/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Diff of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 55 by schoenebeck, Tue Apr 27 09:06:07 2004 UTC revision 2990 by schoenebeck, Sat Sep 24 15:02:28 2016 UTC
# Line 1  Line 1 
1  /***************************************************************************  /***************************************************************************
2   *                                                                         *   *                                                                         *
3   *   libgig - C++ cross-platform Gigasampler format file loader library    *   *   libgig - C++ cross-platform Gigasampler format file access library    *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Christian Schoenebeck                     *   *   Copyright (C) 2003-2016 by Christian Schoenebeck                      *
6   *                               <cuse@users.sourceforge.net>              *   *                              <cuse@users.sourceforge.net>               *
7   *                                                                         *   *                                                                         *
8   *   This library is free software; you can redistribute it and/or modify  *   *   This library is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 23  Line 23 
23    
24  #include "gig.h"  #include "gig.h"
25    
26    #include "helper.h"
27    
28    #include <algorithm>
29    #include <math.h>
30    #include <iostream>
31    #include <assert.h>
32    
33    /// libgig's current file format version (for extending the original Giga file
34    /// format with libgig's own custom data / custom features).
35    #define GIG_FILE_EXT_VERSION    2
36    
37    /// Initial size of the sample buffer which is used for decompression of
38    /// compressed sample wave streams - this value should always be bigger than
39    /// the biggest sample piece expected to be read by the sampler engine,
40    /// otherwise the buffer size will be raised at runtime and thus the buffer
41    /// reallocated which is time consuming and unefficient.
42    #define INITIAL_SAMPLE_BUFFER_SIZE              512000 // 512 kB
43    
44    /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
45    #define GIG_EXP_DECODE(x)                       (pow(1.000000008813822, x))
46    #define GIG_EXP_ENCODE(x)                       (log(x) / log(1.000000008813822))
47    #define GIG_PITCH_TRACK_EXTRACT(x)              (!(x & 0x01))
48    #define GIG_PITCH_TRACK_ENCODE(x)               ((x) ? 0x00 : 0x01)
49    #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x)       ((x >> 4) & 0x03)
50    #define GIG_VCF_RESONANCE_CTRL_ENCODE(x)        ((x & 0x03) << 4)
51    #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x)  ((x >> 1) & 0x03)
52    #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x)   ((x >> 3) & 0x03)
53    #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
54    #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x)   ((x & 0x03) << 1)
55    #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x)    ((x & 0x03) << 3)
56    #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x)  ((x & 0x03) << 5)
57    
58  namespace gig {  namespace gig {
59    
60    // *************** Internal functions for sample decompression ***************
61    // *
62    
63    namespace {
64    
65        inline int get12lo(const unsigned char* pSrc)
66        {
67            const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
68            return x & 0x800 ? x - 0x1000 : x;
69        }
70    
71        inline int get12hi(const unsigned char* pSrc)
72        {
73            const int x = pSrc[1] >> 4 | pSrc[2] << 4;
74            return x & 0x800 ? x - 0x1000 : x;
75        }
76    
77        inline int16_t get16(const unsigned char* pSrc)
78        {
79            return int16_t(pSrc[0] | pSrc[1] << 8);
80        }
81    
82        inline int get24(const unsigned char* pSrc)
83        {
84            const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
85            return x & 0x800000 ? x - 0x1000000 : x;
86        }
87    
88        inline void store24(unsigned char* pDst, int x)
89        {
90            pDst[0] = x;
91            pDst[1] = x >> 8;
92            pDst[2] = x >> 16;
93        }
94    
95        void Decompress16(int compressionmode, const unsigned char* params,
96                          int srcStep, int dstStep,
97                          const unsigned char* pSrc, int16_t* pDst,
98                          file_offset_t currentframeoffset,
99                          file_offset_t copysamples)
100        {
101            switch (compressionmode) {
102                case 0: // 16 bit uncompressed
103                    pSrc += currentframeoffset * srcStep;
104                    while (copysamples) {
105                        *pDst = get16(pSrc);
106                        pDst += dstStep;
107                        pSrc += srcStep;
108                        copysamples--;
109                    }
110                    break;
111    
112                case 1: // 16 bit compressed to 8 bit
113                    int y  = get16(params);
114                    int dy = get16(params + 2);
115                    while (currentframeoffset) {
116                        dy -= int8_t(*pSrc);
117                        y  -= dy;
118                        pSrc += srcStep;
119                        currentframeoffset--;
120                    }
121                    while (copysamples) {
122                        dy -= int8_t(*pSrc);
123                        y  -= dy;
124                        *pDst = y;
125                        pDst += dstStep;
126                        pSrc += srcStep;
127                        copysamples--;
128                    }
129                    break;
130            }
131        }
132    
133        void Decompress24(int compressionmode, const unsigned char* params,
134                          int dstStep, const unsigned char* pSrc, uint8_t* pDst,
135                          file_offset_t currentframeoffset,
136                          file_offset_t copysamples, int truncatedBits)
137        {
138            int y, dy, ddy, dddy;
139    
140    #define GET_PARAMS(params)                      \
141            y    = get24(params);                   \
142            dy   = y - get24((params) + 3);         \
143            ddy  = get24((params) + 6);             \
144            dddy = get24((params) + 9)
145    
146    #define SKIP_ONE(x)                             \
147            dddy -= (x);                            \
148            ddy  -= dddy;                           \
149            dy   =  -dy - ddy;                      \
150            y    += dy
151    
152    #define COPY_ONE(x)                             \
153            SKIP_ONE(x);                            \
154            store24(pDst, y << truncatedBits);      \
155            pDst += dstStep
156    
157            switch (compressionmode) {
158                case 2: // 24 bit uncompressed
159                    pSrc += currentframeoffset * 3;
160                    while (copysamples) {
161                        store24(pDst, get24(pSrc) << truncatedBits);
162                        pDst += dstStep;
163                        pSrc += 3;
164                        copysamples--;
165                    }
166                    break;
167    
168                case 3: // 24 bit compressed to 16 bit
169                    GET_PARAMS(params);
170                    while (currentframeoffset) {
171                        SKIP_ONE(get16(pSrc));
172                        pSrc += 2;
173                        currentframeoffset--;
174                    }
175                    while (copysamples) {
176                        COPY_ONE(get16(pSrc));
177                        pSrc += 2;
178                        copysamples--;
179                    }
180                    break;
181    
182                case 4: // 24 bit compressed to 12 bit
183                    GET_PARAMS(params);
184                    while (currentframeoffset > 1) {
185                        SKIP_ONE(get12lo(pSrc));
186                        SKIP_ONE(get12hi(pSrc));
187                        pSrc += 3;
188                        currentframeoffset -= 2;
189                    }
190                    if (currentframeoffset) {
191                        SKIP_ONE(get12lo(pSrc));
192                        currentframeoffset--;
193                        if (copysamples) {
194                            COPY_ONE(get12hi(pSrc));
195                            pSrc += 3;
196                            copysamples--;
197                        }
198                    }
199                    while (copysamples > 1) {
200                        COPY_ONE(get12lo(pSrc));
201                        COPY_ONE(get12hi(pSrc));
202                        pSrc += 3;
203                        copysamples -= 2;
204                    }
205                    if (copysamples) {
206                        COPY_ONE(get12lo(pSrc));
207                    }
208                    break;
209    
210                case 5: // 24 bit compressed to 8 bit
211                    GET_PARAMS(params);
212                    while (currentframeoffset) {
213                        SKIP_ONE(int8_t(*pSrc++));
214                        currentframeoffset--;
215                    }
216                    while (copysamples) {
217                        COPY_ONE(int8_t(*pSrc++));
218                        copysamples--;
219                    }
220                    break;
221            }
222        }
223    
224        const int bytesPerFrame[] =      { 4096, 2052, 768, 524, 396, 268 };
225        const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
226        const int headerSize[] =         { 0, 4, 0, 12, 12, 12 };
227        const int bitsPerSample[] =      { 16, 8, 24, 16, 12, 8 };
228    }
229    
230    
231    
232    // *************** Internal CRC-32 (Cyclic Redundancy Check) functions  ***************
233    // *
234    
235        static uint32_t* __initCRCTable() {
236            static uint32_t res[256];
237    
238            for (int i = 0 ; i < 256 ; i++) {
239                uint32_t c = i;
240                for (int j = 0 ; j < 8 ; j++) {
241                    c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
242                }
243                res[i] = c;
244            }
245            return res;
246        }
247    
248        static const uint32_t* __CRCTable = __initCRCTable();
249    
250        /**
251         * Initialize a CRC variable.
252         *
253         * @param crc - variable to be initialized
254         */
255        inline static void __resetCRC(uint32_t& crc) {
256            crc = 0xffffffff;
257        }
258    
259        /**
260         * Used to calculate checksums of the sample data in a gig file. The
261         * checksums are stored in the 3crc chunk of the gig file and
262         * automatically updated when a sample is written with Sample::Write().
263         *
264         * One should call __resetCRC() to initialize the CRC variable to be
265         * used before calling this function the first time.
266         *
267         * After initializing the CRC variable one can call this function
268         * arbitrary times, i.e. to split the overall CRC calculation into
269         * steps.
270         *
271         * Once the whole data was processed by __calculateCRC(), one should
272         * call __encodeCRC() to get the final CRC result.
273         *
274         * @param buf     - pointer to data the CRC shall be calculated of
275         * @param bufSize - size of the data to be processed
276         * @param crc     - variable the CRC sum shall be stored to
277         */
278        static void __calculateCRC(unsigned char* buf, int bufSize, uint32_t& crc) {
279            for (int i = 0 ; i < bufSize ; i++) {
280                crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
281            }
282        }
283    
284        /**
285         * Returns the final CRC result.
286         *
287         * @param crc - variable previously passed to __calculateCRC()
288         */
289        inline static uint32_t __encodeCRC(const uint32_t& crc) {
290            return crc ^ 0xffffffff;
291        }
292    
293    
294    
295    // *************** Other Internal functions  ***************
296    // *
297    
298        static split_type_t __resolveSplitType(dimension_t dimension) {
299            return (
300                dimension == dimension_layer ||
301                dimension == dimension_samplechannel ||
302                dimension == dimension_releasetrigger ||
303                dimension == dimension_keyboard ||
304                dimension == dimension_roundrobin ||
305                dimension == dimension_random ||
306                dimension == dimension_smartmidi ||
307                dimension == dimension_roundrobinkeyboard
308            ) ? split_type_bit : split_type_normal;
309        }
310    
311        static int __resolveZoneSize(dimension_def_t& dimension_definition) {
312            return (dimension_definition.split_type == split_type_normal)
313            ? int(128.0 / dimension_definition.zones) : 0;
314        }
315    
316    
317    
318  // *************** Sample ***************  // *************** Sample ***************
319  // *  // *
320    
321      unsigned int  Sample::Instances               = 0;      size_t       Sample::Instances = 0;
322      void*         Sample::pDecompressionBuffer    = NULL;      buffer_t     Sample::InternalDecompressionBuffer;
     unsigned long Sample::DecompressionBufferSize = 0;  
323    
324      Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {      /** @brief Constructor.
325         *
326         * Load an existing sample or create a new one. A 'wave' list chunk must
327         * be given to this constructor. In case the given 'wave' list chunk
328         * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
329         * format and sample data will be loaded from there, otherwise default
330         * values will be used and those chunks will be created when
331         * File::Save() will be called later on.
332         *
333         * @param pFile          - pointer to gig::File where this sample is
334         *                         located (or will be located)
335         * @param waveList       - pointer to 'wave' list chunk which is (or
336         *                         will be) associated with this sample
337         * @param WavePoolOffset - offset of this sample data from wave pool
338         *                         ('wvpl') list chunk
339         * @param fileNo         - number of an extension file where this sample
340         *                         is located, 0 otherwise
341         * @param index          - wave pool index of sample (may be -1 on new sample)
342         */
343        Sample::Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo, int index)
344            : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset)
345        {
346            static const DLS::Info::string_length_t fixedStringLengths[] = {
347                { CHUNK_ID_INAM, 64 },
348                { 0, 0 }
349            };
350            pInfo->SetFixedStringLengths(fixedStringLengths);
351          Instances++;          Instances++;
352            FileNo = fileNo;
353    
354            __resetCRC(crc);
355            // if this is not a new sample, try to get the sample's already existing
356            // CRC32 checksum from disk, this checksum will reflect the sample's CRC32
357            // checksum of the time when the sample was consciously modified by the
358            // user for the last time (by calling Sample::Write() that is).
359            if (index >= 0) { // not a new file ...
360                try {
361                    uint32_t crc = pFile->GetSampleChecksumByIndex(index);
362                    this->crc = crc;
363                } catch (...) {}
364            }
365    
366            pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
367            if (pCk3gix) {
368                uint16_t iSampleGroup = pCk3gix->ReadInt16();
369                pGroup = pFile->GetGroup(iSampleGroup);
370            } else { // '3gix' chunk missing
371                // by default assigned to that mandatory "Default Group"
372                pGroup = pFile->GetGroup(0);
373            }
374    
375          RIFF::Chunk* _3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);          pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
376          if (!_3gix) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");          if (pCkSmpl) {
377          SampleGroup = _3gix->ReadInt16();              Manufacturer  = pCkSmpl->ReadInt32();
378                Product       = pCkSmpl->ReadInt32();
379          RIFF::Chunk* smpl = waveList->GetSubChunk(CHUNK_ID_SMPL);              SamplePeriod  = pCkSmpl->ReadInt32();
380          if (!smpl) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");              MIDIUnityNote = pCkSmpl->ReadInt32();
381          Manufacturer      = smpl->ReadInt32();              FineTune      = pCkSmpl->ReadInt32();
382          Product           = smpl->ReadInt32();              pCkSmpl->Read(&SMPTEFormat, 1, 4);
383          SamplePeriod      = smpl->ReadInt32();              SMPTEOffset   = pCkSmpl->ReadInt32();
384          MIDIUnityNote     = smpl->ReadInt32();              Loops         = pCkSmpl->ReadInt32();
385          FineTune          = smpl->ReadInt32();              pCkSmpl->ReadInt32(); // manufByt
386          smpl->Read(&SMPTEFormat, 1, 4);              LoopID        = pCkSmpl->ReadInt32();
387          SMPTEOffset       = smpl->ReadInt32();              pCkSmpl->Read(&LoopType, 1, 4);
388          Loops             = smpl->ReadInt32();              LoopStart     = pCkSmpl->ReadInt32();
389          uint32_t manufByt = smpl->ReadInt32();              LoopEnd       = pCkSmpl->ReadInt32();
390          LoopID            = smpl->ReadInt32();              LoopFraction  = pCkSmpl->ReadInt32();
391          smpl->Read(&LoopType, 1, 4);              LoopPlayCount = pCkSmpl->ReadInt32();
392          LoopStart         = smpl->ReadInt32();          } else { // 'smpl' chunk missing
393          LoopEnd           = smpl->ReadInt32();              // use default values
394          LoopFraction      = smpl->ReadInt32();              Manufacturer  = 0;
395          LoopPlayCount     = smpl->ReadInt32();              Product       = 0;
396                SamplePeriod  = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
397                MIDIUnityNote = 60;
398                FineTune      = 0;
399                SMPTEFormat   = smpte_format_no_offset;
400                SMPTEOffset   = 0;
401                Loops         = 0;
402                LoopID        = 0;
403                LoopType      = loop_type_normal;
404                LoopStart     = 0;
405                LoopEnd       = 0;
406                LoopFraction  = 0;
407                LoopPlayCount = 0;
408            }
409    
410          FrameTable                 = NULL;          FrameTable                 = NULL;
411          SamplePos                  = 0;          SamplePos                  = 0;
# Line 63  namespace gig { Line 413  namespace gig {
413          RAMCache.pStart            = NULL;          RAMCache.pStart            = NULL;
414          RAMCache.NullExtensionSize = 0;          RAMCache.NullExtensionSize = 0;
415    
416          Compressed = (waveList->GetSubChunk(CHUNK_ID_EWAV));          if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
417    
418            RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
419            Compressed        = ewav;
420            Dithered          = false;
421            TruncatedBits     = 0;
422          if (Compressed) {          if (Compressed) {
423              ScanCompressedSample();              uint32_t version = ewav->ReadInt32();
424              if (!pDecompressionBuffer) {              if (version == 3 && BitDepth == 24) {
425                  pDecompressionBuffer    = new int8_t[INITIAL_SAMPLE_BUFFER_SIZE];                  Dithered = ewav->ReadInt32();
426                  DecompressionBufferSize = INITIAL_SAMPLE_BUFFER_SIZE;                  ewav->SetPos(Channels == 2 ? 84 : 64);
427                    TruncatedBits = ewav->ReadInt32();
428              }              }
429                ScanCompressedSample();
430            }
431    
432            // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
433            if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
434                InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
435                InternalDecompressionBuffer.Size   = INITIAL_SAMPLE_BUFFER_SIZE;
436            }
437            FrameOffset = 0; // just for streaming compressed samples
438    
439            LoopSize = LoopEnd - LoopStart + 1;
440        }
441    
442        /**
443         * Make a (semi) deep copy of the Sample object given by @a orig (without
444         * the actual waveform data) and assign it to this object.
445         *
446         * Discussion: copying .gig samples is a bit tricky. It requires three
447         * steps:
448         * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
449         *    its new sample waveform data size.
450         * 2. Saving the file (done by File::Save()) so that it gains correct size
451         *    and layout for writing the actual wave form data directly to disc
452         *    in next step.
453         * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
454         *
455         * @param orig - original Sample object to be copied from
456         */
457        void Sample::CopyAssignMeta(const Sample* orig) {
458            // handle base classes
459            DLS::Sample::CopyAssignCore(orig);
460            
461            // handle actual own attributes of this class
462            Manufacturer = orig->Manufacturer;
463            Product = orig->Product;
464            SamplePeriod = orig->SamplePeriod;
465            MIDIUnityNote = orig->MIDIUnityNote;
466            FineTune = orig->FineTune;
467            SMPTEFormat = orig->SMPTEFormat;
468            SMPTEOffset = orig->SMPTEOffset;
469            Loops = orig->Loops;
470            LoopID = orig->LoopID;
471            LoopType = orig->LoopType;
472            LoopStart = orig->LoopStart;
473            LoopEnd = orig->LoopEnd;
474            LoopSize = orig->LoopSize;
475            LoopFraction = orig->LoopFraction;
476            LoopPlayCount = orig->LoopPlayCount;
477            
478            // schedule resizing this sample to the given sample's size
479            Resize(orig->GetSize());
480        }
481    
482        /**
483         * Should be called after CopyAssignMeta() and File::Save() sequence.
484         * Read more about it in the discussion of CopyAssignMeta(). This method
485         * copies the actual waveform data by disk streaming.
486         *
487         * @e CAUTION: this method is currently not thread safe! During this
488         * operation the sample must not be used for other purposes by other
489         * threads!
490         *
491         * @param orig - original Sample object to be copied from
492         */
493        void Sample::CopyAssignWave(const Sample* orig) {
494            const int iReadAtOnce = 32*1024;
495            char* buf = new char[iReadAtOnce * orig->FrameSize];
496            Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
497            file_offset_t restorePos = pOrig->GetPos();
498            pOrig->SetPos(0);
499            SetPos(0);
500            for (file_offset_t n = pOrig->Read(buf, iReadAtOnce); n;
501                               n = pOrig->Read(buf, iReadAtOnce))
502            {
503                Write(buf, n);
504          }          }
505          FrameOffset = 0; // just for streaming compressed samples          pOrig->SetPos(restorePos);
506            delete [] buf;
507        }
508    
509          LoopSize = LoopEnd - LoopStart;      /**
510         * Apply sample and its settings to the respective RIFF chunks. You have
511         * to call File::Save() to make changes persistent.
512         *
513         * Usually there is absolutely no need to call this method explicitly.
514         * It will be called automatically when File::Save() was called.
515         *
516         * @param pProgress - callback function for progress notification
517         * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
518         *                        was provided yet
519         * @throws gig::Exception if there is any invalid sample setting
520         */
521        void Sample::UpdateChunks(progress_t* pProgress) {
522            // first update base class's chunks
523            DLS::Sample::UpdateChunks(pProgress);
524    
525            // make sure 'smpl' chunk exists
526            pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
527            if (!pCkSmpl) {
528                pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
529                memset(pCkSmpl->LoadChunkData(), 0, 60);
530            }
531            // update 'smpl' chunk
532            uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
533            SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
534            store32(&pData[0], Manufacturer);
535            store32(&pData[4], Product);
536            store32(&pData[8], SamplePeriod);
537            store32(&pData[12], MIDIUnityNote);
538            store32(&pData[16], FineTune);
539            store32(&pData[20], SMPTEFormat);
540            store32(&pData[24], SMPTEOffset);
541            store32(&pData[28], Loops);
542    
543            // we skip 'manufByt' for now (4 bytes)
544    
545            store32(&pData[36], LoopID);
546            store32(&pData[40], LoopType);
547            store32(&pData[44], LoopStart);
548            store32(&pData[48], LoopEnd);
549            store32(&pData[52], LoopFraction);
550            store32(&pData[56], LoopPlayCount);
551    
552            // make sure '3gix' chunk exists
553            pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
554            if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
555            // determine appropriate sample group index (to be stored in chunk)
556            uint16_t iSampleGroup = 0; // 0 refers to default sample group
557            File* pFile = static_cast<File*>(pParent);
558            if (pFile->pGroups) {
559                std::list<Group*>::iterator iter = pFile->pGroups->begin();
560                std::list<Group*>::iterator end  = pFile->pGroups->end();
561                for (int i = 0; iter != end; i++, iter++) {
562                    if (*iter == pGroup) {
563                        iSampleGroup = i;
564                        break; // found
565                    }
566                }
567            }
568            // update '3gix' chunk
569            pData = (uint8_t*) pCk3gix->LoadChunkData();
570            store16(&pData[0], iSampleGroup);
571    
572            // if the library user toggled the "Compressed" attribute from true to
573            // false, then the EWAV chunk associated with compressed samples needs
574            // to be deleted
575            RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
576            if (ewav && !Compressed) {
577                pWaveList->DeleteSubChunk(ewav);
578            }
579      }      }
580    
581      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
582      void Sample::ScanCompressedSample() {      void Sample::ScanCompressedSample() {
583          //TODO: we have to add some more scans here (e.g. determine compression rate)          //TODO: we have to add some more scans here (e.g. determine compression rate)
584          this->SamplesTotal = 0;          this->SamplesTotal = 0;
585          std::list<unsigned long> frameOffsets;          std::list<file_offset_t> frameOffsets;
586    
587            SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
588            WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
589    
590          // Scanning          // Scanning
591          pCkData->SetPos(0);          pCkData->SetPos(0);
592          while (pCkData->GetState() == RIFF::stream_ready) {          if (Channels == 2) { // Stereo
593              frameOffsets.push_back(pCkData->GetPos());              for (int i = 0 ; ; i++) {
594              int16_t compressionmode = pCkData->ReadInt16();                  // for 24 bit samples every 8:th frame offset is
595              this->SamplesTotal += 2048;                  // stored, to save some memory
596              switch (compressionmode) {                  if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
597                  case 1:   // left channel compressed  
598                  case 256: // right channel compressed                  const int mode_l = pCkData->ReadUint8();
599                      pCkData->SetPos(6148, RIFF::stream_curpos);                  const int mode_r = pCkData->ReadUint8();
600                    if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
601                    const file_offset_t frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
602    
603                    if (pCkData->RemainingBytes() <= frameSize) {
604                        SamplesInLastFrame =
605                            ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
606                            (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
607                        SamplesTotal += SamplesInLastFrame;
608                      break;                      break;
609                  case 257: // both channels compressed                  }
610                      pCkData->SetPos(4104, RIFF::stream_curpos);                  SamplesTotal += SamplesPerFrame;
611                    pCkData->SetPos(frameSize, RIFF::stream_curpos);
612                }
613            }
614            else { // Mono
615                for (int i = 0 ; ; i++) {
616                    if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
617    
618                    const int mode = pCkData->ReadUint8();
619                    if (mode > 5) throw gig::Exception("Unknown compression mode");
620                    const file_offset_t frameSize = bytesPerFrame[mode];
621    
622                    if (pCkData->RemainingBytes() <= frameSize) {
623                        SamplesInLastFrame =
624                            ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
625                        SamplesTotal += SamplesInLastFrame;
626                      break;                      break;
627                  default: // both channels uncompressed                  }
628                      pCkData->SetPos(8192, RIFF::stream_curpos);                  SamplesTotal += SamplesPerFrame;
629                    pCkData->SetPos(frameSize, RIFF::stream_curpos);
630              }              }
631          }          }
632          pCkData->SetPos(0);          pCkData->SetPos(0);
633    
         //FIXME: only seen compressed samples with 16 bit stereo so far  
         this->FrameSize = 4;  
         this->BitDepth  = 16;  
   
634          // Build the frames table (which is used for fast resolving of a frame's chunk offset)          // Build the frames table (which is used for fast resolving of a frame's chunk offset)
635          if (FrameTable) delete[] FrameTable;          if (FrameTable) delete[] FrameTable;
636          FrameTable = new unsigned long[frameOffsets.size()];          FrameTable = new file_offset_t[frameOffsets.size()];
637          std::list<unsigned long>::iterator end  = frameOffsets.end();          std::list<file_offset_t>::iterator end  = frameOffsets.end();
638          std::list<unsigned long>::iterator iter = frameOffsets.begin();          std::list<file_offset_t>::iterator iter = frameOffsets.begin();
639          for (int i = 0; iter != end; i++, iter++) {          for (int i = 0; iter != end; i++, iter++) {
640              FrameTable[i] = *iter;              FrameTable[i] = *iter;
641          }          }
# Line 141  namespace gig { Line 666  namespace gig {
666       * that will be returned to determine the actual cached samples, but note       * that will be returned to determine the actual cached samples, but note
667       * that the size is given in bytes! You get the number of actually cached       * that the size is given in bytes! You get the number of actually cached
668       * samples by dividing it by the frame size of the sample:       * samples by dividing it by the frame size of the sample:
669       *       * @code
670       *  buffer_t buf       = pSample->LoadSampleData(acquired_samples);       *  buffer_t buf       = pSample->LoadSampleData(acquired_samples);
671       *  long cachedsamples = buf.Size / pSample->FrameSize;       *  long cachedsamples = buf.Size / pSample->FrameSize;
672         * @endcode
673       *       *
674       * @param SampleCount - number of sample points to load into RAM       * @param SampleCount - number of sample points to load into RAM
675       * @returns             buffer_t structure with start address and size of       * @returns             buffer_t structure with start address and size of
676       *                      the cached sample data in bytes       *                      the cached sample data in bytes
677       * @see                 ReleaseSampleData(), Read(), SetPos()       * @see                 ReleaseSampleData(), Read(), SetPos()
678       */       */
679      buffer_t Sample::LoadSampleData(unsigned long SampleCount) {      buffer_t Sample::LoadSampleData(file_offset_t SampleCount) {
680          return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples          return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
681      }      }
682    
# Line 189  namespace gig { Line 715  namespace gig {
715       * that will be returned to determine the actual cached samples, but note       * that will be returned to determine the actual cached samples, but note
716       * that the size is given in bytes! You get the number of actually cached       * that the size is given in bytes! You get the number of actually cached
717       * samples by dividing it by the frame size of the sample:       * samples by dividing it by the frame size of the sample:
718       *       * @code
719       *  buffer_t buf       = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);       *  buffer_t buf       = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
720       *  long cachedsamples = buf.Size / pSample->FrameSize;       *  long cachedsamples = buf.Size / pSample->FrameSize;
721       *       * @endcode
722       * The method will add \a NullSamplesCount silence samples past the       * The method will add \a NullSamplesCount silence samples past the
723       * official buffer end (this won't affect the 'Size' member of the       * official buffer end (this won't affect the 'Size' member of the
724       * buffer_t structure, that means 'Size' always reflects the size of the       * buffer_t structure, that means 'Size' always reflects the size of the
# Line 209  namespace gig { Line 735  namespace gig {
735       *                           size of the cached sample data in bytes       *                           size of the cached sample data in bytes
736       * @see                      ReleaseSampleData(), Read(), SetPos()       * @see                      ReleaseSampleData(), Read(), SetPos()
737       */       */
738      buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {      buffer_t Sample::LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount) {
739          if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;          if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
740          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
741          unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;          file_offset_t allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
742            SetPos(0); // reset read position to begin of sample
743          RAMCache.pStart            = new int8_t[allocationsize];          RAMCache.pStart            = new int8_t[allocationsize];
744          RAMCache.Size              = Read(RAMCache.pStart, SampleCount) * this->FrameSize;          RAMCache.Size              = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
745          RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;          RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
# Line 250  namespace gig { Line 777  namespace gig {
777          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
778          RAMCache.pStart = NULL;          RAMCache.pStart = NULL;
779          RAMCache.Size   = 0;          RAMCache.Size   = 0;
780            RAMCache.NullExtensionSize = 0;
781        }
782    
783        /** @brief Resize sample.
784         *
785         * Resizes the sample's wave form data, that is the actual size of
786         * sample wave data possible to be written for this sample. This call
787         * will return immediately and just schedule the resize operation. You
788         * should call File::Save() to actually perform the resize operation(s)
789         * "physically" to the file. As this can take a while on large files, it
790         * is recommended to call Resize() first on all samples which have to be
791         * resized and finally to call File::Save() to perform all those resize
792         * operations in one rush.
793         *
794         * The actual size (in bytes) is dependant to the current FrameSize
795         * value. You may want to set FrameSize before calling Resize().
796         *
797         * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
798         * enlarged samples before calling File::Save() as this might exceed the
799         * current sample's boundary!
800         *
801         * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
802         * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
803         * other formats will fail!
804         *
805         * @param NewSize - new sample wave data size in sample points (must be
806         *                  greater than zero)
807         * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
808         * @throws DLS::Exception if \a NewSize is less than 1 or unrealistic large
809         * @throws gig::Exception if existing sample is compressed
810         * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
811         *      DLS::Sample::FormatTag, File::Save()
812         */
813        void Sample::Resize(file_offset_t NewSize) {
814            if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
815            DLS::Sample::Resize(NewSize);
816      }      }
817    
818      /**      /**
# Line 273  namespace gig { Line 836  namespace gig {
836       * @returns            the new sample position       * @returns            the new sample position
837       * @see                Read()       * @see                Read()
838       */       */
839      unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {      file_offset_t Sample::SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence) {
840          if (Compressed) {          if (Compressed) {
841              switch (Whence) {              switch (Whence) {
842                  case RIFF::stream_curpos:                  case RIFF::stream_curpos:
# Line 291  namespace gig { Line 854  namespace gig {
854              }              }
855              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
856    
857              unsigned long frame = this->SamplePos / 2048; // to which frame to jump              file_offset_t frame = this->SamplePos / 2048; // to which frame to jump
858              this->FrameOffset   = this->SamplePos % 2048; // offset (in sample points) within that frame              this->FrameOffset   = this->SamplePos % 2048; // offset (in sample points) within that frame
859              pCkData->SetPos(FrameTable[frame]);           // set chunk pointer to the start of sought frame              pCkData->SetPos(FrameTable[frame]);           // set chunk pointer to the start of sought frame
860              return this->SamplePos;              return this->SamplePos;
861          }          }
862          else { // not compressed          else { // not compressed
863              unsigned long orderedBytes = SampleCount * this->FrameSize;              file_offset_t orderedBytes = SampleCount * this->FrameSize;
864              unsigned long result = pCkData->SetPos(orderedBytes, Whence);              file_offset_t result = pCkData->SetPos(orderedBytes, Whence);
865              return (result == orderedBytes) ? SampleCount              return (result == orderedBytes) ? SampleCount
866                                              : result / this->FrameSize;                                              : result / this->FrameSize;
867          }          }
# Line 307  namespace gig { Line 870  namespace gig {
870      /**      /**
871       * Returns the current position in the sample (in sample points).       * Returns the current position in the sample (in sample points).
872       */       */
873      unsigned long Sample::GetPos() {      file_offset_t Sample::GetPos() const {
874          if (Compressed) return SamplePos;          if (Compressed) return SamplePos;
875          else            return pCkData->GetPos() / FrameSize;          else            return pCkData->GetPos() / FrameSize;
876      }      }
# Line 323  namespace gig { Line 886  namespace gig {
886       * for the next time you call this method is stored in \a pPlaybackState.       * for the next time you call this method is stored in \a pPlaybackState.
887       * You have to allocate and initialize the playback_state_t structure by       * You have to allocate and initialize the playback_state_t structure by
888       * yourself before you use it to stream a sample:       * yourself before you use it to stream a sample:
889       *       * @code
890       * <i>       * gig::playback_state_t playbackstate;
891       * gig::playback_state_t playbackstate;                           <br>       * playbackstate.position         = 0;
892       * playbackstate.position         = 0;                            <br>       * playbackstate.reverse          = false;
893       * playbackstate.reverse          = false;                        <br>       * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
894       * playbackstate.loop_cycles_left = pSample->LoopPlayCount;       <br>       * @endcode
      * </i>  
      *  
895       * You don't have to take care of things like if there is actually a loop       * You don't have to take care of things like if there is actually a loop
896       * defined or if the current read position is located within a loop area.       * defined or if the current read position is located within a loop area.
897       * The method already handles such cases by itself.       * The method already handles such cases by itself.
898       *       *
899         * <b>Caution:</b> If you are using more than one streaming thread, you
900         * have to use an external decompression buffer for <b>EACH</b>
901         * streaming thread to avoid race conditions and crashes!
902         *
903       * @param pBuffer          destination buffer       * @param pBuffer          destination buffer
904       * @param SampleCount      number of sample points to read       * @param SampleCount      number of sample points to read
905       * @param pPlaybackState   will be used to store and reload the playback       * @param pPlaybackState   will be used to store and reload the playback
906       *                         state for the next ReadAndLoop() call       *                         state for the next ReadAndLoop() call
907         * @param pDimRgn          dimension region with looping information
908         * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
909       * @returns                number of successfully read sample points       * @returns                number of successfully read sample points
910         * @see                    CreateDecompressionBuffer()
911       */       */
912      unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState) {      file_offset_t Sample::ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState,
913          unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;                                        DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
914            file_offset_t samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
915          uint8_t* pDst = (uint8_t*) pBuffer;          uint8_t* pDst = (uint8_t*) pBuffer;
916    
917          SetPos(pPlaybackState->position); // recover position from the last time          SetPos(pPlaybackState->position); // recover position from the last time
918    
919          if (this->Loops && GetPos() <= this->LoopEnd) { // honor looping if there are loop points defined          if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
920    
921              switch (this->LoopType) {              const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
922                const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
923    
924                  case loop_type_bidirectional: { //TODO: not tested yet!              if (GetPos() <= loopEnd) {
925                      do {                  switch (loop.LoopType) {
                         // if not endless loop check if max. number of loop cycles have been passed  
                         if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;  
   
                         if (!pPlaybackState->reverse) { // forward playback  
                             do {  
                                 samplestoloopend  = this->LoopEnd - GetPos();  
                                 readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend));  
                                 samplestoread    -= readsamples;  
                                 totalreadsamples += readsamples;  
                                 if (readsamples == samplestoloopend) {  
                                     pPlaybackState->reverse = true;  
                                     break;  
                                 }  
                             } while (samplestoread && readsamples);  
                         }  
                         else { // backward playback  
926    
927                              // as we can only read forward from disk, we have to                      case loop_type_bidirectional: { //TODO: not tested yet!
928                              // determine the end position within the loop first,                          do {
929                              // read forward from that 'end' and finally after                              // if not endless loop check if max. number of loop cycles have been passed
930                              // reading, swap all sample frames so it reflects                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
931                              // backward playback  
932                                if (!pPlaybackState->reverse) { // forward playback
933                              unsigned long swapareastart       = totalreadsamples;                                  do {
934                              unsigned long loopoffset          = GetPos() - this->LoopStart;                                      samplestoloopend  = loopEnd - GetPos();
935                              unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);                                      readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
936                              unsigned long reverseplaybackend  = GetPos() - samplestoreadinloop;                                      samplestoread    -= readsamples;
937                                        totalreadsamples += readsamples;
938                              SetPos(reverseplaybackend);                                      if (readsamples == samplestoloopend) {
939                                            pPlaybackState->reverse = true;
940                              // read samples for backward playback                                          break;
941                              do {                                      }
942                                  readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop);                                  } while (samplestoread && readsamples);
943                                  samplestoreadinloop -= readsamples;                              }
944                                  samplestoread       -= readsamples;                              else { // backward playback
                                 totalreadsamples    += readsamples;  
                             } while (samplestoreadinloop && readsamples);  
945    
946                              SetPos(reverseplaybackend); // pretend we really read backwards                                  // as we can only read forward from disk, we have to
947                                    // determine the end position within the loop first,
948                                    // read forward from that 'end' and finally after
949                                    // reading, swap all sample frames so it reflects
950                                    // backward playback
951    
952                                    file_offset_t swapareastart       = totalreadsamples;
953                                    file_offset_t loopoffset          = GetPos() - loop.LoopStart;
954                                    file_offset_t samplestoreadinloop = Min(samplestoread, loopoffset);
955                                    file_offset_t reverseplaybackend  = GetPos() - samplestoreadinloop;
956    
957                                    SetPos(reverseplaybackend);
958    
959                                    // read samples for backward playback
960                                    do {
961                                        readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
962                                        samplestoreadinloop -= readsamples;
963                                        samplestoread       -= readsamples;
964                                        totalreadsamples    += readsamples;
965                                    } while (samplestoreadinloop && readsamples);
966    
967                                    SetPos(reverseplaybackend); // pretend we really read backwards
968    
969                                    if (reverseplaybackend == loop.LoopStart) {
970                                        pPlaybackState->loop_cycles_left--;
971                                        pPlaybackState->reverse = false;
972                                    }
973    
974                              if (reverseplaybackend == this->LoopStart) {                                  // reverse the sample frames for backward playback
975                                  pPlaybackState->loop_cycles_left--;                                  if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
976                                  pPlaybackState->reverse = false;                                      SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
977                              }                              }
978                            } while (samplestoread && readsamples);
979                            break;
980                        }
981    
982                              // reverse the sample frames for backward playback                      case loop_type_backward: { // TODO: not tested yet!
983                              SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);                          // forward playback (not entered the loop yet)
984                          }                          if (!pPlaybackState->reverse) do {
985                      } while (samplestoread && readsamples);                              samplestoloopend  = loopEnd - GetPos();
986                      break;                              readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
987                  }                              samplestoread    -= readsamples;
988                                totalreadsamples += readsamples;
989                  case loop_type_backward: { // TODO: not tested yet!                              if (readsamples == samplestoloopend) {
990                      // forward playback (not entered the loop yet)                                  pPlaybackState->reverse = true;
991                      if (!pPlaybackState->reverse) do {                                  break;
992                          samplestoloopend  = this->LoopEnd - GetPos();                              }
993                          readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend));                          } while (samplestoread && readsamples);
                         samplestoread    -= readsamples;  
                         totalreadsamples += readsamples;  
                         if (readsamples == samplestoloopend) {  
                             pPlaybackState->reverse = true;  
                             break;  
                         }  
                     } while (samplestoread && readsamples);  
994    
995                      if (!samplestoread) break;                          if (!samplestoread) break;
996    
997                      // as we can only read forward from disk, we have to                          // as we can only read forward from disk, we have to
998                      // determine the end position within the loop first,                          // determine the end position within the loop first,
999                      // read forward from that 'end' and finally after                          // read forward from that 'end' and finally after
1000                      // reading, swap all sample frames so it reflects                          // reading, swap all sample frames so it reflects
1001                      // backward playback                          // backward playback
1002    
1003                      unsigned long swapareastart       = totalreadsamples;                          file_offset_t swapareastart       = totalreadsamples;
1004                      unsigned long loopoffset          = GetPos() - this->LoopStart;                          file_offset_t loopoffset          = GetPos() - loop.LoopStart;
1005                      unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * LoopSize - loopoffset)                          file_offset_t samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1006                                                                                : samplestoread;                                                                                    : samplestoread;
1007                      unsigned long reverseplaybackend  = this->LoopStart + Abs((loopoffset - samplestoreadinloop) % this->LoopSize);                          file_offset_t reverseplaybackend  = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1008    
1009                      SetPos(reverseplaybackend);                          SetPos(reverseplaybackend);
1010    
1011                      // read samples for backward playback                          // read samples for backward playback
1012                      do {                          do {
1013                          // if not endless loop check if max. number of loop cycles have been passed                              // if not endless loop check if max. number of loop cycles have been passed
1014                          if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1015                          samplestoloopend     = this->LoopEnd - GetPos();                              samplestoloopend     = loopEnd - GetPos();
1016                          readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend));                              readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1017                          samplestoreadinloop -= readsamples;                              samplestoreadinloop -= readsamples;
1018                          samplestoread       -= readsamples;                              samplestoread       -= readsamples;
1019                          totalreadsamples    += readsamples;                              totalreadsamples    += readsamples;
1020                          if (readsamples == samplestoloopend) {                              if (readsamples == samplestoloopend) {
1021                              pPlaybackState->loop_cycles_left--;                                  pPlaybackState->loop_cycles_left--;
1022                              SetPos(this->LoopStart);                                  SetPos(loop.LoopStart);
1023                          }                              }
1024                      } while (samplestoreadinloop && readsamples);                          } while (samplestoreadinloop && readsamples);
1025    
1026                      SetPos(reverseplaybackend); // pretend we really read backwards                          SetPos(reverseplaybackend); // pretend we really read backwards
1027    
1028                      // reverse the sample frames for backward playback                          // reverse the sample frames for backward playback
1029                      SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);                          SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1030                      break;                          break;
1031                  }                      }
1032    
1033                  default: case loop_type_normal: {                      default: case loop_type_normal: {
1034                      do {                          do {
1035                          // if not endless loop check if max. number of loop cycles have been passed                              // if not endless loop check if max. number of loop cycles have been passed
1036                          if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1037                          samplestoloopend  = this->LoopEnd - GetPos();                              samplestoloopend  = loopEnd - GetPos();
1038                          readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend));                              readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1039                          samplestoread    -= readsamples;                              samplestoread    -= readsamples;
1040                          totalreadsamples += readsamples;                              totalreadsamples += readsamples;
1041                          if (readsamples == samplestoloopend) {                              if (readsamples == samplestoloopend) {
1042                              pPlaybackState->loop_cycles_left--;                                  pPlaybackState->loop_cycles_left--;
1043                              SetPos(this->LoopStart);                                  SetPos(loop.LoopStart);
1044                          }                              }
1045                      } while (samplestoread && readsamples);                          } while (samplestoread && readsamples);
1046                      break;                          break;
1047                        }
1048                  }                  }
1049              }              }
1050          }          }
1051    
1052          // read on without looping          // read on without looping
1053          if (samplestoread) do {          if (samplestoread) do {
1054              readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread);              readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
1055              samplestoread    -= readsamples;              samplestoread    -= readsamples;
1056              totalreadsamples += readsamples;              totalreadsamples += readsamples;
1057          } while (readsamples && samplestoread);          } while (readsamples && samplestoread);
# Line 495  namespace gig { Line 1070  namespace gig {
1070       * and <i>SetPos()</i> if you don't want to load the sample into RAM,       * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1071       * thus for disk streaming.       * thus for disk streaming.
1072       *       *
1073         * <b>Caution:</b> If you are using more than one streaming thread, you
1074         * have to use an external decompression buffer for <b>EACH</b>
1075         * streaming thread to avoid race conditions and crashes!
1076         *
1077         * For 16 bit samples, the data in the buffer will be int16_t
1078         * (using native endianness). For 24 bit, the buffer will
1079         * contain three bytes per sample, little-endian.
1080         *
1081       * @param pBuffer      destination buffer       * @param pBuffer      destination buffer
1082       * @param SampleCount  number of sample points to read       * @param SampleCount  number of sample points to read
1083         * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
1084       * @returns            number of successfully read sample points       * @returns            number of successfully read sample points
1085       * @see                SetPos()       * @see                SetPos(), CreateDecompressionBuffer()
1086       */       */
1087      unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount) {      file_offset_t Sample::Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer) {
1088          if (SampleCount == 0) return 0;          if (SampleCount == 0) return 0;
1089          if (!Compressed) return pCkData->Read(pBuffer, SampleCount, FrameSize); //FIXME: channel inversion due to endian correction?          if (!Compressed) {
1090          else { //FIXME: no support for mono compressed samples yet, are there any?              if (BitDepth == 24) {
1091                    return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1092                }
1093                else { // 16 bit
1094                    // (pCkData->Read does endian correction)
1095                    return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1096                                         : pCkData->Read(pBuffer, SampleCount, 2);
1097                }
1098            }
1099            else {
1100              if (this->SamplePos >= this->SamplesTotal) return 0;              if (this->SamplePos >= this->SamplesTotal) return 0;
1101              //TODO: efficiency: we simply assume here that all frames are compressed, maybe we should test for an average compression rate              //TODO: efficiency: maybe we should test for an average compression rate
1102              // best case needed buffer size (all frames compressed)              file_offset_t assumedsize      = GuessSize(SampleCount),
             unsigned long assumedsize      = (SampleCount << 1)  + // *2 (16 Bit, stereo, but assume all frames compressed)  
                                              (SampleCount >> 10) + // 10 bytes header per 2048 sample points  
                                              8194,                 // at least one worst case sample frame  
1103                            remainingbytes   = 0,           // remaining bytes in the local buffer                            remainingbytes   = 0,           // remaining bytes in the local buffer
1104                            remainingsamples = SampleCount,                            remainingsamples = SampleCount,
1105                            copysamples;                            copysamples, skipsamples,
1106              int currentframeoffset = this->FrameOffset;   // offset in current sample frame since last Read()                            currentframeoffset = this->FrameOffset;  // offset in current sample frame since last Read()
1107              this->FrameOffset = 0;              this->FrameOffset = 0;
1108    
1109              if (assumedsize > this->DecompressionBufferSize) {              buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1110                  // local buffer reallocation - hope this won't happen  
1111                  if (this->pDecompressionBuffer) delete[] (int8_t*) this->pDecompressionBuffer;              // if decompression buffer too small, then reduce amount of samples to read
1112                  this->pDecompressionBuffer    = new int8_t[assumedsize << 1]; // double of current needed size              if (pDecompressionBuffer->Size < assumedsize) {
1113                  this->DecompressionBufferSize = assumedsize;                  std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1114                    SampleCount      = WorstCaseMaxSamples(pDecompressionBuffer);
1115                    remainingsamples = SampleCount;
1116                    assumedsize      = GuessSize(SampleCount);
1117              }              }
1118    
1119              int16_t  compressionmode, left, dleft, right, dright;              unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1120              int8_t*  pSrc = (int8_t*)  this->pDecompressionBuffer;              int16_t* pDst = static_cast<int16_t*>(pBuffer);
1121              int16_t* pDst = (int16_t*) pBuffer;              uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1122              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1123    
1124              while (remainingsamples) {              while (remainingsamples && remainingbytes) {
1125                    file_offset_t framesamples = SamplesPerFrame;
1126                  // reload from disk to local buffer if needed                  file_offset_t framebytes, rightChannelOffset = 0, nextFrameOffset;
1127                  if (remainingbytes < 8194) {  
1128                      if (pCkData->GetState() != RIFF::stream_ready) {                  int mode_l = *pSrc++, mode_r = 0;
1129                          this->SamplePos = this->SamplesTotal;  
1130                          return (SampleCount - remainingsamples);                  if (Channels == 2) {
1131                      }                      mode_r = *pSrc++;
1132                      assumedsize    = remainingsamples;                      framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1133                      assumedsize    = (assumedsize << 1)  + // *2 (16 Bit, stereo, but assume all frames compressed)                      rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1134                                       (assumedsize >> 10) + // 10 bytes header per 2048 sample points                      nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1135                                       8194;                 // at least one worst case sample frame                      if (remainingbytes < framebytes) { // last frame in sample
1136                      pCkData->SetPos(remainingbytes, RIFF::stream_backward);                          framesamples = SamplesInLastFrame;
1137                      if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();                          if (mode_l == 4 && (framesamples & 1)) {
1138                      remainingbytes = pCkData->Read(this->pDecompressionBuffer, assumedsize, 1);                              rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1139                      pSrc = (int8_t*) this->pDecompressionBuffer;                          }
1140                            else {
1141                                rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1142                            }
1143                        }
1144                    }
1145                    else {
1146                        framebytes = bytesPerFrame[mode_l] + 1;
1147                        nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1148                        if (remainingbytes < framebytes) {
1149                            framesamples = SamplesInLastFrame;
1150                        }
1151                  }                  }
1152    
1153                  // determine how many samples in this frame to skip and read                  // determine how many samples in this frame to skip and read
1154                  if (remainingsamples >= 2048) {                  if (currentframeoffset + remainingsamples >= framesamples) {
1155                      copysamples       = 2048 - currentframeoffset;                      if (currentframeoffset <= framesamples) {
1156                      remainingsamples -= copysamples;                          copysamples = framesamples - currentframeoffset;
1157                            skipsamples = currentframeoffset;
1158                        }
1159                        else {
1160                            copysamples = 0;
1161                            skipsamples = framesamples;
1162                        }
1163                  }                  }
1164                  else {                  else {
1165                        // This frame has enough data for pBuffer, but not
1166                        // all of the frame is needed. Set file position
1167                        // to start of this frame for next call to Read.
1168                      copysamples = remainingsamples;                      copysamples = remainingsamples;
1169                      if (currentframeoffset + copysamples > 2048) {                      skipsamples = currentframeoffset;
1170                          copysamples = 2048 - currentframeoffset;                      pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1171                          remainingsamples -= copysamples;                      this->FrameOffset = currentframeoffset + copysamples;
1172                      }                  }
1173                      else {                  remainingsamples -= copysamples;
1174    
1175                    if (remainingbytes > framebytes) {
1176                        remainingbytes -= framebytes;
1177                        if (remainingsamples == 0 &&
1178                            currentframeoffset + copysamples == framesamples) {
1179                            // This frame has enough data for pBuffer, and
1180                            // all of the frame is needed. Set file
1181                            // position to start of next frame for next
1182                            // call to Read. FrameOffset is 0.
1183                          pCkData->SetPos(remainingbytes, RIFF::stream_backward);                          pCkData->SetPos(remainingbytes, RIFF::stream_backward);
                         remainingsamples = 0;  
                         this->FrameOffset = currentframeoffset + copysamples;  
1184                      }                      }
1185                  }                  }
1186                    else remainingbytes = 0;
1187    
1188                  // decompress and copy current frame from local buffer to destination buffer                  currentframeoffset -= skipsamples;
1189                  compressionmode = *(int16_t*)pSrc; pSrc+=2;  
1190                  switch (compressionmode) {                  if (copysamples == 0) {
1191                      case 1: // left channel compressed                      // skip this frame
1192                          remainingbytes -= 6150; // (left 8 bit, right 16 bit, +6 byte header)                      pSrc += framebytes - Channels;
1193                          if (!remainingsamples && copysamples == 2048)                  }
1194                              pCkData->SetPos(remainingbytes, RIFF::stream_backward);                  else {
1195                        const unsigned char* const param_l = pSrc;
1196                          left  = *(int16_t*)pSrc; pSrc+=2;                      if (BitDepth == 24) {
1197                          dleft = *(int16_t*)pSrc; pSrc+=2;                          if (mode_l != 2) pSrc += 12;
1198                          while (currentframeoffset) {  
1199                              dleft -= *pSrc;                          if (Channels == 2) { // Stereo
1200                              left  -= dleft;                              const unsigned char* const param_r = pSrc;
1201                              pSrc+=3; // 8 bit left channel, skip uncompressed right channel (16 bit)                              if (mode_r != 2) pSrc += 12;
1202                              currentframeoffset--;  
1203                          }                              Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1204                          while (copysamples) {                                           skipsamples, copysamples, TruncatedBits);
1205                              dleft -= *pSrc; pSrc++;                              Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1206                              left  -= dleft;                                           skipsamples, copysamples, TruncatedBits);
1207                              *pDst = left; pDst++;                              pDst24 += copysamples * 6;
                             *pDst = *(int16_t*)pSrc; pDst++; pSrc+=2;  
                             copysamples--;  
                         }  
                         break;  
                     case 256: // right channel compressed  
                         remainingbytes -= 6150; // (left 16 bit, right 8 bit, +6 byte header)  
                         if (!remainingsamples && copysamples == 2048)  
                             pCkData->SetPos(remainingbytes, RIFF::stream_backward);  
   
                         right  = *(int16_t*)pSrc; pSrc+=2;  
                         dright = *(int16_t*)pSrc; pSrc+=2;  
                         if (currentframeoffset) {  
                             pSrc+=2; // skip uncompressed left channel, now we can increment by 3  
                             while (currentframeoffset) {  
                                 dright -= *pSrc;  
                                 right  -= dright;  
                                 pSrc+=3; // 8 bit right channel, skip uncompressed left channel (16 bit)  
                                 currentframeoffset--;  
                             }  
                             pSrc-=2; // back aligned to left channel  
1208                          }                          }
1209                          while (copysamples) {                          else { // Mono
1210                              *pDst = *(int16_t*)pSrc; pDst++; pSrc+=2;                              Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1211                              dright -= *pSrc; pSrc++;                                           skipsamples, copysamples, TruncatedBits);
1212                              right  -= dright;                              pDst24 += copysamples * 3;
                             *pDst = right; pDst++;  
                             copysamples--;  
1213                          }                          }
1214                          break;                      }
1215                      case 257: // both channels compressed                      else { // 16 bit
1216                          remainingbytes -= 4106; // (left 8 bit, right 8 bit, +10 byte header)                          if (mode_l) pSrc += 4;
1217                          if (!remainingsamples && copysamples == 2048)  
1218                              pCkData->SetPos(remainingbytes, RIFF::stream_backward);                          int step;
1219                            if (Channels == 2) { // Stereo
1220                          left   = *(int16_t*)pSrc; pSrc+=2;                              const unsigned char* const param_r = pSrc;
1221                          dleft  = *(int16_t*)pSrc; pSrc+=2;                              if (mode_r) pSrc += 4;
1222                          right  = *(int16_t*)pSrc; pSrc+=2;  
1223                          dright = *(int16_t*)pSrc; pSrc+=2;                              step = (2 - mode_l) + (2 - mode_r);
1224                          while (currentframeoffset) {                              Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1225                              dleft  -= *pSrc; pSrc++;                              Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1226                              left   -= dleft;                                           skipsamples, copysamples);
1227                              dright -= *pSrc; pSrc++;                              pDst += copysamples << 1;
                             right  -= dright;  
                             currentframeoffset--;  
1228                          }                          }
1229                          while (copysamples) {                          else { // Mono
1230                              dleft  -= *pSrc; pSrc++;                              step = 2 - mode_l;
1231                              left   -= dleft;                              Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1232                              dright -= *pSrc; pSrc++;                              pDst += copysamples;
                             right  -= dright;  
                             *pDst = left;  pDst++;  
                             *pDst = right; pDst++;  
                             copysamples--;  
1233                          }                          }
1234                          break;                      }
1235                      default: // both channels uncompressed                      pSrc += nextFrameOffset;
                         remainingbytes -= 8194; // (left 16 bit, right 16 bit, +2 byte header)  
                         if (!remainingsamples && copysamples == 2048)  
                             pCkData->SetPos(remainingbytes, RIFF::stream_backward);  
   
                         pSrc += currentframeoffset << 2;  
                         currentframeoffset = 0;  
                         memcpy(pDst, pSrc, copysamples << 2);  
                         pDst += copysamples << 1;  
                         pSrc += copysamples << 2;  
                         break;  
1236                  }                  }
1237              }  
1238                    // reload from disk to local buffer if needed
1239                    if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1240                        assumedsize    = GuessSize(remainingsamples);
1241                        pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1242                        if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1243                        remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1244                        pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1245                    }
1246                } // while
1247    
1248              this->SamplePos += (SampleCount - remainingsamples);              this->SamplePos += (SampleCount - remainingsamples);
1249              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1250              return (SampleCount - remainingsamples);              return (SampleCount - remainingsamples);
1251          }          }
1252      }      }
1253    
1254        /** @brief Write sample wave data.
1255         *
1256         * Writes \a SampleCount number of sample points from the buffer pointed
1257         * by \a pBuffer and increments the position within the sample. Use this
1258         * method to directly write the sample data to disk, i.e. if you don't
1259         * want or cannot load the whole sample data into RAM.
1260         *
1261         * You have to Resize() the sample to the desired size and call
1262         * File::Save() <b>before</b> using Write().
1263         *
1264         * Note: there is currently no support for writing compressed samples.
1265         *
1266         * For 16 bit samples, the data in the source buffer should be
1267         * int16_t (using native endianness). For 24 bit, the buffer
1268         * should contain three bytes per sample, little-endian.
1269         *
1270         * @param pBuffer     - source buffer
1271         * @param SampleCount - number of sample points to write
1272         * @throws DLS::Exception if current sample size is too small
1273         * @throws gig::Exception if sample is compressed
1274         * @see DLS::LoadSampleData()
1275         */
1276        file_offset_t Sample::Write(void* pBuffer, file_offset_t SampleCount) {
1277            if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1278    
1279            // if this is the first write in this sample, reset the
1280            // checksum calculator
1281            if (pCkData->GetPos() == 0) {
1282                __resetCRC(crc);
1283            }
1284            if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1285            file_offset_t res;
1286            if (BitDepth == 24) {
1287                res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1288            } else { // 16 bit
1289                res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1290                                    : pCkData->Write(pBuffer, SampleCount, 2);
1291            }
1292            __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1293    
1294            // if this is the last write, update the checksum chunk in the
1295            // file
1296            if (pCkData->GetPos() == pCkData->GetSize()) {
1297                File* pFile = static_cast<File*>(GetParent());
1298                pFile->SetSampleChecksum(this, __encodeCRC(crc));
1299            }
1300            return res;
1301        }
1302    
1303        /**
1304         * Allocates a decompression buffer for streaming (compressed) samples
1305         * with Sample::Read(). If you are using more than one streaming thread
1306         * in your application you <b>HAVE</b> to create a decompression buffer
1307         * for <b>EACH</b> of your streaming threads and provide it with the
1308         * Sample::Read() call in order to avoid race conditions and crashes.
1309         *
1310         * You should free the memory occupied by the allocated buffer(s) once
1311         * you don't need one of your streaming threads anymore by calling
1312         * DestroyDecompressionBuffer().
1313         *
1314         * @param MaxReadSize - the maximum size (in sample points) you ever
1315         *                      expect to read with one Read() call
1316         * @returns allocated decompression buffer
1317         * @see DestroyDecompressionBuffer()
1318         */
1319        buffer_t Sample::CreateDecompressionBuffer(file_offset_t MaxReadSize) {
1320            buffer_t result;
1321            const double worstCaseHeaderOverhead =
1322                    (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1323            result.Size              = (file_offset_t) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1324            result.pStart            = new int8_t[result.Size];
1325            result.NullExtensionSize = 0;
1326            return result;
1327        }
1328    
1329        /**
1330         * Free decompression buffer, previously created with
1331         * CreateDecompressionBuffer().
1332         *
1333         * @param DecompressionBuffer - previously allocated decompression
1334         *                              buffer to free
1335         */
1336        void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1337            if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1338                delete[] (int8_t*) DecompressionBuffer.pStart;
1339                DecompressionBuffer.pStart = NULL;
1340                DecompressionBuffer.Size   = 0;
1341                DecompressionBuffer.NullExtensionSize = 0;
1342            }
1343        }
1344    
1345        /**
1346         * Returns pointer to the Group this Sample belongs to. In the .gig
1347         * format a sample always belongs to one group. If it wasn't explicitly
1348         * assigned to a certain group, it will be automatically assigned to a
1349         * default group.
1350         *
1351         * @returns Sample's Group (never NULL)
1352         */
1353        Group* Sample::GetGroup() const {
1354            return pGroup;
1355        }
1356    
1357        /**
1358         * Returns the CRC-32 checksum of the sample's raw wave form data at the
1359         * time when this sample's wave form data was modified for the last time
1360         * by calling Write(). This checksum only covers the raw wave form data,
1361         * not any meta informations like i.e. bit depth or loop points. Since
1362         * this method just returns the checksum stored for this sample i.e. when
1363         * the gig file was loaded, this method returns immediately. So it does no
1364         * recalcuation of the checksum with the currently available sample wave
1365         * form data.
1366         *
1367         * @see VerifyWaveData()
1368         */
1369        uint32_t Sample::GetWaveDataCRC32Checksum() {
1370            return crc;
1371        }
1372    
1373        /**
1374         * Checks the integrity of this sample's raw audio wave data. Whenever a
1375         * Sample's raw wave data is intentionally modified (i.e. by calling
1376         * Write() and supplying the new raw audio wave form data) a CRC32 checksum
1377         * is calculated and stored/updated for this sample, along to the sample's
1378         * meta informations.
1379         *
1380         * Now by calling this method the current raw audio wave data is checked
1381         * against the already stored CRC32 check sum in order to check whether the
1382         * sample data had been damaged unintentionally for some reason. Since by
1383         * calling this method always the entire raw audio wave data has to be
1384         * read, verifying all samples this way may take a long time accordingly.
1385         * And that's also the reason why the sample integrity is not checked by
1386         * default whenever a gig file is loaded. So this method must be called
1387         * explicitly to fulfill this task.
1388         *
1389         * @param pActually - (optional) if provided, will be set to the actually
1390         *                    calculated checksum of the current raw wave form data,
1391         *                    you can get the expected checksum instead by calling
1392         *                    GetWaveDataCRC32Checksum()
1393         * @returns true if sample is OK or false if the sample is damaged
1394         * @throws Exception if no checksum had been stored to disk for this
1395         *         sample yet, or on I/O issues
1396         * @see GetWaveDataCRC32Checksum()
1397         */
1398        bool Sample::VerifyWaveData(uint32_t* pActually) {
1399            File* pFile = static_cast<File*>(GetParent());
1400            uint32_t crc = CalculateWaveDataChecksum();
1401            if (pActually) *pActually = crc;
1402            return crc == this->crc;
1403        }
1404    
1405        uint32_t Sample::CalculateWaveDataChecksum() {
1406            const size_t sz = 20*1024; // 20kB buffer size
1407            std::vector<uint8_t> buffer(sz);
1408            buffer.resize(sz);
1409    
1410            const size_t n = sz / FrameSize;
1411            SetPos(0);
1412            uint32_t crc = 0;
1413            __resetCRC(crc);
1414            while (true) {
1415                file_offset_t nRead = Read(&buffer[0], n);
1416                if (nRead <= 0) break;
1417                __calculateCRC(&buffer[0], nRead * FrameSize, crc);
1418            }
1419            __encodeCRC(crc);
1420            return crc;
1421        }
1422    
1423      Sample::~Sample() {      Sample::~Sample() {
1424          Instances--;          Instances--;
1425          if (!Instances && pDecompressionBuffer) delete[] (int8_t*) pDecompressionBuffer;          if (!Instances && InternalDecompressionBuffer.Size) {
1426                delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1427                InternalDecompressionBuffer.pStart = NULL;
1428                InternalDecompressionBuffer.Size   = 0;
1429            }
1430          if (FrameTable) delete[] FrameTable;          if (FrameTable) delete[] FrameTable;
1431          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1432      }      }
# Line 670  namespace gig { Line 1436  namespace gig {
1436  // *************** DimensionRegion ***************  // *************** DimensionRegion ***************
1437  // *  // *
1438    
1439      uint                               DimensionRegion::Instances       = 0;      size_t                             DimensionRegion::Instances       = 0;
1440      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1441    
1442      DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {      DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1443          Instances++;          Instances++;
1444    
1445          memcpy(&Crossfade, &SamplerOptions, 4);          pSample = NULL;
1446            pRegion = pParent;
1447    
1448            if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1449            else memset(&Crossfade, 0, 4);
1450    
1451          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1452    
1453          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1454          _3ewa->ReadInt32(); // unknown, allways 0x0000008C ?          if (_3ewa) { // if '3ewa' chunk exists
1455          LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              _3ewa->ReadInt32(); // unknown, always == chunk size ?
1456          EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1457          _3ewa->ReadInt16(); // unknown              EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1458          LFO1InternalDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1459          _3ewa->ReadInt16(); // unknown              LFO1InternalDepth = _3ewa->ReadUint16();
1460          LFO3InternalDepth = _3ewa->ReadInt16();              _3ewa->ReadInt16(); // unknown
1461          _3ewa->ReadInt16(); // unknown              LFO3InternalDepth = _3ewa->ReadInt16();
1462          LFO1ControlDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1463          _3ewa->ReadInt16(); // unknown              LFO1ControlDepth = _3ewa->ReadUint16();
1464          LFO3ControlDepth = _3ewa->ReadInt16();              _3ewa->ReadInt16(); // unknown
1465          EG1Attack           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO3ControlDepth = _3ewa->ReadInt16();
1466          EG1Decay1           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG1Attack           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1467          _3ewa->ReadInt16(); // unknown              EG1Decay1           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1468          EG1Sustain          = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1469          EG1Release          = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG1Sustain          = _3ewa->ReadUint16();
1470          EG1Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));              EG1Release          = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1471          uint8_t eg1ctrloptions        = _3ewa->ReadUint8();              EG1Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1472          EG1ControllerInvert           = eg1ctrloptions & 0x01;              uint8_t eg1ctrloptions        = _3ewa->ReadUint8();
1473          EG1ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerInvert           = eg1ctrloptions & 0x01;
1474          EG1ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1475          EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1476          EG2Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));              EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1477          uint8_t eg2ctrloptions        = _3ewa->ReadUint8();              EG2Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1478          EG2ControllerInvert           = eg2ctrloptions & 0x01;              uint8_t eg2ctrloptions        = _3ewa->ReadUint8();
1479          EG2ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerInvert           = eg2ctrloptions & 0x01;
1480          EG2ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1481          EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1482          LFO1Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1483          EG2Attack        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO1Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1484          EG2Decay1        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2Attack        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1485          _3ewa->ReadInt16(); // unknown              EG2Decay1        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1486          EG2Sustain       = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1487          EG2Release       = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2Sustain       = _3ewa->ReadUint16();
1488          _3ewa->ReadInt16(); // unknown              EG2Release       = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1489          LFO2ControlDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1490          LFO2Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO2ControlDepth = _3ewa->ReadUint16();
1491          _3ewa->ReadInt16(); // unknown              LFO2Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1492          LFO2InternalDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1493          int32_t eg1decay2 = _3ewa->ReadInt32();              LFO2InternalDepth = _3ewa->ReadUint16();
1494          EG1Decay2          = (double) GIG_EXP_DECODE(eg1decay2);              int32_t eg1decay2 = _3ewa->ReadInt32();
1495          EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);              EG1Decay2          = (double) GIG_EXP_DECODE(eg1decay2);
1496          _3ewa->ReadInt16(); // unknown              EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1497          EG1PreAttack      = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1498          int32_t eg2decay2 = _3ewa->ReadInt32();              EG1PreAttack      = _3ewa->ReadUint16();
1499          EG2Decay2         = (double) GIG_EXP_DECODE(eg2decay2);              int32_t eg2decay2 = _3ewa->ReadInt32();
1500          EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);              EG2Decay2         = (double) GIG_EXP_DECODE(eg2decay2);
1501          _3ewa->ReadInt16(); // unknown              EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1502          EG2PreAttack      = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1503          uint8_t velocityresponse = _3ewa->ReadUint8();              EG2PreAttack      = _3ewa->ReadUint16();
1504          if (velocityresponse < 5) {              uint8_t velocityresponse = _3ewa->ReadUint8();
1505              VelocityResponseCurve = curve_type_nonlinear;              if (velocityresponse < 5) {
1506              VelocityResponseDepth = velocityresponse;                  VelocityResponseCurve = curve_type_nonlinear;
1507          }                  VelocityResponseDepth = velocityresponse;
1508          else if (velocityresponse < 10) {              } else if (velocityresponse < 10) {
1509              VelocityResponseCurve = curve_type_linear;                  VelocityResponseCurve = curve_type_linear;
1510              VelocityResponseDepth = velocityresponse - 5;                  VelocityResponseDepth = velocityresponse - 5;
1511          }              } else if (velocityresponse < 15) {
1512          else if (velocityresponse < 15) {                  VelocityResponseCurve = curve_type_special;
1513              VelocityResponseCurve = curve_type_special;                  VelocityResponseDepth = velocityresponse - 10;
1514              VelocityResponseDepth = velocityresponse - 10;              } else {
1515                    VelocityResponseCurve = curve_type_unknown;
1516                    VelocityResponseDepth = 0;
1517                }
1518                uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1519                if (releasevelocityresponse < 5) {
1520                    ReleaseVelocityResponseCurve = curve_type_nonlinear;
1521                    ReleaseVelocityResponseDepth = releasevelocityresponse;
1522                } else if (releasevelocityresponse < 10) {
1523                    ReleaseVelocityResponseCurve = curve_type_linear;
1524                    ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1525                } else if (releasevelocityresponse < 15) {
1526                    ReleaseVelocityResponseCurve = curve_type_special;
1527                    ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1528                } else {
1529                    ReleaseVelocityResponseCurve = curve_type_unknown;
1530                    ReleaseVelocityResponseDepth = 0;
1531                }
1532                VelocityResponseCurveScaling = _3ewa->ReadUint8();
1533                AttenuationControllerThreshold = _3ewa->ReadInt8();
1534                _3ewa->ReadInt32(); // unknown
1535                SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1536                _3ewa->ReadInt16(); // unknown
1537                uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1538                PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1539                if      (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1540                else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1541                else                                       DimensionBypass = dim_bypass_ctrl_none;
1542                uint8_t pan = _3ewa->ReadUint8();
1543                Pan         = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1544                SelfMask = _3ewa->ReadInt8() & 0x01;
1545                _3ewa->ReadInt8(); // unknown
1546                uint8_t lfo3ctrl = _3ewa->ReadUint8();
1547                LFO3Controller           = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1548                LFO3Sync                 = lfo3ctrl & 0x20; // bit 5
1549                InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1550                AttenuationController  = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1551                uint8_t lfo2ctrl       = _3ewa->ReadUint8();
1552                LFO2Controller         = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1553                LFO2FlipPhase          = lfo2ctrl & 0x80; // bit 7
1554                LFO2Sync               = lfo2ctrl & 0x20; // bit 5
1555                bool extResonanceCtrl  = lfo2ctrl & 0x40; // bit 6
1556                uint8_t lfo1ctrl       = _3ewa->ReadUint8();
1557                LFO1Controller         = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1558                LFO1FlipPhase          = lfo1ctrl & 0x80; // bit 7
1559                LFO1Sync               = lfo1ctrl & 0x40; // bit 6
1560                VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1561                                                            : vcf_res_ctrl_none;
1562                uint16_t eg3depth = _3ewa->ReadUint16();
1563                EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1564                                            : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1565                _3ewa->ReadInt16(); // unknown
1566                ChannelOffset = _3ewa->ReadUint8() / 4;
1567                uint8_t regoptions = _3ewa->ReadUint8();
1568                MSDecode           = regoptions & 0x01; // bit 0
1569                SustainDefeat      = regoptions & 0x02; // bit 1
1570                _3ewa->ReadInt16(); // unknown
1571                VelocityUpperLimit = _3ewa->ReadInt8();
1572                _3ewa->ReadInt8(); // unknown
1573                _3ewa->ReadInt16(); // unknown
1574                ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1575                _3ewa->ReadInt8(); // unknown
1576                _3ewa->ReadInt8(); // unknown
1577                EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1578                uint8_t vcfcutoff = _3ewa->ReadUint8();
1579                VCFEnabled = vcfcutoff & 0x80; // bit 7
1580                VCFCutoff  = vcfcutoff & 0x7f; // lower 7 bits
1581                VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1582                uint8_t vcfvelscale = _3ewa->ReadUint8();
1583                VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1584                VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1585                _3ewa->ReadInt8(); // unknown
1586                uint8_t vcfresonance = _3ewa->ReadUint8();
1587                VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1588                VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1589                uint8_t vcfbreakpoint         = _3ewa->ReadUint8();
1590                VCFKeyboardTracking           = vcfbreakpoint & 0x80; // bit 7
1591                VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1592                uint8_t vcfvelocity = _3ewa->ReadUint8();
1593                VCFVelocityDynamicRange = vcfvelocity % 5;
1594                VCFVelocityCurve        = static_cast<curve_type_t>(vcfvelocity / 5);
1595                VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1596                if (VCFType == vcf_type_lowpass) {
1597                    if (lfo3ctrl & 0x40) // bit 6
1598                        VCFType = vcf_type_lowpassturbo;
1599                }
1600                if (_3ewa->RemainingBytes() >= 8) {
1601                    _3ewa->Read(DimensionUpperLimits, 1, 8);
1602                } else {
1603                    memset(DimensionUpperLimits, 0, 8);
1604                }
1605            } else { // '3ewa' chunk does not exist yet
1606                // use default values
1607                LFO3Frequency                   = 1.0;
1608                EG3Attack                       = 0.0;
1609                LFO1InternalDepth               = 0;
1610                LFO3InternalDepth               = 0;
1611                LFO1ControlDepth                = 0;
1612                LFO3ControlDepth                = 0;
1613                EG1Attack                       = 0.0;
1614                EG1Decay1                       = 0.005;
1615                EG1Sustain                      = 1000;
1616                EG1Release                      = 0.3;
1617                EG1Controller.type              = eg1_ctrl_t::type_none;
1618                EG1Controller.controller_number = 0;
1619                EG1ControllerInvert             = false;
1620                EG1ControllerAttackInfluence    = 0;
1621                EG1ControllerDecayInfluence     = 0;
1622                EG1ControllerReleaseInfluence   = 0;
1623                EG2Controller.type              = eg2_ctrl_t::type_none;
1624                EG2Controller.controller_number = 0;
1625                EG2ControllerInvert             = false;
1626                EG2ControllerAttackInfluence    = 0;
1627                EG2ControllerDecayInfluence     = 0;
1628                EG2ControllerReleaseInfluence   = 0;
1629                LFO1Frequency                   = 1.0;
1630                EG2Attack                       = 0.0;
1631                EG2Decay1                       = 0.005;
1632                EG2Sustain                      = 1000;
1633                EG2Release                      = 60;
1634                LFO2ControlDepth                = 0;
1635                LFO2Frequency                   = 1.0;
1636                LFO2InternalDepth               = 0;
1637                EG1Decay2                       = 0.0;
1638                EG1InfiniteSustain              = true;
1639                EG1PreAttack                    = 0;
1640                EG2Decay2                       = 0.0;
1641                EG2InfiniteSustain              = true;
1642                EG2PreAttack                    = 0;
1643                VelocityResponseCurve           = curve_type_nonlinear;
1644                VelocityResponseDepth           = 3;
1645                ReleaseVelocityResponseCurve    = curve_type_nonlinear;
1646                ReleaseVelocityResponseDepth    = 3;
1647                VelocityResponseCurveScaling    = 32;
1648                AttenuationControllerThreshold  = 0;
1649                SampleStartOffset               = 0;
1650                PitchTrack                      = true;
1651                DimensionBypass                 = dim_bypass_ctrl_none;
1652                Pan                             = 0;
1653                SelfMask                        = true;
1654                LFO3Controller                  = lfo3_ctrl_modwheel;
1655                LFO3Sync                        = false;
1656                InvertAttenuationController     = false;
1657                AttenuationController.type      = attenuation_ctrl_t::type_none;
1658                AttenuationController.controller_number = 0;
1659                LFO2Controller                  = lfo2_ctrl_internal;
1660                LFO2FlipPhase                   = false;
1661                LFO2Sync                        = false;
1662                LFO1Controller                  = lfo1_ctrl_internal;
1663                LFO1FlipPhase                   = false;
1664                LFO1Sync                        = false;
1665                VCFResonanceController          = vcf_res_ctrl_none;
1666                EG3Depth                        = 0;
1667                ChannelOffset                   = 0;
1668                MSDecode                        = false;
1669                SustainDefeat                   = false;
1670                VelocityUpperLimit              = 0;
1671                ReleaseTriggerDecay             = 0;
1672                EG1Hold                         = false;
1673                VCFEnabled                      = false;
1674                VCFCutoff                       = 0;
1675                VCFCutoffController             = vcf_cutoff_ctrl_none;
1676                VCFCutoffControllerInvert       = false;
1677                VCFVelocityScale                = 0;
1678                VCFResonance                    = 0;
1679                VCFResonanceDynamic             = false;
1680                VCFKeyboardTracking             = false;
1681                VCFKeyboardTrackingBreakpoint   = 0;
1682                VCFVelocityDynamicRange         = 0x04;
1683                VCFVelocityCurve                = curve_type_linear;
1684                VCFType                         = vcf_type_lowpass;
1685                memset(DimensionUpperLimits, 127, 8);
1686          }          }
1687          else {  
1688              VelocityResponseCurve = curve_type_unknown;          pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1689              VelocityResponseDepth = 0;                                                       VelocityResponseDepth,
1690                                                         VelocityResponseCurveScaling);
1691    
1692            pVelocityReleaseTable = GetReleaseVelocityTable(
1693                                        ReleaseVelocityResponseCurve,
1694                                        ReleaseVelocityResponseDepth
1695                                    );
1696    
1697            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1698                                                          VCFVelocityDynamicRange,
1699                                                          VCFVelocityScale,
1700                                                          VCFCutoffController);
1701    
1702            SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1703            VelocityTable = 0;
1704        }
1705    
1706        /*
1707         * Constructs a DimensionRegion by copying all parameters from
1708         * another DimensionRegion
1709         */
1710        DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1711            Instances++;
1712            //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1713            *this = src; // default memberwise shallow copy of all parameters
1714            pParentList = _3ewl; // restore the chunk pointer
1715    
1716            // deep copy of owned structures
1717            if (src.VelocityTable) {
1718                VelocityTable = new uint8_t[128];
1719                for (int k = 0 ; k < 128 ; k++)
1720                    VelocityTable[k] = src.VelocityTable[k];
1721          }          }
1722          uint8_t releasevelocityresponse = _3ewa->ReadUint8();          if (src.pSampleLoops) {
1723          if (releasevelocityresponse < 5) {              pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1724              ReleaseVelocityResponseCurve = curve_type_nonlinear;              for (int k = 0 ; k < src.SampleLoops ; k++)
1725              ReleaseVelocityResponseDepth = releasevelocityresponse;                  pSampleLoops[k] = src.pSampleLoops[k];
         }  
         else if (releasevelocityresponse < 10) {  
             ReleaseVelocityResponseCurve = curve_type_linear;  
             ReleaseVelocityResponseDepth = releasevelocityresponse - 5;  
         }  
         else if (releasevelocityresponse < 15) {  
             ReleaseVelocityResponseCurve = curve_type_special;  
             ReleaseVelocityResponseDepth = releasevelocityresponse - 10;  
1726          }          }
1727          else {      }
1728              ReleaseVelocityResponseCurve = curve_type_unknown;      
1729              ReleaseVelocityResponseDepth = 0;      /**
1730         * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1731         * and assign it to this object.
1732         *
1733         * Note that all sample pointers referenced by @a orig are simply copied as
1734         * memory address. Thus the respective samples are shared, not duplicated!
1735         *
1736         * @param orig - original DimensionRegion object to be copied from
1737         */
1738        void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1739            CopyAssign(orig, NULL);
1740        }
1741    
1742        /**
1743         * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1744         * and assign it to this object.
1745         *
1746         * @param orig - original DimensionRegion object to be copied from
1747         * @param mSamples - crosslink map between the foreign file's samples and
1748         *                   this file's samples
1749         */
1750        void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1751            // delete all allocated data first
1752            if (VelocityTable) delete [] VelocityTable;
1753            if (pSampleLoops) delete [] pSampleLoops;
1754            
1755            // backup parent list pointer
1756            RIFF::List* p = pParentList;
1757            
1758            gig::Sample* pOriginalSample = pSample;
1759            gig::Region* pOriginalRegion = pRegion;
1760            
1761            //NOTE: copy code copied from assignment constructor above, see comment there as well
1762            
1763            *this = *orig; // default memberwise shallow copy of all parameters
1764            
1765            // restore members that shall not be altered
1766            pParentList = p; // restore the chunk pointer
1767            pRegion = pOriginalRegion;
1768            
1769            // only take the raw sample reference reference if the
1770            // two DimensionRegion objects are part of the same file
1771            if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1772                pSample = pOriginalSample;
1773            }
1774            
1775            if (mSamples && mSamples->count(orig->pSample)) {
1776                pSample = mSamples->find(orig->pSample)->second;
1777          }          }
         VelocityResponseCurveScaling = _3ewa->ReadUint8();  
         AttenuationControllerThreshold = _3ewa->ReadInt8();  
         _3ewa->ReadInt32(); // unknown  
         SampleStartOffset = (uint16_t) _3ewa->ReadInt16();  
         _3ewa->ReadInt16(); // unknown  
         uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();  
         PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);  
         if      (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;  
         else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;  
         else                                       DimensionBypass = dim_bypass_ctrl_none;  
         uint8_t pan = _3ewa->ReadUint8();  
         Pan         = (pan < 64) ? pan : (-1) * (int8_t)pan - 63;  
         SelfMask = _3ewa->ReadInt8() & 0x01;  
         _3ewa->ReadInt8(); // unknown  
         uint8_t lfo3ctrl = _3ewa->ReadUint8();  
         LFO3Controller           = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits  
         LFO3Sync                 = lfo3ctrl & 0x20; // bit 5  
         InvertAttenuationController = lfo3ctrl & 0x80; // bit 7  
         if (VCFType == vcf_type_lowpass) {  
             if (lfo3ctrl & 0x40) // bit 6  
                 VCFType = vcf_type_lowpassturbo;  
         }  
         AttenuationController  = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));  
         uint8_t lfo2ctrl       = _3ewa->ReadUint8();  
         LFO2Controller         = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits  
         LFO2FlipPhase          = lfo2ctrl & 0x80; // bit 7  
         LFO2Sync               = lfo2ctrl & 0x20; // bit 5  
         bool extResonanceCtrl  = lfo2ctrl & 0x40; // bit 6  
         uint8_t lfo1ctrl       = _3ewa->ReadUint8();  
         LFO1Controller         = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits  
         LFO1FlipPhase          = lfo1ctrl & 0x80; // bit 7  
         LFO1Sync               = lfo1ctrl & 0x40; // bit 6  
         VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))  
                                                     : vcf_res_ctrl_none;  
         uint16_t eg3depth = _3ewa->ReadUint16();  
         EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */  
                                       : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */  
         _3ewa->ReadInt16(); // unknown  
         ChannelOffset = _3ewa->ReadUint8() / 4;  
         uint8_t regoptions = _3ewa->ReadUint8();  
         MSDecode           = regoptions & 0x01; // bit 0  
         SustainDefeat      = regoptions & 0x02; // bit 1  
         _3ewa->ReadInt16(); // unknown  
         VelocityUpperLimit = _3ewa->ReadInt8();  
         _3ewa->ReadInt8(); // unknown  
         _3ewa->ReadInt16(); // unknown  
         ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay  
         _3ewa->ReadInt8(); // unknown  
         _3ewa->ReadInt8(); // unknown  
         EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7  
         uint8_t vcfcutoff = _3ewa->ReadUint8();  
         VCFEnabled = vcfcutoff & 0x80; // bit 7  
         VCFCutoff  = vcfcutoff & 0x7f; // lower 7 bits  
         VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());  
         VCFVelocityScale = _3ewa->ReadUint8();  
         _3ewa->ReadInt8(); // unknown  
         uint8_t vcfresonance = _3ewa->ReadUint8();  
         VCFResonance = vcfresonance & 0x7f; // lower 7 bits  
         VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7  
         uint8_t vcfbreakpoint         = _3ewa->ReadUint8();  
         VCFKeyboardTracking           = vcfbreakpoint & 0x80; // bit 7  
         VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits  
         uint8_t vcfvelocity = _3ewa->ReadUint8();  
         VCFVelocityDynamicRange = vcfvelocity % 5;  
         VCFVelocityCurve        = static_cast<curve_type_t>(vcfvelocity / 5);  
         VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());  
1778    
1779          // get the corresponding velocity->volume table from the table map or create & calculate that table if it doesn't exist yet          // deep copy of owned structures
1780          uint32_t tableKey = (VelocityResponseCurve<<16) | (VelocityResponseDepth<<8) | VelocityResponseCurveScaling;          if (orig->VelocityTable) {
1781          if (pVelocityTables->count(tableKey)) { // if key exists              VelocityTable = new uint8_t[128];
1782              pVelocityAttenuationTable = (*pVelocityTables)[tableKey];              for (int k = 0 ; k < 128 ; k++)
1783                    VelocityTable[k] = orig->VelocityTable[k];
1784          }          }
1785          else {          if (orig->pSampleLoops) {
1786              pVelocityAttenuationTable = new double[128];              pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1787              switch (VelocityResponseCurve) { // calculate the new table              for (int k = 0 ; k < orig->SampleLoops ; k++)
1788                    pSampleLoops[k] = orig->pSampleLoops[k];
1789            }
1790        }
1791    
1792        /**
1793         * Updates the respective member variable and updates @c SampleAttenuation
1794         * which depends on this value.
1795         */
1796        void DimensionRegion::SetGain(int32_t gain) {
1797            DLS::Sampler::SetGain(gain);
1798            SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1799        }
1800    
1801        /**
1802         * Apply dimension region settings to the respective RIFF chunks. You
1803         * have to call File::Save() to make changes persistent.
1804         *
1805         * Usually there is absolutely no need to call this method explicitly.
1806         * It will be called automatically when File::Save() was called.
1807         *
1808         * @param pProgress - callback function for progress notification
1809         */
1810        void DimensionRegion::UpdateChunks(progress_t* pProgress) {
1811            // first update base class's chunk
1812            DLS::Sampler::UpdateChunks(pProgress);
1813    
1814            RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1815            uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1816            pData[12] = Crossfade.in_start;
1817            pData[13] = Crossfade.in_end;
1818            pData[14] = Crossfade.out_start;
1819            pData[15] = Crossfade.out_end;
1820    
1821            // make sure '3ewa' chunk exists
1822            RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1823            if (!_3ewa) {
1824                File* pFile = (File*) GetParent()->GetParent()->GetParent();
1825                bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1826                _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1827            }
1828            pData = (uint8_t*) _3ewa->LoadChunkData();
1829    
1830            // update '3ewa' chunk with DimensionRegion's current settings
1831    
1832            const uint32_t chunksize = _3ewa->GetNewSize();
1833            store32(&pData[0], chunksize); // unknown, always chunk size?
1834    
1835            const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1836            store32(&pData[4], lfo3freq);
1837    
1838            const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1839            store32(&pData[8], eg3attack);
1840    
1841            // next 2 bytes unknown
1842    
1843            store16(&pData[14], LFO1InternalDepth);
1844    
1845            // next 2 bytes unknown
1846    
1847            store16(&pData[18], LFO3InternalDepth);
1848    
1849            // next 2 bytes unknown
1850    
1851            store16(&pData[22], LFO1ControlDepth);
1852    
1853            // next 2 bytes unknown
1854    
1855            store16(&pData[26], LFO3ControlDepth);
1856    
1857            const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
1858            store32(&pData[28], eg1attack);
1859    
1860            const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
1861            store32(&pData[32], eg1decay1);
1862    
1863            // next 2 bytes unknown
1864    
1865            store16(&pData[38], EG1Sustain);
1866    
1867            const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
1868            store32(&pData[40], eg1release);
1869    
1870            const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
1871            pData[44] = eg1ctl;
1872    
1873            const uint8_t eg1ctrloptions =
1874                (EG1ControllerInvert ? 0x01 : 0x00) |
1875                GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
1876                GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
1877                GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
1878            pData[45] = eg1ctrloptions;
1879    
1880            const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
1881            pData[46] = eg2ctl;
1882    
1883            const uint8_t eg2ctrloptions =
1884                (EG2ControllerInvert ? 0x01 : 0x00) |
1885                GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
1886                GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
1887                GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
1888            pData[47] = eg2ctrloptions;
1889    
1890            const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
1891            store32(&pData[48], lfo1freq);
1892    
1893            const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
1894            store32(&pData[52], eg2attack);
1895    
1896            const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
1897            store32(&pData[56], eg2decay1);
1898    
1899            // next 2 bytes unknown
1900    
1901            store16(&pData[62], EG2Sustain);
1902    
1903            const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
1904            store32(&pData[64], eg2release);
1905    
1906            // next 2 bytes unknown
1907    
1908            store16(&pData[70], LFO2ControlDepth);
1909    
1910            const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
1911            store32(&pData[72], lfo2freq);
1912    
1913            // next 2 bytes unknown
1914    
1915            store16(&pData[78], LFO2InternalDepth);
1916    
1917            const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
1918            store32(&pData[80], eg1decay2);
1919    
1920            // next 2 bytes unknown
1921    
1922            store16(&pData[86], EG1PreAttack);
1923    
1924            const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
1925            store32(&pData[88], eg2decay2);
1926    
1927            // next 2 bytes unknown
1928    
1929            store16(&pData[94], EG2PreAttack);
1930    
1931            {
1932                if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
1933                uint8_t velocityresponse = VelocityResponseDepth;
1934                switch (VelocityResponseCurve) {
1935                  case curve_type_nonlinear:                  case curve_type_nonlinear:
1936                      for (int velocity = 0; velocity < 128; velocity++) {                      break;
                         pVelocityAttenuationTable[velocity] =  
                             GIG_VELOCITY_TRANSFORM_NONLINEAR((double)(velocity+1),(double)(VelocityResponseDepth+1),(double)VelocityResponseCurveScaling);  
                         if      (pVelocityAttenuationTable[velocity] > 1.0) pVelocityAttenuationTable[velocity] = 1.0;  
                         else if (pVelocityAttenuationTable[velocity] < 0.0) pVelocityAttenuationTable[velocity] = 0.0;  
                      }  
                      break;  
1937                  case curve_type_linear:                  case curve_type_linear:
1938                      for (int velocity = 0; velocity < 128; velocity++) {                      velocityresponse += 5;
                         pVelocityAttenuationTable[velocity] =  
                             GIG_VELOCITY_TRANSFORM_LINEAR((double)velocity,(double)(VelocityResponseDepth+1),(double)VelocityResponseCurveScaling);  
                         if      (pVelocityAttenuationTable[velocity] > 1.0) pVelocityAttenuationTable[velocity] = 1.0;  
                         else if (pVelocityAttenuationTable[velocity] < 0.0) pVelocityAttenuationTable[velocity] = 0.0;  
                     }  
1939                      break;                      break;
1940                  case curve_type_special:                  case curve_type_special:
1941                      for (int velocity = 0; velocity < 128; velocity++) {                      velocityresponse += 10;
1942                          pVelocityAttenuationTable[velocity] =                      break;
1943                              GIG_VELOCITY_TRANSFORM_SPECIAL((double)(velocity+1),(double)(VelocityResponseDepth+1),(double)VelocityResponseCurveScaling);                  case curve_type_unknown:
1944                          if      (pVelocityAttenuationTable[velocity] > 1.0) pVelocityAttenuationTable[velocity] = 1.0;                  default:
1945                          else if (pVelocityAttenuationTable[velocity] < 0.0) pVelocityAttenuationTable[velocity] = 0.0;                      throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
1946                      }              }
1947                pData[96] = velocityresponse;
1948            }
1949    
1950            {
1951                if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
1952                uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
1953                switch (ReleaseVelocityResponseCurve) {
1954                    case curve_type_nonlinear:
1955                        break;
1956                    case curve_type_linear:
1957                        releasevelocityresponse += 5;
1958                        break;
1959                    case curve_type_special:
1960                        releasevelocityresponse += 10;
1961                      break;                      break;
1962                  case curve_type_unknown:                  case curve_type_unknown:
1963                  default:                  default:
1964                      throw gig::Exception("Unknown transform curve type.");                      throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
1965                }
1966                pData[97] = releasevelocityresponse;
1967            }
1968    
1969            pData[98] = VelocityResponseCurveScaling;
1970    
1971            pData[99] = AttenuationControllerThreshold;
1972    
1973            // next 4 bytes unknown
1974    
1975            store16(&pData[104], SampleStartOffset);
1976    
1977            // next 2 bytes unknown
1978    
1979            {
1980                uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
1981                switch (DimensionBypass) {
1982                    case dim_bypass_ctrl_94:
1983                        pitchTrackDimensionBypass |= 0x10;
1984                        break;
1985                    case dim_bypass_ctrl_95:
1986                        pitchTrackDimensionBypass |= 0x20;
1987                        break;
1988                    case dim_bypass_ctrl_none:
1989                        //FIXME: should we set anything here?
1990                        break;
1991                    default:
1992                        throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
1993              }              }
1994              (*pVelocityTables)[tableKey] = pVelocityAttenuationTable; // put the new table into the tables map              pData[108] = pitchTrackDimensionBypass;
1995            }
1996    
1997            const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
1998            pData[109] = pan;
1999    
2000            const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
2001            pData[110] = selfmask;
2002    
2003            // next byte unknown
2004    
2005            {
2006                uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
2007                if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
2008                if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
2009                if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
2010                pData[112] = lfo3ctrl;
2011            }
2012    
2013            const uint8_t attenctl = EncodeLeverageController(AttenuationController);
2014            pData[113] = attenctl;
2015    
2016            {
2017                uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
2018                if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
2019                if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5
2020                if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
2021                pData[114] = lfo2ctrl;
2022            }
2023    
2024            {
2025                uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
2026                if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
2027                if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6
2028                if (VCFResonanceController != vcf_res_ctrl_none)
2029                    lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
2030                pData[115] = lfo1ctrl;
2031            }
2032    
2033            const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
2034                                                      : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
2035            store16(&pData[116], eg3depth);
2036    
2037            // next 2 bytes unknown
2038    
2039            const uint8_t channeloffset = ChannelOffset * 4;
2040            pData[120] = channeloffset;
2041    
2042            {
2043                uint8_t regoptions = 0;
2044                if (MSDecode)      regoptions |= 0x01; // bit 0
2045                if (SustainDefeat) regoptions |= 0x02; // bit 1
2046                pData[121] = regoptions;
2047            }
2048    
2049            // next 2 bytes unknown
2050    
2051            pData[124] = VelocityUpperLimit;
2052    
2053            // next 3 bytes unknown
2054    
2055            pData[128] = ReleaseTriggerDecay;
2056    
2057            // next 2 bytes unknown
2058    
2059            const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2060            pData[131] = eg1hold;
2061    
2062            const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) |  /* bit 7 */
2063                                      (VCFCutoff & 0x7f);   /* lower 7 bits */
2064            pData[132] = vcfcutoff;
2065    
2066            pData[133] = VCFCutoffController;
2067    
2068            const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2069                                        (VCFVelocityScale & 0x7f); /* lower 7 bits */
2070            pData[134] = vcfvelscale;
2071    
2072            // next byte unknown
2073    
2074            const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2075                                         (VCFResonance & 0x7f); /* lower 7 bits */
2076            pData[136] = vcfresonance;
2077    
2078            const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2079                                          (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2080            pData[137] = vcfbreakpoint;
2081    
2082            const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2083                                        VCFVelocityCurve * 5;
2084            pData[138] = vcfvelocity;
2085    
2086            const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2087            pData[139] = vcftype;
2088    
2089            if (chunksize >= 148) {
2090                memcpy(&pData[140], DimensionUpperLimits, 8);
2091            }
2092        }
2093    
2094        double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2095            curve_type_t curveType = releaseVelocityResponseCurve;
2096            uint8_t depth = releaseVelocityResponseDepth;
2097            // this models a strange behaviour or bug in GSt: two of the
2098            // velocity response curves for release time are not used even
2099            // if specified, instead another curve is chosen.
2100            if ((curveType == curve_type_nonlinear && depth == 0) ||
2101                (curveType == curve_type_special   && depth == 4)) {
2102                curveType = curve_type_nonlinear;
2103                depth = 3;
2104          }          }
2105            return GetVelocityTable(curveType, depth, 0);
2106      }      }
2107    
2108        double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2109                                                        uint8_t vcfVelocityDynamicRange,
2110                                                        uint8_t vcfVelocityScale,
2111                                                        vcf_cutoff_ctrl_t vcfCutoffController)
2112        {
2113            curve_type_t curveType = vcfVelocityCurve;
2114            uint8_t depth = vcfVelocityDynamicRange;
2115            // even stranger GSt: two of the velocity response curves for
2116            // filter cutoff are not used, instead another special curve
2117            // is chosen. This curve is not used anywhere else.
2118            if ((curveType == curve_type_nonlinear && depth == 0) ||
2119                (curveType == curve_type_special   && depth == 4)) {
2120                curveType = curve_type_special;
2121                depth = 5;
2122            }
2123            return GetVelocityTable(curveType, depth,
2124                                    (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2125                                        ? vcfVelocityScale : 0);
2126        }
2127    
2128        // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2129        double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2130        {
2131            double* table;
2132            uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2133            if (pVelocityTables->count(tableKey)) { // if key exists
2134                table = (*pVelocityTables)[tableKey];
2135            }
2136            else {
2137                table = CreateVelocityTable(curveType, depth, scaling);
2138                (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
2139            }
2140            return table;
2141        }
2142    
2143        Region* DimensionRegion::GetParent() const {
2144            return pRegion;
2145        }
2146    
2147    // show error if some _lev_ctrl_* enum entry is not listed in the following function
2148    // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2149    // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2150    //#pragma GCC diagnostic push
2151    //#pragma GCC diagnostic error "-Wswitch"
2152    
2153      leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {      leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2154          leverage_ctrl_t decodedcontroller;          leverage_ctrl_t decodedcontroller;
2155          switch (EncodedController) {          switch (EncodedController) {
# Line 981  namespace gig { Line 2261  namespace gig {
2261                  decodedcontroller.controller_number = 95;                  decodedcontroller.controller_number = 95;
2262                  break;                  break;
2263    
2264                // format extension (these controllers are so far only supported by
2265                // LinuxSampler & gigedit) they will *NOT* work with
2266                // Gigasampler/GigaStudio !
2267                case _lev_ctrl_CC3_EXT:
2268                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2269                    decodedcontroller.controller_number = 3;
2270                    break;
2271                case _lev_ctrl_CC6_EXT:
2272                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2273                    decodedcontroller.controller_number = 6;
2274                    break;
2275                case _lev_ctrl_CC7_EXT:
2276                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2277                    decodedcontroller.controller_number = 7;
2278                    break;
2279                case _lev_ctrl_CC8_EXT:
2280                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2281                    decodedcontroller.controller_number = 8;
2282                    break;
2283                case _lev_ctrl_CC9_EXT:
2284                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2285                    decodedcontroller.controller_number = 9;
2286                    break;
2287                case _lev_ctrl_CC10_EXT:
2288                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2289                    decodedcontroller.controller_number = 10;
2290                    break;
2291                case _lev_ctrl_CC11_EXT:
2292                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2293                    decodedcontroller.controller_number = 11;
2294                    break;
2295                case _lev_ctrl_CC14_EXT:
2296                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2297                    decodedcontroller.controller_number = 14;
2298                    break;
2299                case _lev_ctrl_CC15_EXT:
2300                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2301                    decodedcontroller.controller_number = 15;
2302                    break;
2303                case _lev_ctrl_CC20_EXT:
2304                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2305                    decodedcontroller.controller_number = 20;
2306                    break;
2307                case _lev_ctrl_CC21_EXT:
2308                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2309                    decodedcontroller.controller_number = 21;
2310                    break;
2311                case _lev_ctrl_CC22_EXT:
2312                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2313                    decodedcontroller.controller_number = 22;
2314                    break;
2315                case _lev_ctrl_CC23_EXT:
2316                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2317                    decodedcontroller.controller_number = 23;
2318                    break;
2319                case _lev_ctrl_CC24_EXT:
2320                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2321                    decodedcontroller.controller_number = 24;
2322                    break;
2323                case _lev_ctrl_CC25_EXT:
2324                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2325                    decodedcontroller.controller_number = 25;
2326                    break;
2327                case _lev_ctrl_CC26_EXT:
2328                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2329                    decodedcontroller.controller_number = 26;
2330                    break;
2331                case _lev_ctrl_CC27_EXT:
2332                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2333                    decodedcontroller.controller_number = 27;
2334                    break;
2335                case _lev_ctrl_CC28_EXT:
2336                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2337                    decodedcontroller.controller_number = 28;
2338                    break;
2339                case _lev_ctrl_CC29_EXT:
2340                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2341                    decodedcontroller.controller_number = 29;
2342                    break;
2343                case _lev_ctrl_CC30_EXT:
2344                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2345                    decodedcontroller.controller_number = 30;
2346                    break;
2347                case _lev_ctrl_CC31_EXT:
2348                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2349                    decodedcontroller.controller_number = 31;
2350                    break;
2351                case _lev_ctrl_CC68_EXT:
2352                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2353                    decodedcontroller.controller_number = 68;
2354                    break;
2355                case _lev_ctrl_CC69_EXT:
2356                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2357                    decodedcontroller.controller_number = 69;
2358                    break;
2359                case _lev_ctrl_CC70_EXT:
2360                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2361                    decodedcontroller.controller_number = 70;
2362                    break;
2363                case _lev_ctrl_CC71_EXT:
2364                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2365                    decodedcontroller.controller_number = 71;
2366                    break;
2367                case _lev_ctrl_CC72_EXT:
2368                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2369                    decodedcontroller.controller_number = 72;
2370                    break;
2371                case _lev_ctrl_CC73_EXT:
2372                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2373                    decodedcontroller.controller_number = 73;
2374                    break;
2375                case _lev_ctrl_CC74_EXT:
2376                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2377                    decodedcontroller.controller_number = 74;
2378                    break;
2379                case _lev_ctrl_CC75_EXT:
2380                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2381                    decodedcontroller.controller_number = 75;
2382                    break;
2383                case _lev_ctrl_CC76_EXT:
2384                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2385                    decodedcontroller.controller_number = 76;
2386                    break;
2387                case _lev_ctrl_CC77_EXT:
2388                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2389                    decodedcontroller.controller_number = 77;
2390                    break;
2391                case _lev_ctrl_CC78_EXT:
2392                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2393                    decodedcontroller.controller_number = 78;
2394                    break;
2395                case _lev_ctrl_CC79_EXT:
2396                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2397                    decodedcontroller.controller_number = 79;
2398                    break;
2399                case _lev_ctrl_CC84_EXT:
2400                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2401                    decodedcontroller.controller_number = 84;
2402                    break;
2403                case _lev_ctrl_CC85_EXT:
2404                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2405                    decodedcontroller.controller_number = 85;
2406                    break;
2407                case _lev_ctrl_CC86_EXT:
2408                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2409                    decodedcontroller.controller_number = 86;
2410                    break;
2411                case _lev_ctrl_CC87_EXT:
2412                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2413                    decodedcontroller.controller_number = 87;
2414                    break;
2415                case _lev_ctrl_CC89_EXT:
2416                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2417                    decodedcontroller.controller_number = 89;
2418                    break;
2419                case _lev_ctrl_CC90_EXT:
2420                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2421                    decodedcontroller.controller_number = 90;
2422                    break;
2423                case _lev_ctrl_CC96_EXT:
2424                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2425                    decodedcontroller.controller_number = 96;
2426                    break;
2427                case _lev_ctrl_CC97_EXT:
2428                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2429                    decodedcontroller.controller_number = 97;
2430                    break;
2431                case _lev_ctrl_CC102_EXT:
2432                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2433                    decodedcontroller.controller_number = 102;
2434                    break;
2435                case _lev_ctrl_CC103_EXT:
2436                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2437                    decodedcontroller.controller_number = 103;
2438                    break;
2439                case _lev_ctrl_CC104_EXT:
2440                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2441                    decodedcontroller.controller_number = 104;
2442                    break;
2443                case _lev_ctrl_CC105_EXT:
2444                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2445                    decodedcontroller.controller_number = 105;
2446                    break;
2447                case _lev_ctrl_CC106_EXT:
2448                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2449                    decodedcontroller.controller_number = 106;
2450                    break;
2451                case _lev_ctrl_CC107_EXT:
2452                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2453                    decodedcontroller.controller_number = 107;
2454                    break;
2455                case _lev_ctrl_CC108_EXT:
2456                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2457                    decodedcontroller.controller_number = 108;
2458                    break;
2459                case _lev_ctrl_CC109_EXT:
2460                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2461                    decodedcontroller.controller_number = 109;
2462                    break;
2463                case _lev_ctrl_CC110_EXT:
2464                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2465                    decodedcontroller.controller_number = 110;
2466                    break;
2467                case _lev_ctrl_CC111_EXT:
2468                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2469                    decodedcontroller.controller_number = 111;
2470                    break;
2471                case _lev_ctrl_CC112_EXT:
2472                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2473                    decodedcontroller.controller_number = 112;
2474                    break;
2475                case _lev_ctrl_CC113_EXT:
2476                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2477                    decodedcontroller.controller_number = 113;
2478                    break;
2479                case _lev_ctrl_CC114_EXT:
2480                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2481                    decodedcontroller.controller_number = 114;
2482                    break;
2483                case _lev_ctrl_CC115_EXT:
2484                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2485                    decodedcontroller.controller_number = 115;
2486                    break;
2487                case _lev_ctrl_CC116_EXT:
2488                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2489                    decodedcontroller.controller_number = 116;
2490                    break;
2491                case _lev_ctrl_CC117_EXT:
2492                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2493                    decodedcontroller.controller_number = 117;
2494                    break;
2495                case _lev_ctrl_CC118_EXT:
2496                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2497                    decodedcontroller.controller_number = 118;
2498                    break;
2499                case _lev_ctrl_CC119_EXT:
2500                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2501                    decodedcontroller.controller_number = 119;
2502                    break;
2503    
2504              // unknown controller type              // unknown controller type
2505              default:              default:
2506                  throw gig::Exception("Unknown leverage controller type.");                  throw gig::Exception("Unknown leverage controller type.");
2507          }          }
2508          return decodedcontroller;          return decodedcontroller;
2509      }      }
2510        
2511    // see above (diagnostic push not supported prior GCC 4.6)
2512    //#pragma GCC diagnostic pop
2513    
2514        DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2515            _lev_ctrl_t encodedcontroller;
2516            switch (DecodedController.type) {
2517                // special controller
2518                case leverage_ctrl_t::type_none:
2519                    encodedcontroller = _lev_ctrl_none;
2520                    break;
2521                case leverage_ctrl_t::type_velocity:
2522                    encodedcontroller = _lev_ctrl_velocity;
2523                    break;
2524                case leverage_ctrl_t::type_channelaftertouch:
2525                    encodedcontroller = _lev_ctrl_channelaftertouch;
2526                    break;
2527    
2528                // ordinary MIDI control change controller
2529                case leverage_ctrl_t::type_controlchange:
2530                    switch (DecodedController.controller_number) {
2531                        case 1:
2532                            encodedcontroller = _lev_ctrl_modwheel;
2533                            break;
2534                        case 2:
2535                            encodedcontroller = _lev_ctrl_breath;
2536                            break;
2537                        case 4:
2538                            encodedcontroller = _lev_ctrl_foot;
2539                            break;
2540                        case 12:
2541                            encodedcontroller = _lev_ctrl_effect1;
2542                            break;
2543                        case 13:
2544                            encodedcontroller = _lev_ctrl_effect2;
2545                            break;
2546                        case 16:
2547                            encodedcontroller = _lev_ctrl_genpurpose1;
2548                            break;
2549                        case 17:
2550                            encodedcontroller = _lev_ctrl_genpurpose2;
2551                            break;
2552                        case 18:
2553                            encodedcontroller = _lev_ctrl_genpurpose3;
2554                            break;
2555                        case 19:
2556                            encodedcontroller = _lev_ctrl_genpurpose4;
2557                            break;
2558                        case 5:
2559                            encodedcontroller = _lev_ctrl_portamentotime;
2560                            break;
2561                        case 64:
2562                            encodedcontroller = _lev_ctrl_sustainpedal;
2563                            break;
2564                        case 65:
2565                            encodedcontroller = _lev_ctrl_portamento;
2566                            break;
2567                        case 66:
2568                            encodedcontroller = _lev_ctrl_sostenutopedal;
2569                            break;
2570                        case 67:
2571                            encodedcontroller = _lev_ctrl_softpedal;
2572                            break;
2573                        case 80:
2574                            encodedcontroller = _lev_ctrl_genpurpose5;
2575                            break;
2576                        case 81:
2577                            encodedcontroller = _lev_ctrl_genpurpose6;
2578                            break;
2579                        case 82:
2580                            encodedcontroller = _lev_ctrl_genpurpose7;
2581                            break;
2582                        case 83:
2583                            encodedcontroller = _lev_ctrl_genpurpose8;
2584                            break;
2585                        case 91:
2586                            encodedcontroller = _lev_ctrl_effect1depth;
2587                            break;
2588                        case 92:
2589                            encodedcontroller = _lev_ctrl_effect2depth;
2590                            break;
2591                        case 93:
2592                            encodedcontroller = _lev_ctrl_effect3depth;
2593                            break;
2594                        case 94:
2595                            encodedcontroller = _lev_ctrl_effect4depth;
2596                            break;
2597                        case 95:
2598                            encodedcontroller = _lev_ctrl_effect5depth;
2599                            break;
2600    
2601                        // format extension (these controllers are so far only
2602                        // supported by LinuxSampler & gigedit) they will *NOT*
2603                        // work with Gigasampler/GigaStudio !
2604                        case 3:
2605                            encodedcontroller = _lev_ctrl_CC3_EXT;
2606                            break;
2607                        case 6:
2608                            encodedcontroller = _lev_ctrl_CC6_EXT;
2609                            break;
2610                        case 7:
2611                            encodedcontroller = _lev_ctrl_CC7_EXT;
2612                            break;
2613                        case 8:
2614                            encodedcontroller = _lev_ctrl_CC8_EXT;
2615                            break;
2616                        case 9:
2617                            encodedcontroller = _lev_ctrl_CC9_EXT;
2618                            break;
2619                        case 10:
2620                            encodedcontroller = _lev_ctrl_CC10_EXT;
2621                            break;
2622                        case 11:
2623                            encodedcontroller = _lev_ctrl_CC11_EXT;
2624                            break;
2625                        case 14:
2626                            encodedcontroller = _lev_ctrl_CC14_EXT;
2627                            break;
2628                        case 15:
2629                            encodedcontroller = _lev_ctrl_CC15_EXT;
2630                            break;
2631                        case 20:
2632                            encodedcontroller = _lev_ctrl_CC20_EXT;
2633                            break;
2634                        case 21:
2635                            encodedcontroller = _lev_ctrl_CC21_EXT;
2636                            break;
2637                        case 22:
2638                            encodedcontroller = _lev_ctrl_CC22_EXT;
2639                            break;
2640                        case 23:
2641                            encodedcontroller = _lev_ctrl_CC23_EXT;
2642                            break;
2643                        case 24:
2644                            encodedcontroller = _lev_ctrl_CC24_EXT;
2645                            break;
2646                        case 25:
2647                            encodedcontroller = _lev_ctrl_CC25_EXT;
2648                            break;
2649                        case 26:
2650                            encodedcontroller = _lev_ctrl_CC26_EXT;
2651                            break;
2652                        case 27:
2653                            encodedcontroller = _lev_ctrl_CC27_EXT;
2654                            break;
2655                        case 28:
2656                            encodedcontroller = _lev_ctrl_CC28_EXT;
2657                            break;
2658                        case 29:
2659                            encodedcontroller = _lev_ctrl_CC29_EXT;
2660                            break;
2661                        case 30:
2662                            encodedcontroller = _lev_ctrl_CC30_EXT;
2663                            break;
2664                        case 31:
2665                            encodedcontroller = _lev_ctrl_CC31_EXT;
2666                            break;
2667                        case 68:
2668                            encodedcontroller = _lev_ctrl_CC68_EXT;
2669                            break;
2670                        case 69:
2671                            encodedcontroller = _lev_ctrl_CC69_EXT;
2672                            break;
2673                        case 70:
2674                            encodedcontroller = _lev_ctrl_CC70_EXT;
2675                            break;
2676                        case 71:
2677                            encodedcontroller = _lev_ctrl_CC71_EXT;
2678                            break;
2679                        case 72:
2680                            encodedcontroller = _lev_ctrl_CC72_EXT;
2681                            break;
2682                        case 73:
2683                            encodedcontroller = _lev_ctrl_CC73_EXT;
2684                            break;
2685                        case 74:
2686                            encodedcontroller = _lev_ctrl_CC74_EXT;
2687                            break;
2688                        case 75:
2689                            encodedcontroller = _lev_ctrl_CC75_EXT;
2690                            break;
2691                        case 76:
2692                            encodedcontroller = _lev_ctrl_CC76_EXT;
2693                            break;
2694                        case 77:
2695                            encodedcontroller = _lev_ctrl_CC77_EXT;
2696                            break;
2697                        case 78:
2698                            encodedcontroller = _lev_ctrl_CC78_EXT;
2699                            break;
2700                        case 79:
2701                            encodedcontroller = _lev_ctrl_CC79_EXT;
2702                            break;
2703                        case 84:
2704                            encodedcontroller = _lev_ctrl_CC84_EXT;
2705                            break;
2706                        case 85:
2707                            encodedcontroller = _lev_ctrl_CC85_EXT;
2708                            break;
2709                        case 86:
2710                            encodedcontroller = _lev_ctrl_CC86_EXT;
2711                            break;
2712                        case 87:
2713                            encodedcontroller = _lev_ctrl_CC87_EXT;
2714                            break;
2715                        case 89:
2716                            encodedcontroller = _lev_ctrl_CC89_EXT;
2717                            break;
2718                        case 90:
2719                            encodedcontroller = _lev_ctrl_CC90_EXT;
2720                            break;
2721                        case 96:
2722                            encodedcontroller = _lev_ctrl_CC96_EXT;
2723                            break;
2724                        case 97:
2725                            encodedcontroller = _lev_ctrl_CC97_EXT;
2726                            break;
2727                        case 102:
2728                            encodedcontroller = _lev_ctrl_CC102_EXT;
2729                            break;
2730                        case 103:
2731                            encodedcontroller = _lev_ctrl_CC103_EXT;
2732                            break;
2733                        case 104:
2734                            encodedcontroller = _lev_ctrl_CC104_EXT;
2735                            break;
2736                        case 105:
2737                            encodedcontroller = _lev_ctrl_CC105_EXT;
2738                            break;
2739                        case 106:
2740                            encodedcontroller = _lev_ctrl_CC106_EXT;
2741                            break;
2742                        case 107:
2743                            encodedcontroller = _lev_ctrl_CC107_EXT;
2744                            break;
2745                        case 108:
2746                            encodedcontroller = _lev_ctrl_CC108_EXT;
2747                            break;
2748                        case 109:
2749                            encodedcontroller = _lev_ctrl_CC109_EXT;
2750                            break;
2751                        case 110:
2752                            encodedcontroller = _lev_ctrl_CC110_EXT;
2753                            break;
2754                        case 111:
2755                            encodedcontroller = _lev_ctrl_CC111_EXT;
2756                            break;
2757                        case 112:
2758                            encodedcontroller = _lev_ctrl_CC112_EXT;
2759                            break;
2760                        case 113:
2761                            encodedcontroller = _lev_ctrl_CC113_EXT;
2762                            break;
2763                        case 114:
2764                            encodedcontroller = _lev_ctrl_CC114_EXT;
2765                            break;
2766                        case 115:
2767                            encodedcontroller = _lev_ctrl_CC115_EXT;
2768                            break;
2769                        case 116:
2770                            encodedcontroller = _lev_ctrl_CC116_EXT;
2771                            break;
2772                        case 117:
2773                            encodedcontroller = _lev_ctrl_CC117_EXT;
2774                            break;
2775                        case 118:
2776                            encodedcontroller = _lev_ctrl_CC118_EXT;
2777                            break;
2778                        case 119:
2779                            encodedcontroller = _lev_ctrl_CC119_EXT;
2780                            break;
2781    
2782                        default:
2783                            throw gig::Exception("leverage controller number is not supported by the gig format");
2784                    }
2785                    break;
2786                default:
2787                    throw gig::Exception("Unknown leverage controller type.");
2788            }
2789            return encodedcontroller;
2790        }
2791    
2792      DimensionRegion::~DimensionRegion() {      DimensionRegion::~DimensionRegion() {
2793          Instances--;          Instances--;
# Line 1001  namespace gig { Line 2802  namespace gig {
2802              delete pVelocityTables;              delete pVelocityTables;
2803              pVelocityTables = NULL;              pVelocityTables = NULL;
2804          }          }
2805            if (VelocityTable) delete[] VelocityTable;
2806      }      }
2807    
2808      /**      /**
# Line 1018  namespace gig { Line 2820  namespace gig {
2820          return pVelocityAttenuationTable[MIDIKeyVelocity];          return pVelocityAttenuationTable[MIDIKeyVelocity];
2821      }      }
2822    
2823        double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
2824            return pVelocityReleaseTable[MIDIKeyVelocity];
2825        }
2826    
2827        double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
2828            return pVelocityCutoffTable[MIDIKeyVelocity];
2829        }
2830    
2831        /**
2832         * Updates the respective member variable and the lookup table / cache
2833         * that depends on this value.
2834         */
2835        void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
2836            pVelocityAttenuationTable =
2837                GetVelocityTable(
2838                    curve, VelocityResponseDepth, VelocityResponseCurveScaling
2839                );
2840            VelocityResponseCurve = curve;
2841        }
2842    
2843        /**
2844         * Updates the respective member variable and the lookup table / cache
2845         * that depends on this value.
2846         */
2847        void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
2848            pVelocityAttenuationTable =
2849                GetVelocityTable(
2850                    VelocityResponseCurve, depth, VelocityResponseCurveScaling
2851                );
2852            VelocityResponseDepth = depth;
2853        }
2854    
2855        /**
2856         * Updates the respective member variable and the lookup table / cache
2857         * that depends on this value.
2858         */
2859        void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
2860            pVelocityAttenuationTable =
2861                GetVelocityTable(
2862                    VelocityResponseCurve, VelocityResponseDepth, scaling
2863                );
2864            VelocityResponseCurveScaling = scaling;
2865        }
2866    
2867        /**
2868         * Updates the respective member variable and the lookup table / cache
2869         * that depends on this value.
2870         */
2871        void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
2872            pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
2873            ReleaseVelocityResponseCurve = curve;
2874        }
2875    
2876        /**
2877         * Updates the respective member variable and the lookup table / cache
2878         * that depends on this value.
2879         */
2880        void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
2881            pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
2882            ReleaseVelocityResponseDepth = depth;
2883        }
2884    
2885        /**
2886         * Updates the respective member variable and the lookup table / cache
2887         * that depends on this value.
2888         */
2889        void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
2890            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
2891            VCFCutoffController = controller;
2892        }
2893    
2894        /**
2895         * Updates the respective member variable and the lookup table / cache
2896         * that depends on this value.
2897         */
2898        void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
2899            pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
2900            VCFVelocityCurve = curve;
2901        }
2902    
2903        /**
2904         * Updates the respective member variable and the lookup table / cache
2905         * that depends on this value.
2906         */
2907        void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
2908            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
2909            VCFVelocityDynamicRange = range;
2910        }
2911    
2912        /**
2913         * Updates the respective member variable and the lookup table / cache
2914         * that depends on this value.
2915         */
2916        void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
2917            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
2918            VCFVelocityScale = scaling;
2919        }
2920    
2921        double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
2922    
2923            // line-segment approximations of the 15 velocity curves
2924    
2925            // linear
2926            const int lin0[] = { 1, 1, 127, 127 };
2927            const int lin1[] = { 1, 21, 127, 127 };
2928            const int lin2[] = { 1, 45, 127, 127 };
2929            const int lin3[] = { 1, 74, 127, 127 };
2930            const int lin4[] = { 1, 127, 127, 127 };
2931    
2932            // non-linear
2933            const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
2934            const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
2935                                 127, 127 };
2936            const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
2937                                 127, 127 };
2938            const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
2939                                 127, 127 };
2940            const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
2941    
2942            // special
2943            const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
2944                                 113, 127, 127, 127 };
2945            const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
2946                                 118, 127, 127, 127 };
2947            const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
2948                                 85, 90, 91, 127, 127, 127 };
2949            const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
2950                                 117, 127, 127, 127 };
2951            const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
2952                                 127, 127 };
2953    
2954            // this is only used by the VCF velocity curve
2955            const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
2956                                 91, 127, 127, 127 };
2957    
2958            const int* const curves[] = { non0, non1, non2, non3, non4,
2959                                          lin0, lin1, lin2, lin3, lin4,
2960                                          spe0, spe1, spe2, spe3, spe4, spe5 };
2961    
2962            double* const table = new double[128];
2963    
2964            const int* curve = curves[curveType * 5 + depth];
2965            const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
2966    
2967            table[0] = 0;
2968            for (int x = 1 ; x < 128 ; x++) {
2969    
2970                if (x > curve[2]) curve += 2;
2971                double y = curve[1] + (x - curve[0]) *
2972                    (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
2973                y = y / 127;
2974    
2975                // Scale up for s > 20, down for s < 20. When
2976                // down-scaling, the curve still ends at 1.0.
2977                if (s < 20 && y >= 0.5)
2978                    y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
2979                else
2980                    y = y * (s / 20.0);
2981                if (y > 1) y = 1;
2982    
2983                table[x] = y;
2984            }
2985            return table;
2986        }
2987    
2988    
2989  // *************** Region ***************  // *************** Region ***************
# Line 1026  namespace gig { Line 2992  namespace gig {
2992      Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {      Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
2993          // Initialization          // Initialization
2994          Dimensions = 0;          Dimensions = 0;
2995          for (int i = 0; i < 32; i++) {          for (int i = 0; i < 256; i++) {
2996              pDimensionRegions[i] = NULL;              pDimensionRegions[i] = NULL;
2997          }          }
2998            Layers = 1;
2999            File* file = (File*) GetParent()->GetParent();
3000            int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
3001    
3002          // Actual Loading          // Actual Loading
3003    
3004            if (!file->GetAutoLoad()) return;
3005    
3006          LoadDimensionRegions(rgnList);          LoadDimensionRegions(rgnList);
3007    
3008          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
3009          if (_3lnk) {          if (_3lnk) {
3010              DimensionRegions = _3lnk->ReadUint32();              DimensionRegions = _3lnk->ReadUint32();
3011              for (int i = 0; i < 5; i++) {              for (int i = 0; i < dimensionBits; i++) {
3012                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
3013                  uint8_t     bits      = _3lnk->ReadUint8();                  uint8_t     bits      = _3lnk->ReadUint8();
3014                    _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
3015                    _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
3016                    uint8_t     zones     = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
3017                  if (dimension == dimension_none) { // inactive dimension                  if (dimension == dimension_none) { // inactive dimension
3018                      pDimensionDefinitions[i].dimension  = dimension_none;                      pDimensionDefinitions[i].dimension  = dimension_none;
3019                      pDimensionDefinitions[i].bits       = 0;                      pDimensionDefinitions[i].bits       = 0;
3020                      pDimensionDefinitions[i].zones      = 0;                      pDimensionDefinitions[i].zones      = 0;
3021                      pDimensionDefinitions[i].split_type = split_type_bit;                      pDimensionDefinitions[i].split_type = split_type_bit;
                     pDimensionDefinitions[i].ranges     = NULL;  
3022                      pDimensionDefinitions[i].zone_size  = 0;                      pDimensionDefinitions[i].zone_size  = 0;
3023                  }                  }
3024                  else { // active dimension                  else { // active dimension
3025                      pDimensionDefinitions[i].dimension = dimension;                      pDimensionDefinitions[i].dimension = dimension;
3026                      pDimensionDefinitions[i].bits      = bits;                      pDimensionDefinitions[i].bits      = bits;
3027                      pDimensionDefinitions[i].zones     = 0x01 << bits; // = pow(2,bits)                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)
3028                      pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||                      pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
3029                                                             dimension == dimension_samplechannel) ? split_type_bit                      pDimensionDefinitions[i].zone_size  = __resolveZoneSize(pDimensionDefinitions[i]);
                                                                                                  : split_type_normal;  
                     pDimensionDefinitions[i].ranges = NULL; // it's not possible to check velocity dimensions for custom defined ranges at this point  
                     pDimensionDefinitions[i].zone_size  =  
                         (pDimensionDefinitions[i].split_type == split_type_normal) ? 128 / pDimensionDefinitions[i].zones  
                                                                                    : 0;  
3030                      Dimensions++;                      Dimensions++;
3031    
3032                        // if this is a layer dimension, remember the amount of layers
3033                        if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
3034                  }                  }
3035                  _3lnk->SetPos(6, RIFF::stream_curpos); // jump forward to next dimension definition                  _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
3036              }              }
3037                for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
3038    
3039              // check velocity dimension (if there is one) for custom defined zone ranges              // if there's a velocity dimension and custom velocity zone splits are used,
3040              for (uint i = 0; i < Dimensions; i++) {              // update the VelocityTables in the dimension regions
3041                  dimension_def_t* pDimDef = pDimensionDefinitions + i;              UpdateVelocityTable();
3042                  if (pDimDef->dimension == dimension_velocity) {  
3043                      if (pDimensionRegions[0]->VelocityUpperLimit == 0) {              // jump to start of the wave pool indices (if not already there)
3044                          // no custom defined ranges              if (file->pVersion && file->pVersion->major == 3)
3045                          pDimDef->split_type = split_type_normal;                  _3lnk->SetPos(68); // version 3 has a different 3lnk structure
3046                          pDimDef->ranges     = NULL;              else
3047                      }                  _3lnk->SetPos(44);
3048                      else { // custom defined ranges  
3049                          pDimDef->split_type = split_type_customvelocity;              // load sample references (if auto loading is enabled)
3050                          pDimDef->ranges     = new range_t[pDimDef->zones];              if (file->GetAutoLoad()) {
3051                          unsigned int bits[5] = {0,0,0,0,0};                  for (uint i = 0; i < DimensionRegions; i++) {
3052                          int previousUpperLimit = -1;                      uint32_t wavepoolindex = _3lnk->ReadUint32();
3053                          for (int velocityZone = 0; velocityZone < pDimDef->zones; velocityZone++) {                      if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
                             bits[i] = velocityZone;  
                             DimensionRegion* pDimRegion = GetDimensionRegionByBit(bits[4],bits[3],bits[2],bits[1],bits[0]);  
   
                             pDimDef->ranges[velocityZone].low  = previousUpperLimit + 1;  
                             pDimDef->ranges[velocityZone].high = pDimRegion->VelocityUpperLimit;  
                             previousUpperLimit = pDimDef->ranges[velocityZone].high;  
                             // fill velocity table  
                             for (int i = pDimDef->ranges[velocityZone].low; i <= pDimDef->ranges[velocityZone].high; i++) {  
                                 VelocityTable[i] = velocityZone;  
                             }  
                         }  
                     }  
3054                  }                  }
3055                    GetSample(); // load global region sample reference
3056              }              }
3057            } else {
3058                DimensionRegions = 0;
3059                for (int i = 0 ; i < 8 ; i++) {
3060                    pDimensionDefinitions[i].dimension  = dimension_none;
3061                    pDimensionDefinitions[i].bits       = 0;
3062                    pDimensionDefinitions[i].zones      = 0;
3063                }
3064            }
3065    
3066            // make sure there is at least one dimension region
3067            if (!DimensionRegions) {
3068                RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
3069                if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
3070                RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
3071                pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
3072                DimensionRegions = 1;
3073            }
3074        }
3075    
3076        /**
3077         * Apply Region settings and all its DimensionRegions to the respective
3078         * RIFF chunks. You have to call File::Save() to make changes persistent.
3079         *
3080         * Usually there is absolutely no need to call this method explicitly.
3081         * It will be called automatically when File::Save() was called.
3082         *
3083         * @param pProgress - callback function for progress notification
3084         * @throws gig::Exception if samples cannot be dereferenced
3085         */
3086        void Region::UpdateChunks(progress_t* pProgress) {
3087            // in the gig format we don't care about the Region's sample reference
3088            // but we still have to provide some existing one to not corrupt the
3089            // file, so to avoid the latter we simply always assign the sample of
3090            // the first dimension region of this region
3091            pSample = pDimensionRegions[0]->pSample;
3092    
3093            // first update base class's chunks
3094            DLS::Region::UpdateChunks(pProgress);
3095    
3096            // update dimension region's chunks
3097            for (int i = 0; i < DimensionRegions; i++) {
3098                pDimensionRegions[i]->UpdateChunks(pProgress);
3099            }
3100    
3101            File* pFile = (File*) GetParent()->GetParent();
3102            bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
3103            const int iMaxDimensions =  version3 ? 8 : 5;
3104            const int iMaxDimensionRegions = version3 ? 256 : 32;
3105    
3106            // make sure '3lnk' chunk exists
3107            RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3108            if (!_3lnk) {
3109                const int _3lnkChunkSize = version3 ? 1092 : 172;
3110                _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3111                memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3112    
3113                // move 3prg to last position
3114                pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), (RIFF::Chunk*)NULL);
3115            }
3116    
3117              // load sample references          // update dimension definitions in '3lnk' chunk
3118              _3lnk->SetPos(44); // jump to start of the wave pool indices (if not already there)          uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3119              for (uint i = 0; i < DimensionRegions; i++) {          store32(&pData[0], DimensionRegions);
3120                  uint32_t wavepoolindex = _3lnk->ReadUint32();          int shift = 0;
3121                  pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);          for (int i = 0; i < iMaxDimensions; i++) {
3122                pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3123                pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3124                pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3125                pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3126                pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3127                // next 3 bytes unknown, always zero?
3128    
3129                shift += pDimensionDefinitions[i].bits;
3130            }
3131    
3132            // update wave pool table in '3lnk' chunk
3133            const int iWavePoolOffset = version3 ? 68 : 44;
3134            for (uint i = 0; i < iMaxDimensionRegions; i++) {
3135                int iWaveIndex = -1;
3136                if (i < DimensionRegions) {
3137                    if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
3138                    File::SampleList::iterator iter = pFile->pSamples->begin();
3139                    File::SampleList::iterator end  = pFile->pSamples->end();
3140                    for (int index = 0; iter != end; ++iter, ++index) {
3141                        if (*iter == pDimensionRegions[i]->pSample) {
3142                            iWaveIndex = index;
3143                            break;
3144                        }
3145                    }
3146              }              }
3147                store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3148          }          }
         else throw gig::Exception("Mandatory <3lnk> chunk not found.");  
3149      }      }
3150    
3151      void Region::LoadDimensionRegions(RIFF::List* rgn) {      void Region::LoadDimensionRegions(RIFF::List* rgn) {
# Line 1111  namespace gig { Line 3155  namespace gig {
3155              RIFF::List* _3ewl = _3prg->GetFirstSubList();              RIFF::List* _3ewl = _3prg->GetFirstSubList();
3156              while (_3ewl) {              while (_3ewl) {
3157                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3158                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3159                      dimensionRegionNr++;                      dimensionRegionNr++;
3160                  }                  }
3161                  _3ewl = _3prg->GetNextSubList();                  _3ewl = _3prg->GetNextSubList();
# Line 1120  namespace gig { Line 3164  namespace gig {
3164          }          }
3165      }      }
3166    
3167      Region::~Region() {      void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3168          for (uint i = 0; i < Dimensions; i++) {          // update KeyRange struct and make sure regions are in correct order
3169              if (pDimensionDefinitions[i].ranges) delete[] pDimensionDefinitions[i].ranges;          DLS::Region::SetKeyRange(Low, High);
3170            // update Region key table for fast lookup
3171            ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3172        }
3173    
3174        void Region::UpdateVelocityTable() {
3175            // get velocity dimension's index
3176            int veldim = -1;
3177            for (int i = 0 ; i < Dimensions ; i++) {
3178                if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
3179                    veldim = i;
3180                    break;
3181                }
3182          }          }
3183          for (int i = 0; i < 32; i++) {          if (veldim == -1) return;
3184    
3185            int step = 1;
3186            for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3187            int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
3188    
3189            // loop through all dimension regions for all dimensions except the velocity dimension
3190            int dim[8] = { 0 };
3191            for (int i = 0 ; i < DimensionRegions ; i++) {
3192                const int end = i + step * pDimensionDefinitions[veldim].zones;
3193    
3194                // create a velocity table for all cases where the velocity zone is zero
3195                if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3196                    pDimensionRegions[i]->VelocityUpperLimit) {
3197                    // create the velocity table
3198                    uint8_t* table = pDimensionRegions[i]->VelocityTable;
3199                    if (!table) {
3200                        table = new uint8_t[128];
3201                        pDimensionRegions[i]->VelocityTable = table;
3202                    }
3203                    int tableidx = 0;
3204                    int velocityZone = 0;
3205                    if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
3206                        for (int k = i ; k < end ; k += step) {
3207                            DimensionRegion *d = pDimensionRegions[k];
3208                            for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
3209                            velocityZone++;
3210                        }
3211                    } else { // gig2
3212                        for (int k = i ; k < end ; k += step) {
3213                            DimensionRegion *d = pDimensionRegions[k];
3214                            for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
3215                            velocityZone++;
3216                        }
3217                    }
3218                } else {
3219                    if (pDimensionRegions[i]->VelocityTable) {
3220                        delete[] pDimensionRegions[i]->VelocityTable;
3221                        pDimensionRegions[i]->VelocityTable = 0;
3222                    }
3223                }
3224    
3225                // jump to the next case where the velocity zone is zero
3226                int j;
3227                int shift = 0;
3228                for (j = 0 ; j < Dimensions ; j++) {
3229                    if (j == veldim) i += skipveldim; // skip velocity dimension
3230                    else {
3231                        dim[j]++;
3232                        if (dim[j] < pDimensionDefinitions[j].zones) break;
3233                        else {
3234                            // skip unused dimension regions
3235                            dim[j] = 0;
3236                            i += ((1 << pDimensionDefinitions[j].bits) -
3237                                  pDimensionDefinitions[j].zones) << shift;
3238                        }
3239                    }
3240                    shift += pDimensionDefinitions[j].bits;
3241                }
3242                if (j == Dimensions) break;
3243            }
3244        }
3245    
3246        /** @brief Einstein would have dreamed of it - create a new dimension.
3247         *
3248         * Creates a new dimension with the dimension definition given by
3249         * \a pDimDef. The appropriate amount of DimensionRegions will be created.
3250         * There is a hard limit of dimensions and total amount of "bits" all
3251         * dimensions can have. This limit is dependant to what gig file format
3252         * version this file refers to. The gig v2 (and lower) format has a
3253         * dimension limit and total amount of bits limit of 5, whereas the gig v3
3254         * format has a limit of 8.
3255         *
3256         * @param pDimDef - defintion of the new dimension
3257         * @throws gig::Exception if dimension of the same type exists already
3258         * @throws gig::Exception if amount of dimensions or total amount of
3259         *                        dimension bits limit is violated
3260         */
3261        void Region::AddDimension(dimension_def_t* pDimDef) {
3262            // some initial sanity checks of the given dimension definition
3263            if (pDimDef->zones < 2)
3264                throw gig::Exception("Could not add new dimension, amount of requested zones must always be at least two");
3265            if (pDimDef->bits < 1)
3266                throw gig::Exception("Could not add new dimension, amount of requested requested zone bits must always be at least one");
3267            if (pDimDef->dimension == dimension_samplechannel) {
3268                if (pDimDef->zones != 2)
3269                    throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zones must always be 2 for this dimension type");
3270                if (pDimDef->bits != 1)
3271                    throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zone bits must always be 1 for this dimension type");
3272            }
3273    
3274            // check if max. amount of dimensions reached
3275            File* file = (File*) GetParent()->GetParent();
3276            const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
3277            if (Dimensions >= iMaxDimensions)
3278                throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
3279            // check if max. amount of dimension bits reached
3280            int iCurrentBits = 0;
3281            for (int i = 0; i < Dimensions; i++)
3282                iCurrentBits += pDimensionDefinitions[i].bits;
3283            if (iCurrentBits >= iMaxDimensions)
3284                throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
3285            const int iNewBits = iCurrentBits + pDimDef->bits;
3286            if (iNewBits > iMaxDimensions)
3287                throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
3288            // check if there's already a dimensions of the same type
3289            for (int i = 0; i < Dimensions; i++)
3290                if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3291                    throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3292    
3293            // pos is where the new dimension should be placed, normally
3294            // last in list, except for the samplechannel dimension which
3295            // has to be first in list
3296            int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3297            int bitpos = 0;
3298            for (int i = 0 ; i < pos ; i++)
3299                bitpos += pDimensionDefinitions[i].bits;
3300    
3301            // make room for the new dimension
3302            for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3303            for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3304                for (int j = Dimensions ; j > pos ; j--) {
3305                    pDimensionRegions[i]->DimensionUpperLimits[j] =
3306                        pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3307                }
3308            }
3309    
3310            // assign definition of new dimension
3311            pDimensionDefinitions[pos] = *pDimDef;
3312    
3313            // auto correct certain dimension definition fields (where possible)
3314            pDimensionDefinitions[pos].split_type  =
3315                __resolveSplitType(pDimensionDefinitions[pos].dimension);
3316            pDimensionDefinitions[pos].zone_size =
3317                __resolveZoneSize(pDimensionDefinitions[pos]);
3318    
3319            // create new dimension region(s) for this new dimension, and make
3320            // sure that the dimension regions are placed correctly in both the
3321            // RIFF list and the pDimensionRegions array
3322            RIFF::Chunk* moveTo = NULL;
3323            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3324            for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3325                for (int k = 0 ; k < (1 << bitpos) ; k++) {
3326                    pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3327                }
3328                for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3329                    for (int k = 0 ; k < (1 << bitpos) ; k++) {
3330                        RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3331                        if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3332                        // create a new dimension region and copy all parameter values from
3333                        // an existing dimension region
3334                        pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3335                            new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3336    
3337                        DimensionRegions++;
3338                    }
3339                }
3340                moveTo = pDimensionRegions[i]->pParentList;
3341            }
3342    
3343            // initialize the upper limits for this dimension
3344            int mask = (1 << bitpos) - 1;
3345            for (int z = 0 ; z < pDimDef->zones ; z++) {
3346                uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3347                for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3348                    pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3349                                      (z << bitpos) |
3350                                      (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3351                }
3352            }
3353    
3354            Dimensions++;
3355    
3356            // if this is a layer dimension, update 'Layers' attribute
3357            if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
3358    
3359            UpdateVelocityTable();
3360        }
3361    
3362        /** @brief Delete an existing dimension.
3363         *
3364         * Deletes the dimension given by \a pDimDef and deletes all respective
3365         * dimension regions, that is all dimension regions where the dimension's
3366         * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
3367         * for example this would delete all dimension regions for the case(s)
3368         * where the sustain pedal is pressed down.
3369         *
3370         * @param pDimDef - dimension to delete
3371         * @throws gig::Exception if given dimension cannot be found
3372         */
3373        void Region::DeleteDimension(dimension_def_t* pDimDef) {
3374            // get dimension's index
3375            int iDimensionNr = -1;
3376            for (int i = 0; i < Dimensions; i++) {
3377                if (&pDimensionDefinitions[i] == pDimDef) {
3378                    iDimensionNr = i;
3379                    break;
3380                }
3381            }
3382            if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
3383    
3384            // get amount of bits below the dimension to delete
3385            int iLowerBits = 0;
3386            for (int i = 0; i < iDimensionNr; i++)
3387                iLowerBits += pDimensionDefinitions[i].bits;
3388    
3389            // get amount ot bits above the dimension to delete
3390            int iUpperBits = 0;
3391            for (int i = iDimensionNr + 1; i < Dimensions; i++)
3392                iUpperBits += pDimensionDefinitions[i].bits;
3393    
3394            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3395    
3396            // delete dimension regions which belong to the given dimension
3397            // (that is where the dimension's bit > 0)
3398            for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
3399                for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
3400                    for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
3401                        int iToDelete = iUpperBit    << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3402                                        iObsoleteBit << iLowerBits |
3403                                        iLowerBit;
3404    
3405                        _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3406                        delete pDimensionRegions[iToDelete];
3407                        pDimensionRegions[iToDelete] = NULL;
3408                        DimensionRegions--;
3409                    }
3410                }
3411            }
3412    
3413            // defrag pDimensionRegions array
3414            // (that is remove the NULL spaces within the pDimensionRegions array)
3415            for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
3416                if (!pDimensionRegions[iTo]) {
3417                    if (iFrom <= iTo) iFrom = iTo + 1;
3418                    while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
3419                    if (iFrom < 256 && pDimensionRegions[iFrom]) {
3420                        pDimensionRegions[iTo]   = pDimensionRegions[iFrom];
3421                        pDimensionRegions[iFrom] = NULL;
3422                    }
3423                }
3424            }
3425    
3426            // remove the this dimension from the upper limits arrays
3427            for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3428                DimensionRegion* d = pDimensionRegions[j];
3429                for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3430                    d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3431                }
3432                d->DimensionUpperLimits[Dimensions - 1] = 127;
3433            }
3434    
3435            // 'remove' dimension definition
3436            for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3437                pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
3438            }
3439            pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
3440            pDimensionDefinitions[Dimensions - 1].bits      = 0;
3441            pDimensionDefinitions[Dimensions - 1].zones     = 0;
3442    
3443            Dimensions--;
3444    
3445            // if this was a layer dimension, update 'Layers' attribute
3446            if (pDimDef->dimension == dimension_layer) Layers = 1;
3447        }
3448    
3449        /** @brief Delete one split zone of a dimension (decrement zone amount).
3450         *
3451         * Instead of deleting an entire dimensions, this method will only delete
3452         * one particular split zone given by @a zone of the Region's dimension
3453         * given by @a type. So this method will simply decrement the amount of
3454         * zones by one of the dimension in question. To be able to do that, the
3455         * respective dimension must exist on this Region and it must have at least
3456         * 3 zones. All DimensionRegion objects associated with the zone will be
3457         * deleted.
3458         *
3459         * @param type - identifies the dimension where a zone shall be deleted
3460         * @param zone - index of the dimension split zone that shall be deleted
3461         * @throws gig::Exception if requested zone could not be deleted
3462         */
3463        void Region::DeleteDimensionZone(dimension_t type, int zone) {
3464            dimension_def_t* oldDef = GetDimensionDefinition(type);
3465            if (!oldDef)
3466                throw gig::Exception("Could not delete dimension zone, no such dimension of given type");
3467            if (oldDef->zones <= 2)
3468                throw gig::Exception("Could not delete dimension zone, because it would end up with only one zone.");
3469            if (zone < 0 || zone >= oldDef->zones)
3470                throw gig::Exception("Could not delete dimension zone, requested zone index out of bounds.");
3471    
3472            const int newZoneSize = oldDef->zones - 1;
3473    
3474            // create a temporary Region which just acts as a temporary copy
3475            // container and will be deleted at the end of this function and will
3476            // also not be visible through the API during this process
3477            gig::Region* tempRgn = NULL;
3478            {
3479                // adding these temporary chunks is probably not even necessary
3480                Instrument* instr = static_cast<Instrument*>(GetParent());
3481                RIFF::List* pCkInstrument = instr->pCkInstrument;
3482                RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3483                if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3484                RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3485                tempRgn = new Region(instr, rgn);
3486            }
3487    
3488            // copy this region's dimensions (with already the dimension split size
3489            // requested by the arguments of this method call) to the temporary
3490            // region, and don't use Region::CopyAssign() here for this task, since
3491            // it would also alter fast lookup helper variables here and there
3492            dimension_def_t newDef;
3493            for (int i = 0; i < Dimensions; ++i) {
3494                dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3495                // is this the dimension requested by the method arguments? ...
3496                if (def.dimension == type) { // ... if yes, decrement zone amount by one
3497                    def.zones = newZoneSize;
3498                    if ((1 << (def.bits - 1)) == def.zones) def.bits--;
3499                    newDef = def;
3500                }
3501                tempRgn->AddDimension(&def);
3502            }
3503    
3504            // find the dimension index in the tempRegion which is the dimension
3505            // type passed to this method (paranoidly expecting different order)
3506            int tempReducedDimensionIndex = -1;
3507            for (int d = 0; d < tempRgn->Dimensions; ++d) {
3508                if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3509                    tempReducedDimensionIndex = d;
3510                    break;
3511                }
3512            }
3513    
3514            // copy dimension regions from this region to the temporary region
3515            for (int iDst = 0; iDst < 256; ++iDst) {
3516                DimensionRegion* dstDimRgn = tempRgn->pDimensionRegions[iDst];
3517                if (!dstDimRgn) continue;
3518                std::map<dimension_t,int> dimCase;
3519                bool isValidZone = true;
3520                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3521                    const int dstBits = tempRgn->pDimensionDefinitions[d].bits;
3522                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3523                        (iDst >> baseBits) & ((1 << dstBits) - 1);
3524                    baseBits += dstBits;
3525                    // there are also DimensionRegion objects of unused zones, skip them
3526                    if (dimCase[tempRgn->pDimensionDefinitions[d].dimension] >= tempRgn->pDimensionDefinitions[d].zones) {
3527                        isValidZone = false;
3528                        break;
3529                    }
3530                }
3531                if (!isValidZone) continue;
3532                // a bit paranoid: cope with the chance that the dimensions would
3533                // have different order in source and destination regions
3534                const bool isLastZone = (dimCase[type] == newZoneSize - 1);
3535                if (dimCase[type] >= zone) dimCase[type]++;
3536                DimensionRegion* srcDimRgn = GetDimensionRegionByBit(dimCase);
3537                dstDimRgn->CopyAssign(srcDimRgn);
3538                // if this is the upper most zone of the dimension passed to this
3539                // method, then correct (raise) its upper limit to 127
3540                if (newDef.split_type == split_type_normal && isLastZone)
3541                    dstDimRgn->DimensionUpperLimits[tempReducedDimensionIndex] = 127;
3542            }
3543    
3544            // now tempRegion's dimensions and DimensionRegions basically reflect
3545            // what we wanted to get for this actual Region here, so we now just
3546            // delete and recreate the dimension in question with the new amount
3547            // zones and then copy back from tempRegion      
3548            DeleteDimension(oldDef);
3549            AddDimension(&newDef);
3550            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3551                DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3552                if (!srcDimRgn) continue;
3553                std::map<dimension_t,int> dimCase;
3554                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3555                    const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3556                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3557                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3558                    baseBits += srcBits;
3559                }
3560                // a bit paranoid: cope with the chance that the dimensions would
3561                // have different order in source and destination regions
3562                DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3563                if (!dstDimRgn) continue;
3564                dstDimRgn->CopyAssign(srcDimRgn);
3565            }
3566    
3567            // delete temporary region
3568            delete tempRgn;
3569    
3570            UpdateVelocityTable();
3571        }
3572    
3573        /** @brief Divide split zone of a dimension in two (increment zone amount).
3574         *
3575         * This will increment the amount of zones for the dimension (given by
3576         * @a type) by one. It will do so by dividing the zone (given by @a zone)
3577         * in the middle of its zone range in two. So the two zones resulting from
3578         * the zone being splitted, will be an equivalent copy regarding all their
3579         * articulation informations and sample reference. The two zones will only
3580         * differ in their zone's upper limit
3581         * (DimensionRegion::DimensionUpperLimits).
3582         *
3583         * @param type - identifies the dimension where a zone shall be splitted
3584         * @param zone - index of the dimension split zone that shall be splitted
3585         * @throws gig::Exception if requested zone could not be splitted
3586         */
3587        void Region::SplitDimensionZone(dimension_t type, int zone) {
3588            dimension_def_t* oldDef = GetDimensionDefinition(type);
3589            if (!oldDef)
3590                throw gig::Exception("Could not split dimension zone, no such dimension of given type");
3591            if (zone < 0 || zone >= oldDef->zones)
3592                throw gig::Exception("Could not split dimension zone, requested zone index out of bounds.");
3593    
3594            const int newZoneSize = oldDef->zones + 1;
3595    
3596            // create a temporary Region which just acts as a temporary copy
3597            // container and will be deleted at the end of this function and will
3598            // also not be visible through the API during this process
3599            gig::Region* tempRgn = NULL;
3600            {
3601                // adding these temporary chunks is probably not even necessary
3602                Instrument* instr = static_cast<Instrument*>(GetParent());
3603                RIFF::List* pCkInstrument = instr->pCkInstrument;
3604                RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3605                if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3606                RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3607                tempRgn = new Region(instr, rgn);
3608            }
3609    
3610            // copy this region's dimensions (with already the dimension split size
3611            // requested by the arguments of this method call) to the temporary
3612            // region, and don't use Region::CopyAssign() here for this task, since
3613            // it would also alter fast lookup helper variables here and there
3614            dimension_def_t newDef;
3615            for (int i = 0; i < Dimensions; ++i) {
3616                dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3617                // is this the dimension requested by the method arguments? ...
3618                if (def.dimension == type) { // ... if yes, increment zone amount by one
3619                    def.zones = newZoneSize;
3620                    if ((1 << oldDef->bits) < newZoneSize) def.bits++;
3621                    newDef = def;
3622                }
3623                tempRgn->AddDimension(&def);
3624            }
3625    
3626            // find the dimension index in the tempRegion which is the dimension
3627            // type passed to this method (paranoidly expecting different order)
3628            int tempIncreasedDimensionIndex = -1;
3629            for (int d = 0; d < tempRgn->Dimensions; ++d) {
3630                if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3631                    tempIncreasedDimensionIndex = d;
3632                    break;
3633                }
3634            }
3635    
3636            // copy dimension regions from this region to the temporary region
3637            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3638                DimensionRegion* srcDimRgn = pDimensionRegions[iSrc];
3639                if (!srcDimRgn) continue;
3640                std::map<dimension_t,int> dimCase;
3641                bool isValidZone = true;
3642                for (int d = 0, baseBits = 0; d < Dimensions; ++d) {
3643                    const int srcBits = pDimensionDefinitions[d].bits;
3644                    dimCase[pDimensionDefinitions[d].dimension] =
3645                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3646                    // there are also DimensionRegion objects for unused zones, skip them
3647                    if (dimCase[pDimensionDefinitions[d].dimension] >= pDimensionDefinitions[d].zones) {
3648                        isValidZone = false;
3649                        break;
3650                    }
3651                    baseBits += srcBits;
3652                }
3653                if (!isValidZone) continue;
3654                // a bit paranoid: cope with the chance that the dimensions would
3655                // have different order in source and destination regions            
3656                if (dimCase[type] > zone) dimCase[type]++;
3657                DimensionRegion* dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3658                dstDimRgn->CopyAssign(srcDimRgn);
3659                // if this is the requested zone to be splitted, then also copy
3660                // the source DimensionRegion to the newly created target zone
3661                // and set the old zones upper limit lower
3662                if (dimCase[type] == zone) {
3663                    // lower old zones upper limit
3664                    if (newDef.split_type == split_type_normal) {
3665                        const int high =
3666                            dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex];
3667                        int low = 0;
3668                        if (zone > 0) {
3669                            std::map<dimension_t,int> lowerCase = dimCase;
3670                            lowerCase[type]--;
3671                            DimensionRegion* dstDimRgnLow = tempRgn->GetDimensionRegionByBit(lowerCase);
3672                            low = dstDimRgnLow->DimensionUpperLimits[tempIncreasedDimensionIndex];
3673                        }
3674                        dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex] = low + (high - low) / 2;
3675                    }
3676                    // fill the newly created zone of the divided zone as well
3677                    dimCase[type]++;
3678                    dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3679                    dstDimRgn->CopyAssign(srcDimRgn);
3680                }
3681            }
3682    
3683            // now tempRegion's dimensions and DimensionRegions basically reflect
3684            // what we wanted to get for this actual Region here, so we now just
3685            // delete and recreate the dimension in question with the new amount
3686            // zones and then copy back from tempRegion      
3687            DeleteDimension(oldDef);
3688            AddDimension(&newDef);
3689            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3690                DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3691                if (!srcDimRgn) continue;
3692                std::map<dimension_t,int> dimCase;
3693                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3694                    const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3695                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3696                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3697                    baseBits += srcBits;
3698                }
3699                // a bit paranoid: cope with the chance that the dimensions would
3700                // have different order in source and destination regions
3701                DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3702                if (!dstDimRgn) continue;
3703                dstDimRgn->CopyAssign(srcDimRgn);
3704            }
3705    
3706            // delete temporary region
3707            delete tempRgn;
3708    
3709            UpdateVelocityTable();
3710        }
3711    
3712        /** @brief Change type of an existing dimension.
3713         *
3714         * Alters the dimension type of a dimension already existing on this
3715         * region. If there is currently no dimension on this Region with type
3716         * @a oldType, then this call with throw an Exception. Likewise there are
3717         * cases where the requested dimension type cannot be performed. For example
3718         * if the new dimension type shall be gig::dimension_samplechannel, and the
3719         * current dimension has more than 2 zones. In such cases an Exception is
3720         * thrown as well.
3721         *
3722         * @param oldType - identifies the existing dimension to be changed
3723         * @param newType - to which dimension type it should be changed to
3724         * @throws gig::Exception if requested change cannot be performed
3725         */
3726        void Region::SetDimensionType(dimension_t oldType, dimension_t newType) {
3727            if (oldType == newType) return;
3728            dimension_def_t* def = GetDimensionDefinition(oldType);
3729            if (!def)
3730                throw gig::Exception("No dimension with provided old dimension type exists on this region");
3731            if (newType == dimension_samplechannel && def->zones != 2)
3732                throw gig::Exception("Cannot change to dimension type 'sample channel', because existing dimension does not have 2 zones");
3733            if (GetDimensionDefinition(newType))
3734                throw gig::Exception("There is already a dimension with requested new dimension type on this region");
3735            def->dimension  = newType;
3736            def->split_type = __resolveSplitType(newType);
3737        }
3738    
3739        DimensionRegion* Region::GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase) {
3740            uint8_t bits[8] = {};
3741            for (std::map<dimension_t,int>::const_iterator it = DimCase.begin();
3742                 it != DimCase.end(); ++it)
3743            {
3744                for (int d = 0; d < Dimensions; ++d) {
3745                    if (pDimensionDefinitions[d].dimension == it->first) {
3746                        bits[d] = it->second;
3747                        goto nextDimCaseSlice;
3748                    }
3749                }
3750                assert(false); // do crash ... too harsh maybe ? ignore it instead ?
3751                nextDimCaseSlice:
3752                ; // noop
3753            }
3754            return GetDimensionRegionByBit(bits);
3755        }
3756    
3757        /**
3758         * Searches in the current Region for a dimension of the given dimension
3759         * type and returns the precise configuration of that dimension in this
3760         * Region.
3761         *
3762         * @param type - dimension type of the sought dimension
3763         * @returns dimension definition or NULL if there is no dimension with
3764         *          sought type in this Region.
3765         */
3766        dimension_def_t* Region::GetDimensionDefinition(dimension_t type) {
3767            for (int i = 0; i < Dimensions; ++i)
3768                if (pDimensionDefinitions[i].dimension == type)
3769                    return &pDimensionDefinitions[i];
3770            return NULL;
3771        }
3772    
3773        Region::~Region() {
3774            for (int i = 0; i < 256; i++) {
3775              if (pDimensionRegions[i]) delete pDimensionRegions[i];              if (pDimensionRegions[i]) delete pDimensionRegions[i];
3776          }          }
3777      }      }
# Line 1142  namespace gig { Line 3789  namespace gig {
3789       * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,       * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
3790       * etc.).       * etc.).
3791       *       *
3792       * @param  Dim4Val  MIDI controller value (0-127) for dimension 4       * @param  DimValues  MIDI controller values (0-127) for dimension 0 to 7
      * @param  Dim3Val  MIDI controller value (0-127) for dimension 3  
      * @param  Dim2Val  MIDI controller value (0-127) for dimension 2  
      * @param  Dim1Val  MIDI controller value (0-127) for dimension 1  
      * @param  Dim0Val  MIDI controller value (0-127) for dimension 0  
3793       * @returns         adress to the DimensionRegion for the given situation       * @returns         adress to the DimensionRegion for the given situation
3794       * @see             pDimensionDefinitions       * @see             pDimensionDefinitions
3795       * @see             Dimensions       * @see             Dimensions
3796       */       */
3797      DimensionRegion* Region::GetDimensionRegionByValue(uint Dim4Val, uint Dim3Val, uint Dim2Val, uint Dim1Val, uint Dim0Val) {      DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
3798          unsigned int bits[5] = {Dim0Val,Dim1Val,Dim2Val,Dim3Val,Dim4Val};          uint8_t bits;
3799            int veldim = -1;
3800            int velbitpos;
3801            int bitpos = 0;
3802            int dimregidx = 0;
3803          for (uint i = 0; i < Dimensions; i++) {          for (uint i = 0; i < Dimensions; i++) {
3804              switch (pDimensionDefinitions[i].split_type) {              if (pDimensionDefinitions[i].dimension == dimension_velocity) {
3805                  case split_type_normal:                  // the velocity dimension must be handled after the other dimensions
3806                      bits[i] /= pDimensionDefinitions[i].zone_size;                  veldim = i;
3807                      break;                  velbitpos = bitpos;
3808                  case split_type_customvelocity:              } else {
3809                      bits[i] = VelocityTable[bits[i]];                  switch (pDimensionDefinitions[i].split_type) {
3810                      break;                      case split_type_normal:
3811                  // else the value is already the sought dimension bit number                          if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
3812                                // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
3813                                for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
3814                                    if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
3815                                }
3816                            } else {
3817                                // gig2: evenly sized zones
3818                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
3819                            }
3820                            break;
3821                        case split_type_bit: // the value is already the sought dimension bit number
3822                            const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
3823                            bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
3824                            break;
3825                    }
3826                    dimregidx |= bits << bitpos;
3827                }
3828                bitpos += pDimensionDefinitions[i].bits;
3829            }
3830            DimensionRegion* dimreg = pDimensionRegions[dimregidx & 255];
3831            if (!dimreg) return NULL;
3832            if (veldim != -1) {
3833                // (dimreg is now the dimension region for the lowest velocity)
3834                if (dimreg->VelocityTable) // custom defined zone ranges
3835                    bits = dimreg->VelocityTable[DimValues[veldim] & 127];
3836                else // normal split type
3837                    bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
3838    
3839                const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
3840                dimregidx |= (bits & limiter_mask) << velbitpos;
3841                dimreg = pDimensionRegions[dimregidx & 255];
3842            }
3843            return dimreg;
3844        }
3845    
3846        int Region::GetDimensionRegionIndexByValue(const uint DimValues[8]) {
3847            uint8_t bits;
3848            int veldim = -1;
3849            int velbitpos;
3850            int bitpos = 0;
3851            int dimregidx = 0;
3852            for (uint i = 0; i < Dimensions; i++) {
3853                if (pDimensionDefinitions[i].dimension == dimension_velocity) {
3854                    // the velocity dimension must be handled after the other dimensions
3855                    veldim = i;
3856                    velbitpos = bitpos;
3857                } else {
3858                    switch (pDimensionDefinitions[i].split_type) {
3859                        case split_type_normal:
3860                            if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
3861                                // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
3862                                for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
3863                                    if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
3864                                }
3865                            } else {
3866                                // gig2: evenly sized zones
3867                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
3868                            }
3869                            break;
3870                        case split_type_bit: // the value is already the sought dimension bit number
3871                            const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
3872                            bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
3873                            break;
3874                    }
3875                    dimregidx |= bits << bitpos;
3876              }              }
3877                bitpos += pDimensionDefinitions[i].bits;
3878            }
3879            dimregidx &= 255;
3880            DimensionRegion* dimreg = pDimensionRegions[dimregidx];
3881            if (!dimreg) return -1;
3882            if (veldim != -1) {
3883                // (dimreg is now the dimension region for the lowest velocity)
3884                if (dimreg->VelocityTable) // custom defined zone ranges
3885                    bits = dimreg->VelocityTable[DimValues[veldim] & 127];
3886                else // normal split type
3887                    bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
3888    
3889                const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
3890                dimregidx |= (bits & limiter_mask) << velbitpos;
3891                dimregidx &= 255;
3892          }          }
3893          return GetDimensionRegionByBit(bits[4],bits[3],bits[2],bits[1],bits[0]);          return dimregidx;
3894      }      }
3895    
3896      /**      /**
# Line 1172  namespace gig { Line 3898  namespace gig {
3898       * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>       * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
3899       * instead of calling this method directly!       * instead of calling this method directly!
3900       *       *
3901       * @param Dim4Bit  Bit number for dimension 4       * @param DimBits  Bit numbers for dimension 0 to 7
      * @param Dim3Bit  Bit number for dimension 3  
      * @param Dim2Bit  Bit number for dimension 2  
      * @param Dim1Bit  Bit number for dimension 1  
      * @param Dim0Bit  Bit number for dimension 0  
3902       * @returns        adress to the DimensionRegion for the given dimension       * @returns        adress to the DimensionRegion for the given dimension
3903       *                 bit numbers       *                 bit numbers
3904       * @see            GetDimensionRegionByValue()       * @see            GetDimensionRegionByValue()
3905       */       */
3906      DimensionRegion* Region::GetDimensionRegionByBit(uint8_t Dim4Bit, uint8_t Dim3Bit, uint8_t Dim2Bit, uint8_t Dim1Bit, uint8_t Dim0Bit) {      DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
3907          return *(pDimensionRegions + ((((((((Dim4Bit << pDimensionDefinitions[3].bits) | Dim3Bit)          return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
3908                                                       << pDimensionDefinitions[2].bits) | Dim2Bit)                                                    << pDimensionDefinitions[5].bits | DimBits[5])
3909                                                       << pDimensionDefinitions[1].bits) | Dim1Bit)                                                    << pDimensionDefinitions[4].bits | DimBits[4])
3910                                                       << pDimensionDefinitions[0].bits) | Dim0Bit) );                                                    << pDimensionDefinitions[3].bits | DimBits[3])
3911                                                      << pDimensionDefinitions[2].bits | DimBits[2])
3912                                                      << pDimensionDefinitions[1].bits | DimBits[1])
3913                                                      << pDimensionDefinitions[0].bits | DimBits[0]];
3914      }      }
3915    
3916      /**      /**
# Line 1202  namespace gig { Line 3927  namespace gig {
3927          else         return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));          else         return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
3928      }      }
3929    
3930      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex) {      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
3931            if ((int32_t)WavePoolTableIndex == -1) return NULL;
3932          File* file = (File*) GetParent()->GetParent();          File* file = (File*) GetParent()->GetParent();
3933          unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];          if (!file->pWavePoolTable) return NULL;
3934          Sample* sample = file->GetFirstSample();          // for new files or files >= 2 GB use 64 bit wave pool offsets
3935          while (sample) {          if (file->pRIFF->IsNew() || (file->pRIFF->GetCurrentFileSize() >> 31)) {
3936              if (sample->ulWavePoolOffset == soughtoffset) return static_cast<gig::Sample*>(pSample = sample);              // use 64 bit wave pool offsets (treating this as large file)
3937              sample = file->GetNextSample();              uint64_t soughtoffset =
3938                    uint64_t(file->pWavePoolTable[WavePoolTableIndex]) |
3939                    uint64_t(file->pWavePoolTableHi[WavePoolTableIndex]) << 32;
3940                Sample* sample = file->GetFirstSample(pProgress);
3941                while (sample) {
3942                    if (sample->ullWavePoolOffset == soughtoffset)
3943                        return static_cast<gig::Sample*>(sample);
3944                    sample = file->GetNextSample();
3945                }
3946            } else {
3947                // use extension files and 32 bit wave pool offsets
3948                file_offset_t soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
3949                file_offset_t soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
3950                Sample* sample = file->GetFirstSample(pProgress);
3951                while (sample) {
3952                    if (sample->ullWavePoolOffset == soughtoffset &&
3953                        sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
3954                    sample = file->GetNextSample();
3955                }
3956            }
3957            return NULL;
3958        }
3959        
3960        /**
3961         * Make a (semi) deep copy of the Region object given by @a orig
3962         * and assign it to this object.
3963         *
3964         * Note that all sample pointers referenced by @a orig are simply copied as
3965         * memory address. Thus the respective samples are shared, not duplicated!
3966         *
3967         * @param orig - original Region object to be copied from
3968         */
3969        void Region::CopyAssign(const Region* orig) {
3970            CopyAssign(orig, NULL);
3971        }
3972        
3973        /**
3974         * Make a (semi) deep copy of the Region object given by @a orig and
3975         * assign it to this object
3976         *
3977         * @param mSamples - crosslink map between the foreign file's samples and
3978         *                   this file's samples
3979         */
3980        void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
3981            // handle base classes
3982            DLS::Region::CopyAssign(orig);
3983            
3984            if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
3985                pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
3986            }
3987            
3988            // handle own member variables
3989            for (int i = Dimensions - 1; i >= 0; --i) {
3990                DeleteDimension(&pDimensionDefinitions[i]);
3991            }
3992            Layers = 0; // just to be sure
3993            for (int i = 0; i < orig->Dimensions; i++) {
3994                // we need to copy the dim definition here, to avoid the compiler
3995                // complaining about const-ness issue
3996                dimension_def_t def = orig->pDimensionDefinitions[i];
3997                AddDimension(&def);
3998            }
3999            for (int i = 0; i < 256; i++) {
4000                if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
4001                    pDimensionRegions[i]->CopyAssign(
4002                        orig->pDimensionRegions[i],
4003                        mSamples
4004                    );
4005                }
4006            }
4007            Layers = orig->Layers;
4008        }
4009    
4010    
4011    // *************** MidiRule ***************
4012    // *
4013    
4014        MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
4015            _3ewg->SetPos(36);
4016            Triggers = _3ewg->ReadUint8();
4017            _3ewg->SetPos(40);
4018            ControllerNumber = _3ewg->ReadUint8();
4019            _3ewg->SetPos(46);
4020            for (int i = 0 ; i < Triggers ; i++) {
4021                pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
4022                pTriggers[i].Descending = _3ewg->ReadUint8();
4023                pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
4024                pTriggers[i].Key = _3ewg->ReadUint8();
4025                pTriggers[i].NoteOff = _3ewg->ReadUint8();
4026                pTriggers[i].Velocity = _3ewg->ReadUint8();
4027                pTriggers[i].OverridePedal = _3ewg->ReadUint8();
4028                _3ewg->ReadUint8();
4029            }
4030        }
4031    
4032        MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
4033            ControllerNumber(0),
4034            Triggers(0) {
4035        }
4036    
4037        void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
4038            pData[32] = 4;
4039            pData[33] = 16;
4040            pData[36] = Triggers;
4041            pData[40] = ControllerNumber;
4042            for (int i = 0 ; i < Triggers ; i++) {
4043                pData[46 + i * 8] = pTriggers[i].TriggerPoint;
4044                pData[47 + i * 8] = pTriggers[i].Descending;
4045                pData[48 + i * 8] = pTriggers[i].VelSensitivity;
4046                pData[49 + i * 8] = pTriggers[i].Key;
4047                pData[50 + i * 8] = pTriggers[i].NoteOff;
4048                pData[51 + i * 8] = pTriggers[i].Velocity;
4049                pData[52 + i * 8] = pTriggers[i].OverridePedal;
4050            }
4051        }
4052    
4053        MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
4054            _3ewg->SetPos(36);
4055            LegatoSamples = _3ewg->ReadUint8(); // always 12
4056            _3ewg->SetPos(40);
4057            BypassUseController = _3ewg->ReadUint8();
4058            BypassKey = _3ewg->ReadUint8();
4059            BypassController = _3ewg->ReadUint8();
4060            ThresholdTime = _3ewg->ReadUint16();
4061            _3ewg->ReadInt16();
4062            ReleaseTime = _3ewg->ReadUint16();
4063            _3ewg->ReadInt16();
4064            KeyRange.low = _3ewg->ReadUint8();
4065            KeyRange.high = _3ewg->ReadUint8();
4066            _3ewg->SetPos(64);
4067            ReleaseTriggerKey = _3ewg->ReadUint8();
4068            AltSustain1Key = _3ewg->ReadUint8();
4069            AltSustain2Key = _3ewg->ReadUint8();
4070        }
4071    
4072        MidiRuleLegato::MidiRuleLegato() :
4073            LegatoSamples(12),
4074            BypassUseController(false),
4075            BypassKey(0),
4076            BypassController(1),
4077            ThresholdTime(20),
4078            ReleaseTime(20),
4079            ReleaseTriggerKey(0),
4080            AltSustain1Key(0),
4081            AltSustain2Key(0)
4082        {
4083            KeyRange.low = KeyRange.high = 0;
4084        }
4085    
4086        void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
4087            pData[32] = 0;
4088            pData[33] = 16;
4089            pData[36] = LegatoSamples;
4090            pData[40] = BypassUseController;
4091            pData[41] = BypassKey;
4092            pData[42] = BypassController;
4093            store16(&pData[43], ThresholdTime);
4094            store16(&pData[47], ReleaseTime);
4095            pData[51] = KeyRange.low;
4096            pData[52] = KeyRange.high;
4097            pData[64] = ReleaseTriggerKey;
4098            pData[65] = AltSustain1Key;
4099            pData[66] = AltSustain2Key;
4100        }
4101    
4102        MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
4103            _3ewg->SetPos(36);
4104            Articulations = _3ewg->ReadUint8();
4105            int flags = _3ewg->ReadUint8();
4106            Polyphonic = flags & 8;
4107            Chained = flags & 4;
4108            Selector = (flags & 2) ? selector_controller :
4109                (flags & 1) ? selector_key_switch : selector_none;
4110            Patterns = _3ewg->ReadUint8();
4111            _3ewg->ReadUint8(); // chosen row
4112            _3ewg->ReadUint8(); // unknown
4113            _3ewg->ReadUint8(); // unknown
4114            _3ewg->ReadUint8(); // unknown
4115            KeySwitchRange.low = _3ewg->ReadUint8();
4116            KeySwitchRange.high = _3ewg->ReadUint8();
4117            Controller = _3ewg->ReadUint8();
4118            PlayRange.low = _3ewg->ReadUint8();
4119            PlayRange.high = _3ewg->ReadUint8();
4120    
4121            int n = std::min(int(Articulations), 32);
4122            for (int i = 0 ; i < n ; i++) {
4123                _3ewg->ReadString(pArticulations[i], 32);
4124            }
4125            _3ewg->SetPos(1072);
4126            n = std::min(int(Patterns), 32);
4127            for (int i = 0 ; i < n ; i++) {
4128                _3ewg->ReadString(pPatterns[i].Name, 16);
4129                pPatterns[i].Size = _3ewg->ReadUint8();
4130                _3ewg->Read(&pPatterns[i][0], 1, 32);
4131            }
4132        }
4133    
4134        MidiRuleAlternator::MidiRuleAlternator() :
4135            Articulations(0),
4136            Patterns(0),
4137            Selector(selector_none),
4138            Controller(0),
4139            Polyphonic(false),
4140            Chained(false)
4141        {
4142            PlayRange.low = PlayRange.high = 0;
4143            KeySwitchRange.low = KeySwitchRange.high = 0;
4144        }
4145    
4146        void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
4147            pData[32] = 3;
4148            pData[33] = 16;
4149            pData[36] = Articulations;
4150            pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
4151                (Selector == selector_controller ? 2 :
4152                 (Selector == selector_key_switch ? 1 : 0));
4153            pData[38] = Patterns;
4154    
4155            pData[43] = KeySwitchRange.low;
4156            pData[44] = KeySwitchRange.high;
4157            pData[45] = Controller;
4158            pData[46] = PlayRange.low;
4159            pData[47] = PlayRange.high;
4160    
4161            char* str = reinterpret_cast<char*>(pData);
4162            int pos = 48;
4163            int n = std::min(int(Articulations), 32);
4164            for (int i = 0 ; i < n ; i++, pos += 32) {
4165                strncpy(&str[pos], pArticulations[i].c_str(), 32);
4166            }
4167    
4168            pos = 1072;
4169            n = std::min(int(Patterns), 32);
4170            for (int i = 0 ; i < n ; i++, pos += 49) {
4171                strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
4172                pData[pos + 16] = pPatterns[i].Size;
4173                memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
4174            }
4175        }
4176    
4177    // *************** Script ***************
4178    // *
4179    
4180        Script::Script(ScriptGroup* group, RIFF::Chunk* ckScri) {
4181            pGroup = group;
4182            pChunk = ckScri;
4183            if (ckScri) { // object is loaded from file ...
4184                // read header
4185                uint32_t headerSize = ckScri->ReadUint32();
4186                Compression = (Compression_t) ckScri->ReadUint32();
4187                Encoding    = (Encoding_t) ckScri->ReadUint32();
4188                Language    = (Language_t) ckScri->ReadUint32();
4189                Bypass      = (Language_t) ckScri->ReadUint32() & 1;
4190                crc         = ckScri->ReadUint32();
4191                uint32_t nameSize = ckScri->ReadUint32();
4192                Name.resize(nameSize, ' ');
4193                for (int i = 0; i < nameSize; ++i)
4194                    Name[i] = ckScri->ReadUint8();
4195                // to handle potential future extensions of the header
4196                ckScri->SetPos(sizeof(int32_t) + headerSize);
4197                // read actual script data
4198                uint32_t scriptSize = ckScri->GetSize() - ckScri->GetPos();
4199                data.resize(scriptSize);
4200                for (int i = 0; i < scriptSize; ++i)
4201                    data[i] = ckScri->ReadUint8();
4202            } else { // this is a new script object, so just initialize it as such ...
4203                Compression = COMPRESSION_NONE;
4204                Encoding = ENCODING_ASCII;
4205                Language = LANGUAGE_NKSP;
4206                Bypass   = false;
4207                crc      = 0;
4208                Name     = "Unnamed Script";
4209            }
4210        }
4211    
4212        Script::~Script() {
4213        }
4214    
4215        /**
4216         * Returns the current script (i.e. as source code) in text format.
4217         */
4218        String Script::GetScriptAsText() {
4219            String s;
4220            s.resize(data.size(), ' ');
4221            memcpy(&s[0], &data[0], data.size());
4222            return s;
4223        }
4224    
4225        /**
4226         * Replaces the current script with the new script source code text given
4227         * by @a text.
4228         *
4229         * @param text - new script source code
4230         */
4231        void Script::SetScriptAsText(const String& text) {
4232            data.resize(text.size());
4233            memcpy(&data[0], &text[0], text.size());
4234        }
4235    
4236        /**
4237         * Apply this script to the respective RIFF chunks. You have to call
4238         * File::Save() to make changes persistent.
4239         *
4240         * Usually there is absolutely no need to call this method explicitly.
4241         * It will be called automatically when File::Save() was called.
4242         *
4243         * @param pProgress - callback function for progress notification
4244         */
4245        void Script::UpdateChunks(progress_t* pProgress) {
4246            // recalculate CRC32 check sum
4247            __resetCRC(crc);
4248            __calculateCRC(&data[0], data.size(), crc);
4249            __encodeCRC(crc);
4250            // make sure chunk exists and has the required size
4251            const int chunkSize = 7*sizeof(int32_t) + Name.size() + data.size();
4252            if (!pChunk) pChunk = pGroup->pList->AddSubChunk(CHUNK_ID_SCRI, chunkSize);
4253            else pChunk->Resize(chunkSize);
4254            // fill the chunk data to be written to disk
4255            uint8_t* pData = (uint8_t*) pChunk->LoadChunkData();
4256            int pos = 0;
4257            store32(&pData[pos], 6*sizeof(int32_t) + Name.size()); // total header size
4258            pos += sizeof(int32_t);
4259            store32(&pData[pos], Compression);
4260            pos += sizeof(int32_t);
4261            store32(&pData[pos], Encoding);
4262            pos += sizeof(int32_t);
4263            store32(&pData[pos], Language);
4264            pos += sizeof(int32_t);
4265            store32(&pData[pos], Bypass ? 1 : 0);
4266            pos += sizeof(int32_t);
4267            store32(&pData[pos], crc);
4268            pos += sizeof(int32_t);
4269            store32(&pData[pos], Name.size());
4270            pos += sizeof(int32_t);
4271            for (int i = 0; i < Name.size(); ++i, ++pos)
4272                pData[pos] = Name[i];
4273            for (int i = 0; i < data.size(); ++i, ++pos)
4274                pData[pos] = data[i];
4275        }
4276    
4277        /**
4278         * Move this script from its current ScriptGroup to another ScriptGroup
4279         * given by @a pGroup.
4280         *
4281         * @param pGroup - script's new group
4282         */
4283        void Script::SetGroup(ScriptGroup* pGroup) {
4284            if (this->pGroup == pGroup) return;
4285            if (pChunk)
4286                pChunk->GetParent()->MoveSubChunk(pChunk, pGroup->pList);
4287            this->pGroup = pGroup;
4288        }
4289    
4290        /**
4291         * Returns the script group this script currently belongs to. Each script
4292         * is a member of exactly one ScriptGroup.
4293         *
4294         * @returns current script group
4295         */
4296        ScriptGroup* Script::GetGroup() const {
4297            return pGroup;
4298        }
4299    
4300        void Script::RemoveAllScriptReferences() {
4301            File* pFile = pGroup->pFile;
4302            for (int i = 0; pFile->GetInstrument(i); ++i) {
4303                Instrument* instr = pFile->GetInstrument(i);
4304                instr->RemoveScript(this);
4305            }
4306        }
4307    
4308    // *************** ScriptGroup ***************
4309    // *
4310    
4311        ScriptGroup::ScriptGroup(File* file, RIFF::List* lstRTIS) {
4312            pFile = file;
4313            pList = lstRTIS;
4314            pScripts = NULL;
4315            if (lstRTIS) {
4316                RIFF::Chunk* ckName = lstRTIS->GetSubChunk(CHUNK_ID_LSNM);
4317                ::LoadString(ckName, Name);
4318            } else {
4319                Name = "Default Group";
4320            }
4321        }
4322    
4323        ScriptGroup::~ScriptGroup() {
4324            if (pScripts) {
4325                std::list<Script*>::iterator iter = pScripts->begin();
4326                std::list<Script*>::iterator end  = pScripts->end();
4327                while (iter != end) {
4328                    delete *iter;
4329                    ++iter;
4330                }
4331                delete pScripts;
4332          }          }
4333        }
4334    
4335        /**
4336         * Apply this script group to the respective RIFF chunks. You have to call
4337         * File::Save() to make changes persistent.
4338         *
4339         * Usually there is absolutely no need to call this method explicitly.
4340         * It will be called automatically when File::Save() was called.
4341         *
4342         * @param pProgress - callback function for progress notification
4343         */
4344        void ScriptGroup::UpdateChunks(progress_t* pProgress) {
4345            if (pScripts) {
4346                if (!pList)
4347                    pList = pFile->pRIFF->GetSubList(LIST_TYPE_3LS)->AddSubList(LIST_TYPE_RTIS);
4348    
4349                // now store the name of this group as <LSNM> chunk as subchunk of the <RTIS> list chunk
4350                ::SaveString(CHUNK_ID_LSNM, NULL, pList, Name, String("Unnamed Group"), true, 64);
4351    
4352                for (std::list<Script*>::iterator it = pScripts->begin();
4353                     it != pScripts->end(); ++it)
4354                {
4355                    (*it)->UpdateChunks(pProgress);
4356                }
4357            }
4358        }
4359    
4360        /** @brief Get instrument script.
4361         *
4362         * Returns the real-time instrument script with the given index.
4363         *
4364         * @param index - number of the sought script (0..n)
4365         * @returns sought script or NULL if there's no such script
4366         */
4367        Script* ScriptGroup::GetScript(uint index) {
4368            if (!pScripts) LoadScripts();
4369            std::list<Script*>::iterator it = pScripts->begin();
4370            for (uint i = 0; it != pScripts->end(); ++i, ++it)
4371                if (i == index) return *it;
4372          return NULL;          return NULL;
4373      }      }
4374    
4375        /** @brief Add new instrument script.
4376         *
4377         * Adds a new real-time instrument script to the file. The script is not
4378         * actually used / executed unless it is referenced by an instrument to be
4379         * used. This is similar to samples, which you can add to a file, without
4380         * an instrument necessarily actually using it.
4381         *
4382         * You have to call Save() to make this persistent to the file.
4383         *
4384         * @return new empty script object
4385         */
4386        Script* ScriptGroup::AddScript() {
4387            if (!pScripts) LoadScripts();
4388            Script* pScript = new Script(this, NULL);
4389            pScripts->push_back(pScript);
4390            return pScript;
4391        }
4392    
4393        /** @brief Delete an instrument script.
4394         *
4395         * This will delete the given real-time instrument script. References of
4396         * instruments that are using that script will be removed accordingly.
4397         *
4398         * You have to call Save() to make this persistent to the file.
4399         *
4400         * @param pScript - script to delete
4401         * @throws gig::Exception if given script could not be found
4402         */
4403        void ScriptGroup::DeleteScript(Script* pScript) {
4404            if (!pScripts) LoadScripts();
4405            std::list<Script*>::iterator iter =
4406                find(pScripts->begin(), pScripts->end(), pScript);
4407            if (iter == pScripts->end())
4408                throw gig::Exception("Could not delete script, could not find given script");
4409            pScripts->erase(iter);
4410            pScript->RemoveAllScriptReferences();
4411            if (pScript->pChunk)
4412                pScript->pChunk->GetParent()->DeleteSubChunk(pScript->pChunk);
4413            delete pScript;
4414        }
4415    
4416        void ScriptGroup::LoadScripts() {
4417            if (pScripts) return;
4418            pScripts = new std::list<Script*>;
4419            if (!pList) return;
4420    
4421            for (RIFF::Chunk* ck = pList->GetFirstSubChunk(); ck;
4422                 ck = pList->GetNextSubChunk())
4423            {
4424                if (ck->GetChunkID() == CHUNK_ID_SCRI) {
4425                    pScripts->push_back(new Script(this, ck));
4426                }
4427            }
4428        }
4429    
4430  // *************** Instrument ***************  // *************** Instrument ***************
4431  // *  // *
4432    
4433      Instrument::Instrument(File* pFile, RIFF::List* insList) : DLS::Instrument((DLS::File*)pFile, insList) {      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
4434            static const DLS::Info::string_length_t fixedStringLengths[] = {
4435                { CHUNK_ID_INAM, 64 },
4436                { CHUNK_ID_ISFT, 12 },
4437                { 0, 0 }
4438            };
4439            pInfo->SetFixedStringLengths(fixedStringLengths);
4440    
4441          // Initialization          // Initialization
4442          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4443          RegionIndex = -1;          EffectSend = 0;
4444            Attenuation = 0;
4445            FineTune = 0;
4446            PitchbendRange = 0;
4447            PianoReleaseMode = false;
4448            DimensionKeyRange.low = 0;
4449            DimensionKeyRange.high = 0;
4450            pMidiRules = new MidiRule*[3];
4451            pMidiRules[0] = NULL;
4452            pScriptRefs = NULL;
4453    
4454          // Loading          // Loading
4455          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
# Line 1236  namespace gig { Line 4464  namespace gig {
4464                  PianoReleaseMode       = dimkeystart & 0x01;                  PianoReleaseMode       = dimkeystart & 0x01;
4465                  DimensionKeyRange.low  = dimkeystart >> 1;                  DimensionKeyRange.low  = dimkeystart >> 1;
4466                  DimensionKeyRange.high = _3ewg->ReadUint8();                  DimensionKeyRange.high = _3ewg->ReadUint8();
4467    
4468                    if (_3ewg->GetSize() > 32) {
4469                        // read MIDI rules
4470                        int i = 0;
4471                        _3ewg->SetPos(32);
4472                        uint8_t id1 = _3ewg->ReadUint8();
4473                        uint8_t id2 = _3ewg->ReadUint8();
4474    
4475                        if (id2 == 16) {
4476                            if (id1 == 4) {
4477                                pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
4478                            } else if (id1 == 0) {
4479                                pMidiRules[i++] = new MidiRuleLegato(_3ewg);
4480                            } else if (id1 == 3) {
4481                                pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
4482                            } else {
4483                                pMidiRules[i++] = new MidiRuleUnknown;
4484                            }
4485                        }
4486                        else if (id1 != 0 || id2 != 0) {
4487                            pMidiRules[i++] = new MidiRuleUnknown;
4488                        }
4489                        //TODO: all the other types of rules
4490    
4491                        pMidiRules[i] = NULL;
4492                    }
4493                }
4494            }
4495    
4496            if (pFile->GetAutoLoad()) {
4497                if (!pRegions) pRegions = new RegionList;
4498                RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
4499                if (lrgn) {
4500                    RIFF::List* rgn = lrgn->GetFirstSubList();
4501                    while (rgn) {
4502                        if (rgn->GetListType() == LIST_TYPE_RGN) {
4503                            __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
4504                            pRegions->push_back(new Region(this, rgn));
4505                        }
4506                        rgn = lrgn->GetNextSubList();
4507                    }
4508                    // Creating Region Key Table for fast lookup
4509                    UpdateRegionKeyTable();
4510                }
4511            }
4512    
4513            // own gig format extensions
4514            RIFF::List* lst3LS = insList->GetSubList(LIST_TYPE_3LS);
4515            if (lst3LS) {
4516                RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4517                if (ckSCSL) {
4518                    int headerSize = ckSCSL->ReadUint32();
4519                    int slotCount  = ckSCSL->ReadUint32();
4520                    if (slotCount) {
4521                        int slotSize  = ckSCSL->ReadUint32();
4522                        ckSCSL->SetPos(headerSize); // in case of future header extensions
4523                        int unknownSpace = slotSize - 2*sizeof(uint32_t); // in case of future slot extensions
4524                        for (int i = 0; i < slotCount; ++i) {
4525                            _ScriptPooolEntry e;
4526                            e.fileOffset = ckSCSL->ReadUint32();
4527                            e.bypass     = ckSCSL->ReadUint32() & 1;
4528                            if (unknownSpace) ckSCSL->SetPos(unknownSpace, RIFF::stream_curpos); // in case of future extensions
4529                            scriptPoolFileOffsets.push_back(e);
4530                        }
4531                    }
4532              }              }
             else throw gig::Exception("Mandatory <3ewg> chunk not found.");  
4533          }          }
         else throw gig::Exception("Mandatory <lart> list chunk not found.");  
4534    
4535          RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);          __notify_progress(pProgress, 1.0f); // notify done
4536          if (!lrgn) throw gig::Exception("Mandatory chunks in <ins > chunk not found.");      }
4537          pRegions = new Region*[Regions];  
4538          RIFF::List* rgn = lrgn->GetFirstSubList();      void Instrument::UpdateRegionKeyTable() {
4539          unsigned int iRegion = 0;          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4540          while (rgn) {          RegionList::iterator iter = pRegions->begin();
4541              if (rgn->GetListType() == LIST_TYPE_RGN) {          RegionList::iterator end  = pRegions->end();
4542                  pRegions[iRegion] = new Region(this, rgn);          for (; iter != end; ++iter) {
4543                  iRegion++;              gig::Region* pRegion = static_cast<gig::Region*>(*iter);
4544              }              for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
4545              rgn = lrgn->GetNextSubList();                  RegionKeyTable[iKey] = pRegion;
         }  
   
         // Creating Region Key Table for fast lookup  
         for (uint iReg = 0; iReg < Regions; iReg++) {  
             for (int iKey = pRegions[iReg]->KeyRange.low; iKey <= pRegions[iReg]->KeyRange.high; iKey++) {  
                 RegionKeyTable[iKey] = pRegions[iReg];  
4546              }              }
4547          }          }
4548      }      }
4549    
4550      Instrument::~Instrument() {      Instrument::~Instrument() {
4551          for (uint i = 0; i < Regions; i++) {          for (int i = 0 ; pMidiRules[i] ; i++) {
4552              if (pRegions) {              delete pMidiRules[i];
4553                  if (pRegions[i]) delete (pRegions[i]);          }
4554            delete[] pMidiRules;
4555            if (pScriptRefs) delete pScriptRefs;
4556        }
4557    
4558        /**
4559         * Apply Instrument with all its Regions to the respective RIFF chunks.
4560         * You have to call File::Save() to make changes persistent.
4561         *
4562         * Usually there is absolutely no need to call this method explicitly.
4563         * It will be called automatically when File::Save() was called.
4564         *
4565         * @param pProgress - callback function for progress notification
4566         * @throws gig::Exception if samples cannot be dereferenced
4567         */
4568        void Instrument::UpdateChunks(progress_t* pProgress) {
4569            // first update base classes' chunks
4570            DLS::Instrument::UpdateChunks(pProgress);
4571    
4572            // update Regions' chunks
4573            {
4574                RegionList::iterator iter = pRegions->begin();
4575                RegionList::iterator end  = pRegions->end();
4576                for (; iter != end; ++iter)
4577                    (*iter)->UpdateChunks(pProgress);
4578            }
4579    
4580            // make sure 'lart' RIFF list chunk exists
4581            RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
4582            if (!lart)  lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
4583            // make sure '3ewg' RIFF chunk exists
4584            RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4585            if (!_3ewg)  {
4586                File* pFile = (File*) GetParent();
4587    
4588                // 3ewg is bigger in gig3, as it includes the iMIDI rules
4589                int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
4590                _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
4591                memset(_3ewg->LoadChunkData(), 0, size);
4592            }
4593            // update '3ewg' RIFF chunk
4594            uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
4595            store16(&pData[0], EffectSend);
4596            store32(&pData[2], Attenuation);
4597            store16(&pData[6], FineTune);
4598            store16(&pData[8], PitchbendRange);
4599            const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
4600                                        DimensionKeyRange.low << 1;
4601            pData[10] = dimkeystart;
4602            pData[11] = DimensionKeyRange.high;
4603    
4604            if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
4605                pData[32] = 0;
4606                pData[33] = 0;
4607            } else {
4608                for (int i = 0 ; pMidiRules[i] ; i++) {
4609                    pMidiRules[i]->UpdateChunks(pData);
4610              }              }
             delete[] pRegions;  
4611          }          }
4612    
4613            // own gig format extensions
4614           if (ScriptSlotCount()) {
4615               // make sure we have converted the original loaded script file
4616               // offsets into valid Script object pointers
4617               LoadScripts();
4618    
4619               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4620               if (!lst3LS) lst3LS = pCkInstrument->AddSubList(LIST_TYPE_3LS);
4621               const int slotCount = pScriptRefs->size();
4622               const int headerSize = 3 * sizeof(uint32_t);
4623               const int slotSize  = 2 * sizeof(uint32_t);
4624               const int totalChunkSize = headerSize + slotCount * slotSize;
4625               RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4626               if (!ckSCSL) ckSCSL = lst3LS->AddSubChunk(CHUNK_ID_SCSL, totalChunkSize);
4627               else ckSCSL->Resize(totalChunkSize);
4628               uint8_t* pData = (uint8_t*) ckSCSL->LoadChunkData();
4629               int pos = 0;
4630               store32(&pData[pos], headerSize);
4631               pos += sizeof(uint32_t);
4632               store32(&pData[pos], slotCount);
4633               pos += sizeof(uint32_t);
4634               store32(&pData[pos], slotSize);
4635               pos += sizeof(uint32_t);
4636               for (int i = 0; i < slotCount; ++i) {
4637                   // arbitrary value, the actual file offset will be updated in
4638                   // UpdateScriptFileOffsets() after the file has been resized
4639                   int bogusFileOffset = 0;
4640                   store32(&pData[pos], bogusFileOffset);
4641                   pos += sizeof(uint32_t);
4642                   store32(&pData[pos], (*pScriptRefs)[i].bypass ? 1 : 0);
4643                   pos += sizeof(uint32_t);
4644               }
4645           } else {
4646               // no script slots, so get rid of any LS custom RIFF chunks (if any)
4647               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4648               if (lst3LS) pCkInstrument->DeleteSubChunk(lst3LS);
4649           }
4650        }
4651    
4652        void Instrument::UpdateScriptFileOffsets() {
4653           // own gig format extensions
4654           if (pScriptRefs && pScriptRefs->size() > 0) {
4655               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4656               RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4657               const int slotCount = pScriptRefs->size();
4658               const int headerSize = 3 * sizeof(uint32_t);
4659               ckSCSL->SetPos(headerSize);
4660               for (int i = 0; i < slotCount; ++i) {
4661                   uint32_t fileOffset =
4662                        (*pScriptRefs)[i].script->pChunk->GetFilePos() -
4663                        (*pScriptRefs)[i].script->pChunk->GetPos() -
4664                        CHUNK_HEADER_SIZE(ckSCSL->GetFile()->GetFileOffsetSize());
4665                   ckSCSL->WriteUint32(&fileOffset);
4666                   // jump over flags entry (containing the bypass flag)
4667                   ckSCSL->SetPos(sizeof(uint32_t), RIFF::stream_curpos);
4668               }
4669           }        
4670      }      }
4671    
4672      /**      /**
# Line 1279  namespace gig { Line 4677  namespace gig {
4677       *             there is no Region defined for the given \a Key       *             there is no Region defined for the given \a Key
4678       */       */
4679      Region* Instrument::GetRegion(unsigned int Key) {      Region* Instrument::GetRegion(unsigned int Key) {
4680          if (!pRegions || Key > 127) return NULL;          if (!pRegions || pRegions->empty() || Key > 127) return NULL;
4681          return RegionKeyTable[Key];          return RegionKeyTable[Key];
4682    
4683          /*for (int i = 0; i < Regions; i++) {          /*for (int i = 0; i < Regions; i++) {
4684              if (Key <= pRegions[i]->KeyRange.high &&              if (Key <= pRegions[i]->KeyRange.high &&
4685                  Key >= pRegions[i]->KeyRange.low) return pRegions[i];                  Key >= pRegions[i]->KeyRange.low) return pRegions[i];
# Line 1296  namespace gig { Line 4695  namespace gig {
4695       * @see      GetNextRegion()       * @see      GetNextRegion()
4696       */       */
4697      Region* Instrument::GetFirstRegion() {      Region* Instrument::GetFirstRegion() {
4698          if (!Regions) return NULL;          if (!pRegions) return NULL;
4699          RegionIndex = 1;          RegionsIterator = pRegions->begin();
4700          return pRegions[0];          return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4701      }      }
4702    
4703      /**      /**
# Line 1310  namespace gig { Line 4709  namespace gig {
4709       * @see      GetFirstRegion()       * @see      GetFirstRegion()
4710       */       */
4711      Region* Instrument::GetNextRegion() {      Region* Instrument::GetNextRegion() {
4712          if (RegionIndex < 0 || RegionIndex >= Regions) return NULL;          if (!pRegions) return NULL;
4713          return pRegions[RegionIndex++];          RegionsIterator++;
4714            return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4715        }
4716    
4717        Region* Instrument::AddRegion() {
4718            // create new Region object (and its RIFF chunks)
4719            RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
4720            if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
4721            RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
4722            Region* pNewRegion = new Region(this, rgn);
4723            pRegions->push_back(pNewRegion);
4724            Regions = pRegions->size();
4725            // update Region key table for fast lookup
4726            UpdateRegionKeyTable();
4727            // done
4728            return pNewRegion;
4729        }
4730    
4731        void Instrument::DeleteRegion(Region* pRegion) {
4732            if (!pRegions) return;
4733            DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
4734            // update Region key table for fast lookup
4735            UpdateRegionKeyTable();
4736        }
4737    
4738        /**
4739         * Move this instrument at the position before @arg dst.
4740         *
4741         * This method can be used to reorder the sequence of instruments in a
4742         * .gig file. This might be helpful especially on large .gig files which
4743         * contain a large number of instruments within the same .gig file. So
4744         * grouping such instruments to similar ones, can help to keep track of them
4745         * when working with such complex .gig files.
4746         *
4747         * When calling this method, this instrument will be removed from in its
4748         * current position in the instruments list and moved to the requested
4749         * target position provided by @param dst. You may also pass NULL as
4750         * argument to this method, in that case this intrument will be moved to the
4751         * very end of the .gig file's instrument list.
4752         *
4753         * You have to call Save() to make the order change persistent to the .gig
4754         * file.
4755         *
4756         * Currently this method is limited to moving the instrument within the same
4757         * .gig file. Trying to move it to another .gig file by calling this method
4758         * will throw an exception.
4759         *
4760         * @param dst - destination instrument at which this instrument will be
4761         *              moved to, or pass NULL for moving to end of list
4762         * @throw gig::Exception if this instrument and target instrument are not
4763         *                       part of the same file
4764         */
4765        void Instrument::MoveTo(Instrument* dst) {
4766            if (dst && GetParent() != dst->GetParent())
4767                throw Exception(
4768                    "gig::Instrument::MoveTo() can only be used for moving within "
4769                    "the same gig file."
4770                );
4771    
4772            File* pFile = (File*) GetParent();
4773    
4774            // move this instrument within the instrument list
4775            {
4776                File::InstrumentList& list = *pFile->pInstruments;
4777    
4778                File::InstrumentList::iterator itFrom =
4779                    std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(this));
4780    
4781                File::InstrumentList::iterator itTo =
4782                    std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(dst));
4783    
4784                list.splice(itTo, list, itFrom);
4785            }
4786    
4787            // move the instrument's actual list RIFF chunk appropriately
4788            RIFF::List* lstCkInstruments = pFile->pRIFF->GetSubList(LIST_TYPE_LINS);
4789            lstCkInstruments->MoveSubChunk(
4790                this->pCkInstrument,
4791                (RIFF::Chunk*) ((dst) ? dst->pCkInstrument : NULL)
4792            );
4793        }
4794    
4795        /**
4796         * Returns a MIDI rule of the instrument.
4797         *
4798         * The list of MIDI rules, at least in gig v3, always contains at
4799         * most two rules. The second rule can only be the DEF filter
4800         * (which currently isn't supported by libgig).
4801         *
4802         * @param i - MIDI rule number
4803         * @returns   pointer address to MIDI rule number i or NULL if there is none
4804         */
4805        MidiRule* Instrument::GetMidiRule(int i) {
4806            return pMidiRules[i];
4807        }
4808    
4809        /**
4810         * Adds the "controller trigger" MIDI rule to the instrument.
4811         *
4812         * @returns the new MIDI rule
4813         */
4814        MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
4815            delete pMidiRules[0];
4816            MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
4817            pMidiRules[0] = r;
4818            pMidiRules[1] = 0;
4819            return r;
4820        }
4821    
4822        /**
4823         * Adds the legato MIDI rule to the instrument.
4824         *
4825         * @returns the new MIDI rule
4826         */
4827        MidiRuleLegato* Instrument::AddMidiRuleLegato() {
4828            delete pMidiRules[0];
4829            MidiRuleLegato* r = new MidiRuleLegato;
4830            pMidiRules[0] = r;
4831            pMidiRules[1] = 0;
4832            return r;
4833        }
4834    
4835        /**
4836         * Adds the alternator MIDI rule to the instrument.
4837         *
4838         * @returns the new MIDI rule
4839         */
4840        MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
4841            delete pMidiRules[0];
4842            MidiRuleAlternator* r = new MidiRuleAlternator;
4843            pMidiRules[0] = r;
4844            pMidiRules[1] = 0;
4845            return r;
4846        }
4847    
4848        /**
4849         * Deletes a MIDI rule from the instrument.
4850         *
4851         * @param i - MIDI rule number
4852         */
4853        void Instrument::DeleteMidiRule(int i) {
4854            delete pMidiRules[i];
4855            pMidiRules[i] = 0;
4856        }
4857    
4858        void Instrument::LoadScripts() {
4859            if (pScriptRefs) return;
4860            pScriptRefs = new std::vector<_ScriptPooolRef>;
4861            if (scriptPoolFileOffsets.empty()) return;
4862            File* pFile = (File*) GetParent();
4863            for (uint k = 0; k < scriptPoolFileOffsets.size(); ++k) {
4864                uint32_t soughtOffset = scriptPoolFileOffsets[k].fileOffset;
4865                for (uint i = 0; pFile->GetScriptGroup(i); ++i) {
4866                    ScriptGroup* group = pFile->GetScriptGroup(i);
4867                    for (uint s = 0; group->GetScript(s); ++s) {
4868                        Script* script = group->GetScript(s);
4869                        if (script->pChunk) {
4870                            uint32_t offset = script->pChunk->GetFilePos() -
4871                                              script->pChunk->GetPos() -
4872                                              CHUNK_HEADER_SIZE(script->pChunk->GetFile()->GetFileOffsetSize());
4873                            if (offset == soughtOffset)
4874                            {
4875                                _ScriptPooolRef ref;
4876                                ref.script = script;
4877                                ref.bypass = scriptPoolFileOffsets[k].bypass;
4878                                pScriptRefs->push_back(ref);
4879                                break;
4880                            }
4881                        }
4882                    }
4883                }
4884            }
4885            // we don't need that anymore
4886            scriptPoolFileOffsets.clear();
4887        }
4888    
4889        /** @brief Get instrument script (gig format extension).
4890         *
4891         * Returns the real-time instrument script of instrument script slot
4892         * @a index.
4893         *
4894         * @note This is an own format extension which did not exist i.e. in the
4895         * GigaStudio 4 software. It will currently only work with LinuxSampler and
4896         * gigedit.
4897         *
4898         * @param index - instrument script slot index
4899         * @returns script or NULL if index is out of bounds
4900         */
4901        Script* Instrument::GetScriptOfSlot(uint index) {
4902            LoadScripts();
4903            if (index >= pScriptRefs->size()) return NULL;
4904            return pScriptRefs->at(index).script;
4905        }
4906    
4907        /** @brief Add new instrument script slot (gig format extension).
4908         *
4909         * Add the given real-time instrument script reference to this instrument,
4910         * which shall be executed by the sampler for for this instrument. The
4911         * script will be added to the end of the script list of this instrument.
4912         * The positions of the scripts in the Instrument's Script list are
4913         * relevant, because they define in which order they shall be executed by
4914         * the sampler. For this reason it is also legal to add the same script
4915         * twice to an instrument, for example you might have a script called
4916         * "MyFilter" which performs an event filter task, and you might have
4917         * another script called "MyNoteTrigger" which triggers new notes, then you
4918         * might for example have the following list of scripts on the instrument:
4919         *
4920         * 1. Script "MyFilter"
4921         * 2. Script "MyNoteTrigger"
4922         * 3. Script "MyFilter"
4923         *
4924         * Which would make sense, because the 2nd script launched new events, which
4925         * you might need to filter as well.
4926         *
4927         * There are two ways to disable / "bypass" scripts. You can either disable
4928         * a script locally for the respective script slot on an instrument (i.e. by
4929         * passing @c false to the 2nd argument of this method, or by calling
4930         * SetScriptBypassed()). Or you can disable a script globally for all slots
4931         * and all instruments by setting Script::Bypass.
4932         *
4933         * @note This is an own format extension which did not exist i.e. in the
4934         * GigaStudio 4 software. It will currently only work with LinuxSampler and
4935         * gigedit.
4936         *
4937         * @param pScript - script that shall be executed for this instrument
4938         * @param bypass  - if enabled, the sampler shall skip executing this
4939         *                  script (in the respective list position)
4940         * @see SetScriptBypassed()
4941         */
4942        void Instrument::AddScriptSlot(Script* pScript, bool bypass) {
4943            LoadScripts();
4944            _ScriptPooolRef ref = { pScript, bypass };
4945            pScriptRefs->push_back(ref);
4946        }
4947    
4948        /** @brief Flip two script slots with each other (gig format extension).
4949         *
4950         * Swaps the position of the two given scripts in the Instrument's Script
4951         * list. The positions of the scripts in the Instrument's Script list are
4952         * relevant, because they define in which order they shall be executed by
4953         * the sampler.
4954         *
4955         * @note This is an own format extension which did not exist i.e. in the
4956         * GigaStudio 4 software. It will currently only work with LinuxSampler and
4957         * gigedit.
4958         *
4959         * @param index1 - index of the first script slot to swap
4960         * @param index2 - index of the second script slot to swap
4961         */
4962        void Instrument::SwapScriptSlots(uint index1, uint index2) {
4963            LoadScripts();
4964            if (index1 >= pScriptRefs->size() || index2 >= pScriptRefs->size())
4965                return;
4966            _ScriptPooolRef tmp = (*pScriptRefs)[index1];
4967            (*pScriptRefs)[index1] = (*pScriptRefs)[index2];
4968            (*pScriptRefs)[index2] = tmp;
4969        }
4970    
4971        /** @brief Remove script slot.
4972         *
4973         * Removes the script slot with the given slot index.
4974         *
4975         * @param index - index of script slot to remove
4976         */
4977        void Instrument::RemoveScriptSlot(uint index) {
4978            LoadScripts();
4979            if (index >= pScriptRefs->size()) return;
4980            pScriptRefs->erase( pScriptRefs->begin() + index );
4981        }
4982    
4983        /** @brief Remove reference to given Script (gig format extension).
4984         *
4985         * This will remove all script slots on the instrument which are referencing
4986         * the given script.
4987         *
4988         * @note This is an own format extension which did not exist i.e. in the
4989         * GigaStudio 4 software. It will currently only work with LinuxSampler and
4990         * gigedit.
4991         *
4992         * @param pScript - script reference to remove from this instrument
4993         * @see RemoveScriptSlot()
4994         */
4995        void Instrument::RemoveScript(Script* pScript) {
4996            LoadScripts();
4997            for (int i = pScriptRefs->size() - 1; i >= 0; --i) {
4998                if ((*pScriptRefs)[i].script == pScript) {
4999                    pScriptRefs->erase( pScriptRefs->begin() + i );
5000                }
5001            }
5002        }
5003    
5004        /** @brief Instrument's amount of script slots.
5005         *
5006         * This method returns the amount of script slots this instrument currently
5007         * uses.
5008         *
5009         * A script slot is a reference of a real-time instrument script to be
5010         * executed by the sampler. The scripts will be executed by the sampler in
5011         * sequence of the slots. One (same) script may be referenced multiple
5012         * times in different slots.
5013         *
5014         * @note This is an own format extension which did not exist i.e. in the
5015         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5016         * gigedit.
5017         */
5018        uint Instrument::ScriptSlotCount() const {
5019            return pScriptRefs ? pScriptRefs->size() : scriptPoolFileOffsets.size();
5020        }
5021    
5022        /** @brief Whether script execution shall be skipped.
5023         *
5024         * Defines locally for the Script reference slot in the Instrument's Script
5025         * list, whether the script shall be skipped by the sampler regarding
5026         * execution.
5027         *
5028         * It is also possible to ignore exeuction of the script globally, for all
5029         * slots and for all instruments by setting Script::Bypass.
5030         *
5031         * @note This is an own format extension which did not exist i.e. in the
5032         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5033         * gigedit.
5034         *
5035         * @param index - index of the script slot on this instrument
5036         * @see Script::Bypass
5037         */
5038        bool Instrument::IsScriptSlotBypassed(uint index) {
5039            if (index >= ScriptSlotCount()) return false;
5040            return pScriptRefs ? pScriptRefs->at(index).bypass
5041                               : scriptPoolFileOffsets.at(index).bypass;
5042            
5043        }
5044    
5045        /** @brief Defines whether execution shall be skipped.
5046         *
5047         * You can call this method to define locally whether or whether not the
5048         * given script slot shall be executed by the sampler.
5049         *
5050         * @note This is an own format extension which did not exist i.e. in the
5051         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5052         * gigedit.
5053         *
5054         * @param index - script slot index on this instrument
5055         * @param bBypass - if true, the script slot will be skipped by the sampler
5056         * @see Script::Bypass
5057         */
5058        void Instrument::SetScriptSlotBypassed(uint index, bool bBypass) {
5059            if (index >= ScriptSlotCount()) return;
5060            if (pScriptRefs)
5061                pScriptRefs->at(index).bypass = bBypass;
5062            else
5063                scriptPoolFileOffsets.at(index).bypass = bBypass;
5064        }
5065    
5066        /**
5067         * Make a (semi) deep copy of the Instrument object given by @a orig
5068         * and assign it to this object.
5069         *
5070         * Note that all sample pointers referenced by @a orig are simply copied as
5071         * memory address. Thus the respective samples are shared, not duplicated!
5072         *
5073         * @param orig - original Instrument object to be copied from
5074         */
5075        void Instrument::CopyAssign(const Instrument* orig) {
5076            CopyAssign(orig, NULL);
5077        }
5078            
5079        /**
5080         * Make a (semi) deep copy of the Instrument object given by @a orig
5081         * and assign it to this object.
5082         *
5083         * @param orig - original Instrument object to be copied from
5084         * @param mSamples - crosslink map between the foreign file's samples and
5085         *                   this file's samples
5086         */
5087        void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
5088            // handle base class
5089            // (without copying DLS region stuff)
5090            DLS::Instrument::CopyAssignCore(orig);
5091            
5092            // handle own member variables
5093            Attenuation = orig->Attenuation;
5094            EffectSend = orig->EffectSend;
5095            FineTune = orig->FineTune;
5096            PitchbendRange = orig->PitchbendRange;
5097            PianoReleaseMode = orig->PianoReleaseMode;
5098            DimensionKeyRange = orig->DimensionKeyRange;
5099            scriptPoolFileOffsets = orig->scriptPoolFileOffsets;
5100            pScriptRefs = orig->pScriptRefs;
5101            
5102            // free old midi rules
5103            for (int i = 0 ; pMidiRules[i] ; i++) {
5104                delete pMidiRules[i];
5105            }
5106            //TODO: MIDI rule copying
5107            pMidiRules[0] = NULL;
5108            
5109            // delete all old regions
5110            while (Regions) DeleteRegion(GetFirstRegion());
5111            // create new regions and copy them from original
5112            {
5113                RegionList::const_iterator it = orig->pRegions->begin();
5114                for (int i = 0; i < orig->Regions; ++i, ++it) {
5115                    Region* dstRgn = AddRegion();
5116                    //NOTE: Region does semi-deep copy !
5117                    dstRgn->CopyAssign(
5118                        static_cast<gig::Region*>(*it),
5119                        mSamples
5120                    );
5121                }
5122            }
5123    
5124            UpdateRegionKeyTable();
5125        }
5126    
5127    
5128    // *************** Group ***************
5129    // *
5130    
5131        /** @brief Constructor.
5132         *
5133         * @param file   - pointer to the gig::File object
5134         * @param ck3gnm - pointer to 3gnm chunk associated with this group or
5135         *                 NULL if this is a new Group
5136         */
5137        Group::Group(File* file, RIFF::Chunk* ck3gnm) {
5138            pFile      = file;
5139            pNameChunk = ck3gnm;
5140            ::LoadString(pNameChunk, Name);
5141        }
5142    
5143        Group::~Group() {
5144            // remove the chunk associated with this group (if any)
5145            if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
5146        }
5147    
5148        /** @brief Update chunks with current group settings.
5149         *
5150         * Apply current Group field values to the respective chunks. You have
5151         * to call File::Save() to make changes persistent.
5152         *
5153         * Usually there is absolutely no need to call this method explicitly.
5154         * It will be called automatically when File::Save() was called.
5155         *
5156         * @param pProgress - callback function for progress notification
5157         */
5158        void Group::UpdateChunks(progress_t* pProgress) {
5159            // make sure <3gri> and <3gnl> list chunks exist
5160            RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
5161            if (!_3gri) {
5162                _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
5163                pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
5164            }
5165            RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
5166            if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
5167    
5168            if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
5169                // v3 has a fixed list of 128 strings, find a free one
5170                for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
5171                    if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
5172                        pNameChunk = ck;
5173                        break;
5174                    }
5175                }
5176            }
5177    
5178            // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
5179            ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
5180        }
5181    
5182        /**
5183         * Returns the first Sample of this Group. You have to call this method
5184         * once before you use GetNextSample().
5185         *
5186         * <b>Notice:</b> this method might block for a long time, in case the
5187         * samples of this .gig file were not scanned yet
5188         *
5189         * @returns  pointer address to first Sample or NULL if there is none
5190         *           applied to this Group
5191         * @see      GetNextSample()
5192         */
5193        Sample* Group::GetFirstSample() {
5194            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5195            for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
5196                if (pSample->GetGroup() == this) return pSample;
5197            }
5198            return NULL;
5199        }
5200    
5201        /**
5202         * Returns the next Sample of the Group. You have to call
5203         * GetFirstSample() once before you can use this method. By calling this
5204         * method multiple times it iterates through the Samples assigned to
5205         * this Group.
5206         *
5207         * @returns  pointer address to the next Sample of this Group or NULL if
5208         *           end reached
5209         * @see      GetFirstSample()
5210         */
5211        Sample* Group::GetNextSample() {
5212            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5213            for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
5214                if (pSample->GetGroup() == this) return pSample;
5215            }
5216            return NULL;
5217        }
5218    
5219        /**
5220         * Move Sample given by \a pSample from another Group to this Group.
5221         */
5222        void Group::AddSample(Sample* pSample) {
5223            pSample->pGroup = this;
5224        }
5225    
5226        /**
5227         * Move all members of this group to another group (preferably the 1st
5228         * one except this). This method is called explicitly by
5229         * File::DeleteGroup() thus when a Group was deleted. This code was
5230         * intentionally not placed in the destructor!
5231         */
5232        void Group::MoveAll() {
5233            // get "that" other group first
5234            Group* pOtherGroup = NULL;
5235            for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
5236                if (pOtherGroup != this) break;
5237            }
5238            if (!pOtherGroup) throw Exception(
5239                "Could not move samples to another group, since there is no "
5240                "other Group. This is a bug, report it!"
5241            );
5242            // now move all samples of this group to the other group
5243            for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
5244                pOtherGroup->AddSample(pSample);
5245            }
5246      }      }
5247    
5248    
# Line 1319  namespace gig { Line 5250  namespace gig {
5250  // *************** File ***************  // *************** File ***************
5251  // *  // *
5252    
5253        /// Reflects Gigasampler file format version 2.0 (1998-06-28).
5254        const DLS::version_t File::VERSION_2 = {
5255            0, 2, 19980628 & 0xffff, 19980628 >> 16
5256        };
5257    
5258        /// Reflects Gigasampler file format version 3.0 (2003-03-31).
5259        const DLS::version_t File::VERSION_3 = {
5260            0, 3, 20030331 & 0xffff, 20030331 >> 16
5261        };
5262    
5263        static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
5264            { CHUNK_ID_IARL, 256 },
5265            { CHUNK_ID_IART, 128 },
5266            { CHUNK_ID_ICMS, 128 },
5267            { CHUNK_ID_ICMT, 1024 },
5268            { CHUNK_ID_ICOP, 128 },
5269            { CHUNK_ID_ICRD, 128 },
5270            { CHUNK_ID_IENG, 128 },
5271            { CHUNK_ID_IGNR, 128 },
5272            { CHUNK_ID_IKEY, 128 },
5273            { CHUNK_ID_IMED, 128 },
5274            { CHUNK_ID_INAM, 128 },
5275            { CHUNK_ID_IPRD, 128 },
5276            { CHUNK_ID_ISBJ, 128 },
5277            { CHUNK_ID_ISFT, 128 },
5278            { CHUNK_ID_ISRC, 128 },
5279            { CHUNK_ID_ISRF, 128 },
5280            { CHUNK_ID_ITCH, 128 },
5281            { 0, 0 }
5282        };
5283    
5284        File::File() : DLS::File() {
5285            bAutoLoad = true;
5286            *pVersion = VERSION_3;
5287            pGroups = NULL;
5288            pScriptGroups = NULL;
5289            pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5290            pInfo->ArchivalLocation = String(256, ' ');
5291    
5292            // add some mandatory chunks to get the file chunks in right
5293            // order (INFO chunk will be moved to first position later)
5294            pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
5295            pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
5296            pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
5297    
5298            GenerateDLSID();
5299        }
5300    
5301      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
5302          pSamples     = NULL;          bAutoLoad = true;
5303          pInstruments = NULL;          pGroups = NULL;
5304            pScriptGroups = NULL;
5305            pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5306      }      }
5307    
5308      Sample* File::GetFirstSample() {      File::~File() {
5309          if (!pSamples) LoadSamples();          if (pGroups) {
5310                std::list<Group*>::iterator iter = pGroups->begin();
5311                std::list<Group*>::iterator end  = pGroups->end();
5312                while (iter != end) {
5313                    delete *iter;
5314                    ++iter;
5315                }
5316                delete pGroups;
5317            }
5318            if (pScriptGroups) {
5319                std::list<ScriptGroup*>::iterator iter = pScriptGroups->begin();
5320                std::list<ScriptGroup*>::iterator end  = pScriptGroups->end();
5321                while (iter != end) {
5322                    delete *iter;
5323                    ++iter;
5324                }
5325                delete pScriptGroups;
5326            }
5327        }
5328    
5329        Sample* File::GetFirstSample(progress_t* pProgress) {
5330            if (!pSamples) LoadSamples(pProgress);
5331          if (!pSamples) return NULL;          if (!pSamples) return NULL;
5332          SamplesIterator = pSamples->begin();          SamplesIterator = pSamples->begin();
5333          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
# Line 1336  namespace gig { Line 5338  namespace gig {
5338          SamplesIterator++;          SamplesIterator++;
5339          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5340      }      }
5341        
5342        /**
5343         * Returns Sample object of @a index.
5344         *
5345         * @returns sample object or NULL if index is out of bounds
5346         */
5347        Sample* File::GetSample(uint index) {
5348            if (!pSamples) LoadSamples();
5349            if (!pSamples) return NULL;
5350            DLS::File::SampleList::iterator it = pSamples->begin();
5351            for (int i = 0; i < index; ++i) {
5352                ++it;
5353                if (it == pSamples->end()) return NULL;
5354            }
5355            if (it == pSamples->end()) return NULL;
5356            return static_cast<gig::Sample*>( *it );
5357        }
5358    
5359      void File::LoadSamples() {      /** @brief Add a new sample.
5360          RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);       *
5361          if (wvpl) {       * This will create a new Sample object for the gig file. You have to
5362              unsigned long wvplFileOffset = wvpl->GetFilePos();       * call Save() to make this persistent to the file.
5363              RIFF::List* wave = wvpl->GetFirstSubList();       *
5364              while (wave) {       * @returns pointer to new Sample object
5365                  if (wave->GetListType() == LIST_TYPE_WAVE) {       */
5366                      if (!pSamples) pSamples = new SampleList;      Sample* File::AddSample() {
5367                      unsigned long waveFileOffset = wave->GetFilePos();         if (!pSamples) LoadSamples();
5368                      pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset));         __ensureMandatoryChunksExist();
5369           RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
5370           // create new Sample object and its respective 'wave' list chunk
5371           RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
5372           Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
5373    
5374           // add mandatory chunks to get the chunks in right order
5375           wave->AddSubChunk(CHUNK_ID_FMT, 16);
5376           wave->AddSubList(LIST_TYPE_INFO);
5377    
5378           pSamples->push_back(pSample);
5379           return pSample;
5380        }
5381    
5382        /** @brief Delete a sample.
5383         *
5384         * This will delete the given Sample object from the gig file. Any
5385         * references to this sample from Regions and DimensionRegions will be
5386         * removed. You have to call Save() to make this persistent to the file.
5387         *
5388         * @param pSample - sample to delete
5389         * @throws gig::Exception if given sample could not be found
5390         */
5391        void File::DeleteSample(Sample* pSample) {
5392            if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
5393            SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
5394            if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
5395            if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
5396            pSamples->erase(iter);
5397            delete pSample;
5398    
5399            SampleList::iterator tmp = SamplesIterator;
5400            // remove all references to the sample
5401            for (Instrument* instrument = GetFirstInstrument() ; instrument ;
5402                 instrument = GetNextInstrument()) {
5403                for (Region* region = instrument->GetFirstRegion() ; region ;
5404                     region = instrument->GetNextRegion()) {
5405    
5406                    if (region->GetSample() == pSample) region->SetSample(NULL);
5407    
5408                    for (int i = 0 ; i < region->DimensionRegions ; i++) {
5409                        gig::DimensionRegion *d = region->pDimensionRegions[i];
5410                        if (d->pSample == pSample) d->pSample = NULL;
5411                  }                  }
                 wave = wvpl->GetNextSubList();  
5412              }              }
5413          }          }
5414          else throw gig::Exception("Mandatory <wvpl> chunk not found.");          SamplesIterator = tmp; // restore iterator
5415        }
5416    
5417        void File::LoadSamples() {
5418            LoadSamples(NULL);
5419        }
5420    
5421        void File::LoadSamples(progress_t* pProgress) {
5422            // Groups must be loaded before samples, because samples will try
5423            // to resolve the group they belong to
5424            if (!pGroups) LoadGroups();
5425    
5426            if (!pSamples) pSamples = new SampleList;
5427    
5428            RIFF::File* file = pRIFF;
5429    
5430            // just for progress calculation
5431            int iSampleIndex  = 0;
5432            int iTotalSamples = WavePoolCount;
5433    
5434            // check if samples should be loaded from extension files
5435            // (only for old gig files < 2 GB)
5436            int lastFileNo = 0;
5437            if (!file->IsNew() && !(file->GetCurrentFileSize() >> 31)) {
5438                for (int i = 0 ; i < WavePoolCount ; i++) {
5439                    if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
5440                }
5441            }
5442            String name(pRIFF->GetFileName());
5443            int nameLen = name.length();
5444            char suffix[6];
5445            if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
5446    
5447            for (int fileNo = 0 ; ; ) {
5448                RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
5449                if (wvpl) {
5450                    file_offset_t wvplFileOffset = wvpl->GetFilePos();
5451                    RIFF::List* wave = wvpl->GetFirstSubList();
5452                    while (wave) {
5453                        if (wave->GetListType() == LIST_TYPE_WAVE) {
5454                            // notify current progress
5455                            const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
5456                            __notify_progress(pProgress, subprogress);
5457    
5458                            file_offset_t waveFileOffset = wave->GetFilePos();
5459                            pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo, iSampleIndex));
5460    
5461                            iSampleIndex++;
5462                        }
5463                        wave = wvpl->GetNextSubList();
5464                    }
5465    
5466                    if (fileNo == lastFileNo) break;
5467    
5468                    // open extension file (*.gx01, *.gx02, ...)
5469                    fileNo++;
5470                    sprintf(suffix, ".gx%02d", fileNo);
5471                    name.replace(nameLen, 5, suffix);
5472                    file = new RIFF::File(name);
5473                    ExtensionFiles.push_back(file);
5474                } else break;
5475            }
5476    
5477            __notify_progress(pProgress, 1.0); // notify done
5478      }      }
5479    
5480      Instrument* File::GetFirstInstrument() {      Instrument* File::GetFirstInstrument() {
5481          if (!pInstruments) LoadInstruments();          if (!pInstruments) LoadInstruments();
5482          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
5483          InstrumentsIterator = pInstruments->begin();          InstrumentsIterator = pInstruments->begin();
5484          return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;          return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5485      }      }
5486    
5487      Instrument* File::GetNextInstrument() {      Instrument* File::GetNextInstrument() {
5488          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
5489          InstrumentsIterator++;          InstrumentsIterator++;
5490          return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;          return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5491      }      }
5492    
5493      /**      /**
5494       * Returns the instrument with the given index.       * Returns the instrument with the given index.
5495       *       *
5496         * @param index     - number of the sought instrument (0..n)
5497         * @param pProgress - optional: callback function for progress notification
5498       * @returns  sought instrument or NULL if there's no such instrument       * @returns  sought instrument or NULL if there's no such instrument
5499       */       */
5500      Instrument* File::GetInstrument(uint index) {      Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
5501          if (!pInstruments) LoadInstruments();          if (!pInstruments) {
5502                // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
5503    
5504                // sample loading subtask
5505                progress_t subprogress;
5506                __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
5507                __notify_progress(&subprogress, 0.0f);
5508                if (GetAutoLoad())
5509                    GetFirstSample(&subprogress); // now force all samples to be loaded
5510                __notify_progress(&subprogress, 1.0f);
5511    
5512                // instrument loading subtask
5513                if (pProgress && pProgress->callback) {
5514                    subprogress.__range_min = subprogress.__range_max;
5515                    subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
5516                }
5517                __notify_progress(&subprogress, 0.0f);
5518                LoadInstruments(&subprogress);
5519                __notify_progress(&subprogress, 1.0f);
5520            }
5521          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
5522          InstrumentsIterator = pInstruments->begin();          InstrumentsIterator = pInstruments->begin();
5523          for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {          for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
5524              if (i == index) return *InstrumentsIterator;              if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
5525              InstrumentsIterator++;              InstrumentsIterator++;
5526          }          }
5527          return NULL;          return NULL;
5528      }      }
5529    
5530        /** @brief Add a new instrument definition.
5531         *
5532         * This will create a new Instrument object for the gig file. You have
5533         * to call Save() to make this persistent to the file.
5534         *
5535         * @returns pointer to new Instrument object
5536         */
5537        Instrument* File::AddInstrument() {
5538           if (!pInstruments) LoadInstruments();
5539           __ensureMandatoryChunksExist();
5540           RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5541           RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
5542    
5543           // add mandatory chunks to get the chunks in right order
5544           lstInstr->AddSubList(LIST_TYPE_INFO);
5545           lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
5546    
5547           Instrument* pInstrument = new Instrument(this, lstInstr);
5548           pInstrument->GenerateDLSID();
5549    
5550           lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
5551    
5552           // this string is needed for the gig to be loadable in GSt:
5553           pInstrument->pInfo->Software = "Endless Wave";
5554    
5555           pInstruments->push_back(pInstrument);
5556           return pInstrument;
5557        }
5558        
5559        /** @brief Add a duplicate of an existing instrument.
5560         *
5561         * Duplicates the instrument definition given by @a orig and adds it
5562         * to this file. This allows in an instrument editor application to
5563         * easily create variations of an instrument, which will be stored in
5564         * the same .gig file, sharing i.e. the same samples.
5565         *
5566         * Note that all sample pointers referenced by @a orig are simply copied as
5567         * memory address. Thus the respective samples are shared, not duplicated!
5568         *
5569         * You have to call Save() to make this persistent to the file.
5570         *
5571         * @param orig - original instrument to be copied
5572         * @returns duplicated copy of the given instrument
5573         */
5574        Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
5575            Instrument* instr = AddInstrument();
5576            instr->CopyAssign(orig);
5577            return instr;
5578        }
5579        
5580        /** @brief Add content of another existing file.
5581         *
5582         * Duplicates the samples, groups and instruments of the original file
5583         * given by @a pFile and adds them to @c this File. In case @c this File is
5584         * a new one that you haven't saved before, then you have to call
5585         * SetFileName() before calling AddContentOf(), because this method will
5586         * automatically save this file during operation, which is required for
5587         * writing the sample waveform data by disk streaming.
5588         *
5589         * @param pFile - original file whose's content shall be copied from
5590         */
5591        void File::AddContentOf(File* pFile) {
5592            static int iCallCount = -1;
5593            iCallCount++;
5594            std::map<Group*,Group*> mGroups;
5595            std::map<Sample*,Sample*> mSamples;
5596            
5597            // clone sample groups
5598            for (int i = 0; pFile->GetGroup(i); ++i) {
5599                Group* g = AddGroup();
5600                g->Name =
5601                    "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
5602                mGroups[pFile->GetGroup(i)] = g;
5603            }
5604            
5605            // clone samples (not waveform data here yet)
5606            for (int i = 0; pFile->GetSample(i); ++i) {
5607                Sample* s = AddSample();
5608                s->CopyAssignMeta(pFile->GetSample(i));
5609                mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
5610                mSamples[pFile->GetSample(i)] = s;
5611            }
5612            
5613            //BUG: For some reason this method only works with this additional
5614            //     Save() call in between here.
5615            //
5616            // Important: The correct one of the 2 Save() methods has to be called
5617            // here, depending on whether the file is completely new or has been
5618            // saved to disk already, otherwise it will result in data corruption.
5619            if (pRIFF->IsNew())
5620                Save(GetFileName());
5621            else
5622                Save();
5623            
5624            // clone instruments
5625            // (passing the crosslink table here for the cloned samples)
5626            for (int i = 0; pFile->GetInstrument(i); ++i) {
5627                Instrument* instr = AddInstrument();
5628                instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
5629            }
5630            
5631            // Mandatory: file needs to be saved to disk at this point, so this
5632            // file has the correct size and data layout for writing the samples'
5633            // waveform data to disk.
5634            Save();
5635            
5636            // clone samples' waveform data
5637            // (using direct read & write disk streaming)
5638            for (int i = 0; pFile->GetSample(i); ++i) {
5639                mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
5640            }
5641        }
5642    
5643        /** @brief Delete an instrument.
5644         *
5645         * This will delete the given Instrument object from the gig file. You
5646         * have to call Save() to make this persistent to the file.
5647         *
5648         * @param pInstrument - instrument to delete
5649         * @throws gig::Exception if given instrument could not be found
5650         */
5651        void File::DeleteInstrument(Instrument* pInstrument) {
5652            if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
5653            InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
5654            if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
5655            pInstruments->erase(iter);
5656            delete pInstrument;
5657        }
5658    
5659      void File::LoadInstruments() {      void File::LoadInstruments() {
5660            LoadInstruments(NULL);
5661        }
5662    
5663        void File::LoadInstruments(progress_t* pProgress) {
5664            if (!pInstruments) pInstruments = new InstrumentList;
5665          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5666          if (lstInstruments) {          if (lstInstruments) {
5667                int iInstrumentIndex = 0;
5668              RIFF::List* lstInstr = lstInstruments->GetFirstSubList();              RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
5669              while (lstInstr) {              while (lstInstr) {
5670                  if (lstInstr->GetListType() == LIST_TYPE_INS) {                  if (lstInstr->GetListType() == LIST_TYPE_INS) {
5671                      if (!pInstruments) pInstruments = new InstrumentList;                      // notify current progress
5672                      pInstruments->push_back(new Instrument(this, lstInstr));                      const float localProgress = (float) iInstrumentIndex / (float) Instruments;
5673                        __notify_progress(pProgress, localProgress);
5674    
5675                        // divide local progress into subprogress for loading current Instrument
5676                        progress_t subprogress;
5677                        __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
5678    
5679                        pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
5680    
5681                        iInstrumentIndex++;
5682                  }                  }
5683                  lstInstr = lstInstruments->GetNextSubList();                  lstInstr = lstInstruments->GetNextSubList();
5684              }              }
5685                __notify_progress(pProgress, 1.0); // notify done
5686            }
5687        }
5688    
5689        /// Updates the 3crc chunk with the checksum of a sample. The
5690        /// update is done directly to disk, as this method is called
5691        /// after File::Save()
5692        void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
5693            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5694            if (!_3crc) return;
5695    
5696            // get the index of the sample
5697            int iWaveIndex = GetWaveTableIndexOf(pSample);
5698            if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
5699    
5700            // write the CRC-32 checksum to disk
5701            _3crc->SetPos(iWaveIndex * 8);
5702            uint32_t one = 1;
5703            _3crc->WriteUint32(&one); // always 1
5704            _3crc->WriteUint32(&crc);
5705        }
5706    
5707        uint32_t File::GetSampleChecksum(Sample* pSample) {
5708            // get the index of the sample
5709            int iWaveIndex = GetWaveTableIndexOf(pSample);
5710            if (iWaveIndex < 0) throw gig::Exception("Could not retrieve reference crc of sample, could not resolve sample's wave table index");
5711    
5712            return GetSampleChecksumByIndex(iWaveIndex);
5713        }
5714    
5715        uint32_t File::GetSampleChecksumByIndex(int index) {
5716            if (index < 0) throw gig::Exception("Could not retrieve reference crc of sample, invalid wave pool index of sample");
5717    
5718            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5719            if (!_3crc) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
5720            uint8_t* pData = (uint8_t*) _3crc->LoadChunkData();
5721            if (!pData) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
5722    
5723            // read the CRC-32 checksum directly from disk
5724            size_t pos = index * 8;
5725            if (pos + 8 > _3crc->GetNewSize())
5726                throw gig::Exception("Could not retrieve reference crc of sample, could not seek to required position in crc chunk");
5727    
5728            uint32_t one = load32(&pData[pos]); // always 1
5729            if (one != 1)
5730                throw gig::Exception("Could not retrieve reference crc of sample, because reference checksum table is damaged");
5731    
5732            return load32(&pData[pos+4]);
5733        }
5734    
5735        int File::GetWaveTableIndexOf(gig::Sample* pSample) {
5736            if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
5737            File::SampleList::iterator iter = pSamples->begin();
5738            File::SampleList::iterator end  = pSamples->end();
5739            for (int index = 0; iter != end; ++iter, ++index)
5740                if (*iter == pSample)
5741                    return index;
5742            return -1;
5743        }
5744    
5745        /**
5746         * Checks whether the file's "3CRC" chunk was damaged. This chunk contains
5747         * the CRC32 check sums of all samples' raw wave data.
5748         *
5749         * @return true if 3CRC chunk is OK, or false if 3CRC chunk is damaged
5750         */
5751        bool File::VerifySampleChecksumTable() {
5752            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5753            if (!_3crc) return false;
5754            if (_3crc->GetNewSize() <= 0) return false;
5755            if (_3crc->GetNewSize() % 8) return false;
5756            if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
5757            if (_3crc->GetNewSize() != pSamples->size() * 8) return false;
5758    
5759            const int n = _3crc->GetNewSize() / 8;
5760    
5761            uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
5762            if (!pData) return false;
5763    
5764            for (int i = 0; i < n; ++i) {
5765                uint32_t one = pData[i*2];
5766                if (one != 1) return false;
5767            }
5768    
5769            return true;
5770        }
5771    
5772        /**
5773         * Recalculates CRC32 checksums for all samples and rebuilds this gig
5774         * file's checksum table with those new checksums. This might usually
5775         * just be necessary if the checksum table was damaged.
5776         *
5777         * @e IMPORTANT: The current implementation of this method only works
5778         * with files that have not been modified since it was loaded, because
5779         * it expects that no externally caused file structure changes are
5780         * required!
5781         *
5782         * Due to the expectation above, this method is currently protected
5783         * and actually only used by the command line tool "gigdump" yet.
5784         *
5785         * @returns true if Save() is required to be called after this call,
5786         *          false if no further action is required
5787         */
5788        bool File::RebuildSampleChecksumTable() {
5789            // make sure sample chunks were scanned
5790            if (!pSamples) GetFirstSample();
5791    
5792            bool bRequiresSave = false;
5793    
5794            // make sure "3CRC" chunk exists with required size
5795            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5796            if (!_3crc) {
5797                _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
5798                // the order of einf and 3crc is not the same in v2 and v3
5799                RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
5800                if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
5801                bRequiresSave = true;
5802            } else if (_3crc->GetNewSize() != pSamples->size() * 8) {
5803                _3crc->Resize(pSamples->size() * 8);
5804                bRequiresSave = true;
5805            }
5806    
5807            if (bRequiresSave) { // refill CRC table for all samples in RAM ...
5808                uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
5809                {
5810                    File::SampleList::iterator iter = pSamples->begin();
5811                    File::SampleList::iterator end  = pSamples->end();
5812                    for (; iter != end; ++iter) {
5813                        gig::Sample* pSample = (gig::Sample*) *iter;
5814                        int index = GetWaveTableIndexOf(pSample);
5815                        if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
5816                        pData[index*2]   = 1; // always 1
5817                        pData[index*2+1] = pSample->CalculateWaveDataChecksum();
5818                    }
5819                }
5820            } else { // no file structure changes necessary, so directly write to disk and we are done ...
5821                // make sure file is in write mode
5822                pRIFF->SetMode(RIFF::stream_mode_read_write);
5823                {
5824                    File::SampleList::iterator iter = pSamples->begin();
5825                    File::SampleList::iterator end  = pSamples->end();
5826                    for (; iter != end; ++iter) {
5827                        gig::Sample* pSample = (gig::Sample*) *iter;
5828                        int index = GetWaveTableIndexOf(pSample);
5829                        if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
5830                        pSample->crc  = pSample->CalculateWaveDataChecksum();
5831                        SetSampleChecksum(pSample, pSample->crc);
5832                    }
5833                }
5834            }
5835    
5836            return bRequiresSave;
5837        }
5838    
5839        Group* File::GetFirstGroup() {
5840            if (!pGroups) LoadGroups();
5841            // there must always be at least one group
5842            GroupsIterator = pGroups->begin();
5843            return *GroupsIterator;
5844        }
5845    
5846        Group* File::GetNextGroup() {
5847            if (!pGroups) return NULL;
5848            ++GroupsIterator;
5849            return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
5850        }
5851    
5852        /**
5853         * Returns the group with the given index.
5854         *
5855         * @param index - number of the sought group (0..n)
5856         * @returns sought group or NULL if there's no such group
5857         */
5858        Group* File::GetGroup(uint index) {
5859            if (!pGroups) LoadGroups();
5860            GroupsIterator = pGroups->begin();
5861            for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
5862                if (i == index) return *GroupsIterator;
5863                ++GroupsIterator;
5864            }
5865            return NULL;
5866        }
5867    
5868        /**
5869         * Returns the group with the given group name.
5870         *
5871         * Note: group names don't have to be unique in the gig format! So there
5872         * can be multiple groups with the same name. This method will simply
5873         * return the first group found with the given name.
5874         *
5875         * @param name - name of the sought group
5876         * @returns sought group or NULL if there's no group with that name
5877         */
5878        Group* File::GetGroup(String name) {
5879            if (!pGroups) LoadGroups();
5880            GroupsIterator = pGroups->begin();
5881            for (uint i = 0; GroupsIterator != pGroups->end(); ++GroupsIterator, ++i)
5882                if ((*GroupsIterator)->Name == name) return *GroupsIterator;
5883            return NULL;
5884        }
5885    
5886        Group* File::AddGroup() {
5887            if (!pGroups) LoadGroups();
5888            // there must always be at least one group
5889            __ensureMandatoryChunksExist();
5890            Group* pGroup = new Group(this, NULL);
5891            pGroups->push_back(pGroup);
5892            return pGroup;
5893        }
5894    
5895        /** @brief Delete a group and its samples.
5896         *
5897         * This will delete the given Group object and all the samples that
5898         * belong to this group from the gig file. You have to call Save() to
5899         * make this persistent to the file.
5900         *
5901         * @param pGroup - group to delete
5902         * @throws gig::Exception if given group could not be found
5903         */
5904        void File::DeleteGroup(Group* pGroup) {
5905            if (!pGroups) LoadGroups();
5906            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
5907            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
5908            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
5909            // delete all members of this group
5910            for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
5911                DeleteSample(pSample);
5912          }          }
5913          else throw gig::Exception("Mandatory <lins> list chunk not found.");          // now delete this group object
5914            pGroups->erase(iter);
5915            delete pGroup;
5916        }
5917    
5918        /** @brief Delete a group.
5919         *
5920         * This will delete the given Group object from the gig file. All the
5921         * samples that belong to this group will not be deleted, but instead
5922         * be moved to another group. You have to call Save() to make this
5923         * persistent to the file.
5924         *
5925         * @param pGroup - group to delete
5926         * @throws gig::Exception if given group could not be found
5927         */
5928        void File::DeleteGroupOnly(Group* pGroup) {
5929            if (!pGroups) LoadGroups();
5930            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
5931            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
5932            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
5933            // move all members of this group to another group
5934            pGroup->MoveAll();
5935            pGroups->erase(iter);
5936            delete pGroup;
5937        }
5938    
5939        void File::LoadGroups() {
5940            if (!pGroups) pGroups = new std::list<Group*>;
5941            // try to read defined groups from file
5942            RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
5943            if (lst3gri) {
5944                RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
5945                if (lst3gnl) {
5946                    RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
5947                    while (ck) {
5948                        if (ck->GetChunkID() == CHUNK_ID_3GNM) {
5949                            if (pVersion && pVersion->major == 3 &&
5950                                strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
5951    
5952                            pGroups->push_back(new Group(this, ck));
5953                        }
5954                        ck = lst3gnl->GetNextSubChunk();
5955                    }
5956                }
5957            }
5958            // if there were no group(s), create at least the mandatory default group
5959            if (!pGroups->size()) {
5960                Group* pGroup = new Group(this, NULL);
5961                pGroup->Name = "Default Group";
5962                pGroups->push_back(pGroup);
5963            }
5964        }
5965    
5966        /** @brief Get instrument script group (by index).
5967         *
5968         * Returns the real-time instrument script group with the given index.
5969         *
5970         * @param index - number of the sought group (0..n)
5971         * @returns sought script group or NULL if there's no such group
5972         */
5973        ScriptGroup* File::GetScriptGroup(uint index) {
5974            if (!pScriptGroups) LoadScriptGroups();
5975            std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
5976            for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
5977                if (i == index) return *it;
5978            return NULL;
5979        }
5980    
5981        /** @brief Get instrument script group (by name).
5982         *
5983         * Returns the first real-time instrument script group found with the given
5984         * group name. Note that group names may not necessarily be unique.
5985         *
5986         * @param name - name of the sought script group
5987         * @returns sought script group or NULL if there's no such group
5988         */
5989        ScriptGroup* File::GetScriptGroup(const String& name) {
5990            if (!pScriptGroups) LoadScriptGroups();
5991            std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
5992            for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
5993                if ((*it)->Name == name) return *it;
5994            return NULL;
5995        }
5996    
5997        /** @brief Add new instrument script group.
5998         *
5999         * Adds a new, empty real-time instrument script group to the file.
6000         *
6001         * You have to call Save() to make this persistent to the file.
6002         *
6003         * @return new empty script group
6004         */
6005        ScriptGroup* File::AddScriptGroup() {
6006            if (!pScriptGroups) LoadScriptGroups();
6007            ScriptGroup* pScriptGroup = new ScriptGroup(this, NULL);
6008            pScriptGroups->push_back(pScriptGroup);
6009            return pScriptGroup;
6010        }
6011    
6012        /** @brief Delete an instrument script group.
6013         *
6014         * This will delete the given real-time instrument script group and all its
6015         * instrument scripts it contains. References inside instruments that are
6016         * using the deleted scripts will be removed from the respective instruments
6017         * accordingly.
6018         *
6019         * You have to call Save() to make this persistent to the file.
6020         *
6021         * @param pScriptGroup - script group to delete
6022         * @throws gig::Exception if given script group could not be found
6023         */
6024        void File::DeleteScriptGroup(ScriptGroup* pScriptGroup) {
6025            if (!pScriptGroups) LoadScriptGroups();
6026            std::list<ScriptGroup*>::iterator iter =
6027                find(pScriptGroups->begin(), pScriptGroups->end(), pScriptGroup);
6028            if (iter == pScriptGroups->end())
6029                throw gig::Exception("Could not delete script group, could not find given script group");
6030            pScriptGroups->erase(iter);
6031            for (int i = 0; pScriptGroup->GetScript(i); ++i)
6032                pScriptGroup->DeleteScript(pScriptGroup->GetScript(i));
6033            if (pScriptGroup->pList)
6034                pScriptGroup->pList->GetParent()->DeleteSubChunk(pScriptGroup->pList);
6035            delete pScriptGroup;
6036        }
6037    
6038        void File::LoadScriptGroups() {
6039            if (pScriptGroups) return;
6040            pScriptGroups = new std::list<ScriptGroup*>;
6041            RIFF::List* lstLS = pRIFF->GetSubList(LIST_TYPE_3LS);
6042            if (lstLS) {
6043                for (RIFF::List* lst = lstLS->GetFirstSubList(); lst;
6044                     lst = lstLS->GetNextSubList())
6045                {
6046                    if (lst->GetListType() == LIST_TYPE_RTIS) {
6047                        pScriptGroups->push_back(new ScriptGroup(this, lst));
6048                    }
6049                }
6050            }
6051        }
6052    
6053        /**
6054         * Apply all the gig file's current instruments, samples, groups and settings
6055         * to the respective RIFF chunks. You have to call Save() to make changes
6056         * persistent.
6057         *
6058         * Usually there is absolutely no need to call this method explicitly.
6059         * It will be called automatically when File::Save() was called.
6060         *
6061         * @param pProgress - callback function for progress notification
6062         * @throws Exception - on errors
6063         */
6064        void File::UpdateChunks(progress_t* pProgress) {
6065            bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
6066    
6067            // update own gig format extension chunks
6068            // (not part of the GigaStudio 4 format)
6069            RIFF::List* lst3LS = pRIFF->GetSubList(LIST_TYPE_3LS);
6070            if (!lst3LS) {
6071                lst3LS = pRIFF->AddSubList(LIST_TYPE_3LS);
6072            }
6073            // Make sure <3LS > chunk is placed before <ptbl> chunk. The precise
6074            // location of <3LS > is irrelevant, however it should be located
6075            // before  the actual wave data
6076            RIFF::Chunk* ckPTBL = pRIFF->GetSubChunk(CHUNK_ID_PTBL);
6077            pRIFF->MoveSubChunk(lst3LS, ckPTBL);
6078    
6079            // This must be performed before writing the chunks for instruments,
6080            // because the instruments' script slots will write the file offsets
6081            // of the respective instrument script chunk as reference.
6082            if (pScriptGroups) {
6083                // Update instrument script (group) chunks.
6084                for (std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6085                     it != pScriptGroups->end(); ++it)
6086                {
6087                    (*it)->UpdateChunks(pProgress);
6088                }
6089            }
6090    
6091            // in case no libgig custom format data was added, then remove the
6092            // custom "3LS " chunk again
6093            if (!lst3LS->CountSubChunks()) {
6094                pRIFF->DeleteSubChunk(lst3LS);
6095                lst3LS = NULL;
6096            }
6097    
6098            // first update base class's chunks
6099            DLS::File::UpdateChunks(pProgress);
6100    
6101            if (newFile) {
6102                // INFO was added by Resource::UpdateChunks - make sure it
6103                // is placed first in file
6104                RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
6105                RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
6106                if (first != info) {
6107                    pRIFF->MoveSubChunk(info, first);
6108                }
6109            }
6110    
6111            // update group's chunks
6112            if (pGroups) {
6113                // make sure '3gri' and '3gnl' list chunks exist
6114                // (before updating the Group chunks)
6115                RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6116                if (!_3gri) {
6117                    _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
6118                    pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
6119                }
6120                RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
6121                if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
6122    
6123                // v3: make sure the file has 128 3gnm chunks
6124                // (before updating the Group chunks)
6125                if (pVersion && pVersion->major == 3) {
6126                    RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
6127                    for (int i = 0 ; i < 128 ; i++) {
6128                        if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
6129                        if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
6130                    }
6131                }
6132    
6133                std::list<Group*>::iterator iter = pGroups->begin();
6134                std::list<Group*>::iterator end  = pGroups->end();
6135                for (; iter != end; ++iter) {
6136                    (*iter)->UpdateChunks(pProgress);
6137                }
6138            }
6139    
6140            // update einf chunk
6141    
6142            // The einf chunk contains statistics about the gig file, such
6143            // as the number of regions and samples used by each
6144            // instrument. It is divided in equally sized parts, where the
6145            // first part contains information about the whole gig file,
6146            // and the rest of the parts map to each instrument in the
6147            // file.
6148            //
6149            // At the end of each part there is a bit map of each sample
6150            // in the file, where a set bit means that the sample is used
6151            // by the file/instrument.
6152            //
6153            // Note that there are several fields with unknown use. These
6154            // are set to zero.
6155    
6156            int sublen = pSamples->size() / 8 + 49;
6157            int einfSize = (Instruments + 1) * sublen;
6158    
6159            RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6160            if (einf) {
6161                if (einf->GetSize() != einfSize) {
6162                    einf->Resize(einfSize);
6163                    memset(einf->LoadChunkData(), 0, einfSize);
6164                }
6165            } else if (newFile) {
6166                einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
6167            }
6168            if (einf) {
6169                uint8_t* pData = (uint8_t*) einf->LoadChunkData();
6170    
6171                std::map<gig::Sample*,int> sampleMap;
6172                int sampleIdx = 0;
6173                for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
6174                    sampleMap[pSample] = sampleIdx++;
6175                }
6176    
6177                int totnbusedsamples = 0;
6178                int totnbusedchannels = 0;
6179                int totnbregions = 0;
6180                int totnbdimregions = 0;
6181                int totnbloops = 0;
6182                int instrumentIdx = 0;
6183    
6184                memset(&pData[48], 0, sublen - 48);
6185    
6186                for (Instrument* instrument = GetFirstInstrument() ; instrument ;
6187                     instrument = GetNextInstrument()) {
6188                    int nbusedsamples = 0;
6189                    int nbusedchannels = 0;
6190                    int nbdimregions = 0;
6191                    int nbloops = 0;
6192    
6193                    memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
6194    
6195                    for (Region* region = instrument->GetFirstRegion() ; region ;
6196                         region = instrument->GetNextRegion()) {
6197                        for (int i = 0 ; i < region->DimensionRegions ; i++) {
6198                            gig::DimensionRegion *d = region->pDimensionRegions[i];
6199                            if (d->pSample) {
6200                                int sampleIdx = sampleMap[d->pSample];
6201                                int byte = 48 + sampleIdx / 8;
6202                                int bit = 1 << (sampleIdx & 7);
6203                                if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
6204                                    pData[(instrumentIdx + 1) * sublen + byte] |= bit;
6205                                    nbusedsamples++;
6206                                    nbusedchannels += d->pSample->Channels;
6207    
6208                                    if ((pData[byte] & bit) == 0) {
6209                                        pData[byte] |= bit;
6210                                        totnbusedsamples++;
6211                                        totnbusedchannels += d->pSample->Channels;
6212                                    }
6213                                }
6214                            }
6215                            if (d->SampleLoops) nbloops++;
6216                        }
6217                        nbdimregions += region->DimensionRegions;
6218                    }
6219                    // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6220                    // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
6221                    store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
6222                    store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
6223                    store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
6224                    store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
6225                    store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
6226                    store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
6227                    // next 8 bytes unknown
6228                    store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
6229                    store32(&pData[(instrumentIdx + 1) * sublen + 40], pSamples->size());
6230                    // next 4 bytes unknown
6231    
6232                    totnbregions += instrument->Regions;
6233                    totnbdimregions += nbdimregions;
6234                    totnbloops += nbloops;
6235                    instrumentIdx++;
6236                }
6237                // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6238                // store32(&pData[0], sublen);
6239                store32(&pData[4], totnbusedchannels);
6240                store32(&pData[8], totnbusedsamples);
6241                store32(&pData[12], Instruments);
6242                store32(&pData[16], totnbregions);
6243                store32(&pData[20], totnbdimregions);
6244                store32(&pData[24], totnbloops);
6245                // next 8 bytes unknown
6246                // next 4 bytes unknown, not always 0
6247                store32(&pData[40], pSamples->size());
6248                // next 4 bytes unknown
6249            }
6250    
6251            // update 3crc chunk
6252    
6253            // The 3crc chunk contains CRC-32 checksums for the
6254            // samples. When saving a gig file to disk, we first update the 3CRC
6255            // chunk here (in RAM) with the old crc values which we read from the
6256            // 3CRC chunk when we opened the file (available with gig::Sample::crc
6257            // member variable). This step is required, because samples might have
6258            // been deleted by the user since the file was opened, which in turn
6259            // changes the order of the (i.e. old) checksums within the 3crc chunk.
6260            // If a sample was conciously modified by the user (that is if
6261            // Sample::Write() was called later on) then Sample::Write() will just
6262            // update the respective individual checksum(s) directly on disk and
6263            // leaves all other sample checksums untouched.
6264    
6265            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6266            if (_3crc) {
6267                _3crc->Resize(pSamples->size() * 8);
6268            } else /*if (newFile)*/ {
6269                _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6270                // the order of einf and 3crc is not the same in v2 and v3
6271                if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
6272            }
6273            { // must be performed in RAM here ...
6274                uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6275                if (pData) {
6276                    File::SampleList::iterator iter = pSamples->begin();
6277                    File::SampleList::iterator end  = pSamples->end();
6278                    for (int index = 0; iter != end; ++iter, ++index) {
6279                        gig::Sample* pSample = (gig::Sample*) *iter;
6280                        pData[index*2]   = 1; // always 1
6281                        pData[index*2+1] = pSample->crc;
6282                    }
6283                }
6284            }
6285        }
6286        
6287        void File::UpdateFileOffsets() {
6288            DLS::File::UpdateFileOffsets();
6289    
6290            for (Instrument* instrument = GetFirstInstrument(); instrument;
6291                 instrument = GetNextInstrument())
6292            {
6293                instrument->UpdateScriptFileOffsets();
6294            }
6295        }
6296    
6297        /**
6298         * Enable / disable automatic loading. By default this properyt is
6299         * enabled and all informations are loaded automatically. However
6300         * loading all Regions, DimensionRegions and especially samples might
6301         * take a long time for large .gig files, and sometimes one might only
6302         * be interested in retrieving very superficial informations like the
6303         * amount of instruments and their names. In this case one might disable
6304         * automatic loading to avoid very slow response times.
6305         *
6306         * @e CAUTION: by disabling this property many pointers (i.e. sample
6307         * references) and informations will have invalid or even undefined
6308         * data! This feature is currently only intended for retrieving very
6309         * superficial informations in a very fast way. Don't use it to retrieve
6310         * details like synthesis informations or even to modify .gig files!
6311         */
6312        void File::SetAutoLoad(bool b) {
6313            bAutoLoad = b;
6314        }
6315    
6316        /**
6317         * Returns whether automatic loading is enabled.
6318         * @see SetAutoLoad()
6319         */
6320        bool File::GetAutoLoad() {
6321            return bAutoLoad;
6322      }      }
6323    
6324    
# Line 1410  namespace gig { Line 6333  namespace gig {
6333          std::cout << "gig::Exception: " << Message << std::endl;          std::cout << "gig::Exception: " << Message << std::endl;
6334      }      }
6335    
6336    
6337    // *************** functions ***************
6338    // *
6339    
6340        /**
6341         * Returns the name of this C++ library. This is usually "libgig" of
6342         * course. This call is equivalent to RIFF::libraryName() and
6343         * DLS::libraryName().
6344         */
6345        String libraryName() {
6346            return PACKAGE;
6347        }
6348    
6349        /**
6350         * Returns version of this C++ library. This call is equivalent to
6351         * RIFF::libraryVersion() and DLS::libraryVersion().
6352         */
6353        String libraryVersion() {
6354            return VERSION;
6355        }
6356    
6357  } // namespace gig  } // namespace gig

Legend:
Removed from v.55  
changed lines
  Added in v.2990

  ViewVC Help
Powered by ViewVC