSamples - crosslink map between the foreign file's samples and
4355 * this file's samples
4356 */
4357 void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
4358 // handle base classes
4359 DLS::Region::CopyAssign(orig);
4360
4361 if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
4362 pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
4363 }
4364
4365 // handle own member variables
4366 for (int i = Dimensions - 1; i >= 0; --i) {
4367 DeleteDimension(&pDimensionDefinitions[i]);
4368 }
4369 Layers = 0; // just to be sure
4370 for (int i = 0; i < orig->Dimensions; i++) {
4371 // we need to copy the dim definition here, to avoid the compiler
4372 // complaining about const-ness issue
4373 dimension_def_t def = orig->pDimensionDefinitions[i];
4374 AddDimension(&def);
4375 }
4376 for (int i = 0; i < 256; i++) {
4377 if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
4378 pDimensionRegions[i]->CopyAssign(
4379 orig->pDimensionRegions[i],
4380 mSamples
4381 );
4382 }
4383 }
4384 Layers = orig->Layers;
4385 }
4386
4387 /**
4388 * Returns @c true in case this Region object uses any gig format
4389 * extension, that is e.g. whether any DimensionRegion object currently
4390 * has any setting effective that would require our "LSDE" RIFF chunk to
4391 * be stored to the gig file.
4392 *
4393 * Right now this is a private method. It is considerable though this method
4394 * to become (in slightly modified form) a public API method in future, i.e.
4395 * to allow instrument editors to visualize and/or warn the user of any gig
4396 * format extension being used. See also comments on
4397 * DimensionRegion::UsesAnyGigFormatExtension() for details about such a
4398 * potential public API change in future.
4399 */
4400 bool Region::UsesAnyGigFormatExtension() const {
4401 for (int i = 0; i < 256; i++) {
4402 if (pDimensionRegions[i]) {
4403 if (pDimensionRegions[i]->UsesAnyGigFormatExtension())
4404 return true;
4405 }
4406 }
4407 return false;
4408 }
4409
4410
4411 // *************** MidiRule ***************
4412 // *
4413
4414 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
4415 _3ewg->SetPos(36);
4416 Triggers = _3ewg->ReadUint8();
4417 _3ewg->SetPos(40);
4418 ControllerNumber = _3ewg->ReadUint8();
4419 _3ewg->SetPos(46);
4420 for (int i = 0 ; i < Triggers ; i++) {
4421 pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
4422 pTriggers[i].Descending = _3ewg->ReadUint8();
4423 pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
4424 pTriggers[i].Key = _3ewg->ReadUint8();
4425 pTriggers[i].NoteOff = _3ewg->ReadUint8();
4426 pTriggers[i].Velocity = _3ewg->ReadUint8();
4427 pTriggers[i].OverridePedal = _3ewg->ReadUint8();
4428 _3ewg->ReadUint8();
4429 }
4430 }
4431
4432 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
4433 ControllerNumber(0),
4434 Triggers(0) {
4435 }
4436
4437 void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
4438 pData[32] = 4;
4439 pData[33] = 16;
4440 pData[36] = Triggers;
4441 pData[40] = ControllerNumber;
4442 for (int i = 0 ; i < Triggers ; i++) {
4443 pData[46 + i * 8] = pTriggers[i].TriggerPoint;
4444 pData[47 + i * 8] = pTriggers[i].Descending;
4445 pData[48 + i * 8] = pTriggers[i].VelSensitivity;
4446 pData[49 + i * 8] = pTriggers[i].Key;
4447 pData[50 + i * 8] = pTriggers[i].NoteOff;
4448 pData[51 + i * 8] = pTriggers[i].Velocity;
4449 pData[52 + i * 8] = pTriggers[i].OverridePedal;
4450 }
4451 }
4452
4453 MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
4454 _3ewg->SetPos(36);
4455 LegatoSamples = _3ewg->ReadUint8(); // always 12
4456 _3ewg->SetPos(40);
4457 BypassUseController = _3ewg->ReadUint8();
4458 BypassKey = _3ewg->ReadUint8();
4459 BypassController = _3ewg->ReadUint8();
4460 ThresholdTime = _3ewg->ReadUint16();
4461 _3ewg->ReadInt16();
4462 ReleaseTime = _3ewg->ReadUint16();
4463 _3ewg->ReadInt16();
4464 KeyRange.low = _3ewg->ReadUint8();
4465 KeyRange.high = _3ewg->ReadUint8();
4466 _3ewg->SetPos(64);
4467 ReleaseTriggerKey = _3ewg->ReadUint8();
4468 AltSustain1Key = _3ewg->ReadUint8();
4469 AltSustain2Key = _3ewg->ReadUint8();
4470 }
4471
4472 MidiRuleLegato::MidiRuleLegato() :
4473 LegatoSamples(12),
4474 BypassUseController(false),
4475 BypassKey(0),
4476 BypassController(1),
4477 ThresholdTime(20),
4478 ReleaseTime(20),
4479 ReleaseTriggerKey(0),
4480 AltSustain1Key(0),
4481 AltSustain2Key(0)
4482 {
4483 KeyRange.low = KeyRange.high = 0;
4484 }
4485
4486 void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
4487 pData[32] = 0;
4488 pData[33] = 16;
4489 pData[36] = LegatoSamples;
4490 pData[40] = BypassUseController;
4491 pData[41] = BypassKey;
4492 pData[42] = BypassController;
4493 store16(&pData[43], ThresholdTime);
4494 store16(&pData[47], ReleaseTime);
4495 pData[51] = KeyRange.low;
4496 pData[52] = KeyRange.high;
4497 pData[64] = ReleaseTriggerKey;
4498 pData[65] = AltSustain1Key;
4499 pData[66] = AltSustain2Key;
4500 }
4501
4502 MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
4503 _3ewg->SetPos(36);
4504 Articulations = _3ewg->ReadUint8();
4505 int flags = _3ewg->ReadUint8();
4506 Polyphonic = flags & 8;
4507 Chained = flags & 4;
4508 Selector = (flags & 2) ? selector_controller :
4509 (flags & 1) ? selector_key_switch : selector_none;
4510 Patterns = _3ewg->ReadUint8();
4511 _3ewg->ReadUint8(); // chosen row
4512 _3ewg->ReadUint8(); // unknown
4513 _3ewg->ReadUint8(); // unknown
4514 _3ewg->ReadUint8(); // unknown
4515 KeySwitchRange.low = _3ewg->ReadUint8();
4516 KeySwitchRange.high = _3ewg->ReadUint8();
4517 Controller = _3ewg->ReadUint8();
4518 PlayRange.low = _3ewg->ReadUint8();
4519 PlayRange.high = _3ewg->ReadUint8();
4520
4521 int n = std::min(int(Articulations), 32);
4522 for (int i = 0 ; i < n ; i++) {
4523 _3ewg->ReadString(pArticulations[i], 32);
4524 }
4525 _3ewg->SetPos(1072);
4526 n = std::min(int(Patterns), 32);
4527 for (int i = 0 ; i < n ; i++) {
4528 _3ewg->ReadString(pPatterns[i].Name, 16);
4529 pPatterns[i].Size = _3ewg->ReadUint8();
4530 _3ewg->Read(&pPatterns[i][0], 1, 32);
4531 }
4532 }
4533
4534 MidiRuleAlternator::MidiRuleAlternator() :
4535 Articulations(0),
4536 Patterns(0),
4537 Selector(selector_none),
4538 Controller(0),
4539 Polyphonic(false),
4540 Chained(false)
4541 {
4542 PlayRange.low = PlayRange.high = 0;
4543 KeySwitchRange.low = KeySwitchRange.high = 0;
4544 }
4545
4546 void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
4547 pData[32] = 3;
4548 pData[33] = 16;
4549 pData[36] = Articulations;
4550 pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
4551 (Selector == selector_controller ? 2 :
4552 (Selector == selector_key_switch ? 1 : 0));
4553 pData[38] = Patterns;
4554
4555 pData[43] = KeySwitchRange.low;
4556 pData[44] = KeySwitchRange.high;
4557 pData[45] = Controller;
4558 pData[46] = PlayRange.low;
4559 pData[47] = PlayRange.high;
4560
4561 char* str = reinterpret_cast<char*>(pData);
4562 int pos = 48;
4563 int n = std::min(int(Articulations), 32);
4564 for (int i = 0 ; i < n ; i++, pos += 32) {
4565 strncpy(&str[pos], pArticulations[i].c_str(), 32);
4566 }
4567
4568 pos = 1072;
4569 n = std::min(int(Patterns), 32);
4570 for (int i = 0 ; i < n ; i++, pos += 49) {
4571 strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
4572 pData[pos + 16] = pPatterns[i].Size;
4573 memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
4574 }
4575 }
4576
4577 // *************** Script ***************
4578 // *
4579
4580 Script::Script(ScriptGroup* group, RIFF::Chunk* ckScri) {
4581 pGroup = group;
4582 pChunk = ckScri;
4583 if (ckScri) { // object is loaded from file ...
4584 ckScri->SetPos(0);
4585
4586 // read header
4587 uint32_t headerSize = ckScri->ReadUint32();
4588 Compression = (Compression_t) ckScri->ReadUint32();
4589 Encoding = (Encoding_t) ckScri->ReadUint32();
4590 Language = (Language_t) ckScri->ReadUint32();
4591 Bypass = (Language_t) ckScri->ReadUint32() & 1;
4592 crc = ckScri->ReadUint32();
4593 uint32_t nameSize = ckScri->ReadUint32();
4594 Name.resize(nameSize, ' ');
4595 for (int i = 0; i < nameSize; ++i)
4596 Name[i] = ckScri->ReadUint8();
4597 // to handle potential future extensions of the header
4598 ckScri->SetPos(sizeof(int32_t) + headerSize);
4599 // read actual script data
4600 uint32_t scriptSize = uint32_t(ckScri->GetSize() - ckScri->GetPos());
4601 data.resize(scriptSize);
4602 for (int i = 0; i < scriptSize; ++i)
4603 data[i] = ckScri->ReadUint8();
4604 } else { // this is a new script object, so just initialize it as such ...
4605 Compression = COMPRESSION_NONE;
4606 Encoding = ENCODING_ASCII;
4607 Language = LANGUAGE_NKSP;
4608 Bypass = false;
4609 crc = 0;
4610 Name = "Unnamed Script";
4611 }
4612 }
4613
4614 Script::~Script() {
4615 }
4616
4617 /**
4618 * Returns the current script (i.e. as source code) in text format.
4619 */
4620 String Script::GetScriptAsText() {
4621 String s;
4622 s.resize(data.size(), ' ');
4623 memcpy(&s[0], &data[0], data.size());
4624 return s;
4625 }
4626
4627 /**
4628 * Replaces the current script with the new script source code text given
4629 * by @a text.
4630 *
4631 * @param text - new script source code
4632 */
4633 void Script::SetScriptAsText(const String& text) {
4634 data.resize(text.size());
4635 memcpy(&data[0], &text[0], text.size());
4636 }
4637
4638 /** @brief Remove all RIFF chunks associated with this Script object.
4639 *
4640 * At the moment Script::DeleteChunks() does nothing. It is
4641 * recommended to call this method explicitly though from deriving classes's
4642 * own overridden implementation of this method to avoid potential future
4643 * compatiblity issues.
4644 *
4645 * See DLS::Storage::DeleteChunks() for details.
4646 */
4647 void Script::DeleteChunks() {
4648 }
4649
4650 /**
4651 * Apply this script to the respective RIFF chunks. You have to call
4652 * File::Save() to make changes persistent.
4653 *
4654 * Usually there is absolutely no need to call this method explicitly.
4655 * It will be called automatically when File::Save() was called.
4656 *
4657 * @param pProgress - callback function for progress notification
4658 */
4659 void Script::UpdateChunks(progress_t* pProgress) {
4660 // recalculate CRC32 check sum
4661 __resetCRC(crc);
4662 __calculateCRC(&data[0], data.size(), crc);
4663 __finalizeCRC(crc);
4664 // make sure chunk exists and has the required size
4665 const file_offset_t chunkSize = (file_offset_t) 7*sizeof(int32_t) + Name.size() + data.size();
4666 if (!pChunk) pChunk = pGroup->pList->AddSubChunk(CHUNK_ID_SCRI, chunkSize);
4667 else pChunk->Resize(chunkSize);
4668 // fill the chunk data to be written to disk
4669 uint8_t* pData = (uint8_t*) pChunk->LoadChunkData();
4670 int pos = 0;
4671 store32(&pData[pos], uint32_t(6*sizeof(int32_t) + Name.size())); // total header size
4672 pos += sizeof(int32_t);
4673 store32(&pData[pos], Compression);
4674 pos += sizeof(int32_t);
4675 store32(&pData[pos], Encoding);
4676 pos += sizeof(int32_t);
4677 store32(&pData[pos], Language);
4678 pos += sizeof(int32_t);
4679 store32(&pData[pos], Bypass ? 1 : 0);
4680 pos += sizeof(int32_t);
4681 store32(&pData[pos], crc);
4682 pos += sizeof(int32_t);
4683 store32(&pData[pos], (uint32_t) Name.size());
4684 pos += sizeof(int32_t);
4685 for (int i = 0; i < Name.size(); ++i, ++pos)
4686 pData[pos] = Name[i];
4687 for (int i = 0; i < data.size(); ++i, ++pos)
4688 pData[pos] = data[i];
4689 }
4690
4691 /**
4692 * Move this script from its current ScriptGroup to another ScriptGroup
4693 * given by @a pGroup.
4694 *
4695 * @param pGroup - script's new group
4696 */
4697 void Script::SetGroup(ScriptGroup* pGroup) {
4698 if (this->pGroup == pGroup) return;
4699 if (pChunk)
4700 pChunk->GetParent()->MoveSubChunk(pChunk, pGroup->pList);
4701 this->pGroup = pGroup;
4702 }
4703
4704 /**
4705 * Returns the script group this script currently belongs to. Each script
4706 * is a member of exactly one ScriptGroup.
4707 *
4708 * @returns current script group
4709 */
4710 ScriptGroup* Script::GetGroup() const {
4711 return pGroup;
4712 }
4713
4714 /**
4715 * Make a (semi) deep copy of the Script object given by @a orig
4716 * and assign it to this object. Note: the ScriptGroup this Script
4717 * object belongs to remains untouched by this call.
4718 *
4719 * @param orig - original Script object to be copied from
4720 */
4721 void Script::CopyAssign(const Script* orig) {
4722 Name = orig->Name;
4723 Compression = orig->Compression;
4724 Encoding = orig->Encoding;
4725 Language = orig->Language;
4726 Bypass = orig->Bypass;
4727 data = orig->data;
4728 }
4729
4730 void Script::RemoveAllScriptReferences() {
4731 File* pFile = pGroup->pFile;
4732 for (int i = 0; pFile->GetInstrument(i); ++i) {
4733 Instrument* instr = pFile->GetInstrument(i);
4734 instr->RemoveScript(this);
4735 }
4736 }
4737
4738 // *************** ScriptGroup ***************
4739 // *
4740
4741 ScriptGroup::ScriptGroup(File* file, RIFF::List* lstRTIS) {
4742 pFile = file;
4743 pList = lstRTIS;
4744 pScripts = NULL;
4745 if (lstRTIS) {
4746 RIFF::Chunk* ckName = lstRTIS->GetSubChunk(CHUNK_ID_LSNM);
4747 ::LoadString(ckName, Name);
4748 } else {
4749 Name = "Default Group";
4750 }
4751 }
4752
4753 ScriptGroup::~ScriptGroup() {
4754 if (pScripts) {
4755 std::list<Script*>::iterator iter = pScripts->begin();
4756 std::list<Script*>::iterator end = pScripts->end();
4757 while (iter != end) {
4758 delete *iter;
4759 ++iter;
4760 }
4761 delete pScripts;
4762 }
4763 }
4764
4765 /** @brief Remove all RIFF chunks associated with this ScriptGroup object.
4766 *
4767 * At the moment ScriptGroup::DeleteChunks() does nothing. It is
4768 * recommended to call this method explicitly though from deriving classes's
4769 * own overridden implementation of this method to avoid potential future
4770 * compatiblity issues.
4771 *
4772 * See DLS::Storage::DeleteChunks() for details.
4773 */
4774 void ScriptGroup::DeleteChunks() {
4775 }
4776
4777 /**
4778 * Apply this script group to the respective RIFF chunks. You have to call
4779 * File::Save() to make changes persistent.
4780 *
4781 * Usually there is absolutely no need to call this method explicitly.
4782 * It will be called automatically when File::Save() was called.
4783 *
4784 * @param pProgress - callback function for progress notification
4785 */
4786 void ScriptGroup::UpdateChunks(progress_t* pProgress) {
4787 if (pScripts) {
4788 if (!pList)
4789 pList = pFile->pRIFF->GetSubList(LIST_TYPE_3LS)->AddSubList(LIST_TYPE_RTIS);
4790
4791 // now store the name of this group as <LSNM> chunk as subchunk of the <RTIS> list chunk
4792 ::SaveString(CHUNK_ID_LSNM, NULL, pList, Name, String("Unnamed Group"), true, 64);
4793
4794 for (std::list<Script*>::iterator it = pScripts->begin();
4795 it != pScripts->end(); ++it)
4796 {
4797 (*it)->UpdateChunks(pProgress);
4798 }
4799 }
4800 }
4801
4802 /** @brief Get instrument script.
4803 *
4804 * Returns the real-time instrument script with the given index.
4805 *
4806 * @param index - number of the sought script (0..n)
4807 * @returns sought script or NULL if there's no such script
4808 */
4809 Script* ScriptGroup::GetScript(uint index) {
4810 if (!pScripts) LoadScripts();
4811 std::list<Script*>::iterator it = pScripts->begin();
4812 for (uint i = 0; it != pScripts->end(); ++i, ++it)
4813 if (i == index) return *it;
4814 return NULL;
4815 }
4816
4817 /** @brief Add new instrument script.
4818 *
4819 * Adds a new real-time instrument script to the file. The script is not
4820 * actually used / executed unless it is referenced by an instrument to be
4821 * used. This is similar to samples, which you can add to a file, without
4822 * an instrument necessarily actually using it.
4823 *
4824 * You have to call Save() to make this persistent to the file.
4825 *
4826 * @return new empty script object
4827 */
4828 Script* ScriptGroup::AddScript() {
4829 if (!pScripts) LoadScripts();
4830 Script* pScript = new Script(this, NULL);
4831 pScripts->push_back(pScript);
4832 return pScript;
4833 }
4834
4835 /** @brief Delete an instrument script.
4836 *
4837 * This will delete the given real-time instrument script. References of
4838 * instruments that are using that script will be removed accordingly.
4839 *
4840 * You have to call Save() to make this persistent to the file.
4841 *
4842 * @param pScript - script to delete
4843 * @throws gig::Exception if given script could not be found
4844 */
4845 void ScriptGroup::DeleteScript(Script* pScript) {
4846 if (!pScripts) LoadScripts();
4847 std::list<Script*>::iterator iter =
4848 find(pScripts->begin(), pScripts->end(), pScript);
4849 if (iter == pScripts->end())
4850 throw gig::Exception("Could not delete script, could not find given script");
4851 pScripts->erase(iter);
4852 pScript->RemoveAllScriptReferences();
4853 if (pScript->pChunk)
4854 pScript->pChunk->GetParent()->DeleteSubChunk(pScript->pChunk);
4855 delete pScript;
4856 }
4857
4858 void ScriptGroup::LoadScripts() {
4859 if (pScripts) return;
4860 pScripts = new std::list<Script*>;
4861 if (!pList) return;
4862
4863 for (RIFF::Chunk* ck = pList->GetFirstSubChunk(); ck;
4864 ck = pList->GetNextSubChunk())
4865 {
4866 if (ck->GetChunkID() == CHUNK_ID_SCRI) {
4867 pScripts->push_back(new Script(this, ck));
4868 }
4869 }
4870 }
4871
4872 // *************** Instrument ***************
4873 // *
4874
4875 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
4876 static const DLS::Info::string_length_t fixedStringLengths[] = {
4877 { CHUNK_ID_INAM, 64 },
4878 { CHUNK_ID_ISFT, 12 },
4879 { 0, 0 }
4880 };
4881 pInfo->SetFixedStringLengths(fixedStringLengths);
4882
4883 // Initialization
4884 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4885 EffectSend = 0;
4886 Attenuation = 0;
4887 FineTune = 0;
4888 PitchbendRange = 2;
4889 PianoReleaseMode = false;
4890 DimensionKeyRange.low = 0;
4891 DimensionKeyRange.high = 0;
4892 pMidiRules = new MidiRule*[3];
4893 pMidiRules[0] = NULL;
4894 pScriptRefs = NULL;
4895
4896 // Loading
4897 RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
4898 if (lart) {
4899 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4900 if (_3ewg) {
4901 _3ewg->SetPos(0);
4902
4903 EffectSend = _3ewg->ReadUint16();
4904 Attenuation = _3ewg->ReadInt32();
4905 FineTune = _3ewg->ReadInt16();
4906 PitchbendRange = _3ewg->ReadInt16();
4907 uint8_t dimkeystart = _3ewg->ReadUint8();
4908 PianoReleaseMode = dimkeystart & 0x01;
4909 DimensionKeyRange.low = dimkeystart >> 1;
4910 DimensionKeyRange.high = _3ewg->ReadUint8();
4911
4912 if (_3ewg->GetSize() > 32) {
4913 // read MIDI rules
4914 int i = 0;
4915 _3ewg->SetPos(32);
4916 uint8_t id1 = _3ewg->ReadUint8();
4917 uint8_t id2 = _3ewg->ReadUint8();
4918
4919 if (id2 == 16) {
4920 if (id1 == 4) {
4921 pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
4922 } else if (id1 == 0) {
4923 pMidiRules[i++] = new MidiRuleLegato(_3ewg);
4924 } else if (id1 == 3) {
4925 pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
4926 } else {
4927 pMidiRules[i++] = new MidiRuleUnknown;
4928 }
4929 }
4930 else if (id1 != 0 || id2 != 0) {
4931 pMidiRules[i++] = new MidiRuleUnknown;
4932 }
4933 //TODO: all the other types of rules
4934
4935 pMidiRules[i] = NULL;
4936 }
4937 }
4938 }
4939
4940 if (pFile->GetAutoLoad()) {
4941 if (!pRegions) pRegions = new RegionList;
4942 RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
4943 if (lrgn) {
4944 RIFF::List* rgn = lrgn->GetFirstSubList();
4945 while (rgn) {
4946 if (rgn->GetListType() == LIST_TYPE_RGN) {
4947 if (pProgress)
4948 __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
4949 pRegions->push_back(new Region(this, rgn));
4950 }
4951 rgn = lrgn->GetNextSubList();
4952 }
4953 // Creating Region Key Table for fast lookup
4954 UpdateRegionKeyTable();
4955 }
4956 }
4957
4958 // own gig format extensions
4959 RIFF::List* lst3LS = insList->GetSubList(LIST_TYPE_3LS);
4960 if (lst3LS) {
4961 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4962 if (ckSCSL) {
4963 ckSCSL->SetPos(0);
4964
4965 int headerSize = ckSCSL->ReadUint32();
4966 int slotCount = ckSCSL->ReadUint32();
4967 if (slotCount) {
4968 int slotSize = ckSCSL->ReadUint32();
4969 ckSCSL->SetPos(headerSize); // in case of future header extensions
4970 int unknownSpace = slotSize - 2*sizeof(uint32_t); // in case of future slot extensions
4971 for (int i = 0; i < slotCount; ++i) {
4972 _ScriptPooolEntry e;
4973 e.fileOffset = ckSCSL->ReadUint32();
4974 e.bypass = ckSCSL->ReadUint32() & 1;
4975 if (unknownSpace) ckSCSL->SetPos(unknownSpace, RIFF::stream_curpos); // in case of future extensions
4976 scriptPoolFileOffsets.push_back(e);
4977 }
4978 }
4979 }
4980 }
4981
4982 if (pProgress)
4983 __notify_progress(pProgress, 1.0f); // notify done
4984 }
4985
4986 void Instrument::UpdateRegionKeyTable() {
4987 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4988 RegionList::iterator iter = pRegions->begin();
4989 RegionList::iterator end = pRegions->end();
4990 for (; iter != end; ++iter) {
4991 gig::Region* pRegion = static_cast<gig::Region*>(*iter);
4992 const int low = std::max(int(pRegion->KeyRange.low), 0);
4993 const int high = std::min(int(pRegion->KeyRange.high), 127);
4994 for (int iKey = low; iKey <= high; iKey++) {
4995 RegionKeyTable[iKey] = pRegion;
4996 }
4997 }
4998 }
4999
5000 Instrument::~Instrument() {
5001 for (int i = 0 ; pMidiRules[i] ; i++) {
5002 delete pMidiRules[i];
5003 }
5004 delete[] pMidiRules;
5005 if (pScriptRefs) delete pScriptRefs;
5006 }
5007
5008 /**
5009 * Apply Instrument with all its Regions to the respective RIFF chunks.
5010 * You have to call File::Save() to make changes persistent.
5011 *
5012 * Usually there is absolutely no need to call this method explicitly.
5013 * It will be called automatically when File::Save() was called.
5014 *
5015 * @param pProgress - callback function for progress notification
5016 * @throws gig::Exception if samples cannot be dereferenced
5017 */
5018 void Instrument::UpdateChunks(progress_t* pProgress) {
5019 // first update base classes' chunks
5020 DLS::Instrument::UpdateChunks(pProgress);
5021
5022 // update Regions' chunks
5023 {
5024 RegionList::iterator iter = pRegions->begin();
5025 RegionList::iterator end = pRegions->end();
5026 for (; iter != end; ++iter)
5027 (*iter)->UpdateChunks(pProgress);
5028 }
5029
5030 // make sure 'lart' RIFF list chunk exists
5031 RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
5032 if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
5033 // make sure '3ewg' RIFF chunk exists
5034 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
5035 if (!_3ewg) {
5036 File* pFile = (File*) GetParent();
5037
5038 // 3ewg is bigger in gig3, as it includes the iMIDI rules
5039 int size = (pFile->pVersion && pFile->pVersion->major > 2) ? 16416 : 12;
5040 _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
5041 memset(_3ewg->LoadChunkData(), 0, size);
5042 }
5043 // update '3ewg' RIFF chunk
5044 uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
5045 store16(&pData[0], EffectSend);
5046 store32(&pData[2], Attenuation);
5047 store16(&pData[6], FineTune);
5048 store16(&pData[8], PitchbendRange);
5049 const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
5050 DimensionKeyRange.low << 1;
5051 pData[10] = dimkeystart;
5052 pData[11] = DimensionKeyRange.high;
5053
5054 if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
5055 pData[32] = 0;
5056 pData[33] = 0;
5057 } else {
5058 for (int i = 0 ; pMidiRules[i] ; i++) {
5059 pMidiRules[i]->UpdateChunks(pData);
5060 }
5061 }
5062
5063 // own gig format extensions
5064 if (ScriptSlotCount()) {
5065 // make sure we have converted the original loaded script file
5066 // offsets into valid Script object pointers
5067 LoadScripts();
5068
5069 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
5070 if (!lst3LS) lst3LS = pCkInstrument->AddSubList(LIST_TYPE_3LS);
5071 const int slotCount = (int) pScriptRefs->size();
5072 const int headerSize = 3 * sizeof(uint32_t);
5073 const int slotSize = 2 * sizeof(uint32_t);
5074 const int totalChunkSize = headerSize + slotCount * slotSize;
5075 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
5076 if (!ckSCSL) ckSCSL = lst3LS->AddSubChunk(CHUNK_ID_SCSL, totalChunkSize);
5077 else ckSCSL->Resize(totalChunkSize);
5078 uint8_t* pData = (uint8_t*) ckSCSL->LoadChunkData();
5079 int pos = 0;
5080 store32(&pData[pos], headerSize);
5081 pos += sizeof(uint32_t);
5082 store32(&pData[pos], slotCount);
5083 pos += sizeof(uint32_t);
5084 store32(&pData[pos], slotSize);
5085 pos += sizeof(uint32_t);
5086 for (int i = 0; i < slotCount; ++i) {
5087 // arbitrary value, the actual file offset will be updated in
5088 // UpdateScriptFileOffsets() after the file has been resized
5089 int bogusFileOffset = 0;
5090 store32(&pData[pos], bogusFileOffset);
5091 pos += sizeof(uint32_t);
5092 store32(&pData[pos], (*pScriptRefs)[i].bypass ? 1 : 0);
5093 pos += sizeof(uint32_t);
5094 }
5095 } else {
5096 // no script slots, so get rid of any LS custom RIFF chunks (if any)
5097 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
5098 if (lst3LS) pCkInstrument->DeleteSubChunk(lst3LS);
5099 }
5100 }
5101
5102 void Instrument::UpdateScriptFileOffsets() {
5103 // own gig format extensions
5104 if (pScriptRefs && pScriptRefs->size() > 0) {
5105 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
5106 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
5107 const int slotCount = (int) pScriptRefs->size();
5108 const int headerSize = 3 * sizeof(uint32_t);
5109 ckSCSL->SetPos(headerSize);
5110 for (int i = 0; i < slotCount; ++i) {
5111 uint32_t fileOffset = uint32_t(
5112 (*pScriptRefs)[i].script->pChunk->GetFilePos() -
5113 (*pScriptRefs)[i].script->pChunk->GetPos() -
5114 CHUNK_HEADER_SIZE(ckSCSL->GetFile()->GetFileOffsetSize())
5115 );
5116 ckSCSL->WriteUint32(&fileOffset);
5117 // jump over flags entry (containing the bypass flag)
5118 ckSCSL->SetPos(sizeof(uint32_t), RIFF::stream_curpos);
5119 }
5120 }
5121 }
5122
5123 /**
5124 * Returns the appropriate Region for a triggered note.
5125 *
5126 * @param Key MIDI Key number of triggered note / key (0 - 127)
5127 * @returns pointer adress to the appropriate Region or NULL if there
5128 * there is no Region defined for the given \a Key
5129 */
5130 Region* Instrument::GetRegion(unsigned int Key) {
5131 if (!pRegions || pRegions->empty() || Key > 127) return NULL;
5132 return RegionKeyTable[Key];
5133
5134 /*for (int i = 0; i < Regions; i++) {
5135 if (Key <= pRegions[i]->KeyRange.high &&
5136 Key >= pRegions[i]->KeyRange.low) return pRegions[i];
5137 }
5138 return NULL;*/
5139 }
5140
5141 /**
5142 * Returns the first Region of the instrument. You have to call this
5143 * method once before you use GetNextRegion().
5144 *
5145 * @returns pointer address to first region or NULL if there is none
5146 * @see GetNextRegion()
5147 */
5148 Region* Instrument::GetFirstRegion() {
5149 if (!pRegions) return NULL;
5150 RegionsIterator = pRegions->begin();
5151 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
5152 }
5153
5154 /**
5155 * Returns the next Region of the instrument. You have to call
5156 * GetFirstRegion() once before you can use this method. By calling this
5157 * method multiple times it iterates through the available Regions.
5158 *
5159 * @returns pointer address to the next region or NULL if end reached
5160 * @see GetFirstRegion()
5161 */
5162 Region* Instrument::GetNextRegion() {
5163 if (!pRegions) return NULL;
5164 RegionsIterator++;
5165 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
5166 }
5167
5168 Region* Instrument::AddRegion() {
5169 // create new Region object (and its RIFF chunks)
5170 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
5171 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
5172 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
5173 Region* pNewRegion = new Region(this, rgn);
5174 pRegions->push_back(pNewRegion);
5175 Regions = (uint32_t) pRegions->size();
5176 // update Region key table for fast lookup
5177 UpdateRegionKeyTable();
5178 // done
5179 return pNewRegion;
5180 }
5181
5182 void Instrument::DeleteRegion(Region* pRegion) {
5183 if (!pRegions) return;
5184 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
5185 // update Region key table for fast lookup
5186 UpdateRegionKeyTable();
5187 }
5188
5189 /**
5190 * Move this instrument at the position before @arg dst.
5191 *
5192 * This method can be used to reorder the sequence of instruments in a
5193 * .gig file. This might be helpful especially on large .gig files which
5194 * contain a large number of instruments within the same .gig file. So
5195 * grouping such instruments to similar ones, can help to keep track of them
5196 * when working with such complex .gig files.
5197 *
5198 * When calling this method, this instrument will be removed from in its
5199 * current position in the instruments list and moved to the requested
5200 * target position provided by @param dst. You may also pass NULL as
5201 * argument to this method, in that case this intrument will be moved to the
5202 * very end of the .gig file's instrument list.
5203 *
5204 * You have to call Save() to make the order change persistent to the .gig
5205 * file.
5206 *
5207 * Currently this method is limited to moving the instrument within the same
5208 * .gig file. Trying to move it to another .gig file by calling this method
5209 * will throw an exception.
5210 *
5211 * @param dst - destination instrument at which this instrument will be
5212 * moved to, or pass NULL for moving to end of list
5213 * @throw gig::Exception if this instrument and target instrument are not
5214 * part of the same file
5215 */
5216 void Instrument::MoveTo(Instrument* dst) {
5217 if (dst && GetParent() != dst->GetParent())
5218 throw Exception(
5219 "gig::Instrument::MoveTo() can only be used for moving within "
5220 "the same gig file."
5221 );
5222
5223 File* pFile = (File*) GetParent();
5224
5225 // move this instrument within the instrument list
5226 {
5227 File::InstrumentList& list = *pFile->pInstruments;
5228
5229 File::InstrumentList::iterator itFrom =
5230 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(this));
5231
5232 File::InstrumentList::iterator itTo =
5233 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(dst));
5234
5235 list.splice(itTo, list, itFrom);
5236 }
5237
5238 // move the instrument's actual list RIFF chunk appropriately
5239 RIFF::List* lstCkInstruments = pFile->pRIFF->GetSubList(LIST_TYPE_LINS);
5240 lstCkInstruments->MoveSubChunk(
5241 this->pCkInstrument,
5242 (RIFF::Chunk*) ((dst) ? dst->pCkInstrument : NULL)
5243 );
5244 }
5245
5246 /**
5247 * Returns a MIDI rule of the instrument.
5248 *
5249 * The list of MIDI rules, at least in gig v3, always contains at
5250 * most two rules. The second rule can only be the DEF filter
5251 * (which currently isn't supported by libgig).
5252 *
5253 * @param i - MIDI rule number
5254 * @returns pointer address to MIDI rule number i or NULL if there is none
5255 */
5256 MidiRule* Instrument::GetMidiRule(int i) {
5257 return pMidiRules[i];
5258 }
5259
5260 /**
5261 * Adds the "controller trigger" MIDI rule to the instrument.
5262 *
5263 * @returns the new MIDI rule
5264 */
5265 MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
5266 delete pMidiRules[0];
5267 MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
5268 pMidiRules[0] = r;
5269 pMidiRules[1] = 0;
5270 return r;
5271 }
5272
5273 /**
5274 * Adds the legato MIDI rule to the instrument.
5275 *
5276 * @returns the new MIDI rule
5277 */
5278 MidiRuleLegato* Instrument::AddMidiRuleLegato() {
5279 delete pMidiRules[0];
5280 MidiRuleLegato* r = new MidiRuleLegato;
5281 pMidiRules[0] = r;
5282 pMidiRules[1] = 0;
5283 return r;
5284 }
5285
5286 /**
5287 * Adds the alternator MIDI rule to the instrument.
5288 *
5289 * @returns the new MIDI rule
5290 */
5291 MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
5292 delete pMidiRules[0];
5293 MidiRuleAlternator* r = new MidiRuleAlternator;
5294 pMidiRules[0] = r;
5295 pMidiRules[1] = 0;
5296 return r;
5297 }
5298
5299 /**
5300 * Deletes a MIDI rule from the instrument.
5301 *
5302 * @param i - MIDI rule number
5303 */
5304 void Instrument::DeleteMidiRule(int i) {
5305 delete pMidiRules[i];
5306 pMidiRules[i] = 0;
5307 }
5308
5309 void Instrument::LoadScripts() {
5310 if (pScriptRefs) return;
5311 pScriptRefs = new std::vector<_ScriptPooolRef>;
5312 if (scriptPoolFileOffsets.empty()) return;
5313 File* pFile = (File*) GetParent();
5314 for (uint k = 0; k < scriptPoolFileOffsets.size(); ++k) {
5315 uint32_t soughtOffset = scriptPoolFileOffsets[k].fileOffset;
5316 for (uint i = 0; pFile->GetScriptGroup(i); ++i) {
5317 ScriptGroup* group = pFile->GetScriptGroup(i);
5318 for (uint s = 0; group->GetScript(s); ++s) {
5319 Script* script = group->GetScript(s);
5320 if (script->pChunk) {
5321 uint32_t offset = uint32_t(
5322 script->pChunk->GetFilePos() -
5323 script->pChunk->GetPos() -
5324 CHUNK_HEADER_SIZE(script->pChunk->GetFile()->GetFileOffsetSize())
5325 );
5326 if (offset == soughtOffset)
5327 {
5328 _ScriptPooolRef ref;
5329 ref.script = script;
5330 ref.bypass = scriptPoolFileOffsets[k].bypass;
5331 pScriptRefs->push_back(ref);
5332 break;
5333 }
5334 }
5335 }
5336 }
5337 }
5338 // we don't need that anymore
5339 scriptPoolFileOffsets.clear();
5340 }
5341
5342 /** @brief Get instrument script (gig format extension).
5343 *
5344 * Returns the real-time instrument script of instrument script slot
5345 * @a index.
5346 *
5347 * @note This is an own format extension which did not exist i.e. in the
5348 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5349 * gigedit.
5350 *
5351 * @param index - instrument script slot index
5352 * @returns script or NULL if index is out of bounds
5353 */
5354 Script* Instrument::GetScriptOfSlot(uint index) {
5355 LoadScripts();
5356 if (index >= pScriptRefs->size()) return NULL;
5357 return pScriptRefs->at(index).script;
5358 }
5359
5360 /** @brief Add new instrument script slot (gig format extension).
5361 *
5362 * Add the given real-time instrument script reference to this instrument,
5363 * which shall be executed by the sampler for for this instrument. The
5364 * script will be added to the end of the script list of this instrument.
5365 * The positions of the scripts in the Instrument's Script list are
5366 * relevant, because they define in which order they shall be executed by
5367 * the sampler. For this reason it is also legal to add the same script
5368 * twice to an instrument, for example you might have a script called
5369 * "MyFilter" which performs an event filter task, and you might have
5370 * another script called "MyNoteTrigger" which triggers new notes, then you
5371 * might for example have the following list of scripts on the instrument:
5372 *
5373 * 1. Script "MyFilter"
5374 * 2. Script "MyNoteTrigger"
5375 * 3. Script "MyFilter"
5376 *
5377 * Which would make sense, because the 2nd script launched new events, which
5378 * you might need to filter as well.
5379 *
5380 * There are two ways to disable / "bypass" scripts. You can either disable
5381 * a script locally for the respective script slot on an instrument (i.e. by
5382 * passing @c false to the 2nd argument of this method, or by calling
5383 * SetScriptBypassed()). Or you can disable a script globally for all slots
5384 * and all instruments by setting Script::Bypass.
5385 *
5386 * @note This is an own format extension which did not exist i.e. in the
5387 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5388 * gigedit.
5389 *
5390 * @param pScript - script that shall be executed for this instrument
5391 * @param bypass - if enabled, the sampler shall skip executing this
5392 * script (in the respective list position)
5393 * @see SetScriptBypassed()
5394 */
5395 void Instrument::AddScriptSlot(Script* pScript, bool bypass) {
5396 LoadScripts();
5397 _ScriptPooolRef ref = { pScript, bypass };
5398 pScriptRefs->push_back(ref);
5399 }
5400
5401 /** @brief Flip two script slots with each other (gig format extension).
5402 *
5403 * Swaps the position of the two given scripts in the Instrument's Script
5404 * list. The positions of the scripts in the Instrument's Script list are
5405 * relevant, because they define in which order they shall be executed by
5406 * the sampler.
5407 *
5408 * @note This is an own format extension which did not exist i.e. in the
5409 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5410 * gigedit.
5411 *
5412 * @param index1 - index of the first script slot to swap
5413 * @param index2 - index of the second script slot to swap
5414 */
5415 void Instrument::SwapScriptSlots(uint index1, uint index2) {
5416 LoadScripts();
5417 if (index1 >= pScriptRefs->size() || index2 >= pScriptRefs->size())
5418 return;
5419 _ScriptPooolRef tmp = (*pScriptRefs)[index1];
5420 (*pScriptRefs)[index1] = (*pScriptRefs)[index2];
5421 (*pScriptRefs)[index2] = tmp;
5422 }
5423
5424 /** @brief Remove script slot.
5425 *
5426 * Removes the script slot with the given slot index.
5427 *
5428 * @param index - index of script slot to remove
5429 */
5430 void Instrument::RemoveScriptSlot(uint index) {
5431 LoadScripts();
5432 if (index >= pScriptRefs->size()) return;
5433 pScriptRefs->erase( pScriptRefs->begin() + index );
5434 }
5435
5436 /** @brief Remove reference to given Script (gig format extension).
5437 *
5438 * This will remove all script slots on the instrument which are referencing
5439 * the given script.
5440 *
5441 * @note This is an own format extension which did not exist i.e. in the
5442 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5443 * gigedit.
5444 *
5445 * @param pScript - script reference to remove from this instrument
5446 * @see RemoveScriptSlot()
5447 */
5448 void Instrument::RemoveScript(Script* pScript) {
5449 LoadScripts();
5450 for (ssize_t i = pScriptRefs->size() - 1; i >= 0; --i) {
5451 if ((*pScriptRefs)[i].script == pScript) {
5452 pScriptRefs->erase( pScriptRefs->begin() + i );
5453 }
5454 }
5455 }
5456
5457 /** @brief Instrument's amount of script slots.
5458 *
5459 * This method returns the amount of script slots this instrument currently
5460 * uses.
5461 *
5462 * A script slot is a reference of a real-time instrument script to be
5463 * executed by the sampler. The scripts will be executed by the sampler in
5464 * sequence of the slots. One (same) script may be referenced multiple
5465 * times in different slots.
5466 *
5467 * @note This is an own format extension which did not exist i.e. in the
5468 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5469 * gigedit.
5470 */
5471 uint Instrument::ScriptSlotCount() const {
5472 return uint(pScriptRefs ? pScriptRefs->size() : scriptPoolFileOffsets.size());
5473 }
5474
5475 /** @brief Whether script execution shall be skipped.
5476 *
5477 * Defines locally for the Script reference slot in the Instrument's Script
5478 * list, whether the script shall be skipped by the sampler regarding
5479 * execution.
5480 *
5481 * It is also possible to ignore exeuction of the script globally, for all
5482 * slots and for all instruments by setting Script::Bypass.
5483 *
5484 * @note This is an own format extension which did not exist i.e. in the
5485 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5486 * gigedit.
5487 *
5488 * @param index - index of the script slot on this instrument
5489 * @see Script::Bypass
5490 */
5491 bool Instrument::IsScriptSlotBypassed(uint index) {
5492 if (index >= ScriptSlotCount()) return false;
5493 return pScriptRefs ? pScriptRefs->at(index).bypass
5494 : scriptPoolFileOffsets.at(index).bypass;
5495
5496 }
5497
5498 /** @brief Defines whether execution shall be skipped.
5499 *
5500 * You can call this method to define locally whether or whether not the
5501 * given script slot shall be executed by the sampler.
5502 *
5503 * @note This is an own format extension which did not exist i.e. in the
5504 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5505 * gigedit.
5506 *
5507 * @param index - script slot index on this instrument
5508 * @param bBypass - if true, the script slot will be skipped by the sampler
5509 * @see Script::Bypass
5510 */
5511 void Instrument::SetScriptSlotBypassed(uint index, bool bBypass) {
5512 if (index >= ScriptSlotCount()) return;
5513 if (pScriptRefs)
5514 pScriptRefs->at(index).bypass = bBypass;
5515 else
5516 scriptPoolFileOffsets.at(index).bypass = bBypass;
5517 }
5518
5519 /**
5520 * Make a (semi) deep copy of the Instrument object given by @a orig
5521 * and assign it to this object.
5522 *
5523 * Note that all sample pointers referenced by @a orig are simply copied as
5524 * memory address. Thus the respective samples are shared, not duplicated!
5525 *
5526 * @param orig - original Instrument object to be copied from
5527 */
5528 void Instrument::CopyAssign(const Instrument* orig) {
5529 CopyAssign(orig, NULL);
5530 }
5531
5532 /**
5533 * Make a (semi) deep copy of the Instrument object given by @a orig
5534 * and assign it to this object.
5535 *
5536 * @param orig - original Instrument object to be copied from
5537 * @param mSamples - crosslink map between the foreign file's samples and
5538 * this file's samples
5539 */
5540 void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
5541 // handle base class
5542 // (without copying DLS region stuff)
5543 DLS::Instrument::CopyAssignCore(orig);
5544
5545 // handle own member variables
5546 Attenuation = orig->Attenuation;
5547 EffectSend = orig->EffectSend;
5548 FineTune = orig->FineTune;
5549 PitchbendRange = orig->PitchbendRange;
5550 PianoReleaseMode = orig->PianoReleaseMode;
5551 DimensionKeyRange = orig->DimensionKeyRange;
5552 scriptPoolFileOffsets = orig->scriptPoolFileOffsets;
5553 pScriptRefs = orig->pScriptRefs;
5554
5555 // free old midi rules
5556 for (int i = 0 ; pMidiRules[i] ; i++) {
5557 delete pMidiRules[i];
5558 }
5559 //TODO: MIDI rule copying
5560 pMidiRules[0] = NULL;
5561
5562 // delete all old regions
5563 while (Regions) DeleteRegion(GetFirstRegion());
5564 // create new regions and copy them from original
5565 {
5566 RegionList::const_iterator it = orig->pRegions->begin();
5567 for (int i = 0; i < orig->Regions; ++i, ++it) {
5568 Region* dstRgn = AddRegion();
5569 //NOTE: Region does semi-deep copy !
5570 dstRgn->CopyAssign(
5571 static_cast<gig::Region*>(*it),
5572 mSamples
5573 );
5574 }
5575 }
5576
5577 UpdateRegionKeyTable();
5578 }
5579
5580 /**
5581 * Returns @c true in case this Instrument object uses any gig format
5582 * extension, that is e.g. whether any DimensionRegion object currently
5583 * has any setting effective that would require our "LSDE" RIFF chunk to
5584 * be stored to the gig file.
5585 *
5586 * Right now this is a private method. It is considerable though this method
5587 * to become (in slightly modified form) a public API method in future, i.e.
5588 * to allow instrument editors to visualize and/or warn the user of any gig
5589 * format extension being used. See also comments on
5590 * DimensionRegion::UsesAnyGigFormatExtension() for details about such a
5591 * potential public API change in future.
5592 */
5593 bool Instrument::UsesAnyGigFormatExtension() const {
5594 if (!pRegions) return false;
5595 RegionList::const_iterator iter = pRegions->begin();
5596 RegionList::const_iterator end = pRegions->end();
5597 for (; iter != end; ++iter) {
5598 gig::Region* rgn = static_cast<gig::Region*>(*iter);
5599 if (rgn->UsesAnyGigFormatExtension())
5600 return true;
5601 }
5602 return false;
5603 }
5604
5605
5606 // *************** Group ***************
5607 // *
5608
5609 /** @brief Constructor.
5610 *
5611 * @param file - pointer to the gig::File object
5612 * @param ck3gnm - pointer to 3gnm chunk associated with this group or
5613 * NULL if this is a new Group
5614 */
5615 Group::Group(File* file, RIFF::Chunk* ck3gnm) {
5616 pFile = file;
5617 pNameChunk = ck3gnm;
5618 ::LoadString(pNameChunk, Name);
5619 }
5620
5621 /** @brief Destructor.
5622 *
5623 * Currently this destructor implementation does nothing.
5624 */
5625 Group::~Group() {
5626 }
5627
5628 /** @brief Remove all RIFF chunks associated with this Group object.
5629 *
5630 * See DLS::Storage::DeleteChunks() for details.
5631 */
5632 void Group::DeleteChunks() {
5633 // handle own RIFF chunks
5634 if (pNameChunk) {
5635 pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
5636 pNameChunk = NULL;
5637 }
5638 }
5639
5640 /** @brief Update chunks with current group settings.
5641 *
5642 * Apply current Group field values to the respective chunks. You have
5643 * to call File::Save() to make changes persistent.
5644 *
5645 * Usually there is absolutely no need to call this method explicitly.
5646 * It will be called automatically when File::Save() was called.
5647 *
5648 * @param pProgress - callback function for progress notification
5649 */
5650 void Group::UpdateChunks(progress_t* pProgress) {
5651 // make sure <3gri> and <3gnl> list chunks exist
5652 RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
5653 if (!_3gri) {
5654 _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
5655 pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
5656 }
5657 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
5658 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
5659
5660 if (!pNameChunk && pFile->pVersion && pFile->pVersion->major > 2) {
5661 // v3 has a fixed list of 128 strings, find a free one
5662 for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
5663 if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
5664 pNameChunk = ck;
5665 break;
5666 }
5667 }
5668 }
5669
5670 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
5671 ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
5672 }
5673
5674 /**
5675 * Returns the first Sample of this Group. You have to call this method
5676 * once before you use GetNextSample().
5677 *
5678 * <b>Notice:</b> this method might block for a long time, in case the
5679 * samples of this .gig file were not scanned yet
5680 *
5681 * @returns pointer address to first Sample or NULL if there is none
5682 * applied to this Group
5683 * @see GetNextSample()
5684 */
5685 Sample* Group::GetFirstSample() {
5686 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5687 for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
5688 if (pSample->GetGroup() == this) return pSample;
5689 }
5690 return NULL;
5691 }
5692
5693 /**
5694 * Returns the next Sample of the Group. You have to call
5695 * GetFirstSample() once before you can use this method. By calling this
5696 * method multiple times it iterates through the Samples assigned to
5697 * this Group.
5698 *
5699 * @returns pointer address to the next Sample of this Group or NULL if
5700 * end reached
5701 * @see GetFirstSample()
5702 */
5703 Sample* Group::GetNextSample() {
5704 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5705 for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
5706 if (pSample->GetGroup() == this) return pSample;
5707 }
5708 return NULL;
5709 }
5710
5711 /**
5712 * Move Sample given by \a pSample from another Group to this Group.
5713 */
5714 void Group::AddSample(Sample* pSample) {
5715 pSample->pGroup = this;
5716 }
5717
5718 /**
5719 * Move all members of this group to another group (preferably the 1st
5720 * one except this). This method is called explicitly by
5721 * File::DeleteGroup() thus when a Group was deleted. This code was
5722 * intentionally not placed in the destructor!
5723 */
5724 void Group::MoveAll() {
5725 // get "that" other group first
5726 Group* pOtherGroup = NULL;
5727 for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
5728 if (pOtherGroup != this) break;
5729 }
5730 if (!pOtherGroup) throw Exception(
5731 "Could not move samples to another group, since there is no "
5732 "other Group. This is a bug, report it!"
5733 );
5734 // now move all samples of this group to the other group
5735 for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
5736 pOtherGroup->AddSample(pSample);
5737 }
5738 }
5739
5740
5741
5742 // *************** File ***************
5743 // *
5744
5745 /// Reflects Gigasampler file format version 2.0 (1998-06-28).
5746 const DLS::version_t File::VERSION_2 = {
5747 0, 2, 19980628 & 0xffff, 19980628 >> 16
5748 };
5749
5750 /// Reflects Gigasampler file format version 3.0 (2003-03-31).
5751 const DLS::version_t File::VERSION_3 = {
5752 0, 3, 20030331 & 0xffff, 20030331 >> 16
5753 };
5754
5755 /// Reflects Gigasampler file format version 4.0 (2007-10-12).
5756 const DLS::version_t File::VERSION_4 = {
5757 0, 4, 20071012 & 0xffff, 20071012 >> 16
5758 };
5759
5760 static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
5761 { CHUNK_ID_IARL, 256 },
5762 { CHUNK_ID_IART, 128 },
5763 { CHUNK_ID_ICMS, 128 },
5764 { CHUNK_ID_ICMT, 1024 },
5765 { CHUNK_ID_ICOP, 128 },
5766 { CHUNK_ID_ICRD, 128 },
5767 { CHUNK_ID_IENG, 128 },
5768 { CHUNK_ID_IGNR, 128 },
5769 { CHUNK_ID_IKEY, 128 },
5770 { CHUNK_ID_IMED, 128 },
5771 { CHUNK_ID_INAM, 128 },
5772 { CHUNK_ID_IPRD, 128 },
5773 { CHUNK_ID_ISBJ, 128 },
5774 { CHUNK_ID_ISFT, 128 },
5775 { CHUNK_ID_ISRC, 128 },
5776 { CHUNK_ID_ISRF, 128 },
5777 { CHUNK_ID_ITCH, 128 },
5778 { 0, 0 }
5779 };
5780
5781 File::File() : DLS::File() {
5782 bAutoLoad = true;
5783 *pVersion = VERSION_3;
5784 pGroups = NULL;
5785 pScriptGroups = NULL;
5786 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5787 pInfo->ArchivalLocation = String(256, ' ');
5788
5789 // add some mandatory chunks to get the file chunks in right
5790 // order (INFO chunk will be moved to first position later)
5791 pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
5792 pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
5793 pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
5794
5795 GenerateDLSID();
5796 }
5797
5798 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
5799 bAutoLoad = true;
5800 pGroups = NULL;
5801 pScriptGroups = NULL;
5802 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5803 }
5804
5805 File::~File() {
5806 if (pGroups) {
5807 std::list<Group*>::iterator iter = pGroups->begin();
5808 std::list<Group*>::iterator end = pGroups->end();
5809 while (iter != end) {
5810 delete *iter;
5811 ++iter;
5812 }
5813 delete pGroups;
5814 }
5815 if (pScriptGroups) {
5816 std::list<ScriptGroup*>::iterator iter = pScriptGroups->begin();
5817 std::list<ScriptGroup*>::iterator end = pScriptGroups->end();
5818 while (iter != end) {
5819 delete *iter;
5820 ++iter;
5821 }
5822 delete pScriptGroups;
5823 }
5824 }
5825
5826 Sample* File::GetFirstSample(progress_t* pProgress) {
5827 if (!pSamples) LoadSamples(pProgress);
5828 if (!pSamples) return NULL;
5829 SamplesIterator = pSamples->begin();
5830 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5831 }
5832
5833 Sample* File::GetNextSample() {
5834 if (!pSamples) return NULL;
5835 SamplesIterator++;
5836 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5837 }
5838
5839 /**
5840 * Returns Sample object of @a index.
5841 *
5842 * @returns sample object or NULL if index is out of bounds
5843 */
5844 Sample* File::GetSample(uint index) {
5845 if (!pSamples) LoadSamples();
5846 if (!pSamples) return NULL;
5847 DLS::File::SampleList::iterator it = pSamples->begin();
5848 for (int i = 0; i < index; ++i) {
5849 ++it;
5850 if (it == pSamples->end()) return NULL;
5851 }
5852 if (it == pSamples->end()) return NULL;
5853 return static_cast<gig::Sample*>( *it );
5854 }
5855
5856 /**
5857 * Returns the total amount of samples of this gig file.
5858 *
5859 * Note that this method might block for a long time in case it is required
5860 * to load the sample info for the first time.
5861 *
5862 * @returns total amount of samples
5863 */
5864 size_t File::CountSamples() {
5865 if (!pSamples) LoadSamples();
5866 if (!pSamples) return 0;
5867 return pSamples->size();
5868 }
5869
5870 /** @brief Add a new sample.
5871 *
5872 * This will create a new Sample object for the gig file. You have to
5873 * call Save() to make this persistent to the file.
5874 *
5875 * @returns pointer to new Sample object
5876 */
5877 Sample* File::AddSample() {
5878 if (!pSamples) LoadSamples();
5879 __ensureMandatoryChunksExist();
5880 RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
5881 // create new Sample object and its respective 'wave' list chunk
5882 RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
5883 Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
5884
5885 // add mandatory chunks to get the chunks in right order
5886 wave->AddSubChunk(CHUNK_ID_FMT, 16);
5887 wave->AddSubList(LIST_TYPE_INFO);
5888
5889 pSamples->push_back(pSample);
5890 return pSample;
5891 }
5892
5893 /** @brief Delete a sample.
5894 *
5895 * This will delete the given Sample object from the gig file. Any
5896 * references to this sample from Regions and DimensionRegions will be
5897 * removed. You have to call Save() to make this persistent to the file.
5898 *
5899 * @param pSample - sample to delete
5900 * @throws gig::Exception if given sample could not be found
5901 */
5902 void File::DeleteSample(Sample* pSample) {
5903 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
5904 SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
5905 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
5906 if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
5907 pSamples->erase(iter);
5908 pSample->DeleteChunks();
5909 delete pSample;
5910
5911 SampleList::iterator tmp = SamplesIterator;
5912 // remove all references to the sample
5913 for (Instrument* instrument = GetFirstInstrument() ; instrument ;
5914 instrument = GetNextInstrument()) {
5915 for (Region* region = instrument->GetFirstRegion() ; region ;
5916 region = instrument->GetNextRegion()) {
5917
5918 if (region->GetSample() == pSample) region->SetSample(NULL);
5919
5920 for (int i = 0 ; i < region->DimensionRegions ; i++) {
5921 gig::DimensionRegion *d = region->pDimensionRegions[i];
5922 if (d->pSample == pSample) d->pSample = NULL;
5923 }
5924 }
5925 }
5926 SamplesIterator = tmp; // restore iterator
5927 }
5928
5929 void File::LoadSamples() {
5930 LoadSamples(NULL);
5931 }
5932
5933 void File::LoadSamples(progress_t* pProgress) {
5934 // Groups must be loaded before samples, because samples will try
5935 // to resolve the group they belong to
5936 if (!pGroups) LoadGroups();
5937
5938 if (!pSamples) pSamples = new SampleList;
5939
5940 RIFF::File* file = pRIFF;
5941
5942 // just for progress calculation
5943 int iSampleIndex = 0;
5944 int iTotalSamples = WavePoolCount;
5945
5946 // just for assembling path of optional extension files to be read
5947 const std::string folder = parentPath(pRIFF->GetFileName());
5948 const std::string baseName = pathWithoutExtension(pRIFF->GetFileName());
5949
5950 // the main gig file and the extension files (.gx01, ... , .gx98) may
5951 // contain wave data (wave pool)
5952 std::vector<RIFF::File*> poolFiles;
5953 poolFiles.push_back(pRIFF);
5954
5955 // get info about all extension files
5956 RIFF::Chunk* ckXfil = pRIFF->GetSubChunk(CHUNK_ID_XFIL);
5957 if (ckXfil) { // there are extension files (.gx01, ... , .gx98) ...
5958 const uint32_t n = ckXfil->ReadInt32();
5959 for (int i = 0; i < n; i++) {
5960 // read the filename and load the extension file
5961 std::string name;
5962 ckXfil->ReadString(name, 128);
5963 std::string path = concatPath(folder, name);
5964 RIFF::File* pExtFile = new RIFF::File(path);
5965 // check that the dlsids match
5966 RIFF::Chunk* ckDLSID = pExtFile->GetSubChunk(CHUNK_ID_DLID);
5967 if (ckDLSID) {
5968 ::DLS::dlsid_t idExpected;
5969 idExpected.ulData1 = ckXfil->ReadInt32();
5970 idExpected.usData2 = ckXfil->ReadInt16();
5971 idExpected.usData3 = ckXfil->ReadInt16();
5972 ckXfil->Read(idExpected.abData, 8, 1);
5973 ::DLS::dlsid_t idFound;
5974 ckDLSID->Read(&idFound.ulData1, 1, 4);
5975 ckDLSID->Read(&idFound.usData2, 1, 2);
5976 ckDLSID->Read(&idFound.usData3, 1, 2);
5977 ckDLSID->Read(idFound.abData, 8, 1);
5978 if (memcmp(&idExpected, &idFound, 16) != 0)
5979 throw gig::Exception("dlsid mismatch for extension file: %s", path.c_str());
5980 }
5981 poolFiles.push_back(pExtFile);
5982 ExtensionFiles.push_back(pExtFile);
5983 }
5984 }
5985
5986 // check if a .gx99 (GigaPulse) file exists
5987 RIFF::Chunk* ckDoxf = pRIFF->GetSubChunk(CHUNK_ID_DOXF);
5988 if (ckDoxf) { // there is a .gx99 (GigaPulse) file ...
5989 std::string path = baseName + ".gx99";
5990 RIFF::File* pExtFile = new RIFF::File(path);
5991
5992 // skip unused int and filename
5993 ckDoxf->SetPos(132, RIFF::stream_curpos);
5994
5995 // check that the dlsids match
5996 RIFF::Chunk* ckDLSID = pExtFile->GetSubChunk(CHUNK_ID_DLID);
5997 if (ckDLSID) {
5998 ::DLS::dlsid_t idExpected;
5999 idExpected.ulData1 = ckDoxf->ReadInt32();
6000 idExpected.usData2 = ckDoxf->ReadInt16();
6001 idExpected.usData3 = ckDoxf->ReadInt16();
6002 ckDoxf->Read(idExpected.abData, 8, 1);
6003 ::DLS::dlsid_t idFound;
6004 ckDLSID->Read(&idFound.ulData1, 1, 4);
6005 ckDLSID->Read(&idFound.usData2, 1, 2);
6006 ckDLSID->Read(&idFound.usData3, 1, 2);
6007 ckDLSID->Read(idFound.abData, 8, 1);
6008 if (memcmp(&idExpected, &idFound, 16) != 0)
6009 throw gig::Exception("dlsid mismatch for GigaPulse file: %s", path.c_str());
6010 }
6011 poolFiles.push_back(pExtFile);
6012 ExtensionFiles.push_back(pExtFile);
6013 }
6014
6015 // load samples from extension files (if required)
6016 for (int i = 0; i < poolFiles.size(); i++) {
6017 RIFF::File* file = poolFiles[i];
6018 RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
6019 if (wvpl) {
6020 file_offset_t wvplFileOffset = wvpl->GetFilePos() -
6021 wvpl->GetPos(); // should be zero, but just to be sure
6022 RIFF::List* wave = wvpl->GetFirstSubList();
6023 while (wave) {
6024 if (wave->GetListType() == LIST_TYPE_WAVE) {
6025 // notify current progress
6026 if (pProgress) {
6027 const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
6028 __notify_progress(pProgress, subprogress);
6029 }
6030
6031 file_offset_t waveFileOffset = wave->GetFilePos();
6032 pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, i, iSampleIndex));
6033
6034 iSampleIndex++;
6035 }
6036 wave = wvpl->GetNextSubList();
6037 }
6038 }
6039 }
6040
6041 if (pProgress)
6042 __notify_progress(pProgress, 1.0); // notify done
6043 }
6044
6045 Instrument* File::GetFirstInstrument() {
6046 if (!pInstruments) LoadInstruments();
6047 if (!pInstruments) return NULL;
6048 InstrumentsIterator = pInstruments->begin();
6049 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
6050 }
6051
6052 Instrument* File::GetNextInstrument() {
6053 if (!pInstruments) return NULL;
6054 InstrumentsIterator++;
6055 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
6056 }
6057
6058 /**
6059 * Returns the total amount of instruments of this gig file.
6060 *
6061 * Note that this method might block for a long time in case it is required
6062 * to load the instruments info for the first time.
6063 *
6064 * @returns total amount of instruments
6065 */
6066 size_t File::CountInstruments() {
6067 if (!pInstruments) LoadInstruments();
6068 if (!pInstruments) return 0;
6069 return pInstruments->size();
6070 }
6071
6072 /**
6073 * Returns the instrument with the given index.
6074 *
6075 * @param index - number of the sought instrument (0..n)
6076 * @param pProgress - optional: callback function for progress notification
6077 * @returns sought instrument or NULL if there's no such instrument
6078 */
6079 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
6080 if (!pInstruments) {
6081 // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
6082
6083 if (pProgress) {
6084 // sample loading subtask
6085 progress_t subprogress;
6086 __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
6087 __notify_progress(&subprogress, 0.0f);
6088 if (GetAutoLoad())
6089 GetFirstSample(&subprogress); // now force all samples to be loaded
6090 __notify_progress(&subprogress, 1.0f);
6091
6092 // instrument loading subtask
6093 if (pProgress->callback) {
6094 subprogress.__range_min = subprogress.__range_max;
6095 subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
6096 }
6097 __notify_progress(&subprogress, 0.0f);
6098 LoadInstruments(&subprogress);
6099 __notify_progress(&subprogress, 1.0f);
6100 } else {
6101 // sample loading subtask
6102 if (GetAutoLoad())
6103 GetFirstSample(); // now force all samples to be loaded
6104
6105 // instrument loading subtask
6106 LoadInstruments();
6107 }
6108 }
6109 if (!pInstruments) return NULL;
6110 InstrumentsIterator = pInstruments->begin();
6111 for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
6112 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
6113 InstrumentsIterator++;
6114 }
6115 return NULL;
6116 }
6117
6118 /** @brief Add a new instrument definition.
6119 *
6120 * This will create a new Instrument object for the gig file. You have
6121 * to call Save() to make this persistent to the file.
6122 *
6123 * @returns pointer to new Instrument object
6124 */
6125 Instrument* File::AddInstrument() {
6126 if (!pInstruments) LoadInstruments();
6127 __ensureMandatoryChunksExist();
6128 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
6129 RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
6130
6131 // add mandatory chunks to get the chunks in right order
6132 lstInstr->AddSubList(LIST_TYPE_INFO);
6133 lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
6134
6135 Instrument* pInstrument = new Instrument(this, lstInstr);
6136 pInstrument->GenerateDLSID();
6137
6138 lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
6139
6140 // this string is needed for the gig to be loadable in GSt:
6141 pInstrument->pInfo->Software = "Endless Wave";
6142
6143 pInstruments->push_back(pInstrument);
6144 return pInstrument;
6145 }
6146
6147 /** @brief Add a duplicate of an existing instrument.
6148 *
6149 * Duplicates the instrument definition given by @a orig and adds it
6150 * to this file. This allows in an instrument editor application to
6151 * easily create variations of an instrument, which will be stored in
6152 * the same .gig file, sharing i.e. the same samples.
6153 *
6154 * Note that all sample pointers referenced by @a orig are simply copied as
6155 * memory address. Thus the respective samples are shared, not duplicated!
6156 *
6157 * You have to call Save() to make this persistent to the file.
6158 *
6159 * @param orig - original instrument to be copied
6160 * @returns duplicated copy of the given instrument
6161 */
6162 Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
6163 Instrument* instr = AddInstrument();
6164 instr->CopyAssign(orig);
6165 return instr;
6166 }
6167
6168 /** @brief Add content of another existing file.
6169 *
6170 * Duplicates the samples, groups and instruments of the original file
6171 * given by @a pFile and adds them to @c this File. In case @c this File is
6172 * a new one that you haven't saved before, then you have to call
6173 * SetFileName() before calling AddContentOf(), because this method will
6174 * automatically save this file during operation, which is required for
6175 * writing the sample waveform data by disk streaming.
6176 *
6177 * @param pFile - original file whose's content shall be copied from
6178 */
6179 void File::AddContentOf(File* pFile) {
6180 static int iCallCount = -1;
6181 iCallCount++;
6182 std::map<Group*,Group*> mGroups;
6183 std::map<Sample*,Sample*> mSamples;
6184
6185 // clone sample groups
6186 for (int i = 0; pFile->GetGroup(i); ++i) {
6187 Group* g = AddGroup();
6188 g->Name =
6189 "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
6190 mGroups[pFile->GetGroup(i)] = g;
6191 }
6192
6193 // clone samples (not waveform data here yet)
6194 for (int i = 0; pFile->GetSample(i); ++i) {
6195 Sample* s = AddSample();
6196 s->CopyAssignMeta(pFile->GetSample(i));
6197 mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
6198 mSamples[pFile->GetSample(i)] = s;
6199 }
6200
6201 // clone script groups and their scripts
6202 for (int iGroup = 0; pFile->GetScriptGroup(iGroup); ++iGroup) {
6203 ScriptGroup* sg = pFile->GetScriptGroup(iGroup);
6204 ScriptGroup* dg = AddScriptGroup();
6205 dg->Name = "COPY" + ToString(iCallCount) + "_" + sg->Name;
6206 for (int iScript = 0; sg->GetScript(iScript); ++iScript) {
6207 Script* ss = sg->GetScript(iScript);
6208 Script* ds = dg->AddScript();
6209 ds->CopyAssign(ss);
6210 }
6211 }
6212
6213 //BUG: For some reason this method only works with this additional
6214 // Save() call in between here.
6215 //
6216 // Important: The correct one of the 2 Save() methods has to be called
6217 // here, depending on whether the file is completely new or has been
6218 // saved to disk already, otherwise it will result in data corruption.
6219 if (pRIFF->IsNew())
6220 Save(GetFileName());
6221 else
6222 Save();
6223
6224 // clone instruments
6225 // (passing the crosslink table here for the cloned samples)
6226 for (int i = 0; pFile->GetInstrument(i); ++i) {
6227 Instrument* instr = AddInstrument();
6228 instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
6229 }
6230
6231 // Mandatory: file needs to be saved to disk at this point, so this
6232 // file has the correct size and data layout for writing the samples'
6233 // waveform data to disk.
6234 Save();
6235
6236 // clone samples' waveform data
6237 // (using direct read & write disk streaming)
6238 for (int i = 0; pFile->GetSample(i); ++i) {
6239 mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
6240 }
6241 }
6242
6243 /** @brief Delete an instrument.
6244 *
6245 * This will delete the given Instrument object from the gig file. You
6246 * have to call Save() to make this persistent to the file.
6247 *
6248 * @param pInstrument - instrument to delete
6249 * @throws gig::Exception if given instrument could not be found
6250 */
6251 void File::DeleteInstrument(Instrument* pInstrument) {
6252 if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
6253 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
6254 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
6255 pInstruments->erase(iter);
6256 pInstrument->DeleteChunks();
6257 delete pInstrument;
6258 }
6259
6260 void File::LoadInstruments() {
6261 LoadInstruments(NULL);
6262 }
6263
6264 void File::LoadInstruments(progress_t* pProgress) {
6265 if (!pInstruments) pInstruments = new InstrumentList;
6266 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
6267 if (lstInstruments) {
6268 int iInstrumentIndex = 0;
6269 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
6270 while (lstInstr) {
6271 if (lstInstr->GetListType() == LIST_TYPE_INS) {
6272 if (pProgress) {
6273 // notify current progress
6274 const float localProgress = (float) iInstrumentIndex / (float) Instruments;
6275 __notify_progress(pProgress, localProgress);
6276
6277 // divide local progress into subprogress for loading current Instrument
6278 progress_t subprogress;
6279 __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
6280
6281 pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
6282 } else {
6283 pInstruments->push_back(new Instrument(this, lstInstr));
6284 }
6285
6286 iInstrumentIndex++;
6287 }
6288 lstInstr = lstInstruments->GetNextSubList();
6289 }
6290 if (pProgress)
6291 __notify_progress(pProgress, 1.0); // notify done
6292 }
6293 }
6294
6295 /// Updates the 3crc chunk with the checksum of a sample. The
6296 /// update is done directly to disk, as this method is called
6297 /// after File::Save()
6298 void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
6299 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6300 if (!_3crc) return;
6301
6302 // get the index of the sample
6303 int iWaveIndex = GetWaveTableIndexOf(pSample);
6304 if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
6305
6306 // write the CRC-32 checksum to disk
6307 _3crc->SetPos(iWaveIndex * 8);
6308 uint32_t one = 1;
6309 _3crc->WriteUint32(&one); // always 1
6310 _3crc->WriteUint32(&crc);
6311 }
6312
6313 uint32_t File::GetSampleChecksum(Sample* pSample) {
6314 // get the index of the sample
6315 int iWaveIndex = GetWaveTableIndexOf(pSample);
6316 if (iWaveIndex < 0) throw gig::Exception("Could not retrieve reference crc of sample, could not resolve sample's wave table index");
6317
6318 return GetSampleChecksumByIndex(iWaveIndex);
6319 }
6320
6321 uint32_t File::GetSampleChecksumByIndex(int index) {
6322 if (index < 0) throw gig::Exception("Could not retrieve reference crc of sample, invalid wave pool index of sample");
6323
6324 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6325 if (!_3crc) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
6326 uint8_t* pData = (uint8_t*) _3crc->LoadChunkData();
6327 if (!pData) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
6328
6329 // read the CRC-32 checksum directly from disk
6330 size_t pos = index * 8;
6331 if (pos + 8 > _3crc->GetNewSize())
6332 throw gig::Exception("Could not retrieve reference crc of sample, could not seek to required position in crc chunk");
6333
6334 uint32_t one = load32(&pData[pos]); // always 1
6335 if (one != 1)
6336 throw gig::Exception("Could not retrieve reference crc of sample, because reference checksum table is damaged");
6337
6338 return load32(&pData[pos+4]);
6339 }
6340
6341 int File::GetWaveTableIndexOf(gig::Sample* pSample) {
6342 if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
6343 File::SampleList::iterator iter = pSamples->begin();
6344 File::SampleList::iterator end = pSamples->end();
6345 for (int index = 0; iter != end; ++iter, ++index)
6346 if (*iter == pSample)
6347 return index;
6348 return -1;
6349 }
6350
6351 /**
6352 * Checks whether the file's "3CRC" chunk was damaged. This chunk contains
6353 * the CRC32 check sums of all samples' raw wave data.
6354 *
6355 * @return true if 3CRC chunk is OK, or false if 3CRC chunk is damaged
6356 */
6357 bool File::VerifySampleChecksumTable() {
6358 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6359 if (!_3crc) return false;
6360 if (_3crc->GetNewSize() <= 0) return false;
6361 if (_3crc->GetNewSize() % 8) return false;
6362 if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
6363 if (_3crc->GetNewSize() != pSamples->size() * 8) return false;
6364
6365 const file_offset_t n = _3crc->GetNewSize() / 8;
6366
6367 uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6368 if (!pData) return false;
6369
6370 for (file_offset_t i = 0; i < n; ++i) {
6371 uint32_t one = pData[i*2];
6372 if (one != 1) return false;
6373 }
6374
6375 return true;
6376 }
6377
6378 /**
6379 * Recalculates CRC32 checksums for all samples and rebuilds this gig
6380 * file's checksum table with those new checksums. This might usually
6381 * just be necessary if the checksum table was damaged.
6382 *
6383 * @e IMPORTANT: The current implementation of this method only works
6384 * with files that have not been modified since it was loaded, because
6385 * it expects that no externally caused file structure changes are
6386 * required!
6387 *
6388 * Due to the expectation above, this method is currently protected
6389 * and actually only used by the command line tool "gigdump" yet.
6390 *
6391 * @returns true if Save() is required to be called after this call,
6392 * false if no further action is required
6393 */
6394 bool File::RebuildSampleChecksumTable() {
6395 // make sure sample chunks were scanned
6396 if (!pSamples) GetFirstSample();
6397
6398 bool bRequiresSave = false;
6399
6400 // make sure "3CRC" chunk exists with required size
6401 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6402 if (!_3crc) {
6403 _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6404 // the order of einf and 3crc is not the same in v2 and v3
6405 RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6406 if (einf && pVersion && pVersion->major > 2) pRIFF->MoveSubChunk(_3crc, einf);
6407 bRequiresSave = true;
6408 } else if (_3crc->GetNewSize() != pSamples->size() * 8) {
6409 _3crc->Resize(pSamples->size() * 8);
6410 bRequiresSave = true;
6411 }
6412
6413 if (bRequiresSave) { // refill CRC table for all samples in RAM ...
6414 uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6415 {
6416 File::SampleList::iterator iter = pSamples->begin();
6417 File::SampleList::iterator end = pSamples->end();
6418 for (; iter != end; ++iter) {
6419 gig::Sample* pSample = (gig::Sample*) *iter;
6420 int index = GetWaveTableIndexOf(pSample);
6421 if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6422 pData[index*2] = 1; // always 1
6423 pData[index*2+1] = pSample->CalculateWaveDataChecksum();
6424 }
6425 }
6426 } else { // no file structure changes necessary, so directly write to disk and we are done ...
6427 // make sure file is in write mode
6428 pRIFF->SetMode(RIFF::stream_mode_read_write);
6429 {
6430 File::SampleList::iterator iter = pSamples->begin();
6431 File::SampleList::iterator end = pSamples->end();
6432 for (; iter != end; ++iter) {
6433 gig::Sample* pSample = (gig::Sample*) *iter;
6434 int index = GetWaveTableIndexOf(pSample);
6435 if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6436 pSample->crc = pSample->CalculateWaveDataChecksum();
6437 SetSampleChecksum(pSample, pSample->crc);
6438 }
6439 }
6440 }
6441
6442 return bRequiresSave;
6443 }
6444
6445 Group* File::GetFirstGroup() {
6446 if (!pGroups) LoadGroups();
6447 // there must always be at least one group
6448 GroupsIterator = pGroups->begin();
6449 return *GroupsIterator;
6450 }
6451
6452 Group* File::GetNextGroup() {
6453 if (!pGroups) return NULL;
6454 ++GroupsIterator;
6455 return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
6456 }
6457
6458 /**
6459 * Returns the group with the given index.
6460 *
6461 * @param index - number of the sought group (0..n)
6462 * @returns sought group or NULL if there's no such group
6463 */
6464 Group* File::GetGroup(uint index) {
6465 if (!pGroups) LoadGroups();
6466 GroupsIterator = pGroups->begin();
6467 for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
6468 if (i == index) return *GroupsIterator;
6469 ++GroupsIterator;
6470 }
6471 return NULL;
6472 }
6473
6474 /**
6475 * Returns the group with the given group name.
6476 *
6477 * Note: group names don't have to be unique in the gig format! So there
6478 * can be multiple groups with the same name. This method will simply
6479 * return the first group found with the given name.
6480 *
6481 * @param name - name of the sought group
6482 * @returns sought group or NULL if there's no group with that name
6483 */
6484 Group* File::GetGroup(String name) {
6485 if (!pGroups) LoadGroups();
6486 GroupsIterator = pGroups->begin();
6487 for (uint i = 0; GroupsIterator != pGroups->end(); ++GroupsIterator, ++i)
6488 if ((*GroupsIterator)->Name == name) return *GroupsIterator;
6489 return NULL;
6490 }
6491
6492 Group* File::AddGroup() {
6493 if (!pGroups) LoadGroups();
6494 // there must always be at least one group
6495 __ensureMandatoryChunksExist();
6496 Group* pGroup = new Group(this, NULL);
6497 pGroups->push_back(pGroup);
6498 return pGroup;
6499 }
6500
6501 /** @brief Delete a group and its samples.
6502 *
6503 * This will delete the given Group object and all the samples that
6504 * belong to this group from the gig file. You have to call Save() to
6505 * make this persistent to the file.
6506 *
6507 * @param pGroup - group to delete
6508 * @throws gig::Exception if given group could not be found
6509 */
6510 void File::DeleteGroup(Group* pGroup) {
6511 if (!pGroups) LoadGroups();
6512 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6513 if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6514 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6515 // delete all members of this group
6516 for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
6517 DeleteSample(pSample);
6518 }
6519 // now delete this group object
6520 pGroups->erase(iter);
6521 pGroup->DeleteChunks();
6522 delete pGroup;
6523 }
6524
6525 /** @brief Delete a group.
6526 *
6527 * This will delete the given Group object from the gig file. All the
6528 * samples that belong to this group will not be deleted, but instead
6529 * be moved to another group. You have to call Save() to make this
6530 * persistent to the file.
6531 *
6532 * @param pGroup - group to delete
6533 * @throws gig::Exception if given group could not be found
6534 */
6535 void File::DeleteGroupOnly(Group* pGroup) {
6536 if (!pGroups) LoadGroups();
6537 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6538 if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6539 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6540 // move all members of this group to another group
6541 pGroup->MoveAll();
6542 pGroups->erase(iter);
6543 pGroup->DeleteChunks();
6544 delete pGroup;
6545 }
6546
6547 void File::LoadGroups() {
6548 if (!pGroups) pGroups = new std::list<Group*>;
6549 // try to read defined groups from file
6550 RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6551 if (lst3gri) {
6552 RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
6553 if (lst3gnl) {
6554 RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
6555 while (ck) {
6556 if (ck->GetChunkID() == CHUNK_ID_3GNM) {
6557 if (pVersion && pVersion->major > 2 &&
6558 strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
6559
6560 pGroups->push_back(new Group(this, ck));
6561 }
6562 ck = lst3gnl->GetNextSubChunk();
6563 }
6564 }
6565 }
6566 // if there were no group(s), create at least the mandatory default group
6567 if (!pGroups->size()) {
6568 Group* pGroup = new Group(this, NULL);
6569 pGroup->Name = "Default Group";
6570 pGroups->push_back(pGroup);
6571 }
6572 }
6573
6574 /** @brief Get instrument script group (by index).
6575 *
6576 * Returns the real-time instrument script group with the given index.
6577 *
6578 * @param index - number of the sought group (0..n)
6579 * @returns sought script group or NULL if there's no such group
6580 */
6581 ScriptGroup* File::GetScriptGroup(uint index) {
6582 if (!pScriptGroups) LoadScriptGroups();
6583 std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6584 for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6585 if (i == index) return *it;
6586 return NULL;
6587 }
6588
6589 /** @brief Get instrument script group (by name).
6590 *
6591 * Returns the first real-time instrument script group found with the given
6592 * group name. Note that group names may not necessarily be unique.
6593 *
6594 * @param name - name of the sought script group
6595 * @returns sought script group or NULL if there's no such group
6596 */
6597 ScriptGroup* File::GetScriptGroup(const String& name) {
6598 if (!pScriptGroups) LoadScriptGroups();
6599 std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6600 for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6601 if ((*it)->Name == name) return *it;
6602 return NULL;
6603 }
6604
6605 /** @brief Add new instrument script group.
6606 *
6607 * Adds a new, empty real-time instrument script group to the file.
6608 *
6609 * You have to call Save() to make this persistent to the file.
6610 *
6611 * @return new empty script group
6612 */
6613 ScriptGroup* File::AddScriptGroup() {
6614 if (!pScriptGroups) LoadScriptGroups();
6615 ScriptGroup* pScriptGroup = new ScriptGroup(this, NULL);
6616 pScriptGroups->push_back(pScriptGroup);
6617 return pScriptGroup;
6618 }
6619
6620 /** @brief Delete an instrument script group.
6621 *
6622 * This will delete the given real-time instrument script group and all its
6623 * instrument scripts it contains. References inside instruments that are
6624 * using the deleted scripts will be removed from the respective instruments
6625 * accordingly.
6626 *
6627 * You have to call Save() to make this persistent to the file.
6628 *
6629 * @param pScriptGroup - script group to delete
6630 * @throws gig::Exception if given script group could not be found
6631 */
6632 void File::DeleteScriptGroup(ScriptGroup* pScriptGroup) {
6633 if (!pScriptGroups) LoadScriptGroups();
6634 std::list<ScriptGroup*>::iterator iter =
6635 find(pScriptGroups->begin(), pScriptGroups->end(), pScriptGroup);
6636 if (iter == pScriptGroups->end())
6637 throw gig::Exception("Could not delete script group, could not find given script group");
6638 pScriptGroups->erase(iter);
6639 for (int i = 0; pScriptGroup->GetScript(i); ++i)
6640 pScriptGroup->DeleteScript(pScriptGroup->GetScript(i));
6641 if (pScriptGroup->pList)
6642 pScriptGroup->pList->GetParent()->DeleteSubChunk(pScriptGroup->pList);
6643 pScriptGroup->DeleteChunks();
6644 delete pScriptGroup;
6645 }
6646
6647 void File::LoadScriptGroups() {
6648 if (pScriptGroups) return;
6649 pScriptGroups = new std::list<ScriptGroup*>;
6650 RIFF::List* lstLS = pRIFF->GetSubList(LIST_TYPE_3LS);
6651 if (lstLS) {
6652 for (RIFF::List* lst = lstLS->GetFirstSubList(); lst;
6653 lst = lstLS->GetNextSubList())
6654 {
6655 if (lst->GetListType() == LIST_TYPE_RTIS) {
6656 pScriptGroups->push_back(new ScriptGroup(this, lst));
6657 }
6658 }
6659 }
6660 }
6661
6662 /**
6663 * Apply all the gig file's current instruments, samples, groups and settings
6664 * to the respective RIFF chunks. You have to call Save() to make changes
6665 * persistent.
6666 *
6667 * Usually there is absolutely no need to call this method explicitly.
6668 * It will be called automatically when File::Save() was called.
6669 *
6670 * @param pProgress - callback function for progress notification
6671 * @throws Exception - on errors
6672 */
6673 void File::UpdateChunks(progress_t* pProgress) {
6674 bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
6675
6676 // update own gig format extension chunks
6677 // (not part of the GigaStudio 4 format)
6678 RIFF::List* lst3LS = pRIFF->GetSubList(LIST_TYPE_3LS);
6679 if (!lst3LS) {
6680 lst3LS = pRIFF->AddSubList(LIST_TYPE_3LS);
6681 }
6682 // Make sure <3LS > chunk is placed before <ptbl> chunk. The precise
6683 // location of <3LS > is irrelevant, however it should be located
6684 // before the actual wave data
6685 RIFF::Chunk* ckPTBL = pRIFF->GetSubChunk(CHUNK_ID_PTBL);
6686 pRIFF->MoveSubChunk(lst3LS, ckPTBL);
6687
6688 // This must be performed before writing the chunks for instruments,
6689 // because the instruments' script slots will write the file offsets
6690 // of the respective instrument script chunk as reference.
6691 if (pScriptGroups) {
6692 // Update instrument script (group) chunks.
6693 for (std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6694 it != pScriptGroups->end(); ++it)
6695 {
6696 (*it)->UpdateChunks(pProgress);
6697 }
6698 }
6699
6700 // in case no libgig custom format data was added, then remove the
6701 // custom "3LS " chunk again
6702 if (!lst3LS->CountSubChunks()) {
6703 pRIFF->DeleteSubChunk(lst3LS);
6704 lst3LS = NULL;
6705 }
6706
6707 // first update base class's chunks
6708 DLS::File::UpdateChunks(pProgress);
6709
6710 if (newFile) {
6711 // INFO was added by Resource::UpdateChunks - make sure it
6712 // is placed first in file
6713 RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
6714 RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
6715 if (first != info) {
6716 pRIFF->MoveSubChunk(info, first);
6717 }
6718 }
6719
6720 // update group's chunks
6721 if (pGroups) {
6722 // make sure '3gri' and '3gnl' list chunks exist
6723 // (before updating the Group chunks)
6724 RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6725 if (!_3gri) {
6726 _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
6727 pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
6728 }
6729 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
6730 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
6731
6732 // v3: make sure the file has 128 3gnm chunks
6733 // (before updating the Group chunks)
6734 if (pVersion && pVersion->major > 2) {
6735 RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
6736 for (int i = 0 ; i < 128 ; i++) {
6737 // create 128 empty placeholder strings which will either
6738 // be filled by Group::UpdateChunks below or left empty.
6739 ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
6740 if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
6741 }
6742 }
6743
6744 std::list<Group*>::iterator iter = pGroups->begin();
6745 std::list<Group*>::iterator end = pGroups->end();
6746 for (; iter != end; ++iter) {
6747 (*iter)->UpdateChunks(pProgress);
6748 }
6749 }
6750
6751 // update einf chunk
6752
6753 // The einf chunk contains statistics about the gig file, such
6754 // as the number of regions and samples used by each
6755 // instrument. It is divided in equally sized parts, where the
6756 // first part contains information about the whole gig file,
6757 // and the rest of the parts map to each instrument in the
6758 // file.
6759 //
6760 // At the end of each part there is a bit map of each sample
6761 // in the file, where a set bit means that the sample is used
6762 // by the file/instrument.
6763 //
6764 // Note that there are several fields with unknown use. These
6765 // are set to zero.
6766
6767 int sublen = int(pSamples->size() / 8 + 49);
6768 int einfSize = (Instruments + 1) * sublen;
6769
6770 RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6771 if (einf) {
6772 if (einf->GetSize() != einfSize) {
6773 einf->Resize(einfSize);
6774 memset(einf->LoadChunkData(), 0, einfSize);
6775 }
6776 } else if (newFile) {
6777 einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
6778 }
6779 if (einf) {
6780 uint8_t* pData = (uint8_t*) einf->LoadChunkData();
6781
6782 std::map<gig::Sample*,int> sampleMap;
6783 int sampleIdx = 0;
6784 for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
6785 sampleMap[pSample] = sampleIdx++;
6786 }
6787
6788 int totnbusedsamples = 0;
6789 int totnbusedchannels = 0;
6790 int totnbregions = 0;
6791 int totnbdimregions = 0;
6792 int totnbloops = 0;
6793 int instrumentIdx = 0;
6794
6795 memset(&pData[48], 0, sublen - 48);
6796
6797 for (Instrument* instrument = GetFirstInstrument() ; instrument ;
6798 instrument = GetNextInstrument()) {
6799 int nbusedsamples = 0;
6800 int nbusedchannels = 0;
6801 int nbdimregions = 0;
6802 int nbloops = 0;
6803
6804 memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
6805
6806 for (Region* region = instrument->GetFirstRegion() ; region ;
6807 region = instrument->GetNextRegion()) {
6808 for (int i = 0 ; i < region->DimensionRegions ; i++) {
6809 gig::DimensionRegion *d = region->pDimensionRegions[i];
6810 if (d->pSample) {
6811 int sampleIdx = sampleMap[d->pSample];
6812 int byte = 48 + sampleIdx / 8;
6813 int bit = 1 << (sampleIdx & 7);
6814 if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
6815 pData[(instrumentIdx + 1) * sublen + byte] |= bit;
6816 nbusedsamples++;
6817 nbusedchannels += d->pSample->Channels;
6818
6819 if ((pData[byte] & bit) == 0) {
6820 pData[byte] |= bit;
6821 totnbusedsamples++;
6822 totnbusedchannels += d->pSample->Channels;
6823 }
6824 }
6825 }
6826 if (d->SampleLoops) nbloops++;
6827 }
6828 nbdimregions += region->DimensionRegions;
6829 }
6830 // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6831 // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
6832 store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
6833 store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
6834 store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
6835 store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
6836 store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
6837 store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
6838 // next 8 bytes unknown
6839 store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
6840 store32(&pData[(instrumentIdx + 1) * sublen + 40], (uint32_t) pSamples->size());
6841 // next 4 bytes unknown
6842
6843 totnbregions += instrument->Regions;
6844 totnbdimregions += nbdimregions;
6845 totnbloops += nbloops;
6846 instrumentIdx++;
6847 }
6848 // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6849 // store32(&pData[0], sublen);
6850 store32(&pData[4], totnbusedchannels);
6851 store32(&pData[8], totnbusedsamples);
6852 store32(&pData[12], Instruments);
6853 store32(&pData[16], totnbregions);
6854 store32(&pData[20], totnbdimregions);
6855 store32(&pData[24], totnbloops);
6856 // next 8 bytes unknown
6857 // next 4 bytes unknown, not always 0
6858 store32(&pData[40], (uint32_t) pSamples->size());
6859 // next 4 bytes unknown
6860 }
6861
6862 // update 3crc chunk
6863
6864 // The 3crc chunk contains CRC-32 checksums for the
6865 // samples. When saving a gig file to disk, we first update the 3CRC
6866 // chunk here (in RAM) with the old crc values which we read from the
6867 // 3CRC chunk when we opened the file (available with gig::Sample::crc
6868 // member variable). This step is required, because samples might have
6869 // been deleted by the user since the file was opened, which in turn
6870 // changes the order of the (i.e. old) checksums within the 3crc chunk.
6871 // If a sample was conciously modified by the user (that is if
6872 // Sample::Write() was called later on) then Sample::Write() will just
6873 // update the respective individual checksum(s) directly on disk and
6874 // leaves all other sample checksums untouched.
6875
6876 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6877 if (_3crc) {
6878 _3crc->Resize(pSamples->size() * 8);
6879 } else /*if (newFile)*/ {
6880 _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6881 // the order of einf and 3crc is not the same in v2 and v3
6882 if (einf && pVersion && pVersion->major > 2) pRIFF->MoveSubChunk(_3crc, einf);
6883 }
6884 { // must be performed in RAM here ...
6885 uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6886 if (pData) {
6887 File::SampleList::iterator iter = pSamples->begin();
6888 File::SampleList::iterator end = pSamples->end();
6889 for (int index = 0; iter != end; ++iter, ++index) {
6890 gig::Sample* pSample = (gig::Sample*) *iter;
6891 pData[index*2] = 1; // always 1
6892 pData[index*2+1] = pSample->crc;
6893 }
6894 }
6895 }
6896 }
6897
6898 void File::UpdateFileOffsets() {
6899 DLS::File::UpdateFileOffsets();
6900
6901 for (Instrument* instrument = GetFirstInstrument(); instrument;
6902 instrument = GetNextInstrument())
6903 {
6904 instrument->UpdateScriptFileOffsets();
6905 }
6906 }
6907
6908 /**
6909 * Enable / disable automatic loading. By default this property is
6910 * enabled and every information is loaded automatically. However
6911 * loading all Regions, DimensionRegions and especially samples might
6912 * take a long time for large .gig files, and sometimes one might only
6913 * be interested in retrieving very superficial informations like the
6914 * amount of instruments and their names. In this case one might disable
6915 * automatic loading to avoid very slow response times.
6916 *
6917 * @e CAUTION: by disabling this property many pointers (i.e. sample
6918 * references) and attributes will have invalid or even undefined
6919 * data! This feature is currently only intended for retrieving very
6920 * superficial information in a very fast way. Don't use it to retrieve
6921 * details like synthesis information or even to modify .gig files!
6922 */
6923 void File::SetAutoLoad(bool b) {
6924 bAutoLoad = b;
6925 }
6926
6927 /**
6928 * Returns whether automatic loading is enabled.
6929 * @see SetAutoLoad()
6930 */
6931 bool File::GetAutoLoad() {
6932 return bAutoLoad;
6933 }
6934
6935 /**
6936 * Returns @c true in case this gig File object uses any gig format
6937 * extension, that is e.g. whether any DimensionRegion object currently
6938 * has any setting effective that would require our "LSDE" RIFF chunk to
6939 * be stored to the gig file.
6940 *
6941 * Right now this is a private method. It is considerable though this method
6942 * to become (in slightly modified form) a public API method in future, i.e.
6943 * to allow instrument editors to visualize and/or warn the user of any gig
6944 * format extension being used. See also comments on
6945 * DimensionRegion::UsesAnyGigFormatExtension() for details about such a
6946 * potential public API change in future.
6947 */
6948 bool File::UsesAnyGigFormatExtension() const {
6949 if (!pInstruments) return false;
6950 InstrumentList::iterator iter = pInstruments->begin();
6951 InstrumentList::iterator end = pInstruments->end();
6952 for (; iter != end; ++iter) {
6953 Instrument* pInstrument = static_cast<gig::Instrument*>(*iter);
6954 if (pInstrument->UsesAnyGigFormatExtension())
6955 return true;
6956 }
6957 return false;
6958 }
6959
6960
6961 // *************** Exception ***************
6962 // *
6963
6964 Exception::Exception() : DLS::Exception() {
6965 }
6966
6967 Exception::Exception(String format, ...) : DLS::Exception() {
6968 va_list arg;
6969 va_start(arg, format);
6970 Message = assemble(format, arg);
6971 va_end(arg);
6972 }
6973
6974 Exception::Exception(String format, va_list arg) : DLS::Exception() {
6975 Message = assemble(format, arg);
6976 }
6977
6978 void Exception::PrintMessage() {
6979 std::cout << "gig::Exception: " << Message << std::endl;
6980 }
6981
6982
6983 // *************** functions ***************
6984 // *
6985
6986 /**
6987 * Returns the name of this C++ library. This is usually "libgig" of
6988 * course. This call is equivalent to RIFF::libraryName() and
6989 * DLS::libraryName().
6990 */
6991 String libraryName() {
6992 return PACKAGE;
6993 }
6994
6995 /**
6996 * Returns version of this C++ library. This call is equivalent to
6997 * RIFF::libraryVersion() and DLS::libraryVersion().
6998 */
6999 String libraryVersion() {
7000 return VERSION;
7001 }
7002
7003 } // namespace gig

  ViewVC Help
Powered by ViewVC