/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Diff of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 24 by schoenebeck, Fri Dec 26 16:15:31 2003 UTC revision 2547 by schoenebeck, Tue May 13 11:17:24 2014 UTC
# Line 1  Line 1 
1  /***************************************************************************  /***************************************************************************
2   *                                                                         *   *                                                                         *
3   *   libgig - C++ cross-platform Gigasampler format file loader library    *   *   libgig - C++ cross-platform Gigasampler format file access library    *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003 by Christian Schoenebeck                           *   *   Copyright (C) 2003-2014 by Christian Schoenebeck                      *
6   *                         <cuse@users.sourceforge.net>                    *   *                              <cuse@users.sourceforge.net>               *
7   *                                                                         *   *                                                                         *
8   *   This library is free software; you can redistribute it and/or modify  *   *   This library is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 23  Line 23 
23    
24  #include "gig.h"  #include "gig.h"
25    
26    #include "helper.h"
27    
28    #include <algorithm>
29    #include <math.h>
30    #include <iostream>
31    
32    /// Initial size of the sample buffer which is used for decompression of
33    /// compressed sample wave streams - this value should always be bigger than
34    /// the biggest sample piece expected to be read by the sampler engine,
35    /// otherwise the buffer size will be raised at runtime and thus the buffer
36    /// reallocated which is time consuming and unefficient.
37    #define INITIAL_SAMPLE_BUFFER_SIZE              512000 // 512 kB
38    
39    /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
40    #define GIG_EXP_DECODE(x)                       (pow(1.000000008813822, x))
41    #define GIG_EXP_ENCODE(x)                       (log(x) / log(1.000000008813822))
42    #define GIG_PITCH_TRACK_EXTRACT(x)              (!(x & 0x01))
43    #define GIG_PITCH_TRACK_ENCODE(x)               ((x) ? 0x00 : 0x01)
44    #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x)       ((x >> 4) & 0x03)
45    #define GIG_VCF_RESONANCE_CTRL_ENCODE(x)        ((x & 0x03) << 4)
46    #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x)  ((x >> 1) & 0x03)
47    #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x)   ((x >> 3) & 0x03)
48    #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
49    #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x)   ((x & 0x03) << 1)
50    #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x)    ((x & 0x03) << 3)
51    #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x)  ((x & 0x03) << 5)
52    
53  namespace gig {  namespace gig {
54    
55    // *************** progress_t ***************
56    // *
57    
58        progress_t::progress_t() {
59            callback    = NULL;
60            custom      = NULL;
61            __range_min = 0.0f;
62            __range_max = 1.0f;
63        }
64    
65        // private helper function to convert progress of a subprocess into the global progress
66        static void __notify_progress(progress_t* pProgress, float subprogress) {
67            if (pProgress && pProgress->callback) {
68                const float totalrange    = pProgress->__range_max - pProgress->__range_min;
69                const float totalprogress = pProgress->__range_min + subprogress * totalrange;
70                pProgress->factor         = totalprogress;
71                pProgress->callback(pProgress); // now actually notify about the progress
72            }
73        }
74    
75        // private helper function to divide a progress into subprogresses
76        static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) {
77            if (pParentProgress && pParentProgress->callback) {
78                const float totalrange    = pParentProgress->__range_max - pParentProgress->__range_min;
79                pSubProgress->callback    = pParentProgress->callback;
80                pSubProgress->custom      = pParentProgress->custom;
81                pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks;
82                pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks;
83            }
84        }
85    
86    
87    // *************** Internal functions for sample decompression ***************
88    // *
89    
90    namespace {
91    
92        inline int get12lo(const unsigned char* pSrc)
93        {
94            const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
95            return x & 0x800 ? x - 0x1000 : x;
96        }
97    
98        inline int get12hi(const unsigned char* pSrc)
99        {
100            const int x = pSrc[1] >> 4 | pSrc[2] << 4;
101            return x & 0x800 ? x - 0x1000 : x;
102        }
103    
104        inline int16_t get16(const unsigned char* pSrc)
105        {
106            return int16_t(pSrc[0] | pSrc[1] << 8);
107        }
108    
109        inline int get24(const unsigned char* pSrc)
110        {
111            const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
112            return x & 0x800000 ? x - 0x1000000 : x;
113        }
114    
115        inline void store24(unsigned char* pDst, int x)
116        {
117            pDst[0] = x;
118            pDst[1] = x >> 8;
119            pDst[2] = x >> 16;
120        }
121    
122        void Decompress16(int compressionmode, const unsigned char* params,
123                          int srcStep, int dstStep,
124                          const unsigned char* pSrc, int16_t* pDst,
125                          unsigned long currentframeoffset,
126                          unsigned long copysamples)
127        {
128            switch (compressionmode) {
129                case 0: // 16 bit uncompressed
130                    pSrc += currentframeoffset * srcStep;
131                    while (copysamples) {
132                        *pDst = get16(pSrc);
133                        pDst += dstStep;
134                        pSrc += srcStep;
135                        copysamples--;
136                    }
137                    break;
138    
139                case 1: // 16 bit compressed to 8 bit
140                    int y  = get16(params);
141                    int dy = get16(params + 2);
142                    while (currentframeoffset) {
143                        dy -= int8_t(*pSrc);
144                        y  -= dy;
145                        pSrc += srcStep;
146                        currentframeoffset--;
147                    }
148                    while (copysamples) {
149                        dy -= int8_t(*pSrc);
150                        y  -= dy;
151                        *pDst = y;
152                        pDst += dstStep;
153                        pSrc += srcStep;
154                        copysamples--;
155                    }
156                    break;
157            }
158        }
159    
160        void Decompress24(int compressionmode, const unsigned char* params,
161                          int dstStep, const unsigned char* pSrc, uint8_t* pDst,
162                          unsigned long currentframeoffset,
163                          unsigned long copysamples, int truncatedBits)
164        {
165            int y, dy, ddy, dddy;
166    
167    #define GET_PARAMS(params)                      \
168            y    = get24(params);                   \
169            dy   = y - get24((params) + 3);         \
170            ddy  = get24((params) + 6);             \
171            dddy = get24((params) + 9)
172    
173    #define SKIP_ONE(x)                             \
174            dddy -= (x);                            \
175            ddy  -= dddy;                           \
176            dy   =  -dy - ddy;                      \
177            y    += dy
178    
179    #define COPY_ONE(x)                             \
180            SKIP_ONE(x);                            \
181            store24(pDst, y << truncatedBits);      \
182            pDst += dstStep
183    
184            switch (compressionmode) {
185                case 2: // 24 bit uncompressed
186                    pSrc += currentframeoffset * 3;
187                    while (copysamples) {
188                        store24(pDst, get24(pSrc) << truncatedBits);
189                        pDst += dstStep;
190                        pSrc += 3;
191                        copysamples--;
192                    }
193                    break;
194    
195                case 3: // 24 bit compressed to 16 bit
196                    GET_PARAMS(params);
197                    while (currentframeoffset) {
198                        SKIP_ONE(get16(pSrc));
199                        pSrc += 2;
200                        currentframeoffset--;
201                    }
202                    while (copysamples) {
203                        COPY_ONE(get16(pSrc));
204                        pSrc += 2;
205                        copysamples--;
206                    }
207                    break;
208    
209                case 4: // 24 bit compressed to 12 bit
210                    GET_PARAMS(params);
211                    while (currentframeoffset > 1) {
212                        SKIP_ONE(get12lo(pSrc));
213                        SKIP_ONE(get12hi(pSrc));
214                        pSrc += 3;
215                        currentframeoffset -= 2;
216                    }
217                    if (currentframeoffset) {
218                        SKIP_ONE(get12lo(pSrc));
219                        currentframeoffset--;
220                        if (copysamples) {
221                            COPY_ONE(get12hi(pSrc));
222                            pSrc += 3;
223                            copysamples--;
224                        }
225                    }
226                    while (copysamples > 1) {
227                        COPY_ONE(get12lo(pSrc));
228                        COPY_ONE(get12hi(pSrc));
229                        pSrc += 3;
230                        copysamples -= 2;
231                    }
232                    if (copysamples) {
233                        COPY_ONE(get12lo(pSrc));
234                    }
235                    break;
236    
237                case 5: // 24 bit compressed to 8 bit
238                    GET_PARAMS(params);
239                    while (currentframeoffset) {
240                        SKIP_ONE(int8_t(*pSrc++));
241                        currentframeoffset--;
242                    }
243                    while (copysamples) {
244                        COPY_ONE(int8_t(*pSrc++));
245                        copysamples--;
246                    }
247                    break;
248            }
249        }
250    
251        const int bytesPerFrame[] =      { 4096, 2052, 768, 524, 396, 268 };
252        const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
253        const int headerSize[] =         { 0, 4, 0, 12, 12, 12 };
254        const int bitsPerSample[] =      { 16, 8, 24, 16, 12, 8 };
255    }
256    
257    
258    
259    // *************** Internal CRC-32 (Cyclic Redundancy Check) functions  ***************
260    // *
261    
262        static uint32_t* __initCRCTable() {
263            static uint32_t res[256];
264    
265            for (int i = 0 ; i < 256 ; i++) {
266                uint32_t c = i;
267                for (int j = 0 ; j < 8 ; j++) {
268                    c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
269                }
270                res[i] = c;
271            }
272            return res;
273        }
274    
275        static const uint32_t* __CRCTable = __initCRCTable();
276    
277        /**
278         * Initialize a CRC variable.
279         *
280         * @param crc - variable to be initialized
281         */
282        inline static void __resetCRC(uint32_t& crc) {
283            crc = 0xffffffff;
284        }
285    
286        /**
287         * Used to calculate checksums of the sample data in a gig file. The
288         * checksums are stored in the 3crc chunk of the gig file and
289         * automatically updated when a sample is written with Sample::Write().
290         *
291         * One should call __resetCRC() to initialize the CRC variable to be
292         * used before calling this function the first time.
293         *
294         * After initializing the CRC variable one can call this function
295         * arbitrary times, i.e. to split the overall CRC calculation into
296         * steps.
297         *
298         * Once the whole data was processed by __calculateCRC(), one should
299         * call __encodeCRC() to get the final CRC result.
300         *
301         * @param buf     - pointer to data the CRC shall be calculated of
302         * @param bufSize - size of the data to be processed
303         * @param crc     - variable the CRC sum shall be stored to
304         */
305        static void __calculateCRC(unsigned char* buf, int bufSize, uint32_t& crc) {
306            for (int i = 0 ; i < bufSize ; i++) {
307                crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
308            }
309        }
310    
311        /**
312         * Returns the final CRC result.
313         *
314         * @param crc - variable previously passed to __calculateCRC()
315         */
316        inline static uint32_t __encodeCRC(const uint32_t& crc) {
317            return crc ^ 0xffffffff;
318        }
319    
320    
321    
322    // *************** Other Internal functions  ***************
323    // *
324    
325        static split_type_t __resolveSplitType(dimension_t dimension) {
326            return (
327                dimension == dimension_layer ||
328                dimension == dimension_samplechannel ||
329                dimension == dimension_releasetrigger ||
330                dimension == dimension_keyboard ||
331                dimension == dimension_roundrobin ||
332                dimension == dimension_random ||
333                dimension == dimension_smartmidi ||
334                dimension == dimension_roundrobinkeyboard
335            ) ? split_type_bit : split_type_normal;
336        }
337    
338        static int __resolveZoneSize(dimension_def_t& dimension_definition) {
339            return (dimension_definition.split_type == split_type_normal)
340            ? int(128.0 / dimension_definition.zones) : 0;
341        }
342    
343    
344    
345  // *************** Sample ***************  // *************** Sample ***************
346  // *  // *
347    
348      unsigned int  Sample::Instances               = 0;      unsigned int Sample::Instances = 0;
349      void*         Sample::pDecompressionBuffer    = NULL;      buffer_t     Sample::InternalDecompressionBuffer;
     unsigned long Sample::DecompressionBufferSize = 0;  
350    
351      Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {      /** @brief Constructor.
352         *
353         * Load an existing sample or create a new one. A 'wave' list chunk must
354         * be given to this constructor. In case the given 'wave' list chunk
355         * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
356         * format and sample data will be loaded from there, otherwise default
357         * values will be used and those chunks will be created when
358         * File::Save() will be called later on.
359         *
360         * @param pFile          - pointer to gig::File where this sample is
361         *                         located (or will be located)
362         * @param waveList       - pointer to 'wave' list chunk which is (or
363         *                         will be) associated with this sample
364         * @param WavePoolOffset - offset of this sample data from wave pool
365         *                         ('wvpl') list chunk
366         * @param fileNo         - number of an extension file where this sample
367         *                         is located, 0 otherwise
368         */
369        Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {
370            static const DLS::Info::string_length_t fixedStringLengths[] = {
371                { CHUNK_ID_INAM, 64 },
372                { 0, 0 }
373            };
374            pInfo->SetFixedStringLengths(fixedStringLengths);
375          Instances++;          Instances++;
376            FileNo = fileNo;
377    
378          RIFF::Chunk* _3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);          __resetCRC(crc);
379          if (!_3gix) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");  
380          SampleGroup = _3gix->ReadInt16();          pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
381            if (pCk3gix) {
382          RIFF::Chunk* smpl = waveList->GetSubChunk(CHUNK_ID_SMPL);              uint16_t iSampleGroup = pCk3gix->ReadInt16();
383          if (!smpl) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");              pGroup = pFile->GetGroup(iSampleGroup);
384          Manufacturer      = smpl->ReadInt32();          } else { // '3gix' chunk missing
385          Product           = smpl->ReadInt32();              // by default assigned to that mandatory "Default Group"
386          SamplePeriod      = smpl->ReadInt32();              pGroup = pFile->GetGroup(0);
387          MIDIUnityNote     = smpl->ReadInt32();          }
388          FineTune          = smpl->ReadInt32();  
389          smpl->Read(&SMPTEFormat, 1, 4);          pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
390          SMPTEOffset       = smpl->ReadInt32();          if (pCkSmpl) {
391          Loops             = smpl->ReadInt32();              Manufacturer  = pCkSmpl->ReadInt32();
392          uint32_t manufByt = smpl->ReadInt32();              Product       = pCkSmpl->ReadInt32();
393          LoopID            = smpl->ReadInt32();              SamplePeriod  = pCkSmpl->ReadInt32();
394          smpl->Read(&LoopType, 1, 4);              MIDIUnityNote = pCkSmpl->ReadInt32();
395          LoopStart         = smpl->ReadInt32();              FineTune      = pCkSmpl->ReadInt32();
396          LoopEnd           = smpl->ReadInt32();              pCkSmpl->Read(&SMPTEFormat, 1, 4);
397          LoopFraction      = smpl->ReadInt32();              SMPTEOffset   = pCkSmpl->ReadInt32();
398          LoopPlayCount     = smpl->ReadInt32();              Loops         = pCkSmpl->ReadInt32();
399                pCkSmpl->ReadInt32(); // manufByt
400                LoopID        = pCkSmpl->ReadInt32();
401                pCkSmpl->Read(&LoopType, 1, 4);
402                LoopStart     = pCkSmpl->ReadInt32();
403                LoopEnd       = pCkSmpl->ReadInt32();
404                LoopFraction  = pCkSmpl->ReadInt32();
405                LoopPlayCount = pCkSmpl->ReadInt32();
406            } else { // 'smpl' chunk missing
407                // use default values
408                Manufacturer  = 0;
409                Product       = 0;
410                SamplePeriod  = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
411                MIDIUnityNote = 60;
412                FineTune      = 0;
413                SMPTEFormat   = smpte_format_no_offset;
414                SMPTEOffset   = 0;
415                Loops         = 0;
416                LoopID        = 0;
417                LoopType      = loop_type_normal;
418                LoopStart     = 0;
419                LoopEnd       = 0;
420                LoopFraction  = 0;
421                LoopPlayCount = 0;
422            }
423    
424          FrameTable                 = NULL;          FrameTable                 = NULL;
425          SamplePos                  = 0;          SamplePos                  = 0;
# Line 63  namespace gig { Line 427  namespace gig {
427          RAMCache.pStart            = NULL;          RAMCache.pStart            = NULL;
428          RAMCache.NullExtensionSize = 0;          RAMCache.NullExtensionSize = 0;
429    
430          Compressed = (waveList->GetSubChunk(CHUNK_ID_EWAV));          if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
431    
432            RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
433            Compressed        = ewav;
434            Dithered          = false;
435            TruncatedBits     = 0;
436          if (Compressed) {          if (Compressed) {
437              ScanCompressedSample();              uint32_t version = ewav->ReadInt32();
438              if (!pDecompressionBuffer) {              if (version == 3 && BitDepth == 24) {
439                  pDecompressionBuffer    = new int8_t[INITIAL_SAMPLE_BUFFER_SIZE];                  Dithered = ewav->ReadInt32();
440                  DecompressionBufferSize = INITIAL_SAMPLE_BUFFER_SIZE;                  ewav->SetPos(Channels == 2 ? 84 : 64);
441                    TruncatedBits = ewav->ReadInt32();
442              }              }
443                ScanCompressedSample();
444          }          }
         FrameOffset = 0; // just for streaming compressed samples  
445    
446          LoopStart /= FrameSize; // convert to sample points          // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
447          LoopEnd   /= FrameSize; // convert to sample points          if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
448          LoopSize   = LoopEnd - LoopStart;              InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
449                InternalDecompressionBuffer.Size   = INITIAL_SAMPLE_BUFFER_SIZE;
450            }
451            FrameOffset = 0; // just for streaming compressed samples
452    
453            LoopSize = LoopEnd - LoopStart + 1;
454        }
455    
456        /**
457         * Make a (semi) deep copy of the Sample object given by @a orig (without
458         * the actual waveform data) and assign it to this object.
459         *
460         * Discussion: copying .gig samples is a bit tricky. It requires three
461         * steps:
462         * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
463         *    its new sample waveform data size.
464         * 2. Saving the file (done by File::Save()) so that it gains correct size
465         *    and layout for writing the actual wave form data directly to disc
466         *    in next step.
467         * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
468         *
469         * @param orig - original Sample object to be copied from
470         */
471        void Sample::CopyAssignMeta(const Sample* orig) {
472            // handle base classes
473            DLS::Sample::CopyAssignCore(orig);
474            
475            // handle actual own attributes of this class
476            Manufacturer = orig->Manufacturer;
477            Product = orig->Product;
478            SamplePeriod = orig->SamplePeriod;
479            MIDIUnityNote = orig->MIDIUnityNote;
480            FineTune = orig->FineTune;
481            SMPTEFormat = orig->SMPTEFormat;
482            SMPTEOffset = orig->SMPTEOffset;
483            Loops = orig->Loops;
484            LoopID = orig->LoopID;
485            LoopType = orig->LoopType;
486            LoopStart = orig->LoopStart;
487            LoopEnd = orig->LoopEnd;
488            LoopSize = orig->LoopSize;
489            LoopFraction = orig->LoopFraction;
490            LoopPlayCount = orig->LoopPlayCount;
491            
492            // schedule resizing this sample to the given sample's size
493            Resize(orig->GetSize());
494        }
495    
496        /**
497         * Should be called after CopyAssignMeta() and File::Save() sequence.
498         * Read more about it in the discussion of CopyAssignMeta(). This method
499         * copies the actual waveform data by disk streaming.
500         *
501         * @e CAUTION: this method is currently not thread safe! During this
502         * operation the sample must not be used for other purposes by other
503         * threads!
504         *
505         * @param orig - original Sample object to be copied from
506         */
507        void Sample::CopyAssignWave(const Sample* orig) {
508            const int iReadAtOnce = 32*1024;
509            char* buf = new char[iReadAtOnce * orig->FrameSize];
510            Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
511            unsigned long restorePos = pOrig->GetPos();
512            pOrig->SetPos(0);
513            SetPos(0);
514            for (unsigned long n = pOrig->Read(buf, iReadAtOnce); n;
515                               n = pOrig->Read(buf, iReadAtOnce))
516            {
517                Write(buf, n);
518            }
519            pOrig->SetPos(restorePos);
520            delete [] buf;
521        }
522    
523        /**
524         * Apply sample and its settings to the respective RIFF chunks. You have
525         * to call File::Save() to make changes persistent.
526         *
527         * Usually there is absolutely no need to call this method explicitly.
528         * It will be called automatically when File::Save() was called.
529         *
530         * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
531         *                        was provided yet
532         * @throws gig::Exception if there is any invalid sample setting
533         */
534        void Sample::UpdateChunks() {
535            // first update base class's chunks
536            DLS::Sample::UpdateChunks();
537    
538            // make sure 'smpl' chunk exists
539            pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
540            if (!pCkSmpl) {
541                pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
542                memset(pCkSmpl->LoadChunkData(), 0, 60);
543            }
544            // update 'smpl' chunk
545            uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
546            SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
547            store32(&pData[0], Manufacturer);
548            store32(&pData[4], Product);
549            store32(&pData[8], SamplePeriod);
550            store32(&pData[12], MIDIUnityNote);
551            store32(&pData[16], FineTune);
552            store32(&pData[20], SMPTEFormat);
553            store32(&pData[24], SMPTEOffset);
554            store32(&pData[28], Loops);
555    
556            // we skip 'manufByt' for now (4 bytes)
557    
558            store32(&pData[36], LoopID);
559            store32(&pData[40], LoopType);
560            store32(&pData[44], LoopStart);
561            store32(&pData[48], LoopEnd);
562            store32(&pData[52], LoopFraction);
563            store32(&pData[56], LoopPlayCount);
564    
565            // make sure '3gix' chunk exists
566            pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
567            if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
568            // determine appropriate sample group index (to be stored in chunk)
569            uint16_t iSampleGroup = 0; // 0 refers to default sample group
570            File* pFile = static_cast<File*>(pParent);
571            if (pFile->pGroups) {
572                std::list<Group*>::iterator iter = pFile->pGroups->begin();
573                std::list<Group*>::iterator end  = pFile->pGroups->end();
574                for (int i = 0; iter != end; i++, iter++) {
575                    if (*iter == pGroup) {
576                        iSampleGroup = i;
577                        break; // found
578                    }
579                }
580            }
581            // update '3gix' chunk
582            pData = (uint8_t*) pCk3gix->LoadChunkData();
583            store16(&pData[0], iSampleGroup);
584    
585            // if the library user toggled the "Compressed" attribute from true to
586            // false, then the EWAV chunk associated with compressed samples needs
587            // to be deleted
588            RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
589            if (ewav && !Compressed) {
590                pWaveList->DeleteSubChunk(ewav);
591            }
592      }      }
593    
594      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
# Line 84  namespace gig { Line 597  namespace gig {
597          this->SamplesTotal = 0;          this->SamplesTotal = 0;
598          std::list<unsigned long> frameOffsets;          std::list<unsigned long> frameOffsets;
599    
600            SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
601            WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
602    
603          // Scanning          // Scanning
604          pCkData->SetPos(0);          pCkData->SetPos(0);
605          while (pCkData->GetState() == RIFF::stream_ready) {          if (Channels == 2) { // Stereo
606              frameOffsets.push_back(pCkData->GetPos());              for (int i = 0 ; ; i++) {
607              int16_t compressionmode = pCkData->ReadInt16();                  // for 24 bit samples every 8:th frame offset is
608              this->SamplesTotal += 2048;                  // stored, to save some memory
609              switch (compressionmode) {                  if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
610                  case 1:   // left channel compressed  
611                  case 256: // right channel compressed                  const int mode_l = pCkData->ReadUint8();
612                      pCkData->SetPos(6148, RIFF::stream_curpos);                  const int mode_r = pCkData->ReadUint8();
613                    if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
614                    const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
615    
616                    if (pCkData->RemainingBytes() <= frameSize) {
617                        SamplesInLastFrame =
618                            ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
619                            (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
620                        SamplesTotal += SamplesInLastFrame;
621                      break;                      break;
622                  case 257: // both channels compressed                  }
623                      pCkData->SetPos(4104, RIFF::stream_curpos);                  SamplesTotal += SamplesPerFrame;
624                    pCkData->SetPos(frameSize, RIFF::stream_curpos);
625                }
626            }
627            else { // Mono
628                for (int i = 0 ; ; i++) {
629                    if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
630    
631                    const int mode = pCkData->ReadUint8();
632                    if (mode > 5) throw gig::Exception("Unknown compression mode");
633                    const unsigned long frameSize = bytesPerFrame[mode];
634    
635                    if (pCkData->RemainingBytes() <= frameSize) {
636                        SamplesInLastFrame =
637                            ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
638                        SamplesTotal += SamplesInLastFrame;
639                      break;                      break;
640                  default: // both channels uncompressed                  }
641                      pCkData->SetPos(8192, RIFF::stream_curpos);                  SamplesTotal += SamplesPerFrame;
642                    pCkData->SetPos(frameSize, RIFF::stream_curpos);
643              }              }
644          }          }
645          pCkData->SetPos(0);          pCkData->SetPos(0);
646    
         //FIXME: only seen compressed samples with 16 bit stereo so far  
         this->FrameSize = 4;  
         this->BitDepth  = 16;  
   
647          // Build the frames table (which is used for fast resolving of a frame's chunk offset)          // Build the frames table (which is used for fast resolving of a frame's chunk offset)
648          if (FrameTable) delete[] FrameTable;          if (FrameTable) delete[] FrameTable;
649          FrameTable = new unsigned long[frameOffsets.size()];          FrameTable = new unsigned long[frameOffsets.size()];
# Line 143  namespace gig { Line 679  namespace gig {
679       * that will be returned to determine the actual cached samples, but note       * that will be returned to determine the actual cached samples, but note
680       * that the size is given in bytes! You get the number of actually cached       * that the size is given in bytes! You get the number of actually cached
681       * samples by dividing it by the frame size of the sample:       * samples by dividing it by the frame size of the sample:
682       *       * @code
683       *  buffer_t buf       = pSample->LoadSampleData(acquired_samples);       *  buffer_t buf       = pSample->LoadSampleData(acquired_samples);
684       *  long cachedsamples = buf.Size / pSample->FrameSize;       *  long cachedsamples = buf.Size / pSample->FrameSize;
685         * @endcode
686       *       *
687       * @param SampleCount - number of sample points to load into RAM       * @param SampleCount - number of sample points to load into RAM
688       * @returns             buffer_t structure with start address and size of       * @returns             buffer_t structure with start address and size of
# Line 191  namespace gig { Line 728  namespace gig {
728       * that will be returned to determine the actual cached samples, but note       * that will be returned to determine the actual cached samples, but note
729       * that the size is given in bytes! You get the number of actually cached       * that the size is given in bytes! You get the number of actually cached
730       * samples by dividing it by the frame size of the sample:       * samples by dividing it by the frame size of the sample:
731       *       * @code
732       *  buffer_t buf       = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);       *  buffer_t buf       = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
733       *  long cachedsamples = buf.Size / pSample->FrameSize;       *  long cachedsamples = buf.Size / pSample->FrameSize;
734       *       * @endcode
735       * The method will add \a NullSamplesCount silence samples past the       * The method will add \a NullSamplesCount silence samples past the
736       * official buffer end (this won't affect the 'Size' member of the       * official buffer end (this won't affect the 'Size' member of the
737       * buffer_t structure, that means 'Size' always reflects the size of the       * buffer_t structure, that means 'Size' always reflects the size of the
# Line 215  namespace gig { Line 752  namespace gig {
752          if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;          if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
753          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
754          unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;          unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
755            SetPos(0); // reset read position to begin of sample
756          RAMCache.pStart            = new int8_t[allocationsize];          RAMCache.pStart            = new int8_t[allocationsize];
757          RAMCache.Size              = Read(RAMCache.pStart, SampleCount) * this->FrameSize;          RAMCache.Size              = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
758          RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;          RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
# Line 252  namespace gig { Line 790  namespace gig {
790          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
791          RAMCache.pStart = NULL;          RAMCache.pStart = NULL;
792          RAMCache.Size   = 0;          RAMCache.Size   = 0;
793            RAMCache.NullExtensionSize = 0;
794        }
795    
796        /** @brief Resize sample.
797         *
798         * Resizes the sample's wave form data, that is the actual size of
799         * sample wave data possible to be written for this sample. This call
800         * will return immediately and just schedule the resize operation. You
801         * should call File::Save() to actually perform the resize operation(s)
802         * "physically" to the file. As this can take a while on large files, it
803         * is recommended to call Resize() first on all samples which have to be
804         * resized and finally to call File::Save() to perform all those resize
805         * operations in one rush.
806         *
807         * The actual size (in bytes) is dependant to the current FrameSize
808         * value. You may want to set FrameSize before calling Resize().
809         *
810         * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
811         * enlarged samples before calling File::Save() as this might exceed the
812         * current sample's boundary!
813         *
814         * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
815         * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
816         * other formats will fail!
817         *
818         * @param iNewSize - new sample wave data size in sample points (must be
819         *                   greater than zero)
820         * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
821         *                         or if \a iNewSize is less than 1
822         * @throws gig::Exception if existing sample is compressed
823         * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
824         *      DLS::Sample::FormatTag, File::Save()
825         */
826        void Sample::Resize(int iNewSize) {
827            if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
828            DLS::Sample::Resize(iNewSize);
829      }      }
830    
831      /**      /**
# Line 309  namespace gig { Line 883  namespace gig {
883      /**      /**
884       * Returns the current position in the sample (in sample points).       * Returns the current position in the sample (in sample points).
885       */       */
886      unsigned long Sample::GetPos() {      unsigned long Sample::GetPos() const {
887          if (Compressed) return SamplePos;          if (Compressed) return SamplePos;
888          else            return pCkData->GetPos() / FrameSize;          else            return pCkData->GetPos() / FrameSize;
889      }      }
# Line 325  namespace gig { Line 899  namespace gig {
899       * for the next time you call this method is stored in \a pPlaybackState.       * for the next time you call this method is stored in \a pPlaybackState.
900       * You have to allocate and initialize the playback_state_t structure by       * You have to allocate and initialize the playback_state_t structure by
901       * yourself before you use it to stream a sample:       * yourself before you use it to stream a sample:
902       *       * @code
903       * <i>       * gig::playback_state_t playbackstate;
904       * gig::playback_state_t playbackstate;                           <br>       * playbackstate.position         = 0;
905       * playbackstate.position         = 0;                            <br>       * playbackstate.reverse          = false;
906       * playbackstate.reverse          = false;                        <br>       * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
907       * playbackstate.loop_cycles_left = pSample->LoopPlayCount;       <br>       * @endcode
      * </i>  
      *  
908       * You don't have to take care of things like if there is actually a loop       * You don't have to take care of things like if there is actually a loop
909       * defined or if the current read position is located within a loop area.       * defined or if the current read position is located within a loop area.
910       * The method already handles such cases by itself.       * The method already handles such cases by itself.
911       *       *
912         * <b>Caution:</b> If you are using more than one streaming thread, you
913         * have to use an external decompression buffer for <b>EACH</b>
914         * streaming thread to avoid race conditions and crashes!
915         *
916       * @param pBuffer          destination buffer       * @param pBuffer          destination buffer
917       * @param SampleCount      number of sample points to read       * @param SampleCount      number of sample points to read
918       * @param pPlaybackState   will be used to store and reload the playback       * @param pPlaybackState   will be used to store and reload the playback
919       *                         state for the next ReadAndLoop() call       *                         state for the next ReadAndLoop() call
920         * @param pDimRgn          dimension region with looping information
921         * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
922       * @returns                number of successfully read sample points       * @returns                number of successfully read sample points
923         * @see                    CreateDecompressionBuffer()
924       */       */
925      unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState) {      unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState,
926                                          DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
927          unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;          unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
928          uint8_t* pDst = (uint8_t*) pBuffer;          uint8_t* pDst = (uint8_t*) pBuffer;
929    
930          SetPos(pPlaybackState->position); // recover position from the last time          SetPos(pPlaybackState->position); // recover position from the last time
931    
932          if (this->Loops && GetPos() <= this->LoopEnd) { // honor looping if there are loop points defined          if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
933    
934              switch (this->LoopType) {              const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
935                const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
936    
937                  case loop_type_bidirectional: { //TODO: not tested yet!              if (GetPos() <= loopEnd) {
938                      do {                  switch (loop.LoopType) {
                         // if not endless loop check if max. number of loop cycles have been passed  
                         if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;  
   
                         if (!pPlaybackState->reverse) { // forward playback  
                             do {  
                                 samplestoloopend  = this->LoopEnd - GetPos();  
                                 readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend));  
                                 samplestoread    -= readsamples;  
                                 totalreadsamples += readsamples;  
                                 if (readsamples == samplestoloopend) {  
                                     pPlaybackState->reverse = true;  
                                     break;  
                                 }  
                             } while (samplestoread && readsamples);  
                         }  
                         else { // backward playback  
939    
940                              // as we can only read forward from disk, we have to                      case loop_type_bidirectional: { //TODO: not tested yet!
941                              // determine the end position within the loop first,                          do {
942                              // read forward from that 'end' and finally after                              // if not endless loop check if max. number of loop cycles have been passed
943                              // reading, swap all sample frames so it reflects                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
944                              // backward playback  
945                                if (!pPlaybackState->reverse) { // forward playback
946                              unsigned long swapareastart       = totalreadsamples;                                  do {
947                              unsigned long loopoffset          = GetPos() - this->LoopStart;                                      samplestoloopend  = loopEnd - GetPos();
948                              unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);                                      readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
949                              unsigned long reverseplaybackend  = GetPos() - samplestoreadinloop;                                      samplestoread    -= readsamples;
950                                        totalreadsamples += readsamples;
951                              SetPos(reverseplaybackend);                                      if (readsamples == samplestoloopend) {
952                                            pPlaybackState->reverse = true;
953                              // read samples for backward playback                                          break;
954                              do {                                      }
955                                  readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop);                                  } while (samplestoread && readsamples);
956                                  samplestoreadinloop -= readsamples;                              }
957                                  samplestoread       -= readsamples;                              else { // backward playback
                                 totalreadsamples    += readsamples;  
                             } while (samplestoreadinloop && readsamples);  
958    
959                              SetPos(reverseplaybackend); // pretend we really read backwards                                  // as we can only read forward from disk, we have to
960                                    // determine the end position within the loop first,
961                                    // read forward from that 'end' and finally after
962                                    // reading, swap all sample frames so it reflects
963                                    // backward playback
964    
965                                    unsigned long swapareastart       = totalreadsamples;
966                                    unsigned long loopoffset          = GetPos() - loop.LoopStart;
967                                    unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);
968                                    unsigned long reverseplaybackend  = GetPos() - samplestoreadinloop;
969    
970                                    SetPos(reverseplaybackend);
971    
972                                    // read samples for backward playback
973                                    do {
974                                        readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
975                                        samplestoreadinloop -= readsamples;
976                                        samplestoread       -= readsamples;
977                                        totalreadsamples    += readsamples;
978                                    } while (samplestoreadinloop && readsamples);
979    
980                                    SetPos(reverseplaybackend); // pretend we really read backwards
981    
982                                    if (reverseplaybackend == loop.LoopStart) {
983                                        pPlaybackState->loop_cycles_left--;
984                                        pPlaybackState->reverse = false;
985                                    }
986    
987                              if (reverseplaybackend == this->LoopStart) {                                  // reverse the sample frames for backward playback
988                                  pPlaybackState->loop_cycles_left--;                                  if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
989                                  pPlaybackState->reverse = false;                                      SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
990                              }                              }
991                            } while (samplestoread && readsamples);
992                            break;
993                        }
994    
995                              // reverse the sample frames for backward playback                      case loop_type_backward: { // TODO: not tested yet!
996                              SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);                          // forward playback (not entered the loop yet)
997                          }                          if (!pPlaybackState->reverse) do {
998                      } while (samplestoread && readsamples);                              samplestoloopend  = loopEnd - GetPos();
999                      break;                              readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1000                  }                              samplestoread    -= readsamples;
1001                                totalreadsamples += readsamples;
1002                  case loop_type_backward: { // TODO: not tested yet!                              if (readsamples == samplestoloopend) {
1003                      // forward playback (not entered the loop yet)                                  pPlaybackState->reverse = true;
1004                      if (!pPlaybackState->reverse) do {                                  break;
1005                          samplestoloopend  = this->LoopEnd - GetPos();                              }
1006                          readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend));                          } while (samplestoread && readsamples);
                         samplestoread    -= readsamples;  
                         totalreadsamples += readsamples;  
                         if (readsamples == samplestoloopend) {  
                             pPlaybackState->reverse = true;  
                             break;  
                         }  
                     } while (samplestoread && readsamples);  
1007    
1008                      if (!samplestoread) break;                          if (!samplestoread) break;
1009    
1010                      // as we can only read forward from disk, we have to                          // as we can only read forward from disk, we have to
1011                      // determine the end position within the loop first,                          // determine the end position within the loop first,
1012                      // read forward from that 'end' and finally after                          // read forward from that 'end' and finally after
1013                      // reading, swap all sample frames so it reflects                          // reading, swap all sample frames so it reflects
1014                      // backward playback                          // backward playback
1015    
1016                      unsigned long swapareastart       = totalreadsamples;                          unsigned long swapareastart       = totalreadsamples;
1017                      unsigned long loopoffset          = GetPos() - this->LoopStart;                          unsigned long loopoffset          = GetPos() - loop.LoopStart;
1018                      unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * LoopSize - loopoffset)                          unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1019                                                                                : samplestoread;                                                                                    : samplestoread;
1020                      unsigned long reverseplaybackend  = this->LoopStart + Abs((loopoffset - samplestoreadinloop) % this->LoopSize);                          unsigned long reverseplaybackend  = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1021    
1022                      SetPos(reverseplaybackend);                          SetPos(reverseplaybackend);
1023    
1024                      // read samples for backward playback                          // read samples for backward playback
1025                      do {                          do {
1026                          // if not endless loop check if max. number of loop cycles have been passed                              // if not endless loop check if max. number of loop cycles have been passed
1027                          if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1028                          samplestoloopend     = this->LoopEnd - GetPos();                              samplestoloopend     = loopEnd - GetPos();
1029                          readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend));                              readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1030                          samplestoreadinloop -= readsamples;                              samplestoreadinloop -= readsamples;
1031                          samplestoread       -= readsamples;                              samplestoread       -= readsamples;
1032                          totalreadsamples    += readsamples;                              totalreadsamples    += readsamples;
1033                          if (readsamples == samplestoloopend) {                              if (readsamples == samplestoloopend) {
1034                              pPlaybackState->loop_cycles_left--;                                  pPlaybackState->loop_cycles_left--;
1035                              SetPos(this->LoopStart);                                  SetPos(loop.LoopStart);
1036                          }                              }
1037                      } while (samplestoreadinloop && readsamples);                          } while (samplestoreadinloop && readsamples);
1038    
1039                      SetPos(reverseplaybackend); // pretend we really read backwards                          SetPos(reverseplaybackend); // pretend we really read backwards
1040    
1041                      // reverse the sample frames for backward playback                          // reverse the sample frames for backward playback
1042                      SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);                          SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1043                      break;                          break;
1044                  }                      }
1045    
1046                  default: case loop_type_normal: {                      default: case loop_type_normal: {
1047                      do {                          do {
1048                          // if not endless loop check if max. number of loop cycles have been passed                              // if not endless loop check if max. number of loop cycles have been passed
1049                          if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1050                          samplestoloopend  = this->LoopEnd - GetPos();                              samplestoloopend  = loopEnd - GetPos();
1051                          readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend));                              readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1052                          samplestoread    -= readsamples;                              samplestoread    -= readsamples;
1053                          totalreadsamples += readsamples;                              totalreadsamples += readsamples;
1054                          if (readsamples == samplestoloopend) {                              if (readsamples == samplestoloopend) {
1055                              pPlaybackState->loop_cycles_left--;                                  pPlaybackState->loop_cycles_left--;
1056                              SetPos(this->LoopStart);                                  SetPos(loop.LoopStart);
1057                          }                              }
1058                      } while (samplestoread && readsamples);                          } while (samplestoread && readsamples);
1059                      break;                          break;
1060                        }
1061                  }                  }
1062              }              }
1063          }          }
1064    
1065          // read on without looping          // read on without looping
1066          if (samplestoread) do {          if (samplestoread) do {
1067              readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread);              readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
1068              samplestoread    -= readsamples;              samplestoread    -= readsamples;
1069              totalreadsamples += readsamples;              totalreadsamples += readsamples;
1070          } while (readsamples && samplestoread);          } while (readsamples && samplestoread);
# Line 497  namespace gig { Line 1083  namespace gig {
1083       * and <i>SetPos()</i> if you don't want to load the sample into RAM,       * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1084       * thus for disk streaming.       * thus for disk streaming.
1085       *       *
1086         * <b>Caution:</b> If you are using more than one streaming thread, you
1087         * have to use an external decompression buffer for <b>EACH</b>
1088         * streaming thread to avoid race conditions and crashes!
1089         *
1090         * For 16 bit samples, the data in the buffer will be int16_t
1091         * (using native endianness). For 24 bit, the buffer will
1092         * contain three bytes per sample, little-endian.
1093         *
1094       * @param pBuffer      destination buffer       * @param pBuffer      destination buffer
1095       * @param SampleCount  number of sample points to read       * @param SampleCount  number of sample points to read
1096         * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
1097       * @returns            number of successfully read sample points       * @returns            number of successfully read sample points
1098       * @see                SetPos()       * @see                SetPos(), CreateDecompressionBuffer()
1099       */       */
1100      unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount) {      unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) {
1101          if (SampleCount == 0) return 0;          if (SampleCount == 0) return 0;
1102          if (!Compressed) return pCkData->Read(pBuffer, SampleCount, FrameSize); //FIXME: channel inversion due to endian correction?          if (!Compressed) {
1103          else { //FIXME: no support for mono compressed samples yet, are there any?              if (BitDepth == 24) {
1104                    return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1105                }
1106                else { // 16 bit
1107                    // (pCkData->Read does endian correction)
1108                    return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1109                                         : pCkData->Read(pBuffer, SampleCount, 2);
1110                }
1111            }
1112            else {
1113              if (this->SamplePos >= this->SamplesTotal) return 0;              if (this->SamplePos >= this->SamplesTotal) return 0;
1114              //TODO: efficiency: we simply assume here that all frames are compressed, maybe we should test for an average compression rate              //TODO: efficiency: maybe we should test for an average compression rate
1115              // best case needed buffer size (all frames compressed)              unsigned long assumedsize      = GuessSize(SampleCount),
             unsigned long assumedsize      = (SampleCount << 1)  + // *2 (16 Bit, stereo, but assume all frames compressed)  
                                              (SampleCount >> 10) + // 10 bytes header per 2048 sample points  
                                              8194,                 // at least one worst case sample frame  
1116                            remainingbytes   = 0,           // remaining bytes in the local buffer                            remainingbytes   = 0,           // remaining bytes in the local buffer
1117                            remainingsamples = SampleCount,                            remainingsamples = SampleCount,
1118                            copysamples;                            copysamples, skipsamples,
1119              int currentframeoffset = this->FrameOffset;   // offset in current sample frame since last Read()                            currentframeoffset = this->FrameOffset;  // offset in current sample frame since last Read()
1120              this->FrameOffset = 0;              this->FrameOffset = 0;
1121    
1122              if (assumedsize > this->DecompressionBufferSize) {              buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1123                  // local buffer reallocation - hope this won't happen  
1124                  if (this->pDecompressionBuffer) delete[] (int8_t*) this->pDecompressionBuffer;              // if decompression buffer too small, then reduce amount of samples to read
1125                  this->pDecompressionBuffer    = new int8_t[assumedsize << 1]; // double of current needed size              if (pDecompressionBuffer->Size < assumedsize) {
1126                  this->DecompressionBufferSize = assumedsize;                  std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1127                    SampleCount      = WorstCaseMaxSamples(pDecompressionBuffer);
1128                    remainingsamples = SampleCount;
1129                    assumedsize      = GuessSize(SampleCount);
1130              }              }
1131    
1132              int16_t  compressionmode, left, dleft, right, dright;              unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1133              int8_t*  pSrc = (int8_t*)  this->pDecompressionBuffer;              int16_t* pDst = static_cast<int16_t*>(pBuffer);
1134              int16_t* pDst = (int16_t*) pBuffer;              uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1135              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1136    
1137              while (remainingsamples) {              while (remainingsamples && remainingbytes) {
1138                    unsigned long framesamples = SamplesPerFrame;
1139                  // reload from disk to local buffer if needed                  unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset;
1140                  if (remainingbytes < 8194) {  
1141                      if (pCkData->GetState() != RIFF::stream_ready) {                  int mode_l = *pSrc++, mode_r = 0;
1142                          this->SamplePos = this->SamplesTotal;  
1143                          return (SampleCount - remainingsamples);                  if (Channels == 2) {
1144                      }                      mode_r = *pSrc++;
1145                      assumedsize    = remainingsamples;                      framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1146                      assumedsize    = (assumedsize << 1)  + // *2 (16 Bit, stereo, but assume all frames compressed)                      rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1147                                       (assumedsize >> 10) + // 10 bytes header per 2048 sample points                      nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1148                                       8194;                 // at least one worst case sample frame                      if (remainingbytes < framebytes) { // last frame in sample
1149                      pCkData->SetPos(remainingbytes, RIFF::stream_backward);                          framesamples = SamplesInLastFrame;
1150                      if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();                          if (mode_l == 4 && (framesamples & 1)) {
1151                      remainingbytes = pCkData->Read(this->pDecompressionBuffer, assumedsize, 1);                              rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1152                      pSrc = (int8_t*) this->pDecompressionBuffer;                          }
1153                            else {
1154                                rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1155                            }
1156                        }
1157                    }
1158                    else {
1159                        framebytes = bytesPerFrame[mode_l] + 1;
1160                        nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1161                        if (remainingbytes < framebytes) {
1162                            framesamples = SamplesInLastFrame;
1163                        }
1164                  }                  }
1165    
1166                  // determine how many samples in this frame to skip and read                  // determine how many samples in this frame to skip and read
1167                  if (remainingsamples >= 2048) {                  if (currentframeoffset + remainingsamples >= framesamples) {
1168                      copysamples       = 2048 - currentframeoffset;                      if (currentframeoffset <= framesamples) {
1169                      remainingsamples -= copysamples;                          copysamples = framesamples - currentframeoffset;
1170                            skipsamples = currentframeoffset;
1171                        }
1172                        else {
1173                            copysamples = 0;
1174                            skipsamples = framesamples;
1175                        }
1176                  }                  }
1177                  else {                  else {
1178                        // This frame has enough data for pBuffer, but not
1179                        // all of the frame is needed. Set file position
1180                        // to start of this frame for next call to Read.
1181                      copysamples = remainingsamples;                      copysamples = remainingsamples;
1182                      if (currentframeoffset + copysamples > 2048) {                      skipsamples = currentframeoffset;
1183                          copysamples = 2048 - currentframeoffset;                      pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1184                          remainingsamples -= copysamples;                      this->FrameOffset = currentframeoffset + copysamples;
1185                      }                  }
1186                      else {                  remainingsamples -= copysamples;
1187    
1188                    if (remainingbytes > framebytes) {
1189                        remainingbytes -= framebytes;
1190                        if (remainingsamples == 0 &&
1191                            currentframeoffset + copysamples == framesamples) {
1192                            // This frame has enough data for pBuffer, and
1193                            // all of the frame is needed. Set file
1194                            // position to start of next frame for next
1195                            // call to Read. FrameOffset is 0.
1196                          pCkData->SetPos(remainingbytes, RIFF::stream_backward);                          pCkData->SetPos(remainingbytes, RIFF::stream_backward);
                         remainingsamples = 0;  
                         this->FrameOffset = currentframeoffset + copysamples;  
1197                      }                      }
1198                  }                  }
1199                    else remainingbytes = 0;
1200    
1201                  // decompress and copy current frame from local buffer to destination buffer                  currentframeoffset -= skipsamples;
1202                  compressionmode = *(int16_t*)pSrc; pSrc+=2;  
1203                  switch (compressionmode) {                  if (copysamples == 0) {
1204                      case 1: // left channel compressed                      // skip this frame
1205                          remainingbytes -= 6150; // (left 8 bit, right 16 bit, +6 byte header)                      pSrc += framebytes - Channels;
1206                          if (!remainingsamples && copysamples == 2048)                  }
1207                              pCkData->SetPos(remainingbytes, RIFF::stream_backward);                  else {
1208                        const unsigned char* const param_l = pSrc;
1209                          left  = *(int16_t*)pSrc; pSrc+=2;                      if (BitDepth == 24) {
1210                          dleft = *(int16_t*)pSrc; pSrc+=2;                          if (mode_l != 2) pSrc += 12;
1211                          while (currentframeoffset) {  
1212                              dleft -= *pSrc;                          if (Channels == 2) { // Stereo
1213                              left  -= dleft;                              const unsigned char* const param_r = pSrc;
1214                              pSrc+=3; // 8 bit left channel, skip uncompressed right channel (16 bit)                              if (mode_r != 2) pSrc += 12;
1215                              currentframeoffset--;  
1216                          }                              Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1217                          while (copysamples) {                                           skipsamples, copysamples, TruncatedBits);
1218                              dleft -= *pSrc; pSrc++;                              Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1219                              left  -= dleft;                                           skipsamples, copysamples, TruncatedBits);
1220                              *pDst = left; pDst++;                              pDst24 += copysamples * 6;
                             *pDst = *(int16_t*)pSrc; pDst++; pSrc+=2;  
                             copysamples--;  
                         }  
                         break;  
                     case 256: // right channel compressed  
                         remainingbytes -= 6150; // (left 16 bit, right 8 bit, +6 byte header)  
                         if (!remainingsamples && copysamples == 2048)  
                             pCkData->SetPos(remainingbytes, RIFF::stream_backward);  
   
                         right  = *(int16_t*)pSrc; pSrc+=2;  
                         dright = *(int16_t*)pSrc; pSrc+=2;  
                         if (currentframeoffset) {  
                             pSrc+=2; // skip uncompressed left channel, now we can increment by 3  
                             while (currentframeoffset) {  
                                 dright -= *pSrc;  
                                 right  -= dright;  
                                 pSrc+=3; // 8 bit right channel, skip uncompressed left channel (16 bit)  
                                 currentframeoffset--;  
                             }  
                             pSrc-=2; // back aligned to left channel  
1221                          }                          }
1222                          while (copysamples) {                          else { // Mono
1223                              *pDst = *(int16_t*)pSrc; pDst++; pSrc+=2;                              Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1224                              dright -= *pSrc; pSrc++;                                           skipsamples, copysamples, TruncatedBits);
1225                              right  -= dright;                              pDst24 += copysamples * 3;
                             *pDst = right; pDst++;  
                             copysamples--;  
1226                          }                          }
1227                          break;                      }
1228                      case 257: // both channels compressed                      else { // 16 bit
1229                          remainingbytes -= 4106; // (left 8 bit, right 8 bit, +10 byte header)                          if (mode_l) pSrc += 4;
1230                          if (!remainingsamples && copysamples == 2048)  
1231                              pCkData->SetPos(remainingbytes, RIFF::stream_backward);                          int step;
1232                            if (Channels == 2) { // Stereo
1233                          left   = *(int16_t*)pSrc; pSrc+=2;                              const unsigned char* const param_r = pSrc;
1234                          dleft  = *(int16_t*)pSrc; pSrc+=2;                              if (mode_r) pSrc += 4;
1235                          right  = *(int16_t*)pSrc; pSrc+=2;  
1236                          dright = *(int16_t*)pSrc; pSrc+=2;                              step = (2 - mode_l) + (2 - mode_r);
1237                          while (currentframeoffset) {                              Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1238                              dleft  -= *pSrc; pSrc++;                              Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1239                              left   -= dleft;                                           skipsamples, copysamples);
1240                              dright -= *pSrc; pSrc++;                              pDst += copysamples << 1;
                             right  -= dright;  
                             currentframeoffset--;  
1241                          }                          }
1242                          while (copysamples) {                          else { // Mono
1243                              dleft  -= *pSrc; pSrc++;                              step = 2 - mode_l;
1244                              left   -= dleft;                              Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1245                              dright -= *pSrc; pSrc++;                              pDst += copysamples;
                             right  -= dright;  
                             *pDst = left;  pDst++;  
                             *pDst = right; pDst++;  
                             copysamples--;  
1246                          }                          }
1247                          break;                      }
1248                      default: // both channels uncompressed                      pSrc += nextFrameOffset;
                         remainingbytes -= 8194; // (left 16 bit, right 16 bit, +2 byte header)  
                         if (!remainingsamples && copysamples == 2048)  
                             pCkData->SetPos(remainingbytes, RIFF::stream_backward);  
   
                         pSrc += currentframeoffset << 2;  
                         currentframeoffset = 0;  
                         memcpy(pDst, pSrc, copysamples << 2);  
                         pDst += copysamples << 1;  
                         pSrc += copysamples << 2;  
                         break;  
1249                  }                  }
1250              }  
1251                    // reload from disk to local buffer if needed
1252                    if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1253                        assumedsize    = GuessSize(remainingsamples);
1254                        pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1255                        if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1256                        remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1257                        pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1258                    }
1259                } // while
1260    
1261              this->SamplePos += (SampleCount - remainingsamples);              this->SamplePos += (SampleCount - remainingsamples);
1262              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1263              return (SampleCount - remainingsamples);              return (SampleCount - remainingsamples);
1264          }          }
1265      }      }
1266    
1267        /** @brief Write sample wave data.
1268         *
1269         * Writes \a SampleCount number of sample points from the buffer pointed
1270         * by \a pBuffer and increments the position within the sample. Use this
1271         * method to directly write the sample data to disk, i.e. if you don't
1272         * want or cannot load the whole sample data into RAM.
1273         *
1274         * You have to Resize() the sample to the desired size and call
1275         * File::Save() <b>before</b> using Write().
1276         *
1277         * Note: there is currently no support for writing compressed samples.
1278         *
1279         * For 16 bit samples, the data in the source buffer should be
1280         * int16_t (using native endianness). For 24 bit, the buffer
1281         * should contain three bytes per sample, little-endian.
1282         *
1283         * @param pBuffer     - source buffer
1284         * @param SampleCount - number of sample points to write
1285         * @throws DLS::Exception if current sample size is too small
1286         * @throws gig::Exception if sample is compressed
1287         * @see DLS::LoadSampleData()
1288         */
1289        unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) {
1290            if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1291    
1292            // if this is the first write in this sample, reset the
1293            // checksum calculator
1294            if (pCkData->GetPos() == 0) {
1295                __resetCRC(crc);
1296            }
1297            if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1298            unsigned long res;
1299            if (BitDepth == 24) {
1300                res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1301            } else { // 16 bit
1302                res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1303                                    : pCkData->Write(pBuffer, SampleCount, 2);
1304            }
1305            __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1306    
1307            // if this is the last write, update the checksum chunk in the
1308            // file
1309            if (pCkData->GetPos() == pCkData->GetSize()) {
1310                File* pFile = static_cast<File*>(GetParent());
1311                pFile->SetSampleChecksum(this, __encodeCRC(crc));
1312            }
1313            return res;
1314        }
1315    
1316        /**
1317         * Allocates a decompression buffer for streaming (compressed) samples
1318         * with Sample::Read(). If you are using more than one streaming thread
1319         * in your application you <b>HAVE</b> to create a decompression buffer
1320         * for <b>EACH</b> of your streaming threads and provide it with the
1321         * Sample::Read() call in order to avoid race conditions and crashes.
1322         *
1323         * You should free the memory occupied by the allocated buffer(s) once
1324         * you don't need one of your streaming threads anymore by calling
1325         * DestroyDecompressionBuffer().
1326         *
1327         * @param MaxReadSize - the maximum size (in sample points) you ever
1328         *                      expect to read with one Read() call
1329         * @returns allocated decompression buffer
1330         * @see DestroyDecompressionBuffer()
1331         */
1332        buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) {
1333            buffer_t result;
1334            const double worstCaseHeaderOverhead =
1335                    (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1336            result.Size              = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1337            result.pStart            = new int8_t[result.Size];
1338            result.NullExtensionSize = 0;
1339            return result;
1340        }
1341    
1342        /**
1343         * Free decompression buffer, previously created with
1344         * CreateDecompressionBuffer().
1345         *
1346         * @param DecompressionBuffer - previously allocated decompression
1347         *                              buffer to free
1348         */
1349        void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1350            if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1351                delete[] (int8_t*) DecompressionBuffer.pStart;
1352                DecompressionBuffer.pStart = NULL;
1353                DecompressionBuffer.Size   = 0;
1354                DecompressionBuffer.NullExtensionSize = 0;
1355            }
1356        }
1357    
1358        /**
1359         * Returns pointer to the Group this Sample belongs to. In the .gig
1360         * format a sample always belongs to one group. If it wasn't explicitly
1361         * assigned to a certain group, it will be automatically assigned to a
1362         * default group.
1363         *
1364         * @returns Sample's Group (never NULL)
1365         */
1366        Group* Sample::GetGroup() const {
1367            return pGroup;
1368        }
1369    
1370      Sample::~Sample() {      Sample::~Sample() {
1371          Instances--;          Instances--;
1372          if (!Instances && pDecompressionBuffer) delete[] (int8_t*) pDecompressionBuffer;          if (!Instances && InternalDecompressionBuffer.Size) {
1373                delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1374                InternalDecompressionBuffer.pStart = NULL;
1375                InternalDecompressionBuffer.Size   = 0;
1376            }
1377          if (FrameTable) delete[] FrameTable;          if (FrameTable) delete[] FrameTable;
1378          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1379      }      }
# Line 675  namespace gig { Line 1386  namespace gig {
1386      uint                               DimensionRegion::Instances       = 0;      uint                               DimensionRegion::Instances       = 0;
1387      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1388    
1389      DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {      DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1390          Instances++;          Instances++;
1391    
1392          memcpy(&Crossfade, &SamplerOptions, 4);          pSample = NULL;
1393            pRegion = pParent;
1394    
1395            if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1396            else memset(&Crossfade, 0, 4);
1397    
1398          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1399    
1400          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1401          _3ewa->ReadInt32(); // unknown, allways 0x0000008C ?          if (_3ewa) { // if '3ewa' chunk exists
1402          LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              _3ewa->ReadInt32(); // unknown, always == chunk size ?
1403          EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1404          _3ewa->ReadInt16(); // unknown              EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1405          LFO1InternalDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1406          _3ewa->ReadInt16(); // unknown              LFO1InternalDepth = _3ewa->ReadUint16();
1407          LFO3InternalDepth = _3ewa->ReadInt16();              _3ewa->ReadInt16(); // unknown
1408          _3ewa->ReadInt16(); // unknown              LFO3InternalDepth = _3ewa->ReadInt16();
1409          LFO1ControlDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1410          _3ewa->ReadInt16(); // unknown              LFO1ControlDepth = _3ewa->ReadUint16();
1411          LFO3ControlDepth = _3ewa->ReadInt16();              _3ewa->ReadInt16(); // unknown
1412          EG1Attack           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO3ControlDepth = _3ewa->ReadInt16();
1413          EG1Decay1           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG1Attack           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1414          _3ewa->ReadInt16(); // unknown              EG1Decay1           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1415          EG1Sustain          = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1416          EG1Release          = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG1Sustain          = _3ewa->ReadUint16();
1417          EG1Controller       = static_cast<eg1_ctrl_t>(_3ewa->ReadUint8());              EG1Release          = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1418          uint8_t eg1ctrloptions        = _3ewa->ReadUint8();              EG1Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1419          EG1ControllerInvert           = eg1ctrloptions & 0x01;              uint8_t eg1ctrloptions        = _3ewa->ReadUint8();
1420          EG1ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerInvert           = eg1ctrloptions & 0x01;
1421          EG1ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1422          EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1423          EG2Controller       = static_cast<eg2_ctrl_t>(_3ewa->ReadUint8());              EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1424          uint8_t eg2ctrloptions        = _3ewa->ReadUint8();              EG2Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1425          EG2ControllerInvert           = eg2ctrloptions & 0x01;              uint8_t eg2ctrloptions        = _3ewa->ReadUint8();
1426          EG2ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerInvert           = eg2ctrloptions & 0x01;
1427          EG2ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1428          EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1429          LFO1Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1430          EG2Attack        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO1Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1431          EG2Decay1        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2Attack        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1432          _3ewa->ReadInt16(); // unknown              EG2Decay1        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1433          EG2Sustain       = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1434          EG2Release       = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2Sustain       = _3ewa->ReadUint16();
1435          _3ewa->ReadInt16(); // unknown              EG2Release       = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1436          LFO2ControlDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1437          LFO2Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO2ControlDepth = _3ewa->ReadUint16();
1438          _3ewa->ReadInt16(); // unknown              LFO2Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1439          LFO2InternalDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1440          int32_t eg1decay2 = _3ewa->ReadInt32();              LFO2InternalDepth = _3ewa->ReadUint16();
1441          EG1Decay2          = (double) GIG_EXP_DECODE(eg1decay2);              int32_t eg1decay2 = _3ewa->ReadInt32();
1442          EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);              EG1Decay2          = (double) GIG_EXP_DECODE(eg1decay2);
1443          _3ewa->ReadInt16(); // unknown              EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1444          EG1PreAttack      = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1445          int32_t eg2decay2 = _3ewa->ReadInt32();              EG1PreAttack      = _3ewa->ReadUint16();
1446          EG2Decay2         = (double) GIG_EXP_DECODE(eg2decay2);              int32_t eg2decay2 = _3ewa->ReadInt32();
1447          EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);              EG2Decay2         = (double) GIG_EXP_DECODE(eg2decay2);
1448          _3ewa->ReadInt16(); // unknown              EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1449          EG2PreAttack      = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1450          uint8_t velocityresponse = _3ewa->ReadUint8();              EG2PreAttack      = _3ewa->ReadUint16();
1451          if (velocityresponse < 5) {              uint8_t velocityresponse = _3ewa->ReadUint8();
1452              VelocityResponseCurve = curve_type_nonlinear;              if (velocityresponse < 5) {
1453              VelocityResponseDepth = velocityresponse;                  VelocityResponseCurve = curve_type_nonlinear;
1454          }                  VelocityResponseDepth = velocityresponse;
1455          else if (velocityresponse < 10) {              } else if (velocityresponse < 10) {
1456              VelocityResponseCurve = curve_type_linear;                  VelocityResponseCurve = curve_type_linear;
1457              VelocityResponseDepth = velocityresponse - 5;                  VelocityResponseDepth = velocityresponse - 5;
1458          }              } else if (velocityresponse < 15) {
1459          else if (velocityresponse < 15) {                  VelocityResponseCurve = curve_type_special;
1460              VelocityResponseCurve = curve_type_special;                  VelocityResponseDepth = velocityresponse - 10;
1461              VelocityResponseDepth = velocityresponse - 10;              } else {
1462                    VelocityResponseCurve = curve_type_unknown;
1463                    VelocityResponseDepth = 0;
1464                }
1465                uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1466                if (releasevelocityresponse < 5) {
1467                    ReleaseVelocityResponseCurve = curve_type_nonlinear;
1468                    ReleaseVelocityResponseDepth = releasevelocityresponse;
1469                } else if (releasevelocityresponse < 10) {
1470                    ReleaseVelocityResponseCurve = curve_type_linear;
1471                    ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1472                } else if (releasevelocityresponse < 15) {
1473                    ReleaseVelocityResponseCurve = curve_type_special;
1474                    ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1475                } else {
1476                    ReleaseVelocityResponseCurve = curve_type_unknown;
1477                    ReleaseVelocityResponseDepth = 0;
1478                }
1479                VelocityResponseCurveScaling = _3ewa->ReadUint8();
1480                AttenuationControllerThreshold = _3ewa->ReadInt8();
1481                _3ewa->ReadInt32(); // unknown
1482                SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1483                _3ewa->ReadInt16(); // unknown
1484                uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1485                PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1486                if      (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1487                else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1488                else                                       DimensionBypass = dim_bypass_ctrl_none;
1489                uint8_t pan = _3ewa->ReadUint8();
1490                Pan         = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1491                SelfMask = _3ewa->ReadInt8() & 0x01;
1492                _3ewa->ReadInt8(); // unknown
1493                uint8_t lfo3ctrl = _3ewa->ReadUint8();
1494                LFO3Controller           = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1495                LFO3Sync                 = lfo3ctrl & 0x20; // bit 5
1496                InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1497                AttenuationController  = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1498                uint8_t lfo2ctrl       = _3ewa->ReadUint8();
1499                LFO2Controller         = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1500                LFO2FlipPhase          = lfo2ctrl & 0x80; // bit 7
1501                LFO2Sync               = lfo2ctrl & 0x20; // bit 5
1502                bool extResonanceCtrl  = lfo2ctrl & 0x40; // bit 6
1503                uint8_t lfo1ctrl       = _3ewa->ReadUint8();
1504                LFO1Controller         = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1505                LFO1FlipPhase          = lfo1ctrl & 0x80; // bit 7
1506                LFO1Sync               = lfo1ctrl & 0x40; // bit 6
1507                VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1508                                                            : vcf_res_ctrl_none;
1509                uint16_t eg3depth = _3ewa->ReadUint16();
1510                EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1511                                            : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1512                _3ewa->ReadInt16(); // unknown
1513                ChannelOffset = _3ewa->ReadUint8() / 4;
1514                uint8_t regoptions = _3ewa->ReadUint8();
1515                MSDecode           = regoptions & 0x01; // bit 0
1516                SustainDefeat      = regoptions & 0x02; // bit 1
1517                _3ewa->ReadInt16(); // unknown
1518                VelocityUpperLimit = _3ewa->ReadInt8();
1519                _3ewa->ReadInt8(); // unknown
1520                _3ewa->ReadInt16(); // unknown
1521                ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1522                _3ewa->ReadInt8(); // unknown
1523                _3ewa->ReadInt8(); // unknown
1524                EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1525                uint8_t vcfcutoff = _3ewa->ReadUint8();
1526                VCFEnabled = vcfcutoff & 0x80; // bit 7
1527                VCFCutoff  = vcfcutoff & 0x7f; // lower 7 bits
1528                VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1529                uint8_t vcfvelscale = _3ewa->ReadUint8();
1530                VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1531                VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1532                _3ewa->ReadInt8(); // unknown
1533                uint8_t vcfresonance = _3ewa->ReadUint8();
1534                VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1535                VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1536                uint8_t vcfbreakpoint         = _3ewa->ReadUint8();
1537                VCFKeyboardTracking           = vcfbreakpoint & 0x80; // bit 7
1538                VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1539                uint8_t vcfvelocity = _3ewa->ReadUint8();
1540                VCFVelocityDynamicRange = vcfvelocity % 5;
1541                VCFVelocityCurve        = static_cast<curve_type_t>(vcfvelocity / 5);
1542                VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1543                if (VCFType == vcf_type_lowpass) {
1544                    if (lfo3ctrl & 0x40) // bit 6
1545                        VCFType = vcf_type_lowpassturbo;
1546                }
1547                if (_3ewa->RemainingBytes() >= 8) {
1548                    _3ewa->Read(DimensionUpperLimits, 1, 8);
1549                } else {
1550                    memset(DimensionUpperLimits, 0, 8);
1551                }
1552            } else { // '3ewa' chunk does not exist yet
1553                // use default values
1554                LFO3Frequency                   = 1.0;
1555                EG3Attack                       = 0.0;
1556                LFO1InternalDepth               = 0;
1557                LFO3InternalDepth               = 0;
1558                LFO1ControlDepth                = 0;
1559                LFO3ControlDepth                = 0;
1560                EG1Attack                       = 0.0;
1561                EG1Decay1                       = 0.005;
1562                EG1Sustain                      = 1000;
1563                EG1Release                      = 0.3;
1564                EG1Controller.type              = eg1_ctrl_t::type_none;
1565                EG1Controller.controller_number = 0;
1566                EG1ControllerInvert             = false;
1567                EG1ControllerAttackInfluence    = 0;
1568                EG1ControllerDecayInfluence     = 0;
1569                EG1ControllerReleaseInfluence   = 0;
1570                EG2Controller.type              = eg2_ctrl_t::type_none;
1571                EG2Controller.controller_number = 0;
1572                EG2ControllerInvert             = false;
1573                EG2ControllerAttackInfluence    = 0;
1574                EG2ControllerDecayInfluence     = 0;
1575                EG2ControllerReleaseInfluence   = 0;
1576                LFO1Frequency                   = 1.0;
1577                EG2Attack                       = 0.0;
1578                EG2Decay1                       = 0.005;
1579                EG2Sustain                      = 1000;
1580                EG2Release                      = 0.3;
1581                LFO2ControlDepth                = 0;
1582                LFO2Frequency                   = 1.0;
1583                LFO2InternalDepth               = 0;
1584                EG1Decay2                       = 0.0;
1585                EG1InfiniteSustain              = true;
1586                EG1PreAttack                    = 0;
1587                EG2Decay2                       = 0.0;
1588                EG2InfiniteSustain              = true;
1589                EG2PreAttack                    = 0;
1590                VelocityResponseCurve           = curve_type_nonlinear;
1591                VelocityResponseDepth           = 3;
1592                ReleaseVelocityResponseCurve    = curve_type_nonlinear;
1593                ReleaseVelocityResponseDepth    = 3;
1594                VelocityResponseCurveScaling    = 32;
1595                AttenuationControllerThreshold  = 0;
1596                SampleStartOffset               = 0;
1597                PitchTrack                      = true;
1598                DimensionBypass                 = dim_bypass_ctrl_none;
1599                Pan                             = 0;
1600                SelfMask                        = true;
1601                LFO3Controller                  = lfo3_ctrl_modwheel;
1602                LFO3Sync                        = false;
1603                InvertAttenuationController     = false;
1604                AttenuationController.type      = attenuation_ctrl_t::type_none;
1605                AttenuationController.controller_number = 0;
1606                LFO2Controller                  = lfo2_ctrl_internal;
1607                LFO2FlipPhase                   = false;
1608                LFO2Sync                        = false;
1609                LFO1Controller                  = lfo1_ctrl_internal;
1610                LFO1FlipPhase                   = false;
1611                LFO1Sync                        = false;
1612                VCFResonanceController          = vcf_res_ctrl_none;
1613                EG3Depth                        = 0;
1614                ChannelOffset                   = 0;
1615                MSDecode                        = false;
1616                SustainDefeat                   = false;
1617                VelocityUpperLimit              = 0;
1618                ReleaseTriggerDecay             = 0;
1619                EG1Hold                         = false;
1620                VCFEnabled                      = false;
1621                VCFCutoff                       = 0;
1622                VCFCutoffController             = vcf_cutoff_ctrl_none;
1623                VCFCutoffControllerInvert       = false;
1624                VCFVelocityScale                = 0;
1625                VCFResonance                    = 0;
1626                VCFResonanceDynamic             = false;
1627                VCFKeyboardTracking             = false;
1628                VCFKeyboardTrackingBreakpoint   = 0;
1629                VCFVelocityDynamicRange         = 0x04;
1630                VCFVelocityCurve                = curve_type_linear;
1631                VCFType                         = vcf_type_lowpass;
1632                memset(DimensionUpperLimits, 127, 8);
1633          }          }
1634          else {  
1635              VelocityResponseCurve = curve_type_unknown;          pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1636              VelocityResponseDepth = 0;                                                       VelocityResponseDepth,
1637                                                         VelocityResponseCurveScaling);
1638    
1639            pVelocityReleaseTable = GetReleaseVelocityTable(
1640                                        ReleaseVelocityResponseCurve,
1641                                        ReleaseVelocityResponseDepth
1642                                    );
1643    
1644            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1645                                                          VCFVelocityDynamicRange,
1646                                                          VCFVelocityScale,
1647                                                          VCFCutoffController);
1648    
1649            SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1650            VelocityTable = 0;
1651        }
1652    
1653        /*
1654         * Constructs a DimensionRegion by copying all parameters from
1655         * another DimensionRegion
1656         */
1657        DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1658            Instances++;
1659            //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1660            *this = src; // default memberwise shallow copy of all parameters
1661            pParentList = _3ewl; // restore the chunk pointer
1662    
1663            // deep copy of owned structures
1664            if (src.VelocityTable) {
1665                VelocityTable = new uint8_t[128];
1666                for (int k = 0 ; k < 128 ; k++)
1667                    VelocityTable[k] = src.VelocityTable[k];
1668          }          }
1669          uint8_t releasevelocityresponse = _3ewa->ReadUint8();          if (src.pSampleLoops) {
1670          if (releasevelocityresponse < 5) {              pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1671              ReleaseVelocityResponseCurve = curve_type_nonlinear;              for (int k = 0 ; k < src.SampleLoops ; k++)
1672              ReleaseVelocityResponseDepth = releasevelocityresponse;                  pSampleLoops[k] = src.pSampleLoops[k];
         }  
         else if (releasevelocityresponse < 10) {  
             ReleaseVelocityResponseCurve = curve_type_linear;  
             ReleaseVelocityResponseDepth = releasevelocityresponse - 5;  
         }  
         else if (releasevelocityresponse < 15) {  
             ReleaseVelocityResponseCurve = curve_type_special;  
             ReleaseVelocityResponseDepth = releasevelocityresponse - 10;  
1673          }          }
1674          else {      }
1675              ReleaseVelocityResponseCurve = curve_type_unknown;      
1676              ReleaseVelocityResponseDepth = 0;      /**
1677         * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1678         * and assign it to this object.
1679         *
1680         * Note that all sample pointers referenced by @a orig are simply copied as
1681         * memory address. Thus the respective samples are shared, not duplicated!
1682         *
1683         * @param orig - original DimensionRegion object to be copied from
1684         */
1685        void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1686            CopyAssign(orig, NULL);
1687        }
1688    
1689        /**
1690         * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1691         * and assign it to this object.
1692         *
1693         * @param orig - original DimensionRegion object to be copied from
1694         * @param mSamples - crosslink map between the foreign file's samples and
1695         *                   this file's samples
1696         */
1697        void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1698            // delete all allocated data first
1699            if (VelocityTable) delete [] VelocityTable;
1700            if (pSampleLoops) delete [] pSampleLoops;
1701            
1702            // backup parent list pointer
1703            RIFF::List* p = pParentList;
1704            
1705            gig::Sample* pOriginalSample = pSample;
1706            gig::Region* pOriginalRegion = pRegion;
1707            
1708            //NOTE: copy code copied from assignment constructor above, see comment there as well
1709            
1710            *this = *orig; // default memberwise shallow copy of all parameters
1711            
1712            // restore members that shall not be altered
1713            pParentList = p; // restore the chunk pointer
1714            pRegion = pOriginalRegion;
1715            
1716            // only take the raw sample reference reference if the
1717            // two DimensionRegion objects are part of the same file
1718            if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1719                pSample = pOriginalSample;
1720            }
1721            
1722            if (mSamples && mSamples->count(orig->pSample)) {
1723                pSample = mSamples->find(orig->pSample)->second;
1724          }          }
         VelocityResponseCurveScaling = _3ewa->ReadUint8();  
         AttenuationControlTreshold   = _3ewa->ReadInt8();  
         _3ewa->ReadInt32(); // unknown  
         SampleStartOffset = (uint16_t) _3ewa->ReadInt16();  
         _3ewa->ReadInt16(); // unknown  
         uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();  
         PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);  
         if      (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;  
         else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;  
         else                                       DimensionBypass = dim_bypass_ctrl_none;  
         uint8_t pan = _3ewa->ReadUint8();  
         Pan         = (pan < 64) ? pan : (-1) * (int8_t)pan - 63;  
         SelfMask = _3ewa->ReadInt8() & 0x01;  
         _3ewa->ReadInt8(); // unknown  
         uint8_t lfo3ctrl = _3ewa->ReadUint8();  
         LFO3Controller           = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits  
         LFO3Sync                 = lfo3ctrl & 0x20; // bit 5  
         InvertAttenuationControl = lfo3ctrl & 0x80; // bit 7  
         if (VCFType == vcf_type_lowpass) {  
             if (lfo3ctrl & 0x40) // bit 6  
                 VCFType = vcf_type_lowpassturbo;  
         }  
         AttenuationControl = static_cast<attenuation_ctrl_t>(_3ewa->ReadUint8());  
         uint8_t lfo2ctrl       = _3ewa->ReadUint8();  
         LFO2Controller         = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits  
         LFO2FlipPhase          = lfo2ctrl & 0x80; // bit 7  
         LFO2Sync               = lfo2ctrl & 0x20; // bit 5  
         bool extResonanceCtrl  = lfo2ctrl & 0x40; // bit 6  
         uint8_t lfo1ctrl       = _3ewa->ReadUint8();  
         LFO1Controller         = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits  
         LFO1FlipPhase          = lfo1ctrl & 0x80; // bit 7  
         LFO1Sync               = lfo1ctrl & 0x40; // bit 6  
         VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))  
                                                     : vcf_res_ctrl_none;  
         uint16_t eg3depth = _3ewa->ReadUint16();  
         EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */  
                                       : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */  
         _3ewa->ReadInt16(); // unknown  
         ChannelOffset = _3ewa->ReadUint8() / 4;  
         uint8_t regoptions = _3ewa->ReadUint8();  
         MSDecode           = regoptions & 0x01; // bit 0  
         SustainDefeat      = regoptions & 0x02; // bit 1  
         _3ewa->ReadInt16(); // unknown  
         VelocityUpperLimit = _3ewa->ReadInt8();  
         _3ewa->ReadInt8(); // unknown  
         _3ewa->ReadInt16(); // unknown  
         ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay  
         _3ewa->ReadInt8(); // unknown  
         _3ewa->ReadInt8(); // unknown  
         EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7  
         uint8_t vcfcutoff = _3ewa->ReadUint8();  
         VCFEnabled = vcfcutoff & 0x80; // bit 7  
         VCFCutoff  = vcfcutoff & 0x7f; // lower 7 bits  
         VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());  
         VCFVelocityScale = _3ewa->ReadUint8();  
         _3ewa->ReadInt8(); // unknown  
         uint8_t vcfresonance = _3ewa->ReadUint8();  
         VCFResonance = vcfresonance & 0x7f; // lower 7 bits  
         VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7  
         uint8_t vcfbreakpoint         = _3ewa->ReadUint8();  
         VCFKeyboardTracking           = vcfbreakpoint & 0x80; // bit 7  
         VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits  
         uint8_t vcfvelocity = _3ewa->ReadUint8();  
         VCFVelocityDynamicRange = vcfvelocity % 5;  
         VCFVelocityCurve        = static_cast<curve_type_t>(vcfvelocity / 5);  
         VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());  
1725    
1726          // get the corresponding velocity->volume table from the table map or create & calculate that table if it doesn't exist yet          // deep copy of owned structures
1727          uint32_t tableKey = (VelocityResponseCurve<<16) | (VelocityResponseDepth<<8) | VelocityResponseCurveScaling;          if (orig->VelocityTable) {
1728          if (pVelocityTables->count(tableKey)) { // if key exists              VelocityTable = new uint8_t[128];
1729              pVelocityAttenuationTable = (*pVelocityTables)[tableKey];              for (int k = 0 ; k < 128 ; k++)
1730                    VelocityTable[k] = orig->VelocityTable[k];
1731          }          }
1732          else {          if (orig->pSampleLoops) {
1733              pVelocityAttenuationTable = new double[128];              pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1734              switch (VelocityResponseCurve) { // calculate the new table              for (int k = 0 ; k < orig->SampleLoops ; k++)
1735                    pSampleLoops[k] = orig->pSampleLoops[k];
1736            }
1737        }
1738    
1739        /**
1740         * Updates the respective member variable and updates @c SampleAttenuation
1741         * which depends on this value.
1742         */
1743        void DimensionRegion::SetGain(int32_t gain) {
1744            DLS::Sampler::SetGain(gain);
1745            SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1746        }
1747    
1748        /**
1749         * Apply dimension region settings to the respective RIFF chunks. You
1750         * have to call File::Save() to make changes persistent.
1751         *
1752         * Usually there is absolutely no need to call this method explicitly.
1753         * It will be called automatically when File::Save() was called.
1754         */
1755        void DimensionRegion::UpdateChunks() {
1756            // first update base class's chunk
1757            DLS::Sampler::UpdateChunks();
1758    
1759            RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1760            uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1761            pData[12] = Crossfade.in_start;
1762            pData[13] = Crossfade.in_end;
1763            pData[14] = Crossfade.out_start;
1764            pData[15] = Crossfade.out_end;
1765    
1766            // make sure '3ewa' chunk exists
1767            RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1768            if (!_3ewa) {
1769                File* pFile = (File*) GetParent()->GetParent()->GetParent();
1770                bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1771                _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1772            }
1773            pData = (uint8_t*) _3ewa->LoadChunkData();
1774    
1775            // update '3ewa' chunk with DimensionRegion's current settings
1776    
1777            const uint32_t chunksize = _3ewa->GetNewSize();
1778            store32(&pData[0], chunksize); // unknown, always chunk size?
1779    
1780            const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1781            store32(&pData[4], lfo3freq);
1782    
1783            const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1784            store32(&pData[8], eg3attack);
1785    
1786            // next 2 bytes unknown
1787    
1788            store16(&pData[14], LFO1InternalDepth);
1789    
1790            // next 2 bytes unknown
1791    
1792            store16(&pData[18], LFO3InternalDepth);
1793    
1794            // next 2 bytes unknown
1795    
1796            store16(&pData[22], LFO1ControlDepth);
1797    
1798            // next 2 bytes unknown
1799    
1800            store16(&pData[26], LFO3ControlDepth);
1801    
1802            const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1803            store32(&pData[28], eg1attack);
1804    
1805            const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1806            store32(&pData[32], eg1decay1);
1807    
1808            // next 2 bytes unknown
1809    
1810            store16(&pData[38], EG1Sustain);
1811    
1812            const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1813            store32(&pData[40], eg1release);
1814    
1815            const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1816            pData[44] = eg1ctl;
1817    
1818            const uint8_t eg1ctrloptions =
1819                (EG1ControllerInvert ? 0x01 : 0x00) |
1820                GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1821                GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1822                GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1823            pData[45] = eg1ctrloptions;
1824    
1825            const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1826            pData[46] = eg2ctl;
1827    
1828            const uint8_t eg2ctrloptions =
1829                (EG2ControllerInvert ? 0x01 : 0x00) |
1830                GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1831                GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1832                GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1833            pData[47] = eg2ctrloptions;
1834    
1835            const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1836            store32(&pData[48], lfo1freq);
1837    
1838            const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1839            store32(&pData[52], eg2attack);
1840    
1841            const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1842            store32(&pData[56], eg2decay1);
1843    
1844            // next 2 bytes unknown
1845    
1846            store16(&pData[62], EG2Sustain);
1847    
1848            const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1849            store32(&pData[64], eg2release);
1850    
1851            // next 2 bytes unknown
1852    
1853            store16(&pData[70], LFO2ControlDepth);
1854    
1855            const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1856            store32(&pData[72], lfo2freq);
1857    
1858            // next 2 bytes unknown
1859    
1860            store16(&pData[78], LFO2InternalDepth);
1861    
1862            const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1863            store32(&pData[80], eg1decay2);
1864    
1865            // next 2 bytes unknown
1866    
1867            store16(&pData[86], EG1PreAttack);
1868    
1869            const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1870            store32(&pData[88], eg2decay2);
1871    
1872            // next 2 bytes unknown
1873    
1874            store16(&pData[94], EG2PreAttack);
1875    
1876            {
1877                if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1878                uint8_t velocityresponse = VelocityResponseDepth;
1879                switch (VelocityResponseCurve) {
1880                  case curve_type_nonlinear:                  case curve_type_nonlinear:
1881                      for (int velocity = 0; velocity < 128; velocity++) {                      break;
                         pVelocityAttenuationTable[velocity] =  
                             GIG_VELOCITY_TRANSFORM_NONLINEAR((double)(velocity+1),(double)(VelocityResponseDepth+1),(double)VelocityResponseCurveScaling);  
                         if      (pVelocityAttenuationTable[velocity] > 1.0) pVelocityAttenuationTable[velocity] = 1.0;  
                         else if (pVelocityAttenuationTable[velocity] < 0.0) pVelocityAttenuationTable[velocity] = 0.0;  
                      }  
                      break;  
1882                  case curve_type_linear:                  case curve_type_linear:
1883                      for (int velocity = 0; velocity < 128; velocity++) {                      velocityresponse += 5;
                         pVelocityAttenuationTable[velocity] =  
                             GIG_VELOCITY_TRANSFORM_LINEAR((double)velocity,(double)(VelocityResponseDepth+1),(double)VelocityResponseCurveScaling);  
                         if      (pVelocityAttenuationTable[velocity] > 1.0) pVelocityAttenuationTable[velocity] = 1.0;  
                         else if (pVelocityAttenuationTable[velocity] < 0.0) pVelocityAttenuationTable[velocity] = 0.0;  
                     }  
1884                      break;                      break;
1885                  case curve_type_special:                  case curve_type_special:
1886                      for (int velocity = 0; velocity < 128; velocity++) {                      velocityresponse += 10;
1887                          pVelocityAttenuationTable[velocity] =                      break;
1888                              GIG_VELOCITY_TRANSFORM_SPECIAL((double)(velocity+1),(double)(VelocityResponseDepth+1),(double)VelocityResponseCurveScaling);                  case curve_type_unknown:
1889                          if      (pVelocityAttenuationTable[velocity] > 1.0) pVelocityAttenuationTable[velocity] = 1.0;                  default:
1890                          else if (pVelocityAttenuationTable[velocity] < 0.0) pVelocityAttenuationTable[velocity] = 0.0;                      throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1891                      }              }
1892                pData[96] = velocityresponse;
1893            }
1894    
1895            {
1896                if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1897                uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1898                switch (ReleaseVelocityResponseCurve) {
1899                    case curve_type_nonlinear:
1900                        break;
1901                    case curve_type_linear:
1902                        releasevelocityresponse += 5;
1903                        break;
1904                    case curve_type_special:
1905                        releasevelocityresponse += 10;
1906                      break;                      break;
1907                  case curve_type_unknown:                  case curve_type_unknown:
1908                  default:                  default:
1909                      throw gig::Exception("Unknown transform curve type.");                      throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1910                }
1911                pData[97] = releasevelocityresponse;
1912            }
1913    
1914            pData[98] = VelocityResponseCurveScaling;
1915    
1916            pData[99] = AttenuationControllerThreshold;
1917    
1918            // next 4 bytes unknown
1919    
1920            store16(&pData[104], SampleStartOffset);
1921    
1922            // next 2 bytes unknown
1923    
1924            {
1925                uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1926                switch (DimensionBypass) {
1927                    case dim_bypass_ctrl_94:
1928                        pitchTrackDimensionBypass |= 0x10;
1929                        break;
1930                    case dim_bypass_ctrl_95:
1931                        pitchTrackDimensionBypass |= 0x20;
1932                        break;
1933                    case dim_bypass_ctrl_none:
1934                        //FIXME: should we set anything here?
1935                        break;
1936                    default:
1937                        throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1938              }              }
1939              (*pVelocityTables)[tableKey] = pVelocityAttenuationTable; // put the new table into the tables map              pData[108] = pitchTrackDimensionBypass;
1940            }
1941    
1942            const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1943            pData[109] = pan;
1944    
1945            const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
1946            pData[110] = selfmask;
1947    
1948            // next byte unknown
1949    
1950            {
1951                uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
1952                if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
1953                if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
1954                if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
1955                pData[112] = lfo3ctrl;
1956            }
1957    
1958            const uint8_t attenctl = EncodeLeverageController(AttenuationController);
1959            pData[113] = attenctl;
1960    
1961            {
1962                uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
1963                if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
1964                if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5
1965                if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
1966                pData[114] = lfo2ctrl;
1967            }
1968    
1969            {
1970                uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
1971                if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
1972                if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6
1973                if (VCFResonanceController != vcf_res_ctrl_none)
1974                    lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
1975                pData[115] = lfo1ctrl;
1976            }
1977    
1978            const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
1979                                                      : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
1980            store16(&pData[116], eg3depth);
1981    
1982            // next 2 bytes unknown
1983    
1984            const uint8_t channeloffset = ChannelOffset * 4;
1985            pData[120] = channeloffset;
1986    
1987            {
1988                uint8_t regoptions = 0;
1989                if (MSDecode)      regoptions |= 0x01; // bit 0
1990                if (SustainDefeat) regoptions |= 0x02; // bit 1
1991                pData[121] = regoptions;
1992            }
1993    
1994            // next 2 bytes unknown
1995    
1996            pData[124] = VelocityUpperLimit;
1997    
1998            // next 3 bytes unknown
1999    
2000            pData[128] = ReleaseTriggerDecay;
2001    
2002            // next 2 bytes unknown
2003    
2004            const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2005            pData[131] = eg1hold;
2006    
2007            const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) |  /* bit 7 */
2008                                      (VCFCutoff & 0x7f);   /* lower 7 bits */
2009            pData[132] = vcfcutoff;
2010    
2011            pData[133] = VCFCutoffController;
2012    
2013            const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2014                                        (VCFVelocityScale & 0x7f); /* lower 7 bits */
2015            pData[134] = vcfvelscale;
2016    
2017            // next byte unknown
2018    
2019            const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2020                                         (VCFResonance & 0x7f); /* lower 7 bits */
2021            pData[136] = vcfresonance;
2022    
2023            const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2024                                          (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2025            pData[137] = vcfbreakpoint;
2026    
2027            const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2028                                        VCFVelocityCurve * 5;
2029            pData[138] = vcfvelocity;
2030    
2031            const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2032            pData[139] = vcftype;
2033    
2034            if (chunksize >= 148) {
2035                memcpy(&pData[140], DimensionUpperLimits, 8);
2036            }
2037        }
2038    
2039        double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2040            curve_type_t curveType = releaseVelocityResponseCurve;
2041            uint8_t depth = releaseVelocityResponseDepth;
2042            // this models a strange behaviour or bug in GSt: two of the
2043            // velocity response curves for release time are not used even
2044            // if specified, instead another curve is chosen.
2045            if ((curveType == curve_type_nonlinear && depth == 0) ||
2046                (curveType == curve_type_special   && depth == 4)) {
2047                curveType = curve_type_nonlinear;
2048                depth = 3;
2049            }
2050            return GetVelocityTable(curveType, depth, 0);
2051        }
2052    
2053        double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2054                                                        uint8_t vcfVelocityDynamicRange,
2055                                                        uint8_t vcfVelocityScale,
2056                                                        vcf_cutoff_ctrl_t vcfCutoffController)
2057        {
2058            curve_type_t curveType = vcfVelocityCurve;
2059            uint8_t depth = vcfVelocityDynamicRange;
2060            // even stranger GSt: two of the velocity response curves for
2061            // filter cutoff are not used, instead another special curve
2062            // is chosen. This curve is not used anywhere else.
2063            if ((curveType == curve_type_nonlinear && depth == 0) ||
2064                (curveType == curve_type_special   && depth == 4)) {
2065                curveType = curve_type_special;
2066                depth = 5;
2067            }
2068            return GetVelocityTable(curveType, depth,
2069                                    (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2070                                        ? vcfVelocityScale : 0);
2071        }
2072    
2073        // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2074        double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2075        {
2076            double* table;
2077            uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2078            if (pVelocityTables->count(tableKey)) { // if key exists
2079                table = (*pVelocityTables)[tableKey];
2080            }
2081            else {
2082                table = CreateVelocityTable(curveType, depth, scaling);
2083                (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
2084            }
2085            return table;
2086        }
2087    
2088        Region* DimensionRegion::GetParent() const {
2089            return pRegion;
2090        }
2091    
2092    // show error if some _lev_ctrl_* enum entry is not listed in the following function
2093    // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2094    // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2095    //#pragma GCC diagnostic push
2096    //#pragma GCC diagnostic error "-Wswitch"
2097    
2098        leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2099            leverage_ctrl_t decodedcontroller;
2100            switch (EncodedController) {
2101                // special controller
2102                case _lev_ctrl_none:
2103                    decodedcontroller.type = leverage_ctrl_t::type_none;
2104                    decodedcontroller.controller_number = 0;
2105                    break;
2106                case _lev_ctrl_velocity:
2107                    decodedcontroller.type = leverage_ctrl_t::type_velocity;
2108                    decodedcontroller.controller_number = 0;
2109                    break;
2110                case _lev_ctrl_channelaftertouch:
2111                    decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
2112                    decodedcontroller.controller_number = 0;
2113                    break;
2114    
2115                // ordinary MIDI control change controller
2116                case _lev_ctrl_modwheel:
2117                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2118                    decodedcontroller.controller_number = 1;
2119                    break;
2120                case _lev_ctrl_breath:
2121                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2122                    decodedcontroller.controller_number = 2;
2123                    break;
2124                case _lev_ctrl_foot:
2125                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2126                    decodedcontroller.controller_number = 4;
2127                    break;
2128                case _lev_ctrl_effect1:
2129                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2130                    decodedcontroller.controller_number = 12;
2131                    break;
2132                case _lev_ctrl_effect2:
2133                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2134                    decodedcontroller.controller_number = 13;
2135                    break;
2136                case _lev_ctrl_genpurpose1:
2137                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2138                    decodedcontroller.controller_number = 16;
2139                    break;
2140                case _lev_ctrl_genpurpose2:
2141                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2142                    decodedcontroller.controller_number = 17;
2143                    break;
2144                case _lev_ctrl_genpurpose3:
2145                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2146                    decodedcontroller.controller_number = 18;
2147                    break;
2148                case _lev_ctrl_genpurpose4:
2149                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2150                    decodedcontroller.controller_number = 19;
2151                    break;
2152                case _lev_ctrl_portamentotime:
2153                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2154                    decodedcontroller.controller_number = 5;
2155                    break;
2156                case _lev_ctrl_sustainpedal:
2157                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2158                    decodedcontroller.controller_number = 64;
2159                    break;
2160                case _lev_ctrl_portamento:
2161                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2162                    decodedcontroller.controller_number = 65;
2163                    break;
2164                case _lev_ctrl_sostenutopedal:
2165                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2166                    decodedcontroller.controller_number = 66;
2167                    break;
2168                case _lev_ctrl_softpedal:
2169                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2170                    decodedcontroller.controller_number = 67;
2171                    break;
2172                case _lev_ctrl_genpurpose5:
2173                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2174                    decodedcontroller.controller_number = 80;
2175                    break;
2176                case _lev_ctrl_genpurpose6:
2177                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2178                    decodedcontroller.controller_number = 81;
2179                    break;
2180                case _lev_ctrl_genpurpose7:
2181                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2182                    decodedcontroller.controller_number = 82;
2183                    break;
2184                case _lev_ctrl_genpurpose8:
2185                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2186                    decodedcontroller.controller_number = 83;
2187                    break;
2188                case _lev_ctrl_effect1depth:
2189                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2190                    decodedcontroller.controller_number = 91;
2191                    break;
2192                case _lev_ctrl_effect2depth:
2193                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2194                    decodedcontroller.controller_number = 92;
2195                    break;
2196                case _lev_ctrl_effect3depth:
2197                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2198                    decodedcontroller.controller_number = 93;
2199                    break;
2200                case _lev_ctrl_effect4depth:
2201                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2202                    decodedcontroller.controller_number = 94;
2203                    break;
2204                case _lev_ctrl_effect5depth:
2205                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2206                    decodedcontroller.controller_number = 95;
2207                    break;
2208    
2209                // format extension (these controllers are so far only supported by
2210                // LinuxSampler & gigedit) they will *NOT* work with
2211                // Gigasampler/GigaStudio !
2212                case _lev_ctrl_CC3_EXT:
2213                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2214                    decodedcontroller.controller_number = 3;
2215                    break;
2216                case _lev_ctrl_CC6_EXT:
2217                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2218                    decodedcontroller.controller_number = 6;
2219                    break;
2220                case _lev_ctrl_CC7_EXT:
2221                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2222                    decodedcontroller.controller_number = 7;
2223                    break;
2224                case _lev_ctrl_CC8_EXT:
2225                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2226                    decodedcontroller.controller_number = 8;
2227                    break;
2228                case _lev_ctrl_CC9_EXT:
2229                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2230                    decodedcontroller.controller_number = 9;
2231                    break;
2232                case _lev_ctrl_CC10_EXT:
2233                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2234                    decodedcontroller.controller_number = 10;
2235                    break;
2236                case _lev_ctrl_CC11_EXT:
2237                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2238                    decodedcontroller.controller_number = 11;
2239                    break;
2240                case _lev_ctrl_CC14_EXT:
2241                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2242                    decodedcontroller.controller_number = 14;
2243                    break;
2244                case _lev_ctrl_CC15_EXT:
2245                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2246                    decodedcontroller.controller_number = 15;
2247                    break;
2248                case _lev_ctrl_CC20_EXT:
2249                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2250                    decodedcontroller.controller_number = 20;
2251                    break;
2252                case _lev_ctrl_CC21_EXT:
2253                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2254                    decodedcontroller.controller_number = 21;
2255                    break;
2256                case _lev_ctrl_CC22_EXT:
2257                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2258                    decodedcontroller.controller_number = 22;
2259                    break;
2260                case _lev_ctrl_CC23_EXT:
2261                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2262                    decodedcontroller.controller_number = 23;
2263                    break;
2264                case _lev_ctrl_CC24_EXT:
2265                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2266                    decodedcontroller.controller_number = 24;
2267                    break;
2268                case _lev_ctrl_CC25_EXT:
2269                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2270                    decodedcontroller.controller_number = 25;
2271                    break;
2272                case _lev_ctrl_CC26_EXT:
2273                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2274                    decodedcontroller.controller_number = 26;
2275                    break;
2276                case _lev_ctrl_CC27_EXT:
2277                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2278                    decodedcontroller.controller_number = 27;
2279                    break;
2280                case _lev_ctrl_CC28_EXT:
2281                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2282                    decodedcontroller.controller_number = 28;
2283                    break;
2284                case _lev_ctrl_CC29_EXT:
2285                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2286                    decodedcontroller.controller_number = 29;
2287                    break;
2288                case _lev_ctrl_CC30_EXT:
2289                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2290                    decodedcontroller.controller_number = 30;
2291                    break;
2292                case _lev_ctrl_CC31_EXT:
2293                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2294                    decodedcontroller.controller_number = 31;
2295                    break;
2296                case _lev_ctrl_CC68_EXT:
2297                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2298                    decodedcontroller.controller_number = 68;
2299                    break;
2300                case _lev_ctrl_CC69_EXT:
2301                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2302                    decodedcontroller.controller_number = 69;
2303                    break;
2304                case _lev_ctrl_CC70_EXT:
2305                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2306                    decodedcontroller.controller_number = 70;
2307                    break;
2308                case _lev_ctrl_CC71_EXT:
2309                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2310                    decodedcontroller.controller_number = 71;
2311                    break;
2312                case _lev_ctrl_CC72_EXT:
2313                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2314                    decodedcontroller.controller_number = 72;
2315                    break;
2316                case _lev_ctrl_CC73_EXT:
2317                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2318                    decodedcontroller.controller_number = 73;
2319                    break;
2320                case _lev_ctrl_CC74_EXT:
2321                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2322                    decodedcontroller.controller_number = 74;
2323                    break;
2324                case _lev_ctrl_CC75_EXT:
2325                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2326                    decodedcontroller.controller_number = 75;
2327                    break;
2328                case _lev_ctrl_CC76_EXT:
2329                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2330                    decodedcontroller.controller_number = 76;
2331                    break;
2332                case _lev_ctrl_CC77_EXT:
2333                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2334                    decodedcontroller.controller_number = 77;
2335                    break;
2336                case _lev_ctrl_CC78_EXT:
2337                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2338                    decodedcontroller.controller_number = 78;
2339                    break;
2340                case _lev_ctrl_CC79_EXT:
2341                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2342                    decodedcontroller.controller_number = 79;
2343                    break;
2344                case _lev_ctrl_CC84_EXT:
2345                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2346                    decodedcontroller.controller_number = 84;
2347                    break;
2348                case _lev_ctrl_CC85_EXT:
2349                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2350                    decodedcontroller.controller_number = 85;
2351                    break;
2352                case _lev_ctrl_CC86_EXT:
2353                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2354                    decodedcontroller.controller_number = 86;
2355                    break;
2356                case _lev_ctrl_CC87_EXT:
2357                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2358                    decodedcontroller.controller_number = 87;
2359                    break;
2360                case _lev_ctrl_CC89_EXT:
2361                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2362                    decodedcontroller.controller_number = 89;
2363                    break;
2364                case _lev_ctrl_CC90_EXT:
2365                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2366                    decodedcontroller.controller_number = 90;
2367                    break;
2368                case _lev_ctrl_CC96_EXT:
2369                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2370                    decodedcontroller.controller_number = 96;
2371                    break;
2372                case _lev_ctrl_CC97_EXT:
2373                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2374                    decodedcontroller.controller_number = 97;
2375                    break;
2376                case _lev_ctrl_CC102_EXT:
2377                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2378                    decodedcontroller.controller_number = 102;
2379                    break;
2380                case _lev_ctrl_CC103_EXT:
2381                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2382                    decodedcontroller.controller_number = 103;
2383                    break;
2384                case _lev_ctrl_CC104_EXT:
2385                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2386                    decodedcontroller.controller_number = 104;
2387                    break;
2388                case _lev_ctrl_CC105_EXT:
2389                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2390                    decodedcontroller.controller_number = 105;
2391                    break;
2392                case _lev_ctrl_CC106_EXT:
2393                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2394                    decodedcontroller.controller_number = 106;
2395                    break;
2396                case _lev_ctrl_CC107_EXT:
2397                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2398                    decodedcontroller.controller_number = 107;
2399                    break;
2400                case _lev_ctrl_CC108_EXT:
2401                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2402                    decodedcontroller.controller_number = 108;
2403                    break;
2404                case _lev_ctrl_CC109_EXT:
2405                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2406                    decodedcontroller.controller_number = 109;
2407                    break;
2408                case _lev_ctrl_CC110_EXT:
2409                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2410                    decodedcontroller.controller_number = 110;
2411                    break;
2412                case _lev_ctrl_CC111_EXT:
2413                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2414                    decodedcontroller.controller_number = 111;
2415                    break;
2416                case _lev_ctrl_CC112_EXT:
2417                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2418                    decodedcontroller.controller_number = 112;
2419                    break;
2420                case _lev_ctrl_CC113_EXT:
2421                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2422                    decodedcontroller.controller_number = 113;
2423                    break;
2424                case _lev_ctrl_CC114_EXT:
2425                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2426                    decodedcontroller.controller_number = 114;
2427                    break;
2428                case _lev_ctrl_CC115_EXT:
2429                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2430                    decodedcontroller.controller_number = 115;
2431                    break;
2432                case _lev_ctrl_CC116_EXT:
2433                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2434                    decodedcontroller.controller_number = 116;
2435                    break;
2436                case _lev_ctrl_CC117_EXT:
2437                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2438                    decodedcontroller.controller_number = 117;
2439                    break;
2440                case _lev_ctrl_CC118_EXT:
2441                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2442                    decodedcontroller.controller_number = 118;
2443                    break;
2444                case _lev_ctrl_CC119_EXT:
2445                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2446                    decodedcontroller.controller_number = 119;
2447                    break;
2448    
2449                // unknown controller type
2450                default:
2451                    throw gig::Exception("Unknown leverage controller type.");
2452            }
2453            return decodedcontroller;
2454        }
2455        
2456    // see above (diagnostic push not supported prior GCC 4.6)
2457    //#pragma GCC diagnostic pop
2458    
2459        DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2460            _lev_ctrl_t encodedcontroller;
2461            switch (DecodedController.type) {
2462                // special controller
2463                case leverage_ctrl_t::type_none:
2464                    encodedcontroller = _lev_ctrl_none;
2465                    break;
2466                case leverage_ctrl_t::type_velocity:
2467                    encodedcontroller = _lev_ctrl_velocity;
2468                    break;
2469                case leverage_ctrl_t::type_channelaftertouch:
2470                    encodedcontroller = _lev_ctrl_channelaftertouch;
2471                    break;
2472    
2473                // ordinary MIDI control change controller
2474                case leverage_ctrl_t::type_controlchange:
2475                    switch (DecodedController.controller_number) {
2476                        case 1:
2477                            encodedcontroller = _lev_ctrl_modwheel;
2478                            break;
2479                        case 2:
2480                            encodedcontroller = _lev_ctrl_breath;
2481                            break;
2482                        case 4:
2483                            encodedcontroller = _lev_ctrl_foot;
2484                            break;
2485                        case 12:
2486                            encodedcontroller = _lev_ctrl_effect1;
2487                            break;
2488                        case 13:
2489                            encodedcontroller = _lev_ctrl_effect2;
2490                            break;
2491                        case 16:
2492                            encodedcontroller = _lev_ctrl_genpurpose1;
2493                            break;
2494                        case 17:
2495                            encodedcontroller = _lev_ctrl_genpurpose2;
2496                            break;
2497                        case 18:
2498                            encodedcontroller = _lev_ctrl_genpurpose3;
2499                            break;
2500                        case 19:
2501                            encodedcontroller = _lev_ctrl_genpurpose4;
2502                            break;
2503                        case 5:
2504                            encodedcontroller = _lev_ctrl_portamentotime;
2505                            break;
2506                        case 64:
2507                            encodedcontroller = _lev_ctrl_sustainpedal;
2508                            break;
2509                        case 65:
2510                            encodedcontroller = _lev_ctrl_portamento;
2511                            break;
2512                        case 66:
2513                            encodedcontroller = _lev_ctrl_sostenutopedal;
2514                            break;
2515                        case 67:
2516                            encodedcontroller = _lev_ctrl_softpedal;
2517                            break;
2518                        case 80:
2519                            encodedcontroller = _lev_ctrl_genpurpose5;
2520                            break;
2521                        case 81:
2522                            encodedcontroller = _lev_ctrl_genpurpose6;
2523                            break;
2524                        case 82:
2525                            encodedcontroller = _lev_ctrl_genpurpose7;
2526                            break;
2527                        case 83:
2528                            encodedcontroller = _lev_ctrl_genpurpose8;
2529                            break;
2530                        case 91:
2531                            encodedcontroller = _lev_ctrl_effect1depth;
2532                            break;
2533                        case 92:
2534                            encodedcontroller = _lev_ctrl_effect2depth;
2535                            break;
2536                        case 93:
2537                            encodedcontroller = _lev_ctrl_effect3depth;
2538                            break;
2539                        case 94:
2540                            encodedcontroller = _lev_ctrl_effect4depth;
2541                            break;
2542                        case 95:
2543                            encodedcontroller = _lev_ctrl_effect5depth;
2544                            break;
2545    
2546                        // format extension (these controllers are so far only
2547                        // supported by LinuxSampler & gigedit) they will *NOT*
2548                        // work with Gigasampler/GigaStudio !
2549                        case 3:
2550                            encodedcontroller = _lev_ctrl_CC3_EXT;
2551                            break;
2552                        case 6:
2553                            encodedcontroller = _lev_ctrl_CC6_EXT;
2554                            break;
2555                        case 7:
2556                            encodedcontroller = _lev_ctrl_CC7_EXT;
2557                            break;
2558                        case 8:
2559                            encodedcontroller = _lev_ctrl_CC8_EXT;
2560                            break;
2561                        case 9:
2562                            encodedcontroller = _lev_ctrl_CC9_EXT;
2563                            break;
2564                        case 10:
2565                            encodedcontroller = _lev_ctrl_CC10_EXT;
2566                            break;
2567                        case 11:
2568                            encodedcontroller = _lev_ctrl_CC11_EXT;
2569                            break;
2570                        case 14:
2571                            encodedcontroller = _lev_ctrl_CC14_EXT;
2572                            break;
2573                        case 15:
2574                            encodedcontroller = _lev_ctrl_CC15_EXT;
2575                            break;
2576                        case 20:
2577                            encodedcontroller = _lev_ctrl_CC20_EXT;
2578                            break;
2579                        case 21:
2580                            encodedcontroller = _lev_ctrl_CC21_EXT;
2581                            break;
2582                        case 22:
2583                            encodedcontroller = _lev_ctrl_CC22_EXT;
2584                            break;
2585                        case 23:
2586                            encodedcontroller = _lev_ctrl_CC23_EXT;
2587                            break;
2588                        case 24:
2589                            encodedcontroller = _lev_ctrl_CC24_EXT;
2590                            break;
2591                        case 25:
2592                            encodedcontroller = _lev_ctrl_CC25_EXT;
2593                            break;
2594                        case 26:
2595                            encodedcontroller = _lev_ctrl_CC26_EXT;
2596                            break;
2597                        case 27:
2598                            encodedcontroller = _lev_ctrl_CC27_EXT;
2599                            break;
2600                        case 28:
2601                            encodedcontroller = _lev_ctrl_CC28_EXT;
2602                            break;
2603                        case 29:
2604                            encodedcontroller = _lev_ctrl_CC29_EXT;
2605                            break;
2606                        case 30:
2607                            encodedcontroller = _lev_ctrl_CC30_EXT;
2608                            break;
2609                        case 31:
2610                            encodedcontroller = _lev_ctrl_CC31_EXT;
2611                            break;
2612                        case 68:
2613                            encodedcontroller = _lev_ctrl_CC68_EXT;
2614                            break;
2615                        case 69:
2616                            encodedcontroller = _lev_ctrl_CC69_EXT;
2617                            break;
2618                        case 70:
2619                            encodedcontroller = _lev_ctrl_CC70_EXT;
2620                            break;
2621                        case 71:
2622                            encodedcontroller = _lev_ctrl_CC71_EXT;
2623                            break;
2624                        case 72:
2625                            encodedcontroller = _lev_ctrl_CC72_EXT;
2626                            break;
2627                        case 73:
2628                            encodedcontroller = _lev_ctrl_CC73_EXT;
2629                            break;
2630                        case 74:
2631                            encodedcontroller = _lev_ctrl_CC74_EXT;
2632                            break;
2633                        case 75:
2634                            encodedcontroller = _lev_ctrl_CC75_EXT;
2635                            break;
2636                        case 76:
2637                            encodedcontroller = _lev_ctrl_CC76_EXT;
2638                            break;
2639                        case 77:
2640                            encodedcontroller = _lev_ctrl_CC77_EXT;
2641                            break;
2642                        case 78:
2643                            encodedcontroller = _lev_ctrl_CC78_EXT;
2644                            break;
2645                        case 79:
2646                            encodedcontroller = _lev_ctrl_CC79_EXT;
2647                            break;
2648                        case 84:
2649                            encodedcontroller = _lev_ctrl_CC84_EXT;
2650                            break;
2651                        case 85:
2652                            encodedcontroller = _lev_ctrl_CC85_EXT;
2653                            break;
2654                        case 86:
2655                            encodedcontroller = _lev_ctrl_CC86_EXT;
2656                            break;
2657                        case 87:
2658                            encodedcontroller = _lev_ctrl_CC87_EXT;
2659                            break;
2660                        case 89:
2661                            encodedcontroller = _lev_ctrl_CC89_EXT;
2662                            break;
2663                        case 90:
2664                            encodedcontroller = _lev_ctrl_CC90_EXT;
2665                            break;
2666                        case 96:
2667                            encodedcontroller = _lev_ctrl_CC96_EXT;
2668                            break;
2669                        case 97:
2670                            encodedcontroller = _lev_ctrl_CC97_EXT;
2671                            break;
2672                        case 102:
2673                            encodedcontroller = _lev_ctrl_CC102_EXT;
2674                            break;
2675                        case 103:
2676                            encodedcontroller = _lev_ctrl_CC103_EXT;
2677                            break;
2678                        case 104:
2679                            encodedcontroller = _lev_ctrl_CC104_EXT;
2680                            break;
2681                        case 105:
2682                            encodedcontroller = _lev_ctrl_CC105_EXT;
2683                            break;
2684                        case 106:
2685                            encodedcontroller = _lev_ctrl_CC106_EXT;
2686                            break;
2687                        case 107:
2688                            encodedcontroller = _lev_ctrl_CC107_EXT;
2689                            break;
2690                        case 108:
2691                            encodedcontroller = _lev_ctrl_CC108_EXT;
2692                            break;
2693                        case 109:
2694                            encodedcontroller = _lev_ctrl_CC109_EXT;
2695                            break;
2696                        case 110:
2697                            encodedcontroller = _lev_ctrl_CC110_EXT;
2698                            break;
2699                        case 111:
2700                            encodedcontroller = _lev_ctrl_CC111_EXT;
2701                            break;
2702                        case 112:
2703                            encodedcontroller = _lev_ctrl_CC112_EXT;
2704                            break;
2705                        case 113:
2706                            encodedcontroller = _lev_ctrl_CC113_EXT;
2707                            break;
2708                        case 114:
2709                            encodedcontroller = _lev_ctrl_CC114_EXT;
2710                            break;
2711                        case 115:
2712                            encodedcontroller = _lev_ctrl_CC115_EXT;
2713                            break;
2714                        case 116:
2715                            encodedcontroller = _lev_ctrl_CC116_EXT;
2716                            break;
2717                        case 117:
2718                            encodedcontroller = _lev_ctrl_CC117_EXT;
2719                            break;
2720                        case 118:
2721                            encodedcontroller = _lev_ctrl_CC118_EXT;
2722                            break;
2723                        case 119:
2724                            encodedcontroller = _lev_ctrl_CC119_EXT;
2725                            break;
2726    
2727                        default:
2728                            throw gig::Exception("leverage controller number is not supported by the gig format");
2729                    }
2730                    break;
2731                default:
2732                    throw gig::Exception("Unknown leverage controller type.");
2733          }          }
2734            return encodedcontroller;
2735      }      }
2736    
2737      DimensionRegion::~DimensionRegion() {      DimensionRegion::~DimensionRegion() {
# Line 885  namespace gig { Line 2747  namespace gig {
2747              delete pVelocityTables;              delete pVelocityTables;
2748              pVelocityTables = NULL;              pVelocityTables = NULL;
2749          }          }
2750            if (VelocityTable) delete[] VelocityTable;
2751      }      }
2752    
2753      /**      /**
# Line 895  namespace gig { Line 2758  namespace gig {
2758       * triggered to get the volume with which the sample should be played       * triggered to get the volume with which the sample should be played
2759       * back.       * back.
2760       *       *
2761       * @param    MIDI velocity value of the triggered key (between 0 and 127)       * @param MIDIKeyVelocity  MIDI velocity value of the triggered key (between 0 and 127)
2762       * @returns  amplitude factor (between 0.0 and 1.0)       * @returns                amplitude factor (between 0.0 and 1.0)
2763       */       */
2764      double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {      double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
2765          return pVelocityAttenuationTable[MIDIKeyVelocity];          return pVelocityAttenuationTable[MIDIKeyVelocity];
2766      }      }
2767    
2768        double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2769            return pVelocityReleaseTable[MIDIKeyVelocity];
2770        }
2771    
2772        double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2773            return pVelocityCutoffTable[MIDIKeyVelocity];
2774        }
2775    
2776        /**
2777         * Updates the respective member variable and the lookup table / cache
2778         * that depends on this value.
2779         */
2780        void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
2781            pVelocityAttenuationTable =
2782                GetVelocityTable(
2783                    curve, VelocityResponseDepth, VelocityResponseCurveScaling
2784                );
2785            VelocityResponseCurve = curve;
2786        }
2787    
2788        /**
2789         * Updates the respective member variable and the lookup table / cache
2790         * that depends on this value.
2791         */
2792        void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
2793            pVelocityAttenuationTable =
2794                GetVelocityTable(
2795                    VelocityResponseCurve, depth, VelocityResponseCurveScaling
2796                );
2797            VelocityResponseDepth = depth;
2798        }
2799    
2800        /**
2801         * Updates the respective member variable and the lookup table / cache
2802         * that depends on this value.
2803         */
2804        void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
2805            pVelocityAttenuationTable =
2806                GetVelocityTable(
2807                    VelocityResponseCurve, VelocityResponseDepth, scaling
2808                );
2809            VelocityResponseCurveScaling = scaling;
2810        }
2811    
2812        /**
2813         * Updates the respective member variable and the lookup table / cache
2814         * that depends on this value.
2815         */
2816        void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
2817            pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
2818            ReleaseVelocityResponseCurve = curve;
2819        }
2820    
2821        /**
2822         * Updates the respective member variable and the lookup table / cache
2823         * that depends on this value.
2824         */
2825        void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
2826            pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
2827            ReleaseVelocityResponseDepth = depth;
2828        }
2829    
2830        /**
2831         * Updates the respective member variable and the lookup table / cache
2832         * that depends on this value.
2833         */
2834        void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
2835            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
2836            VCFCutoffController = controller;
2837        }
2838    
2839        /**
2840         * Updates the respective member variable and the lookup table / cache
2841         * that depends on this value.
2842         */
2843        void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
2844            pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
2845            VCFVelocityCurve = curve;
2846        }
2847    
2848        /**
2849         * Updates the respective member variable and the lookup table / cache
2850         * that depends on this value.
2851         */
2852        void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
2853            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
2854            VCFVelocityDynamicRange = range;
2855        }
2856    
2857        /**
2858         * Updates the respective member variable and the lookup table / cache
2859         * that depends on this value.
2860         */
2861        void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
2862            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
2863            VCFVelocityScale = scaling;
2864        }
2865    
2866        double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2867    
2868            // line-segment approximations of the 15 velocity curves
2869    
2870            // linear
2871            const int lin0[] = { 1, 1, 127, 127 };
2872            const int lin1[] = { 1, 21, 127, 127 };
2873            const int lin2[] = { 1, 45, 127, 127 };
2874            const int lin3[] = { 1, 74, 127, 127 };
2875            const int lin4[] = { 1, 127, 127, 127 };
2876    
2877            // non-linear
2878            const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2879            const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2880                                 127, 127 };
2881            const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2882                                 127, 127 };
2883            const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2884                                 127, 127 };
2885            const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2886    
2887            // special
2888            const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2889                                 113, 127, 127, 127 };
2890            const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2891                                 118, 127, 127, 127 };
2892            const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2893                                 85, 90, 91, 127, 127, 127 };
2894            const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2895                                 117, 127, 127, 127 };
2896            const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2897                                 127, 127 };
2898    
2899            // this is only used by the VCF velocity curve
2900            const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2901                                 91, 127, 127, 127 };
2902    
2903            const int* const curves[] = { non0, non1, non2, non3, non4,
2904                                          lin0, lin1, lin2, lin3, lin4,
2905                                          spe0, spe1, spe2, spe3, spe4, spe5 };
2906    
2907            double* const table = new double[128];
2908    
2909            const int* curve = curves[curveType * 5 + depth];
2910            const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2911    
2912            table[0] = 0;
2913            for (int x = 1 ; x < 128 ; x++) {
2914    
2915                if (x > curve[2]) curve += 2;
2916                double y = curve[1] + (x - curve[0]) *
2917                    (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2918                y = y / 127;
2919    
2920                // Scale up for s > 20, down for s < 20. When
2921                // down-scaling, the curve still ends at 1.0.
2922                if (s < 20 && y >= 0.5)
2923                    y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2924                else
2925                    y = y * (s / 20.0);
2926                if (y > 1) y = 1;
2927    
2928                table[x] = y;
2929            }
2930            return table;
2931        }
2932    
2933    
2934  // *************** Region ***************  // *************** Region ***************
# Line 910  namespace gig { Line 2937  namespace gig {
2937      Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {      Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2938          // Initialization          // Initialization
2939          Dimensions = 0;          Dimensions = 0;
2940          for (int i = 0; i < 32; i++) {          for (int i = 0; i < 256; i++) {
2941              pDimensionRegions[i] = NULL;              pDimensionRegions[i] = NULL;
2942          }          }
2943            Layers = 1;
2944            File* file = (File*) GetParent()->GetParent();
2945            int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
2946    
2947          // Actual Loading          // Actual Loading
2948    
2949            if (!file->GetAutoLoad()) return;
2950    
2951          LoadDimensionRegions(rgnList);          LoadDimensionRegions(rgnList);
2952    
2953          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
2954          if (_3lnk) {          if (_3lnk) {
2955              DimensionRegions = _3lnk->ReadUint32();              DimensionRegions = _3lnk->ReadUint32();
2956              for (int i = 0; i < 5; i++) {              for (int i = 0; i < dimensionBits; i++) {
2957                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
2958                  uint8_t     bits      = _3lnk->ReadUint8();                  uint8_t     bits      = _3lnk->ReadUint8();
2959                    _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
2960                    _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
2961                    uint8_t     zones     = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
2962                  if (dimension == dimension_none) { // inactive dimension                  if (dimension == dimension_none) { // inactive dimension
2963                      pDimensionDefinitions[i].dimension  = dimension_none;                      pDimensionDefinitions[i].dimension  = dimension_none;
2964                      pDimensionDefinitions[i].bits       = 0;                      pDimensionDefinitions[i].bits       = 0;
2965                      pDimensionDefinitions[i].zones      = 0;                      pDimensionDefinitions[i].zones      = 0;
2966                      pDimensionDefinitions[i].split_type = split_type_bit;                      pDimensionDefinitions[i].split_type = split_type_bit;
                     pDimensionDefinitions[i].ranges     = NULL;  
2967                      pDimensionDefinitions[i].zone_size  = 0;                      pDimensionDefinitions[i].zone_size  = 0;
2968                  }                  }
2969                  else { // active dimension                  else { // active dimension
2970                      pDimensionDefinitions[i].dimension = dimension;                      pDimensionDefinitions[i].dimension = dimension;
2971                      pDimensionDefinitions[i].bits      = bits;                      pDimensionDefinitions[i].bits      = bits;
2972                      pDimensionDefinitions[i].zones     = 0x01 << bits; // = pow(2,bits)                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)
2973                      pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||                      pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
2974                                                             dimension == dimension_samplechannel) ? split_type_bit                      pDimensionDefinitions[i].zone_size  = __resolveZoneSize(pDimensionDefinitions[i]);
                                                                                                  : split_type_normal;  
                     pDimensionDefinitions[i].ranges = NULL; // it's not possible to check velocity dimensions for custom defined ranges at this point  
                     pDimensionDefinitions[i].zone_size  =  
                         (pDimensionDefinitions[i].split_type == split_type_normal) ? 128 / pDimensionDefinitions[i].zones  
                                                                                    : 0;  
2975                      Dimensions++;                      Dimensions++;
2976    
2977                        // if this is a layer dimension, remember the amount of layers
2978                        if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
2979                  }                  }
2980                  _3lnk->SetPos(6, RIFF::stream_curpos); // jump forward to next dimension definition                  _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
2981              }              }
2982                for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
2983    
2984              // check velocity dimension (if there is one) for custom defined zone ranges              // if there's a velocity dimension and custom velocity zone splits are used,
2985              for (uint i = 0; i < Dimensions; i++) {              // update the VelocityTables in the dimension regions
2986                  dimension_def_t* pDimDef = pDimensionDefinitions + i;              UpdateVelocityTable();
2987                  if (pDimDef->dimension == dimension_velocity) {  
2988                      if (pDimensionRegions[0]->VelocityUpperLimit == 0) {              // jump to start of the wave pool indices (if not already there)
2989                          // no custom defined ranges              if (file->pVersion && file->pVersion->major == 3)
2990                          pDimDef->split_type = split_type_normal;                  _3lnk->SetPos(68); // version 3 has a different 3lnk structure
2991                          pDimDef->ranges     = NULL;              else
2992                      }                  _3lnk->SetPos(44);
2993                      else { // custom defined ranges  
2994                          pDimDef->split_type = split_type_customvelocity;              // load sample references (if auto loading is enabled)
2995                          pDimDef->ranges     = new range_t[pDimDef->zones];              if (file->GetAutoLoad()) {
2996                          unsigned int bits[5] = {0,0,0,0,0};                  for (uint i = 0; i < DimensionRegions; i++) {
2997                          int previousUpperLimit = -1;                      uint32_t wavepoolindex = _3lnk->ReadUint32();
2998                          for (int velocityZone = 0; velocityZone < pDimDef->zones; velocityZone++) {                      if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
                             bits[i] = velocityZone;  
                             DimensionRegion* pDimRegion = GetDimensionRegionByBit(bits[4],bits[3],bits[2],bits[1],bits[0]);  
   
                             pDimDef->ranges[velocityZone].low  = previousUpperLimit + 1;  
                             pDimDef->ranges[velocityZone].high = pDimRegion->VelocityUpperLimit;  
                             previousUpperLimit = pDimDef->ranges[velocityZone].high;  
                             // fill velocity table  
                             for (int i = pDimDef->ranges[velocityZone].low; i <= pDimDef->ranges[velocityZone].high; i++) {  
                                 VelocityTable[i] = velocityZone;  
                             }  
                         }  
                     }  
2999                  }                  }
3000                    GetSample(); // load global region sample reference
3001                }
3002            } else {
3003                DimensionRegions = 0;
3004                for (int i = 0 ; i < 8 ; i++) {
3005                    pDimensionDefinitions[i].dimension  = dimension_none;
3006                    pDimensionDefinitions[i].bits       = 0;
3007                    pDimensionDefinitions[i].zones      = 0;
3008              }              }
3009            }
3010    
3011              // load sample references          // make sure there is at least one dimension region
3012              _3lnk->SetPos(44); // jump to start of the wave pool indices (if not already there)          if (!DimensionRegions) {
3013              for (uint i = 0; i < DimensionRegions; i++) {              RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
3014                  uint32_t wavepoolindex = _3lnk->ReadUint32();              if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
3015                  pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);              RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
3016                pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
3017                DimensionRegions = 1;
3018            }
3019        }
3020    
3021        /**
3022         * Apply Region settings and all its DimensionRegions to the respective
3023         * RIFF chunks. You have to call File::Save() to make changes persistent.
3024         *
3025         * Usually there is absolutely no need to call this method explicitly.
3026         * It will be called automatically when File::Save() was called.
3027         *
3028         * @throws gig::Exception if samples cannot be dereferenced
3029         */
3030        void Region::UpdateChunks() {
3031            // in the gig format we don't care about the Region's sample reference
3032            // but we still have to provide some existing one to not corrupt the
3033            // file, so to avoid the latter we simply always assign the sample of
3034            // the first dimension region of this region
3035            pSample = pDimensionRegions[0]->pSample;
3036    
3037            // first update base class's chunks
3038            DLS::Region::UpdateChunks();
3039    
3040            // update dimension region's chunks
3041            for (int i = 0; i < DimensionRegions; i++) {
3042                pDimensionRegions[i]->UpdateChunks();
3043            }
3044    
3045            File* pFile = (File*) GetParent()->GetParent();
3046            bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
3047            const int iMaxDimensions =  version3 ? 8 : 5;
3048            const int iMaxDimensionRegions = version3 ? 256 : 32;
3049    
3050            // make sure '3lnk' chunk exists
3051            RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3052            if (!_3lnk) {
3053                const int _3lnkChunkSize = version3 ? 1092 : 172;
3054                _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3055                memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3056    
3057                // move 3prg to last position
3058                pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), 0);
3059            }
3060    
3061            // update dimension definitions in '3lnk' chunk
3062            uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3063            store32(&pData[0], DimensionRegions);
3064            int shift = 0;
3065            for (int i = 0; i < iMaxDimensions; i++) {
3066                pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3067                pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3068                pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3069                pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3070                pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3071                // next 3 bytes unknown, always zero?
3072    
3073                shift += pDimensionDefinitions[i].bits;
3074            }
3075    
3076            // update wave pool table in '3lnk' chunk
3077            const int iWavePoolOffset = version3 ? 68 : 44;
3078            for (uint i = 0; i < iMaxDimensionRegions; i++) {
3079                int iWaveIndex = -1;
3080                if (i < DimensionRegions) {
3081                    if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
3082                    File::SampleList::iterator iter = pFile->pSamples->begin();
3083                    File::SampleList::iterator end  = pFile->pSamples->end();
3084                    for (int index = 0; iter != end; ++iter, ++index) {
3085                        if (*iter == pDimensionRegions[i]->pSample) {
3086                            iWaveIndex = index;
3087                            break;
3088                        }
3089                    }
3090              }              }
3091                store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3092          }          }
         else throw gig::Exception("Mandatory <3lnk> chunk not found.");  
3093      }      }
3094    
3095      void Region::LoadDimensionRegions(RIFF::List* rgn) {      void Region::LoadDimensionRegions(RIFF::List* rgn) {
# Line 995  namespace gig { Line 3099  namespace gig {
3099              RIFF::List* _3ewl = _3prg->GetFirstSubList();              RIFF::List* _3ewl = _3prg->GetFirstSubList();
3100              while (_3ewl) {              while (_3ewl) {
3101                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3102                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3103                      dimensionRegionNr++;                      dimensionRegionNr++;
3104                  }                  }
3105                  _3ewl = _3prg->GetNextSubList();                  _3ewl = _3prg->GetNextSubList();
# Line 1004  namespace gig { Line 3108  namespace gig {
3108          }          }
3109      }      }
3110    
3111      Region::~Region() {      void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3112          for (uint i = 0; i < Dimensions; i++) {          // update KeyRange struct and make sure regions are in correct order
3113              if (pDimensionDefinitions[i].ranges) delete[] pDimensionDefinitions[i].ranges;          DLS::Region::SetKeyRange(Low, High);
3114            // update Region key table for fast lookup
3115            ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3116        }
3117    
3118        void Region::UpdateVelocityTable() {
3119            // get velocity dimension's index
3120            int veldim = -1;
3121            for (int i = 0 ; i < Dimensions ; i++) {
3122                if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
3123                    veldim = i;
3124                    break;
3125                }
3126            }
3127            if (veldim == -1) return;
3128    
3129            int step = 1;
3130            for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3131            int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
3132            int end = step * pDimensionDefinitions[veldim].zones;
3133    
3134            // loop through all dimension regions for all dimensions except the velocity dimension
3135            int dim[8] = { 0 };
3136            for (int i = 0 ; i < DimensionRegions ; i++) {
3137    
3138                if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3139                    pDimensionRegions[i]->VelocityUpperLimit) {
3140                    // create the velocity table
3141                    uint8_t* table = pDimensionRegions[i]->VelocityTable;
3142                    if (!table) {
3143                        table = new uint8_t[128];
3144                        pDimensionRegions[i]->VelocityTable = table;
3145                    }
3146                    int tableidx = 0;
3147                    int velocityZone = 0;
3148                    if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
3149                        for (int k = i ; k < end ; k += step) {
3150                            DimensionRegion *d = pDimensionRegions[k];
3151                            for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
3152                            velocityZone++;
3153                        }
3154                    } else { // gig2
3155                        for (int k = i ; k < end ; k += step) {
3156                            DimensionRegion *d = pDimensionRegions[k];
3157                            for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
3158                            velocityZone++;
3159                        }
3160                    }
3161                } else {
3162                    if (pDimensionRegions[i]->VelocityTable) {
3163                        delete[] pDimensionRegions[i]->VelocityTable;
3164                        pDimensionRegions[i]->VelocityTable = 0;
3165                    }
3166                }
3167    
3168                int j;
3169                int shift = 0;
3170                for (j = 0 ; j < Dimensions ; j++) {
3171                    if (j == veldim) i += skipveldim; // skip velocity dimension
3172                    else {
3173                        dim[j]++;
3174                        if (dim[j] < pDimensionDefinitions[j].zones) break;
3175                        else {
3176                            // skip unused dimension regions
3177                            dim[j] = 0;
3178                            i += ((1 << pDimensionDefinitions[j].bits) -
3179                                  pDimensionDefinitions[j].zones) << shift;
3180                        }
3181                    }
3182                    shift += pDimensionDefinitions[j].bits;
3183                }
3184                if (j == Dimensions) break;
3185            }
3186        }
3187    
3188        /** @brief Einstein would have dreamed of it - create a new dimension.
3189         *
3190         * Creates a new dimension with the dimension definition given by
3191         * \a pDimDef. The appropriate amount of DimensionRegions will be created.
3192         * There is a hard limit of dimensions and total amount of "bits" all
3193         * dimensions can have. This limit is dependant to what gig file format
3194         * version this file refers to. The gig v2 (and lower) format has a
3195         * dimension limit and total amount of bits limit of 5, whereas the gig v3
3196         * format has a limit of 8.
3197         *
3198         * @param pDimDef - defintion of the new dimension
3199         * @throws gig::Exception if dimension of the same type exists already
3200         * @throws gig::Exception if amount of dimensions or total amount of
3201         *                        dimension bits limit is violated
3202         */
3203        void Region::AddDimension(dimension_def_t* pDimDef) {
3204            // some initial sanity checks of the given dimension definition
3205            if (pDimDef->zones < 2)
3206                throw gig::Exception("Could not add new dimension, amount of requested zones must always be at least two");
3207            if (pDimDef->bits < 1)
3208                throw gig::Exception("Could not add new dimension, amount of requested requested zone bits must always be at least one");
3209            if (pDimDef->dimension == dimension_samplechannel) {
3210                if (pDimDef->zones != 2)
3211                    throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zones must always be 2 for this dimension type");
3212                if (pDimDef->bits != 1)
3213                    throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zone bits must always be 1 for this dimension type");
3214            }
3215    
3216            // check if max. amount of dimensions reached
3217            File* file = (File*) GetParent()->GetParent();
3218            const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
3219            if (Dimensions >= iMaxDimensions)
3220                throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
3221            // check if max. amount of dimension bits reached
3222            int iCurrentBits = 0;
3223            for (int i = 0; i < Dimensions; i++)
3224                iCurrentBits += pDimensionDefinitions[i].bits;
3225            if (iCurrentBits >= iMaxDimensions)
3226                throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
3227            const int iNewBits = iCurrentBits + pDimDef->bits;
3228            if (iNewBits > iMaxDimensions)
3229                throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
3230            // check if there's already a dimensions of the same type
3231            for (int i = 0; i < Dimensions; i++)
3232                if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3233                    throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3234    
3235            // pos is where the new dimension should be placed, normally
3236            // last in list, except for the samplechannel dimension which
3237            // has to be first in list
3238            int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3239            int bitpos = 0;
3240            for (int i = 0 ; i < pos ; i++)
3241                bitpos += pDimensionDefinitions[i].bits;
3242    
3243            // make room for the new dimension
3244            for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3245            for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3246                for (int j = Dimensions ; j > pos ; j--) {
3247                    pDimensionRegions[i]->DimensionUpperLimits[j] =
3248                        pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3249                }
3250            }
3251    
3252            // assign definition of new dimension
3253            pDimensionDefinitions[pos] = *pDimDef;
3254    
3255            // auto correct certain dimension definition fields (where possible)
3256            pDimensionDefinitions[pos].split_type  =
3257                __resolveSplitType(pDimensionDefinitions[pos].dimension);
3258            pDimensionDefinitions[pos].zone_size =
3259                __resolveZoneSize(pDimensionDefinitions[pos]);
3260    
3261            // create new dimension region(s) for this new dimension, and make
3262            // sure that the dimension regions are placed correctly in both the
3263            // RIFF list and the pDimensionRegions array
3264            RIFF::Chunk* moveTo = NULL;
3265            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3266            for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3267                for (int k = 0 ; k < (1 << bitpos) ; k++) {
3268                    pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3269                }
3270                for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3271                    for (int k = 0 ; k < (1 << bitpos) ; k++) {
3272                        RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3273                        if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3274                        // create a new dimension region and copy all parameter values from
3275                        // an existing dimension region
3276                        pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3277                            new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3278    
3279                        DimensionRegions++;
3280                    }
3281                }
3282                moveTo = pDimensionRegions[i]->pParentList;
3283            }
3284    
3285            // initialize the upper limits for this dimension
3286            int mask = (1 << bitpos) - 1;
3287            for (int z = 0 ; z < pDimDef->zones ; z++) {
3288                uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3289                for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3290                    pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3291                                      (z << bitpos) |
3292                                      (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3293                }
3294            }
3295    
3296            Dimensions++;
3297    
3298            // if this is a layer dimension, update 'Layers' attribute
3299            if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
3300    
3301            UpdateVelocityTable();
3302        }
3303    
3304        /** @brief Delete an existing dimension.
3305         *
3306         * Deletes the dimension given by \a pDimDef and deletes all respective
3307         * dimension regions, that is all dimension regions where the dimension's
3308         * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
3309         * for example this would delete all dimension regions for the case(s)
3310         * where the sustain pedal is pressed down.
3311         *
3312         * @param pDimDef - dimension to delete
3313         * @throws gig::Exception if given dimension cannot be found
3314         */
3315        void Region::DeleteDimension(dimension_def_t* pDimDef) {
3316            // get dimension's index
3317            int iDimensionNr = -1;
3318            for (int i = 0; i < Dimensions; i++) {
3319                if (&pDimensionDefinitions[i] == pDimDef) {
3320                    iDimensionNr = i;
3321                    break;
3322                }
3323            }
3324            if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
3325    
3326            // get amount of bits below the dimension to delete
3327            int iLowerBits = 0;
3328            for (int i = 0; i < iDimensionNr; i++)
3329                iLowerBits += pDimensionDefinitions[i].bits;
3330    
3331            // get amount ot bits above the dimension to delete
3332            int iUpperBits = 0;
3333            for (int i = iDimensionNr + 1; i < Dimensions; i++)
3334                iUpperBits += pDimensionDefinitions[i].bits;
3335    
3336            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3337    
3338            // delete dimension regions which belong to the given dimension
3339            // (that is where the dimension's bit > 0)
3340            for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
3341                for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
3342                    for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
3343                        int iToDelete = iUpperBit    << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3344                                        iObsoleteBit << iLowerBits |
3345                                        iLowerBit;
3346    
3347                        _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3348                        delete pDimensionRegions[iToDelete];
3349                        pDimensionRegions[iToDelete] = NULL;
3350                        DimensionRegions--;
3351                    }
3352                }
3353            }
3354    
3355            // defrag pDimensionRegions array
3356            // (that is remove the NULL spaces within the pDimensionRegions array)
3357            for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
3358                if (!pDimensionRegions[iTo]) {
3359                    if (iFrom <= iTo) iFrom = iTo + 1;
3360                    while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
3361                    if (iFrom < 256 && pDimensionRegions[iFrom]) {
3362                        pDimensionRegions[iTo]   = pDimensionRegions[iFrom];
3363                        pDimensionRegions[iFrom] = NULL;
3364                    }
3365                }
3366            }
3367    
3368            // remove the this dimension from the upper limits arrays
3369            for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3370                DimensionRegion* d = pDimensionRegions[j];
3371                for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3372                    d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3373                }
3374                d->DimensionUpperLimits[Dimensions - 1] = 127;
3375            }
3376    
3377            // 'remove' dimension definition
3378            for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3379                pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
3380          }          }
3381          for (int i = 0; i < 32; i++) {          pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
3382            pDimensionDefinitions[Dimensions - 1].bits      = 0;
3383            pDimensionDefinitions[Dimensions - 1].zones     = 0;
3384    
3385            Dimensions--;
3386    
3387            // if this was a layer dimension, update 'Layers' attribute
3388            if (pDimDef->dimension == dimension_layer) Layers = 1;
3389        }
3390    
3391        /**
3392         * Searches in the current Region for a dimension of the given dimension
3393         * type and returns the precise configuration of that dimension in this
3394         * Region.
3395         *
3396         * @param type - dimension type of the sought dimension
3397         * @returns dimension definition or NULL if there is no dimension with
3398         *          sought type in this Region.
3399         */
3400        dimension_def_t* Region::GetDimensionDefinition(dimension_t type) {
3401            for (int i = 0; i < Dimensions; ++i)
3402                if (pDimensionDefinitions[i].dimension == type)
3403                    return &pDimensionDefinitions[i];
3404            return NULL;
3405        }
3406    
3407        Region::~Region() {
3408            for (int i = 0; i < 256; i++) {
3409              if (pDimensionRegions[i]) delete pDimensionRegions[i];              if (pDimensionRegions[i]) delete pDimensionRegions[i];
3410          }          }
3411      }      }
# Line 1026  namespace gig { Line 3423  namespace gig {
3423       * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,       * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
3424       * etc.).       * etc.).
3425       *       *
3426       * @param  Dim4Val  MIDI controller value (0-127) for dimension 4       * @param  DimValues  MIDI controller values (0-127) for dimension 0 to 7
      * @param  Dim3Val  MIDI controller value (0-127) for dimension 3  
      * @param  Dim2Val  MIDI controller value (0-127) for dimension 2  
      * @param  Dim1Val  MIDI controller value (0-127) for dimension 1  
      * @param  Dim0Val  MIDI controller value (0-127) for dimension 0  
3427       * @returns         adress to the DimensionRegion for the given situation       * @returns         adress to the DimensionRegion for the given situation
3428       * @see             pDimensionDefinitions       * @see             pDimensionDefinitions
3429       * @see             Dimensions       * @see             Dimensions
3430       */       */
3431      DimensionRegion* Region::GetDimensionRegionByValue(uint Dim4Val, uint Dim3Val, uint Dim2Val, uint Dim1Val, uint Dim0Val) {      DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
3432          unsigned int bits[5] = {Dim0Val,Dim1Val,Dim2Val,Dim3Val,Dim4Val};          uint8_t bits;
3433            int veldim = -1;
3434            int velbitpos;
3435            int bitpos = 0;
3436            int dimregidx = 0;
3437          for (uint i = 0; i < Dimensions; i++) {          for (uint i = 0; i < Dimensions; i++) {
3438              switch (pDimensionDefinitions[i].split_type) {              if (pDimensionDefinitions[i].dimension == dimension_velocity) {
3439                  case split_type_normal:                  // the velocity dimension must be handled after the other dimensions
3440                      bits[i] /= pDimensionDefinitions[i].zone_size;                  veldim = i;
3441                      break;                  velbitpos = bitpos;
3442                  case split_type_customvelocity:              } else {
3443                      bits[i] = VelocityTable[bits[i]];                  switch (pDimensionDefinitions[i].split_type) {
3444                      break;                      case split_type_normal:
3445                  // else the value is already the sought dimension bit number                          if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
3446                                // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
3447                                for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
3448                                    if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
3449                                }
3450                            } else {
3451                                // gig2: evenly sized zones
3452                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
3453                            }
3454                            break;
3455                        case split_type_bit: // the value is already the sought dimension bit number
3456                            const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
3457                            bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
3458                            break;
3459                    }
3460                    dimregidx |= bits << bitpos;
3461              }              }
3462                bitpos += pDimensionDefinitions[i].bits;
3463          }          }
3464          return GetDimensionRegionByBit(bits[4],bits[3],bits[2],bits[1],bits[0]);          DimensionRegion* dimreg = pDimensionRegions[dimregidx];
3465            if (veldim != -1) {
3466                // (dimreg is now the dimension region for the lowest velocity)
3467                if (dimreg->VelocityTable) // custom defined zone ranges
3468                    bits = dimreg->VelocityTable[DimValues[veldim]];
3469                else // normal split type
3470                    bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size);
3471    
3472                dimregidx |= bits << velbitpos;
3473                dimreg = pDimensionRegions[dimregidx];
3474            }
3475            return dimreg;
3476      }      }
3477    
3478      /**      /**
# Line 1056  namespace gig { Line 3480  namespace gig {
3480       * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>       * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
3481       * instead of calling this method directly!       * instead of calling this method directly!
3482       *       *
3483       * @param Dim4Bit  Bit number for dimension 4       * @param DimBits  Bit numbers for dimension 0 to 7
      * @param Dim3Bit  Bit number for dimension 3  
      * @param Dim2Bit  Bit number for dimension 2  
      * @param Dim1Bit  Bit number for dimension 1  
      * @param Dim0Bit  Bit number for dimension 0  
3484       * @returns        adress to the DimensionRegion for the given dimension       * @returns        adress to the DimensionRegion for the given dimension
3485       *                 bit numbers       *                 bit numbers
3486       * @see            GetDimensionRegionByValue()       * @see            GetDimensionRegionByValue()
3487       */       */
3488      DimensionRegion* Region::GetDimensionRegionByBit(uint8_t Dim4Bit, uint8_t Dim3Bit, uint8_t Dim2Bit, uint8_t Dim1Bit, uint8_t Dim0Bit) {      DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
3489          return *(pDimensionRegions + ((((((((Dim4Bit << pDimensionDefinitions[3].bits) | Dim3Bit)          return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
3490                                                       << pDimensionDefinitions[2].bits) | Dim2Bit)                                                    << pDimensionDefinitions[5].bits | DimBits[5])
3491                                                       << pDimensionDefinitions[1].bits) | Dim1Bit)                                                    << pDimensionDefinitions[4].bits | DimBits[4])
3492                                                       << pDimensionDefinitions[0].bits) | Dim0Bit) );                                                    << pDimensionDefinitions[3].bits | DimBits[3])
3493                                                      << pDimensionDefinitions[2].bits | DimBits[2])
3494                                                      << pDimensionDefinitions[1].bits | DimBits[1])
3495                                                      << pDimensionDefinitions[0].bits | DimBits[0]];
3496      }      }
3497    
3498      /**      /**
# Line 1086  namespace gig { Line 3509  namespace gig {
3509          else         return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));          else         return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
3510      }      }
3511    
3512      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex) {      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
3513            if ((int32_t)WavePoolTableIndex == -1) return NULL;
3514          File* file = (File*) GetParent()->GetParent();          File* file = (File*) GetParent()->GetParent();
3515            if (!file->pWavePoolTable) return NULL;
3516          unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];          unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
3517          Sample* sample = file->GetFirstSample();          unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
3518            Sample* sample = file->GetFirstSample(pProgress);
3519          while (sample) {          while (sample) {
3520              if (sample->ulWavePoolOffset == soughtoffset) return static_cast<gig::Sample*>(pSample = sample);              if (sample->ulWavePoolOffset == soughtoffset &&
3521                    sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
3522              sample = file->GetNextSample();              sample = file->GetNextSample();
3523          }          }
3524          return NULL;          return NULL;
3525      }      }
3526        
3527        /**
3528         * Make a (semi) deep copy of the Region object given by @a orig
3529         * and assign it to this object.
3530         *
3531         * Note that all sample pointers referenced by @a orig are simply copied as
3532         * memory address. Thus the respective samples are shared, not duplicated!
3533         *
3534         * @param orig - original Region object to be copied from
3535         */
3536        void Region::CopyAssign(const Region* orig) {
3537            CopyAssign(orig, NULL);
3538        }
3539        
3540        /**
3541         * Make a (semi) deep copy of the Region object given by @a orig and
3542         * assign it to this object
3543         *
3544         * @param mSamples - crosslink map between the foreign file's samples and
3545         *                   this file's samples
3546         */
3547        void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
3548            // handle base classes
3549            DLS::Region::CopyAssign(orig);
3550            
3551            if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
3552                pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
3553            }
3554            
3555            // handle own member variables
3556            for (int i = Dimensions - 1; i >= 0; --i) {
3557                DeleteDimension(&pDimensionDefinitions[i]);
3558            }
3559            Layers = 0; // just to be sure
3560            for (int i = 0; i < orig->Dimensions; i++) {
3561                // we need to copy the dim definition here, to avoid the compiler
3562                // complaining about const-ness issue
3563                dimension_def_t def = orig->pDimensionDefinitions[i];
3564                AddDimension(&def);
3565            }
3566            for (int i = 0; i < 256; i++) {
3567                if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
3568                    pDimensionRegions[i]->CopyAssign(
3569                        orig->pDimensionRegions[i],
3570                        mSamples
3571                    );
3572                }
3573            }
3574            Layers = orig->Layers;
3575        }
3576    
3577    
3578    // *************** MidiRule ***************
3579    // *
3580    
3581        MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
3582            _3ewg->SetPos(36);
3583            Triggers = _3ewg->ReadUint8();
3584            _3ewg->SetPos(40);
3585            ControllerNumber = _3ewg->ReadUint8();
3586            _3ewg->SetPos(46);
3587            for (int i = 0 ; i < Triggers ; i++) {
3588                pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
3589                pTriggers[i].Descending = _3ewg->ReadUint8();
3590                pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
3591                pTriggers[i].Key = _3ewg->ReadUint8();
3592                pTriggers[i].NoteOff = _3ewg->ReadUint8();
3593                pTriggers[i].Velocity = _3ewg->ReadUint8();
3594                pTriggers[i].OverridePedal = _3ewg->ReadUint8();
3595                _3ewg->ReadUint8();
3596            }
3597        }
3598    
3599        MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
3600            ControllerNumber(0),
3601            Triggers(0) {
3602        }
3603    
3604        void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
3605            pData[32] = 4;
3606            pData[33] = 16;
3607            pData[36] = Triggers;
3608            pData[40] = ControllerNumber;
3609            for (int i = 0 ; i < Triggers ; i++) {
3610                pData[46 + i * 8] = pTriggers[i].TriggerPoint;
3611                pData[47 + i * 8] = pTriggers[i].Descending;
3612                pData[48 + i * 8] = pTriggers[i].VelSensitivity;
3613                pData[49 + i * 8] = pTriggers[i].Key;
3614                pData[50 + i * 8] = pTriggers[i].NoteOff;
3615                pData[51 + i * 8] = pTriggers[i].Velocity;
3616                pData[52 + i * 8] = pTriggers[i].OverridePedal;
3617            }
3618        }
3619    
3620        MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
3621            _3ewg->SetPos(36);
3622            LegatoSamples = _3ewg->ReadUint8(); // always 12
3623            _3ewg->SetPos(40);
3624            BypassUseController = _3ewg->ReadUint8();
3625            BypassKey = _3ewg->ReadUint8();
3626            BypassController = _3ewg->ReadUint8();
3627            ThresholdTime = _3ewg->ReadUint16();
3628            _3ewg->ReadInt16();
3629            ReleaseTime = _3ewg->ReadUint16();
3630            _3ewg->ReadInt16();
3631            KeyRange.low = _3ewg->ReadUint8();
3632            KeyRange.high = _3ewg->ReadUint8();
3633            _3ewg->SetPos(64);
3634            ReleaseTriggerKey = _3ewg->ReadUint8();
3635            AltSustain1Key = _3ewg->ReadUint8();
3636            AltSustain2Key = _3ewg->ReadUint8();
3637        }
3638    
3639        MidiRuleLegato::MidiRuleLegato() :
3640            LegatoSamples(12),
3641            BypassUseController(false),
3642            BypassKey(0),
3643            BypassController(1),
3644            ThresholdTime(20),
3645            ReleaseTime(20),
3646            ReleaseTriggerKey(0),
3647            AltSustain1Key(0),
3648            AltSustain2Key(0)
3649        {
3650            KeyRange.low = KeyRange.high = 0;
3651        }
3652    
3653        void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
3654            pData[32] = 0;
3655            pData[33] = 16;
3656            pData[36] = LegatoSamples;
3657            pData[40] = BypassUseController;
3658            pData[41] = BypassKey;
3659            pData[42] = BypassController;
3660            store16(&pData[43], ThresholdTime);
3661            store16(&pData[47], ReleaseTime);
3662            pData[51] = KeyRange.low;
3663            pData[52] = KeyRange.high;
3664            pData[64] = ReleaseTriggerKey;
3665            pData[65] = AltSustain1Key;
3666            pData[66] = AltSustain2Key;
3667        }
3668    
3669        MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
3670            _3ewg->SetPos(36);
3671            Articulations = _3ewg->ReadUint8();
3672            int flags = _3ewg->ReadUint8();
3673            Polyphonic = flags & 8;
3674            Chained = flags & 4;
3675            Selector = (flags & 2) ? selector_controller :
3676                (flags & 1) ? selector_key_switch : selector_none;
3677            Patterns = _3ewg->ReadUint8();
3678            _3ewg->ReadUint8(); // chosen row
3679            _3ewg->ReadUint8(); // unknown
3680            _3ewg->ReadUint8(); // unknown
3681            _3ewg->ReadUint8(); // unknown
3682            KeySwitchRange.low = _3ewg->ReadUint8();
3683            KeySwitchRange.high = _3ewg->ReadUint8();
3684            Controller = _3ewg->ReadUint8();
3685            PlayRange.low = _3ewg->ReadUint8();
3686            PlayRange.high = _3ewg->ReadUint8();
3687    
3688            int n = std::min(int(Articulations), 32);
3689            for (int i = 0 ; i < n ; i++) {
3690                _3ewg->ReadString(pArticulations[i], 32);
3691            }
3692            _3ewg->SetPos(1072);
3693            n = std::min(int(Patterns), 32);
3694            for (int i = 0 ; i < n ; i++) {
3695                _3ewg->ReadString(pPatterns[i].Name, 16);
3696                pPatterns[i].Size = _3ewg->ReadUint8();
3697                _3ewg->Read(&pPatterns[i][0], 1, 32);
3698            }
3699        }
3700    
3701        MidiRuleAlternator::MidiRuleAlternator() :
3702            Articulations(0),
3703            Patterns(0),
3704            Selector(selector_none),
3705            Controller(0),
3706            Polyphonic(false),
3707            Chained(false)
3708        {
3709            PlayRange.low = PlayRange.high = 0;
3710            KeySwitchRange.low = KeySwitchRange.high = 0;
3711        }
3712    
3713        void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
3714            pData[32] = 3;
3715            pData[33] = 16;
3716            pData[36] = Articulations;
3717            pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
3718                (Selector == selector_controller ? 2 :
3719                 (Selector == selector_key_switch ? 1 : 0));
3720            pData[38] = Patterns;
3721    
3722            pData[43] = KeySwitchRange.low;
3723            pData[44] = KeySwitchRange.high;
3724            pData[45] = Controller;
3725            pData[46] = PlayRange.low;
3726            pData[47] = PlayRange.high;
3727    
3728            char* str = reinterpret_cast<char*>(pData);
3729            int pos = 48;
3730            int n = std::min(int(Articulations), 32);
3731            for (int i = 0 ; i < n ; i++, pos += 32) {
3732                strncpy(&str[pos], pArticulations[i].c_str(), 32);
3733            }
3734    
3735            pos = 1072;
3736            n = std::min(int(Patterns), 32);
3737            for (int i = 0 ; i < n ; i++, pos += 49) {
3738                strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
3739                pData[pos + 16] = pPatterns[i].Size;
3740                memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
3741            }
3742        }
3743    
3744  // *************** Instrument ***************  // *************** Instrument ***************
3745  // *  // *
3746    
3747      Instrument::Instrument(File* pFile, RIFF::List* insList) : DLS::Instrument((DLS::File*)pFile, insList) {      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
3748            static const DLS::Info::string_length_t fixedStringLengths[] = {
3749                { CHUNK_ID_INAM, 64 },
3750                { CHUNK_ID_ISFT, 12 },
3751                { 0, 0 }
3752            };
3753            pInfo->SetFixedStringLengths(fixedStringLengths);
3754    
3755          // Initialization          // Initialization
3756          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
3757          RegionIndex = -1;          EffectSend = 0;
3758            Attenuation = 0;
3759            FineTune = 0;
3760            PitchbendRange = 0;
3761            PianoReleaseMode = false;
3762            DimensionKeyRange.low = 0;
3763            DimensionKeyRange.high = 0;
3764            pMidiRules = new MidiRule*[3];
3765            pMidiRules[0] = NULL;
3766    
3767          // Loading          // Loading
3768          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
# Line 1120  namespace gig { Line 3777  namespace gig {
3777                  PianoReleaseMode       = dimkeystart & 0x01;                  PianoReleaseMode       = dimkeystart & 0x01;
3778                  DimensionKeyRange.low  = dimkeystart >> 1;                  DimensionKeyRange.low  = dimkeystart >> 1;
3779                  DimensionKeyRange.high = _3ewg->ReadUint8();                  DimensionKeyRange.high = _3ewg->ReadUint8();
3780    
3781                    if (_3ewg->GetSize() > 32) {
3782                        // read MIDI rules
3783                        int i = 0;
3784                        _3ewg->SetPos(32);
3785                        uint8_t id1 = _3ewg->ReadUint8();
3786                        uint8_t id2 = _3ewg->ReadUint8();
3787    
3788                        if (id2 == 16) {
3789                            if (id1 == 4) {
3790                                pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
3791                            } else if (id1 == 0) {
3792                                pMidiRules[i++] = new MidiRuleLegato(_3ewg);
3793                            } else if (id1 == 3) {
3794                                pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
3795                            } else {
3796                                pMidiRules[i++] = new MidiRuleUnknown;
3797                            }
3798                        }
3799                        else if (id1 != 0 || id2 != 0) {
3800                            pMidiRules[i++] = new MidiRuleUnknown;
3801                        }
3802                        //TODO: all the other types of rules
3803    
3804                        pMidiRules[i] = NULL;
3805                    }
3806              }              }
             else throw gig::Exception("Mandatory <3ewg> chunk not found.");  
3807          }          }
         else throw gig::Exception("Mandatory <lart> list chunk not found.");  
3808    
3809          RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);          if (pFile->GetAutoLoad()) {
3810          if (!lrgn) throw gig::Exception("Mandatory chunks in <ins > chunk not found.");              if (!pRegions) pRegions = new RegionList;
3811          pRegions = new Region*[Regions];              RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
3812          RIFF::List* rgn = lrgn->GetFirstSubList();              if (lrgn) {
3813          unsigned int iRegion = 0;                  RIFF::List* rgn = lrgn->GetFirstSubList();
3814          while (rgn) {                  while (rgn) {
3815              if (rgn->GetListType() == LIST_TYPE_RGN) {                      if (rgn->GetListType() == LIST_TYPE_RGN) {
3816                  pRegions[iRegion] = new Region(this, rgn);                          __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
3817                  iRegion++;                          pRegions->push_back(new Region(this, rgn));
3818              }                      }
3819              rgn = lrgn->GetNextSubList();                      rgn = lrgn->GetNextSubList();
3820          }                  }
3821                    // Creating Region Key Table for fast lookup
3822          // Creating Region Key Table for fast lookup                  UpdateRegionKeyTable();
3823          for (uint iReg = 0; iReg < Regions; iReg++) {              }
3824              for (int iKey = pRegions[iReg]->KeyRange.low; iKey <= pRegions[iReg]->KeyRange.high; iKey++) {          }
3825                  RegionKeyTable[iKey] = pRegions[iReg];  
3826            __notify_progress(pProgress, 1.0f); // notify done
3827        }
3828    
3829        void Instrument::UpdateRegionKeyTable() {
3830            for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
3831            RegionList::iterator iter = pRegions->begin();
3832            RegionList::iterator end  = pRegions->end();
3833            for (; iter != end; ++iter) {
3834                gig::Region* pRegion = static_cast<gig::Region*>(*iter);
3835                for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
3836                    RegionKeyTable[iKey] = pRegion;
3837              }              }
3838          }          }
3839      }      }
3840    
3841      Instrument::~Instrument() {      Instrument::~Instrument() {
3842          for (uint i = 0; i < Regions; i++) {          for (int i = 0 ; pMidiRules[i] ; i++) {
3843              if (pRegions) {              delete pMidiRules[i];
3844                  if (pRegions[i]) delete (pRegions[i]);          }
3845            delete[] pMidiRules;
3846        }
3847    
3848        /**
3849         * Apply Instrument with all its Regions to the respective RIFF chunks.
3850         * You have to call File::Save() to make changes persistent.
3851         *
3852         * Usually there is absolutely no need to call this method explicitly.
3853         * It will be called automatically when File::Save() was called.
3854         *
3855         * @throws gig::Exception if samples cannot be dereferenced
3856         */
3857        void Instrument::UpdateChunks() {
3858            // first update base classes' chunks
3859            DLS::Instrument::UpdateChunks();
3860    
3861            // update Regions' chunks
3862            {
3863                RegionList::iterator iter = pRegions->begin();
3864                RegionList::iterator end  = pRegions->end();
3865                for (; iter != end; ++iter)
3866                    (*iter)->UpdateChunks();
3867            }
3868    
3869            // make sure 'lart' RIFF list chunk exists
3870            RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
3871            if (!lart)  lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
3872            // make sure '3ewg' RIFF chunk exists
3873            RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
3874            if (!_3ewg)  {
3875                File* pFile = (File*) GetParent();
3876    
3877                // 3ewg is bigger in gig3, as it includes the iMIDI rules
3878                int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
3879                _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
3880                memset(_3ewg->LoadChunkData(), 0, size);
3881            }
3882            // update '3ewg' RIFF chunk
3883            uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
3884            store16(&pData[0], EffectSend);
3885            store32(&pData[2], Attenuation);
3886            store16(&pData[6], FineTune);
3887            store16(&pData[8], PitchbendRange);
3888            const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
3889                                        DimensionKeyRange.low << 1;
3890            pData[10] = dimkeystart;
3891            pData[11] = DimensionKeyRange.high;
3892    
3893            if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
3894                pData[32] = 0;
3895                pData[33] = 0;
3896            } else {
3897                for (int i = 0 ; pMidiRules[i] ; i++) {
3898                    pMidiRules[i]->UpdateChunks(pData);
3899              }              }
             delete[] pRegions;  
3900          }          }
3901      }      }
3902    
# Line 1163  namespace gig { Line 3908  namespace gig {
3908       *             there is no Region defined for the given \a Key       *             there is no Region defined for the given \a Key
3909       */       */
3910      Region* Instrument::GetRegion(unsigned int Key) {      Region* Instrument::GetRegion(unsigned int Key) {
3911          if (!pRegions || Key > 127) return NULL;          if (!pRegions || pRegions->empty() || Key > 127) return NULL;
3912          return RegionKeyTable[Key];          return RegionKeyTable[Key];
3913    
3914          /*for (int i = 0; i < Regions; i++) {          /*for (int i = 0; i < Regions; i++) {
3915              if (Key <= pRegions[i]->KeyRange.high &&              if (Key <= pRegions[i]->KeyRange.high &&
3916                  Key >= pRegions[i]->KeyRange.low) return pRegions[i];                  Key >= pRegions[i]->KeyRange.low) return pRegions[i];
# Line 1180  namespace gig { Line 3926  namespace gig {
3926       * @see      GetNextRegion()       * @see      GetNextRegion()
3927       */       */
3928      Region* Instrument::GetFirstRegion() {      Region* Instrument::GetFirstRegion() {
3929          if (!Regions) return NULL;          if (!pRegions) return NULL;
3930          RegionIndex = 1;          RegionsIterator = pRegions->begin();
3931          return pRegions[0];          return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
3932      }      }
3933    
3934      /**      /**
# Line 1194  namespace gig { Line 3940  namespace gig {
3940       * @see      GetFirstRegion()       * @see      GetFirstRegion()
3941       */       */
3942      Region* Instrument::GetNextRegion() {      Region* Instrument::GetNextRegion() {
3943          if (RegionIndex < 0 || RegionIndex >= Regions) return NULL;          if (!pRegions) return NULL;
3944          return pRegions[RegionIndex++];          RegionsIterator++;
3945            return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
3946        }
3947    
3948        Region* Instrument::AddRegion() {
3949            // create new Region object (and its RIFF chunks)
3950            RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3951            if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3952            RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3953            Region* pNewRegion = new Region(this, rgn);
3954            pRegions->push_back(pNewRegion);
3955            Regions = pRegions->size();
3956            // update Region key table for fast lookup
3957            UpdateRegionKeyTable();
3958            // done
3959            return pNewRegion;
3960        }
3961    
3962        void Instrument::DeleteRegion(Region* pRegion) {
3963            if (!pRegions) return;
3964            DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
3965            // update Region key table for fast lookup
3966            UpdateRegionKeyTable();
3967        }
3968    
3969        /**
3970         * Returns a MIDI rule of the instrument.
3971         *
3972         * The list of MIDI rules, at least in gig v3, always contains at
3973         * most two rules. The second rule can only be the DEF filter
3974         * (which currently isn't supported by libgig).
3975         *
3976         * @param i - MIDI rule number
3977         * @returns   pointer address to MIDI rule number i or NULL if there is none
3978         */
3979        MidiRule* Instrument::GetMidiRule(int i) {
3980            return pMidiRules[i];
3981        }
3982    
3983        /**
3984         * Adds the "controller trigger" MIDI rule to the instrument.
3985         *
3986         * @returns the new MIDI rule
3987         */
3988        MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
3989            delete pMidiRules[0];
3990            MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
3991            pMidiRules[0] = r;
3992            pMidiRules[1] = 0;
3993            return r;
3994        }
3995    
3996        /**
3997         * Adds the legato MIDI rule to the instrument.
3998         *
3999         * @returns the new MIDI rule
4000         */
4001        MidiRuleLegato* Instrument::AddMidiRuleLegato() {
4002            delete pMidiRules[0];
4003            MidiRuleLegato* r = new MidiRuleLegato;
4004            pMidiRules[0] = r;
4005            pMidiRules[1] = 0;
4006            return r;
4007        }
4008    
4009        /**
4010         * Adds the alternator MIDI rule to the instrument.
4011         *
4012         * @returns the new MIDI rule
4013         */
4014        MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
4015            delete pMidiRules[0];
4016            MidiRuleAlternator* r = new MidiRuleAlternator;
4017            pMidiRules[0] = r;
4018            pMidiRules[1] = 0;
4019            return r;
4020        }
4021    
4022        /**
4023         * Deletes a MIDI rule from the instrument.
4024         *
4025         * @param i - MIDI rule number
4026         */
4027        void Instrument::DeleteMidiRule(int i) {
4028            delete pMidiRules[i];
4029            pMidiRules[i] = 0;
4030        }
4031    
4032        /**
4033         * Make a (semi) deep copy of the Instrument object given by @a orig
4034         * and assign it to this object.
4035         *
4036         * Note that all sample pointers referenced by @a orig are simply copied as
4037         * memory address. Thus the respective samples are shared, not duplicated!
4038         *
4039         * @param orig - original Instrument object to be copied from
4040         */
4041        void Instrument::CopyAssign(const Instrument* orig) {
4042            CopyAssign(orig, NULL);
4043        }
4044            
4045        /**
4046         * Make a (semi) deep copy of the Instrument object given by @a orig
4047         * and assign it to this object.
4048         *
4049         * @param orig - original Instrument object to be copied from
4050         * @param mSamples - crosslink map between the foreign file's samples and
4051         *                   this file's samples
4052         */
4053        void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
4054            // handle base class
4055            // (without copying DLS region stuff)
4056            DLS::Instrument::CopyAssignCore(orig);
4057            
4058            // handle own member variables
4059            Attenuation = orig->Attenuation;
4060            EffectSend = orig->EffectSend;
4061            FineTune = orig->FineTune;
4062            PitchbendRange = orig->PitchbendRange;
4063            PianoReleaseMode = orig->PianoReleaseMode;
4064            DimensionKeyRange = orig->DimensionKeyRange;
4065            
4066            // free old midi rules
4067            for (int i = 0 ; pMidiRules[i] ; i++) {
4068                delete pMidiRules[i];
4069            }
4070            //TODO: MIDI rule copying
4071            pMidiRules[0] = NULL;
4072            
4073            // delete all old regions
4074            while (Regions) DeleteRegion(GetFirstRegion());
4075            // create new regions and copy them from original
4076            {
4077                RegionList::const_iterator it = orig->pRegions->begin();
4078                for (int i = 0; i < orig->Regions; ++i, ++it) {
4079                    Region* dstRgn = AddRegion();
4080                    //NOTE: Region does semi-deep copy !
4081                    dstRgn->CopyAssign(
4082                        static_cast<gig::Region*>(*it),
4083                        mSamples
4084                    );
4085                }
4086            }
4087    
4088            UpdateRegionKeyTable();
4089        }
4090    
4091    
4092    // *************** Group ***************
4093    // *
4094    
4095        /** @brief Constructor.
4096         *
4097         * @param file   - pointer to the gig::File object
4098         * @param ck3gnm - pointer to 3gnm chunk associated with this group or
4099         *                 NULL if this is a new Group
4100         */
4101        Group::Group(File* file, RIFF::Chunk* ck3gnm) {
4102            pFile      = file;
4103            pNameChunk = ck3gnm;
4104            ::LoadString(pNameChunk, Name);
4105        }
4106    
4107        Group::~Group() {
4108            // remove the chunk associated with this group (if any)
4109            if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
4110        }
4111    
4112        /** @brief Update chunks with current group settings.
4113         *
4114         * Apply current Group field values to the respective chunks. You have
4115         * to call File::Save() to make changes persistent.
4116         *
4117         * Usually there is absolutely no need to call this method explicitly.
4118         * It will be called automatically when File::Save() was called.
4119         */
4120        void Group::UpdateChunks() {
4121            // make sure <3gri> and <3gnl> list chunks exist
4122            RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
4123            if (!_3gri) {
4124                _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
4125                pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
4126            }
4127            RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
4128            if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
4129    
4130            if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
4131                // v3 has a fixed list of 128 strings, find a free one
4132                for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
4133                    if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
4134                        pNameChunk = ck;
4135                        break;
4136                    }
4137                }
4138            }
4139    
4140            // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
4141            ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
4142        }
4143    
4144        /**
4145         * Returns the first Sample of this Group. You have to call this method
4146         * once before you use GetNextSample().
4147         *
4148         * <b>Notice:</b> this method might block for a long time, in case the
4149         * samples of this .gig file were not scanned yet
4150         *
4151         * @returns  pointer address to first Sample or NULL if there is none
4152         *           applied to this Group
4153         * @see      GetNextSample()
4154         */
4155        Sample* Group::GetFirstSample() {
4156            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
4157            for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
4158                if (pSample->GetGroup() == this) return pSample;
4159            }
4160            return NULL;
4161        }
4162    
4163        /**
4164         * Returns the next Sample of the Group. You have to call
4165         * GetFirstSample() once before you can use this method. By calling this
4166         * method multiple times it iterates through the Samples assigned to
4167         * this Group.
4168         *
4169         * @returns  pointer address to the next Sample of this Group or NULL if
4170         *           end reached
4171         * @see      GetFirstSample()
4172         */
4173        Sample* Group::GetNextSample() {
4174            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
4175            for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
4176                if (pSample->GetGroup() == this) return pSample;
4177            }
4178            return NULL;
4179        }
4180    
4181        /**
4182         * Move Sample given by \a pSample from another Group to this Group.
4183         */
4184        void Group::AddSample(Sample* pSample) {
4185            pSample->pGroup = this;
4186        }
4187    
4188        /**
4189         * Move all members of this group to another group (preferably the 1st
4190         * one except this). This method is called explicitly by
4191         * File::DeleteGroup() thus when a Group was deleted. This code was
4192         * intentionally not placed in the destructor!
4193         */
4194        void Group::MoveAll() {
4195            // get "that" other group first
4196            Group* pOtherGroup = NULL;
4197            for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
4198                if (pOtherGroup != this) break;
4199            }
4200            if (!pOtherGroup) throw Exception(
4201                "Could not move samples to another group, since there is no "
4202                "other Group. This is a bug, report it!"
4203            );
4204            // now move all samples of this group to the other group
4205            for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
4206                pOtherGroup->AddSample(pSample);
4207            }
4208      }      }
4209    
4210    
# Line 1203  namespace gig { Line 4212  namespace gig {
4212  // *************** File ***************  // *************** File ***************
4213  // *  // *
4214    
4215        /// Reflects Gigasampler file format version 2.0 (1998-06-28).
4216        const DLS::version_t File::VERSION_2 = {
4217            0, 2, 19980628 & 0xffff, 19980628 >> 16
4218        };
4219    
4220        /// Reflects Gigasampler file format version 3.0 (2003-03-31).
4221        const DLS::version_t File::VERSION_3 = {
4222            0, 3, 20030331 & 0xffff, 20030331 >> 16
4223        };
4224    
4225        static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
4226            { CHUNK_ID_IARL, 256 },
4227            { CHUNK_ID_IART, 128 },
4228            { CHUNK_ID_ICMS, 128 },
4229            { CHUNK_ID_ICMT, 1024 },
4230            { CHUNK_ID_ICOP, 128 },
4231            { CHUNK_ID_ICRD, 128 },
4232            { CHUNK_ID_IENG, 128 },
4233            { CHUNK_ID_IGNR, 128 },
4234            { CHUNK_ID_IKEY, 128 },
4235            { CHUNK_ID_IMED, 128 },
4236            { CHUNK_ID_INAM, 128 },
4237            { CHUNK_ID_IPRD, 128 },
4238            { CHUNK_ID_ISBJ, 128 },
4239            { CHUNK_ID_ISFT, 128 },
4240            { CHUNK_ID_ISRC, 128 },
4241            { CHUNK_ID_ISRF, 128 },
4242            { CHUNK_ID_ITCH, 128 },
4243            { 0, 0 }
4244        };
4245    
4246        File::File() : DLS::File() {
4247            bAutoLoad = true;
4248            *pVersion = VERSION_3;
4249            pGroups = NULL;
4250            pInfo->SetFixedStringLengths(_FileFixedStringLengths);
4251            pInfo->ArchivalLocation = String(256, ' ');
4252    
4253            // add some mandatory chunks to get the file chunks in right
4254            // order (INFO chunk will be moved to first position later)
4255            pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
4256            pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
4257            pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
4258    
4259            GenerateDLSID();
4260        }
4261    
4262      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
4263          pSamples     = NULL;          bAutoLoad = true;
4264          pInstruments = NULL;          pGroups = NULL;
4265            pInfo->SetFixedStringLengths(_FileFixedStringLengths);
4266      }      }
4267    
4268      Sample* File::GetFirstSample() {      File::~File() {
4269          if (!pSamples) LoadSamples();          if (pGroups) {
4270                std::list<Group*>::iterator iter = pGroups->begin();
4271                std::list<Group*>::iterator end  = pGroups->end();
4272                while (iter != end) {
4273                    delete *iter;
4274                    ++iter;
4275                }
4276                delete pGroups;
4277            }
4278        }
4279    
4280        Sample* File::GetFirstSample(progress_t* pProgress) {
4281            if (!pSamples) LoadSamples(pProgress);
4282          if (!pSamples) return NULL;          if (!pSamples) return NULL;
4283          SamplesIterator = pSamples->begin();          SamplesIterator = pSamples->begin();
4284          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
# Line 1220  namespace gig { Line 4289  namespace gig {
4289          SamplesIterator++;          SamplesIterator++;
4290          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
4291      }      }
4292        
4293        /**
4294         * Returns Sample object of @a index.
4295         *
4296         * @returns sample object or NULL if index is out of bounds
4297         */
4298        Sample* File::GetSample(uint index) {
4299            if (!pSamples) LoadSamples();
4300            if (!pSamples) return NULL;
4301            DLS::File::SampleList::iterator it = pSamples->begin();
4302            for (int i = 0; i < index; ++i) {
4303                ++it;
4304                if (it == pSamples->end()) return NULL;
4305            }
4306            if (it == pSamples->end()) return NULL;
4307            return static_cast<gig::Sample*>( *it );
4308        }
4309    
4310      void File::LoadSamples() {      /** @brief Add a new sample.
4311          RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);       *
4312          if (wvpl) {       * This will create a new Sample object for the gig file. You have to
4313              unsigned long wvplFileOffset = wvpl->GetFilePos();       * call Save() to make this persistent to the file.
4314              RIFF::List* wave = wvpl->GetFirstSubList();       *
4315              while (wave) {       * @returns pointer to new Sample object
4316                  if (wave->GetListType() == LIST_TYPE_WAVE) {       */
4317                      if (!pSamples) pSamples = new SampleList;      Sample* File::AddSample() {
4318                      unsigned long waveFileOffset = wave->GetFilePos();         if (!pSamples) LoadSamples();
4319                      pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset));         __ensureMandatoryChunksExist();
4320           RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
4321           // create new Sample object and its respective 'wave' list chunk
4322           RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
4323           Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
4324    
4325           // add mandatory chunks to get the chunks in right order
4326           wave->AddSubChunk(CHUNK_ID_FMT, 16);
4327           wave->AddSubList(LIST_TYPE_INFO);
4328    
4329           pSamples->push_back(pSample);
4330           return pSample;
4331        }
4332    
4333        /** @brief Delete a sample.
4334         *
4335         * This will delete the given Sample object from the gig file. Any
4336         * references to this sample from Regions and DimensionRegions will be
4337         * removed. You have to call Save() to make this persistent to the file.
4338         *
4339         * @param pSample - sample to delete
4340         * @throws gig::Exception if given sample could not be found
4341         */
4342        void File::DeleteSample(Sample* pSample) {
4343            if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
4344            SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
4345            if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
4346            if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
4347            pSamples->erase(iter);
4348            delete pSample;
4349    
4350            SampleList::iterator tmp = SamplesIterator;
4351            // remove all references to the sample
4352            for (Instrument* instrument = GetFirstInstrument() ; instrument ;
4353                 instrument = GetNextInstrument()) {
4354                for (Region* region = instrument->GetFirstRegion() ; region ;
4355                     region = instrument->GetNextRegion()) {
4356    
4357                    if (region->GetSample() == pSample) region->SetSample(NULL);
4358    
4359                    for (int i = 0 ; i < region->DimensionRegions ; i++) {
4360                        gig::DimensionRegion *d = region->pDimensionRegions[i];
4361                        if (d->pSample == pSample) d->pSample = NULL;
4362                  }                  }
                 wave = wvpl->GetNextSubList();  
4363              }              }
4364          }          }
4365          else throw gig::Exception("Mandatory <wvpl> chunk not found.");          SamplesIterator = tmp; // restore iterator
4366        }
4367    
4368        void File::LoadSamples() {
4369            LoadSamples(NULL);
4370        }
4371    
4372        void File::LoadSamples(progress_t* pProgress) {
4373            // Groups must be loaded before samples, because samples will try
4374            // to resolve the group they belong to
4375            if (!pGroups) LoadGroups();
4376    
4377            if (!pSamples) pSamples = new SampleList;
4378    
4379            RIFF::File* file = pRIFF;
4380    
4381            // just for progress calculation
4382            int iSampleIndex  = 0;
4383            int iTotalSamples = WavePoolCount;
4384    
4385            // check if samples should be loaded from extension files
4386            int lastFileNo = 0;
4387            for (int i = 0 ; i < WavePoolCount ; i++) {
4388                if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
4389            }
4390            String name(pRIFF->GetFileName());
4391            int nameLen = name.length();
4392            char suffix[6];
4393            if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
4394    
4395            for (int fileNo = 0 ; ; ) {
4396                RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
4397                if (wvpl) {
4398                    unsigned long wvplFileOffset = wvpl->GetFilePos();
4399                    RIFF::List* wave = wvpl->GetFirstSubList();
4400                    while (wave) {
4401                        if (wave->GetListType() == LIST_TYPE_WAVE) {
4402                            // notify current progress
4403                            const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
4404                            __notify_progress(pProgress, subprogress);
4405    
4406                            unsigned long waveFileOffset = wave->GetFilePos();
4407                            pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo));
4408    
4409                            iSampleIndex++;
4410                        }
4411                        wave = wvpl->GetNextSubList();
4412                    }
4413    
4414                    if (fileNo == lastFileNo) break;
4415    
4416                    // open extension file (*.gx01, *.gx02, ...)
4417                    fileNo++;
4418                    sprintf(suffix, ".gx%02d", fileNo);
4419                    name.replace(nameLen, 5, suffix);
4420                    file = new RIFF::File(name);
4421                    ExtensionFiles.push_back(file);
4422                } else break;
4423            }
4424    
4425            __notify_progress(pProgress, 1.0); // notify done
4426      }      }
4427    
4428      Instrument* File::GetFirstInstrument() {      Instrument* File::GetFirstInstrument() {
4429          if (!pInstruments) LoadInstruments();          if (!pInstruments) LoadInstruments();
4430          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
4431          InstrumentsIterator = pInstruments->begin();          InstrumentsIterator = pInstruments->begin();
4432          return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;          return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
4433      }      }
4434    
4435      Instrument* File::GetNextInstrument() {      Instrument* File::GetNextInstrument() {
4436          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
4437          InstrumentsIterator++;          InstrumentsIterator++;
4438          return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;          return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
4439      }      }
4440    
4441      /**      /**
4442       * Returns the instrument with the given index.       * Returns the instrument with the given index.
4443       *       *
4444         * @param index     - number of the sought instrument (0..n)
4445         * @param pProgress - optional: callback function for progress notification
4446       * @returns  sought instrument or NULL if there's no such instrument       * @returns  sought instrument or NULL if there's no such instrument
4447       */       */
4448      Instrument* File::GetInstrument(uint index) {      Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
4449          if (!pInstruments) LoadInstruments();          if (!pInstruments) {
4450                // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
4451    
4452                // sample loading subtask
4453                progress_t subprogress;
4454                __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
4455                __notify_progress(&subprogress, 0.0f);
4456                if (GetAutoLoad())
4457                    GetFirstSample(&subprogress); // now force all samples to be loaded
4458                __notify_progress(&subprogress, 1.0f);
4459    
4460                // instrument loading subtask
4461                if (pProgress && pProgress->callback) {
4462                    subprogress.__range_min = subprogress.__range_max;
4463                    subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
4464                }
4465                __notify_progress(&subprogress, 0.0f);
4466                LoadInstruments(&subprogress);
4467                __notify_progress(&subprogress, 1.0f);
4468            }
4469          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
4470          InstrumentsIterator = pInstruments->begin();          InstrumentsIterator = pInstruments->begin();
4471          for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {          for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
4472              if (i == index) return *InstrumentsIterator;              if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
4473              InstrumentsIterator++;              InstrumentsIterator++;
4474          }          }
4475          return NULL;          return NULL;
4476      }      }
4477    
4478        /** @brief Add a new instrument definition.
4479         *
4480         * This will create a new Instrument object for the gig file. You have
4481         * to call Save() to make this persistent to the file.
4482         *
4483         * @returns pointer to new Instrument object
4484         */
4485        Instrument* File::AddInstrument() {
4486           if (!pInstruments) LoadInstruments();
4487           __ensureMandatoryChunksExist();
4488           RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
4489           RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
4490    
4491           // add mandatory chunks to get the chunks in right order
4492           lstInstr->AddSubList(LIST_TYPE_INFO);
4493           lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
4494    
4495           Instrument* pInstrument = new Instrument(this, lstInstr);
4496           pInstrument->GenerateDLSID();
4497    
4498           lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
4499    
4500           // this string is needed for the gig to be loadable in GSt:
4501           pInstrument->pInfo->Software = "Endless Wave";
4502    
4503           pInstruments->push_back(pInstrument);
4504           return pInstrument;
4505        }
4506        
4507        /** @brief Add a duplicate of an existing instrument.
4508         *
4509         * Duplicates the instrument definition given by @a orig and adds it
4510         * to this file. This allows in an instrument editor application to
4511         * easily create variations of an instrument, which will be stored in
4512         * the same .gig file, sharing i.e. the same samples.
4513         *
4514         * Note that all sample pointers referenced by @a orig are simply copied as
4515         * memory address. Thus the respective samples are shared, not duplicated!
4516         *
4517         * You have to call Save() to make this persistent to the file.
4518         *
4519         * @param orig - original instrument to be copied
4520         * @returns duplicated copy of the given instrument
4521         */
4522        Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
4523            Instrument* instr = AddInstrument();
4524            instr->CopyAssign(orig);
4525            return instr;
4526        }
4527        
4528        /** @brief Add content of another existing file.
4529         *
4530         * Duplicates the samples, groups and instruments of the original file
4531         * given by @a pFile and adds them to @c this File. In case @c this File is
4532         * a new one that you haven't saved before, then you have to call
4533         * SetFileName() before calling AddContentOf(), because this method will
4534         * automatically save this file during operation, which is required for
4535         * writing the sample waveform data by disk streaming.
4536         *
4537         * @param pFile - original file whose's content shall be copied from
4538         */
4539        void File::AddContentOf(File* pFile) {
4540            static int iCallCount = -1;
4541            iCallCount++;
4542            std::map<Group*,Group*> mGroups;
4543            std::map<Sample*,Sample*> mSamples;
4544            
4545            // clone sample groups
4546            for (int i = 0; pFile->GetGroup(i); ++i) {
4547                Group* g = AddGroup();
4548                g->Name =
4549                    "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
4550                mGroups[pFile->GetGroup(i)] = g;
4551            }
4552            
4553            // clone samples (not waveform data here yet)
4554            for (int i = 0; pFile->GetSample(i); ++i) {
4555                Sample* s = AddSample();
4556                s->CopyAssignMeta(pFile->GetSample(i));
4557                mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
4558                mSamples[pFile->GetSample(i)] = s;
4559            }
4560            
4561            //BUG: For some reason this method only works with this additional
4562            //     Save() call in between here.
4563            //
4564            // Important: The correct one of the 2 Save() methods has to be called
4565            // here, depending on whether the file is completely new or has been
4566            // saved to disk already, otherwise it will result in data corruption.
4567            if (pRIFF->IsNew())
4568                Save(GetFileName());
4569            else
4570                Save();
4571            
4572            // clone instruments
4573            // (passing the crosslink table here for the cloned samples)
4574            for (int i = 0; pFile->GetInstrument(i); ++i) {
4575                Instrument* instr = AddInstrument();
4576                instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
4577            }
4578            
4579            // Mandatory: file needs to be saved to disk at this point, so this
4580            // file has the correct size and data layout for writing the samples'
4581            // waveform data to disk.
4582            Save();
4583            
4584            // clone samples' waveform data
4585            // (using direct read & write disk streaming)
4586            for (int i = 0; pFile->GetSample(i); ++i) {
4587                mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
4588            }
4589        }
4590    
4591        /** @brief Delete an instrument.
4592         *
4593         * This will delete the given Instrument object from the gig file. You
4594         * have to call Save() to make this persistent to the file.
4595         *
4596         * @param pInstrument - instrument to delete
4597         * @throws gig::Exception if given instrument could not be found
4598         */
4599        void File::DeleteInstrument(Instrument* pInstrument) {
4600            if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
4601            InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
4602            if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
4603            pInstruments->erase(iter);
4604            delete pInstrument;
4605        }
4606    
4607      void File::LoadInstruments() {      void File::LoadInstruments() {
4608            LoadInstruments(NULL);
4609        }
4610    
4611        void File::LoadInstruments(progress_t* pProgress) {
4612            if (!pInstruments) pInstruments = new InstrumentList;
4613          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
4614          if (lstInstruments) {          if (lstInstruments) {
4615                int iInstrumentIndex = 0;
4616              RIFF::List* lstInstr = lstInstruments->GetFirstSubList();              RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
4617              while (lstInstr) {              while (lstInstr) {
4618                  if (lstInstr->GetListType() == LIST_TYPE_INS) {                  if (lstInstr->GetListType() == LIST_TYPE_INS) {
4619                      if (!pInstruments) pInstruments = new InstrumentList;                      // notify current progress
4620                      pInstruments->push_back(new Instrument(this, lstInstr));                      const float localProgress = (float) iInstrumentIndex / (float) Instruments;
4621                        __notify_progress(pProgress, localProgress);
4622    
4623                        // divide local progress into subprogress for loading current Instrument
4624                        progress_t subprogress;
4625                        __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
4626    
4627                        pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
4628    
4629                        iInstrumentIndex++;
4630                  }                  }
4631                  lstInstr = lstInstruments->GetNextSubList();                  lstInstr = lstInstruments->GetNextSubList();
4632              }              }
4633                __notify_progress(pProgress, 1.0); // notify done
4634          }          }
4635          else throw gig::Exception("Mandatory <lins> list chunk not found.");      }
4636    
4637        /// Updates the 3crc chunk with the checksum of a sample. The
4638        /// update is done directly to disk, as this method is called
4639        /// after File::Save()
4640        void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
4641            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
4642            if (!_3crc) return;
4643    
4644            // get the index of the sample
4645            int iWaveIndex = -1;
4646            File::SampleList::iterator iter = pSamples->begin();
4647            File::SampleList::iterator end  = pSamples->end();
4648            for (int index = 0; iter != end; ++iter, ++index) {
4649                if (*iter == pSample) {
4650                    iWaveIndex = index;
4651                    break;
4652                }
4653            }
4654            if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
4655    
4656            // write the CRC-32 checksum to disk
4657            _3crc->SetPos(iWaveIndex * 8);
4658            uint32_t tmp = 1;
4659            _3crc->WriteUint32(&tmp); // unknown, always 1?
4660            _3crc->WriteUint32(&crc);
4661        }
4662    
4663        Group* File::GetFirstGroup() {
4664            if (!pGroups) LoadGroups();
4665            // there must always be at least one group
4666            GroupsIterator = pGroups->begin();
4667            return *GroupsIterator;
4668        }
4669    
4670        Group* File::GetNextGroup() {
4671            if (!pGroups) return NULL;
4672            ++GroupsIterator;
4673            return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
4674        }
4675    
4676        /**
4677         * Returns the group with the given index.
4678         *
4679         * @param index - number of the sought group (0..n)
4680         * @returns sought group or NULL if there's no such group
4681         */
4682        Group* File::GetGroup(uint index) {
4683            if (!pGroups) LoadGroups();
4684            GroupsIterator = pGroups->begin();
4685            for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
4686                if (i == index) return *GroupsIterator;
4687                ++GroupsIterator;
4688            }
4689            return NULL;
4690        }
4691    
4692        /**
4693         * Returns the group with the given group name.
4694         *
4695         * Note: group names don't have to be unique in the gig format! So there
4696         * can be multiple groups with the same name. This method will simply
4697         * return the first group found with the given name.
4698         *
4699         * @param name - name of the sought group
4700         * @returns sought group or NULL if there's no group with that name
4701         */
4702        Group* File::GetGroup(String name) {
4703            if (!pGroups) LoadGroups();
4704            GroupsIterator = pGroups->begin();
4705            for (uint i = 0; GroupsIterator != pGroups->end(); ++GroupsIterator, ++i)
4706                if ((*GroupsIterator)->Name == name) return *GroupsIterator;
4707            return NULL;
4708        }
4709    
4710        Group* File::AddGroup() {
4711            if (!pGroups) LoadGroups();
4712            // there must always be at least one group
4713            __ensureMandatoryChunksExist();
4714            Group* pGroup = new Group(this, NULL);
4715            pGroups->push_back(pGroup);
4716            return pGroup;
4717        }
4718    
4719        /** @brief Delete a group and its samples.
4720         *
4721         * This will delete the given Group object and all the samples that
4722         * belong to this group from the gig file. You have to call Save() to
4723         * make this persistent to the file.
4724         *
4725         * @param pGroup - group to delete
4726         * @throws gig::Exception if given group could not be found
4727         */
4728        void File::DeleteGroup(Group* pGroup) {
4729            if (!pGroups) LoadGroups();
4730            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
4731            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
4732            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
4733            // delete all members of this group
4734            for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
4735                DeleteSample(pSample);
4736            }
4737            // now delete this group object
4738            pGroups->erase(iter);
4739            delete pGroup;
4740        }
4741    
4742        /** @brief Delete a group.
4743         *
4744         * This will delete the given Group object from the gig file. All the
4745         * samples that belong to this group will not be deleted, but instead
4746         * be moved to another group. You have to call Save() to make this
4747         * persistent to the file.
4748         *
4749         * @param pGroup - group to delete
4750         * @throws gig::Exception if given group could not be found
4751         */
4752        void File::DeleteGroupOnly(Group* pGroup) {
4753            if (!pGroups) LoadGroups();
4754            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
4755            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
4756            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
4757            // move all members of this group to another group
4758            pGroup->MoveAll();
4759            pGroups->erase(iter);
4760            delete pGroup;
4761        }
4762    
4763        void File::LoadGroups() {
4764            if (!pGroups) pGroups = new std::list<Group*>;
4765            // try to read defined groups from file
4766            RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
4767            if (lst3gri) {
4768                RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
4769                if (lst3gnl) {
4770                    RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
4771                    while (ck) {
4772                        if (ck->GetChunkID() == CHUNK_ID_3GNM) {
4773                            if (pVersion && pVersion->major == 3 &&
4774                                strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
4775    
4776                            pGroups->push_back(new Group(this, ck));
4777                        }
4778                        ck = lst3gnl->GetNextSubChunk();
4779                    }
4780                }
4781            }
4782            // if there were no group(s), create at least the mandatory default group
4783            if (!pGroups->size()) {
4784                Group* pGroup = new Group(this, NULL);
4785                pGroup->Name = "Default Group";
4786                pGroups->push_back(pGroup);
4787            }
4788        }
4789    
4790        /**
4791         * Apply all the gig file's current instruments, samples, groups and settings
4792         * to the respective RIFF chunks. You have to call Save() to make changes
4793         * persistent.
4794         *
4795         * Usually there is absolutely no need to call this method explicitly.
4796         * It will be called automatically when File::Save() was called.
4797         *
4798         * @throws Exception - on errors
4799         */
4800        void File::UpdateChunks() {
4801            bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
4802    
4803            b64BitWavePoolOffsets = pVersion && pVersion->major == 3;
4804    
4805            // first update base class's chunks
4806            DLS::File::UpdateChunks();
4807    
4808            if (newFile) {
4809                // INFO was added by Resource::UpdateChunks - make sure it
4810                // is placed first in file
4811                RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
4812                RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
4813                if (first != info) {
4814                    pRIFF->MoveSubChunk(info, first);
4815                }
4816            }
4817    
4818            // update group's chunks
4819            if (pGroups) {
4820                // make sure '3gri' and '3gnl' list chunks exist
4821                // (before updating the Group chunks)
4822                RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
4823                if (!_3gri) {
4824                    _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
4825                    pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
4826                }
4827                RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
4828                if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
4829    
4830                // v3: make sure the file has 128 3gnm chunks
4831                // (before updating the Group chunks)
4832                if (pVersion && pVersion->major == 3) {
4833                    RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
4834                    for (int i = 0 ; i < 128 ; i++) {
4835                        if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
4836                        if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
4837                    }
4838                }
4839    
4840                std::list<Group*>::iterator iter = pGroups->begin();
4841                std::list<Group*>::iterator end  = pGroups->end();
4842                for (; iter != end; ++iter) {
4843                    (*iter)->UpdateChunks();
4844                }
4845            }
4846    
4847            // update einf chunk
4848    
4849            // The einf chunk contains statistics about the gig file, such
4850            // as the number of regions and samples used by each
4851            // instrument. It is divided in equally sized parts, where the
4852            // first part contains information about the whole gig file,
4853            // and the rest of the parts map to each instrument in the
4854            // file.
4855            //
4856            // At the end of each part there is a bit map of each sample
4857            // in the file, where a set bit means that the sample is used
4858            // by the file/instrument.
4859            //
4860            // Note that there are several fields with unknown use. These
4861            // are set to zero.
4862    
4863            int sublen = pSamples->size() / 8 + 49;
4864            int einfSize = (Instruments + 1) * sublen;
4865    
4866            RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
4867            if (einf) {
4868                if (einf->GetSize() != einfSize) {
4869                    einf->Resize(einfSize);
4870                    memset(einf->LoadChunkData(), 0, einfSize);
4871                }
4872            } else if (newFile) {
4873                einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
4874            }
4875            if (einf) {
4876                uint8_t* pData = (uint8_t*) einf->LoadChunkData();
4877    
4878                std::map<gig::Sample*,int> sampleMap;
4879                int sampleIdx = 0;
4880                for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
4881                    sampleMap[pSample] = sampleIdx++;
4882                }
4883    
4884                int totnbusedsamples = 0;
4885                int totnbusedchannels = 0;
4886                int totnbregions = 0;
4887                int totnbdimregions = 0;
4888                int totnbloops = 0;
4889                int instrumentIdx = 0;
4890    
4891                memset(&pData[48], 0, sublen - 48);
4892    
4893                for (Instrument* instrument = GetFirstInstrument() ; instrument ;
4894                     instrument = GetNextInstrument()) {
4895                    int nbusedsamples = 0;
4896                    int nbusedchannels = 0;
4897                    int nbdimregions = 0;
4898                    int nbloops = 0;
4899    
4900                    memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
4901    
4902                    for (Region* region = instrument->GetFirstRegion() ; region ;
4903                         region = instrument->GetNextRegion()) {
4904                        for (int i = 0 ; i < region->DimensionRegions ; i++) {
4905                            gig::DimensionRegion *d = region->pDimensionRegions[i];
4906                            if (d->pSample) {
4907                                int sampleIdx = sampleMap[d->pSample];
4908                                int byte = 48 + sampleIdx / 8;
4909                                int bit = 1 << (sampleIdx & 7);
4910                                if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
4911                                    pData[(instrumentIdx + 1) * sublen + byte] |= bit;
4912                                    nbusedsamples++;
4913                                    nbusedchannels += d->pSample->Channels;
4914    
4915                                    if ((pData[byte] & bit) == 0) {
4916                                        pData[byte] |= bit;
4917                                        totnbusedsamples++;
4918                                        totnbusedchannels += d->pSample->Channels;
4919                                    }
4920                                }
4921                            }
4922                            if (d->SampleLoops) nbloops++;
4923                        }
4924                        nbdimregions += region->DimensionRegions;
4925                    }
4926                    // first 4 bytes unknown - sometimes 0, sometimes length of einf part
4927                    // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
4928                    store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
4929                    store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
4930                    store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
4931                    store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
4932                    store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
4933                    store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
4934                    // next 8 bytes unknown
4935                    store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
4936                    store32(&pData[(instrumentIdx + 1) * sublen + 40], pSamples->size());
4937                    // next 4 bytes unknown
4938    
4939                    totnbregions += instrument->Regions;
4940                    totnbdimregions += nbdimregions;
4941                    totnbloops += nbloops;
4942                    instrumentIdx++;
4943                }
4944                // first 4 bytes unknown - sometimes 0, sometimes length of einf part
4945                // store32(&pData[0], sublen);
4946                store32(&pData[4], totnbusedchannels);
4947                store32(&pData[8], totnbusedsamples);
4948                store32(&pData[12], Instruments);
4949                store32(&pData[16], totnbregions);
4950                store32(&pData[20], totnbdimregions);
4951                store32(&pData[24], totnbloops);
4952                // next 8 bytes unknown
4953                // next 4 bytes unknown, not always 0
4954                store32(&pData[40], pSamples->size());
4955                // next 4 bytes unknown
4956            }
4957    
4958            // update 3crc chunk
4959    
4960            // The 3crc chunk contains CRC-32 checksums for the
4961            // samples. The actual checksum values will be filled in
4962            // later, by Sample::Write.
4963    
4964            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
4965            if (_3crc) {
4966                _3crc->Resize(pSamples->size() * 8);
4967            } else if (newFile) {
4968                _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
4969                _3crc->LoadChunkData();
4970    
4971                // the order of einf and 3crc is not the same in v2 and v3
4972                if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
4973            }
4974        }
4975    
4976        /**
4977         * Enable / disable automatic loading. By default this properyt is
4978         * enabled and all informations are loaded automatically. However
4979         * loading all Regions, DimensionRegions and especially samples might
4980         * take a long time for large .gig files, and sometimes one might only
4981         * be interested in retrieving very superficial informations like the
4982         * amount of instruments and their names. In this case one might disable
4983         * automatic loading to avoid very slow response times.
4984         *
4985         * @e CAUTION: by disabling this property many pointers (i.e. sample
4986         * references) and informations will have invalid or even undefined
4987         * data! This feature is currently only intended for retrieving very
4988         * superficial informations in a very fast way. Don't use it to retrieve
4989         * details like synthesis informations or even to modify .gig files!
4990         */
4991        void File::SetAutoLoad(bool b) {
4992            bAutoLoad = b;
4993        }
4994    
4995        /**
4996         * Returns whether automatic loading is enabled.
4997         * @see SetAutoLoad()
4998         */
4999        bool File::GetAutoLoad() {
5000            return bAutoLoad;
5001      }      }
5002    
5003    
# Line 1294  namespace gig { Line 5012  namespace gig {
5012          std::cout << "gig::Exception: " << Message << std::endl;          std::cout << "gig::Exception: " << Message << std::endl;
5013      }      }
5014    
5015    
5016    // *************** functions ***************
5017    // *
5018    
5019        /**
5020         * Returns the name of this C++ library. This is usually "libgig" of
5021         * course. This call is equivalent to RIFF::libraryName() and
5022         * DLS::libraryName().
5023         */
5024        String libraryName() {
5025            return PACKAGE;
5026        }
5027    
5028        /**
5029         * Returns version of this C++ library. This call is equivalent to
5030         * RIFF::libraryVersion() and DLS::libraryVersion().
5031         */
5032        String libraryVersion() {
5033            return VERSION;
5034        }
5035    
5036  } // namespace gig  } // namespace gig

Legend:
Removed from v.24  
changed lines
  Added in v.2547

  ViewVC Help
Powered by ViewVC