/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Contents of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 823 - (show annotations) (download)
Fri Dec 23 01:38:50 2005 UTC (18 years, 3 months ago) by schoenebeck
File size: 133195 byte(s)
* recommited bugfixes regarding .gig write support
(that commit batch got lost due to the recent CVS server defect)

1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file loader library *
4 * *
5 * Copyright (C) 2003-2005 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #include "gig.h"
25
26 #include "helper.h"
27
28 #include <math.h>
29 #include <iostream>
30
31 /// Initial size of the sample buffer which is used for decompression of
32 /// compressed sample wave streams - this value should always be bigger than
33 /// the biggest sample piece expected to be read by the sampler engine,
34 /// otherwise the buffer size will be raised at runtime and thus the buffer
35 /// reallocated which is time consuming and unefficient.
36 #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
37
38 /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
39 #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
40 #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
41 #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
42 #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
43 #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
44 #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
45 #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
46 #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
47 #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
48 #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
49 #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
50 #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
51
52 namespace gig {
53
54 // *************** dimension_def_t ***************
55 // *
56
57 dimension_def_t& dimension_def_t::operator=(const dimension_def_t& arg) {
58 dimension = arg.dimension;
59 bits = arg.bits;
60 zones = arg.zones;
61 split_type = arg.split_type;
62 ranges = arg.ranges;
63 zone_size = arg.zone_size;
64 if (ranges) {
65 ranges = new range_t[zones];
66 for (int i = 0; i < zones; i++)
67 ranges[i] = arg.ranges[i];
68 }
69 return *this;
70 }
71
72
73
74 // *************** progress_t ***************
75 // *
76
77 progress_t::progress_t() {
78 callback = NULL;
79 custom = NULL;
80 __range_min = 0.0f;
81 __range_max = 1.0f;
82 }
83
84 // private helper function to convert progress of a subprocess into the global progress
85 static void __notify_progress(progress_t* pProgress, float subprogress) {
86 if (pProgress && pProgress->callback) {
87 const float totalrange = pProgress->__range_max - pProgress->__range_min;
88 const float totalprogress = pProgress->__range_min + subprogress * totalrange;
89 pProgress->factor = totalprogress;
90 pProgress->callback(pProgress); // now actually notify about the progress
91 }
92 }
93
94 // private helper function to divide a progress into subprogresses
95 static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
96 if (pParentProgress && pParentProgress->callback) {
97 const float totalrange = pParentProgress->__range_max - pParentProgress->__range_min;
98 pSubProgress->callback = pParentProgress->callback;
99 pSubProgress->custom = pParentProgress->custom;
100 pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
101 pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
102 }
103 }
104
105
106 // *************** Internal functions for sample decompression ***************
107 // *
108
109 namespace {
110
111 inline int get12lo(const unsigned char* pSrc)
112 {
113 const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
114 return x & 0x800 ? x - 0x1000 : x;
115 }
116
117 inline int get12hi(const unsigned char* pSrc)
118 {
119 const int x = pSrc[1] >> 4 | pSrc[2] << 4;
120 return x & 0x800 ? x - 0x1000 : x;
121 }
122
123 inline int16_t get16(const unsigned char* pSrc)
124 {
125 return int16_t(pSrc[0] | pSrc[1] << 8);
126 }
127
128 inline int get24(const unsigned char* pSrc)
129 {
130 const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
131 return x & 0x800000 ? x - 0x1000000 : x;
132 }
133
134 void Decompress16(int compressionmode, const unsigned char* params,
135 int srcStep, int dstStep,
136 const unsigned char* pSrc, int16_t* pDst,
137 unsigned long currentframeoffset,
138 unsigned long copysamples)
139 {
140 switch (compressionmode) {
141 case 0: // 16 bit uncompressed
142 pSrc += currentframeoffset * srcStep;
143 while (copysamples) {
144 *pDst = get16(pSrc);
145 pDst += dstStep;
146 pSrc += srcStep;
147 copysamples--;
148 }
149 break;
150
151 case 1: // 16 bit compressed to 8 bit
152 int y = get16(params);
153 int dy = get16(params + 2);
154 while (currentframeoffset) {
155 dy -= int8_t(*pSrc);
156 y -= dy;
157 pSrc += srcStep;
158 currentframeoffset--;
159 }
160 while (copysamples) {
161 dy -= int8_t(*pSrc);
162 y -= dy;
163 *pDst = y;
164 pDst += dstStep;
165 pSrc += srcStep;
166 copysamples--;
167 }
168 break;
169 }
170 }
171
172 void Decompress24(int compressionmode, const unsigned char* params,
173 int dstStep, const unsigned char* pSrc, int16_t* pDst,
174 unsigned long currentframeoffset,
175 unsigned long copysamples, int truncatedBits)
176 {
177 // Note: The 24 bits are truncated to 16 bits for now.
178
179 int y, dy, ddy, dddy;
180 const int shift = 8 - truncatedBits;
181
182 #define GET_PARAMS(params) \
183 y = get24(params); \
184 dy = y - get24((params) + 3); \
185 ddy = get24((params) + 6); \
186 dddy = get24((params) + 9)
187
188 #define SKIP_ONE(x) \
189 dddy -= (x); \
190 ddy -= dddy; \
191 dy = -dy - ddy; \
192 y += dy
193
194 #define COPY_ONE(x) \
195 SKIP_ONE(x); \
196 *pDst = y >> shift; \
197 pDst += dstStep
198
199 switch (compressionmode) {
200 case 2: // 24 bit uncompressed
201 pSrc += currentframeoffset * 3;
202 while (copysamples) {
203 *pDst = get24(pSrc) >> shift;
204 pDst += dstStep;
205 pSrc += 3;
206 copysamples--;
207 }
208 break;
209
210 case 3: // 24 bit compressed to 16 bit
211 GET_PARAMS(params);
212 while (currentframeoffset) {
213 SKIP_ONE(get16(pSrc));
214 pSrc += 2;
215 currentframeoffset--;
216 }
217 while (copysamples) {
218 COPY_ONE(get16(pSrc));
219 pSrc += 2;
220 copysamples--;
221 }
222 break;
223
224 case 4: // 24 bit compressed to 12 bit
225 GET_PARAMS(params);
226 while (currentframeoffset > 1) {
227 SKIP_ONE(get12lo(pSrc));
228 SKIP_ONE(get12hi(pSrc));
229 pSrc += 3;
230 currentframeoffset -= 2;
231 }
232 if (currentframeoffset) {
233 SKIP_ONE(get12lo(pSrc));
234 currentframeoffset--;
235 if (copysamples) {
236 COPY_ONE(get12hi(pSrc));
237 pSrc += 3;
238 copysamples--;
239 }
240 }
241 while (copysamples > 1) {
242 COPY_ONE(get12lo(pSrc));
243 COPY_ONE(get12hi(pSrc));
244 pSrc += 3;
245 copysamples -= 2;
246 }
247 if (copysamples) {
248 COPY_ONE(get12lo(pSrc));
249 }
250 break;
251
252 case 5: // 24 bit compressed to 8 bit
253 GET_PARAMS(params);
254 while (currentframeoffset) {
255 SKIP_ONE(int8_t(*pSrc++));
256 currentframeoffset--;
257 }
258 while (copysamples) {
259 COPY_ONE(int8_t(*pSrc++));
260 copysamples--;
261 }
262 break;
263 }
264 }
265
266 const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
267 const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
268 const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
269 const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
270 }
271
272
273 // *************** Sample ***************
274 // *
275
276 unsigned int Sample::Instances = 0;
277 buffer_t Sample::InternalDecompressionBuffer;
278
279 /** @brief Constructor.
280 *
281 * Load an existing sample or create a new one. A 'wave' list chunk must
282 * be given to this constructor. In case the given 'wave' list chunk
283 * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
284 * format and sample data will be loaded from there, otherwise default
285 * values will be used and those chunks will be created when
286 * File::Save() will be called later on.
287 *
288 * @param pFile - pointer to gig::File where this sample is
289 * located (or will be located)
290 * @param waveList - pointer to 'wave' list chunk which is (or
291 * will be) associated with this sample
292 * @param WavePoolOffset - offset of this sample data from wave pool
293 * ('wvpl') list chunk
294 * @param fileNo - number of an extension file where this sample
295 * is located, 0 otherwise
296 */
297 Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
298 Instances++;
299 FileNo = fileNo;
300
301 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
302 if (pCk3gix) {
303 SampleGroup = pCk3gix->ReadInt16();
304 } else { // '3gix' chunk missing
305 // use default value(s)
306 SampleGroup = 0;
307 }
308
309 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
310 if (pCkSmpl) {
311 Manufacturer = pCkSmpl->ReadInt32();
312 Product = pCkSmpl->ReadInt32();
313 SamplePeriod = pCkSmpl->ReadInt32();
314 MIDIUnityNote = pCkSmpl->ReadInt32();
315 FineTune = pCkSmpl->ReadInt32();
316 pCkSmpl->Read(&SMPTEFormat, 1, 4);
317 SMPTEOffset = pCkSmpl->ReadInt32();
318 Loops = pCkSmpl->ReadInt32();
319 pCkSmpl->ReadInt32(); // manufByt
320 LoopID = pCkSmpl->ReadInt32();
321 pCkSmpl->Read(&LoopType, 1, 4);
322 LoopStart = pCkSmpl->ReadInt32();
323 LoopEnd = pCkSmpl->ReadInt32();
324 LoopFraction = pCkSmpl->ReadInt32();
325 LoopPlayCount = pCkSmpl->ReadInt32();
326 } else { // 'smpl' chunk missing
327 // use default values
328 Manufacturer = 0;
329 Product = 0;
330 SamplePeriod = 1 / SamplesPerSecond;
331 MIDIUnityNote = 64;
332 FineTune = 0;
333 SMPTEOffset = 0;
334 Loops = 0;
335 LoopID = 0;
336 LoopStart = 0;
337 LoopEnd = 0;
338 LoopFraction = 0;
339 LoopPlayCount = 0;
340 }
341
342 FrameTable = NULL;
343 SamplePos = 0;
344 RAMCache.Size = 0;
345 RAMCache.pStart = NULL;
346 RAMCache.NullExtensionSize = 0;
347
348 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
349
350 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
351 Compressed = ewav;
352 Dithered = false;
353 TruncatedBits = 0;
354 if (Compressed) {
355 uint32_t version = ewav->ReadInt32();
356 if (version == 3 && BitDepth == 24) {
357 Dithered = ewav->ReadInt32();
358 ewav->SetPos(Channels == 2 ? 84 : 64);
359 TruncatedBits = ewav->ReadInt32();
360 }
361 ScanCompressedSample();
362 }
363
364 // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
365 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
366 InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
367 InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
368 }
369 FrameOffset = 0; // just for streaming compressed samples
370
371 LoopSize = LoopEnd - LoopStart;
372 }
373
374 /**
375 * Apply sample and its settings to the respective RIFF chunks. You have
376 * to call File::Save() to make changes persistent.
377 *
378 * Usually there is absolutely no need to call this method explicitly.
379 * It will be called automatically when File::Save() was called.
380 *
381 * @throws DLS::Exception if FormatTag != WAVE_FORMAT_PCM or no sample data
382 * was provided yet
383 * @throws gig::Exception if there is any invalid sample setting
384 */
385 void Sample::UpdateChunks() {
386 // first update base class's chunks
387 DLS::Sample::UpdateChunks();
388
389 // make sure 'smpl' chunk exists
390 pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
391 if (!pCkSmpl) pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
392 // update 'smpl' chunk
393 uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
394 SamplePeriod = 1 / SamplesPerSecond;
395 memcpy(&pData[0], &Manufacturer, 4);
396 memcpy(&pData[4], &Product, 4);
397 memcpy(&pData[8], &SamplePeriod, 4);
398 memcpy(&pData[12], &MIDIUnityNote, 4);
399 memcpy(&pData[16], &FineTune, 4);
400 memcpy(&pData[20], &SMPTEFormat, 4);
401 memcpy(&pData[24], &SMPTEOffset, 4);
402 memcpy(&pData[28], &Loops, 4);
403
404 // we skip 'manufByt' for now (4 bytes)
405
406 memcpy(&pData[36], &LoopID, 4);
407 memcpy(&pData[40], &LoopType, 4);
408 memcpy(&pData[44], &LoopStart, 4);
409 memcpy(&pData[48], &LoopEnd, 4);
410 memcpy(&pData[52], &LoopFraction, 4);
411 memcpy(&pData[56], &LoopPlayCount, 4);
412
413 // make sure '3gix' chunk exists
414 pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
415 if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
416 // update '3gix' chunk
417 pData = (uint8_t*) pCk3gix->LoadChunkData();
418 memcpy(&pData[0], &SampleGroup, 2);
419 }
420
421 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
422 void Sample::ScanCompressedSample() {
423 //TODO: we have to add some more scans here (e.g. determine compression rate)
424 this->SamplesTotal = 0;
425 std::list<unsigned long> frameOffsets;
426
427 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
428 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
429
430 // Scanning
431 pCkData->SetPos(0);
432 if (Channels == 2) { // Stereo
433 for (int i = 0 ; ; i++) {
434 // for 24 bit samples every 8:th frame offset is
435 // stored, to save some memory
436 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
437
438 const int mode_l = pCkData->ReadUint8();
439 const int mode_r = pCkData->ReadUint8();
440 if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
441 const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
442
443 if (pCkData->RemainingBytes() <= frameSize) {
444 SamplesInLastFrame =
445 ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
446 (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
447 SamplesTotal += SamplesInLastFrame;
448 break;
449 }
450 SamplesTotal += SamplesPerFrame;
451 pCkData->SetPos(frameSize, RIFF::stream_curpos);
452 }
453 }
454 else { // Mono
455 for (int i = 0 ; ; i++) {
456 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
457
458 const int mode = pCkData->ReadUint8();
459 if (mode > 5) throw gig::Exception("Unknown compression mode");
460 const unsigned long frameSize = bytesPerFrame[mode];
461
462 if (pCkData->RemainingBytes() <= frameSize) {
463 SamplesInLastFrame =
464 ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
465 SamplesTotal += SamplesInLastFrame;
466 break;
467 }
468 SamplesTotal += SamplesPerFrame;
469 pCkData->SetPos(frameSize, RIFF::stream_curpos);
470 }
471 }
472 pCkData->SetPos(0);
473
474 // Build the frames table (which is used for fast resolving of a frame's chunk offset)
475 if (FrameTable) delete[] FrameTable;
476 FrameTable = new unsigned long[frameOffsets.size()];
477 std::list<unsigned long>::iterator end = frameOffsets.end();
478 std::list<unsigned long>::iterator iter = frameOffsets.begin();
479 for (int i = 0; iter != end; i++, iter++) {
480 FrameTable[i] = *iter;
481 }
482 }
483
484 /**
485 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
486 * ReleaseSampleData() to free the memory if you don't need the cached
487 * sample data anymore.
488 *
489 * @returns buffer_t structure with start address and size of the buffer
490 * in bytes
491 * @see ReleaseSampleData(), Read(), SetPos()
492 */
493 buffer_t Sample::LoadSampleData() {
494 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
495 }
496
497 /**
498 * Reads (uncompresses if needed) and caches the first \a SampleCount
499 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
500 * memory space if you don't need the cached samples anymore. There is no
501 * guarantee that exactly \a SampleCount samples will be cached; this is
502 * not an error. The size will be eventually truncated e.g. to the
503 * beginning of a frame of a compressed sample. This is done for
504 * efficiency reasons while streaming the wave by your sampler engine
505 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
506 * that will be returned to determine the actual cached samples, but note
507 * that the size is given in bytes! You get the number of actually cached
508 * samples by dividing it by the frame size of the sample:
509 * @code
510 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
511 * long cachedsamples = buf.Size / pSample->FrameSize;
512 * @endcode
513 *
514 * @param SampleCount - number of sample points to load into RAM
515 * @returns buffer_t structure with start address and size of
516 * the cached sample data in bytes
517 * @see ReleaseSampleData(), Read(), SetPos()
518 */
519 buffer_t Sample::LoadSampleData(unsigned long SampleCount) {
520 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
521 }
522
523 /**
524 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
525 * ReleaseSampleData() to free the memory if you don't need the cached
526 * sample data anymore.
527 * The method will add \a NullSamplesCount silence samples past the
528 * official buffer end (this won't affect the 'Size' member of the
529 * buffer_t structure, that means 'Size' always reflects the size of the
530 * actual sample data, the buffer might be bigger though). Silence
531 * samples past the official buffer are needed for differential
532 * algorithms that always have to take subsequent samples into account
533 * (resampling/interpolation would be an important example) and avoids
534 * memory access faults in such cases.
535 *
536 * @param NullSamplesCount - number of silence samples the buffer should
537 * be extended past it's data end
538 * @returns buffer_t structure with start address and
539 * size of the buffer in bytes
540 * @see ReleaseSampleData(), Read(), SetPos()
541 */
542 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
543 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
544 }
545
546 /**
547 * Reads (uncompresses if needed) and caches the first \a SampleCount
548 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
549 * memory space if you don't need the cached samples anymore. There is no
550 * guarantee that exactly \a SampleCount samples will be cached; this is
551 * not an error. The size will be eventually truncated e.g. to the
552 * beginning of a frame of a compressed sample. This is done for
553 * efficiency reasons while streaming the wave by your sampler engine
554 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
555 * that will be returned to determine the actual cached samples, but note
556 * that the size is given in bytes! You get the number of actually cached
557 * samples by dividing it by the frame size of the sample:
558 * @code
559 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
560 * long cachedsamples = buf.Size / pSample->FrameSize;
561 * @endcode
562 * The method will add \a NullSamplesCount silence samples past the
563 * official buffer end (this won't affect the 'Size' member of the
564 * buffer_t structure, that means 'Size' always reflects the size of the
565 * actual sample data, the buffer might be bigger though). Silence
566 * samples past the official buffer are needed for differential
567 * algorithms that always have to take subsequent samples into account
568 * (resampling/interpolation would be an important example) and avoids
569 * memory access faults in such cases.
570 *
571 * @param SampleCount - number of sample points to load into RAM
572 * @param NullSamplesCount - number of silence samples the buffer should
573 * be extended past it's data end
574 * @returns buffer_t structure with start address and
575 * size of the cached sample data in bytes
576 * @see ReleaseSampleData(), Read(), SetPos()
577 */
578 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {
579 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
580 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
581 unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
582 RAMCache.pStart = new int8_t[allocationsize];
583 RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
584 RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
585 // fill the remaining buffer space with silence samples
586 memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
587 return GetCache();
588 }
589
590 /**
591 * Returns current cached sample points. A buffer_t structure will be
592 * returned which contains address pointer to the begin of the cache and
593 * the size of the cached sample data in bytes. Use
594 * <i>LoadSampleData()</i> to cache a specific amount of sample points in
595 * RAM.
596 *
597 * @returns buffer_t structure with current cached sample points
598 * @see LoadSampleData();
599 */
600 buffer_t Sample::GetCache() {
601 // return a copy of the buffer_t structure
602 buffer_t result;
603 result.Size = this->RAMCache.Size;
604 result.pStart = this->RAMCache.pStart;
605 result.NullExtensionSize = this->RAMCache.NullExtensionSize;
606 return result;
607 }
608
609 /**
610 * Frees the cached sample from RAM if loaded with
611 * <i>LoadSampleData()</i> previously.
612 *
613 * @see LoadSampleData();
614 */
615 void Sample::ReleaseSampleData() {
616 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
617 RAMCache.pStart = NULL;
618 RAMCache.Size = 0;
619 }
620
621 /** @brief Resize sample.
622 *
623 * Resizes the sample's wave form data, that is the actual size of
624 * sample wave data possible to be written for this sample. This call
625 * will return immediately and just schedule the resize operation. You
626 * should call File::Save() to actually perform the resize operation(s)
627 * "physically" to the file. As this can take a while on large files, it
628 * is recommended to call Resize() first on all samples which have to be
629 * resized and finally to call File::Save() to perform all those resize
630 * operations in one rush.
631 *
632 * The actual size (in bytes) is dependant to the current FrameSize
633 * value. You may want to set FrameSize before calling Resize().
634 *
635 * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
636 * enlarged samples before calling File::Save() as this might exceed the
637 * current sample's boundary!
638 *
639 * Also note: only WAVE_FORMAT_PCM is currently supported, that is
640 * FormatTag must be WAVE_FORMAT_PCM. Trying to resize samples with
641 * other formats will fail!
642 *
643 * @param iNewSize - new sample wave data size in sample points (must be
644 * greater than zero)
645 * @throws DLS::Excecption if FormatTag != WAVE_FORMAT_PCM
646 * or if \a iNewSize is less than 1
647 * @throws gig::Exception if existing sample is compressed
648 * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
649 * DLS::Sample::FormatTag, File::Save()
650 */
651 void Sample::Resize(int iNewSize) {
652 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
653 DLS::Sample::Resize(iNewSize);
654 }
655
656 /**
657 * Sets the position within the sample (in sample points, not in
658 * bytes). Use this method and <i>Read()</i> if you don't want to load
659 * the sample into RAM, thus for disk streaming.
660 *
661 * Although the original Gigasampler engine doesn't allow positioning
662 * within compressed samples, I decided to implement it. Even though
663 * the Gigasampler format doesn't allow to define loops for compressed
664 * samples at the moment, positioning within compressed samples might be
665 * interesting for some sampler engines though. The only drawback about
666 * my decision is that it takes longer to load compressed gig Files on
667 * startup, because it's neccessary to scan the samples for some
668 * mandatory informations. But I think as it doesn't affect the runtime
669 * efficiency, nobody will have a problem with that.
670 *
671 * @param SampleCount number of sample points to jump
672 * @param Whence optional: to which relation \a SampleCount refers
673 * to, if omited <i>RIFF::stream_start</i> is assumed
674 * @returns the new sample position
675 * @see Read()
676 */
677 unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {
678 if (Compressed) {
679 switch (Whence) {
680 case RIFF::stream_curpos:
681 this->SamplePos += SampleCount;
682 break;
683 case RIFF::stream_end:
684 this->SamplePos = this->SamplesTotal - 1 - SampleCount;
685 break;
686 case RIFF::stream_backward:
687 this->SamplePos -= SampleCount;
688 break;
689 case RIFF::stream_start: default:
690 this->SamplePos = SampleCount;
691 break;
692 }
693 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
694
695 unsigned long frame = this->SamplePos / 2048; // to which frame to jump
696 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
697 pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
698 return this->SamplePos;
699 }
700 else { // not compressed
701 unsigned long orderedBytes = SampleCount * this->FrameSize;
702 unsigned long result = pCkData->SetPos(orderedBytes, Whence);
703 return (result == orderedBytes) ? SampleCount
704 : result / this->FrameSize;
705 }
706 }
707
708 /**
709 * Returns the current position in the sample (in sample points).
710 */
711 unsigned long Sample::GetPos() {
712 if (Compressed) return SamplePos;
713 else return pCkData->GetPos() / FrameSize;
714 }
715
716 /**
717 * Reads \a SampleCount number of sample points from the position stored
718 * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
719 * the position within the sample respectively, this method honors the
720 * looping informations of the sample (if any). The sample wave stream
721 * will be decompressed on the fly if using a compressed sample. Use this
722 * method if you don't want to load the sample into RAM, thus for disk
723 * streaming. All this methods needs to know to proceed with streaming
724 * for the next time you call this method is stored in \a pPlaybackState.
725 * You have to allocate and initialize the playback_state_t structure by
726 * yourself before you use it to stream a sample:
727 * @code
728 * gig::playback_state_t playbackstate;
729 * playbackstate.position = 0;
730 * playbackstate.reverse = false;
731 * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
732 * @endcode
733 * You don't have to take care of things like if there is actually a loop
734 * defined or if the current read position is located within a loop area.
735 * The method already handles such cases by itself.
736 *
737 * <b>Caution:</b> If you are using more than one streaming thread, you
738 * have to use an external decompression buffer for <b>EACH</b>
739 * streaming thread to avoid race conditions and crashes!
740 *
741 * @param pBuffer destination buffer
742 * @param SampleCount number of sample points to read
743 * @param pPlaybackState will be used to store and reload the playback
744 * state for the next ReadAndLoop() call
745 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
746 * @returns number of successfully read sample points
747 * @see CreateDecompressionBuffer()
748 */
749 unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState, buffer_t* pExternalDecompressionBuffer) {
750 unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
751 uint8_t* pDst = (uint8_t*) pBuffer;
752
753 SetPos(pPlaybackState->position); // recover position from the last time
754
755 if (this->Loops && GetPos() <= this->LoopEnd) { // honor looping if there are loop points defined
756
757 switch (this->LoopType) {
758
759 case loop_type_bidirectional: { //TODO: not tested yet!
760 do {
761 // if not endless loop check if max. number of loop cycles have been passed
762 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
763
764 if (!pPlaybackState->reverse) { // forward playback
765 do {
766 samplestoloopend = this->LoopEnd - GetPos();
767 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
768 samplestoread -= readsamples;
769 totalreadsamples += readsamples;
770 if (readsamples == samplestoloopend) {
771 pPlaybackState->reverse = true;
772 break;
773 }
774 } while (samplestoread && readsamples);
775 }
776 else { // backward playback
777
778 // as we can only read forward from disk, we have to
779 // determine the end position within the loop first,
780 // read forward from that 'end' and finally after
781 // reading, swap all sample frames so it reflects
782 // backward playback
783
784 unsigned long swapareastart = totalreadsamples;
785 unsigned long loopoffset = GetPos() - this->LoopStart;
786 unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
787 unsigned long reverseplaybackend = GetPos() - samplestoreadinloop;
788
789 SetPos(reverseplaybackend);
790
791 // read samples for backward playback
792 do {
793 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
794 samplestoreadinloop -= readsamples;
795 samplestoread -= readsamples;
796 totalreadsamples += readsamples;
797 } while (samplestoreadinloop && readsamples);
798
799 SetPos(reverseplaybackend); // pretend we really read backwards
800
801 if (reverseplaybackend == this->LoopStart) {
802 pPlaybackState->loop_cycles_left--;
803 pPlaybackState->reverse = false;
804 }
805
806 // reverse the sample frames for backward playback
807 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
808 }
809 } while (samplestoread && readsamples);
810 break;
811 }
812
813 case loop_type_backward: { // TODO: not tested yet!
814 // forward playback (not entered the loop yet)
815 if (!pPlaybackState->reverse) do {
816 samplestoloopend = this->LoopEnd - GetPos();
817 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
818 samplestoread -= readsamples;
819 totalreadsamples += readsamples;
820 if (readsamples == samplestoloopend) {
821 pPlaybackState->reverse = true;
822 break;
823 }
824 } while (samplestoread && readsamples);
825
826 if (!samplestoread) break;
827
828 // as we can only read forward from disk, we have to
829 // determine the end position within the loop first,
830 // read forward from that 'end' and finally after
831 // reading, swap all sample frames so it reflects
832 // backward playback
833
834 unsigned long swapareastart = totalreadsamples;
835 unsigned long loopoffset = GetPos() - this->LoopStart;
836 unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * LoopSize - loopoffset)
837 : samplestoread;
838 unsigned long reverseplaybackend = this->LoopStart + Abs((loopoffset - samplestoreadinloop) % this->LoopSize);
839
840 SetPos(reverseplaybackend);
841
842 // read samples for backward playback
843 do {
844 // if not endless loop check if max. number of loop cycles have been passed
845 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
846 samplestoloopend = this->LoopEnd - GetPos();
847 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
848 samplestoreadinloop -= readsamples;
849 samplestoread -= readsamples;
850 totalreadsamples += readsamples;
851 if (readsamples == samplestoloopend) {
852 pPlaybackState->loop_cycles_left--;
853 SetPos(this->LoopStart);
854 }
855 } while (samplestoreadinloop && readsamples);
856
857 SetPos(reverseplaybackend); // pretend we really read backwards
858
859 // reverse the sample frames for backward playback
860 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
861 break;
862 }
863
864 default: case loop_type_normal: {
865 do {
866 // if not endless loop check if max. number of loop cycles have been passed
867 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
868 samplestoloopend = this->LoopEnd - GetPos();
869 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
870 samplestoread -= readsamples;
871 totalreadsamples += readsamples;
872 if (readsamples == samplestoloopend) {
873 pPlaybackState->loop_cycles_left--;
874 SetPos(this->LoopStart);
875 }
876 } while (samplestoread && readsamples);
877 break;
878 }
879 }
880 }
881
882 // read on without looping
883 if (samplestoread) do {
884 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
885 samplestoread -= readsamples;
886 totalreadsamples += readsamples;
887 } while (readsamples && samplestoread);
888
889 // store current position
890 pPlaybackState->position = GetPos();
891
892 return totalreadsamples;
893 }
894
895 /**
896 * Reads \a SampleCount number of sample points from the current
897 * position into the buffer pointed by \a pBuffer and increments the
898 * position within the sample. The sample wave stream will be
899 * decompressed on the fly if using a compressed sample. Use this method
900 * and <i>SetPos()</i> if you don't want to load the sample into RAM,
901 * thus for disk streaming.
902 *
903 * <b>Caution:</b> If you are using more than one streaming thread, you
904 * have to use an external decompression buffer for <b>EACH</b>
905 * streaming thread to avoid race conditions and crashes!
906 *
907 * @param pBuffer destination buffer
908 * @param SampleCount number of sample points to read
909 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
910 * @returns number of successfully read sample points
911 * @see SetPos(), CreateDecompressionBuffer()
912 */
913 unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
914 if (SampleCount == 0) return 0;
915 if (!Compressed) {
916 if (BitDepth == 24) {
917 // 24 bit sample. For now just truncate to 16 bit.
918 unsigned char* pSrc = (unsigned char*) ((pExternalDecompressionBuffer) ? pExternalDecompressionBuffer->pStart : this->InternalDecompressionBuffer.pStart);
919 int16_t* pDst = static_cast<int16_t*>(pBuffer);
920 if (Channels == 2) { // Stereo
921 unsigned long readBytes = pCkData->Read(pSrc, SampleCount * 6, 1);
922 pSrc++;
923 for (unsigned long i = readBytes ; i > 0 ; i -= 3) {
924 *pDst++ = get16(pSrc);
925 pSrc += 3;
926 }
927 return (pDst - static_cast<int16_t*>(pBuffer)) >> 1;
928 }
929 else { // Mono
930 unsigned long readBytes = pCkData->Read(pSrc, SampleCount * 3, 1);
931 pSrc++;
932 for (unsigned long i = readBytes ; i > 0 ; i -= 3) {
933 *pDst++ = get16(pSrc);
934 pSrc += 3;
935 }
936 return pDst - static_cast<int16_t*>(pBuffer);
937 }
938 }
939 else { // 16 bit
940 // (pCkData->Read does endian correction)
941 return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
942 : pCkData->Read(pBuffer, SampleCount, 2);
943 }
944 }
945 else {
946 if (this->SamplePos >= this->SamplesTotal) return 0;
947 //TODO: efficiency: maybe we should test for an average compression rate
948 unsigned long assumedsize = GuessSize(SampleCount),
949 remainingbytes = 0, // remaining bytes in the local buffer
950 remainingsamples = SampleCount,
951 copysamples, skipsamples,
952 currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
953 this->FrameOffset = 0;
954
955 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
956
957 // if decompression buffer too small, then reduce amount of samples to read
958 if (pDecompressionBuffer->Size < assumedsize) {
959 std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
960 SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
961 remainingsamples = SampleCount;
962 assumedsize = GuessSize(SampleCount);
963 }
964
965 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
966 int16_t* pDst = static_cast<int16_t*>(pBuffer);
967 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
968
969 while (remainingsamples && remainingbytes) {
970 unsigned long framesamples = SamplesPerFrame;
971 unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
972
973 int mode_l = *pSrc++, mode_r = 0;
974
975 if (Channels == 2) {
976 mode_r = *pSrc++;
977 framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
978 rightChannelOffset = bytesPerFrameNoHdr[mode_l];
979 nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
980 if (remainingbytes < framebytes) { // last frame in sample
981 framesamples = SamplesInLastFrame;
982 if (mode_l == 4 && (framesamples & 1)) {
983 rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
984 }
985 else {
986 rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
987 }
988 }
989 }
990 else {
991 framebytes = bytesPerFrame[mode_l] + 1;
992 nextFrameOffset = bytesPerFrameNoHdr[mode_l];
993 if (remainingbytes < framebytes) {
994 framesamples = SamplesInLastFrame;
995 }
996 }
997
998 // determine how many samples in this frame to skip and read
999 if (currentframeoffset + remainingsamples >= framesamples) {
1000 if (currentframeoffset <= framesamples) {
1001 copysamples = framesamples - currentframeoffset;
1002 skipsamples = currentframeoffset;
1003 }
1004 else {
1005 copysamples = 0;
1006 skipsamples = framesamples;
1007 }
1008 }
1009 else {
1010 // This frame has enough data for pBuffer, but not
1011 // all of the frame is needed. Set file position
1012 // to start of this frame for next call to Read.
1013 copysamples = remainingsamples;
1014 skipsamples = currentframeoffset;
1015 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1016 this->FrameOffset = currentframeoffset + copysamples;
1017 }
1018 remainingsamples -= copysamples;
1019
1020 if (remainingbytes > framebytes) {
1021 remainingbytes -= framebytes;
1022 if (remainingsamples == 0 &&
1023 currentframeoffset + copysamples == framesamples) {
1024 // This frame has enough data for pBuffer, and
1025 // all of the frame is needed. Set file
1026 // position to start of next frame for next
1027 // call to Read. FrameOffset is 0.
1028 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1029 }
1030 }
1031 else remainingbytes = 0;
1032
1033 currentframeoffset -= skipsamples;
1034
1035 if (copysamples == 0) {
1036 // skip this frame
1037 pSrc += framebytes - Channels;
1038 }
1039 else {
1040 const unsigned char* const param_l = pSrc;
1041 if (BitDepth == 24) {
1042 if (mode_l != 2) pSrc += 12;
1043
1044 if (Channels == 2) { // Stereo
1045 const unsigned char* const param_r = pSrc;
1046 if (mode_r != 2) pSrc += 12;
1047
1048 Decompress24(mode_l, param_l, 2, pSrc, pDst,
1049 skipsamples, copysamples, TruncatedBits);
1050 Decompress24(mode_r, param_r, 2, pSrc + rightChannelOffset, pDst + 1,
1051 skipsamples, copysamples, TruncatedBits);
1052 pDst += copysamples << 1;
1053 }
1054 else { // Mono
1055 Decompress24(mode_l, param_l, 1, pSrc, pDst,
1056 skipsamples, copysamples, TruncatedBits);
1057 pDst += copysamples;
1058 }
1059 }
1060 else { // 16 bit
1061 if (mode_l) pSrc += 4;
1062
1063 int step;
1064 if (Channels == 2) { // Stereo
1065 const unsigned char* const param_r = pSrc;
1066 if (mode_r) pSrc += 4;
1067
1068 step = (2 - mode_l) + (2 - mode_r);
1069 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1070 Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1071 skipsamples, copysamples);
1072 pDst += copysamples << 1;
1073 }
1074 else { // Mono
1075 step = 2 - mode_l;
1076 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1077 pDst += copysamples;
1078 }
1079 }
1080 pSrc += nextFrameOffset;
1081 }
1082
1083 // reload from disk to local buffer if needed
1084 if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1085 assumedsize = GuessSize(remainingsamples);
1086 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1087 if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1088 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1089 pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1090 }
1091 } // while
1092
1093 this->SamplePos += (SampleCount - remainingsamples);
1094 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1095 return (SampleCount - remainingsamples);
1096 }
1097 }
1098
1099 /** @brief Write sample wave data.
1100 *
1101 * Writes \a SampleCount number of sample points from the buffer pointed
1102 * by \a pBuffer and increments the position within the sample. Use this
1103 * method to directly write the sample data to disk, i.e. if you don't
1104 * want or cannot load the whole sample data into RAM.
1105 *
1106 * You have to Resize() the sample to the desired size and call
1107 * File::Save() <b>before</b> using Write().
1108 *
1109 * Note: there is currently no support for writing compressed samples.
1110 *
1111 * @param pBuffer - source buffer
1112 * @param SampleCount - number of sample points to write
1113 * @throws DLS::Exception if current sample size is too small
1114 * @throws gig::Exception if sample is compressed
1115 * @see DLS::LoadSampleData()
1116 */
1117 unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1118 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1119 return DLS::Sample::Write(pBuffer, SampleCount);
1120 }
1121
1122 /**
1123 * Allocates a decompression buffer for streaming (compressed) samples
1124 * with Sample::Read(). If you are using more than one streaming thread
1125 * in your application you <b>HAVE</b> to create a decompression buffer
1126 * for <b>EACH</b> of your streaming threads and provide it with the
1127 * Sample::Read() call in order to avoid race conditions and crashes.
1128 *
1129 * You should free the memory occupied by the allocated buffer(s) once
1130 * you don't need one of your streaming threads anymore by calling
1131 * DestroyDecompressionBuffer().
1132 *
1133 * @param MaxReadSize - the maximum size (in sample points) you ever
1134 * expect to read with one Read() call
1135 * @returns allocated decompression buffer
1136 * @see DestroyDecompressionBuffer()
1137 */
1138 buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
1139 buffer_t result;
1140 const double worstCaseHeaderOverhead =
1141 (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1142 result.Size = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1143 result.pStart = new int8_t[result.Size];
1144 result.NullExtensionSize = 0;
1145 return result;
1146 }
1147
1148 /**
1149 * Free decompression buffer, previously created with
1150 * CreateDecompressionBuffer().
1151 *
1152 * @param DecompressionBuffer - previously allocated decompression
1153 * buffer to free
1154 */
1155 void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1156 if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1157 delete[] (int8_t*) DecompressionBuffer.pStart;
1158 DecompressionBuffer.pStart = NULL;
1159 DecompressionBuffer.Size = 0;
1160 DecompressionBuffer.NullExtensionSize = 0;
1161 }
1162 }
1163
1164 Sample::~Sample() {
1165 Instances--;
1166 if (!Instances && InternalDecompressionBuffer.Size) {
1167 delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1168 InternalDecompressionBuffer.pStart = NULL;
1169 InternalDecompressionBuffer.Size = 0;
1170 }
1171 if (FrameTable) delete[] FrameTable;
1172 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1173 }
1174
1175
1176
1177 // *************** DimensionRegion ***************
1178 // *
1179
1180 uint DimensionRegion::Instances = 0;
1181 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1182
1183 DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1184 Instances++;
1185
1186 pSample = NULL;
1187
1188 memcpy(&Crossfade, &SamplerOptions, 4);
1189 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1190
1191 RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1192 if (_3ewa) { // if '3ewa' chunk exists
1193 _3ewa->ReadInt32(); // unknown, always 0x0000008C ?
1194 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1195 EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1196 _3ewa->ReadInt16(); // unknown
1197 LFO1InternalDepth = _3ewa->ReadUint16();
1198 _3ewa->ReadInt16(); // unknown
1199 LFO3InternalDepth = _3ewa->ReadInt16();
1200 _3ewa->ReadInt16(); // unknown
1201 LFO1ControlDepth = _3ewa->ReadUint16();
1202 _3ewa->ReadInt16(); // unknown
1203 LFO3ControlDepth = _3ewa->ReadInt16();
1204 EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1205 EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1206 _3ewa->ReadInt16(); // unknown
1207 EG1Sustain = _3ewa->ReadUint16();
1208 EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1209 EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1210 uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1211 EG1ControllerInvert = eg1ctrloptions & 0x01;
1212 EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1213 EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1214 EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1215 EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1216 uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1217 EG2ControllerInvert = eg2ctrloptions & 0x01;
1218 EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1219 EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1220 EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1221 LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1222 EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1223 EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1224 _3ewa->ReadInt16(); // unknown
1225 EG2Sustain = _3ewa->ReadUint16();
1226 EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1227 _3ewa->ReadInt16(); // unknown
1228 LFO2ControlDepth = _3ewa->ReadUint16();
1229 LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1230 _3ewa->ReadInt16(); // unknown
1231 LFO2InternalDepth = _3ewa->ReadUint16();
1232 int32_t eg1decay2 = _3ewa->ReadInt32();
1233 EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1234 EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1235 _3ewa->ReadInt16(); // unknown
1236 EG1PreAttack = _3ewa->ReadUint16();
1237 int32_t eg2decay2 = _3ewa->ReadInt32();
1238 EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1239 EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1240 _3ewa->ReadInt16(); // unknown
1241 EG2PreAttack = _3ewa->ReadUint16();
1242 uint8_t velocityresponse = _3ewa->ReadUint8();
1243 if (velocityresponse < 5) {
1244 VelocityResponseCurve = curve_type_nonlinear;
1245 VelocityResponseDepth = velocityresponse;
1246 } else if (velocityresponse < 10) {
1247 VelocityResponseCurve = curve_type_linear;
1248 VelocityResponseDepth = velocityresponse - 5;
1249 } else if (velocityresponse < 15) {
1250 VelocityResponseCurve = curve_type_special;
1251 VelocityResponseDepth = velocityresponse - 10;
1252 } else {
1253 VelocityResponseCurve = curve_type_unknown;
1254 VelocityResponseDepth = 0;
1255 }
1256 uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1257 if (releasevelocityresponse < 5) {
1258 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1259 ReleaseVelocityResponseDepth = releasevelocityresponse;
1260 } else if (releasevelocityresponse < 10) {
1261 ReleaseVelocityResponseCurve = curve_type_linear;
1262 ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1263 } else if (releasevelocityresponse < 15) {
1264 ReleaseVelocityResponseCurve = curve_type_special;
1265 ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1266 } else {
1267 ReleaseVelocityResponseCurve = curve_type_unknown;
1268 ReleaseVelocityResponseDepth = 0;
1269 }
1270 VelocityResponseCurveScaling = _3ewa->ReadUint8();
1271 AttenuationControllerThreshold = _3ewa->ReadInt8();
1272 _3ewa->ReadInt32(); // unknown
1273 SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1274 _3ewa->ReadInt16(); // unknown
1275 uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1276 PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1277 if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1278 else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1279 else DimensionBypass = dim_bypass_ctrl_none;
1280 uint8_t pan = _3ewa->ReadUint8();
1281 Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1282 SelfMask = _3ewa->ReadInt8() & 0x01;
1283 _3ewa->ReadInt8(); // unknown
1284 uint8_t lfo3ctrl = _3ewa->ReadUint8();
1285 LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1286 LFO3Sync = lfo3ctrl & 0x20; // bit 5
1287 InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1288 AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1289 uint8_t lfo2ctrl = _3ewa->ReadUint8();
1290 LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1291 LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1292 LFO2Sync = lfo2ctrl & 0x20; // bit 5
1293 bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1294 uint8_t lfo1ctrl = _3ewa->ReadUint8();
1295 LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1296 LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1297 LFO1Sync = lfo1ctrl & 0x40; // bit 6
1298 VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1299 : vcf_res_ctrl_none;
1300 uint16_t eg3depth = _3ewa->ReadUint16();
1301 EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1302 : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */
1303 _3ewa->ReadInt16(); // unknown
1304 ChannelOffset = _3ewa->ReadUint8() / 4;
1305 uint8_t regoptions = _3ewa->ReadUint8();
1306 MSDecode = regoptions & 0x01; // bit 0
1307 SustainDefeat = regoptions & 0x02; // bit 1
1308 _3ewa->ReadInt16(); // unknown
1309 VelocityUpperLimit = _3ewa->ReadInt8();
1310 _3ewa->ReadInt8(); // unknown
1311 _3ewa->ReadInt16(); // unknown
1312 ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1313 _3ewa->ReadInt8(); // unknown
1314 _3ewa->ReadInt8(); // unknown
1315 EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1316 uint8_t vcfcutoff = _3ewa->ReadUint8();
1317 VCFEnabled = vcfcutoff & 0x80; // bit 7
1318 VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1319 VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1320 uint8_t vcfvelscale = _3ewa->ReadUint8();
1321 VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1322 VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1323 _3ewa->ReadInt8(); // unknown
1324 uint8_t vcfresonance = _3ewa->ReadUint8();
1325 VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1326 VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1327 uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1328 VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1329 VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1330 uint8_t vcfvelocity = _3ewa->ReadUint8();
1331 VCFVelocityDynamicRange = vcfvelocity % 5;
1332 VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1333 VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1334 if (VCFType == vcf_type_lowpass) {
1335 if (lfo3ctrl & 0x40) // bit 6
1336 VCFType = vcf_type_lowpassturbo;
1337 }
1338 } else { // '3ewa' chunk does not exist yet
1339 // use default values
1340 LFO3Frequency = 1.0;
1341 EG3Attack = 0.0;
1342 LFO1InternalDepth = 0;
1343 LFO3InternalDepth = 0;
1344 LFO1ControlDepth = 0;
1345 LFO3ControlDepth = 0;
1346 EG1Attack = 0.0;
1347 EG1Decay1 = 0.0;
1348 EG1Sustain = 0;
1349 EG1Release = 0.0;
1350 EG1Controller.type = eg1_ctrl_t::type_none;
1351 EG1Controller.controller_number = 0;
1352 EG1ControllerInvert = false;
1353 EG1ControllerAttackInfluence = 0;
1354 EG1ControllerDecayInfluence = 0;
1355 EG1ControllerReleaseInfluence = 0;
1356 EG2Controller.type = eg2_ctrl_t::type_none;
1357 EG2Controller.controller_number = 0;
1358 EG2ControllerInvert = false;
1359 EG2ControllerAttackInfluence = 0;
1360 EG2ControllerDecayInfluence = 0;
1361 EG2ControllerReleaseInfluence = 0;
1362 LFO1Frequency = 1.0;
1363 EG2Attack = 0.0;
1364 EG2Decay1 = 0.0;
1365 EG2Sustain = 0;
1366 EG2Release = 0.0;
1367 LFO2ControlDepth = 0;
1368 LFO2Frequency = 1.0;
1369 LFO2InternalDepth = 0;
1370 EG1Decay2 = 0.0;
1371 EG1InfiniteSustain = false;
1372 EG1PreAttack = 1000;
1373 EG2Decay2 = 0.0;
1374 EG2InfiniteSustain = false;
1375 EG2PreAttack = 1000;
1376 VelocityResponseCurve = curve_type_nonlinear;
1377 VelocityResponseDepth = 3;
1378 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1379 ReleaseVelocityResponseDepth = 3;
1380 VelocityResponseCurveScaling = 32;
1381 AttenuationControllerThreshold = 0;
1382 SampleStartOffset = 0;
1383 PitchTrack = true;
1384 DimensionBypass = dim_bypass_ctrl_none;
1385 Pan = 0;
1386 SelfMask = true;
1387 LFO3Controller = lfo3_ctrl_modwheel;
1388 LFO3Sync = false;
1389 InvertAttenuationController = false;
1390 AttenuationController.type = attenuation_ctrl_t::type_none;
1391 AttenuationController.controller_number = 0;
1392 LFO2Controller = lfo2_ctrl_internal;
1393 LFO2FlipPhase = false;
1394 LFO2Sync = false;
1395 LFO1Controller = lfo1_ctrl_internal;
1396 LFO1FlipPhase = false;
1397 LFO1Sync = false;
1398 VCFResonanceController = vcf_res_ctrl_none;
1399 EG3Depth = 0;
1400 ChannelOffset = 0;
1401 MSDecode = false;
1402 SustainDefeat = false;
1403 VelocityUpperLimit = 0;
1404 ReleaseTriggerDecay = 0;
1405 EG1Hold = false;
1406 VCFEnabled = false;
1407 VCFCutoff = 0;
1408 VCFCutoffController = vcf_cutoff_ctrl_none;
1409 VCFCutoffControllerInvert = false;
1410 VCFVelocityScale = 0;
1411 VCFResonance = 0;
1412 VCFResonanceDynamic = false;
1413 VCFKeyboardTracking = false;
1414 VCFKeyboardTrackingBreakpoint = 0;
1415 VCFVelocityDynamicRange = 0x04;
1416 VCFVelocityCurve = curve_type_linear;
1417 VCFType = vcf_type_lowpass;
1418 }
1419
1420 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1421 VelocityResponseDepth,
1422 VelocityResponseCurveScaling);
1423
1424 curve_type_t curveType = ReleaseVelocityResponseCurve;
1425 uint8_t depth = ReleaseVelocityResponseDepth;
1426
1427 // this models a strange behaviour or bug in GSt: two of the
1428 // velocity response curves for release time are not used even
1429 // if specified, instead another curve is chosen.
1430 if ((curveType == curve_type_nonlinear && depth == 0) ||
1431 (curveType == curve_type_special && depth == 4)) {
1432 curveType = curve_type_nonlinear;
1433 depth = 3;
1434 }
1435 pVelocityReleaseTable = GetVelocityTable(curveType, depth, 0);
1436
1437 curveType = VCFVelocityCurve;
1438 depth = VCFVelocityDynamicRange;
1439
1440 // even stranger GSt: two of the velocity response curves for
1441 // filter cutoff are not used, instead another special curve
1442 // is chosen. This curve is not used anywhere else.
1443 if ((curveType == curve_type_nonlinear && depth == 0) ||
1444 (curveType == curve_type_special && depth == 4)) {
1445 curveType = curve_type_special;
1446 depth = 5;
1447 }
1448 pVelocityCutoffTable = GetVelocityTable(curveType, depth,
1449 VCFCutoffController <= vcf_cutoff_ctrl_none2 ? VCFVelocityScale : 0);
1450
1451 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1452 }
1453
1454 /**
1455 * Apply dimension region settings to the respective RIFF chunks. You
1456 * have to call File::Save() to make changes persistent.
1457 *
1458 * Usually there is absolutely no need to call this method explicitly.
1459 * It will be called automatically when File::Save() was called.
1460 */
1461 void DimensionRegion::UpdateChunks() {
1462 // first update base class's chunk
1463 DLS::Sampler::UpdateChunks();
1464
1465 // make sure '3ewa' chunk exists
1466 RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1467 if (!_3ewa) _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, 140);
1468 uint8_t* pData = (uint8_t*) _3ewa->LoadChunkData();
1469
1470 // update '3ewa' chunk with DimensionRegion's current settings
1471
1472 const uint32_t unknown = 0x0000008C; // unknown, always 0x0000008C ?
1473 memcpy(&pData[0], &unknown, 4);
1474
1475 const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1476 memcpy(&pData[4], &lfo3freq, 4);
1477
1478 const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1479 memcpy(&pData[4], &eg3attack, 4);
1480
1481 // next 2 bytes unknown
1482
1483 memcpy(&pData[10], &LFO1InternalDepth, 2);
1484
1485 // next 2 bytes unknown
1486
1487 memcpy(&pData[14], &LFO3InternalDepth, 2);
1488
1489 // next 2 bytes unknown
1490
1491 memcpy(&pData[18], &LFO1ControlDepth, 2);
1492
1493 // next 2 bytes unknown
1494
1495 memcpy(&pData[22], &LFO3ControlDepth, 2);
1496
1497 const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1498 memcpy(&pData[24], &eg1attack, 4);
1499
1500 const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1501 memcpy(&pData[28], &eg1decay1, 4);
1502
1503 // next 2 bytes unknown
1504
1505 memcpy(&pData[34], &EG1Sustain, 2);
1506
1507 const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1508 memcpy(&pData[36], &eg1release, 4);
1509
1510 const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1511 memcpy(&pData[40], &eg1ctl, 1);
1512
1513 const uint8_t eg1ctrloptions =
1514 (EG1ControllerInvert) ? 0x01 : 0x00 |
1515 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1516 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1517 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1518 memcpy(&pData[41], &eg1ctrloptions, 1);
1519
1520 const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1521 memcpy(&pData[42], &eg2ctl, 1);
1522
1523 const uint8_t eg2ctrloptions =
1524 (EG2ControllerInvert) ? 0x01 : 0x00 |
1525 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1526 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1527 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1528 memcpy(&pData[43], &eg2ctrloptions, 1);
1529
1530 const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1531 memcpy(&pData[44], &lfo1freq, 4);
1532
1533 const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1534 memcpy(&pData[48], &eg2attack, 4);
1535
1536 const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1537 memcpy(&pData[52], &eg2decay1, 4);
1538
1539 // next 2 bytes unknown
1540
1541 memcpy(&pData[58], &EG2Sustain, 2);
1542
1543 const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1544 memcpy(&pData[60], &eg2release, 4);
1545
1546 // next 2 bytes unknown
1547
1548 memcpy(&pData[66], &LFO2ControlDepth, 2);
1549
1550 const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1551 memcpy(&pData[68], &lfo2freq, 4);
1552
1553 // next 2 bytes unknown
1554
1555 memcpy(&pData[72], &LFO2InternalDepth, 2);
1556
1557 const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1558 memcpy(&pData[74], &eg1decay2, 4);
1559
1560 // next 2 bytes unknown
1561
1562 memcpy(&pData[80], &EG1PreAttack, 2);
1563
1564 const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1565 memcpy(&pData[82], &eg2decay2, 4);
1566
1567 // next 2 bytes unknown
1568
1569 memcpy(&pData[88], &EG2PreAttack, 2);
1570
1571 {
1572 if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1573 uint8_t velocityresponse = VelocityResponseDepth;
1574 switch (VelocityResponseCurve) {
1575 case curve_type_nonlinear:
1576 break;
1577 case curve_type_linear:
1578 velocityresponse += 5;
1579 break;
1580 case curve_type_special:
1581 velocityresponse += 10;
1582 break;
1583 case curve_type_unknown:
1584 default:
1585 throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1586 }
1587 memcpy(&pData[90], &velocityresponse, 1);
1588 }
1589
1590 {
1591 if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1592 uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1593 switch (ReleaseVelocityResponseCurve) {
1594 case curve_type_nonlinear:
1595 break;
1596 case curve_type_linear:
1597 releasevelocityresponse += 5;
1598 break;
1599 case curve_type_special:
1600 releasevelocityresponse += 10;
1601 break;
1602 case curve_type_unknown:
1603 default:
1604 throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1605 }
1606 memcpy(&pData[91], &releasevelocityresponse, 1);
1607 }
1608
1609 memcpy(&pData[92], &VelocityResponseCurveScaling, 1);
1610
1611 memcpy(&pData[93], &AttenuationControllerThreshold, 1);
1612
1613 // next 4 bytes unknown
1614
1615 memcpy(&pData[98], &SampleStartOffset, 2);
1616
1617 // next 2 bytes unknown
1618
1619 {
1620 uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1621 switch (DimensionBypass) {
1622 case dim_bypass_ctrl_94:
1623 pitchTrackDimensionBypass |= 0x10;
1624 break;
1625 case dim_bypass_ctrl_95:
1626 pitchTrackDimensionBypass |= 0x20;
1627 break;
1628 case dim_bypass_ctrl_none:
1629 //FIXME: should we set anything here?
1630 break;
1631 default:
1632 throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1633 }
1634 memcpy(&pData[102], &pitchTrackDimensionBypass, 1);
1635 }
1636
1637 const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1638 memcpy(&pData[103], &pan, 1);
1639
1640 const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1641 memcpy(&pData[104], &selfmask, 1);
1642
1643 // next byte unknown
1644
1645 {
1646 uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1647 if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1648 if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1649 if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1650 memcpy(&pData[106], &lfo3ctrl, 1);
1651 }
1652
1653 const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1654 memcpy(&pData[107], &attenctl, 1);
1655
1656 {
1657 uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1658 if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1659 if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
1660 if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1661 memcpy(&pData[108], &lfo2ctrl, 1);
1662 }
1663
1664 {
1665 uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1666 if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1667 if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
1668 if (VCFResonanceController != vcf_res_ctrl_none)
1669 lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1670 memcpy(&pData[109], &lfo1ctrl, 1);
1671 }
1672
1673 const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1674 : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */
1675 memcpy(&pData[110], &eg3depth, 1);
1676
1677 // next 2 bytes unknown
1678
1679 const uint8_t channeloffset = ChannelOffset * 4;
1680 memcpy(&pData[113], &channeloffset, 1);
1681
1682 {
1683 uint8_t regoptions = 0;
1684 if (MSDecode) regoptions |= 0x01; // bit 0
1685 if (SustainDefeat) regoptions |= 0x02; // bit 1
1686 memcpy(&pData[114], &regoptions, 1);
1687 }
1688
1689 // next 2 bytes unknown
1690
1691 memcpy(&pData[117], &VelocityUpperLimit, 1);
1692
1693 // next 3 bytes unknown
1694
1695 memcpy(&pData[121], &ReleaseTriggerDecay, 1);
1696
1697 // next 2 bytes unknown
1698
1699 const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
1700 memcpy(&pData[124], &eg1hold, 1);
1701
1702 const uint8_t vcfcutoff = (VCFEnabled) ? 0x80 : 0x00 | /* bit 7 */
1703 (VCFCutoff) ? 0x7f : 0x00; /* lower 7 bits */
1704 memcpy(&pData[125], &vcfcutoff, 1);
1705
1706 memcpy(&pData[126], &VCFCutoffController, 1);
1707
1708 const uint8_t vcfvelscale = (VCFCutoffControllerInvert) ? 0x80 : 0x00 | /* bit 7 */
1709 (VCFVelocityScale) ? 0x7f : 0x00; /* lower 7 bits */
1710 memcpy(&pData[127], &vcfvelscale, 1);
1711
1712 // next byte unknown
1713
1714 const uint8_t vcfresonance = (VCFResonanceDynamic) ? 0x00 : 0x80 | /* bit 7 */
1715 (VCFResonance) ? 0x7f : 0x00; /* lower 7 bits */
1716 memcpy(&pData[129], &vcfresonance, 1);
1717
1718 const uint8_t vcfbreakpoint = (VCFKeyboardTracking) ? 0x80 : 0x00 | /* bit 7 */
1719 (VCFKeyboardTrackingBreakpoint) ? 0x7f : 0x00; /* lower 7 bits */
1720 memcpy(&pData[130], &vcfbreakpoint, 1);
1721
1722 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 |
1723 VCFVelocityCurve * 5;
1724 memcpy(&pData[131], &vcfvelocity, 1);
1725
1726 const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
1727 memcpy(&pData[132], &vcftype, 1);
1728 }
1729
1730 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
1731 double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
1732 {
1733 double* table;
1734 uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
1735 if (pVelocityTables->count(tableKey)) { // if key exists
1736 table = (*pVelocityTables)[tableKey];
1737 }
1738 else {
1739 table = CreateVelocityTable(curveType, depth, scaling);
1740 (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
1741 }
1742 return table;
1743 }
1744
1745 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
1746 leverage_ctrl_t decodedcontroller;
1747 switch (EncodedController) {
1748 // special controller
1749 case _lev_ctrl_none:
1750 decodedcontroller.type = leverage_ctrl_t::type_none;
1751 decodedcontroller.controller_number = 0;
1752 break;
1753 case _lev_ctrl_velocity:
1754 decodedcontroller.type = leverage_ctrl_t::type_velocity;
1755 decodedcontroller.controller_number = 0;
1756 break;
1757 case _lev_ctrl_channelaftertouch:
1758 decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
1759 decodedcontroller.controller_number = 0;
1760 break;
1761
1762 // ordinary MIDI control change controller
1763 case _lev_ctrl_modwheel:
1764 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1765 decodedcontroller.controller_number = 1;
1766 break;
1767 case _lev_ctrl_breath:
1768 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1769 decodedcontroller.controller_number = 2;
1770 break;
1771 case _lev_ctrl_foot:
1772 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1773 decodedcontroller.controller_number = 4;
1774 break;
1775 case _lev_ctrl_effect1:
1776 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1777 decodedcontroller.controller_number = 12;
1778 break;
1779 case _lev_ctrl_effect2:
1780 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1781 decodedcontroller.controller_number = 13;
1782 break;
1783 case _lev_ctrl_genpurpose1:
1784 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1785 decodedcontroller.controller_number = 16;
1786 break;
1787 case _lev_ctrl_genpurpose2:
1788 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1789 decodedcontroller.controller_number = 17;
1790 break;
1791 case _lev_ctrl_genpurpose3:
1792 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1793 decodedcontroller.controller_number = 18;
1794 break;
1795 case _lev_ctrl_genpurpose4:
1796 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1797 decodedcontroller.controller_number = 19;
1798 break;
1799 case _lev_ctrl_portamentotime:
1800 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1801 decodedcontroller.controller_number = 5;
1802 break;
1803 case _lev_ctrl_sustainpedal:
1804 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1805 decodedcontroller.controller_number = 64;
1806 break;
1807 case _lev_ctrl_portamento:
1808 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1809 decodedcontroller.controller_number = 65;
1810 break;
1811 case _lev_ctrl_sostenutopedal:
1812 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1813 decodedcontroller.controller_number = 66;
1814 break;
1815 case _lev_ctrl_softpedal:
1816 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1817 decodedcontroller.controller_number = 67;
1818 break;
1819 case _lev_ctrl_genpurpose5:
1820 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1821 decodedcontroller.controller_number = 80;
1822 break;
1823 case _lev_ctrl_genpurpose6:
1824 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1825 decodedcontroller.controller_number = 81;
1826 break;
1827 case _lev_ctrl_genpurpose7:
1828 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1829 decodedcontroller.controller_number = 82;
1830 break;
1831 case _lev_ctrl_genpurpose8:
1832 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1833 decodedcontroller.controller_number = 83;
1834 break;
1835 case _lev_ctrl_effect1depth:
1836 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1837 decodedcontroller.controller_number = 91;
1838 break;
1839 case _lev_ctrl_effect2depth:
1840 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1841 decodedcontroller.controller_number = 92;
1842 break;
1843 case _lev_ctrl_effect3depth:
1844 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1845 decodedcontroller.controller_number = 93;
1846 break;
1847 case _lev_ctrl_effect4depth:
1848 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1849 decodedcontroller.controller_number = 94;
1850 break;
1851 case _lev_ctrl_effect5depth:
1852 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
1853 decodedcontroller.controller_number = 95;
1854 break;
1855
1856 // unknown controller type
1857 default:
1858 throw gig::Exception("Unknown leverage controller type.");
1859 }
1860 return decodedcontroller;
1861 }
1862
1863 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
1864 _lev_ctrl_t encodedcontroller;
1865 switch (DecodedController.type) {
1866 // special controller
1867 case leverage_ctrl_t::type_none:
1868 encodedcontroller = _lev_ctrl_none;
1869 break;
1870 case leverage_ctrl_t::type_velocity:
1871 encodedcontroller = _lev_ctrl_velocity;
1872 break;
1873 case leverage_ctrl_t::type_channelaftertouch:
1874 encodedcontroller = _lev_ctrl_channelaftertouch;
1875 break;
1876
1877 // ordinary MIDI control change controller
1878 case leverage_ctrl_t::type_controlchange:
1879 switch (DecodedController.controller_number) {
1880 case 1:
1881 encodedcontroller = _lev_ctrl_modwheel;
1882 break;
1883 case 2:
1884 encodedcontroller = _lev_ctrl_breath;
1885 break;
1886 case 4:
1887 encodedcontroller = _lev_ctrl_foot;
1888 break;
1889 case 12:
1890 encodedcontroller = _lev_ctrl_effect1;
1891 break;
1892 case 13:
1893 encodedcontroller = _lev_ctrl_effect2;
1894 break;
1895 case 16:
1896 encodedcontroller = _lev_ctrl_genpurpose1;
1897 break;
1898 case 17:
1899 encodedcontroller = _lev_ctrl_genpurpose2;
1900 break;
1901 case 18:
1902 encodedcontroller = _lev_ctrl_genpurpose3;
1903 break;
1904 case 19:
1905 encodedcontroller = _lev_ctrl_genpurpose4;
1906 break;
1907 case 5:
1908 encodedcontroller = _lev_ctrl_portamentotime;
1909 break;
1910 case 64:
1911 encodedcontroller = _lev_ctrl_sustainpedal;
1912 break;
1913 case 65:
1914 encodedcontroller = _lev_ctrl_portamento;
1915 break;
1916 case 66:
1917 encodedcontroller = _lev_ctrl_sostenutopedal;
1918 break;
1919 case 67:
1920 encodedcontroller = _lev_ctrl_softpedal;
1921 break;
1922 case 80:
1923 encodedcontroller = _lev_ctrl_genpurpose5;
1924 break;
1925 case 81:
1926 encodedcontroller = _lev_ctrl_genpurpose6;
1927 break;
1928 case 82:
1929 encodedcontroller = _lev_ctrl_genpurpose7;
1930 break;
1931 case 83:
1932 encodedcontroller = _lev_ctrl_genpurpose8;
1933 break;
1934 case 91:
1935 encodedcontroller = _lev_ctrl_effect1depth;
1936 break;
1937 case 92:
1938 encodedcontroller = _lev_ctrl_effect2depth;
1939 break;
1940 case 93:
1941 encodedcontroller = _lev_ctrl_effect3depth;
1942 break;
1943 case 94:
1944 encodedcontroller = _lev_ctrl_effect4depth;
1945 break;
1946 case 95:
1947 encodedcontroller = _lev_ctrl_effect5depth;
1948 break;
1949 default:
1950 throw gig::Exception("leverage controller number is not supported by the gig format");
1951 }
1952 default:
1953 throw gig::Exception("Unknown leverage controller type.");
1954 }
1955 return encodedcontroller;
1956 }
1957
1958 DimensionRegion::~DimensionRegion() {
1959 Instances--;
1960 if (!Instances) {
1961 // delete the velocity->volume tables
1962 VelocityTableMap::iterator iter;
1963 for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
1964 double* pTable = iter->second;
1965 if (pTable) delete[] pTable;
1966 }
1967 pVelocityTables->clear();
1968 delete pVelocityTables;
1969 pVelocityTables = NULL;
1970 }
1971 }
1972
1973 /**
1974 * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
1975 * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
1976 * and VelocityResponseCurveScaling) involved are taken into account to
1977 * calculate the amplitude factor. Use this method when a key was
1978 * triggered to get the volume with which the sample should be played
1979 * back.
1980 *
1981 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
1982 * @returns amplitude factor (between 0.0 and 1.0)
1983 */
1984 double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
1985 return pVelocityAttenuationTable[MIDIKeyVelocity];
1986 }
1987
1988 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
1989 return pVelocityReleaseTable[MIDIKeyVelocity];
1990 }
1991
1992 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
1993 return pVelocityCutoffTable[MIDIKeyVelocity];
1994 }
1995
1996 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
1997
1998 // line-segment approximations of the 15 velocity curves
1999
2000 // linear
2001 const int lin0[] = { 1, 1, 127, 127 };
2002 const int lin1[] = { 1, 21, 127, 127 };
2003 const int lin2[] = { 1, 45, 127, 127 };
2004 const int lin3[] = { 1, 74, 127, 127 };
2005 const int lin4[] = { 1, 127, 127, 127 };
2006
2007 // non-linear
2008 const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2009 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2010 127, 127 };
2011 const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2012 127, 127 };
2013 const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2014 127, 127 };
2015 const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2016
2017 // special
2018 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2019 113, 127, 127, 127 };
2020 const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2021 118, 127, 127, 127 };
2022 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2023 85, 90, 91, 127, 127, 127 };
2024 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2025 117, 127, 127, 127 };
2026 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2027 127, 127 };
2028
2029 // this is only used by the VCF velocity curve
2030 const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2031 91, 127, 127, 127 };
2032
2033 const int* const curves[] = { non0, non1, non2, non3, non4,
2034 lin0, lin1, lin2, lin3, lin4,
2035 spe0, spe1, spe2, spe3, spe4, spe5 };
2036
2037 double* const table = new double[128];
2038
2039 const int* curve = curves[curveType * 5 + depth];
2040 const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2041
2042 table[0] = 0;
2043 for (int x = 1 ; x < 128 ; x++) {
2044
2045 if (x > curve[2]) curve += 2;
2046 double y = curve[1] + (x - curve[0]) *
2047 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2048 y = y / 127;
2049
2050 // Scale up for s > 20, down for s < 20. When
2051 // down-scaling, the curve still ends at 1.0.
2052 if (s < 20 && y >= 0.5)
2053 y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2054 else
2055 y = y * (s / 20.0);
2056 if (y > 1) y = 1;
2057
2058 table[x] = y;
2059 }
2060 return table;
2061 }
2062
2063
2064 // *************** Region ***************
2065 // *
2066
2067 Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2068 // Initialization
2069 Dimensions = 0;
2070 for (int i = 0; i < 256; i++) {
2071 pDimensionRegions[i] = NULL;
2072 }
2073 Layers = 1;
2074 File* file = (File*) GetParent()->GetParent();
2075 int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2076
2077 // Actual Loading
2078
2079 LoadDimensionRegions(rgnList);
2080
2081 RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
2082 if (_3lnk) {
2083 DimensionRegions = _3lnk->ReadUint32();
2084 for (int i = 0; i < dimensionBits; i++) {
2085 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2086 uint8_t bits = _3lnk->ReadUint8();
2087 _3lnk->ReadUint8(); // probably the position of the dimension
2088 _3lnk->ReadUint8(); // unknown
2089 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2090 if (dimension == dimension_none) { // inactive dimension
2091 pDimensionDefinitions[i].dimension = dimension_none;
2092 pDimensionDefinitions[i].bits = 0;
2093 pDimensionDefinitions[i].zones = 0;
2094 pDimensionDefinitions[i].split_type = split_type_bit;
2095 pDimensionDefinitions[i].ranges = NULL;
2096 pDimensionDefinitions[i].zone_size = 0;
2097 }
2098 else { // active dimension
2099 pDimensionDefinitions[i].dimension = dimension;
2100 pDimensionDefinitions[i].bits = bits;
2101 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
2102 pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||
2103 dimension == dimension_samplechannel ||
2104 dimension == dimension_releasetrigger ||
2105 dimension == dimension_roundrobin ||
2106 dimension == dimension_random) ? split_type_bit
2107 : split_type_normal;
2108 pDimensionDefinitions[i].ranges = NULL; // it's not possible to check velocity dimensions for custom defined ranges at this point
2109 pDimensionDefinitions[i].zone_size =
2110 (pDimensionDefinitions[i].split_type == split_type_normal) ? 128.0 / pDimensionDefinitions[i].zones
2111 : 0;
2112 Dimensions++;
2113
2114 // if this is a layer dimension, remember the amount of layers
2115 if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
2116 }
2117 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2118 }
2119
2120 // check velocity dimension (if there is one) for custom defined zone ranges
2121 for (uint i = 0; i < Dimensions; i++) {
2122 dimension_def_t* pDimDef = pDimensionDefinitions + i;
2123 if (pDimDef->dimension == dimension_velocity) {
2124 if (pDimensionRegions[0]->VelocityUpperLimit == 0) {
2125 // no custom defined ranges
2126 pDimDef->split_type = split_type_normal;
2127 pDimDef->ranges = NULL;
2128 }
2129 else { // custom defined ranges
2130 pDimDef->split_type = split_type_customvelocity;
2131 pDimDef->ranges = new range_t[pDimDef->zones];
2132 UpdateVelocityTable(pDimDef);
2133 }
2134 }
2135 }
2136
2137 // jump to start of the wave pool indices (if not already there)
2138 File* file = (File*) GetParent()->GetParent();
2139 if (file->pVersion && file->pVersion->major == 3)
2140 _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2141 else
2142 _3lnk->SetPos(44);
2143
2144 // load sample references
2145 for (uint i = 0; i < DimensionRegions; i++) {
2146 uint32_t wavepoolindex = _3lnk->ReadUint32();
2147 pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
2148 }
2149 }
2150
2151 // make sure there is at least one dimension region
2152 if (!DimensionRegions) {
2153 RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
2154 if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
2155 RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
2156 pDimensionRegions[0] = new DimensionRegion(_3ewl);
2157 DimensionRegions = 1;
2158 }
2159 }
2160
2161 /**
2162 * Apply Region settings and all its DimensionRegions to the respective
2163 * RIFF chunks. You have to call File::Save() to make changes persistent.
2164 *
2165 * Usually there is absolutely no need to call this method explicitly.
2166 * It will be called automatically when File::Save() was called.
2167 *
2168 * @throws gig::Exception if samples cannot be dereferenced
2169 */
2170 void Region::UpdateChunks() {
2171 // first update base class's chunks
2172 DLS::Region::UpdateChunks();
2173
2174 // update dimension region's chunks
2175 for (int i = 0; i < DimensionRegions; i++) {
2176 pDimensionRegions[i]->UpdateChunks();
2177 }
2178
2179 File* pFile = (File*) GetParent()->GetParent();
2180 const int iMaxDimensions = (pFile->pVersion && pFile->pVersion->major == 3) ? 8 : 5;
2181 const int iMaxDimensionRegions = (pFile->pVersion && pFile->pVersion->major == 3) ? 256 : 32;
2182
2183 // make sure '3lnk' chunk exists
2184 RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
2185 if (!_3lnk) {
2186 const int _3lnkChunkSize = (pFile->pVersion && pFile->pVersion->major == 3) ? 1092 : 172;
2187 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
2188 }
2189
2190 // update dimension definitions in '3lnk' chunk
2191 uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
2192 for (int i = 0; i < iMaxDimensions; i++) {
2193 pData[i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
2194 pData[i * 8 + 1] = pDimensionDefinitions[i].bits;
2195 // next 2 bytes unknown
2196 pData[i * 8 + 4] = pDimensionDefinitions[i].zones;
2197 // next 3 bytes unknown
2198 }
2199
2200 // update wave pool table in '3lnk' chunk
2201 const int iWavePoolOffset = (pFile->pVersion && pFile->pVersion->major == 3) ? 68 : 44;
2202 for (uint i = 0; i < iMaxDimensionRegions; i++) {
2203 int iWaveIndex = -1;
2204 if (i < DimensionRegions) {
2205 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
2206 File::SampleList::iterator iter = pFile->pSamples->begin();
2207 File::SampleList::iterator end = pFile->pSamples->end();
2208 for (int index = 0; iter != end; ++iter, ++index) {
2209 if (*iter == pDimensionRegions[i]->pSample) {
2210 iWaveIndex = index;
2211 break;
2212 }
2213 }
2214 if (iWaveIndex < 0) throw gig::Exception("Could not update gig::Region, could not find DimensionRegion's sample");
2215 }
2216 memcpy(&pData[iWavePoolOffset + i * 4], &iWaveIndex, 4);
2217 }
2218 }
2219
2220 void Region::LoadDimensionRegions(RIFF::List* rgn) {
2221 RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
2222 if (_3prg) {
2223 int dimensionRegionNr = 0;
2224 RIFF::List* _3ewl = _3prg->GetFirstSubList();
2225 while (_3ewl) {
2226 if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
2227 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);
2228 dimensionRegionNr++;
2229 }
2230 _3ewl = _3prg->GetNextSubList();
2231 }
2232 if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
2233 }
2234 }
2235
2236 void Region::UpdateVelocityTable(dimension_def_t* pDimDef) {
2237 // get dimension's index
2238 int iDimensionNr = -1;
2239 for (int i = 0; i < Dimensions; i++) {
2240 if (&pDimensionDefinitions[i] == pDimDef) {
2241 iDimensionNr = i;
2242 break;
2243 }
2244 }
2245 if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
2246
2247 uint8_t bits[8] = { 0 };
2248 int previousUpperLimit = -1;
2249 for (int velocityZone = 0; velocityZone < pDimDef->zones; velocityZone++) {
2250 bits[iDimensionNr] = velocityZone;
2251 DimensionRegion* pDimRegion = GetDimensionRegionByBit(bits);
2252
2253 pDimDef->ranges[velocityZone].low = previousUpperLimit + 1;
2254 pDimDef->ranges[velocityZone].high = pDimRegion->VelocityUpperLimit;
2255 previousUpperLimit = pDimDef->ranges[velocityZone].high;
2256 // fill velocity table
2257 for (int i = pDimDef->ranges[velocityZone].low; i <= pDimDef->ranges[velocityZone].high; i++) {
2258 VelocityTable[i] = velocityZone;
2259 }
2260 }
2261 }
2262
2263 /** @brief Einstein would have dreamed of it - create a new dimension.
2264 *
2265 * Creates a new dimension with the dimension definition given by
2266 * \a pDimDef. The appropriate amount of DimensionRegions will be created.
2267 * There is a hard limit of dimensions and total amount of "bits" all
2268 * dimensions can have. This limit is dependant to what gig file format
2269 * version this file refers to. The gig v2 (and lower) format has a
2270 * dimension limit and total amount of bits limit of 5, whereas the gig v3
2271 * format has a limit of 8.
2272 *
2273 * @param pDimDef - defintion of the new dimension
2274 * @throws gig::Exception if dimension of the same type exists already
2275 * @throws gig::Exception if amount of dimensions or total amount of
2276 * dimension bits limit is violated
2277 */
2278 void Region::AddDimension(dimension_def_t* pDimDef) {
2279 // check if max. amount of dimensions reached
2280 File* file = (File*) GetParent()->GetParent();
2281 const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2282 if (Dimensions >= iMaxDimensions)
2283 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
2284 // check if max. amount of dimension bits reached
2285 int iCurrentBits = 0;
2286 for (int i = 0; i < Dimensions; i++)
2287 iCurrentBits += pDimensionDefinitions[i].bits;
2288 if (iCurrentBits >= iMaxDimensions)
2289 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
2290 const int iNewBits = iCurrentBits + pDimDef->bits;
2291 if (iNewBits > iMaxDimensions)
2292 throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
2293 // check if there's already a dimensions of the same type
2294 for (int i = 0; i < Dimensions; i++)
2295 if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
2296 throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
2297
2298 // assign definition of new dimension
2299 pDimensionDefinitions[Dimensions] = *pDimDef;
2300
2301 // create new dimension region(s) for this new dimension
2302 for (int i = 1 << iCurrentBits; i < 1 << iNewBits; i++) {
2303 //TODO: maybe we should copy existing dimension regions if possible instead of simply creating new ones with default values
2304 RIFF::List* pNewDimRgnListChunk = pCkRegion->AddSubList(LIST_TYPE_3EWL);
2305 pDimensionRegions[i] = new DimensionRegion(pNewDimRgnListChunk);
2306 DimensionRegions++;
2307 }
2308
2309 Dimensions++;
2310
2311 // if this is a layer dimension, update 'Layers' attribute
2312 if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
2313
2314 // if this is velocity dimension and got custom defined ranges, update velocity table
2315 if (pDimDef->dimension == dimension_velocity &&
2316 pDimDef->split_type == split_type_customvelocity) {
2317 UpdateVelocityTable(pDimDef);
2318 }
2319 }
2320
2321 /** @brief Delete an existing dimension.
2322 *
2323 * Deletes the dimension given by \a pDimDef and deletes all respective
2324 * dimension regions, that is all dimension regions where the dimension's
2325 * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
2326 * for example this would delete all dimension regions for the case(s)
2327 * where the sustain pedal is pressed down.
2328 *
2329 * @param pDimDef - dimension to delete
2330 * @throws gig::Exception if given dimension cannot be found
2331 */
2332 void Region::DeleteDimension(dimension_def_t* pDimDef) {
2333 // get dimension's index
2334 int iDimensionNr = -1;
2335 for (int i = 0; i < Dimensions; i++) {
2336 if (&pDimensionDefinitions[i] == pDimDef) {
2337 iDimensionNr = i;
2338 break;
2339 }
2340 }
2341 if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
2342
2343 // get amount of bits below the dimension to delete
2344 int iLowerBits = 0;
2345 for (int i = 0; i < iDimensionNr; i++)
2346 iLowerBits += pDimensionDefinitions[i].bits;
2347
2348 // get amount ot bits above the dimension to delete
2349 int iUpperBits = 0;
2350 for (int i = iDimensionNr + 1; i < Dimensions; i++)
2351 iUpperBits += pDimensionDefinitions[i].bits;
2352
2353 // delete dimension regions which belong to the given dimension
2354 // (that is where the dimension's bit > 0)
2355 for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
2356 for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
2357 for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
2358 int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
2359 iObsoleteBit << iLowerBits |
2360 iLowerBit;
2361 delete pDimensionRegions[iToDelete];
2362 pDimensionRegions[iToDelete] = NULL;
2363 DimensionRegions--;
2364 }
2365 }
2366 }
2367
2368 // defrag pDimensionRegions array
2369 // (that is remove the NULL spaces within the pDimensionRegions array)
2370 for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
2371 if (!pDimensionRegions[iTo]) {
2372 if (iFrom <= iTo) iFrom = iTo + 1;
2373 while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
2374 if (iFrom < 256 && pDimensionRegions[iFrom]) {
2375 pDimensionRegions[iTo] = pDimensionRegions[iFrom];
2376 pDimensionRegions[iFrom] = NULL;
2377 }
2378 }
2379 }
2380
2381 // 'remove' dimension definition
2382 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
2383 pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
2384 }
2385 pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
2386 pDimensionDefinitions[Dimensions - 1].bits = 0;
2387 pDimensionDefinitions[Dimensions - 1].zones = 0;
2388 if (pDimensionDefinitions[Dimensions - 1].ranges) {
2389 delete[] pDimensionDefinitions[Dimensions - 1].ranges;
2390 pDimensionDefinitions[Dimensions - 1].ranges = NULL;
2391 }
2392
2393 Dimensions--;
2394
2395 // if this was a layer dimension, update 'Layers' attribute
2396 if (pDimDef->dimension == dimension_layer) Layers = 1;
2397 }
2398
2399 Region::~Region() {
2400 for (uint i = 0; i < Dimensions; i++) {
2401 if (pDimensionDefinitions[i].ranges) delete[] pDimensionDefinitions[i].ranges;
2402 }
2403 for (int i = 0; i < 256; i++) {
2404 if (pDimensionRegions[i]) delete pDimensionRegions[i];
2405 }
2406 }
2407
2408 /**
2409 * Use this method in your audio engine to get the appropriate dimension
2410 * region with it's articulation data for the current situation. Just
2411 * call the method with the current MIDI controller values and you'll get
2412 * the DimensionRegion with the appropriate articulation data for the
2413 * current situation (for this Region of course only). To do that you'll
2414 * first have to look which dimensions with which controllers and in
2415 * which order are defined for this Region when you load the .gig file.
2416 * Special cases are e.g. layer or channel dimensions where you just put
2417 * in the index numbers instead of a MIDI controller value (means 0 for
2418 * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
2419 * etc.).
2420 *
2421 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
2422 * @returns adress to the DimensionRegion for the given situation
2423 * @see pDimensionDefinitions
2424 * @see Dimensions
2425 */
2426 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
2427 uint8_t bits[8] = { 0 };
2428 for (uint i = 0; i < Dimensions; i++) {
2429 bits[i] = DimValues[i];
2430 switch (pDimensionDefinitions[i].split_type) {
2431 case split_type_normal:
2432 bits[i] = uint8_t(bits[i] / pDimensionDefinitions[i].zone_size);
2433 break;
2434 case split_type_customvelocity:
2435 bits[i] = VelocityTable[bits[i]];
2436 break;
2437 case split_type_bit: // the value is already the sought dimension bit number
2438 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
2439 bits[i] = bits[i] & limiter_mask; // just make sure the value don't uses more bits than allowed
2440 break;
2441 }
2442 }
2443 return GetDimensionRegionByBit(bits);
2444 }
2445
2446 /**
2447 * Returns the appropriate DimensionRegion for the given dimension bit
2448 * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
2449 * instead of calling this method directly!
2450 *
2451 * @param DimBits Bit numbers for dimension 0 to 7
2452 * @returns adress to the DimensionRegion for the given dimension
2453 * bit numbers
2454 * @see GetDimensionRegionByValue()
2455 */
2456 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
2457 return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
2458 << pDimensionDefinitions[5].bits | DimBits[5])
2459 << pDimensionDefinitions[4].bits | DimBits[4])
2460 << pDimensionDefinitions[3].bits | DimBits[3])
2461 << pDimensionDefinitions[2].bits | DimBits[2])
2462 << pDimensionDefinitions[1].bits | DimBits[1])
2463 << pDimensionDefinitions[0].bits | DimBits[0]];
2464 }
2465
2466 /**
2467 * Returns pointer address to the Sample referenced with this region.
2468 * This is the global Sample for the entire Region (not sure if this is
2469 * actually used by the Gigasampler engine - I would only use the Sample
2470 * referenced by the appropriate DimensionRegion instead of this sample).
2471 *
2472 * @returns address to Sample or NULL if there is no reference to a
2473 * sample saved in the .gig file
2474 */
2475 Sample* Region::GetSample() {
2476 if (pSample) return static_cast<gig::Sample*>(pSample);
2477 else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
2478 }
2479
2480 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
2481 if ((int32_t)WavePoolTableIndex == -1) return NULL;
2482 File* file = (File*) GetParent()->GetParent();
2483 unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
2484 unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
2485 Sample* sample = file->GetFirstSample(pProgress);
2486 while (sample) {
2487 if (sample->ulWavePoolOffset == soughtoffset &&
2488 sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(pSample = sample);
2489 sample = file->GetNextSample();
2490 }
2491 return NULL;
2492 }
2493
2494
2495
2496 // *************** Instrument ***************
2497 // *
2498
2499 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
2500 // Initialization
2501 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
2502
2503 // Loading
2504 RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
2505 if (lart) {
2506 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2507 if (_3ewg) {
2508 EffectSend = _3ewg->ReadUint16();
2509 Attenuation = _3ewg->ReadInt32();
2510 FineTune = _3ewg->ReadInt16();
2511 PitchbendRange = _3ewg->ReadInt16();
2512 uint8_t dimkeystart = _3ewg->ReadUint8();
2513 PianoReleaseMode = dimkeystart & 0x01;
2514 DimensionKeyRange.low = dimkeystart >> 1;
2515 DimensionKeyRange.high = _3ewg->ReadUint8();
2516 }
2517 }
2518
2519 if (!pRegions) pRegions = new RegionList;
2520 RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
2521 if (lrgn) {
2522 RIFF::List* rgn = lrgn->GetFirstSubList();
2523 while (rgn) {
2524 if (rgn->GetListType() == LIST_TYPE_RGN) {
2525 __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
2526 pRegions->push_back(new Region(this, rgn));
2527 }
2528 rgn = lrgn->GetNextSubList();
2529 }
2530 // Creating Region Key Table for fast lookup
2531 UpdateRegionKeyTable();
2532 }
2533
2534 __notify_progress(pProgress, 1.0f); // notify done
2535 }
2536
2537 void Instrument::UpdateRegionKeyTable() {
2538 RegionList::iterator iter = pRegions->begin();
2539 RegionList::iterator end = pRegions->end();
2540 for (; iter != end; ++iter) {
2541 gig::Region* pRegion = static_cast<gig::Region*>(*iter);
2542 for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
2543 RegionKeyTable[iKey] = pRegion;
2544 }
2545 }
2546 }
2547
2548 Instrument::~Instrument() {
2549 }
2550
2551 /**
2552 * Apply Instrument with all its Regions to the respective RIFF chunks.
2553 * You have to call File::Save() to make changes persistent.
2554 *
2555 * Usually there is absolutely no need to call this method explicitly.
2556 * It will be called automatically when File::Save() was called.
2557 *
2558 * @throws gig::Exception if samples cannot be dereferenced
2559 */
2560 void Instrument::UpdateChunks() {
2561 // first update base classes' chunks
2562 DLS::Instrument::UpdateChunks();
2563
2564 // update Regions' chunks
2565 {
2566 RegionList::iterator iter = pRegions->begin();
2567 RegionList::iterator end = pRegions->end();
2568 for (; iter != end; ++iter)
2569 (*iter)->UpdateChunks();
2570 }
2571
2572 // make sure 'lart' RIFF list chunk exists
2573 RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
2574 if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
2575 // make sure '3ewg' RIFF chunk exists
2576 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
2577 if (!_3ewg) _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, 12);
2578 // update '3ewg' RIFF chunk
2579 uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
2580 memcpy(&pData[0], &EffectSend, 2);
2581 memcpy(&pData[2], &Attenuation, 4);
2582 memcpy(&pData[6], &FineTune, 2);
2583 memcpy(&pData[8], &PitchbendRange, 2);
2584 const uint8_t dimkeystart = (PianoReleaseMode) ? 0x01 : 0x00 |
2585 DimensionKeyRange.low << 1;
2586 memcpy(&pData[10], &dimkeystart, 1);
2587 memcpy(&pData[11], &DimensionKeyRange.high, 1);
2588 }
2589
2590 /**
2591 * Returns the appropriate Region for a triggered note.
2592 *
2593 * @param Key MIDI Key number of triggered note / key (0 - 127)
2594 * @returns pointer adress to the appropriate Region or NULL if there
2595 * there is no Region defined for the given \a Key
2596 */
2597 Region* Instrument::GetRegion(unsigned int Key) {
2598 if (!pRegions || !pRegions->size() || Key > 127) return NULL;
2599 return RegionKeyTable[Key];
2600
2601 /*for (int i = 0; i < Regions; i++) {
2602 if (Key <= pRegions[i]->KeyRange.high &&
2603 Key >= pRegions[i]->KeyRange.low) return pRegions[i];
2604 }
2605 return NULL;*/
2606 }
2607
2608 /**
2609 * Returns the first Region of the instrument. You have to call this
2610 * method once before you use GetNextRegion().
2611 *
2612 * @returns pointer address to first region or NULL if there is none
2613 * @see GetNextRegion()
2614 */
2615 Region* Instrument::GetFirstRegion() {
2616 if (!pRegions) return NULL;
2617 RegionsIterator = pRegions->begin();
2618 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
2619 }
2620
2621 /**
2622 * Returns the next Region of the instrument. You have to call
2623 * GetFirstRegion() once before you can use this method. By calling this
2624 * method multiple times it iterates through the available Regions.
2625 *
2626 * @returns pointer address to the next region or NULL if end reached
2627 * @see GetFirstRegion()
2628 */
2629 Region* Instrument::GetNextRegion() {
2630 if (!pRegions) return NULL;
2631 RegionsIterator++;
2632 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
2633 }
2634
2635 Region* Instrument::AddRegion() {
2636 // create new Region object (and its RIFF chunks)
2637 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
2638 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
2639 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
2640 Region* pNewRegion = new Region(this, rgn);
2641 pRegions->push_back(pNewRegion);
2642 Regions = pRegions->size();
2643 // update Region key table for fast lookup
2644 UpdateRegionKeyTable();
2645 // done
2646 return pNewRegion;
2647 }
2648
2649 void Instrument::DeleteRegion(Region* pRegion) {
2650 if (!pRegions) return;
2651 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
2652 // update Region key table for fast lookup
2653 UpdateRegionKeyTable();
2654 }
2655
2656
2657
2658 // *************** File ***************
2659 // *
2660
2661 File::File() : DLS::File() {
2662 }
2663
2664 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
2665 }
2666
2667 File::~File() {
2668 // free extension files
2669 for (std::list<RIFF::File*>::iterator i = ExtensionFiles.begin() ; i != ExtensionFiles.end() ; i++)
2670 delete *i;
2671 }
2672
2673 Sample* File::GetFirstSample(progress_t* pProgress) {
2674 if (!pSamples) LoadSamples(pProgress);
2675 if (!pSamples) return NULL;
2676 SamplesIterator = pSamples->begin();
2677 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
2678 }
2679
2680 Sample* File::GetNextSample() {
2681 if (!pSamples) return NULL;
2682 SamplesIterator++;
2683 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
2684 }
2685
2686 /** @brief Add a new sample.
2687 *
2688 * This will create a new Sample object for the gig file. You have to
2689 * call Save() to make this persistent to the file.
2690 *
2691 * @returns pointer to new Sample object
2692 */
2693 Sample* File::AddSample() {
2694 if (!pSamples) LoadSamples();
2695 __ensureMandatoryChunksExist();
2696 RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
2697 // create new Sample object and its respective 'wave' list chunk
2698 RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
2699 Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
2700 pSamples->push_back(pSample);
2701 return pSample;
2702 }
2703
2704 /** @brief Delete a sample.
2705 *
2706 * This will delete the given Sample object from the gig file. You have
2707 * to call Save() to make this persistent to the file.
2708 *
2709 * @param pSample - sample to delete
2710 * @throws gig::Exception if given sample could not be found
2711 */
2712 void File::DeleteSample(Sample* pSample) {
2713 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
2714 SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
2715 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
2716 pSamples->erase(iter);
2717 delete pSample;
2718 }
2719
2720 void File::LoadSamples() {
2721 LoadSamples(NULL);
2722 }
2723
2724 void File::LoadSamples(progress_t* pProgress) {
2725 if (!pSamples) pSamples = new SampleList;
2726
2727 RIFF::File* file = pRIFF;
2728
2729 // just for progress calculation
2730 int iSampleIndex = 0;
2731 int iTotalSamples = WavePoolCount;
2732
2733 // check if samples should be loaded from extension files
2734 int lastFileNo = 0;
2735 for (int i = 0 ; i < WavePoolCount ; i++) {
2736 if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
2737 }
2738 String name(pRIFF->GetFileName());
2739 int nameLen = name.length();
2740 char suffix[6];
2741 if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
2742
2743 for (int fileNo = 0 ; ; ) {
2744 RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
2745 if (wvpl) {
2746 unsigned long wvplFileOffset = wvpl->GetFilePos();
2747 RIFF::List* wave = wvpl->GetFirstSubList();
2748 while (wave) {
2749 if (wave->GetListType() == LIST_TYPE_WAVE) {
2750 // notify current progress
2751 const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
2752 __notify_progress(pProgress, subprogress);
2753
2754 unsigned long waveFileOffset = wave->GetFilePos();
2755 pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));
2756
2757 iSampleIndex++;
2758 }
2759 wave = wvpl->GetNextSubList();
2760 }
2761
2762 if (fileNo == lastFileNo) break;
2763
2764 // open extension file (*.gx01, *.gx02, ...)
2765 fileNo++;
2766 sprintf(suffix, ".gx%02d", fileNo);
2767 name.replace(nameLen, 5, suffix);
2768 file = new RIFF::File(name);
2769 ExtensionFiles.push_back(file);
2770 } else break;
2771 }
2772
2773 __notify_progress(pProgress, 1.0); // notify done
2774 }
2775
2776 Instrument* File::GetFirstInstrument() {
2777 if (!pInstruments) LoadInstruments();
2778 if (!pInstruments) return NULL;
2779 InstrumentsIterator = pInstruments->begin();
2780 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
2781 }
2782
2783 Instrument* File::GetNextInstrument() {
2784 if (!pInstruments) return NULL;
2785 InstrumentsIterator++;
2786 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
2787 }
2788
2789 /**
2790 * Returns the instrument with the given index.
2791 *
2792 * @param index - number of the sought instrument (0..n)
2793 * @param pProgress - optional: callback function for progress notification
2794 * @returns sought instrument or NULL if there's no such instrument
2795 */
2796 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
2797 if (!pInstruments) {
2798 // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
2799
2800 // sample loading subtask
2801 progress_t subprogress;
2802 __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
2803 __notify_progress(&subprogress, 0.0f);
2804 GetFirstSample(&subprogress); // now force all samples to be loaded
2805 __notify_progress(&subprogress, 1.0f);
2806
2807 // instrument loading subtask
2808 if (pProgress && pProgress->callback) {
2809 subprogress.__range_min = subprogress.__range_max;
2810 subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
2811 }
2812 __notify_progress(&subprogress, 0.0f);
2813 LoadInstruments(&subprogress);
2814 __notify_progress(&subprogress, 1.0f);
2815 }
2816 if (!pInstruments) return NULL;
2817 InstrumentsIterator = pInstruments->begin();
2818 for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
2819 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
2820 InstrumentsIterator++;
2821 }
2822 return NULL;
2823 }
2824
2825 /** @brief Add a new instrument definition.
2826 *
2827 * This will create a new Instrument object for the gig file. You have
2828 * to call Save() to make this persistent to the file.
2829 *
2830 * @returns pointer to new Instrument object
2831 */
2832 Instrument* File::AddInstrument() {
2833 if (!pInstruments) LoadInstruments();
2834 __ensureMandatoryChunksExist();
2835 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
2836 RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
2837 Instrument* pInstrument = new Instrument(this, lstInstr);
2838 pInstruments->push_back(pInstrument);
2839 return pInstrument;
2840 }
2841
2842 /** @brief Delete an instrument.
2843 *
2844 * This will delete the given Instrument object from the gig file. You
2845 * have to call Save() to make this persistent to the file.
2846 *
2847 * @param pInstrument - instrument to delete
2848 * @throws gig::Excption if given instrument could not be found
2849 */
2850 void File::DeleteInstrument(Instrument* pInstrument) {
2851 if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
2852 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
2853 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
2854 pInstruments->erase(iter);
2855 delete pInstrument;
2856 }
2857
2858 void File::LoadInstruments() {
2859 LoadInstruments(NULL);
2860 }
2861
2862 void File::LoadInstruments(progress_t* pProgress) {
2863 if (!pInstruments) pInstruments = new InstrumentList;
2864 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
2865 if (lstInstruments) {
2866 int iInstrumentIndex = 0;
2867 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
2868 while (lstInstr) {
2869 if (lstInstr->GetListType() == LIST_TYPE_INS) {
2870 // notify current progress
2871 const float localProgress = (float) iInstrumentIndex / (float) Instruments;
2872 __notify_progress(pProgress, localProgress);
2873
2874 // divide local progress into subprogress for loading current Instrument
2875 progress_t subprogress;
2876 __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
2877
2878 pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
2879
2880 iInstrumentIndex++;
2881 }
2882 lstInstr = lstInstruments->GetNextSubList();
2883 }
2884 __notify_progress(pProgress, 1.0); // notify done
2885 }
2886 }
2887
2888
2889
2890 // *************** Exception ***************
2891 // *
2892
2893 Exception::Exception(String Message) : DLS::Exception(Message) {
2894 }
2895
2896 void Exception::PrintMessage() {
2897 std::cout << "gig::Exception: " << Message << std::endl;
2898 }
2899
2900
2901 // *************** functions ***************
2902 // *
2903
2904 /**
2905 * Returns the name of this C++ library. This is usually "libgig" of
2906 * course. This call is equivalent to RIFF::libraryName() and
2907 * DLS::libraryName().
2908 */
2909 String libraryName() {
2910 return PACKAGE;
2911 }
2912
2913 /**
2914 * Returns version of this C++ library. This call is equivalent to
2915 * RIFF::libraryVersion() and DLS::libraryVersion().
2916 */
2917 String libraryVersion() {
2918 return VERSION;
2919 }
2920
2921 } // namespace gig

  ViewVC Help
Powered by ViewVC