/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Contents of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3937 - (show annotations) (download)
Thu Jun 17 10:59:54 2021 UTC (2 years, 9 months ago) by schoenebeck
File size: 326866 byte(s)
* gig: Marked methods GetFirstGroup() and GetNextGroup() as deprecated.

1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file access library *
4 * *
5 * Copyright (C) 2003-2021 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #include "gig.h"
25
26 #include "helper.h"
27 #include "Serialization.h"
28
29 #include <algorithm>
30 #include <math.h>
31 #include <iostream>
32 #include <assert.h>
33
34 /// libgig's current file format version (for extending the original Giga file
35 /// format with libgig's own custom data / custom features).
36 #define GIG_FILE_EXT_VERSION 2
37
38 /// Initial size of the sample buffer which is used for decompression of
39 /// compressed sample wave streams - this value should always be bigger than
40 /// the biggest sample piece expected to be read by the sampler engine,
41 /// otherwise the buffer size will be raised at runtime and thus the buffer
42 /// reallocated which is time consuming and unefficient.
43 #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
44
45 /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
46 #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
47 #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
48 #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
49 #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
50 #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
51 #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
52 #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
53 #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
54 #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
55 #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
56 #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
57 #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
58
59 #define SRLZ(member) \
60 archive->serializeMember(*this, member, #member);
61
62 namespace gig {
63
64 // *************** Internal functions for sample decompression ***************
65 // *
66
67 namespace {
68
69 inline int get12lo(const unsigned char* pSrc)
70 {
71 const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
72 return x & 0x800 ? x - 0x1000 : x;
73 }
74
75 inline int get12hi(const unsigned char* pSrc)
76 {
77 const int x = pSrc[1] >> 4 | pSrc[2] << 4;
78 return x & 0x800 ? x - 0x1000 : x;
79 }
80
81 inline int16_t get16(const unsigned char* pSrc)
82 {
83 return int16_t(pSrc[0] | pSrc[1] << 8);
84 }
85
86 inline int get24(const unsigned char* pSrc)
87 {
88 const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
89 return x & 0x800000 ? x - 0x1000000 : x;
90 }
91
92 inline void store24(unsigned char* pDst, int x)
93 {
94 pDst[0] = x;
95 pDst[1] = x >> 8;
96 pDst[2] = x >> 16;
97 }
98
99 void Decompress16(int compressionmode, const unsigned char* params,
100 int srcStep, int dstStep,
101 const unsigned char* pSrc, int16_t* pDst,
102 file_offset_t currentframeoffset,
103 file_offset_t copysamples)
104 {
105 switch (compressionmode) {
106 case 0: // 16 bit uncompressed
107 pSrc += currentframeoffset * srcStep;
108 while (copysamples) {
109 *pDst = get16(pSrc);
110 pDst += dstStep;
111 pSrc += srcStep;
112 copysamples--;
113 }
114 break;
115
116 case 1: // 16 bit compressed to 8 bit
117 int y = get16(params);
118 int dy = get16(params + 2);
119 while (currentframeoffset) {
120 dy -= int8_t(*pSrc);
121 y -= dy;
122 pSrc += srcStep;
123 currentframeoffset--;
124 }
125 while (copysamples) {
126 dy -= int8_t(*pSrc);
127 y -= dy;
128 *pDst = y;
129 pDst += dstStep;
130 pSrc += srcStep;
131 copysamples--;
132 }
133 break;
134 }
135 }
136
137 void Decompress24(int compressionmode, const unsigned char* params,
138 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
139 file_offset_t currentframeoffset,
140 file_offset_t copysamples, int truncatedBits)
141 {
142 int y, dy, ddy, dddy;
143
144 #define GET_PARAMS(params) \
145 y = get24(params); \
146 dy = y - get24((params) + 3); \
147 ddy = get24((params) + 6); \
148 dddy = get24((params) + 9)
149
150 #define SKIP_ONE(x) \
151 dddy -= (x); \
152 ddy -= dddy; \
153 dy = -dy - ddy; \
154 y += dy
155
156 #define COPY_ONE(x) \
157 SKIP_ONE(x); \
158 store24(pDst, y << truncatedBits); \
159 pDst += dstStep
160
161 switch (compressionmode) {
162 case 2: // 24 bit uncompressed
163 pSrc += currentframeoffset * 3;
164 while (copysamples) {
165 store24(pDst, get24(pSrc) << truncatedBits);
166 pDst += dstStep;
167 pSrc += 3;
168 copysamples--;
169 }
170 break;
171
172 case 3: // 24 bit compressed to 16 bit
173 GET_PARAMS(params);
174 while (currentframeoffset) {
175 SKIP_ONE(get16(pSrc));
176 pSrc += 2;
177 currentframeoffset--;
178 }
179 while (copysamples) {
180 COPY_ONE(get16(pSrc));
181 pSrc += 2;
182 copysamples--;
183 }
184 break;
185
186 case 4: // 24 bit compressed to 12 bit
187 GET_PARAMS(params);
188 while (currentframeoffset > 1) {
189 SKIP_ONE(get12lo(pSrc));
190 SKIP_ONE(get12hi(pSrc));
191 pSrc += 3;
192 currentframeoffset -= 2;
193 }
194 if (currentframeoffset) {
195 SKIP_ONE(get12lo(pSrc));
196 currentframeoffset--;
197 if (copysamples) {
198 COPY_ONE(get12hi(pSrc));
199 pSrc += 3;
200 copysamples--;
201 }
202 }
203 while (copysamples > 1) {
204 COPY_ONE(get12lo(pSrc));
205 COPY_ONE(get12hi(pSrc));
206 pSrc += 3;
207 copysamples -= 2;
208 }
209 if (copysamples) {
210 COPY_ONE(get12lo(pSrc));
211 }
212 break;
213
214 case 5: // 24 bit compressed to 8 bit
215 GET_PARAMS(params);
216 while (currentframeoffset) {
217 SKIP_ONE(int8_t(*pSrc++));
218 currentframeoffset--;
219 }
220 while (copysamples) {
221 COPY_ONE(int8_t(*pSrc++));
222 copysamples--;
223 }
224 break;
225 }
226 }
227
228 const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
229 const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
230 const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
231 const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
232 }
233
234
235
236 // *************** Internal CRC-32 (Cyclic Redundancy Check) functions ***************
237 // *
238
239 static uint32_t* __initCRCTable() {
240 static uint32_t res[256];
241
242 for (int i = 0 ; i < 256 ; i++) {
243 uint32_t c = i;
244 for (int j = 0 ; j < 8 ; j++) {
245 c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
246 }
247 res[i] = c;
248 }
249 return res;
250 }
251
252 static const uint32_t* __CRCTable = __initCRCTable();
253
254 /**
255 * Initialize a CRC variable.
256 *
257 * @param crc - variable to be initialized
258 */
259 inline static void __resetCRC(uint32_t& crc) {
260 crc = 0xffffffff;
261 }
262
263 /**
264 * Used to calculate checksums of the sample data in a gig file. The
265 * checksums are stored in the 3crc chunk of the gig file and
266 * automatically updated when a sample is written with Sample::Write().
267 *
268 * One should call __resetCRC() to initialize the CRC variable to be
269 * used before calling this function the first time.
270 *
271 * After initializing the CRC variable one can call this function
272 * arbitrary times, i.e. to split the overall CRC calculation into
273 * steps.
274 *
275 * Once the whole data was processed by __calculateCRC(), one should
276 * call __finalizeCRC() to get the final CRC result.
277 *
278 * @param buf - pointer to data the CRC shall be calculated of
279 * @param bufSize - size of the data to be processed
280 * @param crc - variable the CRC sum shall be stored to
281 */
282 static void __calculateCRC(unsigned char* buf, size_t bufSize, uint32_t& crc) {
283 for (size_t i = 0 ; i < bufSize ; i++) {
284 crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
285 }
286 }
287
288 /**
289 * Returns the final CRC result.
290 *
291 * @param crc - variable previously passed to __calculateCRC()
292 */
293 inline static void __finalizeCRC(uint32_t& crc) {
294 crc ^= 0xffffffff;
295 }
296
297
298
299 // *************** Other Internal functions ***************
300 // *
301
302 static split_type_t __resolveSplitType(dimension_t dimension) {
303 return (
304 dimension == dimension_layer ||
305 dimension == dimension_samplechannel ||
306 dimension == dimension_releasetrigger ||
307 dimension == dimension_keyboard ||
308 dimension == dimension_roundrobin ||
309 dimension == dimension_random ||
310 dimension == dimension_smartmidi ||
311 dimension == dimension_roundrobinkeyboard
312 ) ? split_type_bit : split_type_normal;
313 }
314
315 static int __resolveZoneSize(dimension_def_t& dimension_definition) {
316 return (dimension_definition.split_type == split_type_normal)
317 ? int(128.0 / dimension_definition.zones) : 0;
318 }
319
320
321
322 // *************** leverage_ctrl_t ***************
323 // *
324
325 void leverage_ctrl_t::serialize(Serialization::Archive* archive) {
326 SRLZ(type);
327 SRLZ(controller_number);
328 }
329
330
331
332 // *************** crossfade_t ***************
333 // *
334
335 void crossfade_t::serialize(Serialization::Archive* archive) {
336 SRLZ(in_start);
337 SRLZ(in_end);
338 SRLZ(out_start);
339 SRLZ(out_end);
340 }
341
342
343
344 // *************** eg_opt_t ***************
345 // *
346
347 eg_opt_t::eg_opt_t() {
348 AttackCancel = true;
349 AttackHoldCancel = true;
350 Decay1Cancel = true;
351 Decay2Cancel = true;
352 ReleaseCancel = true;
353 }
354
355 void eg_opt_t::serialize(Serialization::Archive* archive) {
356 SRLZ(AttackCancel);
357 SRLZ(AttackHoldCancel);
358 SRLZ(Decay1Cancel);
359 SRLZ(Decay2Cancel);
360 SRLZ(ReleaseCancel);
361 }
362
363
364
365 // *************** Sample ***************
366 // *
367
368 size_t Sample::Instances = 0;
369 buffer_t Sample::InternalDecompressionBuffer;
370
371 /** @brief Constructor.
372 *
373 * Load an existing sample or create a new one. A 'wave' list chunk must
374 * be given to this constructor. In case the given 'wave' list chunk
375 * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
376 * format and sample data will be loaded from there, otherwise default
377 * values will be used and those chunks will be created when
378 * File::Save() will be called later on.
379 *
380 * @param pFile - pointer to gig::File where this sample is
381 * located (or will be located)
382 * @param waveList - pointer to 'wave' list chunk which is (or
383 * will be) associated with this sample
384 * @param WavePoolOffset - offset of this sample data from wave pool
385 * ('wvpl') list chunk
386 * @param fileNo - number of an extension file where this sample
387 * is located, 0 otherwise
388 * @param index - wave pool index of sample (may be -1 on new sample)
389 */
390 Sample::Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo, int index)
391 : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset)
392 {
393 static const DLS::Info::string_length_t fixedStringLengths[] = {
394 { CHUNK_ID_INAM, 64 },
395 { 0, 0 }
396 };
397 pInfo->SetFixedStringLengths(fixedStringLengths);
398 Instances++;
399 FileNo = fileNo;
400
401 __resetCRC(crc);
402 // if this is not a new sample, try to get the sample's already existing
403 // CRC32 checksum from disk, this checksum will reflect the sample's CRC32
404 // checksum of the time when the sample was consciously modified by the
405 // user for the last time (by calling Sample::Write() that is).
406 if (index >= 0) { // not a new file ...
407 try {
408 uint32_t crc = pFile->GetSampleChecksumByIndex(index);
409 this->crc = crc;
410 } catch (...) {}
411 }
412
413 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
414 if (pCk3gix) {
415 pCk3gix->SetPos(0);
416
417 uint16_t iSampleGroup = pCk3gix->ReadInt16();
418 pGroup = pFile->GetGroup(iSampleGroup);
419 } else { // '3gix' chunk missing
420 // by default assigned to that mandatory "Default Group"
421 pGroup = pFile->GetGroup(0);
422 }
423
424 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
425 if (pCkSmpl) {
426 pCkSmpl->SetPos(0);
427
428 Manufacturer = pCkSmpl->ReadInt32();
429 Product = pCkSmpl->ReadInt32();
430 SamplePeriod = pCkSmpl->ReadInt32();
431 MIDIUnityNote = pCkSmpl->ReadInt32();
432 FineTune = pCkSmpl->ReadInt32();
433 pCkSmpl->Read(&SMPTEFormat, 1, 4);
434 SMPTEOffset = pCkSmpl->ReadInt32();
435 Loops = pCkSmpl->ReadInt32();
436 pCkSmpl->ReadInt32(); // manufByt
437 LoopID = pCkSmpl->ReadInt32();
438 pCkSmpl->Read(&LoopType, 1, 4);
439 LoopStart = pCkSmpl->ReadInt32();
440 LoopEnd = pCkSmpl->ReadInt32();
441 LoopFraction = pCkSmpl->ReadInt32();
442 LoopPlayCount = pCkSmpl->ReadInt32();
443 } else { // 'smpl' chunk missing
444 // use default values
445 Manufacturer = 0;
446 Product = 0;
447 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
448 MIDIUnityNote = 60;
449 FineTune = 0;
450 SMPTEFormat = smpte_format_no_offset;
451 SMPTEOffset = 0;
452 Loops = 0;
453 LoopID = 0;
454 LoopType = loop_type_normal;
455 LoopStart = 0;
456 LoopEnd = 0;
457 LoopFraction = 0;
458 LoopPlayCount = 0;
459 }
460
461 FrameTable = NULL;
462 SamplePos = 0;
463 RAMCache.Size = 0;
464 RAMCache.pStart = NULL;
465 RAMCache.NullExtensionSize = 0;
466
467 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
468
469 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
470 Compressed = ewav;
471 Dithered = false;
472 TruncatedBits = 0;
473 if (Compressed) {
474 ewav->SetPos(0);
475
476 uint32_t version = ewav->ReadInt32();
477 if (version > 2 && BitDepth == 24) {
478 Dithered = ewav->ReadInt32();
479 ewav->SetPos(Channels == 2 ? 84 : 64);
480 TruncatedBits = ewav->ReadInt32();
481 }
482 ScanCompressedSample();
483 }
484
485 // we use a buffer for decompression only
486 if (Compressed && !InternalDecompressionBuffer.Size) {
487 InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
488 InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
489 }
490 FrameOffset = 0; // just for streaming compressed samples
491
492 LoopSize = LoopEnd - LoopStart + 1;
493 }
494
495 /**
496 * Make a (semi) deep copy of the Sample object given by @a orig (without
497 * the actual waveform data) and assign it to this object.
498 *
499 * Discussion: copying .gig samples is a bit tricky. It requires three
500 * steps:
501 * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
502 * its new sample waveform data size.
503 * 2. Saving the file (done by File::Save()) so that it gains correct size
504 * and layout for writing the actual wave form data directly to disc
505 * in next step.
506 * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
507 *
508 * @param orig - original Sample object to be copied from
509 */
510 void Sample::CopyAssignMeta(const Sample* orig) {
511 // handle base classes
512 DLS::Sample::CopyAssignCore(orig);
513
514 // handle actual own attributes of this class
515 Manufacturer = orig->Manufacturer;
516 Product = orig->Product;
517 SamplePeriod = orig->SamplePeriod;
518 MIDIUnityNote = orig->MIDIUnityNote;
519 FineTune = orig->FineTune;
520 SMPTEFormat = orig->SMPTEFormat;
521 SMPTEOffset = orig->SMPTEOffset;
522 Loops = orig->Loops;
523 LoopID = orig->LoopID;
524 LoopType = orig->LoopType;
525 LoopStart = orig->LoopStart;
526 LoopEnd = orig->LoopEnd;
527 LoopSize = orig->LoopSize;
528 LoopFraction = orig->LoopFraction;
529 LoopPlayCount = orig->LoopPlayCount;
530
531 // schedule resizing this sample to the given sample's size
532 Resize(orig->GetSize());
533 }
534
535 /**
536 * Should be called after CopyAssignMeta() and File::Save() sequence.
537 * Read more about it in the discussion of CopyAssignMeta(). This method
538 * copies the actual waveform data by disk streaming.
539 *
540 * @e CAUTION: this method is currently not thread safe! During this
541 * operation the sample must not be used for other purposes by other
542 * threads!
543 *
544 * @param orig - original Sample object to be copied from
545 */
546 void Sample::CopyAssignWave(const Sample* orig) {
547 const int iReadAtOnce = 32*1024;
548 char* buf = new char[iReadAtOnce * orig->FrameSize];
549 Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
550 file_offset_t restorePos = pOrig->GetPos();
551 pOrig->SetPos(0);
552 SetPos(0);
553 for (file_offset_t n = pOrig->Read(buf, iReadAtOnce); n;
554 n = pOrig->Read(buf, iReadAtOnce))
555 {
556 Write(buf, n);
557 }
558 pOrig->SetPos(restorePos);
559 delete [] buf;
560 }
561
562 /**
563 * Apply sample and its settings to the respective RIFF chunks. You have
564 * to call File::Save() to make changes persistent.
565 *
566 * Usually there is absolutely no need to call this method explicitly.
567 * It will be called automatically when File::Save() was called.
568 *
569 * @param pProgress - callback function for progress notification
570 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
571 * was provided yet
572 * @throws gig::Exception if there is any invalid sample setting
573 */
574 void Sample::UpdateChunks(progress_t* pProgress) {
575 // first update base class's chunks
576 DLS::Sample::UpdateChunks(pProgress);
577
578 // make sure 'smpl' chunk exists
579 pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
580 if (!pCkSmpl) {
581 pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
582 memset(pCkSmpl->LoadChunkData(), 0, 60);
583 }
584 // update 'smpl' chunk
585 uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
586 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
587 store32(&pData[0], Manufacturer);
588 store32(&pData[4], Product);
589 store32(&pData[8], SamplePeriod);
590 store32(&pData[12], MIDIUnityNote);
591 store32(&pData[16], FineTune);
592 store32(&pData[20], SMPTEFormat);
593 store32(&pData[24], SMPTEOffset);
594 store32(&pData[28], Loops);
595
596 // we skip 'manufByt' for now (4 bytes)
597
598 store32(&pData[36], LoopID);
599 store32(&pData[40], LoopType);
600 store32(&pData[44], LoopStart);
601 store32(&pData[48], LoopEnd);
602 store32(&pData[52], LoopFraction);
603 store32(&pData[56], LoopPlayCount);
604
605 // make sure '3gix' chunk exists
606 pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
607 if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
608 // determine appropriate sample group index (to be stored in chunk)
609 uint16_t iSampleGroup = 0; // 0 refers to default sample group
610 File* pFile = static_cast<File*>(pParent);
611 if (pFile->pGroups) {
612 std::vector<Group*>::iterator iter = pFile->pGroups->begin();
613 std::vector<Group*>::iterator end = pFile->pGroups->end();
614 for (int i = 0; iter != end; i++, iter++) {
615 if (*iter == pGroup) {
616 iSampleGroup = i;
617 break; // found
618 }
619 }
620 }
621 // update '3gix' chunk
622 pData = (uint8_t*) pCk3gix->LoadChunkData();
623 store16(&pData[0], iSampleGroup);
624
625 // if the library user toggled the "Compressed" attribute from true to
626 // false, then the EWAV chunk associated with compressed samples needs
627 // to be deleted
628 RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
629 if (ewav && !Compressed) {
630 pWaveList->DeleteSubChunk(ewav);
631 }
632 }
633
634 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
635 void Sample::ScanCompressedSample() {
636 //TODO: we have to add some more scans here (e.g. determine compression rate)
637 this->SamplesTotal = 0;
638 std::list<file_offset_t> frameOffsets;
639
640 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
641 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
642
643 // Scanning
644 pCkData->SetPos(0);
645 if (Channels == 2) { // Stereo
646 for (int i = 0 ; ; i++) {
647 // for 24 bit samples every 8:th frame offset is
648 // stored, to save some memory
649 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
650
651 const int mode_l = pCkData->ReadUint8();
652 const int mode_r = pCkData->ReadUint8();
653 if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
654 const file_offset_t frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
655
656 if (pCkData->RemainingBytes() <= frameSize) {
657 SamplesInLastFrame =
658 ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
659 (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
660 SamplesTotal += SamplesInLastFrame;
661 break;
662 }
663 SamplesTotal += SamplesPerFrame;
664 pCkData->SetPos(frameSize, RIFF::stream_curpos);
665 }
666 }
667 else { // Mono
668 for (int i = 0 ; ; i++) {
669 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
670
671 const int mode = pCkData->ReadUint8();
672 if (mode > 5) throw gig::Exception("Unknown compression mode");
673 const file_offset_t frameSize = bytesPerFrame[mode];
674
675 if (pCkData->RemainingBytes() <= frameSize) {
676 SamplesInLastFrame =
677 ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
678 SamplesTotal += SamplesInLastFrame;
679 break;
680 }
681 SamplesTotal += SamplesPerFrame;
682 pCkData->SetPos(frameSize, RIFF::stream_curpos);
683 }
684 }
685 pCkData->SetPos(0);
686
687 // Build the frames table (which is used for fast resolving of a frame's chunk offset)
688 if (FrameTable) delete[] FrameTable;
689 FrameTable = new file_offset_t[frameOffsets.size()];
690 std::list<file_offset_t>::iterator end = frameOffsets.end();
691 std::list<file_offset_t>::iterator iter = frameOffsets.begin();
692 for (int i = 0; iter != end; i++, iter++) {
693 FrameTable[i] = *iter;
694 }
695 }
696
697 /**
698 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
699 * ReleaseSampleData() to free the memory if you don't need the cached
700 * sample data anymore.
701 *
702 * @returns buffer_t structure with start address and size of the buffer
703 * in bytes
704 * @see ReleaseSampleData(), Read(), SetPos()
705 */
706 buffer_t Sample::LoadSampleData() {
707 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
708 }
709
710 /**
711 * Reads (uncompresses if needed) and caches the first \a SampleCount
712 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
713 * memory space if you don't need the cached samples anymore. There is no
714 * guarantee that exactly \a SampleCount samples will be cached; this is
715 * not an error. The size will be eventually truncated e.g. to the
716 * beginning of a frame of a compressed sample. This is done for
717 * efficiency reasons while streaming the wave by your sampler engine
718 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
719 * that will be returned to determine the actual cached samples, but note
720 * that the size is given in bytes! You get the number of actually cached
721 * samples by dividing it by the frame size of the sample:
722 * @code
723 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
724 * long cachedsamples = buf.Size / pSample->FrameSize;
725 * @endcode
726 *
727 * @param SampleCount - number of sample points to load into RAM
728 * @returns buffer_t structure with start address and size of
729 * the cached sample data in bytes
730 * @see ReleaseSampleData(), Read(), SetPos()
731 */
732 buffer_t Sample::LoadSampleData(file_offset_t SampleCount) {
733 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
734 }
735
736 /**
737 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
738 * ReleaseSampleData() to free the memory if you don't need the cached
739 * sample data anymore.
740 * The method will add \a NullSamplesCount silence samples past the
741 * official buffer end (this won't affect the 'Size' member of the
742 * buffer_t structure, that means 'Size' always reflects the size of the
743 * actual sample data, the buffer might be bigger though). Silence
744 * samples past the official buffer are needed for differential
745 * algorithms that always have to take subsequent samples into account
746 * (resampling/interpolation would be an important example) and avoids
747 * memory access faults in such cases.
748 *
749 * @param NullSamplesCount - number of silence samples the buffer should
750 * be extended past it's data end
751 * @returns buffer_t structure with start address and
752 * size of the buffer in bytes
753 * @see ReleaseSampleData(), Read(), SetPos()
754 */
755 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
756 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
757 }
758
759 /**
760 * Reads (uncompresses if needed) and caches the first \a SampleCount
761 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
762 * memory space if you don't need the cached samples anymore. There is no
763 * guarantee that exactly \a SampleCount samples will be cached; this is
764 * not an error. The size will be eventually truncated e.g. to the
765 * beginning of a frame of a compressed sample. This is done for
766 * efficiency reasons while streaming the wave by your sampler engine
767 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
768 * that will be returned to determine the actual cached samples, but note
769 * that the size is given in bytes! You get the number of actually cached
770 * samples by dividing it by the frame size of the sample:
771 * @code
772 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
773 * long cachedsamples = buf.Size / pSample->FrameSize;
774 * @endcode
775 * The method will add \a NullSamplesCount silence samples past the
776 * official buffer end (this won't affect the 'Size' member of the
777 * buffer_t structure, that means 'Size' always reflects the size of the
778 * actual sample data, the buffer might be bigger though). Silence
779 * samples past the official buffer are needed for differential
780 * algorithms that always have to take subsequent samples into account
781 * (resampling/interpolation would be an important example) and avoids
782 * memory access faults in such cases.
783 *
784 * @param SampleCount - number of sample points to load into RAM
785 * @param NullSamplesCount - number of silence samples the buffer should
786 * be extended past it's data end
787 * @returns buffer_t structure with start address and
788 * size of the cached sample data in bytes
789 * @see ReleaseSampleData(), Read(), SetPos()
790 */
791 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount) {
792 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
793 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
794 file_offset_t allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
795 SetPos(0); // reset read position to begin of sample
796 RAMCache.pStart = new int8_t[allocationsize];
797 RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
798 RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
799 // fill the remaining buffer space with silence samples
800 memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
801 return GetCache();
802 }
803
804 /**
805 * Returns current cached sample points. A buffer_t structure will be
806 * returned which contains address pointer to the begin of the cache and
807 * the size of the cached sample data in bytes. Use
808 * <i>LoadSampleData()</i> to cache a specific amount of sample points in
809 * RAM.
810 *
811 * @returns buffer_t structure with current cached sample points
812 * @see LoadSampleData();
813 */
814 buffer_t Sample::GetCache() {
815 // return a copy of the buffer_t structure
816 buffer_t result;
817 result.Size = this->RAMCache.Size;
818 result.pStart = this->RAMCache.pStart;
819 result.NullExtensionSize = this->RAMCache.NullExtensionSize;
820 return result;
821 }
822
823 /**
824 * Frees the cached sample from RAM if loaded with
825 * <i>LoadSampleData()</i> previously.
826 *
827 * @see LoadSampleData();
828 */
829 void Sample::ReleaseSampleData() {
830 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
831 RAMCache.pStart = NULL;
832 RAMCache.Size = 0;
833 RAMCache.NullExtensionSize = 0;
834 }
835
836 /** @brief Resize sample.
837 *
838 * Resizes the sample's wave form data, that is the actual size of
839 * sample wave data possible to be written for this sample. This call
840 * will return immediately and just schedule the resize operation. You
841 * should call File::Save() to actually perform the resize operation(s)
842 * "physically" to the file. As this can take a while on large files, it
843 * is recommended to call Resize() first on all samples which have to be
844 * resized and finally to call File::Save() to perform all those resize
845 * operations in one rush.
846 *
847 * The actual size (in bytes) is dependant to the current FrameSize
848 * value. You may want to set FrameSize before calling Resize().
849 *
850 * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
851 * enlarged samples before calling File::Save() as this might exceed the
852 * current sample's boundary!
853 *
854 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
855 * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
856 * other formats will fail!
857 *
858 * @param NewSize - new sample wave data size in sample points (must be
859 * greater than zero)
860 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
861 * @throws DLS::Exception if \a NewSize is less than 1 or unrealistic large
862 * @throws gig::Exception if existing sample is compressed
863 * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
864 * DLS::Sample::FormatTag, File::Save()
865 */
866 void Sample::Resize(file_offset_t NewSize) {
867 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
868 DLS::Sample::Resize(NewSize);
869 }
870
871 /**
872 * Sets the position within the sample (in sample points, not in
873 * bytes). Use this method and <i>Read()</i> if you don't want to load
874 * the sample into RAM, thus for disk streaming.
875 *
876 * Although the original Gigasampler engine doesn't allow positioning
877 * within compressed samples, I decided to implement it. Even though
878 * the Gigasampler format doesn't allow to define loops for compressed
879 * samples at the moment, positioning within compressed samples might be
880 * interesting for some sampler engines though. The only drawback about
881 * my decision is that it takes longer to load compressed gig Files on
882 * startup, because it's neccessary to scan the samples for some
883 * mandatory informations. But I think as it doesn't affect the runtime
884 * efficiency, nobody will have a problem with that.
885 *
886 * @param SampleCount number of sample points to jump
887 * @param Whence optional: to which relation \a SampleCount refers
888 * to, if omited <i>RIFF::stream_start</i> is assumed
889 * @returns the new sample position
890 * @see Read()
891 */
892 file_offset_t Sample::SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence) {
893 if (Compressed) {
894 switch (Whence) {
895 case RIFF::stream_curpos:
896 this->SamplePos += SampleCount;
897 break;
898 case RIFF::stream_end:
899 this->SamplePos = this->SamplesTotal - 1 - SampleCount;
900 break;
901 case RIFF::stream_backward:
902 this->SamplePos -= SampleCount;
903 break;
904 case RIFF::stream_start: default:
905 this->SamplePos = SampleCount;
906 break;
907 }
908 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
909
910 file_offset_t frame = this->SamplePos / 2048; // to which frame to jump
911 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
912 pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
913 return this->SamplePos;
914 }
915 else { // not compressed
916 file_offset_t orderedBytes = SampleCount * this->FrameSize;
917 file_offset_t result = pCkData->SetPos(orderedBytes, Whence);
918 return (result == orderedBytes) ? SampleCount
919 : result / this->FrameSize;
920 }
921 }
922
923 /**
924 * Returns the current position in the sample (in sample points).
925 */
926 file_offset_t Sample::GetPos() const {
927 if (Compressed) return SamplePos;
928 else return pCkData->GetPos() / FrameSize;
929 }
930
931 /**
932 * Reads \a SampleCount number of sample points from the position stored
933 * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
934 * the position within the sample respectively, this method honors the
935 * looping informations of the sample (if any). The sample wave stream
936 * will be decompressed on the fly if using a compressed sample. Use this
937 * method if you don't want to load the sample into RAM, thus for disk
938 * streaming. All this methods needs to know to proceed with streaming
939 * for the next time you call this method is stored in \a pPlaybackState.
940 * You have to allocate and initialize the playback_state_t structure by
941 * yourself before you use it to stream a sample:
942 * @code
943 * gig::playback_state_t playbackstate;
944 * playbackstate.position = 0;
945 * playbackstate.reverse = false;
946 * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
947 * @endcode
948 * You don't have to take care of things like if there is actually a loop
949 * defined or if the current read position is located within a loop area.
950 * The method already handles such cases by itself.
951 *
952 * <b>Caution:</b> If you are using more than one streaming thread, you
953 * have to use an external decompression buffer for <b>EACH</b>
954 * streaming thread to avoid race conditions and crashes!
955 *
956 * @param pBuffer destination buffer
957 * @param SampleCount number of sample points to read
958 * @param pPlaybackState will be used to store and reload the playback
959 * state for the next ReadAndLoop() call
960 * @param pDimRgn dimension region with looping information
961 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
962 * @returns number of successfully read sample points
963 * @see CreateDecompressionBuffer()
964 */
965 file_offset_t Sample::ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState,
966 DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
967 file_offset_t samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
968 uint8_t* pDst = (uint8_t*) pBuffer;
969
970 SetPos(pPlaybackState->position); // recover position from the last time
971
972 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
973
974 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
975 const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
976
977 if (GetPos() <= loopEnd) {
978 switch (loop.LoopType) {
979
980 case loop_type_bidirectional: { //TODO: not tested yet!
981 do {
982 // if not endless loop check if max. number of loop cycles have been passed
983 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
984
985 if (!pPlaybackState->reverse) { // forward playback
986 do {
987 samplestoloopend = loopEnd - GetPos();
988 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
989 samplestoread -= readsamples;
990 totalreadsamples += readsamples;
991 if (readsamples == samplestoloopend) {
992 pPlaybackState->reverse = true;
993 break;
994 }
995 } while (samplestoread && readsamples);
996 }
997 else { // backward playback
998
999 // as we can only read forward from disk, we have to
1000 // determine the end position within the loop first,
1001 // read forward from that 'end' and finally after
1002 // reading, swap all sample frames so it reflects
1003 // backward playback
1004
1005 file_offset_t swapareastart = totalreadsamples;
1006 file_offset_t loopoffset = GetPos() - loop.LoopStart;
1007 file_offset_t samplestoreadinloop = Min(samplestoread, loopoffset);
1008 file_offset_t reverseplaybackend = GetPos() - samplestoreadinloop;
1009
1010 SetPos(reverseplaybackend);
1011
1012 // read samples for backward playback
1013 do {
1014 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
1015 samplestoreadinloop -= readsamples;
1016 samplestoread -= readsamples;
1017 totalreadsamples += readsamples;
1018 } while (samplestoreadinloop && readsamples);
1019
1020 SetPos(reverseplaybackend); // pretend we really read backwards
1021
1022 if (reverseplaybackend == loop.LoopStart) {
1023 pPlaybackState->loop_cycles_left--;
1024 pPlaybackState->reverse = false;
1025 }
1026
1027 // reverse the sample frames for backward playback
1028 if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
1029 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1030 }
1031 } while (samplestoread && readsamples);
1032 break;
1033 }
1034
1035 case loop_type_backward: { // TODO: not tested yet!
1036 // forward playback (not entered the loop yet)
1037 if (!pPlaybackState->reverse) do {
1038 samplestoloopend = loopEnd - GetPos();
1039 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1040 samplestoread -= readsamples;
1041 totalreadsamples += readsamples;
1042 if (readsamples == samplestoloopend) {
1043 pPlaybackState->reverse = true;
1044 break;
1045 }
1046 } while (samplestoread && readsamples);
1047
1048 if (!samplestoread) break;
1049
1050 // as we can only read forward from disk, we have to
1051 // determine the end position within the loop first,
1052 // read forward from that 'end' and finally after
1053 // reading, swap all sample frames so it reflects
1054 // backward playback
1055
1056 file_offset_t swapareastart = totalreadsamples;
1057 file_offset_t loopoffset = GetPos() - loop.LoopStart;
1058 file_offset_t samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1059 : samplestoread;
1060 file_offset_t reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1061
1062 SetPos(reverseplaybackend);
1063
1064 // read samples for backward playback
1065 do {
1066 // if not endless loop check if max. number of loop cycles have been passed
1067 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1068 samplestoloopend = loopEnd - GetPos();
1069 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1070 samplestoreadinloop -= readsamples;
1071 samplestoread -= readsamples;
1072 totalreadsamples += readsamples;
1073 if (readsamples == samplestoloopend) {
1074 pPlaybackState->loop_cycles_left--;
1075 SetPos(loop.LoopStart);
1076 }
1077 } while (samplestoreadinloop && readsamples);
1078
1079 SetPos(reverseplaybackend); // pretend we really read backwards
1080
1081 // reverse the sample frames for backward playback
1082 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1083 break;
1084 }
1085
1086 default: case loop_type_normal: {
1087 do {
1088 // if not endless loop check if max. number of loop cycles have been passed
1089 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1090 samplestoloopend = loopEnd - GetPos();
1091 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1092 samplestoread -= readsamples;
1093 totalreadsamples += readsamples;
1094 if (readsamples == samplestoloopend) {
1095 pPlaybackState->loop_cycles_left--;
1096 SetPos(loop.LoopStart);
1097 }
1098 } while (samplestoread && readsamples);
1099 break;
1100 }
1101 }
1102 }
1103 }
1104
1105 // read on without looping
1106 if (samplestoread) do {
1107 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
1108 samplestoread -= readsamples;
1109 totalreadsamples += readsamples;
1110 } while (readsamples && samplestoread);
1111
1112 // store current position
1113 pPlaybackState->position = GetPos();
1114
1115 return totalreadsamples;
1116 }
1117
1118 /**
1119 * Reads \a SampleCount number of sample points from the current
1120 * position into the buffer pointed by \a pBuffer and increments the
1121 * position within the sample. The sample wave stream will be
1122 * decompressed on the fly if using a compressed sample. Use this method
1123 * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1124 * thus for disk streaming.
1125 *
1126 * <b>Caution:</b> If you are using more than one streaming thread, you
1127 * have to use an external decompression buffer for <b>EACH</b>
1128 * streaming thread to avoid race conditions and crashes!
1129 *
1130 * For 16 bit samples, the data in the buffer will be int16_t
1131 * (using native endianness). For 24 bit, the buffer will
1132 * contain three bytes per sample, little-endian.
1133 *
1134 * @param pBuffer destination buffer
1135 * @param SampleCount number of sample points to read
1136 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
1137 * @returns number of successfully read sample points
1138 * @see SetPos(), CreateDecompressionBuffer()
1139 */
1140 file_offset_t Sample::Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer) {
1141 if (SampleCount == 0) return 0;
1142 if (!Compressed) {
1143 if (BitDepth == 24) {
1144 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1145 }
1146 else { // 16 bit
1147 // (pCkData->Read does endian correction)
1148 return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1149 : pCkData->Read(pBuffer, SampleCount, 2);
1150 }
1151 }
1152 else {
1153 if (this->SamplePos >= this->SamplesTotal) return 0;
1154 //TODO: efficiency: maybe we should test for an average compression rate
1155 file_offset_t assumedsize = GuessSize(SampleCount),
1156 remainingbytes = 0, // remaining bytes in the local buffer
1157 remainingsamples = SampleCount,
1158 copysamples, skipsamples,
1159 currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
1160 this->FrameOffset = 0;
1161
1162 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1163
1164 // if decompression buffer too small, then reduce amount of samples to read
1165 if (pDecompressionBuffer->Size < assumedsize) {
1166 std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1167 SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1168 remainingsamples = SampleCount;
1169 assumedsize = GuessSize(SampleCount);
1170 }
1171
1172 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1173 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1174 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1175 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1176
1177 while (remainingsamples && remainingbytes) {
1178 file_offset_t framesamples = SamplesPerFrame;
1179 file_offset_t framebytes, rightChannelOffset = 0, nextFrameOffset;
1180
1181 int mode_l = *pSrc++, mode_r = 0;
1182
1183 if (Channels == 2) {
1184 mode_r = *pSrc++;
1185 framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1186 rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1187 nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1188 if (remainingbytes < framebytes) { // last frame in sample
1189 framesamples = SamplesInLastFrame;
1190 if (mode_l == 4 && (framesamples & 1)) {
1191 rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1192 }
1193 else {
1194 rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1195 }
1196 }
1197 }
1198 else {
1199 framebytes = bytesPerFrame[mode_l] + 1;
1200 nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1201 if (remainingbytes < framebytes) {
1202 framesamples = SamplesInLastFrame;
1203 }
1204 }
1205
1206 // determine how many samples in this frame to skip and read
1207 if (currentframeoffset + remainingsamples >= framesamples) {
1208 if (currentframeoffset <= framesamples) {
1209 copysamples = framesamples - currentframeoffset;
1210 skipsamples = currentframeoffset;
1211 }
1212 else {
1213 copysamples = 0;
1214 skipsamples = framesamples;
1215 }
1216 }
1217 else {
1218 // This frame has enough data for pBuffer, but not
1219 // all of the frame is needed. Set file position
1220 // to start of this frame for next call to Read.
1221 copysamples = remainingsamples;
1222 skipsamples = currentframeoffset;
1223 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1224 this->FrameOffset = currentframeoffset + copysamples;
1225 }
1226 remainingsamples -= copysamples;
1227
1228 if (remainingbytes > framebytes) {
1229 remainingbytes -= framebytes;
1230 if (remainingsamples == 0 &&
1231 currentframeoffset + copysamples == framesamples) {
1232 // This frame has enough data for pBuffer, and
1233 // all of the frame is needed. Set file
1234 // position to start of next frame for next
1235 // call to Read. FrameOffset is 0.
1236 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1237 }
1238 }
1239 else remainingbytes = 0;
1240
1241 currentframeoffset -= skipsamples;
1242
1243 if (copysamples == 0) {
1244 // skip this frame
1245 pSrc += framebytes - Channels;
1246 }
1247 else {
1248 const unsigned char* const param_l = pSrc;
1249 if (BitDepth == 24) {
1250 if (mode_l != 2) pSrc += 12;
1251
1252 if (Channels == 2) { // Stereo
1253 const unsigned char* const param_r = pSrc;
1254 if (mode_r != 2) pSrc += 12;
1255
1256 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1257 skipsamples, copysamples, TruncatedBits);
1258 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1259 skipsamples, copysamples, TruncatedBits);
1260 pDst24 += copysamples * 6;
1261 }
1262 else { // Mono
1263 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1264 skipsamples, copysamples, TruncatedBits);
1265 pDst24 += copysamples * 3;
1266 }
1267 }
1268 else { // 16 bit
1269 if (mode_l) pSrc += 4;
1270
1271 int step;
1272 if (Channels == 2) { // Stereo
1273 const unsigned char* const param_r = pSrc;
1274 if (mode_r) pSrc += 4;
1275
1276 step = (2 - mode_l) + (2 - mode_r);
1277 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1278 Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1279 skipsamples, copysamples);
1280 pDst += copysamples << 1;
1281 }
1282 else { // Mono
1283 step = 2 - mode_l;
1284 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1285 pDst += copysamples;
1286 }
1287 }
1288 pSrc += nextFrameOffset;
1289 }
1290
1291 // reload from disk to local buffer if needed
1292 if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1293 assumedsize = GuessSize(remainingsamples);
1294 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1295 if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1296 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1297 pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1298 }
1299 } // while
1300
1301 this->SamplePos += (SampleCount - remainingsamples);
1302 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1303 return (SampleCount - remainingsamples);
1304 }
1305 }
1306
1307 /** @brief Write sample wave data.
1308 *
1309 * Writes \a SampleCount number of sample points from the buffer pointed
1310 * by \a pBuffer and increments the position within the sample. Use this
1311 * method to directly write the sample data to disk, i.e. if you don't
1312 * want or cannot load the whole sample data into RAM.
1313 *
1314 * You have to Resize() the sample to the desired size and call
1315 * File::Save() <b>before</b> using Write().
1316 *
1317 * Note: there is currently no support for writing compressed samples.
1318 *
1319 * For 16 bit samples, the data in the source buffer should be
1320 * int16_t (using native endianness). For 24 bit, the buffer
1321 * should contain three bytes per sample, little-endian.
1322 *
1323 * @param pBuffer - source buffer
1324 * @param SampleCount - number of sample points to write
1325 * @throws DLS::Exception if current sample size is too small
1326 * @throws gig::Exception if sample is compressed
1327 * @see DLS::LoadSampleData()
1328 */
1329 file_offset_t Sample::Write(void* pBuffer, file_offset_t SampleCount) {
1330 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1331
1332 // if this is the first write in this sample, reset the
1333 // checksum calculator
1334 if (pCkData->GetPos() == 0) {
1335 __resetCRC(crc);
1336 }
1337 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1338 file_offset_t res;
1339 if (BitDepth == 24) {
1340 res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1341 } else { // 16 bit
1342 res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1343 : pCkData->Write(pBuffer, SampleCount, 2);
1344 }
1345 __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1346
1347 // if this is the last write, update the checksum chunk in the
1348 // file
1349 if (pCkData->GetPos() == pCkData->GetSize()) {
1350 __finalizeCRC(crc);
1351 File* pFile = static_cast<File*>(GetParent());
1352 pFile->SetSampleChecksum(this, crc);
1353 }
1354 return res;
1355 }
1356
1357 /**
1358 * Allocates a decompression buffer for streaming (compressed) samples
1359 * with Sample::Read(). If you are using more than one streaming thread
1360 * in your application you <b>HAVE</b> to create a decompression buffer
1361 * for <b>EACH</b> of your streaming threads and provide it with the
1362 * Sample::Read() call in order to avoid race conditions and crashes.
1363 *
1364 * You should free the memory occupied by the allocated buffer(s) once
1365 * you don't need one of your streaming threads anymore by calling
1366 * DestroyDecompressionBuffer().
1367 *
1368 * @param MaxReadSize - the maximum size (in sample points) you ever
1369 * expect to read with one Read() call
1370 * @returns allocated decompression buffer
1371 * @see DestroyDecompressionBuffer()
1372 */
1373 buffer_t Sample::CreateDecompressionBuffer(file_offset_t MaxReadSize) {
1374 buffer_t result;
1375 const double worstCaseHeaderOverhead =
1376 (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1377 result.Size = (file_offset_t) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1378 result.pStart = new int8_t[result.Size];
1379 result.NullExtensionSize = 0;
1380 return result;
1381 }
1382
1383 /**
1384 * Free decompression buffer, previously created with
1385 * CreateDecompressionBuffer().
1386 *
1387 * @param DecompressionBuffer - previously allocated decompression
1388 * buffer to free
1389 */
1390 void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1391 if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1392 delete[] (int8_t*) DecompressionBuffer.pStart;
1393 DecompressionBuffer.pStart = NULL;
1394 DecompressionBuffer.Size = 0;
1395 DecompressionBuffer.NullExtensionSize = 0;
1396 }
1397 }
1398
1399 /**
1400 * Returns pointer to the Group this Sample belongs to. In the .gig
1401 * format a sample always belongs to one group. If it wasn't explicitly
1402 * assigned to a certain group, it will be automatically assigned to a
1403 * default group.
1404 *
1405 * @returns Sample's Group (never NULL)
1406 */
1407 Group* Sample::GetGroup() const {
1408 return pGroup;
1409 }
1410
1411 /**
1412 * Returns the CRC-32 checksum of the sample's raw wave form data at the
1413 * time when this sample's wave form data was modified for the last time
1414 * by calling Write(). This checksum only covers the raw wave form data,
1415 * not any meta informations like i.e. bit depth or loop points. Since
1416 * this method just returns the checksum stored for this sample i.e. when
1417 * the gig file was loaded, this method returns immediately. So it does no
1418 * recalcuation of the checksum with the currently available sample wave
1419 * form data.
1420 *
1421 * @see VerifyWaveData()
1422 */
1423 uint32_t Sample::GetWaveDataCRC32Checksum() {
1424 return crc;
1425 }
1426
1427 /**
1428 * Checks the integrity of this sample's raw audio wave data. Whenever a
1429 * Sample's raw wave data is intentionally modified (i.e. by calling
1430 * Write() and supplying the new raw audio wave form data) a CRC32 checksum
1431 * is calculated and stored/updated for this sample, along to the sample's
1432 * meta informations.
1433 *
1434 * Now by calling this method the current raw audio wave data is checked
1435 * against the already stored CRC32 check sum in order to check whether the
1436 * sample data had been damaged unintentionally for some reason. Since by
1437 * calling this method always the entire raw audio wave data has to be
1438 * read, verifying all samples this way may take a long time accordingly.
1439 * And that's also the reason why the sample integrity is not checked by
1440 * default whenever a gig file is loaded. So this method must be called
1441 * explicitly to fulfill this task.
1442 *
1443 * @param pActually - (optional) if provided, will be set to the actually
1444 * calculated checksum of the current raw wave form data,
1445 * you can get the expected checksum instead by calling
1446 * GetWaveDataCRC32Checksum()
1447 * @returns true if sample is OK or false if the sample is damaged
1448 * @throws Exception if no checksum had been stored to disk for this
1449 * sample yet, or on I/O issues
1450 * @see GetWaveDataCRC32Checksum()
1451 */
1452 bool Sample::VerifyWaveData(uint32_t* pActually) {
1453 //File* pFile = static_cast<File*>(GetParent());
1454 uint32_t crc = CalculateWaveDataChecksum();
1455 if (pActually) *pActually = crc;
1456 return crc == this->crc;
1457 }
1458
1459 uint32_t Sample::CalculateWaveDataChecksum() {
1460 const size_t sz = 20*1024; // 20kB buffer size
1461 std::vector<uint8_t> buffer(sz);
1462 buffer.resize(sz);
1463
1464 const size_t n = sz / FrameSize;
1465 SetPos(0);
1466 uint32_t crc = 0;
1467 __resetCRC(crc);
1468 while (true) {
1469 file_offset_t nRead = Read(&buffer[0], n);
1470 if (nRead <= 0) break;
1471 __calculateCRC(&buffer[0], nRead * FrameSize, crc);
1472 }
1473 __finalizeCRC(crc);
1474 return crc;
1475 }
1476
1477 Sample::~Sample() {
1478 Instances--;
1479 if (!Instances && InternalDecompressionBuffer.Size) {
1480 delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1481 InternalDecompressionBuffer.pStart = NULL;
1482 InternalDecompressionBuffer.Size = 0;
1483 }
1484 if (FrameTable) delete[] FrameTable;
1485 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1486 }
1487
1488
1489
1490 // *************** DimensionRegion ***************
1491 // *
1492
1493 size_t DimensionRegion::Instances = 0;
1494 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1495
1496 DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1497 Instances++;
1498
1499 pSample = NULL;
1500 pRegion = pParent;
1501
1502 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1503 else memset(&Crossfade, 0, 4);
1504
1505 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1506
1507 RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1508 if (_3ewa) { // if '3ewa' chunk exists
1509 _3ewa->SetPos(0);
1510
1511 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1512 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1513 EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1514 _3ewa->ReadInt16(); // unknown
1515 LFO1InternalDepth = _3ewa->ReadUint16();
1516 _3ewa->ReadInt16(); // unknown
1517 LFO3InternalDepth = _3ewa->ReadInt16();
1518 _3ewa->ReadInt16(); // unknown
1519 LFO1ControlDepth = _3ewa->ReadUint16();
1520 _3ewa->ReadInt16(); // unknown
1521 LFO3ControlDepth = _3ewa->ReadInt16();
1522 EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1523 EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1524 _3ewa->ReadInt16(); // unknown
1525 EG1Sustain = _3ewa->ReadUint16();
1526 EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1527 EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1528 uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1529 EG1ControllerInvert = eg1ctrloptions & 0x01;
1530 EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1531 EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1532 EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1533 EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1534 uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1535 EG2ControllerInvert = eg2ctrloptions & 0x01;
1536 EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1537 EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1538 EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1539 LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1540 EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1541 EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1542 _3ewa->ReadInt16(); // unknown
1543 EG2Sustain = _3ewa->ReadUint16();
1544 EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1545 _3ewa->ReadInt16(); // unknown
1546 LFO2ControlDepth = _3ewa->ReadUint16();
1547 LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1548 _3ewa->ReadInt16(); // unknown
1549 LFO2InternalDepth = _3ewa->ReadUint16();
1550 int32_t eg1decay2 = _3ewa->ReadInt32();
1551 EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1552 EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1553 _3ewa->ReadInt16(); // unknown
1554 EG1PreAttack = _3ewa->ReadUint16();
1555 int32_t eg2decay2 = _3ewa->ReadInt32();
1556 EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1557 EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1558 _3ewa->ReadInt16(); // unknown
1559 EG2PreAttack = _3ewa->ReadUint16();
1560 uint8_t velocityresponse = _3ewa->ReadUint8();
1561 if (velocityresponse < 5) {
1562 VelocityResponseCurve = curve_type_nonlinear;
1563 VelocityResponseDepth = velocityresponse;
1564 } else if (velocityresponse < 10) {
1565 VelocityResponseCurve = curve_type_linear;
1566 VelocityResponseDepth = velocityresponse - 5;
1567 } else if (velocityresponse < 15) {
1568 VelocityResponseCurve = curve_type_special;
1569 VelocityResponseDepth = velocityresponse - 10;
1570 } else {
1571 VelocityResponseCurve = curve_type_unknown;
1572 VelocityResponseDepth = 0;
1573 }
1574 uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1575 if (releasevelocityresponse < 5) {
1576 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1577 ReleaseVelocityResponseDepth = releasevelocityresponse;
1578 } else if (releasevelocityresponse < 10) {
1579 ReleaseVelocityResponseCurve = curve_type_linear;
1580 ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1581 } else if (releasevelocityresponse < 15) {
1582 ReleaseVelocityResponseCurve = curve_type_special;
1583 ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1584 } else {
1585 ReleaseVelocityResponseCurve = curve_type_unknown;
1586 ReleaseVelocityResponseDepth = 0;
1587 }
1588 VelocityResponseCurveScaling = _3ewa->ReadUint8();
1589 AttenuationControllerThreshold = _3ewa->ReadInt8();
1590 _3ewa->ReadInt32(); // unknown
1591 SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1592 _3ewa->ReadInt16(); // unknown
1593 uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1594 PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1595 if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1596 else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1597 else DimensionBypass = dim_bypass_ctrl_none;
1598 uint8_t pan = _3ewa->ReadUint8();
1599 Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1600 SelfMask = _3ewa->ReadInt8() & 0x01;
1601 _3ewa->ReadInt8(); // unknown
1602 uint8_t lfo3ctrl = _3ewa->ReadUint8();
1603 LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1604 LFO3Sync = lfo3ctrl & 0x20; // bit 5
1605 InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1606 AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1607 uint8_t lfo2ctrl = _3ewa->ReadUint8();
1608 LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1609 LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1610 LFO2Sync = lfo2ctrl & 0x20; // bit 5
1611 bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1612 uint8_t lfo1ctrl = _3ewa->ReadUint8();
1613 LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1614 LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1615 LFO1Sync = lfo1ctrl & 0x40; // bit 6
1616 VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1617 : vcf_res_ctrl_none;
1618 uint16_t eg3depth = _3ewa->ReadUint16();
1619 EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1620 : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1621 _3ewa->ReadInt16(); // unknown
1622 ChannelOffset = _3ewa->ReadUint8() / 4;
1623 uint8_t regoptions = _3ewa->ReadUint8();
1624 MSDecode = regoptions & 0x01; // bit 0
1625 SustainDefeat = regoptions & 0x02; // bit 1
1626 _3ewa->ReadInt16(); // unknown
1627 VelocityUpperLimit = _3ewa->ReadInt8();
1628 _3ewa->ReadInt8(); // unknown
1629 _3ewa->ReadInt16(); // unknown
1630 ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1631 _3ewa->ReadInt8(); // unknown
1632 _3ewa->ReadInt8(); // unknown
1633 EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1634 uint8_t vcfcutoff = _3ewa->ReadUint8();
1635 VCFEnabled = vcfcutoff & 0x80; // bit 7
1636 VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1637 VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1638 uint8_t vcfvelscale = _3ewa->ReadUint8();
1639 VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1640 VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1641 _3ewa->ReadInt8(); // unknown
1642 uint8_t vcfresonance = _3ewa->ReadUint8();
1643 VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1644 VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1645 uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1646 VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1647 VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1648 uint8_t vcfvelocity = _3ewa->ReadUint8();
1649 VCFVelocityDynamicRange = vcfvelocity % 5;
1650 VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1651 VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1652 if (VCFType == vcf_type_lowpass) {
1653 if (lfo3ctrl & 0x40) // bit 6
1654 VCFType = vcf_type_lowpassturbo;
1655 }
1656 if (_3ewa->RemainingBytes() >= 8) {
1657 _3ewa->Read(DimensionUpperLimits, 1, 8);
1658 } else {
1659 memset(DimensionUpperLimits, 0, 8);
1660 }
1661 } else { // '3ewa' chunk does not exist yet
1662 // use default values
1663 LFO3Frequency = 1.0;
1664 EG3Attack = 0.0;
1665 LFO1InternalDepth = 0;
1666 LFO3InternalDepth = 0;
1667 LFO1ControlDepth = 0;
1668 LFO3ControlDepth = 0;
1669 EG1Attack = 0.0;
1670 EG1Decay1 = 0.005;
1671 EG1Sustain = 1000;
1672 EG1Release = 0.3;
1673 EG1Controller.type = eg1_ctrl_t::type_none;
1674 EG1Controller.controller_number = 0;
1675 EG1ControllerInvert = false;
1676 EG1ControllerAttackInfluence = 0;
1677 EG1ControllerDecayInfluence = 0;
1678 EG1ControllerReleaseInfluence = 0;
1679 EG2Controller.type = eg2_ctrl_t::type_none;
1680 EG2Controller.controller_number = 0;
1681 EG2ControllerInvert = false;
1682 EG2ControllerAttackInfluence = 0;
1683 EG2ControllerDecayInfluence = 0;
1684 EG2ControllerReleaseInfluence = 0;
1685 LFO1Frequency = 1.0;
1686 EG2Attack = 0.0;
1687 EG2Decay1 = 0.005;
1688 EG2Sustain = 1000;
1689 EG2Release = 60;
1690 LFO2ControlDepth = 0;
1691 LFO2Frequency = 1.0;
1692 LFO2InternalDepth = 0;
1693 EG1Decay2 = 0.0;
1694 EG1InfiniteSustain = true;
1695 EG1PreAttack = 0;
1696 EG2Decay2 = 0.0;
1697 EG2InfiniteSustain = true;
1698 EG2PreAttack = 0;
1699 VelocityResponseCurve = curve_type_nonlinear;
1700 VelocityResponseDepth = 3;
1701 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1702 ReleaseVelocityResponseDepth = 3;
1703 VelocityResponseCurveScaling = 32;
1704 AttenuationControllerThreshold = 0;
1705 SampleStartOffset = 0;
1706 PitchTrack = true;
1707 DimensionBypass = dim_bypass_ctrl_none;
1708 Pan = 0;
1709 SelfMask = true;
1710 LFO3Controller = lfo3_ctrl_modwheel;
1711 LFO3Sync = false;
1712 InvertAttenuationController = false;
1713 AttenuationController.type = attenuation_ctrl_t::type_none;
1714 AttenuationController.controller_number = 0;
1715 LFO2Controller = lfo2_ctrl_internal;
1716 LFO2FlipPhase = false;
1717 LFO2Sync = false;
1718 LFO1Controller = lfo1_ctrl_internal;
1719 LFO1FlipPhase = false;
1720 LFO1Sync = false;
1721 VCFResonanceController = vcf_res_ctrl_none;
1722 EG3Depth = 0;
1723 ChannelOffset = 0;
1724 MSDecode = false;
1725 SustainDefeat = false;
1726 VelocityUpperLimit = 0;
1727 ReleaseTriggerDecay = 0;
1728 EG1Hold = false;
1729 VCFEnabled = false;
1730 VCFCutoff = 0;
1731 VCFCutoffController = vcf_cutoff_ctrl_none;
1732 VCFCutoffControllerInvert = false;
1733 VCFVelocityScale = 0;
1734 VCFResonance = 0;
1735 VCFResonanceDynamic = false;
1736 VCFKeyboardTracking = false;
1737 VCFKeyboardTrackingBreakpoint = 0;
1738 VCFVelocityDynamicRange = 0x04;
1739 VCFVelocityCurve = curve_type_linear;
1740 VCFType = vcf_type_lowpass;
1741 memset(DimensionUpperLimits, 127, 8);
1742 }
1743
1744 // chunk for own format extensions, these will *NOT* work with Gigasampler/GigaStudio !
1745 RIFF::Chunk* lsde = _3ewl->GetSubChunk(CHUNK_ID_LSDE);
1746 if (lsde) { // format extension for EG behavior options
1747 lsde->SetPos(0);
1748
1749 eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
1750 for (int i = 0; i < 2; ++i) { // NOTE: we reserved a 3rd byte for a potential future EG3 option
1751 unsigned char byte = lsde->ReadUint8();
1752 pEGOpts[i]->AttackCancel = byte & 1;
1753 pEGOpts[i]->AttackHoldCancel = byte & (1 << 1);
1754 pEGOpts[i]->Decay1Cancel = byte & (1 << 2);
1755 pEGOpts[i]->Decay2Cancel = byte & (1 << 3);
1756 pEGOpts[i]->ReleaseCancel = byte & (1 << 4);
1757 }
1758 }
1759 // format extension for sustain pedal up effect on release trigger samples
1760 if (lsde && lsde->GetSize() > 3) { // NOTE: we reserved the 3rd byte for a potential future EG3 option
1761 lsde->SetPos(3);
1762 uint8_t byte = lsde->ReadUint8();
1763 SustainReleaseTrigger = static_cast<sust_rel_trg_t>(byte & 0x03);
1764 NoNoteOffReleaseTrigger = byte >> 7;
1765 } else {
1766 SustainReleaseTrigger = sust_rel_trg_none;
1767 NoNoteOffReleaseTrigger = false;
1768 }
1769 // format extension for LFOs' wave form, phase displacement and for
1770 // LFO3's flip phase
1771 if (lsde && lsde->GetSize() > 4) {
1772 lsde->SetPos(4);
1773 LFO1WaveForm = static_cast<lfo_wave_t>( lsde->ReadUint16() );
1774 LFO2WaveForm = static_cast<lfo_wave_t>( lsde->ReadUint16() );
1775 LFO3WaveForm = static_cast<lfo_wave_t>( lsde->ReadUint16() );
1776 lsde->ReadUint16(); // unused 16 bits, reserved for potential future use
1777 LFO1Phase = (double) GIG_EXP_DECODE( lsde->ReadInt32() );
1778 LFO2Phase = (double) GIG_EXP_DECODE( lsde->ReadInt32() );
1779 LFO3Phase = (double) GIG_EXP_DECODE( lsde->ReadInt32() );
1780 const uint32_t flags = lsde->ReadInt32();
1781 LFO3FlipPhase = flags & 1;
1782 } else {
1783 LFO1WaveForm = lfo_wave_sine;
1784 LFO2WaveForm = lfo_wave_sine;
1785 LFO3WaveForm = lfo_wave_sine;
1786 LFO1Phase = 0.0;
1787 LFO2Phase = 0.0;
1788 LFO3Phase = 0.0;
1789 LFO3FlipPhase = false;
1790 }
1791
1792 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1793 VelocityResponseDepth,
1794 VelocityResponseCurveScaling);
1795
1796 pVelocityReleaseTable = GetReleaseVelocityTable(
1797 ReleaseVelocityResponseCurve,
1798 ReleaseVelocityResponseDepth
1799 );
1800
1801 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1802 VCFVelocityDynamicRange,
1803 VCFVelocityScale,
1804 VCFCutoffController);
1805
1806 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1807 VelocityTable = 0;
1808 }
1809
1810 /*
1811 * Constructs a DimensionRegion by copying all parameters from
1812 * another DimensionRegion
1813 */
1814 DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1815 Instances++;
1816 //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1817 *this = src; // default memberwise shallow copy of all parameters
1818 pParentList = _3ewl; // restore the chunk pointer
1819
1820 // deep copy of owned structures
1821 if (src.VelocityTable) {
1822 VelocityTable = new uint8_t[128];
1823 for (int k = 0 ; k < 128 ; k++)
1824 VelocityTable[k] = src.VelocityTable[k];
1825 }
1826 if (src.pSampleLoops) {
1827 pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1828 for (int k = 0 ; k < src.SampleLoops ; k++)
1829 pSampleLoops[k] = src.pSampleLoops[k];
1830 }
1831 }
1832
1833 /**
1834 * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1835 * and assign it to this object.
1836 *
1837 * Note that all sample pointers referenced by @a orig are simply copied as
1838 * memory address. Thus the respective samples are shared, not duplicated!
1839 *
1840 * @param orig - original DimensionRegion object to be copied from
1841 */
1842 void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1843 CopyAssign(orig, NULL);
1844 }
1845
1846 /**
1847 * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1848 * and assign it to this object.
1849 *
1850 * @param orig - original DimensionRegion object to be copied from
1851 * @param mSamples - crosslink map between the foreign file's samples and
1852 * this file's samples
1853 */
1854 void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1855 // delete all allocated data first
1856 if (VelocityTable) delete [] VelocityTable;
1857 if (pSampleLoops) delete [] pSampleLoops;
1858
1859 // backup parent list pointer
1860 RIFF::List* p = pParentList;
1861
1862 gig::Sample* pOriginalSample = pSample;
1863 gig::Region* pOriginalRegion = pRegion;
1864
1865 //NOTE: copy code copied from assignment constructor above, see comment there as well
1866
1867 *this = *orig; // default memberwise shallow copy of all parameters
1868
1869 // restore members that shall not be altered
1870 pParentList = p; // restore the chunk pointer
1871 pRegion = pOriginalRegion;
1872
1873 // only take the raw sample reference reference if the
1874 // two DimensionRegion objects are part of the same file
1875 if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1876 pSample = pOriginalSample;
1877 }
1878
1879 if (mSamples && mSamples->count(orig->pSample)) {
1880 pSample = mSamples->find(orig->pSample)->second;
1881 }
1882
1883 // deep copy of owned structures
1884 if (orig->VelocityTable) {
1885 VelocityTable = new uint8_t[128];
1886 for (int k = 0 ; k < 128 ; k++)
1887 VelocityTable[k] = orig->VelocityTable[k];
1888 }
1889 if (orig->pSampleLoops) {
1890 pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1891 for (int k = 0 ; k < orig->SampleLoops ; k++)
1892 pSampleLoops[k] = orig->pSampleLoops[k];
1893 }
1894 }
1895
1896 void DimensionRegion::serialize(Serialization::Archive* archive) {
1897 // in case this class will become backward incompatible one day,
1898 // then set a version and minimum version for this class like:
1899 //archive->setVersion(*this, 2);
1900 //archive->setMinVersion(*this, 1);
1901
1902 SRLZ(VelocityUpperLimit);
1903 SRLZ(EG1PreAttack);
1904 SRLZ(EG1Attack);
1905 SRLZ(EG1Decay1);
1906 SRLZ(EG1Decay2);
1907 SRLZ(EG1InfiniteSustain);
1908 SRLZ(EG1Sustain);
1909 SRLZ(EG1Release);
1910 SRLZ(EG1Hold);
1911 SRLZ(EG1Controller);
1912 SRLZ(EG1ControllerInvert);
1913 SRLZ(EG1ControllerAttackInfluence);
1914 SRLZ(EG1ControllerDecayInfluence);
1915 SRLZ(EG1ControllerReleaseInfluence);
1916 SRLZ(LFO1WaveForm);
1917 SRLZ(LFO1Frequency);
1918 SRLZ(LFO1Phase);
1919 SRLZ(LFO1InternalDepth);
1920 SRLZ(LFO1ControlDepth);
1921 SRLZ(LFO1Controller);
1922 SRLZ(LFO1FlipPhase);
1923 SRLZ(LFO1Sync);
1924 SRLZ(EG2PreAttack);
1925 SRLZ(EG2Attack);
1926 SRLZ(EG2Decay1);
1927 SRLZ(EG2Decay2);
1928 SRLZ(EG2InfiniteSustain);
1929 SRLZ(EG2Sustain);
1930 SRLZ(EG2Release);
1931 SRLZ(EG2Controller);
1932 SRLZ(EG2ControllerInvert);
1933 SRLZ(EG2ControllerAttackInfluence);
1934 SRLZ(EG2ControllerDecayInfluence);
1935 SRLZ(EG2ControllerReleaseInfluence);
1936 SRLZ(LFO2WaveForm);
1937 SRLZ(LFO2Frequency);
1938 SRLZ(LFO2Phase);
1939 SRLZ(LFO2InternalDepth);
1940 SRLZ(LFO2ControlDepth);
1941 SRLZ(LFO2Controller);
1942 SRLZ(LFO2FlipPhase);
1943 SRLZ(LFO2Sync);
1944 SRLZ(EG3Attack);
1945 SRLZ(EG3Depth);
1946 SRLZ(LFO3WaveForm);
1947 SRLZ(LFO3Frequency);
1948 SRLZ(LFO3Phase);
1949 SRLZ(LFO3InternalDepth);
1950 SRLZ(LFO3ControlDepth);
1951 SRLZ(LFO3Controller);
1952 SRLZ(LFO3FlipPhase);
1953 SRLZ(LFO3Sync);
1954 SRLZ(VCFEnabled);
1955 SRLZ(VCFType);
1956 SRLZ(VCFCutoffController);
1957 SRLZ(VCFCutoffControllerInvert);
1958 SRLZ(VCFCutoff);
1959 SRLZ(VCFVelocityCurve);
1960 SRLZ(VCFVelocityScale);
1961 SRLZ(VCFVelocityDynamicRange);
1962 SRLZ(VCFResonance);
1963 SRLZ(VCFResonanceDynamic);
1964 SRLZ(VCFResonanceController);
1965 SRLZ(VCFKeyboardTracking);
1966 SRLZ(VCFKeyboardTrackingBreakpoint);
1967 SRLZ(VelocityResponseCurve);
1968 SRLZ(VelocityResponseDepth);
1969 SRLZ(VelocityResponseCurveScaling);
1970 SRLZ(ReleaseVelocityResponseCurve);
1971 SRLZ(ReleaseVelocityResponseDepth);
1972 SRLZ(ReleaseTriggerDecay);
1973 SRLZ(Crossfade);
1974 SRLZ(PitchTrack);
1975 SRLZ(DimensionBypass);
1976 SRLZ(Pan);
1977 SRLZ(SelfMask);
1978 SRLZ(AttenuationController);
1979 SRLZ(InvertAttenuationController);
1980 SRLZ(AttenuationControllerThreshold);
1981 SRLZ(ChannelOffset);
1982 SRLZ(SustainDefeat);
1983 SRLZ(MSDecode);
1984 //SRLZ(SampleStartOffset);
1985 SRLZ(SampleAttenuation);
1986 SRLZ(EG1Options);
1987 SRLZ(EG2Options);
1988 SRLZ(SustainReleaseTrigger);
1989 SRLZ(NoNoteOffReleaseTrigger);
1990
1991 // derived attributes from DLS::Sampler
1992 SRLZ(FineTune);
1993 SRLZ(Gain);
1994 }
1995
1996 /**
1997 * Updates the respective member variable and updates @c SampleAttenuation
1998 * which depends on this value.
1999 */
2000 void DimensionRegion::SetGain(int32_t gain) {
2001 DLS::Sampler::SetGain(gain);
2002 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
2003 }
2004
2005 /**
2006 * Apply dimension region settings to the respective RIFF chunks. You
2007 * have to call File::Save() to make changes persistent.
2008 *
2009 * Usually there is absolutely no need to call this method explicitly.
2010 * It will be called automatically when File::Save() was called.
2011 *
2012 * @param pProgress - callback function for progress notification
2013 */
2014 void DimensionRegion::UpdateChunks(progress_t* pProgress) {
2015 // first update base class's chunk
2016 DLS::Sampler::UpdateChunks(pProgress);
2017
2018 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
2019 uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
2020 pData[12] = Crossfade.in_start;
2021 pData[13] = Crossfade.in_end;
2022 pData[14] = Crossfade.out_start;
2023 pData[15] = Crossfade.out_end;
2024
2025 // make sure '3ewa' chunk exists
2026 RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
2027 if (!_3ewa) {
2028 File* pFile = (File*) GetParent()->GetParent()->GetParent();
2029 bool versiongt2 = pFile->pVersion && pFile->pVersion->major > 2;
2030 _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, versiongt2 ? 148 : 140);
2031 }
2032 pData = (uint8_t*) _3ewa->LoadChunkData();
2033
2034 // update '3ewa' chunk with DimensionRegion's current settings
2035
2036 const uint32_t chunksize = (uint32_t) _3ewa->GetNewSize();
2037 store32(&pData[0], chunksize); // unknown, always chunk size?
2038
2039 const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
2040 store32(&pData[4], lfo3freq);
2041
2042 const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
2043 store32(&pData[8], eg3attack);
2044
2045 // next 2 bytes unknown
2046
2047 store16(&pData[14], LFO1InternalDepth);
2048
2049 // next 2 bytes unknown
2050
2051 store16(&pData[18], LFO3InternalDepth);
2052
2053 // next 2 bytes unknown
2054
2055 store16(&pData[22], LFO1ControlDepth);
2056
2057 // next 2 bytes unknown
2058
2059 store16(&pData[26], LFO3ControlDepth);
2060
2061 const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
2062 store32(&pData[28], eg1attack);
2063
2064 const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
2065 store32(&pData[32], eg1decay1);
2066
2067 // next 2 bytes unknown
2068
2069 store16(&pData[38], EG1Sustain);
2070
2071 const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
2072 store32(&pData[40], eg1release);
2073
2074 const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
2075 pData[44] = eg1ctl;
2076
2077 const uint8_t eg1ctrloptions =
2078 (EG1ControllerInvert ? 0x01 : 0x00) |
2079 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
2080 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
2081 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
2082 pData[45] = eg1ctrloptions;
2083
2084 const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
2085 pData[46] = eg2ctl;
2086
2087 const uint8_t eg2ctrloptions =
2088 (EG2ControllerInvert ? 0x01 : 0x00) |
2089 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
2090 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
2091 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
2092 pData[47] = eg2ctrloptions;
2093
2094 const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
2095 store32(&pData[48], lfo1freq);
2096
2097 const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
2098 store32(&pData[52], eg2attack);
2099
2100 const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
2101 store32(&pData[56], eg2decay1);
2102
2103 // next 2 bytes unknown
2104
2105 store16(&pData[62], EG2Sustain);
2106
2107 const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
2108 store32(&pData[64], eg2release);
2109
2110 // next 2 bytes unknown
2111
2112 store16(&pData[70], LFO2ControlDepth);
2113
2114 const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
2115 store32(&pData[72], lfo2freq);
2116
2117 // next 2 bytes unknown
2118
2119 store16(&pData[78], LFO2InternalDepth);
2120
2121 const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
2122 store32(&pData[80], eg1decay2);
2123
2124 // next 2 bytes unknown
2125
2126 store16(&pData[86], EG1PreAttack);
2127
2128 const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
2129 store32(&pData[88], eg2decay2);
2130
2131 // next 2 bytes unknown
2132
2133 store16(&pData[94], EG2PreAttack);
2134
2135 {
2136 if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
2137 uint8_t velocityresponse = VelocityResponseDepth;
2138 switch (VelocityResponseCurve) {
2139 case curve_type_nonlinear:
2140 break;
2141 case curve_type_linear:
2142 velocityresponse += 5;
2143 break;
2144 case curve_type_special:
2145 velocityresponse += 10;
2146 break;
2147 case curve_type_unknown:
2148 default:
2149 throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
2150 }
2151 pData[96] = velocityresponse;
2152 }
2153
2154 {
2155 if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
2156 uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
2157 switch (ReleaseVelocityResponseCurve) {
2158 case curve_type_nonlinear:
2159 break;
2160 case curve_type_linear:
2161 releasevelocityresponse += 5;
2162 break;
2163 case curve_type_special:
2164 releasevelocityresponse += 10;
2165 break;
2166 case curve_type_unknown:
2167 default:
2168 throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
2169 }
2170 pData[97] = releasevelocityresponse;
2171 }
2172
2173 pData[98] = VelocityResponseCurveScaling;
2174
2175 pData[99] = AttenuationControllerThreshold;
2176
2177 // next 4 bytes unknown
2178
2179 store16(&pData[104], SampleStartOffset);
2180
2181 // next 2 bytes unknown
2182
2183 {
2184 uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
2185 switch (DimensionBypass) {
2186 case dim_bypass_ctrl_94:
2187 pitchTrackDimensionBypass |= 0x10;
2188 break;
2189 case dim_bypass_ctrl_95:
2190 pitchTrackDimensionBypass |= 0x20;
2191 break;
2192 case dim_bypass_ctrl_none:
2193 //FIXME: should we set anything here?
2194 break;
2195 default:
2196 throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
2197 }
2198 pData[108] = pitchTrackDimensionBypass;
2199 }
2200
2201 const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
2202 pData[109] = pan;
2203
2204 const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
2205 pData[110] = selfmask;
2206
2207 // next byte unknown
2208
2209 {
2210 uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
2211 if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
2212 if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
2213 if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
2214 pData[112] = lfo3ctrl;
2215 }
2216
2217 const uint8_t attenctl = EncodeLeverageController(AttenuationController);
2218 pData[113] = attenctl;
2219
2220 {
2221 uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
2222 if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
2223 if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
2224 if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
2225 pData[114] = lfo2ctrl;
2226 }
2227
2228 {
2229 uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
2230 if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
2231 if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
2232 if (VCFResonanceController != vcf_res_ctrl_none)
2233 lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
2234 pData[115] = lfo1ctrl;
2235 }
2236
2237 const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
2238 : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
2239 store16(&pData[116], eg3depth);
2240
2241 // next 2 bytes unknown
2242
2243 const uint8_t channeloffset = ChannelOffset * 4;
2244 pData[120] = channeloffset;
2245
2246 {
2247 uint8_t regoptions = 0;
2248 if (MSDecode) regoptions |= 0x01; // bit 0
2249 if (SustainDefeat) regoptions |= 0x02; // bit 1
2250 pData[121] = regoptions;
2251 }
2252
2253 // next 2 bytes unknown
2254
2255 pData[124] = VelocityUpperLimit;
2256
2257 // next 3 bytes unknown
2258
2259 pData[128] = ReleaseTriggerDecay;
2260
2261 // next 2 bytes unknown
2262
2263 const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2264 pData[131] = eg1hold;
2265
2266 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
2267 (VCFCutoff & 0x7f); /* lower 7 bits */
2268 pData[132] = vcfcutoff;
2269
2270 pData[133] = VCFCutoffController;
2271
2272 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2273 (VCFVelocityScale & 0x7f); /* lower 7 bits */
2274 pData[134] = vcfvelscale;
2275
2276 // next byte unknown
2277
2278 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2279 (VCFResonance & 0x7f); /* lower 7 bits */
2280 pData[136] = vcfresonance;
2281
2282 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2283 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2284 pData[137] = vcfbreakpoint;
2285
2286 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2287 VCFVelocityCurve * 5;
2288 pData[138] = vcfvelocity;
2289
2290 const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2291 pData[139] = vcftype;
2292
2293 if (chunksize >= 148) {
2294 memcpy(&pData[140], DimensionUpperLimits, 8);
2295 }
2296
2297 // chunk for own format extensions, these will *NOT* work with
2298 // Gigasampler/GigaStudio !
2299 RIFF::Chunk* lsde = pParentList->GetSubChunk(CHUNK_ID_LSDE);
2300 const int lsdeSize =
2301 3 /* EG cancel options */ +
2302 1 /* sustain pedal up on release trigger option */ +
2303 8 /* LFOs' wave forms */ + 12 /* LFOs' phase */ + 4 /* flags (LFO3FlipPhase) */;
2304 if (!lsde && UsesAnyGigFormatExtension()) {
2305 // only add this "LSDE" chunk if there is some (format extension)
2306 // setting effective that would require our "LSDE" format extension
2307 // chunk to be stored
2308 lsde = pParentList->AddSubChunk(CHUNK_ID_LSDE, lsdeSize);
2309 // move LSDE chunk to the end of parent list
2310 pParentList->MoveSubChunk(lsde, (RIFF::Chunk*)NULL);
2311 }
2312 if (lsde) {
2313 if (lsde->GetNewSize() < lsdeSize)
2314 lsde->Resize(lsdeSize);
2315 // format extension for EG behavior options
2316 unsigned char* pData = (unsigned char*) lsde->LoadChunkData();
2317 eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
2318 for (int i = 0; i < 2; ++i) { // NOTE: we reserved the 3rd byte for a potential future EG3 option
2319 pData[i] =
2320 (pEGOpts[i]->AttackCancel ? 1 : 0) |
2321 (pEGOpts[i]->AttackHoldCancel ? (1<<1) : 0) |
2322 (pEGOpts[i]->Decay1Cancel ? (1<<2) : 0) |
2323 (pEGOpts[i]->Decay2Cancel ? (1<<3) : 0) |
2324 (pEGOpts[i]->ReleaseCancel ? (1<<4) : 0);
2325 }
2326 // format extension for release trigger options
2327 pData[3] = static_cast<uint8_t>(SustainReleaseTrigger) | (NoNoteOffReleaseTrigger ? (1<<7) : 0);
2328 // format extension for LFOs' wave form, phase displacement and for
2329 // LFO3's flip phase
2330 store16(&pData[4], LFO1WaveForm);
2331 store16(&pData[6], LFO2WaveForm);
2332 store16(&pData[8], LFO3WaveForm);
2333 //NOTE: 16 bits reserved here for potential future use !
2334 const int32_t lfo1Phase = (int32_t) GIG_EXP_ENCODE(LFO1Phase);
2335 const int32_t lfo2Phase = (int32_t) GIG_EXP_ENCODE(LFO2Phase);
2336 const int32_t lfo3Phase = (int32_t) GIG_EXP_ENCODE(LFO3Phase);
2337 store32(&pData[12], lfo1Phase);
2338 store32(&pData[16], lfo2Phase);
2339 store32(&pData[20], lfo3Phase);
2340 const int32_t flags = LFO3FlipPhase ? 1 : 0;
2341 store32(&pData[24], flags);
2342
2343 // compile time sanity check: is our last store access here
2344 // consistent with the initial lsdeSize value assignment?
2345 static_assert(lsdeSize == 28, "Inconsistency in assumed 'LSDE' RIFF chunk size");
2346 }
2347 }
2348
2349 /**
2350 * Returns @c true in case this DimensionRegion object uses any gig format
2351 * extension, that is whether this DimensionRegion object currently has any
2352 * setting effective that would require our "LSDE" RIFF chunk to be stored
2353 * to the gig file.
2354 *
2355 * Right now this is a private method. It is considerable though this method
2356 * to become (in slightly modified form) a public API method in future, i.e.
2357 * to allow instrument editors to visualize and/or warn the user of any
2358 * format extension being used. Right now this method really just serves to
2359 * answer the question whether an LSDE chunk is required, for the public API
2360 * purpose this method would also need to check whether any other setting
2361 * stored to the regular value '3ewa' chunk, is actually a format extension
2362 * as well.
2363 */
2364 bool DimensionRegion::UsesAnyGigFormatExtension() const {
2365 eg_opt_t defaultOpt;
2366 return memcmp(&EG1Options, &defaultOpt, sizeof(eg_opt_t)) ||
2367 memcmp(&EG2Options, &defaultOpt, sizeof(eg_opt_t)) ||
2368 SustainReleaseTrigger || NoNoteOffReleaseTrigger ||
2369 LFO1WaveForm || LFO2WaveForm || LFO3WaveForm ||
2370 LFO1Phase || LFO2Phase || LFO3Phase ||
2371 LFO3FlipPhase;
2372 }
2373
2374 double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2375 curve_type_t curveType = releaseVelocityResponseCurve;
2376 uint8_t depth = releaseVelocityResponseDepth;
2377 // this models a strange behaviour or bug in GSt: two of the
2378 // velocity response curves for release time are not used even
2379 // if specified, instead another curve is chosen.
2380 if ((curveType == curve_type_nonlinear && depth == 0) ||
2381 (curveType == curve_type_special && depth == 4)) {
2382 curveType = curve_type_nonlinear;
2383 depth = 3;
2384 }
2385 return GetVelocityTable(curveType, depth, 0);
2386 }
2387
2388 double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2389 uint8_t vcfVelocityDynamicRange,
2390 uint8_t vcfVelocityScale,
2391 vcf_cutoff_ctrl_t vcfCutoffController)
2392 {
2393 curve_type_t curveType = vcfVelocityCurve;
2394 uint8_t depth = vcfVelocityDynamicRange;
2395 // even stranger GSt: two of the velocity response curves for
2396 // filter cutoff are not used, instead another special curve
2397 // is chosen. This curve is not used anywhere else.
2398 if ((curveType == curve_type_nonlinear && depth == 0) ||
2399 (curveType == curve_type_special && depth == 4)) {
2400 curveType = curve_type_special;
2401 depth = 5;
2402 }
2403 return GetVelocityTable(curveType, depth,
2404 (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2405 ? vcfVelocityScale : 0);
2406 }
2407
2408 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2409 double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2410 {
2411 // sanity check input parameters
2412 // (fallback to some default parameters on ill input)
2413 switch (curveType) {
2414 case curve_type_nonlinear:
2415 case curve_type_linear:
2416 if (depth > 4) {
2417 printf("Warning: Invalid depth (0x%x) for velocity curve type (0x%x).\n", depth, curveType);
2418 depth = 0;
2419 scaling = 0;
2420 }
2421 break;
2422 case curve_type_special:
2423 if (depth > 5) {
2424 printf("Warning: Invalid depth (0x%x) for velocity curve type 'special'.\n", depth);
2425 depth = 0;
2426 scaling = 0;
2427 }
2428 break;
2429 case curve_type_unknown:
2430 default:
2431 printf("Warning: Unknown velocity curve type (0x%x).\n", curveType);
2432 curveType = curve_type_linear;
2433 depth = 0;
2434 scaling = 0;
2435 break;
2436 }
2437
2438 double* table;
2439 uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2440 if (pVelocityTables->count(tableKey)) { // if key exists
2441 table = (*pVelocityTables)[tableKey];
2442 }
2443 else {
2444 table = CreateVelocityTable(curveType, depth, scaling);
2445 (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
2446 }
2447 return table;
2448 }
2449
2450 Region* DimensionRegion::GetParent() const {
2451 return pRegion;
2452 }
2453
2454 // show error if some _lev_ctrl_* enum entry is not listed in the following function
2455 // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2456 // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2457 //#pragma GCC diagnostic push
2458 //#pragma GCC diagnostic error "-Wswitch"
2459
2460 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2461 leverage_ctrl_t decodedcontroller;
2462 switch (EncodedController) {
2463 // special controller
2464 case _lev_ctrl_none:
2465 decodedcontroller.type = leverage_ctrl_t::type_none;
2466 decodedcontroller.controller_number = 0;
2467 break;
2468 case _lev_ctrl_velocity:
2469 decodedcontroller.type = leverage_ctrl_t::type_velocity;
2470 decodedcontroller.controller_number = 0;
2471 break;
2472 case _lev_ctrl_channelaftertouch:
2473 decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
2474 decodedcontroller.controller_number = 0;
2475 break;
2476
2477 // ordinary MIDI control change controller
2478 case _lev_ctrl_modwheel:
2479 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2480 decodedcontroller.controller_number = 1;
2481 break;
2482 case _lev_ctrl_breath:
2483 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2484 decodedcontroller.controller_number = 2;
2485 break;
2486 case _lev_ctrl_foot:
2487 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2488 decodedcontroller.controller_number = 4;
2489 break;
2490 case _lev_ctrl_effect1:
2491 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2492 decodedcontroller.controller_number = 12;
2493 break;
2494 case _lev_ctrl_effect2:
2495 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2496 decodedcontroller.controller_number = 13;
2497 break;
2498 case _lev_ctrl_genpurpose1:
2499 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2500 decodedcontroller.controller_number = 16;
2501 break;
2502 case _lev_ctrl_genpurpose2:
2503 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2504 decodedcontroller.controller_number = 17;
2505 break;
2506 case _lev_ctrl_genpurpose3:
2507 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2508 decodedcontroller.controller_number = 18;
2509 break;
2510 case _lev_ctrl_genpurpose4:
2511 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2512 decodedcontroller.controller_number = 19;
2513 break;
2514 case _lev_ctrl_portamentotime:
2515 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2516 decodedcontroller.controller_number = 5;
2517 break;
2518 case _lev_ctrl_sustainpedal:
2519 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2520 decodedcontroller.controller_number = 64;
2521 break;
2522 case _lev_ctrl_portamento:
2523 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2524 decodedcontroller.controller_number = 65;
2525 break;
2526 case _lev_ctrl_sostenutopedal:
2527 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2528 decodedcontroller.controller_number = 66;
2529 break;
2530 case _lev_ctrl_softpedal:
2531 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2532 decodedcontroller.controller_number = 67;
2533 break;
2534 case _lev_ctrl_genpurpose5:
2535 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2536 decodedcontroller.controller_number = 80;
2537 break;
2538 case _lev_ctrl_genpurpose6:
2539 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2540 decodedcontroller.controller_number = 81;
2541 break;
2542 case _lev_ctrl_genpurpose7:
2543 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2544 decodedcontroller.controller_number = 82;
2545 break;
2546 case _lev_ctrl_genpurpose8:
2547 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2548 decodedcontroller.controller_number = 83;
2549 break;
2550 case _lev_ctrl_effect1depth:
2551 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2552 decodedcontroller.controller_number = 91;
2553 break;
2554 case _lev_ctrl_effect2depth:
2555 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2556 decodedcontroller.controller_number = 92;
2557 break;
2558 case _lev_ctrl_effect3depth:
2559 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2560 decodedcontroller.controller_number = 93;
2561 break;
2562 case _lev_ctrl_effect4depth:
2563 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2564 decodedcontroller.controller_number = 94;
2565 break;
2566 case _lev_ctrl_effect5depth:
2567 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2568 decodedcontroller.controller_number = 95;
2569 break;
2570
2571 // format extension (these controllers are so far only supported by
2572 // LinuxSampler & gigedit) they will *NOT* work with
2573 // Gigasampler/GigaStudio !
2574 case _lev_ctrl_CC3_EXT:
2575 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2576 decodedcontroller.controller_number = 3;
2577 break;
2578 case _lev_ctrl_CC6_EXT:
2579 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2580 decodedcontroller.controller_number = 6;
2581 break;
2582 case _lev_ctrl_CC7_EXT:
2583 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2584 decodedcontroller.controller_number = 7;
2585 break;
2586 case _lev_ctrl_CC8_EXT:
2587 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2588 decodedcontroller.controller_number = 8;
2589 break;
2590 case _lev_ctrl_CC9_EXT:
2591 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2592 decodedcontroller.controller_number = 9;
2593 break;
2594 case _lev_ctrl_CC10_EXT:
2595 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2596 decodedcontroller.controller_number = 10;
2597 break;
2598 case _lev_ctrl_CC11_EXT:
2599 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2600 decodedcontroller.controller_number = 11;
2601 break;
2602 case _lev_ctrl_CC14_EXT:
2603 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2604 decodedcontroller.controller_number = 14;
2605 break;
2606 case _lev_ctrl_CC15_EXT:
2607 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2608 decodedcontroller.controller_number = 15;
2609 break;
2610 case _lev_ctrl_CC20_EXT:
2611 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2612 decodedcontroller.controller_number = 20;
2613 break;
2614 case _lev_ctrl_CC21_EXT:
2615 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2616 decodedcontroller.controller_number = 21;
2617 break;
2618 case _lev_ctrl_CC22_EXT:
2619 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2620 decodedcontroller.controller_number = 22;
2621 break;
2622 case _lev_ctrl_CC23_EXT:
2623 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2624 decodedcontroller.controller_number = 23;
2625 break;
2626 case _lev_ctrl_CC24_EXT:
2627 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2628 decodedcontroller.controller_number = 24;
2629 break;
2630 case _lev_ctrl_CC25_EXT:
2631 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2632 decodedcontroller.controller_number = 25;
2633 break;
2634 case _lev_ctrl_CC26_EXT:
2635 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2636 decodedcontroller.controller_number = 26;
2637 break;
2638 case _lev_ctrl_CC27_EXT:
2639 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2640 decodedcontroller.controller_number = 27;
2641 break;
2642 case _lev_ctrl_CC28_EXT:
2643 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2644 decodedcontroller.controller_number = 28;
2645 break;
2646 case _lev_ctrl_CC29_EXT:
2647 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2648 decodedcontroller.controller_number = 29;
2649 break;
2650 case _lev_ctrl_CC30_EXT:
2651 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2652 decodedcontroller.controller_number = 30;
2653 break;
2654 case _lev_ctrl_CC31_EXT:
2655 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2656 decodedcontroller.controller_number = 31;
2657 break;
2658 case _lev_ctrl_CC68_EXT:
2659 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2660 decodedcontroller.controller_number = 68;
2661 break;
2662 case _lev_ctrl_CC69_EXT:
2663 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2664 decodedcontroller.controller_number = 69;
2665 break;
2666 case _lev_ctrl_CC70_EXT:
2667 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2668 decodedcontroller.controller_number = 70;
2669 break;
2670 case _lev_ctrl_CC71_EXT:
2671 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2672 decodedcontroller.controller_number = 71;
2673 break;
2674 case _lev_ctrl_CC72_EXT:
2675 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2676 decodedcontroller.controller_number = 72;
2677 break;
2678 case _lev_ctrl_CC73_EXT:
2679 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2680 decodedcontroller.controller_number = 73;
2681 break;
2682 case _lev_ctrl_CC74_EXT:
2683 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2684 decodedcontroller.controller_number = 74;
2685 break;
2686 case _lev_ctrl_CC75_EXT:
2687 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2688 decodedcontroller.controller_number = 75;
2689 break;
2690 case _lev_ctrl_CC76_EXT:
2691 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2692 decodedcontroller.controller_number = 76;
2693 break;
2694 case _lev_ctrl_CC77_EXT:
2695 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2696 decodedcontroller.controller_number = 77;
2697 break;
2698 case _lev_ctrl_CC78_EXT:
2699 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2700 decodedcontroller.controller_number = 78;
2701 break;
2702 case _lev_ctrl_CC79_EXT:
2703 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2704 decodedcontroller.controller_number = 79;
2705 break;
2706 case _lev_ctrl_CC84_EXT:
2707 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2708 decodedcontroller.controller_number = 84;
2709 break;
2710 case _lev_ctrl_CC85_EXT:
2711 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2712 decodedcontroller.controller_number = 85;
2713 break;
2714 case _lev_ctrl_CC86_EXT:
2715 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2716 decodedcontroller.controller_number = 86;
2717 break;
2718 case _lev_ctrl_CC87_EXT:
2719 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2720 decodedcontroller.controller_number = 87;
2721 break;
2722 case _lev_ctrl_CC89_EXT:
2723 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2724 decodedcontroller.controller_number = 89;
2725 break;
2726 case _lev_ctrl_CC90_EXT:
2727 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2728 decodedcontroller.controller_number = 90;
2729 break;
2730 case _lev_ctrl_CC96_EXT:
2731 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2732 decodedcontroller.controller_number = 96;
2733 break;
2734 case _lev_ctrl_CC97_EXT:
2735 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2736 decodedcontroller.controller_number = 97;
2737 break;
2738 case _lev_ctrl_CC102_EXT:
2739 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2740 decodedcontroller.controller_number = 102;
2741 break;
2742 case _lev_ctrl_CC103_EXT:
2743 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2744 decodedcontroller.controller_number = 103;
2745 break;
2746 case _lev_ctrl_CC104_EXT:
2747 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2748 decodedcontroller.controller_number = 104;
2749 break;
2750 case _lev_ctrl_CC105_EXT:
2751 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2752 decodedcontroller.controller_number = 105;
2753 break;
2754 case _lev_ctrl_CC106_EXT:
2755 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2756 decodedcontroller.controller_number = 106;
2757 break;
2758 case _lev_ctrl_CC107_EXT:
2759 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2760 decodedcontroller.controller_number = 107;
2761 break;
2762 case _lev_ctrl_CC108_EXT:
2763 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2764 decodedcontroller.controller_number = 108;
2765 break;
2766 case _lev_ctrl_CC109_EXT:
2767 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2768 decodedcontroller.controller_number = 109;
2769 break;
2770 case _lev_ctrl_CC110_EXT:
2771 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2772 decodedcontroller.controller_number = 110;
2773 break;
2774 case _lev_ctrl_CC111_EXT:
2775 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2776 decodedcontroller.controller_number = 111;
2777 break;
2778 case _lev_ctrl_CC112_EXT:
2779 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2780 decodedcontroller.controller_number = 112;
2781 break;
2782 case _lev_ctrl_CC113_EXT:
2783 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2784 decodedcontroller.controller_number = 113;
2785 break;
2786 case _lev_ctrl_CC114_EXT:
2787 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2788 decodedcontroller.controller_number = 114;
2789 break;
2790 case _lev_ctrl_CC115_EXT:
2791 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2792 decodedcontroller.controller_number = 115;
2793 break;
2794 case _lev_ctrl_CC116_EXT:
2795 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2796 decodedcontroller.controller_number = 116;
2797 break;
2798 case _lev_ctrl_CC117_EXT:
2799 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2800 decodedcontroller.controller_number = 117;
2801 break;
2802 case _lev_ctrl_CC118_EXT:
2803 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2804 decodedcontroller.controller_number = 118;
2805 break;
2806 case _lev_ctrl_CC119_EXT:
2807 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2808 decodedcontroller.controller_number = 119;
2809 break;
2810
2811 // unknown controller type
2812 default:
2813 decodedcontroller.type = leverage_ctrl_t::type_none;
2814 decodedcontroller.controller_number = 0;
2815 printf("Warning: Unknown leverage controller type (0x%x).\n", EncodedController);
2816 break;
2817 }
2818 return decodedcontroller;
2819 }
2820
2821 // see above (diagnostic push not supported prior GCC 4.6)
2822 //#pragma GCC diagnostic pop
2823
2824 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2825 _lev_ctrl_t encodedcontroller;
2826 switch (DecodedController.type) {
2827 // special controller
2828 case leverage_ctrl_t::type_none:
2829 encodedcontroller = _lev_ctrl_none;
2830 break;
2831 case leverage_ctrl_t::type_velocity:
2832 encodedcontroller = _lev_ctrl_velocity;
2833 break;
2834 case leverage_ctrl_t::type_channelaftertouch:
2835 encodedcontroller = _lev_ctrl_channelaftertouch;
2836 break;
2837
2838 // ordinary MIDI control change controller
2839 case leverage_ctrl_t::type_controlchange:
2840 switch (DecodedController.controller_number) {
2841 case 1:
2842 encodedcontroller = _lev_ctrl_modwheel;
2843 break;
2844 case 2:
2845 encodedcontroller = _lev_ctrl_breath;
2846 break;
2847 case 4:
2848 encodedcontroller = _lev_ctrl_foot;
2849 break;
2850 case 12:
2851 encodedcontroller = _lev_ctrl_effect1;
2852 break;
2853 case 13:
2854 encodedcontroller = _lev_ctrl_effect2;
2855 break;
2856 case 16:
2857 encodedcontroller = _lev_ctrl_genpurpose1;
2858 break;
2859 case 17:
2860 encodedcontroller = _lev_ctrl_genpurpose2;
2861 break;
2862 case 18:
2863 encodedcontroller = _lev_ctrl_genpurpose3;
2864 break;
2865 case 19:
2866 encodedcontroller = _lev_ctrl_genpurpose4;
2867 break;
2868 case 5:
2869 encodedcontroller = _lev_ctrl_portamentotime;
2870 break;
2871 case 64:
2872 encodedcontroller = _lev_ctrl_sustainpedal;
2873 break;
2874 case 65:
2875 encodedcontroller = _lev_ctrl_portamento;
2876 break;
2877 case 66:
2878 encodedcontroller = _lev_ctrl_sostenutopedal;
2879 break;
2880 case 67:
2881 encodedcontroller = _lev_ctrl_softpedal;
2882 break;
2883 case 80:
2884 encodedcontroller = _lev_ctrl_genpurpose5;
2885 break;
2886 case 81:
2887 encodedcontroller = _lev_ctrl_genpurpose6;
2888 break;
2889 case 82:
2890 encodedcontroller = _lev_ctrl_genpurpose7;
2891 break;
2892 case 83:
2893 encodedcontroller = _lev_ctrl_genpurpose8;
2894 break;
2895 case 91:
2896 encodedcontroller = _lev_ctrl_effect1depth;
2897 break;
2898 case 92:
2899 encodedcontroller = _lev_ctrl_effect2depth;
2900 break;
2901 case 93:
2902 encodedcontroller = _lev_ctrl_effect3depth;
2903 break;
2904 case 94:
2905 encodedcontroller = _lev_ctrl_effect4depth;
2906 break;
2907 case 95:
2908 encodedcontroller = _lev_ctrl_effect5depth;
2909 break;
2910
2911 // format extension (these controllers are so far only
2912 // supported by LinuxSampler & gigedit) they will *NOT*
2913 // work with Gigasampler/GigaStudio !
2914 case 3:
2915 encodedcontroller = _lev_ctrl_CC3_EXT;
2916 break;
2917 case 6:
2918 encodedcontroller = _lev_ctrl_CC6_EXT;
2919 break;
2920 case 7:
2921 encodedcontroller = _lev_ctrl_CC7_EXT;
2922 break;
2923 case 8:
2924 encodedcontroller = _lev_ctrl_CC8_EXT;
2925 break;
2926 case 9:
2927 encodedcontroller = _lev_ctrl_CC9_EXT;
2928 break;
2929 case 10:
2930 encodedcontroller = _lev_ctrl_CC10_EXT;
2931 break;
2932 case 11:
2933 encodedcontroller = _lev_ctrl_CC11_EXT;
2934 break;
2935 case 14:
2936 encodedcontroller = _lev_ctrl_CC14_EXT;
2937 break;
2938 case 15:
2939 encodedcontroller = _lev_ctrl_CC15_EXT;
2940 break;
2941 case 20:
2942 encodedcontroller = _lev_ctrl_CC20_EXT;
2943 break;
2944 case 21:
2945 encodedcontroller = _lev_ctrl_CC21_EXT;
2946 break;
2947 case 22:
2948 encodedcontroller = _lev_ctrl_CC22_EXT;
2949 break;
2950 case 23:
2951 encodedcontroller = _lev_ctrl_CC23_EXT;
2952 break;
2953 case 24:
2954 encodedcontroller = _lev_ctrl_CC24_EXT;
2955 break;
2956 case 25:
2957 encodedcontroller = _lev_ctrl_CC25_EXT;
2958 break;
2959 case 26:
2960 encodedcontroller = _lev_ctrl_CC26_EXT;
2961 break;
2962 case 27:
2963 encodedcontroller = _lev_ctrl_CC27_EXT;
2964 break;
2965 case 28:
2966 encodedcontroller = _lev_ctrl_CC28_EXT;
2967 break;
2968 case 29:
2969 encodedcontroller = _lev_ctrl_CC29_EXT;
2970 break;
2971 case 30:
2972 encodedcontroller = _lev_ctrl_CC30_EXT;
2973 break;
2974 case 31:
2975 encodedcontroller = _lev_ctrl_CC31_EXT;
2976 break;
2977 case 68:
2978 encodedcontroller = _lev_ctrl_CC68_EXT;
2979 break;
2980 case 69:
2981 encodedcontroller = _lev_ctrl_CC69_EXT;
2982 break;
2983 case 70:
2984 encodedcontroller = _lev_ctrl_CC70_EXT;
2985 break;
2986 case 71:
2987 encodedcontroller = _lev_ctrl_CC71_EXT;
2988 break;
2989 case 72:
2990 encodedcontroller = _lev_ctrl_CC72_EXT;
2991 break;
2992 case 73:
2993 encodedcontroller = _lev_ctrl_CC73_EXT;
2994 break;
2995 case 74:
2996 encodedcontroller = _lev_ctrl_CC74_EXT;
2997 break;
2998 case 75:
2999 encodedcontroller = _lev_ctrl_CC75_EXT;
3000 break;
3001 case 76:
3002 encodedcontroller = _lev_ctrl_CC76_EXT;
3003 break;
3004 case 77:
3005 encodedcontroller = _lev_ctrl_CC77_EXT;
3006 break;
3007 case 78:
3008 encodedcontroller = _lev_ctrl_CC78_EXT;
3009 break;
3010 case 79:
3011 encodedcontroller = _lev_ctrl_CC79_EXT;
3012 break;
3013 case 84:
3014 encodedcontroller = _lev_ctrl_CC84_EXT;
3015 break;
3016 case 85:
3017 encodedcontroller = _lev_ctrl_CC85_EXT;
3018 break;
3019 case 86:
3020 encodedcontroller = _lev_ctrl_CC86_EXT;
3021 break;
3022 case 87:
3023 encodedcontroller = _lev_ctrl_CC87_EXT;
3024 break;
3025 case 89:
3026 encodedcontroller = _lev_ctrl_CC89_EXT;
3027 break;
3028 case 90:
3029 encodedcontroller = _lev_ctrl_CC90_EXT;
3030 break;
3031 case 96:
3032 encodedcontroller = _lev_ctrl_CC96_EXT;
3033 break;
3034 case 97:
3035 encodedcontroller = _lev_ctrl_CC97_EXT;
3036 break;
3037 case 102:
3038 encodedcontroller = _lev_ctrl_CC102_EXT;
3039 break;
3040 case 103:
3041 encodedcontroller = _lev_ctrl_CC103_EXT;
3042 break;
3043 case 104:
3044 encodedcontroller = _lev_ctrl_CC104_EXT;
3045 break;
3046 case 105:
3047 encodedcontroller = _lev_ctrl_CC105_EXT;
3048 break;
3049 case 106:
3050 encodedcontroller = _lev_ctrl_CC106_EXT;
3051 break;
3052 case 107:
3053 encodedcontroller = _lev_ctrl_CC107_EXT;
3054 break;
3055 case 108:
3056 encodedcontroller = _lev_ctrl_CC108_EXT;
3057 break;
3058 case 109:
3059 encodedcontroller = _lev_ctrl_CC109_EXT;
3060 break;
3061 case 110:
3062 encodedcontroller = _lev_ctrl_CC110_EXT;
3063 break;
3064 case 111:
3065 encodedcontroller = _lev_ctrl_CC111_EXT;
3066 break;
3067 case 112:
3068 encodedcontroller = _lev_ctrl_CC112_EXT;
3069 break;
3070 case 113:
3071 encodedcontroller = _lev_ctrl_CC113_EXT;
3072 break;
3073 case 114:
3074 encodedcontroller = _lev_ctrl_CC114_EXT;
3075 break;
3076 case 115:
3077 encodedcontroller = _lev_ctrl_CC115_EXT;
3078 break;
3079 case 116:
3080 encodedcontroller = _lev_ctrl_CC116_EXT;
3081 break;
3082 case 117:
3083 encodedcontroller = _lev_ctrl_CC117_EXT;
3084 break;
3085 case 118:
3086 encodedcontroller = _lev_ctrl_CC118_EXT;
3087 break;
3088 case 119:
3089 encodedcontroller = _lev_ctrl_CC119_EXT;
3090 break;
3091
3092 default:
3093 throw gig::Exception("leverage controller number is not supported by the gig format");
3094 }
3095 break;
3096 default:
3097 throw gig::Exception("Unknown leverage controller type.");
3098 }
3099 return encodedcontroller;
3100 }
3101
3102 DimensionRegion::~DimensionRegion() {
3103 Instances--;
3104 if (!Instances) {
3105 // delete the velocity->volume tables
3106 VelocityTableMap::iterator iter;
3107 for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
3108 double* pTable = iter->second;
3109 if (pTable) delete[] pTable;
3110 }
3111 pVelocityTables->clear();
3112 delete pVelocityTables;
3113 pVelocityTables = NULL;
3114 }
3115 if (VelocityTable) delete[] VelocityTable;
3116 }
3117
3118 /**
3119 * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
3120 * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
3121 * and VelocityResponseCurveScaling) involved are taken into account to
3122 * calculate the amplitude factor. Use this method when a key was
3123 * triggered to get the volume with which the sample should be played
3124 * back.
3125 *
3126 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
3127 * @returns amplitude factor (between 0.0 and 1.0)
3128 */
3129 double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
3130 return pVelocityAttenuationTable[MIDIKeyVelocity];
3131 }
3132
3133 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
3134 return pVelocityReleaseTable[MIDIKeyVelocity];
3135 }
3136
3137 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
3138 return pVelocityCutoffTable[MIDIKeyVelocity];
3139 }
3140
3141 /**
3142 * Updates the respective member variable and the lookup table / cache
3143 * that depends on this value.
3144 */
3145 void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
3146 pVelocityAttenuationTable =
3147 GetVelocityTable(
3148 curve, VelocityResponseDepth, VelocityResponseCurveScaling
3149 );
3150 VelocityResponseCurve = curve;
3151 }
3152
3153 /**
3154 * Updates the respective member variable and the lookup table / cache
3155 * that depends on this value.
3156 */
3157 void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
3158 pVelocityAttenuationTable =
3159 GetVelocityTable(
3160 VelocityResponseCurve, depth, VelocityResponseCurveScaling
3161 );
3162 VelocityResponseDepth = depth;
3163 }
3164
3165 /**
3166 * Updates the respective member variable and the lookup table / cache
3167 * that depends on this value.
3168 */
3169 void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
3170 pVelocityAttenuationTable =
3171 GetVelocityTable(
3172 VelocityResponseCurve, VelocityResponseDepth, scaling
3173 );
3174 VelocityResponseCurveScaling = scaling;
3175 }
3176
3177 /**
3178 * Updates the respective member variable and the lookup table / cache
3179 * that depends on this value.
3180 */
3181 void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
3182 pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
3183 ReleaseVelocityResponseCurve = curve;
3184 }
3185
3186 /**
3187 * Updates the respective member variable and the lookup table / cache
3188 * that depends on this value.
3189 */
3190 void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
3191 pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
3192 ReleaseVelocityResponseDepth = depth;
3193 }
3194
3195 /**
3196 * Updates the respective member variable and the lookup table / cache
3197 * that depends on this value.
3198 */
3199 void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
3200 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
3201 VCFCutoffController = controller;
3202 }
3203
3204 /**
3205 * Updates the respective member variable and the lookup table / cache
3206 * that depends on this value.
3207 */
3208 void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
3209 pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
3210 VCFVelocityCurve = curve;
3211 }
3212
3213 /**
3214 * Updates the respective member variable and the lookup table / cache
3215 * that depends on this value.
3216 */
3217 void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
3218 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
3219 VCFVelocityDynamicRange = range;
3220 }
3221
3222 /**
3223 * Updates the respective member variable and the lookup table / cache
3224 * that depends on this value.
3225 */
3226 void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
3227 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
3228 VCFVelocityScale = scaling;
3229 }
3230
3231 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
3232
3233 // line-segment approximations of the 15 velocity curves
3234
3235 // linear
3236 const int lin0[] = { 1, 1, 127, 127 };
3237 const int lin1[] = { 1, 21, 127, 127 };
3238 const int lin2[] = { 1, 45, 127, 127 };
3239 const int lin3[] = { 1, 74, 127, 127 };
3240 const int lin4[] = { 1, 127, 127, 127 };
3241
3242 // non-linear
3243 const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
3244 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
3245 127, 127 };
3246 const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
3247 127, 127 };
3248 const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
3249 127, 127 };
3250 const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
3251
3252 // special
3253 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
3254 113, 127, 127, 127 };
3255 const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
3256 118, 127, 127, 127 };
3257 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
3258 85, 90, 91, 127, 127, 127 };
3259 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
3260 117, 127, 127, 127 };
3261 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
3262 127, 127 };
3263
3264 // this is only used by the VCF velocity curve
3265 const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
3266 91, 127, 127, 127 };
3267
3268 const int* const curves[] = { non0, non1, non2, non3, non4,
3269 lin0, lin1, lin2, lin3, lin4,
3270 spe0, spe1, spe2, spe3, spe4, spe5 };
3271
3272 double* const table = new double[128];
3273
3274 const int* curve = curves[curveType * 5 + depth];
3275 const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
3276
3277 table[0] = 0;
3278 for (int x = 1 ; x < 128 ; x++) {
3279
3280 if (x > curve[2]) curve += 2;
3281 double y = curve[1] + (x - curve[0]) *
3282 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
3283 y = y / 127;
3284
3285 // Scale up for s > 20, down for s < 20. When
3286 // down-scaling, the curve still ends at 1.0.
3287 if (s < 20 && y >= 0.5)
3288 y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
3289 else
3290 y = y * (s / 20.0);
3291 if (y > 1) y = 1;
3292
3293 table[x] = y;
3294 }
3295 return table;
3296 }
3297
3298
3299 // *************** Region ***************
3300 // *
3301
3302 Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
3303 // Initialization
3304 Dimensions = 0;
3305 for (int i = 0; i < 256; i++) {
3306 pDimensionRegions[i] = NULL;
3307 }
3308 Layers = 1;
3309 File* file = (File*) GetParent()->GetParent();
3310 int dimensionBits = (file->pVersion && file->pVersion->major > 2) ? 8 : 5;
3311
3312 // Actual Loading
3313
3314 if (!file->GetAutoLoad()) return;
3315
3316 LoadDimensionRegions(rgnList);
3317
3318 RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
3319 if (_3lnk) {
3320 _3lnk->SetPos(0);
3321
3322 DimensionRegions = _3lnk->ReadUint32();
3323 for (int i = 0; i < dimensionBits; i++) {
3324 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
3325 uint8_t bits = _3lnk->ReadUint8();
3326 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
3327 _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
3328 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
3329 if (dimension == dimension_none) { // inactive dimension
3330 pDimensionDefinitions[i].dimension = dimension_none;
3331 pDimensionDefinitions[i].bits = 0;
3332 pDimensionDefinitions[i].zones = 0;
3333 pDimensionDefinitions[i].split_type = split_type_bit;
3334 pDimensionDefinitions[i].zone_size = 0;
3335 }
3336 else { // active dimension
3337 pDimensionDefinitions[i].dimension = dimension;
3338 pDimensionDefinitions[i].bits = bits;
3339 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
3340 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
3341 pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
3342 Dimensions++;
3343
3344 // if this is a layer dimension, remember the amount of layers
3345 if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
3346 }
3347 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
3348 }
3349 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
3350
3351 // if there's a velocity dimension and custom velocity zone splits are used,
3352 // update the VelocityTables in the dimension regions
3353 UpdateVelocityTable();
3354
3355 // jump to start of the wave pool indices (if not already there)
3356 if (file->pVersion && file->pVersion->major > 2)
3357 _3lnk->SetPos(68); // version 3 has a different 3lnk structure
3358 else
3359 _3lnk->SetPos(44);
3360
3361 // load sample references (if auto loading is enabled)
3362 if (file->GetAutoLoad()) {
3363 for (uint i = 0; i < DimensionRegions; i++) {
3364 uint32_t wavepoolindex = _3lnk->ReadUint32();
3365 if (file->pWavePoolTable && pDimensionRegions[i])
3366 pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
3367 }
3368 GetSample(); // load global region sample reference
3369 }
3370 } else {
3371 DimensionRegions = 0;
3372 for (int i = 0 ; i < 8 ; i++) {
3373 pDimensionDefinitions[i].dimension = dimension_none;
3374 pDimensionDefinitions[i].bits = 0;
3375 pDimensionDefinitions[i].zones = 0;
3376 }
3377 }
3378
3379 // make sure there is at least one dimension region
3380 if (!DimensionRegions) {
3381 RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
3382 if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
3383 RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
3384 pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
3385 DimensionRegions = 1;
3386 }
3387 }
3388
3389 /**
3390 * Apply Region settings and all its DimensionRegions to the respective
3391 * RIFF chunks. You have to call File::Save() to make changes persistent.
3392 *
3393 * Usually there is absolutely no need to call this method explicitly.
3394 * It will be called automatically when File::Save() was called.
3395 *
3396 * @param pProgress - callback function for progress notification
3397 * @throws gig::Exception if samples cannot be dereferenced
3398 */
3399 void Region::UpdateChunks(progress_t* pProgress) {
3400 // in the gig format we don't care about the Region's sample reference
3401 // but we still have to provide some existing one to not corrupt the
3402 // file, so to avoid the latter we simply always assign the sample of
3403 // the first dimension region of this region
3404 pSample = pDimensionRegions[0]->pSample;
3405
3406 // first update base class's chunks
3407 DLS::Region::UpdateChunks(pProgress);
3408
3409 // update dimension region's chunks
3410 for (int i = 0; i < DimensionRegions; i++) {
3411 pDimensionRegions[i]->UpdateChunks(pProgress);
3412 }
3413
3414 File* pFile = (File*) GetParent()->GetParent();
3415 const bool versiongt2 = pFile->pVersion && pFile->pVersion->major > 2;
3416 const int iMaxDimensions = versiongt2 ? 8 : 5;
3417 const int iMaxDimensionRegions = versiongt2 ? 256 : 32;
3418
3419 // make sure '3lnk' chunk exists
3420 RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3421 if (!_3lnk) {
3422 const int _3lnkChunkSize = versiongt2 ? 1092 : 172;
3423 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3424 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3425
3426 // move 3prg to last position
3427 pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), (RIFF::Chunk*)NULL);
3428 }
3429
3430 // update dimension definitions in '3lnk' chunk
3431 uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3432 store32(&pData[0], DimensionRegions);
3433 int shift = 0;
3434 for (int i = 0; i < iMaxDimensions; i++) {
3435 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3436 pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3437 pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3438 pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3439 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3440 // next 3 bytes unknown, always zero?
3441
3442 shift += pDimensionDefinitions[i].bits;
3443 }
3444
3445 // update wave pool table in '3lnk' chunk
3446 const int iWavePoolOffset = versiongt2 ? 68 : 44;
3447 for (uint i = 0; i < iMaxDimensionRegions; i++) {
3448 int iWaveIndex = -1;
3449 if (i < DimensionRegions) {
3450 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
3451 File::SampleList::iterator iter = pFile->pSamples->begin();
3452 File::SampleList::iterator end = pFile->pSamples->end();
3453 for (int index = 0; iter != end; ++iter, ++index) {
3454 if (*iter == pDimensionRegions[i]->pSample) {
3455 iWaveIndex = index;
3456 break;
3457 }
3458 }
3459 }
3460 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3461 }
3462
3463 // The following chunks are just added for compatibility with the
3464 // GigaStudio software, which would show a warning if these were
3465 // missing. However currently these chunks don't cover any useful
3466 // data. So if this gig file uses any of our own gig format
3467 // extensions which would cause this gig file to be unloadable
3468 // with GSt software anyway, then just skip these GSt compatibility
3469 // chunks here as well.
3470 if (versiongt2 && !UsesAnyGigFormatExtension()) {
3471 // add 3dnm list which always seems to be empty
3472 RIFF::List* _3dnm = pCkRegion->GetSubList(LIST_TYPE_3DNM);
3473 if (!_3dnm) _3dnm = pCkRegion->AddSubList(LIST_TYPE_3DNM);
3474
3475 // add 3ddp chunk which always seems to have 16 bytes of 0xFF
3476 RIFF::Chunk* _3ddp = pCkRegion->GetSubChunk(CHUNK_ID_3DDP);
3477 if (!_3ddp) _3ddp = pCkRegion->AddSubChunk(CHUNK_ID_3DDP, 16);
3478 uint8_t* pData = (uint8_t*) _3ddp->LoadChunkData();
3479 for (int i = 0; i < 16; i += 4) {
3480 store32(&pData[i], 0xFFFFFFFF);
3481 }
3482
3483 // move 3dnm and 3ddp to the end of the region list
3484 pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3DNM), (RIFF::Chunk*)NULL);
3485 pCkRegion->MoveSubChunk(pCkRegion->GetSubChunk(CHUNK_ID_3DDP), (RIFF::Chunk*)NULL);
3486 } else {
3487 // this is intended for the user switching from GSt >= 3 version
3488 // back to an older format version, delete GSt3 chunks ...
3489 RIFF::List* _3dnm = pCkRegion->GetSubList(LIST_TYPE_3DNM);
3490 if (_3dnm) pCkRegion->DeleteSubChunk(_3dnm);
3491
3492 RIFF::Chunk* _3ddp = pCkRegion->GetSubChunk(CHUNK_ID_3DDP);
3493 if (_3ddp) pCkRegion->DeleteSubChunk(_3ddp);
3494 }
3495 }
3496
3497 void Region::LoadDimensionRegions(RIFF::List* rgn) {
3498 RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
3499 if (_3prg) {
3500 int dimensionRegionNr = 0;
3501 size_t i = 0;
3502 for (RIFF::List* _3ewl = _3prg->GetSubListAt(i); _3ewl;
3503 _3ewl = _3prg->GetSubListAt(++i))
3504 {
3505 if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3506 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3507 dimensionRegionNr++;
3508 }
3509 }
3510 if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
3511 }
3512 }
3513
3514 void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3515 // update KeyRange struct and make sure regions are in correct order
3516 DLS::Region::SetKeyRange(Low, High);
3517 // update Region key table for fast lookup
3518 ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3519 }
3520
3521 void Region::UpdateVelocityTable() {
3522 // get velocity dimension's index
3523 int veldim = -1;
3524 for (int i = 0 ; i < Dimensions ; i++) {
3525 if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
3526 veldim = i;
3527 break;
3528 }
3529 }
3530 if (veldim == -1) return;
3531
3532 int step = 1;
3533 for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3534 int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
3535
3536 // loop through all dimension regions for all dimensions except the velocity dimension
3537 int dim[8] = { 0 };
3538 for (int i = 0 ; i < DimensionRegions ; i++) {
3539 const int end = i + step * pDimensionDefinitions[veldim].zones;
3540
3541 // create a velocity table for all cases where the velocity zone is zero
3542 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3543 pDimensionRegions[i]->VelocityUpperLimit) {
3544 // create the velocity table
3545 uint8_t* table = pDimensionRegions[i]->VelocityTable;
3546 if (!table) {
3547 table = new uint8_t[128];
3548 pDimensionRegions[i]->VelocityTable = table;
3549 }
3550 int tableidx = 0;
3551 int velocityZone = 0;
3552 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
3553 for (int k = i ; k < end ; k += step) {
3554 DimensionRegion *d = pDimensionRegions[k];
3555 for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
3556 velocityZone++;
3557 }
3558 } else { // gig2
3559 for (int k = i ; k < end ; k += step) {
3560 DimensionRegion *d = pDimensionRegions[k];
3561 for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
3562 velocityZone++;
3563 }
3564 }
3565 } else {
3566 if (pDimensionRegions[i]->VelocityTable) {
3567 delete[] pDimensionRegions[i]->VelocityTable;
3568 pDimensionRegions[i]->VelocityTable = 0;
3569 }
3570 }
3571
3572 // jump to the next case where the velocity zone is zero
3573 int j;
3574 int shift = 0;
3575 for (j = 0 ; j < Dimensions ; j++) {
3576 if (j == veldim) i += skipveldim; // skip velocity dimension
3577 else {
3578 dim[j]++;
3579 if (dim[j] < pDimensionDefinitions[j].zones) break;
3580 else {
3581 // skip unused dimension regions
3582 dim[j] = 0;
3583 i += ((1 << pDimensionDefinitions[j].bits) -
3584 pDimensionDefinitions[j].zones) << shift;
3585 }
3586 }
3587 shift += pDimensionDefinitions[j].bits;
3588 }
3589 if (j == Dimensions) break;
3590 }
3591 }
3592
3593 /** @brief Einstein would have dreamed of it - create a new dimension.
3594 *
3595 * Creates a new dimension with the dimension definition given by
3596 * \a pDimDef. The appropriate amount of DimensionRegions will be created.
3597 * There is a hard limit of dimensions and total amount of "bits" all
3598 * dimensions can have. This limit is dependant to what gig file format
3599 * version this file refers to. The gig v2 (and lower) format has a
3600 * dimension limit and total amount of bits limit of 5, whereas the gig v3
3601 * format has a limit of 8.
3602 *
3603 * @param pDimDef - defintion of the new dimension
3604 * @throws gig::Exception if dimension of the same type exists already
3605 * @throws gig::Exception if amount of dimensions or total amount of
3606 * dimension bits limit is violated
3607 */
3608 void Region::AddDimension(dimension_def_t* pDimDef) {
3609 // some initial sanity checks of the given dimension definition
3610 if (pDimDef->zones < 2)
3611 throw gig::Exception("Could not add new dimension, amount of requested zones must always be at least two");
3612 if (pDimDef->bits < 1)
3613 throw gig::Exception("Could not add new dimension, amount of requested requested zone bits must always be at least one");
3614 if (pDimDef->dimension == dimension_samplechannel) {
3615 if (pDimDef->zones != 2)
3616 throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zones must always be 2 for this dimension type");
3617 if (pDimDef->bits != 1)
3618 throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zone bits must always be 1 for this dimension type");
3619 }
3620
3621 // check if max. amount of dimensions reached
3622 File* file = (File*) GetParent()->GetParent();
3623 const int iMaxDimensions = (file->pVersion && file->pVersion->major > 2) ? 8 : 5;
3624 if (Dimensions >= iMaxDimensions)
3625 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
3626 // check if max. amount of dimension bits reached
3627 int iCurrentBits = 0;
3628 for (int i = 0; i < Dimensions; i++)
3629 iCurrentBits += pDimensionDefinitions[i].bits;
3630 if (iCurrentBits >= iMaxDimensions)
3631 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
3632 const int iNewBits = iCurrentBits + pDimDef->bits;
3633 if (iNewBits > iMaxDimensions)
3634 throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
3635 // check if there's already a dimensions of the same type
3636 for (int i = 0; i < Dimensions; i++)
3637 if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3638 throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3639
3640 // pos is where the new dimension should be placed, normally
3641 // last in list, except for the samplechannel dimension which
3642 // has to be first in list
3643 int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3644 int bitpos = 0;
3645 for (int i = 0 ; i < pos ; i++)
3646 bitpos += pDimensionDefinitions[i].bits;
3647
3648 // make room for the new dimension
3649 for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3650 for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3651 for (int j = Dimensions ; j > pos ; j--) {
3652 pDimensionRegions[i]->DimensionUpperLimits[j] =
3653 pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3654 }
3655 }
3656
3657 // assign definition of new dimension
3658 pDimensionDefinitions[pos] = *pDimDef;
3659
3660 // auto correct certain dimension definition fields (where possible)
3661 pDimensionDefinitions[pos].split_type =
3662 __resolveSplitType(pDimensionDefinitions[pos].dimension);
3663 pDimensionDefinitions[pos].zone_size =
3664 __resolveZoneSize(pDimensionDefinitions[pos]);
3665
3666 // create new dimension region(s) for this new dimension, and make
3667 // sure that the dimension regions are placed correctly in both the
3668 // RIFF list and the pDimensionRegions array
3669 RIFF::Chunk* moveTo = NULL;
3670 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3671 for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3672 for (int k = 0 ; k < (1 << bitpos) ; k++) {
3673 pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3674 }
3675 for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3676 for (int k = 0 ; k < (1 << bitpos) ; k++) {
3677 RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3678 if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3679 // create a new dimension region and copy all parameter values from
3680 // an existing dimension region
3681 pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3682 new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3683
3684 DimensionRegions++;
3685 }
3686 }
3687 moveTo = pDimensionRegions[i]->pParentList;
3688 }
3689
3690 // initialize the upper limits for this dimension
3691 int mask = (1 << bitpos) - 1;
3692 for (int z = 0 ; z < pDimDef->zones ; z++) {
3693 uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3694 for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3695 pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3696 (z << bitpos) |
3697 (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3698 }
3699 }
3700
3701 Dimensions++;
3702
3703 // if this is a layer dimension, update 'Layers' attribute
3704 if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
3705
3706 UpdateVelocityTable();
3707 }
3708
3709 /** @brief Delete an existing dimension.
3710 *
3711 * Deletes the dimension given by \a pDimDef and deletes all respective
3712 * dimension regions, that is all dimension regions where the dimension's
3713 * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
3714 * for example this would delete all dimension regions for the case(s)
3715 * where the sustain pedal is pressed down.
3716 *
3717 * @param pDimDef - dimension to delete
3718 * @throws gig::Exception if given dimension cannot be found
3719 */
3720 void Region::DeleteDimension(dimension_def_t* pDimDef) {
3721 // get dimension's index
3722 int iDimensionNr = -1;
3723 for (int i = 0; i < Dimensions; i++) {
3724 if (&pDimensionDefinitions[i] == pDimDef) {
3725 iDimensionNr = i;
3726 break;
3727 }
3728 }
3729 if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
3730
3731 // get amount of bits below the dimension to delete
3732 int iLowerBits = 0;
3733 for (int i = 0; i < iDimensionNr; i++)
3734 iLowerBits += pDimensionDefinitions[i].bits;
3735
3736 // get amount ot bits above the dimension to delete
3737 int iUpperBits = 0;
3738 for (int i = iDimensionNr + 1; i < Dimensions; i++)
3739 iUpperBits += pDimensionDefinitions[i].bits;
3740
3741 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3742
3743 // delete dimension regions which belong to the given dimension
3744 // (that is where the dimension's bit > 0)
3745 for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
3746 for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
3747 for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
3748 int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3749 iObsoleteBit << iLowerBits |
3750 iLowerBit;
3751
3752 _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3753 delete pDimensionRegions[iToDelete];
3754 pDimensionRegions[iToDelete] = NULL;
3755 DimensionRegions--;
3756 }
3757 }
3758 }
3759
3760 // defrag pDimensionRegions array
3761 // (that is remove the NULL spaces within the pDimensionRegions array)
3762 for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
3763 if (!pDimensionRegions[iTo]) {
3764 if (iFrom <= iTo) iFrom = iTo + 1;
3765 while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
3766 if (iFrom < 256 && pDimensionRegions[iFrom]) {
3767 pDimensionRegions[iTo] = pDimensionRegions[iFrom];
3768 pDimensionRegions[iFrom] = NULL;
3769 }
3770 }
3771 }
3772
3773 // remove the this dimension from the upper limits arrays
3774 for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3775 DimensionRegion* d = pDimensionRegions[j];
3776 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3777 d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3778 }
3779 d->DimensionUpperLimits[Dimensions - 1] = 127;
3780 }
3781
3782 // 'remove' dimension definition
3783 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3784 pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
3785 }
3786 pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
3787 pDimensionDefinitions[Dimensions - 1].bits = 0;
3788 pDimensionDefinitions[Dimensions - 1].zones = 0;
3789
3790 Dimensions--;
3791
3792 // if this was a layer dimension, update 'Layers' attribute
3793 if (pDimDef->dimension == dimension_layer) Layers = 1;
3794 }
3795
3796 /** @brief Delete one split zone of a dimension (decrement zone amount).
3797 *
3798 * Instead of deleting an entire dimensions, this method will only delete
3799 * one particular split zone given by @a zone of the Region's dimension
3800 * given by @a type. So this method will simply decrement the amount of
3801 * zones by one of the dimension in question. To be able to do that, the
3802 * respective dimension must exist on this Region and it must have at least
3803 * 3 zones. All DimensionRegion objects associated with the zone will be
3804 * deleted.
3805 *
3806 * @param type - identifies the dimension where a zone shall be deleted
3807 * @param zone - index of the dimension split zone that shall be deleted
3808 * @throws gig::Exception if requested zone could not be deleted
3809 */
3810 void Region::DeleteDimensionZone(dimension_t type, int zone) {
3811 if (!Dimensions)
3812 throw gig::Exception("Could not delete dimension zone, because there is no dimension at all.");
3813 dimension_def_t* oldDef = GetDimensionDefinition(type);
3814 if (!oldDef)
3815 throw gig::Exception("Could not delete dimension zone, no such dimension of given type");
3816 if (oldDef->zones <= 2)
3817 throw gig::Exception("Could not delete dimension zone, because it would end up with only one zone.");
3818 if (zone < 0 || zone >= oldDef->zones)
3819 throw gig::Exception("Could not delete dimension zone, requested zone index out of bounds.");
3820
3821 const int newZoneSize = oldDef->zones - 1;
3822
3823 // create a temporary Region which just acts as a temporary copy
3824 // container and will be deleted at the end of this function and will
3825 // also not be visible through the API during this process
3826 gig::Region* tempRgn = NULL;
3827 {
3828 // adding these temporary chunks is probably not even necessary
3829 Instrument* instr = static_cast<Instrument*>(GetParent());
3830 RIFF::List* pCkInstrument = instr->pCkInstrument;
3831 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3832 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3833 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3834 tempRgn = new Region(instr, rgn);
3835 }
3836
3837 // copy this region's dimensions (with already the dimension split size
3838 // requested by the arguments of this method call) to the temporary
3839 // region, and don't use Region::CopyAssign() here for this task, since
3840 // it would also alter fast lookup helper variables here and there
3841 dimension_def_t newDef = {};
3842 for (int i = 0; i < Dimensions; ++i) {
3843 dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3844 // is this the dimension requested by the method arguments? ...
3845 if (def.dimension == type) { // ... if yes, decrement zone amount by one
3846 def.zones = newZoneSize;
3847 if ((1 << (def.bits - 1)) == def.zones) def.bits--;
3848 newDef = def;
3849 }
3850 tempRgn->AddDimension(&def);
3851 }
3852 // silence clang sanitizer warning
3853 if (newDef.dimension == dimension_none)
3854 throw gig::Exception("Unexpected internal failure resolving dimension in DeleteDimensionZone() [this is a bug].");
3855
3856 // find the dimension index in the tempRegion which is the dimension
3857 // type passed to this method (paranoidly expecting different order)
3858 int tempReducedDimensionIndex = -1;
3859 for (int d = 0; d < tempRgn->Dimensions; ++d) {
3860 if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3861 tempReducedDimensionIndex = d;
3862 break;
3863 }
3864 }
3865
3866 // copy dimension regions from this region to the temporary region
3867 for (int iDst = 0; iDst < 256; ++iDst) {
3868 DimensionRegion* dstDimRgn = tempRgn->pDimensionRegions[iDst];
3869 if (!dstDimRgn) continue;
3870 std::map<dimension_t,int> dimCase;
3871 bool isValidZone = true;
3872 for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3873 const int dstBits = tempRgn->pDimensionDefinitions[d].bits;
3874 dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3875 (iDst >> baseBits) & ((1 << dstBits) - 1);
3876 baseBits += dstBits;
3877 // there are also DimensionRegion objects of unused zones, skip them
3878 if (dimCase[tempRgn->pDimensionDefinitions[d].dimension] >= tempRgn->pDimensionDefinitions[d].zones) {
3879 isValidZone = false;
3880 break;
3881 }
3882 }
3883 if (!isValidZone) continue;
3884 // a bit paranoid: cope with the chance that the dimensions would
3885 // have different order in source and destination regions
3886 const bool isLastZone = (dimCase[type] == newZoneSize - 1);
3887 if (dimCase[type] >= zone) dimCase[type]++;
3888 DimensionRegion* srcDimRgn = GetDimensionRegionByBit(dimCase);
3889 dstDimRgn->CopyAssign(srcDimRgn);
3890 // if this is the upper most zone of the dimension passed to this
3891 // method, then correct (raise) its upper limit to 127
3892 if (newDef.split_type == split_type_normal && isLastZone)
3893 dstDimRgn->DimensionUpperLimits[tempReducedDimensionIndex] = 127;
3894 }
3895
3896 // now tempRegion's dimensions and DimensionRegions basically reflect
3897 // what we wanted to get for this actual Region here, so we now just
3898 // delete and recreate the dimension in question with the new amount
3899 // zones and then copy back from tempRegion. we're actually deleting and
3900 // recreating all dimensions here, to avoid altering the precise order
3901 // of the dimensions (which would not be an error per se, but it would
3902 // cause usability issues with instrument editors)
3903 {
3904 std::vector<dimension_def_t> oldDefs;
3905 for (int i = 0; i < Dimensions; ++i)
3906 oldDefs.push_back(pDimensionDefinitions[i]); // copy, don't reference
3907 for (int i = Dimensions - 1; i >= 0; --i)
3908 DeleteDimension(&pDimensionDefinitions[i]);
3909 for (int i = 0; i < oldDefs.size(); ++i) {
3910 dimension_def_t& def = oldDefs[i];
3911 AddDimension(
3912 (def.dimension == newDef.dimension) ? &newDef : &def
3913 );
3914 }
3915 }
3916 for (int iSrc = 0; iSrc < 256; ++iSrc) {
3917 DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3918 if (!srcDimRgn) continue;
3919 std::map<dimension_t,int> dimCase;
3920 for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3921 const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3922 dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3923 (iSrc >> baseBits) & ((1 << srcBits) - 1);
3924 baseBits += srcBits;
3925 }
3926 // a bit paranoid: cope with the chance that the dimensions would
3927 // have different order in source and destination regions
3928 DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3929 if (!dstDimRgn) continue;
3930 dstDimRgn->CopyAssign(srcDimRgn);
3931 }
3932
3933 // delete temporary region
3934 tempRgn->DeleteChunks();
3935 delete tempRgn;
3936
3937 UpdateVelocityTable();
3938 }
3939
3940 /** @brief Divide split zone of a dimension in two (increment zone amount).
3941 *
3942 * This will increment the amount of zones for the dimension (given by
3943 * @a type) by one. It will do so by dividing the zone (given by @a zone)
3944 * in the middle of its zone range in two. So the two zones resulting from
3945 * the zone being splitted, will be an equivalent copy regarding all their
3946 * articulation informations and sample reference. The two zones will only
3947 * differ in their zone's upper limit
3948 * (DimensionRegion::DimensionUpperLimits).
3949 *
3950 * @param type - identifies the dimension where a zone shall be splitted
3951 * @param zone - index of the dimension split zone that shall be splitted
3952 * @throws gig::Exception if requested zone could not be splitted
3953 */
3954 void Region::SplitDimensionZone(dimension_t type, int zone) {
3955 if (!Dimensions)
3956 throw gig::Exception("Could not split dimension zone, because there is no dimension at all.");
3957 dimension_def_t* oldDef = GetDimensionDefinition(type);
3958 if (!oldDef)
3959 throw gig::Exception("Could not split dimension zone, no such dimension of given type");
3960 if (zone < 0 || zone >= oldDef->zones)
3961 throw gig::Exception("Could not split dimension zone, requested zone index out of bounds.");
3962
3963 const int newZoneSize = oldDef->zones + 1;
3964
3965 // create a temporary Region which just acts as a temporary copy
3966 // container and will be deleted at the end of this function and will
3967 // also not be visible through the API during this process
3968 gig::Region* tempRgn = NULL;
3969 {
3970 // adding these temporary chunks is probably not even necessary
3971 Instrument* instr = static_cast<Instrument*>(GetParent());
3972 RIFF::List* pCkInstrument = instr->pCkInstrument;
3973 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3974 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3975 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3976 tempRgn = new Region(instr, rgn);
3977 }
3978
3979 // copy this region's dimensions (with already the dimension split size
3980 // requested by the arguments of this method call) to the temporary
3981 // region, and don't use Region::CopyAssign() here for this task, since
3982 // it would also alter fast lookup helper variables here and there
3983 dimension_def_t newDef = {};
3984 for (int i = 0; i < Dimensions; ++i) {
3985 dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3986 // is this the dimension requested by the method arguments? ...
3987 if (def.dimension == type) { // ... if yes, increment zone amount by one
3988 def.zones = newZoneSize;
3989 if ((1 << oldDef->bits) < newZoneSize) def.bits++;
3990 newDef = def;
3991 }
3992 tempRgn->AddDimension(&def);
3993 }
3994 // silence clang sanitizer warning
3995 if (newDef.dimension == dimension_none)
3996 throw gig::Exception("Unexpected internal failure resolving dimension in SplitDimensionZone() [this is a bug].");
3997
3998 // find the dimension index in the tempRegion which is the dimension
3999 // type passed to this method (paranoidly expecting different order)
4000 int tempIncreasedDimensionIndex = -1;
4001 for (int d = 0; d < tempRgn->Dimensions; ++d) {
4002 if (tempRgn->pDimensionDefinitions[d].dimension == type) {
4003 tempIncreasedDimensionIndex = d;
4004 break;
4005 }
4006 }
4007
4008 // copy dimension regions from this region to the temporary region
4009 for (int iSrc = 0; iSrc < 256; ++iSrc) {
4010 DimensionRegion* srcDimRgn = pDimensionRegions[iSrc];
4011 if (!srcDimRgn) continue;
4012 std::map<dimension_t,int> dimCase;
4013 bool isValidZone = true;
4014 for (int d = 0, baseBits = 0; d < Dimensions; ++d) {
4015 const int srcBits = pDimensionDefinitions[d].bits;
4016 dimCase[pDimensionDefinitions[d].dimension] =
4017 (iSrc >> baseBits) & ((1 << srcBits) - 1);
4018 // there are also DimensionRegion objects for unused zones, skip them
4019 if (dimCase[pDimensionDefinitions[d].dimension] >= pDimensionDefinitions[d].zones) {
4020 isValidZone = false;
4021 break;
4022 }
4023 baseBits += srcBits;
4024 }
4025 if (!isValidZone) continue;
4026 // a bit paranoid: cope with the chance that the dimensions would
4027 // have different order in source and destination regions
4028 if (dimCase[type] > zone) dimCase[type]++;
4029 DimensionRegion* dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
4030 dstDimRgn->CopyAssign(srcDimRgn);
4031 // if this is the requested zone to be splitted, then also copy
4032 // the source DimensionRegion to the newly created target zone
4033 // and set the old zones upper limit lower
4034 if (dimCase[type] == zone) {
4035 // lower old zones upper limit
4036 if (newDef.split_type == split_type_normal) {
4037 const int high =
4038 dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex];
4039 int low = 0;
4040 if (zone > 0) {
4041 std::map<dimension_t,int> lowerCase = dimCase;
4042 lowerCase[type]--;
4043 DimensionRegion* dstDimRgnLow = tempRgn->GetDimensionRegionByBit(lowerCase);
4044 low = dstDimRgnLow->DimensionUpperLimits[tempIncreasedDimensionIndex];
4045 }
4046 dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex] = low + (high - low) / 2;
4047 }
4048 // fill the newly created zone of the divided zone as well
4049 dimCase[type]++;
4050 dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
4051 dstDimRgn->CopyAssign(srcDimRgn);
4052 }
4053 }
4054
4055 // now tempRegion's dimensions and DimensionRegions basically reflect
4056 // what we wanted to get for this actual Region here, so we now just
4057 // delete and recreate the dimension in question with the new amount
4058 // zones and then copy back from tempRegion. we're actually deleting and
4059 // recreating all dimensions here, to avoid altering the precise order
4060 // of the dimensions (which would not be an error per se, but it would
4061 // cause usability issues with instrument editors)
4062 {
4063 std::vector<dimension_def_t> oldDefs;
4064 for (int i = 0; i < Dimensions; ++i)
4065 oldDefs.push_back(pDimensionDefinitions[i]); // copy, don't reference
4066 for (int i = Dimensions - 1; i >= 0; --i)
4067 DeleteDimension(&pDimensionDefinitions[i]);
4068 for (int i = 0; i < oldDefs.size(); ++i) {
4069 dimension_def_t& def = oldDefs[i];
4070 AddDimension(
4071 (def.dimension == newDef.dimension) ? &newDef : &def
4072 );
4073 }
4074 }
4075 for (int iSrc = 0; iSrc < 256; ++iSrc) {
4076 DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
4077 if (!srcDimRgn) continue;
4078 std::map<dimension_t,int> dimCase;
4079 for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
4080 const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
4081 dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
4082 (iSrc >> baseBits) & ((1 << srcBits) - 1);
4083 baseBits += srcBits;
4084 }
4085 // a bit paranoid: cope with the chance that the dimensions would
4086 // have different order in source and destination regions
4087 DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
4088 if (!dstDimRgn) continue;
4089 dstDimRgn->CopyAssign(srcDimRgn);
4090 }
4091
4092 // delete temporary region
4093 tempRgn->DeleteChunks();
4094 delete tempRgn;
4095
4096 UpdateVelocityTable();
4097 }
4098
4099 /** @brief Change type of an existing dimension.
4100 *
4101 * Alters the dimension type of a dimension already existing on this
4102 * region. If there is currently no dimension on this Region with type
4103 * @a oldType, then this call with throw an Exception. Likewise there are
4104 * cases where the requested dimension type cannot be performed. For example
4105 * if the new dimension type shall be gig::dimension_samplechannel, and the
4106 * current dimension has more than 2 zones. In such cases an Exception is
4107 * thrown as well.
4108 *
4109 * @param oldType - identifies the existing dimension to be changed
4110 * @param newType - to which dimension type it should be changed to
4111 * @throws gig::Exception if requested change cannot be performed
4112 */
4113 void Region::SetDimensionType(dimension_t oldType, dimension_t newType) {
4114 if (oldType == newType) return;
4115 dimension_def_t* def = GetDimensionDefinition(oldType);
4116 if (!def)
4117 throw gig::Exception("No dimension with provided old dimension type exists on this region");
4118 if (newType == dimension_samplechannel && def->zones != 2)
4119 throw gig::Exception("Cannot change to dimension type 'sample channel', because existing dimension does not have 2 zones");
4120 if (GetDimensionDefinition(newType))
4121 throw gig::Exception("There is already a dimension with requested new dimension type on this region");
4122 def->dimension = newType;
4123 def->split_type = __resolveSplitType(newType);
4124 }
4125
4126 DimensionRegion* Region::GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase) {
4127 uint8_t bits[8] = {};
4128 for (std::map<dimension_t,int>::const_iterator it = DimCase.begin();
4129 it != DimCase.end(); ++it)
4130 {
4131 for (int d = 0; d < Dimensions; ++d) {
4132 if (pDimensionDefinitions[d].dimension == it->first) {
4133 bits[d] = it->second;
4134 goto nextDimCaseSlice;
4135 }
4136 }
4137 assert(false); // do crash ... too harsh maybe ? ignore it instead ?
4138 nextDimCaseSlice:
4139 ; // noop
4140 }
4141 return GetDimensionRegionByBit(bits);
4142 }
4143
4144 /**
4145 * Searches in the current Region for a dimension of the given dimension
4146 * type and returns the precise configuration of that dimension in this
4147 * Region.
4148 *
4149 * @param type - dimension type of the sought dimension
4150 * @returns dimension definition or NULL if there is no dimension with
4151 * sought type in this Region.
4152 */
4153 dimension_def_t* Region::GetDimensionDefinition(dimension_t type) {
4154 for (int i = 0; i < Dimensions; ++i)
4155 if (pDimensionDefinitions[i].dimension == type)
4156 return &pDimensionDefinitions[i];
4157 return NULL;
4158 }
4159
4160 Region::~Region() {
4161 for (int i = 0; i < 256; i++) {
4162 if (pDimensionRegions[i]) delete pDimensionRegions[i];
4163 }
4164 }
4165
4166 /**
4167 * Use this method in your audio engine to get the appropriate dimension
4168 * region with it's articulation data for the current situation. Just
4169 * call the method with the current MIDI controller values and you'll get
4170 * the DimensionRegion with the appropriate articulation data for the
4171 * current situation (for this Region of course only). To do that you'll
4172 * first have to look which dimensions with which controllers and in
4173 * which order are defined for this Region when you load the .gig file.
4174 * Special cases are e.g. layer or channel dimensions where you just put
4175 * in the index numbers instead of a MIDI controller value (means 0 for
4176 * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
4177 * etc.).
4178 *
4179 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
4180 * @returns adress to the DimensionRegion for the given situation
4181 * @see pDimensionDefinitions
4182 * @see Dimensions
4183 */
4184 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
4185 uint8_t bits;
4186 int veldim = -1;
4187 int velbitpos = 0;
4188 int bitpos = 0;
4189 int dimregidx = 0;
4190 for (uint i = 0; i < Dimensions; i++) {
4191 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
4192 // the velocity dimension must be handled after the other dimensions
4193 veldim = i;
4194 velbitpos = bitpos;
4195 } else {
4196 switch (pDimensionDefinitions[i].split_type) {
4197 case split_type_normal:
4198 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
4199 // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
4200 for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
4201 if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
4202 }
4203 } else {
4204 // gig2: evenly sized zones
4205 bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
4206 }
4207 break;
4208 case split_type_bit: // the value is already the sought dimension bit number
4209 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
4210 bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
4211 break;
4212 }
4213 dimregidx |= bits << bitpos;
4214 }
4215 bitpos += pDimensionDefinitions[i].bits;
4216 }
4217 DimensionRegion* dimreg = pDimensionRegions[dimregidx & 255];
4218 if (!dimreg) return NULL;
4219 if (veldim != -1) {
4220 // (dimreg is now the dimension region for the lowest velocity)
4221 if (dimreg->VelocityTable) // custom defined zone ranges
4222 bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4223 else // normal split type
4224 bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4225
4226 const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4227 dimregidx |= (bits & limiter_mask) << velbitpos;
4228 dimreg = pDimensionRegions[dimregidx & 255];
4229 }
4230 return dimreg;
4231 }
4232
4233 int Region::GetDimensionRegionIndexByValue(const uint DimValues[8]) {
4234 uint8_t bits;
4235 int veldim = -1;
4236 int velbitpos = 0;
4237 int bitpos = 0;
4238 int dimregidx = 0;
4239 for (uint i = 0; i < Dimensions; i++) {
4240 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
4241 // the velocity dimension must be handled after the other dimensions
4242 veldim = i;
4243 velbitpos = bitpos;
4244 } else {
4245 switch (pDimensionDefinitions[i].split_type) {
4246 case split_type_normal:
4247 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
4248 // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
4249 for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
4250 if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
4251 }
4252 } else {
4253 // gig2: evenly sized zones
4254 bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
4255 }
4256 break;
4257 case split_type_bit: // the value is already the sought dimension bit number
4258 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
4259 bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
4260 break;
4261 }
4262 dimregidx |= bits << bitpos;
4263 }
4264 bitpos += pDimensionDefinitions[i].bits;
4265 }
4266 dimregidx &= 255;
4267 DimensionRegion* dimreg = pDimensionRegions[dimregidx];
4268 if (!dimreg) return -1;
4269 if (veldim != -1) {
4270 // (dimreg is now the dimension region for the lowest velocity)
4271 if (dimreg->VelocityTable) // custom defined zone ranges
4272 bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4273 else // normal split type
4274 bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4275
4276 const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4277 dimregidx |= (bits & limiter_mask) << velbitpos;
4278 dimregidx &= 255;
4279 }
4280 return dimregidx;
4281 }
4282
4283 /**
4284 * Returns the appropriate DimensionRegion for the given dimension bit
4285 * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
4286 * instead of calling this method directly!
4287 *
4288 * @param DimBits Bit numbers for dimension 0 to 7
4289 * @returns adress to the DimensionRegion for the given dimension
4290 * bit numbers
4291 * @see GetDimensionRegionByValue()
4292 */
4293 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
4294 return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
4295 << pDimensionDefinitions[5].bits | DimBits[5])
4296 << pDimensionDefinitions[4].bits | DimBits[4])
4297 << pDimensionDefinitions[3].bits | DimBits[3])
4298 << pDimensionDefinitions[2].bits | DimBits[2])
4299 << pDimensionDefinitions[1].bits | DimBits[1])
4300 << pDimensionDefinitions[0].bits | DimBits[0]];
4301 }
4302
4303 /**
4304 * Returns pointer address to the Sample referenced with this region.
4305 * This is the global Sample for the entire Region (not sure if this is
4306 * actually used by the Gigasampler engine - I would only use the Sample
4307 * referenced by the appropriate DimensionRegion instead of this sample).
4308 *
4309 * @returns address to Sample or NULL if there is no reference to a
4310 * sample saved in the .gig file
4311 */
4312 Sample* Region::GetSample() {
4313 if (pSample) return static_cast<gig::Sample*>(pSample);
4314 else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
4315 }
4316
4317 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
4318 if ((int32_t)WavePoolTableIndex == -1) return NULL;
4319 File* file = (File*) GetParent()->GetParent();
4320 if (!file->pWavePoolTable) return NULL;
4321 if (WavePoolTableIndex + 1 > file->WavePoolCount) return NULL;
4322 // for new files or files >= 2 GB use 64 bit wave pool offsets
4323 if (file->pRIFF->IsNew() || (file->pRIFF->GetCurrentFileSize() >> 31)) {
4324 // use 64 bit wave pool offsets (treating this as large file)
4325 uint64_t soughtoffset =
4326 uint64_t(file->pWavePoolTable[WavePoolTableIndex]) |
4327 uint64_t(file->pWavePoolTableHi[WavePoolTableIndex]) << 32;
4328 size_t i = 0;
4329 for (Sample* sample = file->GetSample(i, pProgress); sample;
4330 sample = file->GetSample(++i))
4331 {
4332 if (sample->ullWavePoolOffset == soughtoffset)
4333 return sample;
4334 }
4335 } else {
4336 // use extension files and 32 bit wave pool offsets
4337 file_offset_t soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
4338 file_offset_t soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
4339 size_t i = 0;
4340 for (Sample* sample = file->GetSample(i, pProgress); sample;
4341 sample = file->GetSample(++i))
4342 {
4343 if (sample->ullWavePoolOffset == soughtoffset &&
4344 sample->FileNo == soughtfileno) return sample;
4345 }
4346 }
4347 return NULL;
4348 }
4349
4350 /**
4351 * Make a (semi) deep copy of the Region object given by @a orig
4352 * and assign it to this object.
4353 *
4354 * Note that all sample pointers referenced by @a orig are simply copied as
4355 * memory address. Thus the respective samples are shared, not duplicated!
4356 *
4357 * @param orig - original Region object to be copied from
4358 */
4359 void Region::CopyAssign(const Region* orig) {
4360 CopyAssign(orig, NULL);
4361 }
4362
4363 /**
4364 * Make a (semi) deep copy of the Region object given by @a orig and
4365 * assign it to this object
4366 *
4367 * @param mSamples - crosslink map between the foreign file's samples and
4368 * this file's samples
4369 */
4370 void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
4371 // handle base classes
4372 DLS::Region::CopyAssign(orig);
4373
4374 if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
4375 pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
4376 }
4377
4378 // handle own member variables
4379 for (int i = Dimensions - 1; i >= 0; --i) {
4380 DeleteDimension(&pDimensionDefinitions[i]);
4381 }
4382 Layers = 0; // just to be sure
4383 for (int i = 0; i < orig->Dimensions; i++) {
4384 // we need to copy the dim definition here, to avoid the compiler
4385 // complaining about const-ness issue
4386 dimension_def_t def = orig->pDimensionDefinitions[i];
4387 AddDimension(&def);
4388 }
4389 for (int i = 0; i < 256; i++) {
4390 if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
4391 pDimensionRegions[i]->CopyAssign(
4392 orig->pDimensionRegions[i],
4393 mSamples
4394 );
4395 }
4396 }
4397 Layers = orig->Layers;
4398 }
4399
4400 /**
4401 * Returns @c true in case this Region object uses any gig format
4402 * extension, that is e.g. whether any DimensionRegion object currently
4403 * has any setting effective that would require our "LSDE" RIFF chunk to
4404 * be stored to the gig file.
4405 *
4406 * Right now this is a private method. It is considerable though this method
4407 * to become (in slightly modified form) a public API method in future, i.e.
4408 * to allow instrument editors to visualize and/or warn the user of any gig
4409 * format extension being used. See also comments on
4410 * DimensionRegion::UsesAnyGigFormatExtension() for details about such a
4411 * potential public API change in future.
4412 */
4413 bool Region::UsesAnyGigFormatExtension() const {
4414 for (int i = 0; i < 256; i++) {
4415 if (pDimensionRegions[i]) {
4416 if (pDimensionRegions[i]->UsesAnyGigFormatExtension())
4417 return true;
4418 }
4419 }
4420 return false;
4421 }
4422
4423
4424 // *************** MidiRule ***************
4425 // *
4426
4427 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
4428 _3ewg->SetPos(36);
4429 Triggers = _3ewg->ReadUint8();
4430 _3ewg->SetPos(40);
4431 ControllerNumber = _3ewg->ReadUint8();
4432 _3ewg->SetPos(46);
4433 for (int i = 0 ; i < Triggers ; i++) {
4434 pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
4435 pTriggers[i].Descending = _3ewg->ReadUint8();
4436 pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
4437 pTriggers[i].Key = _3ewg->ReadUint8();
4438 pTriggers[i].NoteOff = _3ewg->ReadUint8();
4439 pTriggers[i].Velocity = _3ewg->ReadUint8();
4440 pTriggers[i].OverridePedal = _3ewg->ReadUint8();
4441 _3ewg->ReadUint8();
4442 }
4443 }
4444
4445 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
4446 ControllerNumber(0),
4447 Triggers(0) {
4448 }
4449
4450 void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
4451 pData[32] = 4;
4452 pData[33] = 16;
4453 pData[36] = Triggers;
4454 pData[40] = ControllerNumber;
4455 for (int i = 0 ; i < Triggers ; i++) {
4456 pData[46 + i * 8] = pTriggers[i].TriggerPoint;
4457 pData[47 + i * 8] = pTriggers[i].Descending;
4458 pData[48 + i * 8] = pTriggers[i].VelSensitivity;
4459 pData[49 + i * 8] = pTriggers[i].Key;
4460 pData[50 + i * 8] = pTriggers[i].NoteOff;
4461 pData[51 + i * 8] = pTriggers[i].Velocity;
4462 pData[52 + i * 8] = pTriggers[i].OverridePedal;
4463 }
4464 }
4465
4466 MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
4467 _3ewg->SetPos(36);
4468 LegatoSamples = _3ewg->ReadUint8(); // always 12
4469 _3ewg->SetPos(40);
4470 BypassUseController = _3ewg->ReadUint8();
4471 BypassKey = _3ewg->ReadUint8();
4472 BypassController = _3ewg->ReadUint8();
4473 ThresholdTime = _3ewg->ReadUint16();
4474 _3ewg->ReadInt16();
4475 ReleaseTime = _3ewg->ReadUint16();
4476 _3ewg->ReadInt16();
4477 KeyRange.low = _3ewg->ReadUint8();
4478 KeyRange.high = _3ewg->ReadUint8();
4479 _3ewg->SetPos(64);
4480 ReleaseTriggerKey = _3ewg->ReadUint8();
4481 AltSustain1Key = _3ewg->ReadUint8();
4482 AltSustain2Key = _3ewg->ReadUint8();
4483 }
4484
4485 MidiRuleLegato::MidiRuleLegato() :
4486 LegatoSamples(12),
4487 BypassUseController(false),
4488 BypassKey(0),
4489 BypassController(1),
4490 ThresholdTime(20),
4491 ReleaseTime(20),
4492 ReleaseTriggerKey(0),
4493 AltSustain1Key(0),
4494 AltSustain2Key(0)
4495 {
4496 KeyRange.low = KeyRange.high = 0;
4497 }
4498
4499 void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
4500 pData[32] = 0;
4501 pData[33] = 16;
4502 pData[36] = LegatoSamples;
4503 pData[40] = BypassUseController;
4504 pData[41] = BypassKey;
4505 pData[42] = BypassController;
4506 store16(&pData[43], ThresholdTime);
4507 store16(&pData[47], ReleaseTime);
4508 pData[51] = KeyRange.low;
4509 pData[52] = KeyRange.high;
4510 pData[64] = ReleaseTriggerKey;
4511 pData[65] = AltSustain1Key;
4512 pData[66] = AltSustain2Key;
4513 }
4514
4515 MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
4516 _3ewg->SetPos(36);
4517 Articulations = _3ewg->ReadUint8();
4518 int flags = _3ewg->ReadUint8();
4519 Polyphonic = flags & 8;
4520 Chained = flags & 4;
4521 Selector = (flags & 2) ? selector_controller :
4522 (flags & 1) ? selector_key_switch : selector_none;
4523 Patterns = _3ewg->ReadUint8();
4524 _3ewg->ReadUint8(); // chosen row
4525 _3ewg->ReadUint8(); // unknown
4526 _3ewg->ReadUint8(); // unknown
4527 _3ewg->ReadUint8(); // unknown
4528 KeySwitchRange.low = _3ewg->ReadUint8();
4529 KeySwitchRange.high = _3ewg->ReadUint8();
4530 Controller = _3ewg->ReadUint8();
4531 PlayRange.low = _3ewg->ReadUint8();
4532 PlayRange.high = _3ewg->ReadUint8();
4533
4534 int n = std::min(int(Articulations), 32);
4535 for (int i = 0 ; i < n ; i++) {
4536 _3ewg->ReadString(pArticulations[i], 32);
4537 }
4538 _3ewg->SetPos(1072);
4539 n = std::min(int(Patterns), 32);
4540 for (int i = 0 ; i < n ; i++) {
4541 _3ewg->ReadString(pPatterns[i].Name, 16);
4542 pPatterns[i].Size = _3ewg->ReadUint8();
4543 _3ewg->Read(&pPatterns[i][0], 1, 32);
4544 }
4545 }
4546
4547 MidiRuleAlternator::MidiRuleAlternator() :
4548 Articulations(0),
4549 Patterns(0),
4550 Selector(selector_none),
4551 Controller(0),
4552 Polyphonic(false),
4553 Chained(false)
4554 {
4555 PlayRange.low = PlayRange.high = 0;
4556 KeySwitchRange.low = KeySwitchRange.high = 0;
4557 }
4558
4559 void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
4560 pData[32] = 3;
4561 pData[33] = 16;
4562 pData[36] = Articulations;
4563 pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
4564 (Selector == selector_controller ? 2 :
4565 (Selector == selector_key_switch ? 1 : 0));
4566 pData[38] = Patterns;
4567
4568 pData[43] = KeySwitchRange.low;
4569 pData[44] = KeySwitchRange.high;
4570 pData[45] = Controller;
4571 pData[46] = PlayRange.low;
4572 pData[47] = PlayRange.high;
4573
4574 char* str = reinterpret_cast<char*>(pData);
4575 int pos = 48;
4576 int n = std::min(int(Articulations), 32);
4577 for (int i = 0 ; i < n ; i++, pos += 32) {
4578 strncpy(&str[pos], pArticulations[i].c_str(), 32);
4579 }
4580
4581 pos = 1072;
4582 n = std::min(int(Patterns), 32);
4583 for (int i = 0 ; i < n ; i++, pos += 49) {
4584 strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
4585 pData[pos + 16] = pPatterns[i].Size;
4586 memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
4587 }
4588 }
4589
4590 // *************** Script ***************
4591 // *
4592
4593 Script::Script(ScriptGroup* group, RIFF::Chunk* ckScri) {
4594 pGroup = group;
4595 pChunk = ckScri;
4596 if (ckScri) { // object is loaded from file ...
4597 ckScri->SetPos(0);
4598
4599 // read header
4600 uint32_t headerSize = ckScri->ReadUint32();
4601 Compression = (Compression_t) ckScri->ReadUint32();
4602 Encoding = (Encoding_t) ckScri->ReadUint32();
4603 Language = (Language_t) ckScri->ReadUint32();
4604 Bypass = ckScri->ReadUint32() & 1;
4605 crc = ckScri->ReadUint32();
4606 uint32_t nameSize = ckScri->ReadUint32();
4607 Name.resize(nameSize, ' ');
4608 for (int i = 0; i < nameSize; ++i)
4609 Name[i] = ckScri->ReadUint8();
4610 // check if an uuid was already stored along with this script
4611 if (headerSize >= 6*sizeof(int32_t) + nameSize + 16) { // yes ...
4612 for (uint i = 0; i < 16; ++i) {
4613 Uuid[i] = ckScri->ReadUint8();
4614 }
4615 } else { // no uuid yet, generate one now ...
4616 GenerateUuid();
4617 }
4618 // to handle potential future extensions of the header
4619 ckScri->SetPos(sizeof(int32_t) + headerSize);
4620 // read actual script data
4621 uint32_t scriptSize = uint32_t(ckScri->GetSize() - ckScri->GetPos());
4622 data.resize(scriptSize);
4623 for (int i = 0; i < scriptSize; ++i)
4624 data[i] = ckScri->ReadUint8();
4625 } else { // this is a new script object, so just initialize it as such ...
4626 Compression = COMPRESSION_NONE;
4627 Encoding = ENCODING_ASCII;
4628 Language = LANGUAGE_NKSP;
4629 Bypass = false;
4630 crc = 0;
4631 Name = "Unnamed Script";
4632 GenerateUuid();
4633 }
4634 }
4635
4636 Script::~Script() {
4637 }
4638
4639 /**
4640 * Returns the current script (i.e. as source code) in text format.
4641 */
4642 String Script::GetScriptAsText() {
4643 String s;
4644 s.resize(data.size(), ' ');
4645 memcpy(&s[0], &data[0], data.size());
4646 return s;
4647 }
4648
4649 /**
4650 * Replaces the current script with the new script source code text given
4651 * by @a text.
4652 *
4653 * @param text - new script source code
4654 */
4655 void Script::SetScriptAsText(const String& text) {
4656 data.resize(text.size());
4657 memcpy(&data[0], &text[0], text.size());
4658 }
4659
4660 /** @brief Remove all RIFF chunks associated with this Script object.
4661 *
4662 * At the moment Script::DeleteChunks() does nothing. It is
4663 * recommended to call this method explicitly though from deriving classes's
4664 * own overridden implementation of this method to avoid potential future
4665 * compatiblity issues.
4666 *
4667 * See DLS::Storage::DeleteChunks() for details.
4668 */
4669 void Script::DeleteChunks() {
4670 }
4671
4672 /**
4673 * Apply this script to the respective RIFF chunks. You have to call
4674 * File::Save() to make changes persistent.
4675 *
4676 * Usually there is absolutely no need to call this method explicitly.
4677 * It will be called automatically when File::Save() was called.
4678 *
4679 * @param pProgress - callback function for progress notification
4680 */
4681 void Script::UpdateChunks(progress_t* pProgress) {
4682 // recalculate CRC32 check sum
4683 __resetCRC(crc);
4684 __calculateCRC(&data[0], data.size(), crc);
4685 __finalizeCRC(crc);
4686 // make sure chunk exists and has the required size
4687 const file_offset_t chunkSize =
4688 (file_offset_t) 7*sizeof(int32_t) + Name.size() + 16 + data.size();
4689 if (!pChunk) pChunk = pGroup->pList->AddSubChunk(CHUNK_ID_SCRI, chunkSize);
4690 else pChunk->Resize(chunkSize);
4691 // fill the chunk data to be written to disk
4692 uint8_t* pData = (uint8_t*) pChunk->LoadChunkData();
4693 int pos = 0;
4694 store32(&pData[pos], uint32_t(6*sizeof(int32_t) + Name.size() + 16)); // total header size
4695 pos += sizeof(int32_t);
4696 store32(&pData[pos], Compression);
4697 pos += sizeof(int32_t);
4698 store32(&pData[pos], Encoding);
4699 pos += sizeof(int32_t);
4700 store32(&pData[pos], Language);
4701 pos += sizeof(int32_t);
4702 store32(&pData[pos], Bypass ? 1 : 0);
4703 pos += sizeof(int32_t);
4704 store32(&pData[pos], crc);
4705 pos += sizeof(int32_t);
4706 store32(&pData[pos], (uint32_t) Name.size());
4707 pos += sizeof(int32_t);
4708 for (int i = 0; i < Name.size(); ++i, ++pos)
4709 pData[pos] = Name[i];
4710 for (int i = 0; i < 16; ++i, ++pos)
4711 pData[pos] = Uuid[i];
4712 for (int i = 0; i < data.size(); ++i, ++pos)
4713 pData[pos] = data[i];
4714 }
4715
4716 /**
4717 * Generate a new Universally Unique Identifier (UUID) for this script.
4718 */
4719 void Script::GenerateUuid() {
4720 DLS::dlsid_t dlsid;
4721 DLS::Resource::GenerateDLSID(&dlsid);
4722 Uuid[0] = dlsid.ulData1 & 0xff;
4723 Uuid[1] = dlsid.ulData1 >> 8 & 0xff;
4724 Uuid[2] = dlsid.ulData1 >> 16 & 0xff;
4725 Uuid[3] = dlsid.ulData1 >> 24 & 0xff;
4726 Uuid[4] = dlsid.usData2 & 0xff;
4727 Uuid[5] = dlsid.usData2 >> 8 & 0xff;
4728 Uuid[6] = dlsid.usData3 & 0xff;
4729 Uuid[7] = dlsid.usData3 >> 8 & 0xff;
4730 Uuid[8] = dlsid.abData[0];
4731 Uuid[9] = dlsid.abData[1];
4732 Uuid[10] = dlsid.abData[2];
4733 Uuid[11] = dlsid.abData[3];
4734 Uuid[12] = dlsid.abData[4];
4735 Uuid[13] = dlsid.abData[5];
4736 Uuid[14] = dlsid.abData[6];
4737 Uuid[15] = dlsid.abData[7];
4738 }
4739
4740 /**
4741 * Move this script from its current ScriptGroup to another ScriptGroup
4742 * given by @a pGroup.
4743 *
4744 * @param pGroup - script's new group
4745 */
4746 void Script::SetGroup(ScriptGroup* pGroup) {
4747 if (this->pGroup == pGroup) return;
4748 if (pChunk)
4749 pChunk->GetParent()->MoveSubChunk(pChunk, pGroup->pList);
4750 this->pGroup = pGroup;
4751 }
4752
4753 /**
4754 * Returns the script group this script currently belongs to. Each script
4755 * is a member of exactly one ScriptGroup.
4756 *
4757 * @returns current script group
4758 */
4759 ScriptGroup* Script::GetGroup() const {
4760 return pGroup;
4761 }
4762
4763 /**
4764 * Make a (semi) deep copy of the Script object given by @a orig
4765 * and assign it to this object. Note: the ScriptGroup this Script
4766 * object belongs to remains untouched by this call.
4767 *
4768 * @param orig - original Script object to be copied from
4769 */
4770 void Script::CopyAssign(const Script* orig) {
4771 Name = orig->Name;
4772 Compression = orig->Compression;
4773 Encoding = orig->Encoding;
4774 Language = orig->Language;
4775 Bypass = orig->Bypass;
4776 data = orig->data;
4777 }
4778
4779 void Script::RemoveAllScriptReferences() {
4780 File* pFile = pGroup->pFile;
4781 for (int i = 0; pFile->GetInstrument(i); ++i) {
4782 Instrument* instr = pFile->GetInstrument(i);
4783 instr->RemoveScript(this);
4784 }
4785 }
4786
4787 // *************** ScriptGroup ***************
4788 // *
4789
4790 ScriptGroup::ScriptGroup(File* file, RIFF::List* lstRTIS) {
4791 pFile = file;
4792 pList = lstRTIS;
4793 pScripts = NULL;
4794 if (lstRTIS) {
4795 RIFF::Chunk* ckName = lstRTIS->GetSubChunk(CHUNK_ID_LSNM);
4796 ::LoadString(ckName, Name);
4797 } else {
4798 Name = "Default Group";
4799 }
4800 }
4801
4802 ScriptGroup::~ScriptGroup() {
4803 if (pScripts) {
4804 std::list<Script*>::iterator iter = pScripts->begin();
4805 std::list<Script*>::iterator end = pScripts->end();
4806 while (iter != end) {
4807 delete *iter;
4808 ++iter;
4809 }
4810 delete pScripts;
4811 }
4812 }
4813
4814 /** @brief Remove all RIFF chunks associated with this ScriptGroup object.
4815 *
4816 * At the moment ScriptGroup::DeleteChunks() does nothing. It is
4817 * recommended to call this method explicitly though from deriving classes's
4818 * own overridden implementation of this method to avoid potential future
4819 * compatiblity issues.
4820 *
4821 * See DLS::Storage::DeleteChunks() for details.
4822 */
4823 void ScriptGroup::DeleteChunks() {
4824 }
4825
4826 /**
4827 * Apply this script group to the respective RIFF chunks. You have to call
4828 * File::Save() to make changes persistent.
4829 *
4830 * Usually there is absolutely no need to call this method explicitly.
4831 * It will be called automatically when File::Save() was called.
4832 *
4833 * @param pProgress - callback function for progress notification
4834 */
4835 void ScriptGroup::UpdateChunks(progress_t* pProgress) {
4836 if (pScripts) {
4837 if (!pList)
4838 pList = pFile->pRIFF->GetSubList(LIST_TYPE_3LS)->AddSubList(LIST_TYPE_RTIS);
4839
4840 // now store the name of this group as <LSNM> chunk as subchunk of the <RTIS> list chunk
4841 ::SaveString(CHUNK_ID_LSNM, NULL, pList, Name, String("Unnamed Group"), true, 64);
4842
4843 for (std::list<Script*>::iterator it = pScripts->begin();
4844 it != pScripts->end(); ++it)
4845 {
4846 (*it)->UpdateChunks(pProgress);
4847 }
4848 }
4849 }
4850
4851 /** @brief Get instrument script.
4852 *
4853 * Returns the real-time instrument script with the given index.
4854 *
4855 * @param index - number of the sought script (0..n)
4856 * @returns sought script or NULL if there's no such script
4857 */
4858 Script* ScriptGroup::GetScript(uint index) {
4859 if (!pScripts) LoadScripts();
4860 std::list<Script*>::iterator it = pScripts->begin();
4861 for (uint i = 0; it != pScripts->end(); ++i, ++it)
4862 if (i == index) return *it;
4863 return NULL;
4864 }
4865
4866 /** @brief Add new instrument script.
4867 *
4868 * Adds a new real-time instrument script to the file. The script is not
4869 * actually used / executed unless it is referenced by an instrument to be
4870 * used. This is similar to samples, which you can add to a file, without
4871 * an instrument necessarily actually using it.
4872 *
4873 * You have to call Save() to make this persistent to the file.
4874 *
4875 * @return new empty script object
4876 */
4877 Script* ScriptGroup::AddScript() {
4878 if (!pScripts) LoadScripts();
4879 Script* pScript = new Script(this, NULL);
4880 pScripts->push_back(pScript);
4881 return pScript;
4882 }
4883
4884 /** @brief Delete an instrument script.
4885 *
4886 * This will delete the given real-time instrument script. References of
4887 * instruments that are using that script will be removed accordingly.
4888 *
4889 * You have to call Save() to make this persistent to the file.
4890 *
4891 * @param pScript - script to delete
4892 * @throws gig::Exception if given script could not be found
4893 */
4894 void ScriptGroup::DeleteScript(Script* pScript) {
4895 if (!pScripts) LoadScripts();
4896 std::list<Script*>::iterator iter =
4897 find(pScripts->begin(), pScripts->end(), pScript);
4898 if (iter == pScripts->end())
4899 throw gig::Exception("Could not delete script, could not find given script");
4900 pScripts->erase(iter);
4901 pScript->RemoveAllScriptReferences();
4902 if (pScript->pChunk)
4903 pScript->pChunk->GetParent()->DeleteSubChunk(pScript->pChunk);
4904 delete pScript;
4905 }
4906
4907 void ScriptGroup::LoadScripts() {
4908 if (pScripts) return;
4909 pScripts = new std::list<Script*>;
4910 if (!pList) return;
4911
4912 size_t i = 0;
4913 for (RIFF::Chunk* ck = pList->GetSubChunkAt(i); ck;
4914 ck = pList->GetSubChunkAt(++i))
4915 {
4916 if (ck->GetChunkID() == CHUNK_ID_SCRI) {
4917 pScripts->push_back(new Script(this, ck));
4918 }
4919 }
4920 }
4921
4922 // *************** Instrument ***************
4923 // *
4924
4925 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
4926 static const DLS::Info::string_length_t fixedStringLengths[] = {
4927 { CHUNK_ID_INAM, 64 },
4928 { CHUNK_ID_ISFT, 12 },
4929 { 0, 0 }
4930 };
4931 pInfo->SetFixedStringLengths(fixedStringLengths);
4932
4933 // Initialization
4934 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4935 EffectSend = 0;
4936 Attenuation = 0;
4937 FineTune = 0;
4938 PitchbendRange = 2;
4939 PianoReleaseMode = false;
4940 DimensionKeyRange.low = 0;
4941 DimensionKeyRange.high = 0;
4942 pMidiRules = new MidiRule*[3];
4943 pMidiRules[0] = NULL;
4944 pScriptRefs = NULL;
4945
4946 // Loading
4947 RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
4948 if (lart) {
4949 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4950 if (_3ewg) {
4951 _3ewg->SetPos(0);
4952
4953 EffectSend = _3ewg->ReadUint16();
4954 Attenuation = _3ewg->ReadInt32();
4955 FineTune = _3ewg->ReadInt16();
4956 PitchbendRange = _3ewg->ReadInt16();
4957 uint8_t dimkeystart = _3ewg->ReadUint8();
4958 PianoReleaseMode = dimkeystart & 0x01;
4959 DimensionKeyRange.low = dimkeystart >> 1;
4960 DimensionKeyRange.high = _3ewg->ReadUint8();
4961
4962 if (_3ewg->GetSize() > 32) {
4963 // read MIDI rules
4964 int i = 0;
4965 _3ewg->SetPos(32);
4966 uint8_t id1 = _3ewg->ReadUint8();
4967 uint8_t id2 = _3ewg->ReadUint8();
4968
4969 if (id2 == 16) {
4970 if (id1 == 4) {
4971 pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
4972 } else if (id1 == 0) {
4973 pMidiRules[i++] = new MidiRuleLegato(_3ewg);
4974 } else if (id1 == 3) {
4975 pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
4976 } else {
4977 pMidiRules[i++] = new MidiRuleUnknown;
4978 }
4979 }
4980 else if (id1 != 0 || id2 != 0) {
4981 pMidiRules[i++] = new MidiRuleUnknown;
4982 }
4983 //TODO: all the other types of rules
4984
4985 pMidiRules[i] = NULL;
4986 }
4987 }
4988 }
4989
4990 if (pFile->GetAutoLoad()) {
4991 if (!pRegions) pRegions = new RegionList;
4992 RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
4993 if (lrgn) {
4994 size_t i = 0;
4995 for (RIFF::List* rgn = lrgn->GetSubListAt(i); rgn;
4996 rgn = lrgn->GetSubListAt(++i))
4997 {
4998 if (rgn->GetListType() == LIST_TYPE_RGN) {
4999 if (pProgress)
5000 __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
5001 pRegions->push_back(new Region(this, rgn));
5002 }
5003 }
5004 // Creating Region Key Table for fast lookup
5005 UpdateRegionKeyTable();
5006 }
5007 }
5008
5009 // own gig format extensions
5010 RIFF::List* lst3LS = insList->GetSubList(LIST_TYPE_3LS);
5011 if (lst3LS) {
5012 // script slots (that is references to instrument scripts)
5013 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
5014 if (ckSCSL) {
5015 ckSCSL->SetPos(0);
5016
5017 int headerSize = ckSCSL->ReadUint32();
5018 int slotCount = ckSCSL->ReadUint32();
5019 if (slotCount) {
5020 int slotSize = ckSCSL->ReadUint32();
5021 ckSCSL->SetPos(headerSize); // in case of future header extensions
5022 int unknownSpace = slotSize - 2*sizeof(uint32_t); // in case of future slot extensions
5023 for (int i = 0; i < slotCount; ++i) {
5024 _ScriptPooolEntry e;
5025 e.fileOffset = ckSCSL->ReadUint32();
5026 e.bypass = ckSCSL->ReadUint32() & 1;
5027 if (unknownSpace) ckSCSL->SetPos(unknownSpace, RIFF::stream_curpos); // in case of future extensions
5028 scriptPoolFileOffsets.push_back(e);
5029 }
5030 }
5031 }
5032
5033 // overridden script 'patch' variables
5034 RIFF::Chunk* ckSCPV = lst3LS->GetSubChunk(CHUNK_ID_SCPV);
5035 if (ckSCPV) {
5036 ckSCPV->SetPos(0);
5037
5038 int nScripts = ckSCPV->ReadUint32();
5039 for (int iScript = 0; iScript < nScripts; ++iScript) {
5040 _UUID uuid;
5041 for (int i = 0; i < 16; ++i)
5042 uuid[i] = ckSCPV->ReadUint8();
5043 uint slot = ckSCPV->ReadUint32();
5044 ckSCPV->ReadUint32(); // unused, reserved 32 bit
5045 int nVars = ckSCPV->ReadUint32();
5046 for (int iVar = 0; iVar < nVars; ++iVar) {
5047 uint8_t type = ckSCPV->ReadUint8();
5048 ckSCPV->ReadUint8(); // unused, reserved byte
5049 int blobSize = ckSCPV->ReadUint16();
5050 RIFF::file_offset_t pos = ckSCPV->GetPos();
5051 // assuming 1st bit is set in 'type', otherwise blob not
5052 // supported for decoding
5053 if (type & 1) {
5054 String name, value;
5055 int len = ckSCPV->ReadUint16();
5056 for (int i = 0; i < len; ++i)
5057 name += (char) ckSCPV->ReadUint8();
5058 len = ckSCPV->ReadUint16();
5059 for (int i = 0; i < len; ++i)
5060 value += (char) ckSCPV->ReadUint8();
5061 if (!name.empty()) // 'name' should never be empty, but just to be sure
5062 scriptVars[uuid][slot][name] = value;
5063 }
5064 // also for potential future extensions: seek forward
5065 // according to blob size
5066 ckSCPV->SetPos(pos + blobSize);
5067 }
5068 }
5069 }
5070 }
5071
5072 if (pProgress)
5073 __notify_progress(pProgress, 1.0f); // notify done
5074 }
5075
5076 void Instrument::UpdateRegionKeyTable() {
5077 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
5078 RegionList::iterator iter = pRegions->begin();
5079 RegionList::iterator end = pRegions->end();
5080 for (; iter != end; ++iter) {
5081 gig::Region* pRegion = static_cast<gig::Region*>(*iter);
5082 const int low = std::max(int(pRegion->KeyRange.low), 0);
5083 const int high = std::min(int(pRegion->KeyRange.high), 127);
5084 for (int iKey = low; iKey <= high; iKey++) {
5085 RegionKeyTable[iKey] = pRegion;
5086 }
5087 }
5088 }
5089
5090 Instrument::~Instrument() {
5091 for (int i = 0 ; pMidiRules[i] ; i++) {
5092 delete pMidiRules[i];
5093 }
5094 delete[] pMidiRules;
5095 if (pScriptRefs) delete pScriptRefs;
5096 }
5097
5098 /**
5099 * Apply Instrument with all its Regions to the respective RIFF chunks.
5100 * You have to call File::Save() to make changes persistent.
5101 *
5102 * Usually there is absolutely no need to call this method explicitly.
5103 * It will be called automatically when File::Save() was called.
5104 *
5105 * @param pProgress - callback function for progress notification
5106 * @throws gig::Exception if samples cannot be dereferenced
5107 */
5108 void Instrument::UpdateChunks(progress_t* pProgress) {
5109 // first update base classes' chunks
5110 DLS::Instrument::UpdateChunks(pProgress);
5111
5112 // update Regions' chunks
5113 {
5114 RegionList::iterator iter = pRegions->begin();
5115 RegionList::iterator end = pRegions->end();
5116 for (; iter != end; ++iter)
5117 (*iter)->UpdateChunks(pProgress);
5118 }
5119
5120 // make sure 'lart' RIFF list chunk exists
5121 RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
5122 if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
5123 // make sure '3ewg' RIFF chunk exists
5124 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
5125 if (!_3ewg) {
5126 File* pFile = (File*) GetParent();
5127
5128 // 3ewg is bigger in gig3, as it includes the iMIDI rules
5129 int size = (pFile->pVersion && pFile->pVersion->major > 2) ? 16416 : 12;
5130 _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
5131 memset(_3ewg->LoadChunkData(), 0, size);
5132 }
5133 // update '3ewg' RIFF chunk
5134 uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
5135 store16(&pData[0], EffectSend);
5136 store32(&pData[2], Attenuation);
5137 store16(&pData[6], FineTune);
5138 store16(&pData[8], PitchbendRange);
5139 const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
5140 DimensionKeyRange.low << 1;
5141 pData[10] = dimkeystart;
5142 pData[11] = DimensionKeyRange.high;
5143
5144 if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
5145 pData[32] = 0;
5146 pData[33] = 0;
5147 } else {
5148 for (int i = 0 ; pMidiRules[i] ; i++) {
5149 pMidiRules[i]->UpdateChunks(pData);
5150 }
5151 }
5152
5153 // own gig format extensions
5154 if (ScriptSlotCount()) {
5155 // make sure we have converted the original loaded script file
5156 // offsets into valid Script object pointers
5157 LoadScripts();
5158
5159 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
5160 if (!lst3LS) lst3LS = pCkInstrument->AddSubList(LIST_TYPE_3LS);
5161
5162 // save script slots (that is references to instrument scripts)
5163 const int slotCount = (int) pScriptRefs->size();
5164 const int headerSize = 3 * sizeof(uint32_t);
5165 const int slotSize = 2 * sizeof(uint32_t);
5166 const int totalChunkSize = headerSize + slotCount * slotSize;
5167 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
5168 if (!ckSCSL) ckSCSL = lst3LS->AddSubChunk(CHUNK_ID_SCSL, totalChunkSize);
5169 else ckSCSL->Resize(totalChunkSize);
5170 uint8_t* pData = (uint8_t*) ckSCSL->LoadChunkData();
5171 int pos = 0;
5172 store32(&pData[pos], headerSize);
5173 pos += sizeof(uint32_t);
5174 store32(&pData[pos], slotCount);
5175 pos += sizeof(uint32_t);
5176 store32(&pData[pos], slotSize);
5177 pos += sizeof(uint32_t);
5178 for (int i = 0; i < slotCount; ++i) {
5179 // arbitrary value, the actual file offset will be updated in
5180 // UpdateScriptFileOffsets() after the file has been resized
5181 int bogusFileOffset = 0;
5182 store32(&pData[pos], bogusFileOffset);
5183 pos += sizeof(uint32_t);
5184 store32(&pData[pos], (*pScriptRefs)[i].bypass ? 1 : 0);
5185 pos += sizeof(uint32_t);
5186 }
5187
5188 // save overridden script 'patch' variables ...
5189
5190 // the actual 'scriptVars' member variable might contain variables of
5191 // scripts which are currently no longer assigned to any script slot
5192 // of this instrument, we need to get rid of these variables here to
5193 // prevent saving those persistently, however instead of touching the
5194 // member variable 'scriptVars' directly, rather strip a separate
5195 // copy such that the overridden values are not lost during an
5196 // instrument editor session (i.e. if script might be re-assigned)
5197 _VarsByScript vars = stripScriptVars();
5198 if (!vars.empty()) {
5199 // determine total size required for 'SCPV' RIFF chunk, and the
5200 // total amount of scripts being overridden (the latter is
5201 // required because a script might be used on several script
5202 // slots, hence vars.size() could then not be used here instead)
5203 size_t totalChunkSize = 4;
5204 size_t totalScriptsOverridden = 0;
5205 for (const auto& script : vars) {
5206 for (const auto& slot : script.second) {
5207 totalScriptsOverridden++;
5208 totalChunkSize += 16 + 4 + 4 + 4;
5209 for (const auto& var : slot.second) {
5210 totalChunkSize += 4 + 2 + var.first.length() +
5211 2 + var.second.length();
5212 }
5213 }
5214 }
5215
5216 // ensure 'SCPV' RIFF chunk exists (with required size)
5217 RIFF::Chunk* ckSCPV = lst3LS->GetSubChunk(CHUNK_ID_SCPV);
5218 if (!ckSCPV) ckSCPV = lst3LS->AddSubChunk(CHUNK_ID_SCPV, totalChunkSize);
5219 else ckSCPV->Resize(totalChunkSize);
5220
5221 // store the actual data to 'SCPV' RIFF chunk
5222 uint8_t* pData = (uint8_t*) ckSCPV->LoadChunkData();
5223 int pos = 0;
5224 store32(&pData[pos], (uint32_t) totalScriptsOverridden); // scripts count
5225 pos += 4;
5226 for (const auto& script : vars) {
5227 for (const auto& slot : script.second) {
5228 for (int i = 0; i < 16; ++i)
5229 pData[pos+i] = script.first[i]; // uuid
5230 pos += 16;
5231 store32(&pData[pos], (uint32_t) slot.first); // slot index
5232 pos += 4;
5233 store32(&pData[pos], (uint32_t) 0); // unused, reserved 32 bit
5234 pos += 4;
5235 store32(&pData[pos], (uint32_t) slot.second.size()); // variables count
5236 pos += 4;
5237 for (const auto& var : slot.second) {
5238 pData[pos++] = 1; // type
5239 pData[pos++] = 0; // reserved byte
5240 store16(&pData[pos], 2 + var.first.size() + 2 + var.second.size()); // blob size
5241 pos += 2;
5242 store16(&pData[pos], var.first.size()); // variable name length
5243 pos += 2;
5244 for (int i = 0; i < var.first.size(); ++i)
5245 pData[pos++] = var.first[i];
5246 store16(&pData[pos], var.second.size()); // variable value length
5247 pos += 2;
5248 for (int i = 0; i < var.second.size(); ++i)
5249 pData[pos++] = var.second[i];
5250 }
5251 }
5252 }
5253 } else {
5254 // no script variable overridden by this instrument, so get rid
5255 // of 'SCPV' RIFF chunk (if any)
5256 RIFF::Chunk* ckSCPV = lst3LS->GetSubChunk(CHUNK_ID_SCPV);
5257 if (ckSCPV) lst3LS->DeleteSubChunk(ckSCPV);
5258 }
5259 } else {
5260 // no script slots, so get rid of any LS custom RIFF chunks (if any)
5261 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
5262 if (lst3LS) pCkInstrument->DeleteSubChunk(lst3LS);
5263 }
5264 }
5265
5266 void Instrument::UpdateScriptFileOffsets() {
5267 // own gig format extensions
5268 if (pScriptRefs && pScriptRefs->size() > 0) {
5269 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
5270 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
5271 const int slotCount = (int) pScriptRefs->size();
5272 const int headerSize = 3 * sizeof(uint32_t);
5273 ckSCSL->SetPos(headerSize);
5274 for (int i = 0; i < slotCount; ++i) {
5275 uint32_t fileOffset = uint32_t(
5276 (*pScriptRefs)[i].script->pChunk->GetFilePos() -
5277 (*pScriptRefs)[i].script->pChunk->GetPos() -
5278 CHUNK_HEADER_SIZE(ckSCSL->GetFile()->GetFileOffsetSize())
5279 );
5280 ckSCSL->WriteUint32(&fileOffset);
5281 // jump over flags entry (containing the bypass flag)
5282 ckSCSL->SetPos(sizeof(uint32_t), RIFF::stream_curpos);
5283 }
5284 }
5285 }
5286
5287 /**
5288 * Returns the appropriate Region for a triggered note.
5289 *
5290 * @param Key MIDI Key number of triggered note / key (0 - 127)
5291 * @returns pointer adress to the appropriate Region or NULL if there
5292 * there is no Region defined for the given \a Key
5293 */
5294 Region* Instrument::GetRegion(unsigned int Key) {
5295 if (!pRegions || pRegions->empty() || Key > 127) return NULL;
5296 return RegionKeyTable[Key];
5297
5298 /*for (int i = 0; i < Regions; i++) {
5299 if (Key <= pRegions[i]->KeyRange.high &&
5300 Key >= pRegions[i]->KeyRange.low) return pRegions[i];
5301 }
5302 return NULL;*/
5303 }
5304
5305 /**
5306 * Returns Region at supplied @a pos position within the region list of
5307 * this instrument. If supplied @a pos is out of bounds then @c NULL is
5308 * returned.
5309 *
5310 * @param pos - position of sought Region in region list
5311 * @returns pointer address to requested region or @c NULL if @a pos is
5312 * out of bounds
5313 */
5314 Region* Instrument::GetRegionAt(size_t pos) {
5315 if (!pRegions) return NULL;
5316 if (pos >= pRegions->size()) return NULL;
5317 return static_cast<gig::Region*>( (*pRegions)[pos] );
5318 }
5319
5320 /**
5321 * Returns the first Region of the instrument. You have to call this
5322 * method once before you use GetNextRegion().
5323 *
5324 * @returns pointer address to first region or NULL if there is none
5325 * @see GetNextRegion()
5326 * @deprecated This method is not reentrant-safe, use GetRegionAt()
5327 * instead.
5328 */
5329 Region* Instrument::GetFirstRegion() {
5330 if (!pRegions) return NULL;
5331 RegionsIterator = pRegions->begin();
5332 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
5333 }
5334
5335 /**
5336 * Returns the next Region of the instrument. You have to call
5337 * GetFirstRegion() once before you can use this method. By calling this
5338 * method multiple times it iterates through the available Regions.
5339 *
5340 * @returns pointer address to the next region or NULL if end reached
5341 * @see GetFirstRegion()
5342 * @deprecated This method is not reentrant-safe, use GetRegionAt()
5343 * instead.
5344 */
5345 Region* Instrument::GetNextRegion() {
5346 if (!pRegions) return NULL;
5347 RegionsIterator++;
5348 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
5349 }
5350
5351 Region* Instrument::AddRegion() {
5352 // create new Region object (and its RIFF chunks)
5353 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
5354 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
5355 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
5356 Region* pNewRegion = new Region(this, rgn);
5357 pRegions->push_back(pNewRegion);
5358 Regions = (uint32_t) pRegions->size();
5359 // update Region key table for fast lookup
5360 UpdateRegionKeyTable();
5361 // done
5362 return pNewRegion;
5363 }
5364
5365 void Instrument::DeleteRegion(Region* pRegion) {
5366 if (!pRegions) return;
5367 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
5368 // update Region key table for fast lookup
5369 UpdateRegionKeyTable();
5370 }
5371
5372 /**
5373 * Move this instrument at the position before @arg dst.
5374 *
5375 * This method can be used to reorder the sequence of instruments in a
5376 * .gig file. This might be helpful especially on large .gig files which
5377 * contain a large number of instruments within the same .gig file. So
5378 * grouping such instruments to similar ones, can help to keep track of them
5379 * when working with such complex .gig files.
5380 *
5381 * When calling this method, this instrument will be removed from in its
5382 * current position in the instruments list and moved to the requested
5383 * target position provided by @param dst. You may also pass NULL as
5384 * argument to this method, in that case this intrument will be moved to the
5385 * very end of the .gig file's instrument list.
5386 *
5387 * You have to call Save() to make the order change persistent to the .gig
5388 * file.
5389 *
5390 * Currently this method is limited to moving the instrument within the same
5391 * .gig file. Trying to move it to another .gig file by calling this method
5392 * will throw an exception.
5393 *
5394 * @param dst - destination instrument at which this instrument will be
5395 * moved to, or pass NULL for moving to end of list
5396 * @throw gig::Exception if this instrument and target instrument are not
5397 * part of the same file
5398 */
5399 void Instrument::MoveTo(Instrument* dst) {
5400 if (dst && GetParent() != dst->GetParent())
5401 throw Exception(
5402 "gig::Instrument::MoveTo() can only be used for moving within "
5403 "the same gig file."
5404 );
5405
5406 File* pFile = (File*) GetParent();
5407
5408 // move this instrument within the instrument list
5409 {
5410 File::InstrumentList& list = *pFile->pInstruments;
5411
5412 File::InstrumentList::iterator itFrom =
5413 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(this));
5414
5415 File::InstrumentList::iterator itTo =
5416 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(dst));
5417
5418 list.splice(itTo, list, itFrom);
5419 }
5420
5421 // move the instrument's actual list RIFF chunk appropriately
5422 RIFF::List* lstCkInstruments = pFile->pRIFF->GetSubList(LIST_TYPE_LINS);
5423 lstCkInstruments->MoveSubChunk(
5424 this->pCkInstrument,
5425 (RIFF::Chunk*) ((dst) ? dst->pCkInstrument : NULL)
5426 );
5427 }
5428
5429 /**
5430 * Returns a MIDI rule of the instrument.
5431 *
5432 * The list of MIDI rules, at least in gig v3, always contains at
5433 * most two rules. The second rule can only be the DEF filter
5434 * (which currently isn't supported by libgig).
5435 *
5436 * @param i - MIDI rule number
5437 * @returns pointer address to MIDI rule number i or NULL if there is none
5438 */
5439 MidiRule* Instrument::GetMidiRule(int i) {
5440 return pMidiRules[i];
5441 }
5442
5443 /**
5444 * Adds the "controller trigger" MIDI rule to the instrument.
5445 *
5446 * @returns the new MIDI rule
5447 */
5448 MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
5449 delete pMidiRules[0];
5450 MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
5451 pMidiRules[0] = r;
5452 pMidiRules[1] = 0;
5453 return r;
5454 }
5455
5456 /**
5457 * Adds the legato MIDI rule to the instrument.
5458 *
5459 * @returns the new MIDI rule
5460 */
5461 MidiRuleLegato* Instrument::AddMidiRuleLegato() {
5462 delete pMidiRules[0];
5463 MidiRuleLegato* r = new MidiRuleLegato;
5464 pMidiRules[0] = r;
5465 pMidiRules[1] = 0;
5466 return r;
5467 }
5468
5469 /**
5470 * Adds the alternator MIDI rule to the instrument.
5471 *
5472 * @returns the new MIDI rule
5473 */
5474 MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
5475 delete pMidiRules[0];
5476 MidiRuleAlternator* r = new MidiRuleAlternator;
5477 pMidiRules[0] = r;
5478 pMidiRules[1] = 0;
5479 return r;
5480 }
5481
5482 /**
5483 * Deletes a MIDI rule from the instrument.
5484 *
5485 * @param i - MIDI rule number
5486 */
5487 void Instrument::DeleteMidiRule(int i) {
5488 delete pMidiRules[i];
5489 pMidiRules[i] = 0;
5490 }
5491
5492 void Instrument::LoadScripts() {
5493 if (pScriptRefs) return;
5494 pScriptRefs = new std::vector<_ScriptPooolRef>;
5495 if (scriptPoolFileOffsets.empty()) return;
5496 File* pFile = (File*) GetParent();
5497 for (uint k = 0; k < scriptPoolFileOffsets.size(); ++k) {
5498 uint32_t soughtOffset = scriptPoolFileOffsets[k].fileOffset;
5499 for (uint i = 0; pFile->GetScriptGroup(i); ++i) {
5500 ScriptGroup* group = pFile->GetScriptGroup(i);
5501 for (uint s = 0; group->GetScript(s); ++s) {
5502 Script* script = group->GetScript(s);
5503 if (script->pChunk) {
5504 uint32_t offset = uint32_t(
5505 script->pChunk->GetFilePos() -
5506 script->pChunk->GetPos() -
5507 CHUNK_HEADER_SIZE(script->pChunk->GetFile()->GetFileOffsetSize())
5508 );
5509 if (offset == soughtOffset)
5510 {
5511 _ScriptPooolRef ref;
5512 ref.script = script;
5513 ref.bypass = scriptPoolFileOffsets[k].bypass;
5514 pScriptRefs->push_back(ref);
5515 break;
5516 }
5517 }
5518 }
5519 }
5520 }
5521 // we don't need that anymore
5522 scriptPoolFileOffsets.clear();
5523 }
5524
5525 /** @brief Get instrument script (gig format extension).
5526 *
5527 * Returns the real-time instrument script of instrument script slot
5528 * @a index.
5529 *
5530 * @note This is an own format extension which did not exist i.e. in the
5531 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5532 * gigedit.
5533 *
5534 * @param index - instrument script slot index
5535 * @returns script or NULL if index is out of bounds
5536 */
5537 Script* Instrument::GetScriptOfSlot(uint index) {
5538 LoadScripts();
5539 if (index >= pScriptRefs->size()) return NULL;
5540 return pScriptRefs->at(index).script;
5541 }
5542
5543 /** @brief Add new instrument script slot (gig format extension).
5544 *
5545 * Add the given real-time instrument script reference to this instrument,
5546 * which shall be executed by the sampler for for this instrument. The
5547 * script will be added to the end of the script list of this instrument.
5548 * The positions of the scripts in the Instrument's Script list are
5549 * relevant, because they define in which order they shall be executed by
5550 * the sampler. For this reason it is also legal to add the same script
5551 * twice to an instrument, for example you might have a script called
5552 * "MyFilter" which performs an event filter task, and you might have
5553 * another script called "MyNoteTrigger" which triggers new notes, then you
5554 * might for example have the following list of scripts on the instrument:
5555 *
5556 * 1. Script "MyFilter"
5557 * 2. Script "MyNoteTrigger"
5558 * 3. Script "MyFilter"
5559 *
5560 * Which would make sense, because the 2nd script launched new events, which
5561 * you might need to filter as well.
5562 *
5563 * There are two ways to disable / "bypass" scripts. You can either disable
5564 * a script locally for the respective script slot on an instrument (i.e. by
5565 * passing @c false to the 2nd argument of this method, or by calling
5566 * SetScriptBypassed()). Or you can disable a script globally for all slots
5567 * and all instruments by setting Script::Bypass.
5568 *
5569 * @note This is an own format extension which did not exist i.e. in the
5570 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5571 * gigedit.
5572 *
5573 * @param pScript - script that shall be executed for this instrument
5574 * @param bypass - if enabled, the sampler shall skip executing this
5575 * script (in the respective list position)
5576 * @see SetScriptBypassed()
5577 */
5578 void Instrument::AddScriptSlot(Script* pScript, bool bypass) {
5579 LoadScripts();
5580 _ScriptPooolRef ref = { pScript, bypass };
5581 pScriptRefs->push_back(ref);
5582 }
5583
5584 /** @brief Flip two script slots with each other (gig format extension).
5585 *
5586 * Swaps the position of the two given scripts in the Instrument's Script
5587 * list. The positions of the scripts in the Instrument's Script list are
5588 * relevant, because they define in which order they shall be executed by
5589 * the sampler.
5590 *
5591 * @note This is an own format extension which did not exist i.e. in the
5592 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5593 * gigedit.
5594 *
5595 * @param index1 - index of the first script slot to swap
5596 * @param index2 - index of the second script slot to swap
5597 */
5598 void Instrument::SwapScriptSlots(uint index1, uint index2) {
5599 LoadScripts();
5600 if (index1 >= pScriptRefs->size() || index2 >= pScriptRefs->size())
5601 return;
5602 _ScriptPooolRef tmp = (*pScriptRefs)[index1];
5603 (*pScriptRefs)[index1] = (*pScriptRefs)[index2];
5604 (*pScriptRefs)[index2] = tmp;
5605 }
5606
5607 /** @brief Remove script slot.
5608 *
5609 * Removes the script slot with the given slot index.
5610 *
5611 * @param index - index of script slot to remove
5612 */
5613 void Instrument::RemoveScriptSlot(uint index) {
5614 LoadScripts();
5615 if (index >= pScriptRefs->size()) return;
5616 pScriptRefs->erase( pScriptRefs->begin() + index );
5617 }
5618
5619 /** @brief Remove reference to given Script (gig format extension).
5620 *
5621 * This will remove all script slots on the instrument which are referencing
5622 * the given script.
5623 *
5624 * @note This is an own format extension which did not exist i.e. in the
5625 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5626 * gigedit.
5627 *
5628 * @param pScript - script reference to remove from this instrument
5629 * @see RemoveScriptSlot()
5630 */
5631 void Instrument::RemoveScript(Script* pScript) {
5632 LoadScripts();
5633 for (ssize_t i = pScriptRefs->size() - 1; i >= 0; --i) {
5634 if ((*pScriptRefs)[i].script == pScript) {
5635 pScriptRefs->erase( pScriptRefs->begin() + i );
5636 }
5637 }
5638 }
5639
5640 /** @brief Instrument's amount of script slots.
5641 *
5642 * This method returns the amount of script slots this instrument currently
5643 * uses.
5644 *
5645 * A script slot is a reference of a real-time instrument script to be
5646 * executed by the sampler. The scripts will be executed by the sampler in
5647 * sequence of the slots. One (same) script may be referenced multiple
5648 * times in different slots.
5649 *
5650 * @note This is an own format extension which did not exist i.e. in the
5651 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5652 * gigedit.
5653 */
5654 uint Instrument::ScriptSlotCount() const {
5655 return uint(pScriptRefs ? pScriptRefs->size() : scriptPoolFileOffsets.size());
5656 }
5657
5658 /** @brief Whether script execution shall be skipped.
5659 *
5660 * Defines locally for the Script reference slot in the Instrument's Script
5661 * list, whether the script shall be skipped by the sampler regarding
5662 * execution.
5663 *
5664 * It is also possible to ignore exeuction of the script globally, for all
5665 * slots and for all instruments by setting Script::Bypass.
5666 *
5667 * @note This is an own format extension which did not exist i.e. in the
5668 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5669 * gigedit.
5670 *
5671 * @param index - index of the script slot on this instrument
5672 * @see Script::Bypass
5673 */
5674 bool Instrument::IsScriptSlotBypassed(uint index) {
5675 if (index >= ScriptSlotCount()) return false;
5676 return pScriptRefs ? pScriptRefs->at(index).bypass
5677 : scriptPoolFileOffsets.at(index).bypass;
5678
5679 }
5680
5681 /** @brief Defines whether execution shall be skipped.
5682 *
5683 * You can call this method to define locally whether or whether not the
5684 * given script slot shall be executed by the sampler.
5685 *
5686 * @note This is an own format extension which did not exist i.e. in the
5687 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5688 * gigedit.
5689 *
5690 * @param index - script slot index on this instrument
5691 * @param bBypass - if true, the script slot will be skipped by the sampler
5692 * @see Script::Bypass
5693 */
5694 void Instrument::SetScriptSlotBypassed(uint index, bool bBypass) {
5695 if (index >= ScriptSlotCount()) return;
5696 if (pScriptRefs)
5697 pScriptRefs->at(index).bypass = bBypass;
5698 else
5699 scriptPoolFileOffsets.at(index).bypass = bBypass;
5700 }
5701
5702 /// type cast (by copy) uint8_t[16] -> std::array<uint8_t,16>
5703 inline std::array<uint8_t,16> _UUIDFromCArray(const uint8_t* pData) {
5704 std::array<uint8_t,16> uuid;
5705 memcpy(&uuid[0], pData, 16);
5706 return uuid;
5707 }
5708
5709 /**
5710 * Returns true if this @c Instrument has any script slot which references
5711 * the @c Script identified by passed @p uuid.
5712 */
5713 bool Instrument::ReferencesScriptWithUuid(const _UUID& uuid) {
5714 const uint nSlots = ScriptSlotCount();
5715 for (uint iSlot = 0; iSlot < nSlots; ++iSlot)
5716 if (_UUIDFromCArray(&GetScriptOfSlot(iSlot)->Uuid[0]) == uuid)
5717 return true;
5718 return false;
5719 }
5720
5721 /** @brief Checks whether a certain script 'patch' variable value is set.
5722 *
5723 * Returns @c true if the initial value for the requested script variable is
5724 * currently overridden by this instrument.
5725 *
5726 * @remarks Real-time instrument scripts allow to declare special 'patch'
5727 * variables, which essentially behave like regular variables of their data
5728 * type, however their initial value may optionally be overridden on a per
5729 * instrument basis. That allows to share scripts between instruments while
5730 * still being able to fine tune certain aspects of the script for each
5731 * instrument individually.
5732 *
5733 * @note This is an own format extension which did not exist i.e. in the
5734 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5735 * Gigedit.
5736 *
5737 * @param slot - script slot index of the variable to be retrieved
5738 * @param variable - name of the 'patch' variable in that script
5739 */
5740 bool Instrument::IsScriptPatchVariableSet(int slot, String variable) {
5741 if (variable.empty()) return false;
5742 Script* script = GetScriptOfSlot(slot);
5743 if (!script) return false;
5744 const _UUID uuid = _UUIDFromCArray(&script->Uuid[0]);
5745 if (!scriptVars.count(uuid)) return false;
5746 const _VarsBySlot& slots = scriptVars.find(uuid)->second;
5747 if (slots.empty()) return false;
5748 if (slots.count(slot))
5749 return slots.find(slot)->second.count(variable);
5750 else
5751 return slots.begin()->second.count(variable);
5752 }
5753
5754 /** @brief Get all overridden script 'patch' variables.
5755 *
5756 * Returns map of key-value pairs reflecting all patch variables currently
5757 * being overridden by this instrument for the given script @p slot, where
5758 * key is the variable name and value is the hereby currently overridden
5759 * value for that variable.
5760 *
5761 * @remarks Real-time instrument scripts allow to declare special 'patch'
5762 * variables, which essentially behave like regular variables of their data
5763 * type, however their initial value may optionally be overridden on a per
5764 * instrument basis. That allows to share scripts between instruments while
5765 * still being able to fine tune certain aspects of the script for each
5766 * instrument individually.
5767 *
5768 * @note This is an own format extension which did not exist i.e. in the
5769 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5770 * Gigedit.
5771 *
5772 * @param slot - script slot index of the variable to be retrieved
5773 */
5774 std::map<String,String> Instrument::GetScriptPatchVariables(int slot) {
5775 Script* script = GetScriptOfSlot(slot);
5776 if (!script) return std::map<String,String>();
5777 const _UUID uuid = _UUIDFromCArray(&script->Uuid[0]);
5778 if (!scriptVars.count(uuid)) return std::map<String,String>();
5779 const _VarsBySlot& slots = scriptVars.find(uuid)->second;
5780 if (slots.empty()) return std::map<String,String>();
5781 const _PatchVars& vars =
5782 (slots.count(slot)) ?
5783 slots.find(slot)->second : slots.begin()->second;
5784 return vars;
5785 }
5786
5787 /** @brief Get overridden initial value for 'patch' variable.
5788 *
5789 * Returns current initial value for the requested script variable being
5790 * overridden by this instrument.
5791 *
5792 * @remarks Real-time instrument scripts allow to declare special 'patch'
5793 * variables, which essentially behave like regular variables of their data
5794 * type, however their initial value may optionally be overridden on a per
5795 * instrument basis. That allows to share scripts between instruments while
5796 * still being able to fine tune certain aspects of the script for each
5797 * instrument individually.
5798 *
5799 * @note This is an own format extension which did not exist i.e. in the
5800 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5801 * Gigedit.
5802 *
5803 * @param slot - script slot index of the variable to be retrieved
5804 * @param variable - name of the 'patch' variable in that script
5805 */
5806 String Instrument::GetScriptPatchVariable(int slot, String variable) {
5807 std::map<String,String> vars = GetScriptPatchVariables(slot);
5808 return (vars.count(variable)) ? vars.find(variable)->second : "";
5809 }
5810
5811 /** @brief Override initial value for 'patch' variable.
5812 *
5813 * Overrides initial value for the requested script variable for this
5814 * instrument with the passed value.
5815 *
5816 * @remarks Real-time instrument scripts allow to declare special 'patch'
5817 * variables, which essentially behave like regular variables of their data
5818 * type, however their initial value may optionally be overridden on a per
5819 * instrument basis. That allows to share scripts between instruments while
5820 * still being able to fine tune certain aspects of the script for each
5821 * instrument individually.
5822 *
5823 * @note This is an own format extension which did not exist i.e. in the
5824 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5825 * Gigedit.
5826 *
5827 * @param slot - script slot index of the variable to be set
5828 * @param variable - name of the 'patch' variable in that script
5829 * @param value - overridden initial value for that script variable
5830 * @throws gig::Exception if given script @p slot index is invalid or given
5831 * @p variable name is empty
5832 */
5833 void Instrument::SetScriptPatchVariable(int slot, String variable, String value) {
5834 if (variable.empty())
5835 throw Exception("Variable name must not be empty");
5836 Script* script = GetScriptOfSlot(slot);
5837 if (!script)
5838 throw Exception("No script slot with index " + ToString(slot));
5839 const _UUID uuid = _UUIDFromCArray(&script->Uuid[0]);
5840 scriptVars[uuid][slot][variable] = value;
5841 }
5842
5843 /** @brief Drop overridden initial value(s) for 'patch' variable(s).
5844 *
5845 * Reverts initial value(s) for requested script variable(s) back to their
5846 * default initial value(s) defined in the script itself.
5847 *
5848 * Both arguments of this method are optional. The most obvious use case of
5849 * this method would be passing a valid script @p slot index and a
5850 * (non-emtpy string as) @p variable name to this method, which would cause
5851 * that single variable to be unset for that specific script slot (on this
5852 * @c Instrument level).
5853 *
5854 * Not passing a value (or @c -1 for @p slot and/or empty string for
5855 * @p variable) means 'wildcard'. So accordingly absence of argument(s) will
5856 * cause all variables and/or for all script slots being unset. Hence this
5857 * method serves 2^2 = 4 possible use cases in total and accordingly covers
5858 * 4 different behaviours in one method.
5859 *
5860 * @remarks Real-time instrument scripts allow to declare special 'patch'
5861 * variables, which essentially behave like regular variables of their data
5862 * type, however their initial value may optionally be overridden on a per
5863 * instrument basis. That allows to share scripts between instruments while
5864 * still being able to fine tune certain aspects of the script for each
5865 * instrument individually.
5866 *
5867 * @note This is an own format extension which did not exist i.e. in the
5868 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5869 * Gigedit.
5870 *
5871 * @param slot - script slot index of the variable to be unset
5872 * @param variable - name of the 'patch' variable in that script
5873 */
5874 void Instrument::UnsetScriptPatchVariable(int slot, String variable) {
5875 Script* script = GetScriptOfSlot(slot);
5876
5877 // option 1: unset a particular variable of one particular script slot
5878 if (slot != -1 && !variable.empty()) {
5879 if (!script) return;
5880 const _UUID uuid = _UUIDFromCArray(&script->Uuid[0]);
5881 if (!scriptVars.count(uuid)) return;
5882 if (!scriptVars[uuid].count(slot)) return;
5883 if (scriptVars[uuid][slot].count(variable))
5884 scriptVars[uuid][slot].erase(
5885 scriptVars[uuid][slot].find(variable)
5886 );
5887 if (scriptVars[uuid][slot].empty())
5888 scriptVars[uuid].erase( scriptVars[uuid].find(slot) );
5889 if (scriptVars[uuid].empty())
5890 scriptVars.erase( scriptVars.find(uuid) );
5891 return;
5892 }
5893
5894 // option 2: unset all variables of all script slots
5895 if (slot == -1 && variable.empty()) {
5896 scriptVars.clear();
5897 return;
5898 }
5899
5900 // option 3: unset all variables of one particular script slot only
5901 if (slot != -1) {
5902 if (!script) return;
5903 const _UUID uuid = _UUIDFromCArray(&script->Uuid[0]);
5904 if (scriptVars.count(uuid))
5905 scriptVars.erase( scriptVars.find(uuid) );
5906 return;
5907 }
5908
5909 // option 4: unset a particular variable of all script slots
5910 _VarsByScript::iterator itScript = scriptVars.begin();
5911 _VarsByScript::iterator endScript = scriptVars.end();
5912 while (itScript != endScript) {
5913 _VarsBySlot& slots = itScript->second;
5914 _VarsBySlot::iterator itSlot = slots.begin();
5915 _VarsBySlot::iterator endSlot = slots.end();
5916 while (itSlot != endSlot) {
5917 _PatchVars& vars = itSlot->second;
5918 if (vars.count(variable))
5919 vars.erase( vars.find(variable) );
5920 if (vars.empty())
5921 slots.erase(itSlot++); // postfix increment to avoid iterator invalidation
5922 else
5923 ++itSlot;
5924 }
5925 if (slots.empty())
5926 scriptVars.erase(itScript++); // postfix increment to avoid iterator invalidation
5927 else
5928 ++itScript;
5929 }
5930 }
5931
5932 /**
5933 * Returns stripped version of member variable @c scriptVars, where scripts
5934 * no longer referenced by this @c Instrument are filtered out, and so are
5935 * variables of meanwhile obsolete slots (i.e. a script still being
5936 * referenced, but previously overridden on a script slot which either no
5937 * longer exists or is hosting another script now).
5938 */
5939 Instrument::_VarsByScript Instrument::stripScriptVars() {
5940 _VarsByScript vars;
5941 _VarsByScript::const_iterator itScript = scriptVars.begin();
5942 _VarsByScript::const_iterator endScript = scriptVars.end();
5943 for (; itScript != endScript; ++itScript) {
5944 const _UUID& uuid = itScript->first;
5945 if (!ReferencesScriptWithUuid(uuid))
5946 continue;
5947 const _VarsBySlot& slots = itScript->second;
5948 _VarsBySlot::const_iterator itSlot = slots.begin();
5949 _VarsBySlot::const_iterator endSlot = slots.end();
5950 for (; itSlot != endSlot; ++itSlot) {
5951 Script* script = GetScriptOfSlot(itSlot->first);
5952 if (!script) continue;
5953 if (_UUIDFromCArray(&script->Uuid[0]) != uuid) continue;
5954 if (itSlot->second.empty()) continue;
5955 vars[uuid][itSlot->first] = itSlot->second;
5956 }
5957 }
5958 return vars;
5959 }
5960
5961 /**
5962 * Make a (semi) deep copy of the Instrument object given by @a orig
5963 * and assign it to this object.
5964 *
5965 * Note that all sample pointers referenced by @a orig are simply copied as
5966 * memory address. Thus the respective samples are shared, not duplicated!
5967 *
5968 * @param orig - original Instrument object to be copied from
5969 */
5970 void Instrument::CopyAssign(const Instrument* orig) {
5971 CopyAssign(orig, NULL);
5972 }
5973
5974 /**
5975 * Make a (semi) deep copy of the Instrument object given by @a orig
5976 * and assign it to this object.
5977 *
5978 * @param orig - original Instrument object to be copied from
5979 * @param mSamples - crosslink map between the foreign file's samples and
5980 * this file's samples
5981 */
5982 void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
5983 // handle base class
5984 // (without copying DLS region stuff)
5985 DLS::Instrument::CopyAssignCore(orig);
5986
5987 // handle own member variables
5988 Attenuation = orig->Attenuation;
5989 EffectSend = orig->EffectSend;
5990 FineTune = orig->FineTune;
5991 PitchbendRange = orig->PitchbendRange;
5992 PianoReleaseMode = orig->PianoReleaseMode;
5993 DimensionKeyRange = orig->DimensionKeyRange;
5994 scriptPoolFileOffsets = orig->scriptPoolFileOffsets;
5995 // deep copy of pScriptRefs required (to avoid undefined behaviour)
5996 if (pScriptRefs) delete pScriptRefs;
5997 pScriptRefs = new std::vector<_ScriptPooolRef>;
5998 if (orig->pScriptRefs)
5999 *pScriptRefs = *orig->pScriptRefs;
6000 scriptVars = orig->scriptVars;
6001
6002 // free old midi rules
6003 for (int i = 0 ; pMidiRules[i] ; i++) {
6004 delete pMidiRules[i];
6005 }
6006 //TODO: MIDI rule copying
6007 pMidiRules[0] = NULL;
6008
6009 // delete all old regions
6010 while (Regions) DeleteRegion(GetRegionAt(0));
6011 // create new regions and copy them from original
6012 {
6013 RegionList::const_iterator it = orig->pRegions->begin();
6014 for (int i = 0; i < orig->Regions; ++i, ++it) {
6015 Region* dstRgn = AddRegion();
6016 //NOTE: Region does semi-deep copy !
6017 dstRgn->CopyAssign(
6018 static_cast<gig::Region*>(*it),
6019 mSamples
6020 );
6021 }
6022 }
6023
6024 UpdateRegionKeyTable();
6025 }
6026
6027 /**
6028 * Returns @c true in case this Instrument object uses any gig format
6029 * extension, that is e.g. whether any DimensionRegion object currently
6030 * has any setting effective that would require our "LSDE" RIFF chunk to
6031 * be stored to the gig file.
6032 *
6033 * Right now this is a private method. It is considerable though this method
6034 * to become (in slightly modified form) a public API method in future, i.e.
6035 * to allow instrument editors to visualize and/or warn the user of any gig
6036 * format extension being used. See also comments on
6037 * DimensionRegion::UsesAnyGigFormatExtension() for details about such a
6038 * potential public API change in future.
6039 */
6040 bool Instrument::UsesAnyGigFormatExtension() const {
6041 if (!pRegions) return false;
6042 if (!scriptVars.empty()) return true;
6043 RegionList::const_iterator iter = pRegions->begin();
6044 RegionList::const_iterator end = pRegions->end();
6045 for (; iter != end; ++iter) {
6046 gig::Region* rgn = static_cast<gig::Region*>(*iter);
6047 if (rgn->UsesAnyGigFormatExtension())
6048 return true;
6049 }
6050 return false;
6051 }
6052
6053
6054 // *************** Group ***************
6055 // *
6056
6057 /** @brief Constructor.
6058 *
6059 * @param file - pointer to the gig::File object
6060 * @param ck3gnm - pointer to 3gnm chunk associated with this group or
6061 * NULL if this is a new Group
6062 */
6063 Group::Group(File* file, RIFF::Chunk* ck3gnm) {
6064 pFile = file;
6065 pNameChunk = ck3gnm;
6066 SamplesIterator = 0;
6067 ::LoadString(pNameChunk, Name);
6068 }
6069
6070 /** @brief Destructor.
6071 *
6072 * Currently this destructor implementation does nothing.
6073 */
6074 Group::~Group() {
6075 }
6076
6077 /** @brief Remove all RIFF chunks associated with this Group object.
6078 *
6079 * See DLS::Storage::DeleteChunks() for details.
6080 */
6081 void Group::DeleteChunks() {
6082 // handle own RIFF chunks
6083 if (pNameChunk) {
6084 pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
6085 pNameChunk = NULL;
6086 }
6087 }
6088
6089 /** @brief Update chunks with current group settings.
6090 *
6091 * Apply current Group field values to the respective chunks. You have
6092 * to call File::Save() to make changes persistent.
6093 *
6094 * Usually there is absolutely no need to call this method explicitly.
6095 * It will be called automatically when File::Save() was called.
6096 *
6097 * @param pProgress - callback function for progress notification
6098 */
6099 void Group::UpdateChunks(progress_t* pProgress) {
6100 // make sure <3gri> and <3gnl> list chunks exist
6101 RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
6102 if (!_3gri) {
6103 _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
6104 pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
6105 }
6106 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
6107 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
6108
6109 if (!pNameChunk && pFile->pVersion && pFile->pVersion->major > 2) {
6110 // v3 has a fixed list of 128 strings, find a free one
6111 size_t i = 0;
6112 for (RIFF::Chunk* ck = _3gnl->GetSubChunkAt(i); ck; ck = _3gnl->GetSubChunkAt(++i)) {
6113 if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
6114 pNameChunk = ck;
6115 break;
6116 }
6117 }
6118 }
6119
6120 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
6121 ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
6122 }
6123
6124 /**
6125 * Returns Sample object at @a index of this sample group.
6126 *
6127 * @param index - position of sample in this sample group's sample list
6128 * (0..n)
6129 * @returns sample object or NULL if index is out of bounds
6130 */
6131 Sample* Group::GetSample(size_t index) {
6132 if (pFile->pSamples && index >= pFile->pSamples->size()) return NULL;
6133 size_t indexInFile = 0;
6134 size_t indexInGroup = 0;
6135 for (Sample* pSample = pFile->GetSample(indexInFile); pSample;
6136 pSample = pFile->GetSample(++indexInFile))
6137 {
6138 if (pSample->GetGroup() != this) continue;
6139 if (indexInGroup++ == index) return pSample;
6140 }
6141 return NULL;
6142 }
6143
6144 /**
6145 * Returns the first Sample of this Group. You have to call this method
6146 * once before you use GetNextSample().
6147 *
6148 * <b>Notice:</b> this method might block for a long time, in case the
6149 * samples of this .gig file were not scanned yet
6150 *
6151 * @returns pointer address to first Sample or NULL if there is none
6152 * applied to this Group
6153 * @see GetNextSample()
6154 * @deprecated This method is not reentrant-safe, use GetSample()
6155 * instead.
6156 */
6157 Sample* Group::GetFirstSample() {
6158 size_t& i = this->SamplesIterator;
6159 i = 0;
6160 for (Sample* pSample = pFile->GetSample(i); pSample;
6161 pSample = pFile->GetSample(++i))
6162 {
6163 if (pSample->GetGroup() == this)
6164 return pSample;
6165 }
6166 return NULL;
6167 }
6168
6169 /**
6170 * Returns the next Sample of the Group. You have to call
6171 * GetFirstSample() once before you can use this method. By calling this
6172 * method multiple times it iterates through the Samples assigned to
6173 * this Group.
6174 *
6175 * @returns pointer address to the next Sample of this Group or NULL if
6176 * end reached
6177 * @see GetFirstSample()
6178 * @deprecated This method is not reentrant-safe, use GetSample()
6179 * instead.
6180 */
6181 Sample* Group::GetNextSample() {
6182 size_t& i = this->SamplesIterator;
6183 for (Sample* pSample = pFile->GetSample(++i); pSample;
6184 pSample = pFile->GetSample(++i))
6185 {
6186 if (pSample->GetGroup() == this)
6187 return pSample;
6188 }
6189 return NULL;
6190 }
6191
6192 /**
6193 * Move Sample given by \a pSample from another Group to this Group.
6194 */
6195 void Group::AddSample(Sample* pSample) {
6196 pSample->pGroup = this;
6197 }
6198
6199 /**
6200 * Move all members of this group to another group (preferably the 1st
6201 * one except this). This method is called explicitly by
6202 * File::DeleteGroup() thus when a Group was deleted. This code was
6203 * intentionally not placed in the destructor!
6204 */
6205 void Group::MoveAll() {
6206 // get "that" other group first
6207 Group* pOtherGroup = NULL;
6208 for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
6209 if (pOtherGroup != this) break;
6210 }
6211 if (!pOtherGroup) throw Exception(
6212 "Could not move samples to another group, since there is no "
6213 "other Group. This is a bug, report it!"
6214 );
6215 // now move all samples of this group to the other group
6216 Sample* pSample;
6217 while ((pSample = GetSample(0))) {
6218 pOtherGroup->AddSample(pSample);
6219 }
6220 }
6221
6222
6223
6224 // *************** File ***************
6225 // *
6226
6227 /// Reflects Gigasampler file format version 2.0 (1998-06-28).
6228 const DLS::version_t File::VERSION_2 = {
6229 0, 2, 19980628 & 0xffff, 19980628 >> 16
6230 };
6231
6232 /// Reflects Gigasampler file format version 3.0 (2003-03-31).
6233 const DLS::version_t File::VERSION_3 = {
6234 0, 3, 20030331 & 0xffff, 20030331 >> 16
6235 };
6236
6237 /// Reflects Gigasampler file format version 4.0 (2007-10-12).
6238 const DLS::version_t File::VERSION_4 = {
6239 0, 4, 20071012 & 0xffff, 20071012 >> 16
6240 };
6241
6242 static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
6243 { CHUNK_ID_IARL, 256 },
6244 { CHUNK_ID_IART, 128 },
6245 { CHUNK_ID_ICMS, 128 },
6246 { CHUNK_ID_ICMT, 1024 },
6247 { CHUNK_ID_ICOP, 128 },
6248 { CHUNK_ID_ICRD, 128 },
6249 { CHUNK_ID_IENG, 128 },
6250 { CHUNK_ID_IGNR, 128 },
6251 { CHUNK_ID_IKEY, 128 },
6252 { CHUNK_ID_IMED, 128 },
6253 { CHUNK_ID_INAM, 128 },
6254 { CHUNK_ID_IPRD, 128 },
6255 { CHUNK_ID_ISBJ, 128 },
6256 { CHUNK_ID_ISFT, 128 },
6257 { CHUNK_ID_ISRC, 128 },
6258 { CHUNK_ID_ISRF, 128 },
6259 { CHUNK_ID_ITCH, 128 },
6260 { 0, 0 }
6261 };
6262
6263 File::File() : DLS::File() {
6264 bAutoLoad = true;
6265 *pVersion = VERSION_3;
6266 pGroups = NULL;
6267 pScriptGroups = NULL;
6268 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
6269 pInfo->ArchivalLocation = String(256, ' ');
6270
6271 // add some mandatory chunks to get the file chunks in right
6272 // order (INFO chunk will be moved to first position later)
6273 pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
6274 pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
6275 pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
6276
6277 GenerateDLSID();
6278 }
6279
6280 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
6281 bAutoLoad = true;
6282 pGroups = NULL;
6283 pScriptGroups = NULL;
6284 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
6285 }
6286
6287 File::~File() {
6288 if (pGroups) {
6289 std::vector<Group*>::iterator iter = pGroups->begin();
6290 std::vector<Group*>::iterator end = pGroups->end();
6291 while (iter != end) {
6292 delete *iter;
6293 ++iter;
6294 }
6295 delete pGroups;
6296 }
6297 if (pScriptGroups) {
6298 std::list<ScriptGroup*>::iterator iter = pScriptGroups->begin();
6299 std::list<ScriptGroup*>::iterator end = pScriptGroups->end();
6300 while (iter != end) {
6301 delete *iter;
6302 ++iter;
6303 }
6304 delete pScriptGroups;
6305 }
6306 }
6307
6308 /**
6309 * Returns a pointer to the first <i>Sample</i> object of the file,
6310 * <i>NULL</i> otherwise.
6311 *
6312 * @param pProgress - optional: callback function for progress notification
6313 * @deprecated This method is not reentrant-safe, use GetSample()
6314 * instead.
6315 */
6316 Sample* File::GetFirstSample(progress_t* pProgress) {
6317 if (!pSamples) LoadSamples(pProgress);
6318 if (!pSamples) return NULL;
6319 SamplesIterator = pSamples->begin();
6320 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
6321 }
6322
6323 /**
6324 * Returns a pointer to the next <i>Sample</i> object of the file,
6325 * <i>NULL</i> otherwise.
6326 *
6327 * @deprecated This method is not reentrant-safe, use GetSample()
6328 * instead.
6329 */
6330 Sample* File::GetNextSample() {
6331 if (!pSamples) return NULL;
6332 SamplesIterator++;
6333 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
6334 }
6335
6336 /**
6337 * Returns Sample object of @a index.
6338 *
6339 * @param index - position of sample in sample list (0..n)
6340 * @param pProgress - optional: callback function for progress notification
6341 * @returns sample object or NULL if index is out of bounds
6342 */
6343 Sample* File::GetSample(size_t index, progress_t* pProgress) {
6344 if (!pSamples) LoadSamples(pProgress);
6345 if (!pSamples) return NULL;
6346 if (index >= pSamples->size()) return NULL;
6347 return static_cast<gig::Sample*>( (*pSamples)[index] );
6348 }
6349
6350 /**
6351 * Returns the total amount of samples of this gig file.
6352 *
6353 * Note that this method might block for a long time in case it is required
6354 * to load the sample info for the first time.
6355 *
6356 * @returns total amount of samples
6357 */
6358 size_t File::CountSamples() {
6359 if (!pSamples) LoadSamples();
6360 if (!pSamples) return 0;
6361 return pSamples->size();
6362 }
6363
6364 /** @brief Add a new sample.
6365 *
6366 * This will create a new Sample object for the gig file. You have to
6367 * call Save() to make this persistent to the file.
6368 *
6369 * @returns pointer to new Sample object
6370 */
6371 Sample* File::AddSample() {
6372 if (!pSamples) LoadSamples();
6373 __ensureMandatoryChunksExist();
6374 RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
6375 // create new Sample object and its respective 'wave' list chunk
6376 RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
6377 Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
6378
6379 // add mandatory chunks to get the chunks in right order
6380 wave->AddSubChunk(CHUNK_ID_FMT, 16);
6381 wave->AddSubList(LIST_TYPE_INFO);
6382
6383 pSamples->push_back(pSample);
6384 return pSample;
6385 }
6386
6387 /** @brief Delete a sample.
6388 *
6389 * This will delete the given Sample object from the gig file. Any
6390 * references to this sample from Regions and DimensionRegions will be
6391 * removed. You have to call Save() to make this persistent to the file.
6392 *
6393 * @param pSample - sample to delete
6394 * @throws gig::Exception if given sample could not be found
6395 */
6396 void File::DeleteSample(Sample* pSample) {
6397 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
6398 SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
6399 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
6400 if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
6401 pSamples->erase(iter);
6402 pSample->DeleteChunks();
6403 delete pSample;
6404
6405 SampleList::iterator tmp = SamplesIterator;
6406 // remove all references to the sample
6407 for (Instrument* instrument = GetFirstInstrument() ; instrument ;
6408 instrument = GetNextInstrument()) {
6409 size_t iRgn = 0;
6410 for (Region* region = instrument->GetRegionAt(iRgn); region;
6411 region = instrument->GetRegionAt(++iRgn))
6412 {
6413 if (region->GetSample() == pSample) region->SetSample(NULL);
6414
6415 for (int i = 0 ; i < region->DimensionRegions ; i++) {
6416 gig::DimensionRegion *d = region->pDimensionRegions[i];
6417 if (d->pSample == pSample) d->pSample = NULL;
6418 }
6419 }
6420 }
6421 SamplesIterator = tmp; // restore iterator
6422 }
6423
6424 void File::LoadSamples() {
6425 LoadSamples(NULL);
6426 }
6427
6428 void File::LoadSamples(progress_t* pProgress) {
6429 // Groups must be loaded before samples, because samples will try
6430 // to resolve the group they belong to
6431 if (!pGroups) LoadGroups();
6432
6433 if (!pSamples) pSamples = new SampleList;
6434
6435 // just for progress calculation
6436 int iSampleIndex = 0;
6437 int iTotalSamples = WavePoolCount;
6438
6439 // just for assembling path of optional extension files to be read
6440 const std::string folder = parentPath(pRIFF->GetFileName());
6441 const std::string baseName = pathWithoutExtension(pRIFF->GetFileName());
6442
6443 // the main gig file and the extension files (.gx01, ... , .gx98) may
6444 // contain wave data (wave pool)
6445 std::vector<RIFF::File*> poolFiles;
6446 poolFiles.push_back(pRIFF);
6447
6448 // get info about all extension files
6449 RIFF::Chunk* ckXfil = pRIFF->GetSubChunk(CHUNK_ID_XFIL);
6450 if (ckXfil) { // there are extension files (.gx01, ... , .gx98) ...
6451 const uint32_t n = ckXfil->ReadInt32();
6452 for (int i = 0; i < n; i++) {
6453 // read the filename and load the extension file
6454 std::string name;
6455 ckXfil->ReadString(name, 128);
6456 std::string path = concatPath(folder, name);
6457 RIFF::File* pExtFile = new RIFF::File(path);
6458 // check that the dlsids match
6459 RIFF::Chunk* ckDLSID = pExtFile->GetSubChunk(CHUNK_ID_DLID);
6460 if (ckDLSID) {
6461 ::DLS::dlsid_t idExpected;
6462 idExpected.ulData1 = ckXfil->ReadInt32();
6463 idExpected.usData2 = ckXfil->ReadInt16();
6464 idExpected.usData3 = ckXfil->ReadInt16();
6465 ckXfil->Read(idExpected.abData, 8, 1);
6466 ::DLS::dlsid_t idFound;
6467 ckDLSID->Read(&idFound.ulData1, 1, 4);
6468 ckDLSID->Read(&idFound.usData2, 1, 2);
6469 ckDLSID->Read(&idFound.usData3, 1, 2);
6470 ckDLSID->Read(idFound.abData, 8, 1);
6471 if (memcmp(&idExpected, &idFound, 16) != 0)
6472 throw gig::Exception("dlsid mismatch for extension file: %s", path.c_str());
6473 }
6474 poolFiles.push_back(pExtFile);
6475 ExtensionFiles.push_back(pExtFile);
6476 }
6477 }
6478
6479 // check if a .gx99 (GigaPulse) file exists
6480 RIFF::Chunk* ckDoxf = pRIFF->GetSubChunk(CHUNK_ID_DOXF);
6481 if (ckDoxf) { // there is a .gx99 (GigaPulse) file ...
6482 std::string path = baseName + ".gx99";
6483 RIFF::File* pExtFile = new RIFF::File(path);
6484
6485 // skip unused int and filename
6486 ckDoxf->SetPos(132, RIFF::stream_curpos);
6487
6488 // check that the dlsids match
6489 RIFF::Chunk* ckDLSID = pExtFile->GetSubChunk(CHUNK_ID_DLID);
6490 if (ckDLSID) {
6491 ::DLS::dlsid_t idExpected;
6492 idExpected.ulData1 = ckDoxf->ReadInt32();
6493 idExpected.usData2 = ckDoxf->ReadInt16();
6494 idExpected.usData3 = ckDoxf->ReadInt16();
6495 ckDoxf->Read(idExpected.abData, 8, 1);
6496 ::DLS::dlsid_t idFound;
6497 ckDLSID->Read(&idFound.ulData1, 1, 4);
6498 ckDLSID->Read(&idFound.usData2, 1, 2);
6499 ckDLSID->Read(&idFound.usData3, 1, 2);
6500 ckDLSID->Read(idFound.abData, 8, 1);
6501 if (memcmp(&idExpected, &idFound, 16) != 0)
6502 throw gig::Exception("dlsid mismatch for GigaPulse file: %s", path.c_str());
6503 }
6504 poolFiles.push_back(pExtFile);
6505 ExtensionFiles.push_back(pExtFile);
6506 }
6507
6508 // load samples from extension files (if required)
6509 for (int i = 0; i < poolFiles.size(); i++) {
6510 RIFF::File* file = poolFiles[i];
6511 RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
6512 if (wvpl) {
6513 file_offset_t wvplFileOffset = wvpl->GetFilePos() -
6514 wvpl->GetPos(); // should be zero, but just to be sure
6515 size_t i = 0;
6516 for (RIFF::List* wave = wvpl->GetSubListAt(i); wave;
6517 wave = wvpl->GetSubListAt(++i))
6518 {
6519 if (wave->GetListType() == LIST_TYPE_WAVE) {
6520 // notify current progress
6521 if (pProgress) {
6522 const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
6523 __notify_progress(pProgress, subprogress);
6524 }
6525
6526 file_offset_t waveFileOffset = wave->GetFilePos();
6527 pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, i, iSampleIndex));
6528
6529 iSampleIndex++;
6530 }
6531 }
6532 }
6533 }
6534
6535 if (pProgress)
6536 __notify_progress(pProgress, 1.0); // notify done
6537 }
6538
6539 Instrument* File::GetFirstInstrument() {
6540 if (!pInstruments) LoadInstruments();
6541 if (!pInstruments) return NULL;
6542 InstrumentsIterator = pInstruments->begin();
6543 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
6544 }
6545
6546 Instrument* File::GetNextInstrument() {
6547 if (!pInstruments) return NULL;
6548 InstrumentsIterator++;
6549 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
6550 }
6551
6552 /**
6553 * Returns the total amount of instruments of this gig file.
6554 *
6555 * Note that this method might block for a long time in case it is required
6556 * to load the instruments info for the first time.
6557 *
6558 * @returns total amount of instruments
6559 */
6560 size_t File::CountInstruments() {
6561 if (!pInstruments) LoadInstruments();
6562 if (!pInstruments) return 0;
6563 return pInstruments->size();
6564 }
6565
6566 /**
6567 * Returns the instrument with the given index.
6568 *
6569 * @param index - number of the sought instrument (0..n)
6570 * @param pProgress - optional: callback function for progress notification
6571 * @returns sought instrument or NULL if there's no such instrument
6572 */
6573 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
6574 if (!pInstruments) {
6575 // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
6576
6577 if (pProgress) {
6578 // sample loading subtask
6579 progress_t subprogress;
6580 __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
6581 __notify_progress(&subprogress, 0.0f);
6582 if (GetAutoLoad())
6583 GetSample(0, &subprogress); // now force all samples to be loaded
6584 __notify_progress(&subprogress, 1.0f);
6585
6586 // instrument loading subtask
6587 if (pProgress->callback) {
6588 subprogress.__range_min = subprogress.__range_max;
6589 subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
6590 }
6591 __notify_progress(&subprogress, 0.0f);
6592 LoadInstruments(&subprogress);
6593 __notify_progress(&subprogress, 1.0f);
6594 } else {
6595 // sample loading subtask
6596 if (GetAutoLoad())
6597 GetSample(0); // now force all samples to be loaded
6598
6599 // instrument loading subtask
6600 LoadInstruments();
6601 }
6602 }
6603 if (!pInstruments) return NULL;
6604 InstrumentsIterator = pInstruments->begin();
6605 for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
6606 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
6607 InstrumentsIterator++;
6608 }
6609 return NULL;
6610 }
6611
6612 /** @brief Add a new instrument definition.
6613 *
6614 * This will create a new Instrument object for the gig file. You have
6615 * to call Save() to make this persistent to the file.
6616 *
6617 * @returns pointer to new Instrument object
6618 */
6619 Instrument* File::AddInstrument() {
6620 if (!pInstruments) LoadInstruments();
6621 __ensureMandatoryChunksExist();
6622 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
6623 RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
6624
6625 // add mandatory chunks to get the chunks in right order
6626 lstInstr->AddSubList(LIST_TYPE_INFO);
6627 lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
6628
6629 Instrument* pInstrument = new Instrument(this, lstInstr);
6630 pInstrument->GenerateDLSID();
6631
6632 lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
6633
6634 // this string is needed for the gig to be loadable in GSt:
6635 pInstrument->pInfo->Software = "Endless Wave";
6636
6637 pInstruments->push_back(pInstrument);
6638 return pInstrument;
6639 }
6640
6641 /** @brief Add a duplicate of an existing instrument.
6642 *
6643 * Duplicates the instrument definition given by @a orig and adds it
6644 * to this file. This allows in an instrument editor application to
6645 * easily create variations of an instrument, which will be stored in
6646 * the same .gig file, sharing i.e. the same samples.
6647 *
6648 * Note that all sample pointers referenced by @a orig are simply copied as
6649 * memory address. Thus the respective samples are shared, not duplicated!
6650 *
6651 * You have to call Save() to make this persistent to the file.
6652 *
6653 * @param orig - original instrument to be copied
6654 * @returns duplicated copy of the given instrument
6655 */
6656 Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
6657 Instrument* instr = AddInstrument();
6658 instr->CopyAssign(orig);
6659 return instr;
6660 }
6661
6662 /** @brief Add content of another existing file.
6663 *
6664 * Duplicates the samples, groups and instruments of the original file
6665 * given by @a pFile and adds them to @c this File. In case @c this File is
6666 * a new one that you haven't saved before, then you have to call
6667 * SetFileName() before calling AddContentOf(), because this method will
6668 * automatically save this file during operation, which is required for
6669 * writing the sample waveform data by disk streaming.
6670 *
6671 * @param pFile - original file whose's content shall be copied from
6672 */
6673 void File::AddContentOf(File* pFile) {
6674 static int iCallCount = -1;
6675 iCallCount++;
6676 std::map<Group*,Group*> mGroups;
6677 std::map<Sample*,Sample*> mSamples;
6678
6679 // clone sample groups
6680 for (int i = 0; pFile->GetGroup(i); ++i) {
6681 Group* g = AddGroup();
6682 g->Name =
6683 "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
6684 mGroups[pFile->GetGroup(i)] = g;
6685 }
6686
6687 // clone samples (not waveform data here yet)
6688 for (int i = 0; pFile->GetSample(i); ++i) {
6689 Sample* s = AddSample();
6690 s->CopyAssignMeta(pFile->GetSample(i));
6691 mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
6692 mSamples[pFile->GetSample(i)] = s;
6693 }
6694
6695 // clone script groups and their scripts
6696 for (int iGroup = 0; pFile->GetScriptGroup(iGroup); ++iGroup) {
6697 ScriptGroup* sg = pFile->GetScriptGroup(iGroup);
6698 ScriptGroup* dg = AddScriptGroup();
6699 dg->Name = "COPY" + ToString(iCallCount) + "_" + sg->Name;
6700 for (int iScript = 0; sg->GetScript(iScript); ++iScript) {
6701 Script* ss = sg->GetScript(iScript);
6702 Script* ds = dg->AddScript();
6703 ds->CopyAssign(ss);
6704 }
6705 }
6706
6707 //BUG: For some reason this method only works with this additional
6708 // Save() call in between here.
6709 //
6710 // Important: The correct one of the 2 Save() methods has to be called
6711 // here, depending on whether the file is completely new or has been
6712 // saved to disk already, otherwise it will result in data corruption.
6713 if (pRIFF->IsNew())
6714 Save(GetFileName());
6715 else
6716 Save();
6717
6718 // clone instruments
6719 // (passing the crosslink table here for the cloned samples)
6720 for (int i = 0; pFile->GetInstrument(i); ++i) {
6721 Instrument* instr = AddInstrument();
6722 instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
6723 }
6724
6725 // Mandatory: file needs to be saved to disk at this point, so this
6726 // file has the correct size and data layout for writing the samples'
6727 // waveform data to disk.
6728 Save();
6729
6730 // clone samples' waveform data
6731 // (using direct read & write disk streaming)
6732 for (int i = 0; pFile->GetSample(i); ++i) {
6733 mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
6734 }
6735 }
6736
6737 /** @brief Delete an instrument.
6738 *
6739 * This will delete the given Instrument object from the gig file. You
6740 * have to call Save() to make this persistent to the file.
6741 *
6742 * @param pInstrument - instrument to delete
6743 * @throws gig::Exception if given instrument could not be found
6744 */
6745 void File::DeleteInstrument(Instrument* pInstrument) {
6746 if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
6747 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
6748 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
6749 pInstruments->erase(iter);
6750 pInstrument->DeleteChunks();
6751 delete pInstrument;
6752 }
6753
6754 void File::LoadInstruments() {
6755 LoadInstruments(NULL);
6756 }
6757
6758 void File::LoadInstruments(progress_t* pProgress) {
6759 if (!pInstruments) pInstruments = new InstrumentList;
6760 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
6761 if (lstInstruments) {
6762 int iInstrumentIndex = 0;
6763 size_t i = 0;
6764 for (RIFF::List* lstInstr = lstInstruments->GetSubListAt(i);
6765 lstInstr; lstInstr = lstInstruments->GetSubListAt(++i))
6766 {
6767 if (lstInstr->GetListType() == LIST_TYPE_INS) {
6768 if (pProgress) {
6769 // notify current progress
6770 const float localProgress = (float) iInstrumentIndex / (float) Instruments;
6771 __notify_progress(pProgress, localProgress);
6772
6773 // divide local progress into subprogress for loading current Instrument
6774 progress_t subprogress;
6775 __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
6776
6777 pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
6778 } else {
6779 pInstruments->push_back(new Instrument(this, lstInstr));
6780 }
6781
6782 iInstrumentIndex++;
6783 }
6784 }
6785 if (pProgress)
6786 __notify_progress(pProgress, 1.0); // notify done
6787 }
6788 }
6789
6790 /// Updates the 3crc chunk with the checksum of a sample. The
6791 /// update is done directly to disk, as this method is called
6792 /// after File::Save()
6793 void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
6794 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6795 if (!_3crc) return;
6796
6797 // get the index of the sample
6798 int iWaveIndex = GetWaveTableIndexOf(pSample);
6799 if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
6800
6801 // write the CRC-32 checksum to disk
6802 _3crc->SetPos(iWaveIndex * 8);
6803 uint32_t one = 1;
6804 _3crc->WriteUint32(&one); // always 1
6805 _3crc->WriteUint32(&crc);
6806 }
6807
6808 uint32_t File::GetSampleChecksum(Sample* pSample) {
6809 // get the index of the sample
6810 int iWaveIndex = GetWaveTableIndexOf(pSample);
6811 if (iWaveIndex < 0) throw gig::Exception("Could not retrieve reference crc of sample, could not resolve sample's wave table index");
6812
6813 return GetSampleChecksumByIndex(iWaveIndex);
6814 }
6815
6816 uint32_t File::GetSampleChecksumByIndex(int index) {
6817 if (index < 0) throw gig::Exception("Could not retrieve reference crc of sample, invalid wave pool index of sample");
6818
6819 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6820 if (!_3crc) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
6821 uint8_t* pData = (uint8_t*) _3crc->LoadChunkData();
6822 if (!pData) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
6823
6824 // read the CRC-32 checksum directly from disk
6825 size_t pos = index * 8;
6826 if (pos + 8 > _3crc->GetNewSize())
6827 throw gig::Exception("Could not retrieve reference crc of sample, could not seek to required position in crc chunk");
6828
6829 uint32_t one = load32(&pData[pos]); // always 1
6830 if (one != 1)
6831 throw gig::Exception("Could not retrieve reference crc of sample, because reference checksum table is damaged");
6832
6833 return load32(&pData[pos+4]);
6834 }
6835
6836 int File::GetWaveTableIndexOf(gig::Sample* pSample) {
6837 if (!pSamples) GetSample(0); // make sure sample chunks were scanned
6838 File::SampleList::iterator iter = pSamples->begin();
6839 File::SampleList::iterator end = pSamples->end();
6840 for (int index = 0; iter != end; ++iter, ++index)
6841 if (*iter == pSample)
6842 return index;
6843 return -1;
6844 }
6845
6846 /**
6847 * Checks whether the file's "3CRC" chunk was damaged. This chunk contains
6848 * the CRC32 check sums of all samples' raw wave data.
6849 *
6850 * @return true if 3CRC chunk is OK, or false if 3CRC chunk is damaged
6851 */
6852 bool File::VerifySampleChecksumTable() {
6853 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6854 if (!_3crc) return false;
6855 if (_3crc->GetNewSize() <= 0) return false;
6856 if (_3crc->GetNewSize() % 8) return false;
6857 if (!pSamples) GetSample(0); // make sure sample chunks were scanned
6858 if (_3crc->GetNewSize() != pSamples->size() * 8) return false;
6859
6860 const file_offset_t n = _3crc->GetNewSize() / 8;
6861
6862 uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6863 if (!pData) return false;
6864
6865 for (file_offset_t i = 0; i < n; ++i) {
6866 uint32_t one = pData[i*2];
6867 if (one != 1) return false;
6868 }
6869
6870 return true;
6871 }
6872
6873 /**
6874 * Recalculates CRC32 checksums for all samples and rebuilds this gig
6875 * file's checksum table with those new checksums. This might usually
6876 * just be necessary if the checksum table was damaged.
6877 *
6878 * @e IMPORTANT: The current implementation of this method only works
6879 * with files that have not been modified since it was loaded, because
6880 * it expects that no externally caused file structure changes are
6881 * required!
6882 *
6883 * Due to the expectation above, this method is currently protected
6884 * and actually only used by the command line tool "gigdump" yet.
6885 *
6886 * @returns true if Save() is required to be called after this call,
6887 * false if no further action is required
6888 */
6889 bool File::RebuildSampleChecksumTable() {
6890 // make sure sample chunks were scanned
6891 if (!pSamples) GetSample(0);
6892
6893 bool bRequiresSave = false;
6894
6895 // make sure "3CRC" chunk exists with required size
6896 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6897 if (!_3crc) {
6898 _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6899 // the order of einf and 3crc is not the same in v2 and v3
6900 RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6901 if (einf && pVersion && pVersion->major > 2) pRIFF->MoveSubChunk(_3crc, einf);
6902 bRequiresSave = true;
6903 } else if (_3crc->GetNewSize() != pSamples->size() * 8) {
6904 _3crc->Resize(pSamples->size() * 8);
6905 bRequiresSave = true;
6906 }
6907
6908 if (bRequiresSave) { // refill CRC table for all samples in RAM ...
6909 uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6910 {
6911 File::SampleList::iterator iter = pSamples->begin();
6912 File::SampleList::iterator end = pSamples->end();
6913 for (; iter != end; ++iter) {
6914 gig::Sample* pSample = (gig::Sample*) *iter;
6915 int index = GetWaveTableIndexOf(pSample);
6916 if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6917 pData[index*2] = 1; // always 1
6918 pData[index*2+1] = pSample->CalculateWaveDataChecksum();
6919 }
6920 }
6921 } else { // no file structure changes necessary, so directly write to disk and we are done ...
6922 // make sure file is in write mode
6923 pRIFF->SetMode(RIFF::stream_mode_read_write);
6924 {
6925 File::SampleList::iterator iter = pSamples->begin();
6926 File::SampleList::iterator end = pSamples->end();
6927 for (; iter != end; ++iter) {
6928 gig::Sample* pSample = (gig::Sample*) *iter;
6929 int index = GetWaveTableIndexOf(pSample);
6930 if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6931 pSample->crc = pSample->CalculateWaveDataChecksum();
6932 SetSampleChecksum(pSample, pSample->crc);
6933 }
6934 }
6935 }
6936
6937 return bRequiresSave;
6938 }
6939
6940 /**
6941 * Returns a pointer to the first <i>Group</i> object of the file,
6942 * <i>NULL</i> otherwise.
6943 *
6944 * @deprecated This method is not reentrant-safe, use GetGroup() instead.
6945 */
6946 Group* File::GetFirstGroup() {
6947 if (!pGroups) LoadGroups();
6948 // there must always be at least one group
6949 GroupsIterator = pGroups->begin();
6950 return *GroupsIterator;
6951 }
6952
6953 /**
6954 * Returns a pointer to the next <i>Group</i> object of the file,
6955 * <i>NULL</i> otherwise.
6956 *
6957 * @deprecated This method is not reentrant-safe, use GetGroup() instead.
6958 */
6959 Group* File::GetNextGroup() {
6960 if (!pGroups) return NULL;
6961 ++GroupsIterator;
6962 return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
6963 }
6964
6965 /**
6966 * Returns the group with the given index.
6967 *
6968 * @param index - number of the sought group (0..n)
6969 * @returns sought group or NULL if there's no such group
6970 */
6971 Group* File::GetGroup(size_t index) {
6972 if (!pGroups) LoadGroups();
6973 if (index >= pGroups->size()) return NULL;
6974 return (*pGroups)[index];
6975 }
6976
6977 /**
6978 * Returns the group with the given group name.
6979 *
6980 * Note: group names don't have to be unique in the gig format! So there
6981 * can be multiple groups with the same name. This method will simply
6982 * return the first group found with the given name.
6983 *
6984 * @param name - name of the sought group
6985 * @returns sought group or NULL if there's no group with that name
6986 */
6987 Group* File::GetGroup(String name) {
6988 if (!pGroups) LoadGroups();
6989 GroupsIterator = pGroups->begin();
6990 for (uint i = 0; GroupsIterator != pGroups->end(); ++GroupsIterator, ++i)
6991 if ((*GroupsIterator)->Name == name) return *GroupsIterator;
6992 return NULL;
6993 }
6994
6995 Group* File::AddGroup() {
6996 if (!pGroups) LoadGroups();
6997 // there must always be at least one group
6998 __ensureMandatoryChunksExist();
6999 Group* pGroup = new Group(this, NULL);
7000 pGroups->push_back(pGroup);
7001 return pGroup;
7002 }
7003
7004 /** @brief Delete a group and its samples.
7005 *
7006 * This will delete the given Group object and all the samples that
7007 * belong to this group from the gig file. You have to call Save() to
7008 * make this persistent to the file.
7009 *
7010 * @param pGroup - group to delete
7011 * @throws gig::Exception if given group could not be found
7012 */
7013 void File::DeleteGroup(Group* pGroup) {
7014 if (!pGroups) LoadGroups();
7015 std::vector<Group*>::iterator iter =
7016 find(pGroups->begin(), pGroups->end(), pGroup);
7017 if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
7018 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
7019 // delete all members of this group
7020 Sample* pSample;
7021 while ((pSample = pGroup->GetSample(0))) {
7022 DeleteSample(pSample);
7023 }
7024 // now delete this group object
7025 pGroups->erase(iter);
7026 pGroup->DeleteChunks();
7027 delete pGroup;
7028 }
7029
7030 /** @brief Delete a group.
7031 *
7032 * This will delete the given Group object from the gig file. All the
7033 * samples that belong to this group will not be deleted, but instead
7034 * be moved to another group. You have to call Save() to make this
7035 * persistent to the file.
7036 *
7037 * @param pGroup - group to delete
7038 * @throws gig::Exception if given group could not be found
7039 */
7040 void File::DeleteGroupOnly(Group* pGroup) {
7041 if (!pGroups) LoadGroups();
7042 std::vector<Group*>::iterator iter =
7043 find(pGroups->begin(), pGroups->end(), pGroup);
7044 if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
7045 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
7046 // move all members of this group to another group
7047 pGroup->MoveAll();
7048 pGroups->erase(iter);
7049 pGroup->DeleteChunks();
7050 delete pGroup;
7051 }
7052
7053 void File::LoadGroups() {
7054 if (!pGroups) pGroups = new std::vector<Group*>;
7055 // try to read defined groups from file
7056 RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
7057 if (lst3gri) {
7058 RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
7059 if (lst3gnl) {
7060 size_t i = 0;
7061 for (RIFF::Chunk* ck = lst3gnl->GetSubChunkAt(i); ck;
7062 ck = lst3gnl->GetSubChunkAt(++i))
7063 {
7064 if (ck->GetChunkID() == CHUNK_ID_3GNM) {
7065 if (pVersion && pVersion->major > 2 &&
7066 strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
7067
7068 pGroups->push_back(new Group(this, ck));
7069 }
7070 }
7071 }
7072 }
7073 // if there were no group(s), create at least the mandatory default group
7074 if (!pGroups->size()) {
7075 Group* pGroup = new Group(this, NULL);
7076 pGroup->Name = "Default Group";
7077 pGroups->push_back(pGroup);
7078 }
7079 }
7080
7081 /** @brief Get instrument script group (by index).
7082 *
7083 * Returns the real-time instrument script group with the given index.
7084 *
7085 * @param index - number of the sought group (0..n)
7086 * @returns sought script group or NULL if there's no such group
7087 */
7088 ScriptGroup* File::GetScriptGroup(uint index) {
7089 if (!pScriptGroups) LoadScriptGroups();
7090 std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
7091 for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
7092 if (i == index) return *it;
7093 return NULL;
7094 }
7095
7096 /** @brief Get instrument script group (by name).
7097 *
7098 * Returns the first real-time instrument script group found with the given
7099 * group name. Note that group names may not necessarily be unique.
7100 *
7101 * @param name - name of the sought script group
7102 * @returns sought script group or NULL if there's no such group
7103 */
7104 ScriptGroup* File::GetScriptGroup(const String& name) {
7105 if (!pScriptGroups) LoadScriptGroups();
7106 std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
7107 for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
7108 if ((*it)->Name == name) return *it;
7109 return NULL;
7110 }
7111
7112 /** @brief Add new instrument script group.
7113 *
7114 * Adds a new, empty real-time instrument script group to the file.
7115 *
7116 * You have to call Save() to make this persistent to the file.
7117 *
7118 * @return new empty script group
7119 */
7120 ScriptGroup* File::AddScriptGroup() {
7121 if (!pScriptGroups) LoadScriptGroups();
7122 ScriptGroup* pScriptGroup = new ScriptGroup(this, NULL);
7123 pScriptGroups->push_back(pScriptGroup);
7124 return pScriptGroup;
7125 }
7126
7127 /** @brief Delete an instrument script group.
7128 *
7129 * This will delete the given real-time instrument script group and all its
7130 * instrument scripts it contains. References inside instruments that are
7131 * using the deleted scripts will be removed from the respective instruments
7132 * accordingly.
7133 *
7134 * You have to call Save() to make this persistent to the file.
7135 *
7136 * @param pScriptGroup - script group to delete
7137 * @throws gig::Exception if given script group could not be found
7138 */
7139 void File::DeleteScriptGroup(ScriptGroup* pScriptGroup) {
7140 if (!pScriptGroups) LoadScriptGroups();
7141 std::list<ScriptGroup*>::iterator iter =
7142 find(pScriptGroups->begin(), pScriptGroups->end(), pScriptGroup);
7143 if (iter == pScriptGroups->end())
7144 throw gig::Exception("Could not delete script group, could not find given script group");
7145 pScriptGroups->erase(iter);
7146 for (int i = 0; pScriptGroup->GetScript(i); ++i)
7147 pScriptGroup->DeleteScript(pScriptGroup->GetScript(i));
7148 if (pScriptGroup->pList)
7149 pScriptGroup->pList->GetParent()->DeleteSubChunk(pScriptGroup->pList);
7150 pScriptGroup->DeleteChunks();
7151 delete pScriptGroup;
7152 }
7153
7154 void File::LoadScriptGroups() {
7155 if (pScriptGroups) return;
7156 pScriptGroups = new std::list<ScriptGroup*>;
7157 RIFF::List* lstLS = pRIFF->GetSubList(LIST_TYPE_3LS);
7158 if (lstLS) {
7159 size_t i = 0;
7160 for (RIFF::List* lst = lstLS->GetSubListAt(i); lst;
7161 lst = lstLS->GetSubListAt(++i))
7162 {
7163 if (lst->GetListType() == LIST_TYPE_RTIS) {
7164 pScriptGroups->push_back(new ScriptGroup(this, lst));
7165 }
7166 }
7167 }
7168 }
7169
7170 /**
7171 * Apply all the gig file's current instruments, samples, groups and settings
7172 * to the respective RIFF chunks. You have to call Save() to make changes
7173 * persistent.
7174 *
7175 * Usually there is absolutely no need to call this method explicitly.
7176 * It will be called automatically when File::Save() was called.
7177 *
7178 * @param pProgress - callback function for progress notification
7179 * @throws Exception - on errors
7180 */
7181 void File::UpdateChunks(progress_t* pProgress) {
7182 bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
7183
7184 // update own gig format extension chunks
7185 // (not part of the GigaStudio 4 format)
7186 RIFF::List* lst3LS = pRIFF->GetSubList(LIST_TYPE_3LS);
7187 if (!lst3LS) {
7188 lst3LS = pRIFF->AddSubList(LIST_TYPE_3LS);
7189 }
7190 // Make sure <3LS > chunk is placed before <ptbl> chunk. The precise
7191 // location of <3LS > is irrelevant, however it should be located
7192 // before the actual wave data
7193 RIFF::Chunk* ckPTBL = pRIFF->GetSubChunk(CHUNK_ID_PTBL);
7194 pRIFF->MoveSubChunk(lst3LS, ckPTBL);
7195
7196 // This must be performed before writing the chunks for instruments,
7197 // because the instruments' script slots will write the file offsets
7198 // of the respective instrument script chunk as reference.
7199 if (pScriptGroups) {
7200 // Update instrument script (group) chunks.
7201 for (std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
7202 it != pScriptGroups->end(); ++it)
7203 {
7204 (*it)->UpdateChunks(pProgress);
7205 }
7206 }
7207
7208 // in case no libgig custom format data was added, then remove the
7209 // custom "3LS " chunk again
7210 if (!lst3LS->CountSubChunks()) {
7211 pRIFF->DeleteSubChunk(lst3LS);
7212 lst3LS = NULL;
7213 }
7214
7215 // first update base class's chunks
7216 DLS::File::UpdateChunks(pProgress);
7217
7218 if (newFile) {
7219 // INFO was added by Resource::UpdateChunks - make sure it
7220 // is placed first in file
7221 RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
7222 RIFF::Chunk* first = pRIFF->GetSubChunkAt(0);
7223 if (first != info) {
7224 pRIFF->MoveSubChunk(info, first);
7225 }
7226 }
7227
7228 // update group's chunks
7229 if (pGroups) {
7230 // make sure '3gri' and '3gnl' list chunks exist
7231 // (before updating the Group chunks)
7232 RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
7233 if (!_3gri) {
7234 _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
7235 pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
7236 }
7237 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
7238 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
7239
7240 // v3: make sure the file has 128 3gnm chunks
7241 // (before updating the Group chunks)
7242 if (pVersion && pVersion->major > 2) {
7243 size_t i = 0;
7244 for (RIFF::Chunk* _3gnm = _3gnl->GetSubChunkAt(i); i < 128;
7245 _3gnm = _3gnl->GetSubChunkAt(++i))
7246 {
7247 // create 128 empty placeholder strings which will either
7248 // be filled by Group::UpdateChunks below or left empty.
7249 ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
7250 }
7251 }
7252
7253 std::vector<Group*>::iterator iter = pGroups->begin();
7254 std::vector<Group*>::iterator end = pGroups->end();
7255 for (; iter != end; ++iter) {
7256 (*iter)->UpdateChunks(pProgress);
7257 }
7258 }
7259
7260 // update einf chunk
7261
7262 // The einf chunk contains statistics about the gig file, such
7263 // as the number of regions and samples used by each
7264 // instrument. It is divided in equally sized parts, where the
7265 // first part contains information about the whole gig file,
7266 // and the rest of the parts map to each instrument in the
7267 // file.
7268 //
7269 // At the end of each part there is a bit map of each sample
7270 // in the file, where a set bit means that the sample is used
7271 // by the file/instrument.
7272 //
7273 // Note that there are several fields with unknown use. These
7274 // are set to zero.
7275
7276 int sublen = int(pSamples->size() / 8 + 49);
7277 int einfSize = (Instruments + 1) * sublen;
7278
7279 RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
7280 if (einf) {
7281 if (einf->GetSize() != einfSize) {
7282 einf->Resize(einfSize);
7283 memset(einf->LoadChunkData(), 0, einfSize);
7284 }
7285 } else if (newFile) {
7286 einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
7287 }
7288 if (einf) {
7289 uint8_t* pData = (uint8_t*) einf->LoadChunkData();
7290
7291 std::map<gig::Sample*,int> sampleMap;
7292 size_t sampleIdx = 0;
7293 for (Sample* pSample = GetSample(0); pSample;
7294 pSample = GetSample(++sampleIdx))
7295 {
7296 sampleMap[pSample] = sampleIdx;
7297 }
7298
7299 int totnbusedsamples = 0;
7300 int totnbusedchannels = 0;
7301 int totnbregions = 0;
7302 int totnbdimregions = 0;
7303 int totnbloops = 0;
7304 int instrumentIdx = 0;
7305
7306 memset(&pData[48], 0, sublen - 48);
7307
7308 for (Instrument* instrument = GetFirstInstrument() ; instrument ;
7309 instrument = GetNextInstrument()) {
7310 int nbusedsamples = 0;
7311 int nbusedchannels = 0;
7312 int nbdimregions = 0;
7313 int nbloops = 0;
7314
7315 memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
7316
7317 size_t iRgn = 0;
7318 for (Region* region = instrument->GetRegionAt(iRgn); region;
7319 region = instrument->GetRegionAt(++iRgn))
7320 {
7321 for (int i = 0 ; i < region->DimensionRegions ; i++) {
7322 gig::DimensionRegion *d = region->pDimensionRegions[i];
7323 if (d->pSample) {
7324 int sampleIdx = sampleMap[d->pSample];
7325 int byte = 48 + sampleIdx / 8;
7326 int bit = 1 << (sampleIdx & 7);
7327 if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
7328 pData[(instrumentIdx + 1) * sublen + byte] |= bit;
7329 nbusedsamples++;
7330 nbusedchannels += d->pSample->Channels;
7331
7332 if ((pData[byte] & bit) == 0) {
7333 pData[byte] |= bit;
7334 totnbusedsamples++;
7335 totnbusedchannels += d->pSample->Channels;
7336 }
7337 }
7338 }
7339 if (d->SampleLoops) nbloops++;
7340 }
7341 nbdimregions += region->DimensionRegions;
7342 }
7343 // first 4 bytes unknown - sometimes 0, sometimes length of einf part
7344 // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
7345 store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
7346 store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
7347 store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
7348 store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
7349 store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
7350 store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
7351 // next 8 bytes unknown
7352 store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
7353 store32(&pData[(instrumentIdx + 1) * sublen + 40], (uint32_t) pSamples->size());
7354 // next 4 bytes unknown
7355
7356 totnbregions += instrument->Regions;
7357 totnbdimregions += nbdimregions;
7358 totnbloops += nbloops;
7359 instrumentIdx++;
7360 }
7361 // first 4 bytes unknown - sometimes 0, sometimes length of einf part
7362 // store32(&pData[0], sublen);
7363 store32(&pData[4], totnbusedchannels);
7364 store32(&pData[8], totnbusedsamples);
7365 store32(&pData[12], Instruments);
7366 store32(&pData[16], totnbregions);
7367 store32(&pData[20], totnbdimregions);
7368 store32(&pData[24], totnbloops);
7369 // next 8 bytes unknown
7370 // next 4 bytes unknown, not always 0
7371 store32(&pData[40], (uint32_t) pSamples->size());
7372 // next 4 bytes unknown
7373 }
7374
7375 // update 3crc chunk
7376
7377 // The 3crc chunk contains CRC-32 checksums for the
7378 // samples. When saving a gig file to disk, we first update the 3CRC
7379 // chunk here (in RAM) with the old crc values which we read from the
7380 // 3CRC chunk when we opened the file (available with gig::Sample::crc
7381 // member variable). This step is required, because samples might have
7382 // been deleted by the user since the file was opened, which in turn
7383 // changes the order of the (i.e. old) checksums within the 3crc chunk.
7384 // If a sample was conciously modified by the user (that is if
7385 // Sample::Write() was called later on) then Sample::Write() will just
7386 // update the respective individual checksum(s) directly on disk and
7387 // leaves all other sample checksums untouched.
7388
7389 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
7390 if (_3crc) {
7391 _3crc->Resize(pSamples->size() * 8);
7392 } else /*if (newFile)*/ {
7393 _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
7394 // the order of einf and 3crc is not the same in v2 and v3
7395 if (einf && pVersion && pVersion->major > 2) pRIFF->MoveSubChunk(_3crc, einf);
7396 }
7397 { // must be performed in RAM here ...
7398 uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
7399 if (pData) {
7400 File::SampleList::iterator iter = pSamples->begin();
7401 File::SampleList::iterator end = pSamples->end();
7402 for (int index = 0; iter != end; ++iter, ++index) {
7403 gig::Sample* pSample = (gig::Sample*) *iter;
7404 pData[index*2] = 1; // always 1
7405 pData[index*2+1] = pSample->crc;
7406 }
7407 }
7408 }
7409 }
7410
7411 void File::UpdateFileOffsets() {
7412 DLS::File::UpdateFileOffsets();
7413
7414 for (Instrument* instrument = GetFirstInstrument(); instrument;
7415 instrument = GetNextInstrument())
7416 {
7417 instrument->UpdateScriptFileOffsets();
7418 }
7419 }
7420
7421 /**
7422 * Enable / disable automatic loading. By default this property is
7423 * enabled and every information is loaded automatically. However
7424 * loading all Regions, DimensionRegions and especially samples might
7425 * take a long time for large .gig files, and sometimes one might only
7426 * be interested in retrieving very superficial informations like the
7427 * amount of instruments and their names. In this case one might disable
7428 * automatic loading to avoid very slow response times.
7429 *
7430 * @e CAUTION: by disabling this property many pointers (i.e. sample
7431 * references) and attributes will have invalid or even undefined
7432 * data! This feature is currently only intended for retrieving very
7433 * superficial information in a very fast way. Don't use it to retrieve
7434 * details like synthesis information or even to modify .gig files!
7435 */
7436 void File::SetAutoLoad(bool b) {
7437 bAutoLoad = b;
7438 }
7439
7440 /**
7441 * Returns whether automatic loading is enabled.
7442 * @see SetAutoLoad()
7443 */
7444 bool File::GetAutoLoad() {
7445 return bAutoLoad;
7446 }
7447
7448 /**
7449 * Returns @c true in case this gig File object uses any gig format
7450 * extension, that is e.g. whether any DimensionRegion object currently
7451 * has any setting effective that would require our "LSDE" RIFF chunk to
7452 * be stored to the gig file.
7453 *
7454 * Right now this is a private method. It is considerable though this method
7455 * to become (in slightly modified form) a public API method in future, i.e.
7456 * to allow instrument editors to visualize and/or warn the user of any gig
7457 * format extension being used. See also comments on
7458 * DimensionRegion::UsesAnyGigFormatExtension() for details about such a
7459 * potential public API change in future.
7460 */
7461 bool File::UsesAnyGigFormatExtension() const {
7462 if (!pInstruments) return false;
7463 InstrumentList::iterator iter = pInstruments->begin();
7464 InstrumentList::iterator end = pInstruments->end();
7465 for (; iter != end; ++iter) {
7466 Instrument* pInstrument = static_cast<gig::Instrument*>(*iter);
7467 if (pInstrument->UsesAnyGigFormatExtension())
7468 return true;
7469 }
7470 return false;
7471 }
7472
7473
7474 // *************** Exception ***************
7475 // *
7476
7477 Exception::Exception() : DLS::Exception() {
7478 }
7479
7480 Exception::Exception(String format, ...) : DLS::Exception() {
7481 va_list arg;
7482 va_start(arg, format);
7483 Message = assemble(format, arg);
7484 va_end(arg);
7485 }
7486
7487 Exception::Exception(String format, va_list arg) : DLS::Exception() {
7488 Message = assemble(format, arg);
7489 }
7490
7491 void Exception::PrintMessage() {
7492 std::cout << "gig::Exception: " << Message << std::endl;
7493 }
7494
7495
7496 // *************** functions ***************
7497 // *
7498
7499 /**
7500 * Returns the name of this C++ library. This is usually "libgig" of
7501 * course. This call is equivalent to RIFF::libraryName() and
7502 * DLS::libraryName().
7503 */
7504 String libraryName() {
7505 return PACKAGE;
7506 }
7507
7508 /**
7509 * Returns version of this C++ library. This call is equivalent to
7510 * RIFF::libraryVersion() and DLS::libraryVersion().
7511 */
7512 String libraryVersion() {
7513 return VERSION;
7514 }
7515
7516 } // namespace gig

  ViewVC Help
Powered by ViewVC