/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Diff of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 55 by schoenebeck, Tue Apr 27 09:06:07 2004 UTC revision 3327 by schoenebeck, Sun Jul 23 18:18:30 2017 UTC
# Line 1  Line 1 
1  /***************************************************************************  /***************************************************************************
2   *                                                                         *   *                                                                         *
3   *   libgig - C++ cross-platform Gigasampler format file loader library    *   *   libgig - C++ cross-platform Gigasampler format file access library    *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Christian Schoenebeck                     *   *   Copyright (C) 2003-2017 by Christian Schoenebeck                      *
6   *                               <cuse@users.sourceforge.net>              *   *                              <cuse@users.sourceforge.net>               *
7   *                                                                         *   *                                                                         *
8   *   This library is free software; you can redistribute it and/or modify  *   *   This library is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 23  Line 23 
23    
24  #include "gig.h"  #include "gig.h"
25    
26    #include "helper.h"
27    #include "Serialization.h"
28    
29    #include <algorithm>
30    #include <math.h>
31    #include <iostream>
32    #include <assert.h>
33    
34    /// libgig's current file format version (for extending the original Giga file
35    /// format with libgig's own custom data / custom features).
36    #define GIG_FILE_EXT_VERSION    2
37    
38    /// Initial size of the sample buffer which is used for decompression of
39    /// compressed sample wave streams - this value should always be bigger than
40    /// the biggest sample piece expected to be read by the sampler engine,
41    /// otherwise the buffer size will be raised at runtime and thus the buffer
42    /// reallocated which is time consuming and unefficient.
43    #define INITIAL_SAMPLE_BUFFER_SIZE              512000 // 512 kB
44    
45    /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
46    #define GIG_EXP_DECODE(x)                       (pow(1.000000008813822, x))
47    #define GIG_EXP_ENCODE(x)                       (log(x) / log(1.000000008813822))
48    #define GIG_PITCH_TRACK_EXTRACT(x)              (!(x & 0x01))
49    #define GIG_PITCH_TRACK_ENCODE(x)               ((x) ? 0x00 : 0x01)
50    #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x)       ((x >> 4) & 0x03)
51    #define GIG_VCF_RESONANCE_CTRL_ENCODE(x)        ((x & 0x03) << 4)
52    #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x)  ((x >> 1) & 0x03)
53    #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x)   ((x >> 3) & 0x03)
54    #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
55    #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x)   ((x & 0x03) << 1)
56    #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x)    ((x & 0x03) << 3)
57    #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x)  ((x & 0x03) << 5)
58    
59    #define SRLZ(member) \
60        archive->serializeMember(*this, member, #member);
61    
62  namespace gig {  namespace gig {
63    
64    // *************** Internal functions for sample decompression ***************
65    // *
66    
67    namespace {
68    
69        inline int get12lo(const unsigned char* pSrc)
70        {
71            const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
72            return x & 0x800 ? x - 0x1000 : x;
73        }
74    
75        inline int get12hi(const unsigned char* pSrc)
76        {
77            const int x = pSrc[1] >> 4 | pSrc[2] << 4;
78            return x & 0x800 ? x - 0x1000 : x;
79        }
80    
81        inline int16_t get16(const unsigned char* pSrc)
82        {
83            return int16_t(pSrc[0] | pSrc[1] << 8);
84        }
85    
86        inline int get24(const unsigned char* pSrc)
87        {
88            const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
89            return x & 0x800000 ? x - 0x1000000 : x;
90        }
91    
92        inline void store24(unsigned char* pDst, int x)
93        {
94            pDst[0] = x;
95            pDst[1] = x >> 8;
96            pDst[2] = x >> 16;
97        }
98    
99        void Decompress16(int compressionmode, const unsigned char* params,
100                          int srcStep, int dstStep,
101                          const unsigned char* pSrc, int16_t* pDst,
102                          file_offset_t currentframeoffset,
103                          file_offset_t copysamples)
104        {
105            switch (compressionmode) {
106                case 0: // 16 bit uncompressed
107                    pSrc += currentframeoffset * srcStep;
108                    while (copysamples) {
109                        *pDst = get16(pSrc);
110                        pDst += dstStep;
111                        pSrc += srcStep;
112                        copysamples--;
113                    }
114                    break;
115    
116                case 1: // 16 bit compressed to 8 bit
117                    int y  = get16(params);
118                    int dy = get16(params + 2);
119                    while (currentframeoffset) {
120                        dy -= int8_t(*pSrc);
121                        y  -= dy;
122                        pSrc += srcStep;
123                        currentframeoffset--;
124                    }
125                    while (copysamples) {
126                        dy -= int8_t(*pSrc);
127                        y  -= dy;
128                        *pDst = y;
129                        pDst += dstStep;
130                        pSrc += srcStep;
131                        copysamples--;
132                    }
133                    break;
134            }
135        }
136    
137        void Decompress24(int compressionmode, const unsigned char* params,
138                          int dstStep, const unsigned char* pSrc, uint8_t* pDst,
139                          file_offset_t currentframeoffset,
140                          file_offset_t copysamples, int truncatedBits)
141        {
142            int y, dy, ddy, dddy;
143    
144    #define GET_PARAMS(params)                      \
145            y    = get24(params);                   \
146            dy   = y - get24((params) + 3);         \
147            ddy  = get24((params) + 6);             \
148            dddy = get24((params) + 9)
149    
150    #define SKIP_ONE(x)                             \
151            dddy -= (x);                            \
152            ddy  -= dddy;                           \
153            dy   =  -dy - ddy;                      \
154            y    += dy
155    
156    #define COPY_ONE(x)                             \
157            SKIP_ONE(x);                            \
158            store24(pDst, y << truncatedBits);      \
159            pDst += dstStep
160    
161            switch (compressionmode) {
162                case 2: // 24 bit uncompressed
163                    pSrc += currentframeoffset * 3;
164                    while (copysamples) {
165                        store24(pDst, get24(pSrc) << truncatedBits);
166                        pDst += dstStep;
167                        pSrc += 3;
168                        copysamples--;
169                    }
170                    break;
171    
172                case 3: // 24 bit compressed to 16 bit
173                    GET_PARAMS(params);
174                    while (currentframeoffset) {
175                        SKIP_ONE(get16(pSrc));
176                        pSrc += 2;
177                        currentframeoffset--;
178                    }
179                    while (copysamples) {
180                        COPY_ONE(get16(pSrc));
181                        pSrc += 2;
182                        copysamples--;
183                    }
184                    break;
185    
186                case 4: // 24 bit compressed to 12 bit
187                    GET_PARAMS(params);
188                    while (currentframeoffset > 1) {
189                        SKIP_ONE(get12lo(pSrc));
190                        SKIP_ONE(get12hi(pSrc));
191                        pSrc += 3;
192                        currentframeoffset -= 2;
193                    }
194                    if (currentframeoffset) {
195                        SKIP_ONE(get12lo(pSrc));
196                        currentframeoffset--;
197                        if (copysamples) {
198                            COPY_ONE(get12hi(pSrc));
199                            pSrc += 3;
200                            copysamples--;
201                        }
202                    }
203                    while (copysamples > 1) {
204                        COPY_ONE(get12lo(pSrc));
205                        COPY_ONE(get12hi(pSrc));
206                        pSrc += 3;
207                        copysamples -= 2;
208                    }
209                    if (copysamples) {
210                        COPY_ONE(get12lo(pSrc));
211                    }
212                    break;
213    
214                case 5: // 24 bit compressed to 8 bit
215                    GET_PARAMS(params);
216                    while (currentframeoffset) {
217                        SKIP_ONE(int8_t(*pSrc++));
218                        currentframeoffset--;
219                    }
220                    while (copysamples) {
221                        COPY_ONE(int8_t(*pSrc++));
222                        copysamples--;
223                    }
224                    break;
225            }
226        }
227    
228        const int bytesPerFrame[] =      { 4096, 2052, 768, 524, 396, 268 };
229        const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
230        const int headerSize[] =         { 0, 4, 0, 12, 12, 12 };
231        const int bitsPerSample[] =      { 16, 8, 24, 16, 12, 8 };
232    }
233    
234    
235    
236    // *************** Internal CRC-32 (Cyclic Redundancy Check) functions  ***************
237    // *
238    
239        static uint32_t* __initCRCTable() {
240            static uint32_t res[256];
241    
242            for (int i = 0 ; i < 256 ; i++) {
243                uint32_t c = i;
244                for (int j = 0 ; j < 8 ; j++) {
245                    c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
246                }
247                res[i] = c;
248            }
249            return res;
250        }
251    
252        static const uint32_t* __CRCTable = __initCRCTable();
253    
254        /**
255         * Initialize a CRC variable.
256         *
257         * @param crc - variable to be initialized
258         */
259        inline static void __resetCRC(uint32_t& crc) {
260            crc = 0xffffffff;
261        }
262    
263        /**
264         * Used to calculate checksums of the sample data in a gig file. The
265         * checksums are stored in the 3crc chunk of the gig file and
266         * automatically updated when a sample is written with Sample::Write().
267         *
268         * One should call __resetCRC() to initialize the CRC variable to be
269         * used before calling this function the first time.
270         *
271         * After initializing the CRC variable one can call this function
272         * arbitrary times, i.e. to split the overall CRC calculation into
273         * steps.
274         *
275         * Once the whole data was processed by __calculateCRC(), one should
276         * call __finalizeCRC() to get the final CRC result.
277         *
278         * @param buf     - pointer to data the CRC shall be calculated of
279         * @param bufSize - size of the data to be processed
280         * @param crc     - variable the CRC sum shall be stored to
281         */
282        static void __calculateCRC(unsigned char* buf, size_t bufSize, uint32_t& crc) {
283            for (size_t i = 0 ; i < bufSize ; i++) {
284                crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
285            }
286        }
287    
288        /**
289         * Returns the final CRC result.
290         *
291         * @param crc - variable previously passed to __calculateCRC()
292         */
293        inline static void __finalizeCRC(uint32_t& crc) {
294            crc ^= 0xffffffff;
295        }
296    
297    
298    
299    // *************** Other Internal functions  ***************
300    // *
301    
302        static split_type_t __resolveSplitType(dimension_t dimension) {
303            return (
304                dimension == dimension_layer ||
305                dimension == dimension_samplechannel ||
306                dimension == dimension_releasetrigger ||
307                dimension == dimension_keyboard ||
308                dimension == dimension_roundrobin ||
309                dimension == dimension_random ||
310                dimension == dimension_smartmidi ||
311                dimension == dimension_roundrobinkeyboard
312            ) ? split_type_bit : split_type_normal;
313        }
314    
315        static int __resolveZoneSize(dimension_def_t& dimension_definition) {
316            return (dimension_definition.split_type == split_type_normal)
317            ? int(128.0 / dimension_definition.zones) : 0;
318        }
319    
320    
321    
322    // *************** leverage_ctrl_t ***************
323    // *
324    
325        void leverage_ctrl_t::serialize(Serialization::Archive* archive) {
326            SRLZ(type);
327            SRLZ(controller_number);
328        }
329    
330    
331    
332    // *************** crossfade_t ***************
333    // *
334    
335        void crossfade_t::serialize(Serialization::Archive* archive) {
336            SRLZ(in_start);
337            SRLZ(in_end);
338            SRLZ(out_start);
339            SRLZ(out_end);
340        }
341    
342    
343    
344    // *************** eg_opt_t ***************
345    // *
346    
347        eg_opt_t::eg_opt_t() {
348            AttackCancel     = true;
349            AttackHoldCancel = true;
350            Decay1Cancel     = true;
351            Decay2Cancel     = true;
352            ReleaseCancel    = true;
353        }
354    
355        void eg_opt_t::serialize(Serialization::Archive* archive) {
356            SRLZ(AttackCancel);
357            SRLZ(AttackHoldCancel);
358            SRLZ(Decay1Cancel);
359            SRLZ(Decay2Cancel);
360            SRLZ(ReleaseCancel);
361        }
362    
363    
364    
365  // *************** Sample ***************  // *************** Sample ***************
366  // *  // *
367    
368      unsigned int  Sample::Instances               = 0;      size_t       Sample::Instances = 0;
369      void*         Sample::pDecompressionBuffer    = NULL;      buffer_t     Sample::InternalDecompressionBuffer;
     unsigned long Sample::DecompressionBufferSize = 0;  
370    
371      Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {      /** @brief Constructor.
372         *
373         * Load an existing sample or create a new one. A 'wave' list chunk must
374         * be given to this constructor. In case the given 'wave' list chunk
375         * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
376         * format and sample data will be loaded from there, otherwise default
377         * values will be used and those chunks will be created when
378         * File::Save() will be called later on.
379         *
380         * @param pFile          - pointer to gig::File where this sample is
381         *                         located (or will be located)
382         * @param waveList       - pointer to 'wave' list chunk which is (or
383         *                         will be) associated with this sample
384         * @param WavePoolOffset - offset of this sample data from wave pool
385         *                         ('wvpl') list chunk
386         * @param fileNo         - number of an extension file where this sample
387         *                         is located, 0 otherwise
388         * @param index          - wave pool index of sample (may be -1 on new sample)
389         */
390        Sample::Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo, int index)
391            : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset)
392        {
393            static const DLS::Info::string_length_t fixedStringLengths[] = {
394                { CHUNK_ID_INAM, 64 },
395                { 0, 0 }
396            };
397            pInfo->SetFixedStringLengths(fixedStringLengths);
398          Instances++;          Instances++;
399            FileNo = fileNo;
400    
401          RIFF::Chunk* _3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);          __resetCRC(crc);
402          if (!_3gix) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");          // if this is not a new sample, try to get the sample's already existing
403          SampleGroup = _3gix->ReadInt16();          // CRC32 checksum from disk, this checksum will reflect the sample's CRC32
404            // checksum of the time when the sample was consciously modified by the
405          RIFF::Chunk* smpl = waveList->GetSubChunk(CHUNK_ID_SMPL);          // user for the last time (by calling Sample::Write() that is).
406          if (!smpl) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");          if (index >= 0) { // not a new file ...
407          Manufacturer      = smpl->ReadInt32();              try {
408          Product           = smpl->ReadInt32();                  uint32_t crc = pFile->GetSampleChecksumByIndex(index);
409          SamplePeriod      = smpl->ReadInt32();                  this->crc = crc;
410          MIDIUnityNote     = smpl->ReadInt32();              } catch (...) {}
411          FineTune          = smpl->ReadInt32();          }
412          smpl->Read(&SMPTEFormat, 1, 4);  
413          SMPTEOffset       = smpl->ReadInt32();          pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
414          Loops             = smpl->ReadInt32();          if (pCk3gix) {
415          uint32_t manufByt = smpl->ReadInt32();              uint16_t iSampleGroup = pCk3gix->ReadInt16();
416          LoopID            = smpl->ReadInt32();              pGroup = pFile->GetGroup(iSampleGroup);
417          smpl->Read(&LoopType, 1, 4);          } else { // '3gix' chunk missing
418          LoopStart         = smpl->ReadInt32();              // by default assigned to that mandatory "Default Group"
419          LoopEnd           = smpl->ReadInt32();              pGroup = pFile->GetGroup(0);
420          LoopFraction      = smpl->ReadInt32();          }
421          LoopPlayCount     = smpl->ReadInt32();  
422            pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
423            if (pCkSmpl) {
424                Manufacturer  = pCkSmpl->ReadInt32();
425                Product       = pCkSmpl->ReadInt32();
426                SamplePeriod  = pCkSmpl->ReadInt32();
427                MIDIUnityNote = pCkSmpl->ReadInt32();
428                FineTune      = pCkSmpl->ReadInt32();
429                pCkSmpl->Read(&SMPTEFormat, 1, 4);
430                SMPTEOffset   = pCkSmpl->ReadInt32();
431                Loops         = pCkSmpl->ReadInt32();
432                pCkSmpl->ReadInt32(); // manufByt
433                LoopID        = pCkSmpl->ReadInt32();
434                pCkSmpl->Read(&LoopType, 1, 4);
435                LoopStart     = pCkSmpl->ReadInt32();
436                LoopEnd       = pCkSmpl->ReadInt32();
437                LoopFraction  = pCkSmpl->ReadInt32();
438                LoopPlayCount = pCkSmpl->ReadInt32();
439            } else { // 'smpl' chunk missing
440                // use default values
441                Manufacturer  = 0;
442                Product       = 0;
443                SamplePeriod  = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
444                MIDIUnityNote = 60;
445                FineTune      = 0;
446                SMPTEFormat   = smpte_format_no_offset;
447                SMPTEOffset   = 0;
448                Loops         = 0;
449                LoopID        = 0;
450                LoopType      = loop_type_normal;
451                LoopStart     = 0;
452                LoopEnd       = 0;
453                LoopFraction  = 0;
454                LoopPlayCount = 0;
455            }
456    
457          FrameTable                 = NULL;          FrameTable                 = NULL;
458          SamplePos                  = 0;          SamplePos                  = 0;
# Line 63  namespace gig { Line 460  namespace gig {
460          RAMCache.pStart            = NULL;          RAMCache.pStart            = NULL;
461          RAMCache.NullExtensionSize = 0;          RAMCache.NullExtensionSize = 0;
462    
463          Compressed = (waveList->GetSubChunk(CHUNK_ID_EWAV));          if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
464    
465            RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
466            Compressed        = ewav;
467            Dithered          = false;
468            TruncatedBits     = 0;
469          if (Compressed) {          if (Compressed) {
470              ScanCompressedSample();              uint32_t version = ewav->ReadInt32();
471              if (!pDecompressionBuffer) {              if (version == 3 && BitDepth == 24) {
472                  pDecompressionBuffer    = new int8_t[INITIAL_SAMPLE_BUFFER_SIZE];                  Dithered = ewav->ReadInt32();
473                  DecompressionBufferSize = INITIAL_SAMPLE_BUFFER_SIZE;                  ewav->SetPos(Channels == 2 ? 84 : 64);
474                    TruncatedBits = ewav->ReadInt32();
475              }              }
476                ScanCompressedSample();
477            }
478    
479            // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
480            if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
481                InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
482                InternalDecompressionBuffer.Size   = INITIAL_SAMPLE_BUFFER_SIZE;
483          }          }
484          FrameOffset = 0; // just for streaming compressed samples          FrameOffset = 0; // just for streaming compressed samples
485    
486            LoopSize = LoopEnd - LoopStart + 1;
487        }
488    
489          LoopSize = LoopEnd - LoopStart;      /**
490         * Make a (semi) deep copy of the Sample object given by @a orig (without
491         * the actual waveform data) and assign it to this object.
492         *
493         * Discussion: copying .gig samples is a bit tricky. It requires three
494         * steps:
495         * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
496         *    its new sample waveform data size.
497         * 2. Saving the file (done by File::Save()) so that it gains correct size
498         *    and layout for writing the actual wave form data directly to disc
499         *    in next step.
500         * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
501         *
502         * @param orig - original Sample object to be copied from
503         */
504        void Sample::CopyAssignMeta(const Sample* orig) {
505            // handle base classes
506            DLS::Sample::CopyAssignCore(orig);
507            
508            // handle actual own attributes of this class
509            Manufacturer = orig->Manufacturer;
510            Product = orig->Product;
511            SamplePeriod = orig->SamplePeriod;
512            MIDIUnityNote = orig->MIDIUnityNote;
513            FineTune = orig->FineTune;
514            SMPTEFormat = orig->SMPTEFormat;
515            SMPTEOffset = orig->SMPTEOffset;
516            Loops = orig->Loops;
517            LoopID = orig->LoopID;
518            LoopType = orig->LoopType;
519            LoopStart = orig->LoopStart;
520            LoopEnd = orig->LoopEnd;
521            LoopSize = orig->LoopSize;
522            LoopFraction = orig->LoopFraction;
523            LoopPlayCount = orig->LoopPlayCount;
524            
525            // schedule resizing this sample to the given sample's size
526            Resize(orig->GetSize());
527        }
528    
529        /**
530         * Should be called after CopyAssignMeta() and File::Save() sequence.
531         * Read more about it in the discussion of CopyAssignMeta(). This method
532         * copies the actual waveform data by disk streaming.
533         *
534         * @e CAUTION: this method is currently not thread safe! During this
535         * operation the sample must not be used for other purposes by other
536         * threads!
537         *
538         * @param orig - original Sample object to be copied from
539         */
540        void Sample::CopyAssignWave(const Sample* orig) {
541            const int iReadAtOnce = 32*1024;
542            char* buf = new char[iReadAtOnce * orig->FrameSize];
543            Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
544            file_offset_t restorePos = pOrig->GetPos();
545            pOrig->SetPos(0);
546            SetPos(0);
547            for (file_offset_t n = pOrig->Read(buf, iReadAtOnce); n;
548                               n = pOrig->Read(buf, iReadAtOnce))
549            {
550                Write(buf, n);
551            }
552            pOrig->SetPos(restorePos);
553            delete [] buf;
554        }
555    
556        /**
557         * Apply sample and its settings to the respective RIFF chunks. You have
558         * to call File::Save() to make changes persistent.
559         *
560         * Usually there is absolutely no need to call this method explicitly.
561         * It will be called automatically when File::Save() was called.
562         *
563         * @param pProgress - callback function for progress notification
564         * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
565         *                        was provided yet
566         * @throws gig::Exception if there is any invalid sample setting
567         */
568        void Sample::UpdateChunks(progress_t* pProgress) {
569            // first update base class's chunks
570            DLS::Sample::UpdateChunks(pProgress);
571    
572            // make sure 'smpl' chunk exists
573            pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
574            if (!pCkSmpl) {
575                pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
576                memset(pCkSmpl->LoadChunkData(), 0, 60);
577            }
578            // update 'smpl' chunk
579            uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
580            SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
581            store32(&pData[0], Manufacturer);
582            store32(&pData[4], Product);
583            store32(&pData[8], SamplePeriod);
584            store32(&pData[12], MIDIUnityNote);
585            store32(&pData[16], FineTune);
586            store32(&pData[20], SMPTEFormat);
587            store32(&pData[24], SMPTEOffset);
588            store32(&pData[28], Loops);
589    
590            // we skip 'manufByt' for now (4 bytes)
591    
592            store32(&pData[36], LoopID);
593            store32(&pData[40], LoopType);
594            store32(&pData[44], LoopStart);
595            store32(&pData[48], LoopEnd);
596            store32(&pData[52], LoopFraction);
597            store32(&pData[56], LoopPlayCount);
598    
599            // make sure '3gix' chunk exists
600            pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
601            if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
602            // determine appropriate sample group index (to be stored in chunk)
603            uint16_t iSampleGroup = 0; // 0 refers to default sample group
604            File* pFile = static_cast<File*>(pParent);
605            if (pFile->pGroups) {
606                std::list<Group*>::iterator iter = pFile->pGroups->begin();
607                std::list<Group*>::iterator end  = pFile->pGroups->end();
608                for (int i = 0; iter != end; i++, iter++) {
609                    if (*iter == pGroup) {
610                        iSampleGroup = i;
611                        break; // found
612                    }
613                }
614            }
615            // update '3gix' chunk
616            pData = (uint8_t*) pCk3gix->LoadChunkData();
617            store16(&pData[0], iSampleGroup);
618    
619            // if the library user toggled the "Compressed" attribute from true to
620            // false, then the EWAV chunk associated with compressed samples needs
621            // to be deleted
622            RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
623            if (ewav && !Compressed) {
624                pWaveList->DeleteSubChunk(ewav);
625            }
626      }      }
627    
628      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
629      void Sample::ScanCompressedSample() {      void Sample::ScanCompressedSample() {
630          //TODO: we have to add some more scans here (e.g. determine compression rate)          //TODO: we have to add some more scans here (e.g. determine compression rate)
631          this->SamplesTotal = 0;          this->SamplesTotal = 0;
632          std::list<unsigned long> frameOffsets;          std::list<file_offset_t> frameOffsets;
633    
634            SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
635            WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
636    
637          // Scanning          // Scanning
638          pCkData->SetPos(0);          pCkData->SetPos(0);
639          while (pCkData->GetState() == RIFF::stream_ready) {          if (Channels == 2) { // Stereo
640              frameOffsets.push_back(pCkData->GetPos());              for (int i = 0 ; ; i++) {
641              int16_t compressionmode = pCkData->ReadInt16();                  // for 24 bit samples every 8:th frame offset is
642              this->SamplesTotal += 2048;                  // stored, to save some memory
643              switch (compressionmode) {                  if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
644                  case 1:   // left channel compressed  
645                  case 256: // right channel compressed                  const int mode_l = pCkData->ReadUint8();
646                      pCkData->SetPos(6148, RIFF::stream_curpos);                  const int mode_r = pCkData->ReadUint8();
647                    if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
648                    const file_offset_t frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
649    
650                    if (pCkData->RemainingBytes() <= frameSize) {
651                        SamplesInLastFrame =
652                            ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
653                            (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
654                        SamplesTotal += SamplesInLastFrame;
655                      break;                      break;
656                  case 257: // both channels compressed                  }
657                      pCkData->SetPos(4104, RIFF::stream_curpos);                  SamplesTotal += SamplesPerFrame;
658                    pCkData->SetPos(frameSize, RIFF::stream_curpos);
659                }
660            }
661            else { // Mono
662                for (int i = 0 ; ; i++) {
663                    if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
664    
665                    const int mode = pCkData->ReadUint8();
666                    if (mode > 5) throw gig::Exception("Unknown compression mode");
667                    const file_offset_t frameSize = bytesPerFrame[mode];
668    
669                    if (pCkData->RemainingBytes() <= frameSize) {
670                        SamplesInLastFrame =
671                            ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
672                        SamplesTotal += SamplesInLastFrame;
673                      break;                      break;
674                  default: // both channels uncompressed                  }
675                      pCkData->SetPos(8192, RIFF::stream_curpos);                  SamplesTotal += SamplesPerFrame;
676                    pCkData->SetPos(frameSize, RIFF::stream_curpos);
677              }              }
678          }          }
679          pCkData->SetPos(0);          pCkData->SetPos(0);
680    
         //FIXME: only seen compressed samples with 16 bit stereo so far  
         this->FrameSize = 4;  
         this->BitDepth  = 16;  
   
681          // Build the frames table (which is used for fast resolving of a frame's chunk offset)          // Build the frames table (which is used for fast resolving of a frame's chunk offset)
682          if (FrameTable) delete[] FrameTable;          if (FrameTable) delete[] FrameTable;
683          FrameTable = new unsigned long[frameOffsets.size()];          FrameTable = new file_offset_t[frameOffsets.size()];
684          std::list<unsigned long>::iterator end  = frameOffsets.end();          std::list<file_offset_t>::iterator end  = frameOffsets.end();
685          std::list<unsigned long>::iterator iter = frameOffsets.begin();          std::list<file_offset_t>::iterator iter = frameOffsets.begin();
686          for (int i = 0; iter != end; i++, iter++) {          for (int i = 0; iter != end; i++, iter++) {
687              FrameTable[i] = *iter;              FrameTable[i] = *iter;
688          }          }
# Line 141  namespace gig { Line 713  namespace gig {
713       * that will be returned to determine the actual cached samples, but note       * that will be returned to determine the actual cached samples, but note
714       * that the size is given in bytes! You get the number of actually cached       * that the size is given in bytes! You get the number of actually cached
715       * samples by dividing it by the frame size of the sample:       * samples by dividing it by the frame size of the sample:
716       *       * @code
717       *  buffer_t buf       = pSample->LoadSampleData(acquired_samples);       *  buffer_t buf       = pSample->LoadSampleData(acquired_samples);
718       *  long cachedsamples = buf.Size / pSample->FrameSize;       *  long cachedsamples = buf.Size / pSample->FrameSize;
719         * @endcode
720       *       *
721       * @param SampleCount - number of sample points to load into RAM       * @param SampleCount - number of sample points to load into RAM
722       * @returns             buffer_t structure with start address and size of       * @returns             buffer_t structure with start address and size of
723       *                      the cached sample data in bytes       *                      the cached sample data in bytes
724       * @see                 ReleaseSampleData(), Read(), SetPos()       * @see                 ReleaseSampleData(), Read(), SetPos()
725       */       */
726      buffer_t Sample::LoadSampleData(unsigned long SampleCount) {      buffer_t Sample::LoadSampleData(file_offset_t SampleCount) {
727          return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples          return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
728      }      }
729    
# Line 189  namespace gig { Line 762  namespace gig {
762       * that will be returned to determine the actual cached samples, but note       * that will be returned to determine the actual cached samples, but note
763       * that the size is given in bytes! You get the number of actually cached       * that the size is given in bytes! You get the number of actually cached
764       * samples by dividing it by the frame size of the sample:       * samples by dividing it by the frame size of the sample:
765       *       * @code
766       *  buffer_t buf       = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);       *  buffer_t buf       = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
767       *  long cachedsamples = buf.Size / pSample->FrameSize;       *  long cachedsamples = buf.Size / pSample->FrameSize;
768       *       * @endcode
769       * The method will add \a NullSamplesCount silence samples past the       * The method will add \a NullSamplesCount silence samples past the
770       * official buffer end (this won't affect the 'Size' member of the       * official buffer end (this won't affect the 'Size' member of the
771       * buffer_t structure, that means 'Size' always reflects the size of the       * buffer_t structure, that means 'Size' always reflects the size of the
# Line 209  namespace gig { Line 782  namespace gig {
782       *                           size of the cached sample data in bytes       *                           size of the cached sample data in bytes
783       * @see                      ReleaseSampleData(), Read(), SetPos()       * @see                      ReleaseSampleData(), Read(), SetPos()
784       */       */
785      buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {      buffer_t Sample::LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount) {
786          if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;          if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
787          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
788          unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;          file_offset_t allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
789            SetPos(0); // reset read position to begin of sample
790          RAMCache.pStart            = new int8_t[allocationsize];          RAMCache.pStart            = new int8_t[allocationsize];
791          RAMCache.Size              = Read(RAMCache.pStart, SampleCount) * this->FrameSize;          RAMCache.Size              = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
792          RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;          RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
# Line 250  namespace gig { Line 824  namespace gig {
824          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
825          RAMCache.pStart = NULL;          RAMCache.pStart = NULL;
826          RAMCache.Size   = 0;          RAMCache.Size   = 0;
827            RAMCache.NullExtensionSize = 0;
828        }
829    
830        /** @brief Resize sample.
831         *
832         * Resizes the sample's wave form data, that is the actual size of
833         * sample wave data possible to be written for this sample. This call
834         * will return immediately and just schedule the resize operation. You
835         * should call File::Save() to actually perform the resize operation(s)
836         * "physically" to the file. As this can take a while on large files, it
837         * is recommended to call Resize() first on all samples which have to be
838         * resized and finally to call File::Save() to perform all those resize
839         * operations in one rush.
840         *
841         * The actual size (in bytes) is dependant to the current FrameSize
842         * value. You may want to set FrameSize before calling Resize().
843         *
844         * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
845         * enlarged samples before calling File::Save() as this might exceed the
846         * current sample's boundary!
847         *
848         * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
849         * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
850         * other formats will fail!
851         *
852         * @param NewSize - new sample wave data size in sample points (must be
853         *                  greater than zero)
854         * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
855         * @throws DLS::Exception if \a NewSize is less than 1 or unrealistic large
856         * @throws gig::Exception if existing sample is compressed
857         * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
858         *      DLS::Sample::FormatTag, File::Save()
859         */
860        void Sample::Resize(file_offset_t NewSize) {
861            if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
862            DLS::Sample::Resize(NewSize);
863      }      }
864    
865      /**      /**
# Line 273  namespace gig { Line 883  namespace gig {
883       * @returns            the new sample position       * @returns            the new sample position
884       * @see                Read()       * @see                Read()
885       */       */
886      unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {      file_offset_t Sample::SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence) {
887          if (Compressed) {          if (Compressed) {
888              switch (Whence) {              switch (Whence) {
889                  case RIFF::stream_curpos:                  case RIFF::stream_curpos:
# Line 291  namespace gig { Line 901  namespace gig {
901              }              }
902              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
903    
904              unsigned long frame = this->SamplePos / 2048; // to which frame to jump              file_offset_t frame = this->SamplePos / 2048; // to which frame to jump
905              this->FrameOffset   = this->SamplePos % 2048; // offset (in sample points) within that frame              this->FrameOffset   = this->SamplePos % 2048; // offset (in sample points) within that frame
906              pCkData->SetPos(FrameTable[frame]);           // set chunk pointer to the start of sought frame              pCkData->SetPos(FrameTable[frame]);           // set chunk pointer to the start of sought frame
907              return this->SamplePos;              return this->SamplePos;
908          }          }
909          else { // not compressed          else { // not compressed
910              unsigned long orderedBytes = SampleCount * this->FrameSize;              file_offset_t orderedBytes = SampleCount * this->FrameSize;
911              unsigned long result = pCkData->SetPos(orderedBytes, Whence);              file_offset_t result = pCkData->SetPos(orderedBytes, Whence);
912              return (result == orderedBytes) ? SampleCount              return (result == orderedBytes) ? SampleCount
913                                              : result / this->FrameSize;                                              : result / this->FrameSize;
914          }          }
# Line 307  namespace gig { Line 917  namespace gig {
917      /**      /**
918       * Returns the current position in the sample (in sample points).       * Returns the current position in the sample (in sample points).
919       */       */
920      unsigned long Sample::GetPos() {      file_offset_t Sample::GetPos() const {
921          if (Compressed) return SamplePos;          if (Compressed) return SamplePos;
922          else            return pCkData->GetPos() / FrameSize;          else            return pCkData->GetPos() / FrameSize;
923      }      }
# Line 323  namespace gig { Line 933  namespace gig {
933       * for the next time you call this method is stored in \a pPlaybackState.       * for the next time you call this method is stored in \a pPlaybackState.
934       * You have to allocate and initialize the playback_state_t structure by       * You have to allocate and initialize the playback_state_t structure by
935       * yourself before you use it to stream a sample:       * yourself before you use it to stream a sample:
936       *       * @code
937       * <i>       * gig::playback_state_t playbackstate;
938       * gig::playback_state_t playbackstate;                           <br>       * playbackstate.position         = 0;
939       * playbackstate.position         = 0;                            <br>       * playbackstate.reverse          = false;
940       * playbackstate.reverse          = false;                        <br>       * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
941       * playbackstate.loop_cycles_left = pSample->LoopPlayCount;       <br>       * @endcode
      * </i>  
      *  
942       * You don't have to take care of things like if there is actually a loop       * You don't have to take care of things like if there is actually a loop
943       * defined or if the current read position is located within a loop area.       * defined or if the current read position is located within a loop area.
944       * The method already handles such cases by itself.       * The method already handles such cases by itself.
945       *       *
946         * <b>Caution:</b> If you are using more than one streaming thread, you
947         * have to use an external decompression buffer for <b>EACH</b>
948         * streaming thread to avoid race conditions and crashes!
949         *
950       * @param pBuffer          destination buffer       * @param pBuffer          destination buffer
951       * @param SampleCount      number of sample points to read       * @param SampleCount      number of sample points to read
952       * @param pPlaybackState   will be used to store and reload the playback       * @param pPlaybackState   will be used to store and reload the playback
953       *                         state for the next ReadAndLoop() call       *                         state for the next ReadAndLoop() call
954         * @param pDimRgn          dimension region with looping information
955         * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
956       * @returns                number of successfully read sample points       * @returns                number of successfully read sample points
957         * @see                    CreateDecompressionBuffer()
958       */       */
959      unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState) {      file_offset_t Sample::ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState,
960          unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;                                        DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
961            file_offset_t samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
962          uint8_t* pDst = (uint8_t*) pBuffer;          uint8_t* pDst = (uint8_t*) pBuffer;
963    
964          SetPos(pPlaybackState->position); // recover position from the last time          SetPos(pPlaybackState->position); // recover position from the last time
965    
966          if (this->Loops && GetPos() <= this->LoopEnd) { // honor looping if there are loop points defined          if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
967    
968              switch (this->LoopType) {              const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
969                const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
970    
971                  case loop_type_bidirectional: { //TODO: not tested yet!              if (GetPos() <= loopEnd) {
972                      do {                  switch (loop.LoopType) {
                         // if not endless loop check if max. number of loop cycles have been passed  
                         if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;  
   
                         if (!pPlaybackState->reverse) { // forward playback  
                             do {  
                                 samplestoloopend  = this->LoopEnd - GetPos();  
                                 readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend));  
                                 samplestoread    -= readsamples;  
                                 totalreadsamples += readsamples;  
                                 if (readsamples == samplestoloopend) {  
                                     pPlaybackState->reverse = true;  
                                     break;  
                                 }  
                             } while (samplestoread && readsamples);  
                         }  
                         else { // backward playback  
973    
974                              // as we can only read forward from disk, we have to                      case loop_type_bidirectional: { //TODO: not tested yet!
975                              // determine the end position within the loop first,                          do {
976                              // read forward from that 'end' and finally after                              // if not endless loop check if max. number of loop cycles have been passed
977                              // reading, swap all sample frames so it reflects                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
978                              // backward playback  
979                                if (!pPlaybackState->reverse) { // forward playback
980                              unsigned long swapareastart       = totalreadsamples;                                  do {
981                              unsigned long loopoffset          = GetPos() - this->LoopStart;                                      samplestoloopend  = loopEnd - GetPos();
982                              unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);                                      readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
983                              unsigned long reverseplaybackend  = GetPos() - samplestoreadinloop;                                      samplestoread    -= readsamples;
984                                        totalreadsamples += readsamples;
985                              SetPos(reverseplaybackend);                                      if (readsamples == samplestoloopend) {
986                                            pPlaybackState->reverse = true;
987                              // read samples for backward playback                                          break;
988                              do {                                      }
989                                  readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop);                                  } while (samplestoread && readsamples);
990                                  samplestoreadinloop -= readsamples;                              }
991                                  samplestoread       -= readsamples;                              else { // backward playback
                                 totalreadsamples    += readsamples;  
                             } while (samplestoreadinloop && readsamples);  
992    
993                              SetPos(reverseplaybackend); // pretend we really read backwards                                  // as we can only read forward from disk, we have to
994                                    // determine the end position within the loop first,
995                                    // read forward from that 'end' and finally after
996                                    // reading, swap all sample frames so it reflects
997                                    // backward playback
998    
999                                    file_offset_t swapareastart       = totalreadsamples;
1000                                    file_offset_t loopoffset          = GetPos() - loop.LoopStart;
1001                                    file_offset_t samplestoreadinloop = Min(samplestoread, loopoffset);
1002                                    file_offset_t reverseplaybackend  = GetPos() - samplestoreadinloop;
1003    
1004                                    SetPos(reverseplaybackend);
1005    
1006                                    // read samples for backward playback
1007                                    do {
1008                                        readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
1009                                        samplestoreadinloop -= readsamples;
1010                                        samplestoread       -= readsamples;
1011                                        totalreadsamples    += readsamples;
1012                                    } while (samplestoreadinloop && readsamples);
1013    
1014                                    SetPos(reverseplaybackend); // pretend we really read backwards
1015    
1016                                    if (reverseplaybackend == loop.LoopStart) {
1017                                        pPlaybackState->loop_cycles_left--;
1018                                        pPlaybackState->reverse = false;
1019                                    }
1020    
1021                              if (reverseplaybackend == this->LoopStart) {                                  // reverse the sample frames for backward playback
1022                                  pPlaybackState->loop_cycles_left--;                                  if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
1023                                  pPlaybackState->reverse = false;                                      SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1024                              }                              }
1025                            } while (samplestoread && readsamples);
1026                            break;
1027                        }
1028    
1029                              // reverse the sample frames for backward playback                      case loop_type_backward: { // TODO: not tested yet!
1030                              SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);                          // forward playback (not entered the loop yet)
1031                          }                          if (!pPlaybackState->reverse) do {
1032                      } while (samplestoread && readsamples);                              samplestoloopend  = loopEnd - GetPos();
1033                      break;                              readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1034                  }                              samplestoread    -= readsamples;
1035                                totalreadsamples += readsamples;
1036                  case loop_type_backward: { // TODO: not tested yet!                              if (readsamples == samplestoloopend) {
1037                      // forward playback (not entered the loop yet)                                  pPlaybackState->reverse = true;
1038                      if (!pPlaybackState->reverse) do {                                  break;
1039                          samplestoloopend  = this->LoopEnd - GetPos();                              }
1040                          readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend));                          } while (samplestoread && readsamples);
                         samplestoread    -= readsamples;  
                         totalreadsamples += readsamples;  
                         if (readsamples == samplestoloopend) {  
                             pPlaybackState->reverse = true;  
                             break;  
                         }  
                     } while (samplestoread && readsamples);  
1041    
1042                      if (!samplestoread) break;                          if (!samplestoread) break;
1043    
1044                      // as we can only read forward from disk, we have to                          // as we can only read forward from disk, we have to
1045                      // determine the end position within the loop first,                          // determine the end position within the loop first,
1046                      // read forward from that 'end' and finally after                          // read forward from that 'end' and finally after
1047                      // reading, swap all sample frames so it reflects                          // reading, swap all sample frames so it reflects
1048                      // backward playback                          // backward playback
1049    
1050                      unsigned long swapareastart       = totalreadsamples;                          file_offset_t swapareastart       = totalreadsamples;
1051                      unsigned long loopoffset          = GetPos() - this->LoopStart;                          file_offset_t loopoffset          = GetPos() - loop.LoopStart;
1052                      unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * LoopSize - loopoffset)                          file_offset_t samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1053                                                                                : samplestoread;                                                                                    : samplestoread;
1054                      unsigned long reverseplaybackend  = this->LoopStart + Abs((loopoffset - samplestoreadinloop) % this->LoopSize);                          file_offset_t reverseplaybackend  = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1055    
1056                      SetPos(reverseplaybackend);                          SetPos(reverseplaybackend);
1057    
1058                      // read samples for backward playback                          // read samples for backward playback
1059                      do {                          do {
1060                          // if not endless loop check if max. number of loop cycles have been passed                              // if not endless loop check if max. number of loop cycles have been passed
1061                          if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1062                          samplestoloopend     = this->LoopEnd - GetPos();                              samplestoloopend     = loopEnd - GetPos();
1063                          readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend));                              readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1064                          samplestoreadinloop -= readsamples;                              samplestoreadinloop -= readsamples;
1065                          samplestoread       -= readsamples;                              samplestoread       -= readsamples;
1066                          totalreadsamples    += readsamples;                              totalreadsamples    += readsamples;
1067                          if (readsamples == samplestoloopend) {                              if (readsamples == samplestoloopend) {
1068                              pPlaybackState->loop_cycles_left--;                                  pPlaybackState->loop_cycles_left--;
1069                              SetPos(this->LoopStart);                                  SetPos(loop.LoopStart);
1070                          }                              }
1071                      } while (samplestoreadinloop && readsamples);                          } while (samplestoreadinloop && readsamples);
1072    
1073                      SetPos(reverseplaybackend); // pretend we really read backwards                          SetPos(reverseplaybackend); // pretend we really read backwards
1074    
1075                      // reverse the sample frames for backward playback                          // reverse the sample frames for backward playback
1076                      SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);                          SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1077                      break;                          break;
1078                  }                      }
1079    
1080                  default: case loop_type_normal: {                      default: case loop_type_normal: {
1081                      do {                          do {
1082                          // if not endless loop check if max. number of loop cycles have been passed                              // if not endless loop check if max. number of loop cycles have been passed
1083                          if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1084                          samplestoloopend  = this->LoopEnd - GetPos();                              samplestoloopend  = loopEnd - GetPos();
1085                          readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend));                              readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1086                          samplestoread    -= readsamples;                              samplestoread    -= readsamples;
1087                          totalreadsamples += readsamples;                              totalreadsamples += readsamples;
1088                          if (readsamples == samplestoloopend) {                              if (readsamples == samplestoloopend) {
1089                              pPlaybackState->loop_cycles_left--;                                  pPlaybackState->loop_cycles_left--;
1090                              SetPos(this->LoopStart);                                  SetPos(loop.LoopStart);
1091                          }                              }
1092                      } while (samplestoread && readsamples);                          } while (samplestoread && readsamples);
1093                      break;                          break;
1094                        }
1095                  }                  }
1096              }              }
1097          }          }
1098    
1099          // read on without looping          // read on without looping
1100          if (samplestoread) do {          if (samplestoread) do {
1101              readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread);              readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
1102              samplestoread    -= readsamples;              samplestoread    -= readsamples;
1103              totalreadsamples += readsamples;              totalreadsamples += readsamples;
1104          } while (readsamples && samplestoread);          } while (readsamples && samplestoread);
# Line 495  namespace gig { Line 1117  namespace gig {
1117       * and <i>SetPos()</i> if you don't want to load the sample into RAM,       * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1118       * thus for disk streaming.       * thus for disk streaming.
1119       *       *
1120         * <b>Caution:</b> If you are using more than one streaming thread, you
1121         * have to use an external decompression buffer for <b>EACH</b>
1122         * streaming thread to avoid race conditions and crashes!
1123         *
1124         * For 16 bit samples, the data in the buffer will be int16_t
1125         * (using native endianness). For 24 bit, the buffer will
1126         * contain three bytes per sample, little-endian.
1127         *
1128       * @param pBuffer      destination buffer       * @param pBuffer      destination buffer
1129       * @param SampleCount  number of sample points to read       * @param SampleCount  number of sample points to read
1130         * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
1131       * @returns            number of successfully read sample points       * @returns            number of successfully read sample points
1132       * @see                SetPos()       * @see                SetPos(), CreateDecompressionBuffer()
1133       */       */
1134      unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount) {      file_offset_t Sample::Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer) {
1135          if (SampleCount == 0) return 0;          if (SampleCount == 0) return 0;
1136          if (!Compressed) return pCkData->Read(pBuffer, SampleCount, FrameSize); //FIXME: channel inversion due to endian correction?          if (!Compressed) {
1137          else { //FIXME: no support for mono compressed samples yet, are there any?              if (BitDepth == 24) {
1138                    return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1139                }
1140                else { // 16 bit
1141                    // (pCkData->Read does endian correction)
1142                    return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1143                                         : pCkData->Read(pBuffer, SampleCount, 2);
1144                }
1145            }
1146            else {
1147              if (this->SamplePos >= this->SamplesTotal) return 0;              if (this->SamplePos >= this->SamplesTotal) return 0;
1148              //TODO: efficiency: we simply assume here that all frames are compressed, maybe we should test for an average compression rate              //TODO: efficiency: maybe we should test for an average compression rate
1149              // best case needed buffer size (all frames compressed)              file_offset_t assumedsize      = GuessSize(SampleCount),
             unsigned long assumedsize      = (SampleCount << 1)  + // *2 (16 Bit, stereo, but assume all frames compressed)  
                                              (SampleCount >> 10) + // 10 bytes header per 2048 sample points  
                                              8194,                 // at least one worst case sample frame  
1150                            remainingbytes   = 0,           // remaining bytes in the local buffer                            remainingbytes   = 0,           // remaining bytes in the local buffer
1151                            remainingsamples = SampleCount,                            remainingsamples = SampleCount,
1152                            copysamples;                            copysamples, skipsamples,
1153              int currentframeoffset = this->FrameOffset;   // offset in current sample frame since last Read()                            currentframeoffset = this->FrameOffset;  // offset in current sample frame since last Read()
1154              this->FrameOffset = 0;              this->FrameOffset = 0;
1155    
1156              if (assumedsize > this->DecompressionBufferSize) {              buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1157                  // local buffer reallocation - hope this won't happen  
1158                  if (this->pDecompressionBuffer) delete[] (int8_t*) this->pDecompressionBuffer;              // if decompression buffer too small, then reduce amount of samples to read
1159                  this->pDecompressionBuffer    = new int8_t[assumedsize << 1]; // double of current needed size              if (pDecompressionBuffer->Size < assumedsize) {
1160                  this->DecompressionBufferSize = assumedsize;                  std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1161                    SampleCount      = WorstCaseMaxSamples(pDecompressionBuffer);
1162                    remainingsamples = SampleCount;
1163                    assumedsize      = GuessSize(SampleCount);
1164              }              }
1165    
1166              int16_t  compressionmode, left, dleft, right, dright;              unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1167              int8_t*  pSrc = (int8_t*)  this->pDecompressionBuffer;              int16_t* pDst = static_cast<int16_t*>(pBuffer);
1168              int16_t* pDst = (int16_t*) pBuffer;              uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1169              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1170    
1171              while (remainingsamples) {              while (remainingsamples && remainingbytes) {
1172                    file_offset_t framesamples = SamplesPerFrame;
1173                  // reload from disk to local buffer if needed                  file_offset_t framebytes, rightChannelOffset = 0, nextFrameOffset;
1174                  if (remainingbytes < 8194) {  
1175                      if (pCkData->GetState() != RIFF::stream_ready) {                  int mode_l = *pSrc++, mode_r = 0;
1176                          this->SamplePos = this->SamplesTotal;  
1177                          return (SampleCount - remainingsamples);                  if (Channels == 2) {
1178                      }                      mode_r = *pSrc++;
1179                      assumedsize    = remainingsamples;                      framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1180                      assumedsize    = (assumedsize << 1)  + // *2 (16 Bit, stereo, but assume all frames compressed)                      rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1181                                       (assumedsize >> 10) + // 10 bytes header per 2048 sample points                      nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1182                                       8194;                 // at least one worst case sample frame                      if (remainingbytes < framebytes) { // last frame in sample
1183                      pCkData->SetPos(remainingbytes, RIFF::stream_backward);                          framesamples = SamplesInLastFrame;
1184                      if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();                          if (mode_l == 4 && (framesamples & 1)) {
1185                      remainingbytes = pCkData->Read(this->pDecompressionBuffer, assumedsize, 1);                              rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1186                      pSrc = (int8_t*) this->pDecompressionBuffer;                          }
1187                            else {
1188                                rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1189                            }
1190                        }
1191                    }
1192                    else {
1193                        framebytes = bytesPerFrame[mode_l] + 1;
1194                        nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1195                        if (remainingbytes < framebytes) {
1196                            framesamples = SamplesInLastFrame;
1197                        }
1198                  }                  }
1199    
1200                  // determine how many samples in this frame to skip and read                  // determine how many samples in this frame to skip and read
1201                  if (remainingsamples >= 2048) {                  if (currentframeoffset + remainingsamples >= framesamples) {
1202                      copysamples       = 2048 - currentframeoffset;                      if (currentframeoffset <= framesamples) {
1203                      remainingsamples -= copysamples;                          copysamples = framesamples - currentframeoffset;
1204                            skipsamples = currentframeoffset;
1205                        }
1206                        else {
1207                            copysamples = 0;
1208                            skipsamples = framesamples;
1209                        }
1210                  }                  }
1211                  else {                  else {
1212                        // This frame has enough data for pBuffer, but not
1213                        // all of the frame is needed. Set file position
1214                        // to start of this frame for next call to Read.
1215                      copysamples = remainingsamples;                      copysamples = remainingsamples;
1216                      if (currentframeoffset + copysamples > 2048) {                      skipsamples = currentframeoffset;
1217                          copysamples = 2048 - currentframeoffset;                      pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1218                          remainingsamples -= copysamples;                      this->FrameOffset = currentframeoffset + copysamples;
1219                      }                  }
1220                      else {                  remainingsamples -= copysamples;
1221    
1222                    if (remainingbytes > framebytes) {
1223                        remainingbytes -= framebytes;
1224                        if (remainingsamples == 0 &&
1225                            currentframeoffset + copysamples == framesamples) {
1226                            // This frame has enough data for pBuffer, and
1227                            // all of the frame is needed. Set file
1228                            // position to start of next frame for next
1229                            // call to Read. FrameOffset is 0.
1230                          pCkData->SetPos(remainingbytes, RIFF::stream_backward);                          pCkData->SetPos(remainingbytes, RIFF::stream_backward);
                         remainingsamples = 0;  
                         this->FrameOffset = currentframeoffset + copysamples;  
1231                      }                      }
1232                  }                  }
1233                    else remainingbytes = 0;
1234    
1235                  // decompress and copy current frame from local buffer to destination buffer                  currentframeoffset -= skipsamples;
1236                  compressionmode = *(int16_t*)pSrc; pSrc+=2;  
1237                  switch (compressionmode) {                  if (copysamples == 0) {
1238                      case 1: // left channel compressed                      // skip this frame
1239                          remainingbytes -= 6150; // (left 8 bit, right 16 bit, +6 byte header)                      pSrc += framebytes - Channels;
1240                          if (!remainingsamples && copysamples == 2048)                  }
1241                              pCkData->SetPos(remainingbytes, RIFF::stream_backward);                  else {
1242                        const unsigned char* const param_l = pSrc;
1243                          left  = *(int16_t*)pSrc; pSrc+=2;                      if (BitDepth == 24) {
1244                          dleft = *(int16_t*)pSrc; pSrc+=2;                          if (mode_l != 2) pSrc += 12;
1245                          while (currentframeoffset) {  
1246                              dleft -= *pSrc;                          if (Channels == 2) { // Stereo
1247                              left  -= dleft;                              const unsigned char* const param_r = pSrc;
1248                              pSrc+=3; // 8 bit left channel, skip uncompressed right channel (16 bit)                              if (mode_r != 2) pSrc += 12;
1249                              currentframeoffset--;  
1250                          }                              Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1251                          while (copysamples) {                                           skipsamples, copysamples, TruncatedBits);
1252                              dleft -= *pSrc; pSrc++;                              Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1253                              left  -= dleft;                                           skipsamples, copysamples, TruncatedBits);
1254                              *pDst = left; pDst++;                              pDst24 += copysamples * 6;
                             *pDst = *(int16_t*)pSrc; pDst++; pSrc+=2;  
                             copysamples--;  
                         }  
                         break;  
                     case 256: // right channel compressed  
                         remainingbytes -= 6150; // (left 16 bit, right 8 bit, +6 byte header)  
                         if (!remainingsamples && copysamples == 2048)  
                             pCkData->SetPos(remainingbytes, RIFF::stream_backward);  
   
                         right  = *(int16_t*)pSrc; pSrc+=2;  
                         dright = *(int16_t*)pSrc; pSrc+=2;  
                         if (currentframeoffset) {  
                             pSrc+=2; // skip uncompressed left channel, now we can increment by 3  
                             while (currentframeoffset) {  
                                 dright -= *pSrc;  
                                 right  -= dright;  
                                 pSrc+=3; // 8 bit right channel, skip uncompressed left channel (16 bit)  
                                 currentframeoffset--;  
                             }  
                             pSrc-=2; // back aligned to left channel  
1255                          }                          }
1256                          while (copysamples) {                          else { // Mono
1257                              *pDst = *(int16_t*)pSrc; pDst++; pSrc+=2;                              Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1258                              dright -= *pSrc; pSrc++;                                           skipsamples, copysamples, TruncatedBits);
1259                              right  -= dright;                              pDst24 += copysamples * 3;
                             *pDst = right; pDst++;  
                             copysamples--;  
1260                          }                          }
1261                          break;                      }
1262                      case 257: // both channels compressed                      else { // 16 bit
1263                          remainingbytes -= 4106; // (left 8 bit, right 8 bit, +10 byte header)                          if (mode_l) pSrc += 4;
1264                          if (!remainingsamples && copysamples == 2048)  
1265                              pCkData->SetPos(remainingbytes, RIFF::stream_backward);                          int step;
1266                            if (Channels == 2) { // Stereo
1267                          left   = *(int16_t*)pSrc; pSrc+=2;                              const unsigned char* const param_r = pSrc;
1268                          dleft  = *(int16_t*)pSrc; pSrc+=2;                              if (mode_r) pSrc += 4;
1269                          right  = *(int16_t*)pSrc; pSrc+=2;  
1270                          dright = *(int16_t*)pSrc; pSrc+=2;                              step = (2 - mode_l) + (2 - mode_r);
1271                          while (currentframeoffset) {                              Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1272                              dleft  -= *pSrc; pSrc++;                              Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1273                              left   -= dleft;                                           skipsamples, copysamples);
1274                              dright -= *pSrc; pSrc++;                              pDst += copysamples << 1;
                             right  -= dright;  
                             currentframeoffset--;  
1275                          }                          }
1276                          while (copysamples) {                          else { // Mono
1277                              dleft  -= *pSrc; pSrc++;                              step = 2 - mode_l;
1278                              left   -= dleft;                              Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1279                              dright -= *pSrc; pSrc++;                              pDst += copysamples;
                             right  -= dright;  
                             *pDst = left;  pDst++;  
                             *pDst = right; pDst++;  
                             copysamples--;  
1280                          }                          }
1281                          break;                      }
1282                      default: // both channels uncompressed                      pSrc += nextFrameOffset;
                         remainingbytes -= 8194; // (left 16 bit, right 16 bit, +2 byte header)  
                         if (!remainingsamples && copysamples == 2048)  
                             pCkData->SetPos(remainingbytes, RIFF::stream_backward);  
   
                         pSrc += currentframeoffset << 2;  
                         currentframeoffset = 0;  
                         memcpy(pDst, pSrc, copysamples << 2);  
                         pDst += copysamples << 1;  
                         pSrc += copysamples << 2;  
                         break;  
1283                  }                  }
1284              }  
1285                    // reload from disk to local buffer if needed
1286                    if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1287                        assumedsize    = GuessSize(remainingsamples);
1288                        pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1289                        if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1290                        remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1291                        pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1292                    }
1293                } // while
1294    
1295              this->SamplePos += (SampleCount - remainingsamples);              this->SamplePos += (SampleCount - remainingsamples);
1296              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1297              return (SampleCount - remainingsamples);              return (SampleCount - remainingsamples);
1298          }          }
1299      }      }
1300    
1301        /** @brief Write sample wave data.
1302         *
1303         * Writes \a SampleCount number of sample points from the buffer pointed
1304         * by \a pBuffer and increments the position within the sample. Use this
1305         * method to directly write the sample data to disk, i.e. if you don't
1306         * want or cannot load the whole sample data into RAM.
1307         *
1308         * You have to Resize() the sample to the desired size and call
1309         * File::Save() <b>before</b> using Write().
1310         *
1311         * Note: there is currently no support for writing compressed samples.
1312         *
1313         * For 16 bit samples, the data in the source buffer should be
1314         * int16_t (using native endianness). For 24 bit, the buffer
1315         * should contain three bytes per sample, little-endian.
1316         *
1317         * @param pBuffer     - source buffer
1318         * @param SampleCount - number of sample points to write
1319         * @throws DLS::Exception if current sample size is too small
1320         * @throws gig::Exception if sample is compressed
1321         * @see DLS::LoadSampleData()
1322         */
1323        file_offset_t Sample::Write(void* pBuffer, file_offset_t SampleCount) {
1324            if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1325    
1326            // if this is the first write in this sample, reset the
1327            // checksum calculator
1328            if (pCkData->GetPos() == 0) {
1329                __resetCRC(crc);
1330            }
1331            if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1332            file_offset_t res;
1333            if (BitDepth == 24) {
1334                res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1335            } else { // 16 bit
1336                res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1337                                    : pCkData->Write(pBuffer, SampleCount, 2);
1338            }
1339            __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1340    
1341            // if this is the last write, update the checksum chunk in the
1342            // file
1343            if (pCkData->GetPos() == pCkData->GetSize()) {
1344                __finalizeCRC(crc);
1345                File* pFile = static_cast<File*>(GetParent());
1346                pFile->SetSampleChecksum(this, crc);
1347            }
1348            return res;
1349        }
1350    
1351        /**
1352         * Allocates a decompression buffer for streaming (compressed) samples
1353         * with Sample::Read(). If you are using more than one streaming thread
1354         * in your application you <b>HAVE</b> to create a decompression buffer
1355         * for <b>EACH</b> of your streaming threads and provide it with the
1356         * Sample::Read() call in order to avoid race conditions and crashes.
1357         *
1358         * You should free the memory occupied by the allocated buffer(s) once
1359         * you don't need one of your streaming threads anymore by calling
1360         * DestroyDecompressionBuffer().
1361         *
1362         * @param MaxReadSize - the maximum size (in sample points) you ever
1363         *                      expect to read with one Read() call
1364         * @returns allocated decompression buffer
1365         * @see DestroyDecompressionBuffer()
1366         */
1367        buffer_t Sample::CreateDecompressionBuffer(file_offset_t MaxReadSize) {
1368            buffer_t result;
1369            const double worstCaseHeaderOverhead =
1370                    (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1371            result.Size              = (file_offset_t) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1372            result.pStart            = new int8_t[result.Size];
1373            result.NullExtensionSize = 0;
1374            return result;
1375        }
1376    
1377        /**
1378         * Free decompression buffer, previously created with
1379         * CreateDecompressionBuffer().
1380         *
1381         * @param DecompressionBuffer - previously allocated decompression
1382         *                              buffer to free
1383         */
1384        void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1385            if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1386                delete[] (int8_t*) DecompressionBuffer.pStart;
1387                DecompressionBuffer.pStart = NULL;
1388                DecompressionBuffer.Size   = 0;
1389                DecompressionBuffer.NullExtensionSize = 0;
1390            }
1391        }
1392    
1393        /**
1394         * Returns pointer to the Group this Sample belongs to. In the .gig
1395         * format a sample always belongs to one group. If it wasn't explicitly
1396         * assigned to a certain group, it will be automatically assigned to a
1397         * default group.
1398         *
1399         * @returns Sample's Group (never NULL)
1400         */
1401        Group* Sample::GetGroup() const {
1402            return pGroup;
1403        }
1404    
1405        /**
1406         * Returns the CRC-32 checksum of the sample's raw wave form data at the
1407         * time when this sample's wave form data was modified for the last time
1408         * by calling Write(). This checksum only covers the raw wave form data,
1409         * not any meta informations like i.e. bit depth or loop points. Since
1410         * this method just returns the checksum stored for this sample i.e. when
1411         * the gig file was loaded, this method returns immediately. So it does no
1412         * recalcuation of the checksum with the currently available sample wave
1413         * form data.
1414         *
1415         * @see VerifyWaveData()
1416         */
1417        uint32_t Sample::GetWaveDataCRC32Checksum() {
1418            return crc;
1419        }
1420    
1421        /**
1422         * Checks the integrity of this sample's raw audio wave data. Whenever a
1423         * Sample's raw wave data is intentionally modified (i.e. by calling
1424         * Write() and supplying the new raw audio wave form data) a CRC32 checksum
1425         * is calculated and stored/updated for this sample, along to the sample's
1426         * meta informations.
1427         *
1428         * Now by calling this method the current raw audio wave data is checked
1429         * against the already stored CRC32 check sum in order to check whether the
1430         * sample data had been damaged unintentionally for some reason. Since by
1431         * calling this method always the entire raw audio wave data has to be
1432         * read, verifying all samples this way may take a long time accordingly.
1433         * And that's also the reason why the sample integrity is not checked by
1434         * default whenever a gig file is loaded. So this method must be called
1435         * explicitly to fulfill this task.
1436         *
1437         * @param pActually - (optional) if provided, will be set to the actually
1438         *                    calculated checksum of the current raw wave form data,
1439         *                    you can get the expected checksum instead by calling
1440         *                    GetWaveDataCRC32Checksum()
1441         * @returns true if sample is OK or false if the sample is damaged
1442         * @throws Exception if no checksum had been stored to disk for this
1443         *         sample yet, or on I/O issues
1444         * @see GetWaveDataCRC32Checksum()
1445         */
1446        bool Sample::VerifyWaveData(uint32_t* pActually) {
1447            //File* pFile = static_cast<File*>(GetParent());
1448            uint32_t crc = CalculateWaveDataChecksum();
1449            if (pActually) *pActually = crc;
1450            return crc == this->crc;
1451        }
1452    
1453        uint32_t Sample::CalculateWaveDataChecksum() {
1454            const size_t sz = 20*1024; // 20kB buffer size
1455            std::vector<uint8_t> buffer(sz);
1456            buffer.resize(sz);
1457    
1458            const size_t n = sz / FrameSize;
1459            SetPos(0);
1460            uint32_t crc = 0;
1461            __resetCRC(crc);
1462            while (true) {
1463                file_offset_t nRead = Read(&buffer[0], n);
1464                if (nRead <= 0) break;
1465                __calculateCRC(&buffer[0], nRead * FrameSize, crc);
1466            }
1467            __finalizeCRC(crc);
1468            return crc;
1469        }
1470    
1471      Sample::~Sample() {      Sample::~Sample() {
1472          Instances--;          Instances--;
1473          if (!Instances && pDecompressionBuffer) delete[] (int8_t*) pDecompressionBuffer;          if (!Instances && InternalDecompressionBuffer.Size) {
1474                delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1475                InternalDecompressionBuffer.pStart = NULL;
1476                InternalDecompressionBuffer.Size   = 0;
1477            }
1478          if (FrameTable) delete[] FrameTable;          if (FrameTable) delete[] FrameTable;
1479          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1480      }      }
# Line 670  namespace gig { Line 1484  namespace gig {
1484  // *************** DimensionRegion ***************  // *************** DimensionRegion ***************
1485  // *  // *
1486    
1487      uint                               DimensionRegion::Instances       = 0;      size_t                             DimensionRegion::Instances       = 0;
1488      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1489    
1490      DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {      DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1491          Instances++;          Instances++;
1492    
1493          memcpy(&Crossfade, &SamplerOptions, 4);          pSample = NULL;
1494            pRegion = pParent;
1495    
1496            if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1497            else memset(&Crossfade, 0, 4);
1498    
1499          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1500    
1501          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1502          _3ewa->ReadInt32(); // unknown, allways 0x0000008C ?          if (_3ewa) { // if '3ewa' chunk exists
1503          LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              _3ewa->ReadInt32(); // unknown, always == chunk size ?
1504          EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1505          _3ewa->ReadInt16(); // unknown              EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1506          LFO1InternalDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1507          _3ewa->ReadInt16(); // unknown              LFO1InternalDepth = _3ewa->ReadUint16();
1508          LFO3InternalDepth = _3ewa->ReadInt16();              _3ewa->ReadInt16(); // unknown
1509          _3ewa->ReadInt16(); // unknown              LFO3InternalDepth = _3ewa->ReadInt16();
1510          LFO1ControlDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1511          _3ewa->ReadInt16(); // unknown              LFO1ControlDepth = _3ewa->ReadUint16();
1512          LFO3ControlDepth = _3ewa->ReadInt16();              _3ewa->ReadInt16(); // unknown
1513          EG1Attack           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO3ControlDepth = _3ewa->ReadInt16();
1514          EG1Decay1           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG1Attack           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1515          _3ewa->ReadInt16(); // unknown              EG1Decay1           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1516          EG1Sustain          = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1517          EG1Release          = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG1Sustain          = _3ewa->ReadUint16();
1518          EG1Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));              EG1Release          = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1519          uint8_t eg1ctrloptions        = _3ewa->ReadUint8();              EG1Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1520          EG1ControllerInvert           = eg1ctrloptions & 0x01;              uint8_t eg1ctrloptions        = _3ewa->ReadUint8();
1521          EG1ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerInvert           = eg1ctrloptions & 0x01;
1522          EG1ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1523          EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1524          EG2Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));              EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1525          uint8_t eg2ctrloptions        = _3ewa->ReadUint8();              EG2Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1526          EG2ControllerInvert           = eg2ctrloptions & 0x01;              uint8_t eg2ctrloptions        = _3ewa->ReadUint8();
1527          EG2ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerInvert           = eg2ctrloptions & 0x01;
1528          EG2ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1529          EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1530          LFO1Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1531          EG2Attack        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO1Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1532          EG2Decay1        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2Attack        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1533          _3ewa->ReadInt16(); // unknown              EG2Decay1        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1534          EG2Sustain       = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1535          EG2Release       = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2Sustain       = _3ewa->ReadUint16();
1536          _3ewa->ReadInt16(); // unknown              EG2Release       = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1537          LFO2ControlDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1538          LFO2Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO2ControlDepth = _3ewa->ReadUint16();
1539          _3ewa->ReadInt16(); // unknown              LFO2Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1540          LFO2InternalDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1541          int32_t eg1decay2 = _3ewa->ReadInt32();              LFO2InternalDepth = _3ewa->ReadUint16();
1542          EG1Decay2          = (double) GIG_EXP_DECODE(eg1decay2);              int32_t eg1decay2 = _3ewa->ReadInt32();
1543          EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);              EG1Decay2          = (double) GIG_EXP_DECODE(eg1decay2);
1544          _3ewa->ReadInt16(); // unknown              EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1545          EG1PreAttack      = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1546          int32_t eg2decay2 = _3ewa->ReadInt32();              EG1PreAttack      = _3ewa->ReadUint16();
1547          EG2Decay2         = (double) GIG_EXP_DECODE(eg2decay2);              int32_t eg2decay2 = _3ewa->ReadInt32();
1548          EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);              EG2Decay2         = (double) GIG_EXP_DECODE(eg2decay2);
1549          _3ewa->ReadInt16(); // unknown              EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1550          EG2PreAttack      = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1551          uint8_t velocityresponse = _3ewa->ReadUint8();              EG2PreAttack      = _3ewa->ReadUint16();
1552          if (velocityresponse < 5) {              uint8_t velocityresponse = _3ewa->ReadUint8();
1553              VelocityResponseCurve = curve_type_nonlinear;              if (velocityresponse < 5) {
1554              VelocityResponseDepth = velocityresponse;                  VelocityResponseCurve = curve_type_nonlinear;
1555          }                  VelocityResponseDepth = velocityresponse;
1556          else if (velocityresponse < 10) {              } else if (velocityresponse < 10) {
1557              VelocityResponseCurve = curve_type_linear;                  VelocityResponseCurve = curve_type_linear;
1558              VelocityResponseDepth = velocityresponse - 5;                  VelocityResponseDepth = velocityresponse - 5;
1559          }              } else if (velocityresponse < 15) {
1560          else if (velocityresponse < 15) {                  VelocityResponseCurve = curve_type_special;
1561              VelocityResponseCurve = curve_type_special;                  VelocityResponseDepth = velocityresponse - 10;
1562              VelocityResponseDepth = velocityresponse - 10;              } else {
1563                    VelocityResponseCurve = curve_type_unknown;
1564                    VelocityResponseDepth = 0;
1565                }
1566                uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1567                if (releasevelocityresponse < 5) {
1568                    ReleaseVelocityResponseCurve = curve_type_nonlinear;
1569                    ReleaseVelocityResponseDepth = releasevelocityresponse;
1570                } else if (releasevelocityresponse < 10) {
1571                    ReleaseVelocityResponseCurve = curve_type_linear;
1572                    ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1573                } else if (releasevelocityresponse < 15) {
1574                    ReleaseVelocityResponseCurve = curve_type_special;
1575                    ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1576                } else {
1577                    ReleaseVelocityResponseCurve = curve_type_unknown;
1578                    ReleaseVelocityResponseDepth = 0;
1579                }
1580                VelocityResponseCurveScaling = _3ewa->ReadUint8();
1581                AttenuationControllerThreshold = _3ewa->ReadInt8();
1582                _3ewa->ReadInt32(); // unknown
1583                SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1584                _3ewa->ReadInt16(); // unknown
1585                uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1586                PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1587                if      (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1588                else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1589                else                                       DimensionBypass = dim_bypass_ctrl_none;
1590                uint8_t pan = _3ewa->ReadUint8();
1591                Pan         = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1592                SelfMask = _3ewa->ReadInt8() & 0x01;
1593                _3ewa->ReadInt8(); // unknown
1594                uint8_t lfo3ctrl = _3ewa->ReadUint8();
1595                LFO3Controller           = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1596                LFO3Sync                 = lfo3ctrl & 0x20; // bit 5
1597                InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1598                AttenuationController  = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1599                uint8_t lfo2ctrl       = _3ewa->ReadUint8();
1600                LFO2Controller         = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1601                LFO2FlipPhase          = lfo2ctrl & 0x80; // bit 7
1602                LFO2Sync               = lfo2ctrl & 0x20; // bit 5
1603                bool extResonanceCtrl  = lfo2ctrl & 0x40; // bit 6
1604                uint8_t lfo1ctrl       = _3ewa->ReadUint8();
1605                LFO1Controller         = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1606                LFO1FlipPhase          = lfo1ctrl & 0x80; // bit 7
1607                LFO1Sync               = lfo1ctrl & 0x40; // bit 6
1608                VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1609                                                            : vcf_res_ctrl_none;
1610                uint16_t eg3depth = _3ewa->ReadUint16();
1611                EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1612                                            : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1613                _3ewa->ReadInt16(); // unknown
1614                ChannelOffset = _3ewa->ReadUint8() / 4;
1615                uint8_t regoptions = _3ewa->ReadUint8();
1616                MSDecode           = regoptions & 0x01; // bit 0
1617                SustainDefeat      = regoptions & 0x02; // bit 1
1618                _3ewa->ReadInt16(); // unknown
1619                VelocityUpperLimit = _3ewa->ReadInt8();
1620                _3ewa->ReadInt8(); // unknown
1621                _3ewa->ReadInt16(); // unknown
1622                ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1623                _3ewa->ReadInt8(); // unknown
1624                _3ewa->ReadInt8(); // unknown
1625                EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1626                uint8_t vcfcutoff = _3ewa->ReadUint8();
1627                VCFEnabled = vcfcutoff & 0x80; // bit 7
1628                VCFCutoff  = vcfcutoff & 0x7f; // lower 7 bits
1629                VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1630                uint8_t vcfvelscale = _3ewa->ReadUint8();
1631                VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1632                VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1633                _3ewa->ReadInt8(); // unknown
1634                uint8_t vcfresonance = _3ewa->ReadUint8();
1635                VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1636                VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1637                uint8_t vcfbreakpoint         = _3ewa->ReadUint8();
1638                VCFKeyboardTracking           = vcfbreakpoint & 0x80; // bit 7
1639                VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1640                uint8_t vcfvelocity = _3ewa->ReadUint8();
1641                VCFVelocityDynamicRange = vcfvelocity % 5;
1642                VCFVelocityCurve        = static_cast<curve_type_t>(vcfvelocity / 5);
1643                VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1644                if (VCFType == vcf_type_lowpass) {
1645                    if (lfo3ctrl & 0x40) // bit 6
1646                        VCFType = vcf_type_lowpassturbo;
1647                }
1648                if (_3ewa->RemainingBytes() >= 8) {
1649                    _3ewa->Read(DimensionUpperLimits, 1, 8);
1650                } else {
1651                    memset(DimensionUpperLimits, 0, 8);
1652                }
1653            } else { // '3ewa' chunk does not exist yet
1654                // use default values
1655                LFO3Frequency                   = 1.0;
1656                EG3Attack                       = 0.0;
1657                LFO1InternalDepth               = 0;
1658                LFO3InternalDepth               = 0;
1659                LFO1ControlDepth                = 0;
1660                LFO3ControlDepth                = 0;
1661                EG1Attack                       = 0.0;
1662                EG1Decay1                       = 0.005;
1663                EG1Sustain                      = 1000;
1664                EG1Release                      = 0.3;
1665                EG1Controller.type              = eg1_ctrl_t::type_none;
1666                EG1Controller.controller_number = 0;
1667                EG1ControllerInvert             = false;
1668                EG1ControllerAttackInfluence    = 0;
1669                EG1ControllerDecayInfluence     = 0;
1670                EG1ControllerReleaseInfluence   = 0;
1671                EG2Controller.type              = eg2_ctrl_t::type_none;
1672                EG2Controller.controller_number = 0;
1673                EG2ControllerInvert             = false;
1674                EG2ControllerAttackInfluence    = 0;
1675                EG2ControllerDecayInfluence     = 0;
1676                EG2ControllerReleaseInfluence   = 0;
1677                LFO1Frequency                   = 1.0;
1678                EG2Attack                       = 0.0;
1679                EG2Decay1                       = 0.005;
1680                EG2Sustain                      = 1000;
1681                EG2Release                      = 60;
1682                LFO2ControlDepth                = 0;
1683                LFO2Frequency                   = 1.0;
1684                LFO2InternalDepth               = 0;
1685                EG1Decay2                       = 0.0;
1686                EG1InfiniteSustain              = true;
1687                EG1PreAttack                    = 0;
1688                EG2Decay2                       = 0.0;
1689                EG2InfiniteSustain              = true;
1690                EG2PreAttack                    = 0;
1691                VelocityResponseCurve           = curve_type_nonlinear;
1692                VelocityResponseDepth           = 3;
1693                ReleaseVelocityResponseCurve    = curve_type_nonlinear;
1694                ReleaseVelocityResponseDepth    = 3;
1695                VelocityResponseCurveScaling    = 32;
1696                AttenuationControllerThreshold  = 0;
1697                SampleStartOffset               = 0;
1698                PitchTrack                      = true;
1699                DimensionBypass                 = dim_bypass_ctrl_none;
1700                Pan                             = 0;
1701                SelfMask                        = true;
1702                LFO3Controller                  = lfo3_ctrl_modwheel;
1703                LFO3Sync                        = false;
1704                InvertAttenuationController     = false;
1705                AttenuationController.type      = attenuation_ctrl_t::type_none;
1706                AttenuationController.controller_number = 0;
1707                LFO2Controller                  = lfo2_ctrl_internal;
1708                LFO2FlipPhase                   = false;
1709                LFO2Sync                        = false;
1710                LFO1Controller                  = lfo1_ctrl_internal;
1711                LFO1FlipPhase                   = false;
1712                LFO1Sync                        = false;
1713                VCFResonanceController          = vcf_res_ctrl_none;
1714                EG3Depth                        = 0;
1715                ChannelOffset                   = 0;
1716                MSDecode                        = false;
1717                SustainDefeat                   = false;
1718                VelocityUpperLimit              = 0;
1719                ReleaseTriggerDecay             = 0;
1720                EG1Hold                         = false;
1721                VCFEnabled                      = false;
1722                VCFCutoff                       = 0;
1723                VCFCutoffController             = vcf_cutoff_ctrl_none;
1724                VCFCutoffControllerInvert       = false;
1725                VCFVelocityScale                = 0;
1726                VCFResonance                    = 0;
1727                VCFResonanceDynamic             = false;
1728                VCFKeyboardTracking             = false;
1729                VCFKeyboardTrackingBreakpoint   = 0;
1730                VCFVelocityDynamicRange         = 0x04;
1731                VCFVelocityCurve                = curve_type_linear;
1732                VCFType                         = vcf_type_lowpass;
1733                memset(DimensionUpperLimits, 127, 8);
1734          }          }
1735          else {          // format extension for EG behavior options, these will *NOT* work with
1736              VelocityResponseCurve = curve_type_unknown;          // Gigasampler/GigaStudio !
1737              VelocityResponseDepth = 0;          RIFF::Chunk* lsde = _3ewl->GetSubChunk(CHUNK_ID_LSDE);
1738            if (lsde) {
1739                eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
1740                for (int i = 0; i < 2; ++i) {
1741                    unsigned char byte = lsde->ReadUint8();
1742                    pEGOpts[i]->AttackCancel     = byte & 1;
1743                    pEGOpts[i]->AttackHoldCancel = byte & (1 << 1);
1744                    pEGOpts[i]->Decay1Cancel     = byte & (1 << 2);
1745                    pEGOpts[i]->Decay2Cancel     = byte & (1 << 3);
1746                    pEGOpts[i]->ReleaseCancel    = byte & (1 << 4);
1747                }
1748            }
1749    
1750            pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1751                                                         VelocityResponseDepth,
1752                                                         VelocityResponseCurveScaling);
1753    
1754            pVelocityReleaseTable = GetReleaseVelocityTable(
1755                                        ReleaseVelocityResponseCurve,
1756                                        ReleaseVelocityResponseDepth
1757                                    );
1758    
1759            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1760                                                          VCFVelocityDynamicRange,
1761                                                          VCFVelocityScale,
1762                                                          VCFCutoffController);
1763    
1764            SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1765            VelocityTable = 0;
1766        }
1767    
1768        /*
1769         * Constructs a DimensionRegion by copying all parameters from
1770         * another DimensionRegion
1771         */
1772        DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1773            Instances++;
1774            //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1775            *this = src; // default memberwise shallow copy of all parameters
1776            pParentList = _3ewl; // restore the chunk pointer
1777    
1778            // deep copy of owned structures
1779            if (src.VelocityTable) {
1780                VelocityTable = new uint8_t[128];
1781                for (int k = 0 ; k < 128 ; k++)
1782                    VelocityTable[k] = src.VelocityTable[k];
1783          }          }
1784          uint8_t releasevelocityresponse = _3ewa->ReadUint8();          if (src.pSampleLoops) {
1785          if (releasevelocityresponse < 5) {              pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1786              ReleaseVelocityResponseCurve = curve_type_nonlinear;              for (int k = 0 ; k < src.SampleLoops ; k++)
1787              ReleaseVelocityResponseDepth = releasevelocityresponse;                  pSampleLoops[k] = src.pSampleLoops[k];
         }  
         else if (releasevelocityresponse < 10) {  
             ReleaseVelocityResponseCurve = curve_type_linear;  
             ReleaseVelocityResponseDepth = releasevelocityresponse - 5;  
         }  
         else if (releasevelocityresponse < 15) {  
             ReleaseVelocityResponseCurve = curve_type_special;  
             ReleaseVelocityResponseDepth = releasevelocityresponse - 10;  
1788          }          }
1789          else {      }
1790              ReleaseVelocityResponseCurve = curve_type_unknown;      
1791              ReleaseVelocityResponseDepth = 0;      /**
1792         * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1793         * and assign it to this object.
1794         *
1795         * Note that all sample pointers referenced by @a orig are simply copied as
1796         * memory address. Thus the respective samples are shared, not duplicated!
1797         *
1798         * @param orig - original DimensionRegion object to be copied from
1799         */
1800        void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1801            CopyAssign(orig, NULL);
1802        }
1803    
1804        /**
1805         * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1806         * and assign it to this object.
1807         *
1808         * @param orig - original DimensionRegion object to be copied from
1809         * @param mSamples - crosslink map between the foreign file's samples and
1810         *                   this file's samples
1811         */
1812        void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1813            // delete all allocated data first
1814            if (VelocityTable) delete [] VelocityTable;
1815            if (pSampleLoops) delete [] pSampleLoops;
1816            
1817            // backup parent list pointer
1818            RIFF::List* p = pParentList;
1819            
1820            gig::Sample* pOriginalSample = pSample;
1821            gig::Region* pOriginalRegion = pRegion;
1822            
1823            //NOTE: copy code copied from assignment constructor above, see comment there as well
1824            
1825            *this = *orig; // default memberwise shallow copy of all parameters
1826            
1827            // restore members that shall not be altered
1828            pParentList = p; // restore the chunk pointer
1829            pRegion = pOriginalRegion;
1830            
1831            // only take the raw sample reference reference if the
1832            // two DimensionRegion objects are part of the same file
1833            if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1834                pSample = pOriginalSample;
1835            }
1836            
1837            if (mSamples && mSamples->count(orig->pSample)) {
1838                pSample = mSamples->find(orig->pSample)->second;
1839          }          }
         VelocityResponseCurveScaling = _3ewa->ReadUint8();  
         AttenuationControllerThreshold = _3ewa->ReadInt8();  
         _3ewa->ReadInt32(); // unknown  
         SampleStartOffset = (uint16_t) _3ewa->ReadInt16();  
         _3ewa->ReadInt16(); // unknown  
         uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();  
         PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);  
         if      (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;  
         else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;  
         else                                       DimensionBypass = dim_bypass_ctrl_none;  
         uint8_t pan = _3ewa->ReadUint8();  
         Pan         = (pan < 64) ? pan : (-1) * (int8_t)pan - 63;  
         SelfMask = _3ewa->ReadInt8() & 0x01;  
         _3ewa->ReadInt8(); // unknown  
         uint8_t lfo3ctrl = _3ewa->ReadUint8();  
         LFO3Controller           = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits  
         LFO3Sync                 = lfo3ctrl & 0x20; // bit 5  
         InvertAttenuationController = lfo3ctrl & 0x80; // bit 7  
         if (VCFType == vcf_type_lowpass) {  
             if (lfo3ctrl & 0x40) // bit 6  
                 VCFType = vcf_type_lowpassturbo;  
         }  
         AttenuationController  = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));  
         uint8_t lfo2ctrl       = _3ewa->ReadUint8();  
         LFO2Controller         = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits  
         LFO2FlipPhase          = lfo2ctrl & 0x80; // bit 7  
         LFO2Sync               = lfo2ctrl & 0x20; // bit 5  
         bool extResonanceCtrl  = lfo2ctrl & 0x40; // bit 6  
         uint8_t lfo1ctrl       = _3ewa->ReadUint8();  
         LFO1Controller         = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits  
         LFO1FlipPhase          = lfo1ctrl & 0x80; // bit 7  
         LFO1Sync               = lfo1ctrl & 0x40; // bit 6  
         VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))  
                                                     : vcf_res_ctrl_none;  
         uint16_t eg3depth = _3ewa->ReadUint16();  
         EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */  
                                       : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */  
         _3ewa->ReadInt16(); // unknown  
         ChannelOffset = _3ewa->ReadUint8() / 4;  
         uint8_t regoptions = _3ewa->ReadUint8();  
         MSDecode           = regoptions & 0x01; // bit 0  
         SustainDefeat      = regoptions & 0x02; // bit 1  
         _3ewa->ReadInt16(); // unknown  
         VelocityUpperLimit = _3ewa->ReadInt8();  
         _3ewa->ReadInt8(); // unknown  
         _3ewa->ReadInt16(); // unknown  
         ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay  
         _3ewa->ReadInt8(); // unknown  
         _3ewa->ReadInt8(); // unknown  
         EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7  
         uint8_t vcfcutoff = _3ewa->ReadUint8();  
         VCFEnabled = vcfcutoff & 0x80; // bit 7  
         VCFCutoff  = vcfcutoff & 0x7f; // lower 7 bits  
         VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());  
         VCFVelocityScale = _3ewa->ReadUint8();  
         _3ewa->ReadInt8(); // unknown  
         uint8_t vcfresonance = _3ewa->ReadUint8();  
         VCFResonance = vcfresonance & 0x7f; // lower 7 bits  
         VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7  
         uint8_t vcfbreakpoint         = _3ewa->ReadUint8();  
         VCFKeyboardTracking           = vcfbreakpoint & 0x80; // bit 7  
         VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits  
         uint8_t vcfvelocity = _3ewa->ReadUint8();  
         VCFVelocityDynamicRange = vcfvelocity % 5;  
         VCFVelocityCurve        = static_cast<curve_type_t>(vcfvelocity / 5);  
         VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());  
1840    
1841          // get the corresponding velocity->volume table from the table map or create & calculate that table if it doesn't exist yet          // deep copy of owned structures
1842          uint32_t tableKey = (VelocityResponseCurve<<16) | (VelocityResponseDepth<<8) | VelocityResponseCurveScaling;          if (orig->VelocityTable) {
1843          if (pVelocityTables->count(tableKey)) { // if key exists              VelocityTable = new uint8_t[128];
1844              pVelocityAttenuationTable = (*pVelocityTables)[tableKey];              for (int k = 0 ; k < 128 ; k++)
1845                    VelocityTable[k] = orig->VelocityTable[k];
1846          }          }
1847          else {          if (orig->pSampleLoops) {
1848              pVelocityAttenuationTable = new double[128];              pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1849              switch (VelocityResponseCurve) { // calculate the new table              for (int k = 0 ; k < orig->SampleLoops ; k++)
1850                    pSampleLoops[k] = orig->pSampleLoops[k];
1851            }
1852        }
1853    
1854        void DimensionRegion::serialize(Serialization::Archive* archive) {
1855            // in case this class will become backward incompatible one day,
1856            // then set a version and minimum version for this class like:
1857            //archive->setVersion(*this, 2);
1858            //archive->setMinVersion(*this, 1);
1859    
1860            SRLZ(VelocityUpperLimit);
1861            SRLZ(EG1PreAttack);
1862            SRLZ(EG1Attack);
1863            SRLZ(EG1Decay1);
1864            SRLZ(EG1Decay2);
1865            SRLZ(EG1InfiniteSustain);
1866            SRLZ(EG1Sustain);
1867            SRLZ(EG1Release);
1868            SRLZ(EG1Hold);
1869            SRLZ(EG1Controller);
1870            SRLZ(EG1ControllerInvert);
1871            SRLZ(EG1ControllerAttackInfluence);
1872            SRLZ(EG1ControllerDecayInfluence);
1873            SRLZ(EG1ControllerReleaseInfluence);
1874            SRLZ(LFO1Frequency);
1875            SRLZ(LFO1InternalDepth);
1876            SRLZ(LFO1ControlDepth);
1877            SRLZ(LFO1Controller);
1878            SRLZ(LFO1FlipPhase);
1879            SRLZ(LFO1Sync);
1880            SRLZ(EG2PreAttack);
1881            SRLZ(EG2Attack);
1882            SRLZ(EG2Decay1);
1883            SRLZ(EG2Decay2);
1884            SRLZ(EG2InfiniteSustain);
1885            SRLZ(EG2Sustain);
1886            SRLZ(EG2Release);
1887            SRLZ(EG2Controller);
1888            SRLZ(EG2ControllerInvert);
1889            SRLZ(EG2ControllerAttackInfluence);
1890            SRLZ(EG2ControllerDecayInfluence);
1891            SRLZ(EG2ControllerReleaseInfluence);
1892            SRLZ(LFO2Frequency);
1893            SRLZ(LFO2InternalDepth);
1894            SRLZ(LFO2ControlDepth);
1895            SRLZ(LFO2Controller);
1896            SRLZ(LFO2FlipPhase);
1897            SRLZ(LFO2Sync);
1898            SRLZ(EG3Attack);
1899            SRLZ(EG3Depth);
1900            SRLZ(LFO3Frequency);
1901            SRLZ(LFO3InternalDepth);
1902            SRLZ(LFO3ControlDepth);
1903            SRLZ(LFO3Controller);
1904            SRLZ(LFO3Sync);
1905            SRLZ(VCFEnabled);
1906            SRLZ(VCFType);
1907            SRLZ(VCFCutoffController);
1908            SRLZ(VCFCutoffControllerInvert);
1909            SRLZ(VCFCutoff);
1910            SRLZ(VCFVelocityCurve);
1911            SRLZ(VCFVelocityScale);
1912            SRLZ(VCFVelocityDynamicRange);
1913            SRLZ(VCFResonance);
1914            SRLZ(VCFResonanceDynamic);
1915            SRLZ(VCFResonanceController);
1916            SRLZ(VCFKeyboardTracking);
1917            SRLZ(VCFKeyboardTrackingBreakpoint);
1918            SRLZ(VelocityResponseCurve);
1919            SRLZ(VelocityResponseDepth);
1920            SRLZ(VelocityResponseCurveScaling);
1921            SRLZ(ReleaseVelocityResponseCurve);
1922            SRLZ(ReleaseVelocityResponseDepth);
1923            SRLZ(ReleaseTriggerDecay);
1924            SRLZ(Crossfade);
1925            SRLZ(PitchTrack);
1926            SRLZ(DimensionBypass);
1927            SRLZ(Pan);
1928            SRLZ(SelfMask);
1929            SRLZ(AttenuationController);
1930            SRLZ(InvertAttenuationController);
1931            SRLZ(AttenuationControllerThreshold);
1932            SRLZ(ChannelOffset);
1933            SRLZ(SustainDefeat);
1934            SRLZ(MSDecode);
1935            //SRLZ(SampleStartOffset);
1936            SRLZ(SampleAttenuation);
1937            SRLZ(EG1Options);
1938            SRLZ(EG2Options);
1939    
1940            // derived attributes from DLS::Sampler
1941            SRLZ(FineTune);
1942            SRLZ(Gain);
1943        }
1944    
1945        /**
1946         * Updates the respective member variable and updates @c SampleAttenuation
1947         * which depends on this value.
1948         */
1949        void DimensionRegion::SetGain(int32_t gain) {
1950            DLS::Sampler::SetGain(gain);
1951            SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1952        }
1953    
1954        /**
1955         * Apply dimension region settings to the respective RIFF chunks. You
1956         * have to call File::Save() to make changes persistent.
1957         *
1958         * Usually there is absolutely no need to call this method explicitly.
1959         * It will be called automatically when File::Save() was called.
1960         *
1961         * @param pProgress - callback function for progress notification
1962         */
1963        void DimensionRegion::UpdateChunks(progress_t* pProgress) {
1964            // first update base class's chunk
1965            DLS::Sampler::UpdateChunks(pProgress);
1966    
1967            RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
1968            uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
1969            pData[12] = Crossfade.in_start;
1970            pData[13] = Crossfade.in_end;
1971            pData[14] = Crossfade.out_start;
1972            pData[15] = Crossfade.out_end;
1973    
1974            // make sure '3ewa' chunk exists
1975            RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
1976            if (!_3ewa) {
1977                File* pFile = (File*) GetParent()->GetParent()->GetParent();
1978                bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
1979                _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140);
1980            }
1981            pData = (uint8_t*) _3ewa->LoadChunkData();
1982    
1983            // update '3ewa' chunk with DimensionRegion's current settings
1984    
1985            const uint32_t chunksize = (uint32_t) _3ewa->GetNewSize();
1986            store32(&pData[0], chunksize); // unknown, always chunk size?
1987    
1988            const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
1989            store32(&pData[4], lfo3freq);
1990    
1991            const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
1992            store32(&pData[8], eg3attack);
1993    
1994            // next 2 bytes unknown
1995    
1996            store16(&pData[14], LFO1InternalDepth);
1997    
1998            // next 2 bytes unknown
1999    
2000            store16(&pData[18], LFO3InternalDepth);
2001    
2002            // next 2 bytes unknown
2003    
2004            store16(&pData[22], LFO1ControlDepth);
2005    
2006            // next 2 bytes unknown
2007    
2008            store16(&pData[26], LFO3ControlDepth);
2009    
2010            const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
2011            store32(&pData[28], eg1attack);
2012    
2013            const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
2014            store32(&pData[32], eg1decay1);
2015    
2016            // next 2 bytes unknown
2017    
2018            store16(&pData[38], EG1Sustain);
2019    
2020            const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
2021            store32(&pData[40], eg1release);
2022    
2023            const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
2024            pData[44] = eg1ctl;
2025    
2026            const uint8_t eg1ctrloptions =
2027                (EG1ControllerInvert ? 0x01 : 0x00) |
2028                GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
2029                GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
2030                GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
2031            pData[45] = eg1ctrloptions;
2032    
2033            const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
2034            pData[46] = eg2ctl;
2035    
2036            const uint8_t eg2ctrloptions =
2037                (EG2ControllerInvert ? 0x01 : 0x00) |
2038                GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
2039                GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
2040                GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
2041            pData[47] = eg2ctrloptions;
2042    
2043            const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
2044            store32(&pData[48], lfo1freq);
2045    
2046            const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
2047            store32(&pData[52], eg2attack);
2048    
2049            const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
2050            store32(&pData[56], eg2decay1);
2051    
2052            // next 2 bytes unknown
2053    
2054            store16(&pData[62], EG2Sustain);
2055    
2056            const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
2057            store32(&pData[64], eg2release);
2058    
2059            // next 2 bytes unknown
2060    
2061            store16(&pData[70], LFO2ControlDepth);
2062    
2063            const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
2064            store32(&pData[72], lfo2freq);
2065    
2066            // next 2 bytes unknown
2067    
2068            store16(&pData[78], LFO2InternalDepth);
2069    
2070            const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
2071            store32(&pData[80], eg1decay2);
2072    
2073            // next 2 bytes unknown
2074    
2075            store16(&pData[86], EG1PreAttack);
2076    
2077            const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
2078            store32(&pData[88], eg2decay2);
2079    
2080            // next 2 bytes unknown
2081    
2082            store16(&pData[94], EG2PreAttack);
2083    
2084            {
2085                if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
2086                uint8_t velocityresponse = VelocityResponseDepth;
2087                switch (VelocityResponseCurve) {
2088                  case curve_type_nonlinear:                  case curve_type_nonlinear:
2089                      for (int velocity = 0; velocity < 128; velocity++) {                      break;
                         pVelocityAttenuationTable[velocity] =  
                             GIG_VELOCITY_TRANSFORM_NONLINEAR((double)(velocity+1),(double)(VelocityResponseDepth+1),(double)VelocityResponseCurveScaling);  
                         if      (pVelocityAttenuationTable[velocity] > 1.0) pVelocityAttenuationTable[velocity] = 1.0;  
                         else if (pVelocityAttenuationTable[velocity] < 0.0) pVelocityAttenuationTable[velocity] = 0.0;  
                      }  
                      break;  
2090                  case curve_type_linear:                  case curve_type_linear:
2091                      for (int velocity = 0; velocity < 128; velocity++) {                      velocityresponse += 5;
                         pVelocityAttenuationTable[velocity] =  
                             GIG_VELOCITY_TRANSFORM_LINEAR((double)velocity,(double)(VelocityResponseDepth+1),(double)VelocityResponseCurveScaling);  
                         if      (pVelocityAttenuationTable[velocity] > 1.0) pVelocityAttenuationTable[velocity] = 1.0;  
                         else if (pVelocityAttenuationTable[velocity] < 0.0) pVelocityAttenuationTable[velocity] = 0.0;  
                     }  
2092                      break;                      break;
2093                  case curve_type_special:                  case curve_type_special:
2094                      for (int velocity = 0; velocity < 128; velocity++) {                      velocityresponse += 10;
                         pVelocityAttenuationTable[velocity] =  
                             GIG_VELOCITY_TRANSFORM_SPECIAL((double)(velocity+1),(double)(VelocityResponseDepth+1),(double)VelocityResponseCurveScaling);  
                         if      (pVelocityAttenuationTable[velocity] > 1.0) pVelocityAttenuationTable[velocity] = 1.0;  
                         else if (pVelocityAttenuationTable[velocity] < 0.0) pVelocityAttenuationTable[velocity] = 0.0;  
                     }  
2095                      break;                      break;
2096                  case curve_type_unknown:                  case curve_type_unknown:
2097                  default:                  default:
2098                      throw gig::Exception("Unknown transform curve type.");                      throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
2099                }
2100                pData[96] = velocityresponse;
2101            }
2102    
2103            {
2104                if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
2105                uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
2106                switch (ReleaseVelocityResponseCurve) {
2107                    case curve_type_nonlinear:
2108                        break;
2109                    case curve_type_linear:
2110                        releasevelocityresponse += 5;
2111                        break;
2112                    case curve_type_special:
2113                        releasevelocityresponse += 10;
2114                        break;
2115                    case curve_type_unknown:
2116                    default:
2117                        throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
2118                }
2119                pData[97] = releasevelocityresponse;
2120            }
2121    
2122            pData[98] = VelocityResponseCurveScaling;
2123    
2124            pData[99] = AttenuationControllerThreshold;
2125    
2126            // next 4 bytes unknown
2127    
2128            store16(&pData[104], SampleStartOffset);
2129    
2130            // next 2 bytes unknown
2131    
2132            {
2133                uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
2134                switch (DimensionBypass) {
2135                    case dim_bypass_ctrl_94:
2136                        pitchTrackDimensionBypass |= 0x10;
2137                        break;
2138                    case dim_bypass_ctrl_95:
2139                        pitchTrackDimensionBypass |= 0x20;
2140                        break;
2141                    case dim_bypass_ctrl_none:
2142                        //FIXME: should we set anything here?
2143                        break;
2144                    default:
2145                        throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
2146              }              }
2147              (*pVelocityTables)[tableKey] = pVelocityAttenuationTable; // put the new table into the tables map              pData[108] = pitchTrackDimensionBypass;
2148            }
2149    
2150            const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
2151            pData[109] = pan;
2152    
2153            const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
2154            pData[110] = selfmask;
2155    
2156            // next byte unknown
2157    
2158            {
2159                uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
2160                if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
2161                if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
2162                if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
2163                pData[112] = lfo3ctrl;
2164            }
2165    
2166            const uint8_t attenctl = EncodeLeverageController(AttenuationController);
2167            pData[113] = attenctl;
2168    
2169            {
2170                uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
2171                if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
2172                if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5
2173                if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
2174                pData[114] = lfo2ctrl;
2175          }          }
2176    
2177            {
2178                uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
2179                if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
2180                if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6
2181                if (VCFResonanceController != vcf_res_ctrl_none)
2182                    lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
2183                pData[115] = lfo1ctrl;
2184            }
2185    
2186            const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
2187                                                      : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
2188            store16(&pData[116], eg3depth);
2189    
2190            // next 2 bytes unknown
2191    
2192            const uint8_t channeloffset = ChannelOffset * 4;
2193            pData[120] = channeloffset;
2194    
2195            {
2196                uint8_t regoptions = 0;
2197                if (MSDecode)      regoptions |= 0x01; // bit 0
2198                if (SustainDefeat) regoptions |= 0x02; // bit 1
2199                pData[121] = regoptions;
2200            }
2201    
2202            // next 2 bytes unknown
2203    
2204            pData[124] = VelocityUpperLimit;
2205    
2206            // next 3 bytes unknown
2207    
2208            pData[128] = ReleaseTriggerDecay;
2209    
2210            // next 2 bytes unknown
2211    
2212            const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2213            pData[131] = eg1hold;
2214    
2215            const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) |  /* bit 7 */
2216                                      (VCFCutoff & 0x7f);   /* lower 7 bits */
2217            pData[132] = vcfcutoff;
2218    
2219            pData[133] = VCFCutoffController;
2220    
2221            const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2222                                        (VCFVelocityScale & 0x7f); /* lower 7 bits */
2223            pData[134] = vcfvelscale;
2224    
2225            // next byte unknown
2226    
2227            const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2228                                         (VCFResonance & 0x7f); /* lower 7 bits */
2229            pData[136] = vcfresonance;
2230    
2231            const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2232                                          (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2233            pData[137] = vcfbreakpoint;
2234    
2235            const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2236                                        VCFVelocityCurve * 5;
2237            pData[138] = vcfvelocity;
2238    
2239            const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2240            pData[139] = vcftype;
2241    
2242            if (chunksize >= 148) {
2243                memcpy(&pData[140], DimensionUpperLimits, 8);
2244            }
2245    
2246            // format extension for EG behavior options, these will *NOT* work with
2247            // Gigasampler/GigaStudio !
2248            RIFF::Chunk* lsde = pParentList->GetSubChunk(CHUNK_ID_LSDE);
2249            if (!lsde) {
2250                // only add this "LSDE" chunk if the EG options do not match the
2251                // default EG behavior
2252                eg_opt_t defaultOpt;
2253                if (memcmp(&EG1Options, &defaultOpt, sizeof(eg_opt_t)) ||
2254                    memcmp(&EG2Options, &defaultOpt, sizeof(eg_opt_t)))
2255                {
2256                    lsde = pParentList->AddSubChunk(CHUNK_ID_LSDE, 2);
2257                    // move LSDE chunk to the end of parent list
2258                    pParentList->MoveSubChunk(lsde, (RIFF::Chunk*)NULL);
2259                }
2260            }
2261            if (lsde) {
2262                unsigned char* pData = (unsigned char*) lsde->LoadChunkData();
2263                eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
2264                for (int i = 0; i < 2; ++i) {
2265                    pData[i] =
2266                        (pEGOpts[i]->AttackCancel     ? 1 : 0) |
2267                        (pEGOpts[i]->AttackHoldCancel ? (1<<1) : 0) |
2268                        (pEGOpts[i]->Decay1Cancel     ? (1<<2) : 0) |
2269                        (pEGOpts[i]->Decay2Cancel     ? (1<<3) : 0) |
2270                        (pEGOpts[i]->ReleaseCancel    ? (1<<4) : 0);
2271                }
2272            }
2273        }
2274    
2275        double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2276            curve_type_t curveType = releaseVelocityResponseCurve;
2277            uint8_t depth = releaseVelocityResponseDepth;
2278            // this models a strange behaviour or bug in GSt: two of the
2279            // velocity response curves for release time are not used even
2280            // if specified, instead another curve is chosen.
2281            if ((curveType == curve_type_nonlinear && depth == 0) ||
2282                (curveType == curve_type_special   && depth == 4)) {
2283                curveType = curve_type_nonlinear;
2284                depth = 3;
2285            }
2286            return GetVelocityTable(curveType, depth, 0);
2287      }      }
2288    
2289        double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2290                                                        uint8_t vcfVelocityDynamicRange,
2291                                                        uint8_t vcfVelocityScale,
2292                                                        vcf_cutoff_ctrl_t vcfCutoffController)
2293        {
2294            curve_type_t curveType = vcfVelocityCurve;
2295            uint8_t depth = vcfVelocityDynamicRange;
2296            // even stranger GSt: two of the velocity response curves for
2297            // filter cutoff are not used, instead another special curve
2298            // is chosen. This curve is not used anywhere else.
2299            if ((curveType == curve_type_nonlinear && depth == 0) ||
2300                (curveType == curve_type_special   && depth == 4)) {
2301                curveType = curve_type_special;
2302                depth = 5;
2303            }
2304            return GetVelocityTable(curveType, depth,
2305                                    (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2306                                        ? vcfVelocityScale : 0);
2307        }
2308    
2309        // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2310        double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2311        {
2312            double* table;
2313            uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2314            if (pVelocityTables->count(tableKey)) { // if key exists
2315                table = (*pVelocityTables)[tableKey];
2316            }
2317            else {
2318                table = CreateVelocityTable(curveType, depth, scaling);
2319                (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
2320            }
2321            return table;
2322        }
2323    
2324        Region* DimensionRegion::GetParent() const {
2325            return pRegion;
2326        }
2327    
2328    // show error if some _lev_ctrl_* enum entry is not listed in the following function
2329    // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2330    // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2331    //#pragma GCC diagnostic push
2332    //#pragma GCC diagnostic error "-Wswitch"
2333    
2334      leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {      leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2335          leverage_ctrl_t decodedcontroller;          leverage_ctrl_t decodedcontroller;
2336          switch (EncodedController) {          switch (EncodedController) {
# Line 981  namespace gig { Line 2442  namespace gig {
2442                  decodedcontroller.controller_number = 95;                  decodedcontroller.controller_number = 95;
2443                  break;                  break;
2444    
2445                // format extension (these controllers are so far only supported by
2446                // LinuxSampler & gigedit) they will *NOT* work with
2447                // Gigasampler/GigaStudio !
2448                case _lev_ctrl_CC3_EXT:
2449                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2450                    decodedcontroller.controller_number = 3;
2451                    break;
2452                case _lev_ctrl_CC6_EXT:
2453                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2454                    decodedcontroller.controller_number = 6;
2455                    break;
2456                case _lev_ctrl_CC7_EXT:
2457                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2458                    decodedcontroller.controller_number = 7;
2459                    break;
2460                case _lev_ctrl_CC8_EXT:
2461                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2462                    decodedcontroller.controller_number = 8;
2463                    break;
2464                case _lev_ctrl_CC9_EXT:
2465                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2466                    decodedcontroller.controller_number = 9;
2467                    break;
2468                case _lev_ctrl_CC10_EXT:
2469                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2470                    decodedcontroller.controller_number = 10;
2471                    break;
2472                case _lev_ctrl_CC11_EXT:
2473                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2474                    decodedcontroller.controller_number = 11;
2475                    break;
2476                case _lev_ctrl_CC14_EXT:
2477                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2478                    decodedcontroller.controller_number = 14;
2479                    break;
2480                case _lev_ctrl_CC15_EXT:
2481                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2482                    decodedcontroller.controller_number = 15;
2483                    break;
2484                case _lev_ctrl_CC20_EXT:
2485                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2486                    decodedcontroller.controller_number = 20;
2487                    break;
2488                case _lev_ctrl_CC21_EXT:
2489                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2490                    decodedcontroller.controller_number = 21;
2491                    break;
2492                case _lev_ctrl_CC22_EXT:
2493                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2494                    decodedcontroller.controller_number = 22;
2495                    break;
2496                case _lev_ctrl_CC23_EXT:
2497                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2498                    decodedcontroller.controller_number = 23;
2499                    break;
2500                case _lev_ctrl_CC24_EXT:
2501                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2502                    decodedcontroller.controller_number = 24;
2503                    break;
2504                case _lev_ctrl_CC25_EXT:
2505                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2506                    decodedcontroller.controller_number = 25;
2507                    break;
2508                case _lev_ctrl_CC26_EXT:
2509                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2510                    decodedcontroller.controller_number = 26;
2511                    break;
2512                case _lev_ctrl_CC27_EXT:
2513                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2514                    decodedcontroller.controller_number = 27;
2515                    break;
2516                case _lev_ctrl_CC28_EXT:
2517                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2518                    decodedcontroller.controller_number = 28;
2519                    break;
2520                case _lev_ctrl_CC29_EXT:
2521                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2522                    decodedcontroller.controller_number = 29;
2523                    break;
2524                case _lev_ctrl_CC30_EXT:
2525                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2526                    decodedcontroller.controller_number = 30;
2527                    break;
2528                case _lev_ctrl_CC31_EXT:
2529                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2530                    decodedcontroller.controller_number = 31;
2531                    break;
2532                case _lev_ctrl_CC68_EXT:
2533                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2534                    decodedcontroller.controller_number = 68;
2535                    break;
2536                case _lev_ctrl_CC69_EXT:
2537                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2538                    decodedcontroller.controller_number = 69;
2539                    break;
2540                case _lev_ctrl_CC70_EXT:
2541                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2542                    decodedcontroller.controller_number = 70;
2543                    break;
2544                case _lev_ctrl_CC71_EXT:
2545                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2546                    decodedcontroller.controller_number = 71;
2547                    break;
2548                case _lev_ctrl_CC72_EXT:
2549                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2550                    decodedcontroller.controller_number = 72;
2551                    break;
2552                case _lev_ctrl_CC73_EXT:
2553                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2554                    decodedcontroller.controller_number = 73;
2555                    break;
2556                case _lev_ctrl_CC74_EXT:
2557                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2558                    decodedcontroller.controller_number = 74;
2559                    break;
2560                case _lev_ctrl_CC75_EXT:
2561                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2562                    decodedcontroller.controller_number = 75;
2563                    break;
2564                case _lev_ctrl_CC76_EXT:
2565                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2566                    decodedcontroller.controller_number = 76;
2567                    break;
2568                case _lev_ctrl_CC77_EXT:
2569                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2570                    decodedcontroller.controller_number = 77;
2571                    break;
2572                case _lev_ctrl_CC78_EXT:
2573                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2574                    decodedcontroller.controller_number = 78;
2575                    break;
2576                case _lev_ctrl_CC79_EXT:
2577                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2578                    decodedcontroller.controller_number = 79;
2579                    break;
2580                case _lev_ctrl_CC84_EXT:
2581                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2582                    decodedcontroller.controller_number = 84;
2583                    break;
2584                case _lev_ctrl_CC85_EXT:
2585                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2586                    decodedcontroller.controller_number = 85;
2587                    break;
2588                case _lev_ctrl_CC86_EXT:
2589                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2590                    decodedcontroller.controller_number = 86;
2591                    break;
2592                case _lev_ctrl_CC87_EXT:
2593                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2594                    decodedcontroller.controller_number = 87;
2595                    break;
2596                case _lev_ctrl_CC89_EXT:
2597                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2598                    decodedcontroller.controller_number = 89;
2599                    break;
2600                case _lev_ctrl_CC90_EXT:
2601                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2602                    decodedcontroller.controller_number = 90;
2603                    break;
2604                case _lev_ctrl_CC96_EXT:
2605                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2606                    decodedcontroller.controller_number = 96;
2607                    break;
2608                case _lev_ctrl_CC97_EXT:
2609                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2610                    decodedcontroller.controller_number = 97;
2611                    break;
2612                case _lev_ctrl_CC102_EXT:
2613                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2614                    decodedcontroller.controller_number = 102;
2615                    break;
2616                case _lev_ctrl_CC103_EXT:
2617                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2618                    decodedcontroller.controller_number = 103;
2619                    break;
2620                case _lev_ctrl_CC104_EXT:
2621                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2622                    decodedcontroller.controller_number = 104;
2623                    break;
2624                case _lev_ctrl_CC105_EXT:
2625                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2626                    decodedcontroller.controller_number = 105;
2627                    break;
2628                case _lev_ctrl_CC106_EXT:
2629                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2630                    decodedcontroller.controller_number = 106;
2631                    break;
2632                case _lev_ctrl_CC107_EXT:
2633                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2634                    decodedcontroller.controller_number = 107;
2635                    break;
2636                case _lev_ctrl_CC108_EXT:
2637                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2638                    decodedcontroller.controller_number = 108;
2639                    break;
2640                case _lev_ctrl_CC109_EXT:
2641                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2642                    decodedcontroller.controller_number = 109;
2643                    break;
2644                case _lev_ctrl_CC110_EXT:
2645                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2646                    decodedcontroller.controller_number = 110;
2647                    break;
2648                case _lev_ctrl_CC111_EXT:
2649                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2650                    decodedcontroller.controller_number = 111;
2651                    break;
2652                case _lev_ctrl_CC112_EXT:
2653                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2654                    decodedcontroller.controller_number = 112;
2655                    break;
2656                case _lev_ctrl_CC113_EXT:
2657                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2658                    decodedcontroller.controller_number = 113;
2659                    break;
2660                case _lev_ctrl_CC114_EXT:
2661                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2662                    decodedcontroller.controller_number = 114;
2663                    break;
2664                case _lev_ctrl_CC115_EXT:
2665                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2666                    decodedcontroller.controller_number = 115;
2667                    break;
2668                case _lev_ctrl_CC116_EXT:
2669                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2670                    decodedcontroller.controller_number = 116;
2671                    break;
2672                case _lev_ctrl_CC117_EXT:
2673                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2674                    decodedcontroller.controller_number = 117;
2675                    break;
2676                case _lev_ctrl_CC118_EXT:
2677                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2678                    decodedcontroller.controller_number = 118;
2679                    break;
2680                case _lev_ctrl_CC119_EXT:
2681                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2682                    decodedcontroller.controller_number = 119;
2683                    break;
2684    
2685              // unknown controller type              // unknown controller type
2686              default:              default:
2687                  throw gig::Exception("Unknown leverage controller type.");                  decodedcontroller.type = leverage_ctrl_t::type_none;
2688                    decodedcontroller.controller_number = 0;
2689                    printf("Warning: Unknown leverage controller type (0x%x).\n", EncodedController);
2690                    break;
2691          }          }
2692          return decodedcontroller;          return decodedcontroller;
2693      }      }
2694        
2695    // see above (diagnostic push not supported prior GCC 4.6)
2696    //#pragma GCC diagnostic pop
2697    
2698        DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2699            _lev_ctrl_t encodedcontroller;
2700            switch (DecodedController.type) {
2701                // special controller
2702                case leverage_ctrl_t::type_none:
2703                    encodedcontroller = _lev_ctrl_none;
2704                    break;
2705                case leverage_ctrl_t::type_velocity:
2706                    encodedcontroller = _lev_ctrl_velocity;
2707                    break;
2708                case leverage_ctrl_t::type_channelaftertouch:
2709                    encodedcontroller = _lev_ctrl_channelaftertouch;
2710                    break;
2711    
2712                // ordinary MIDI control change controller
2713                case leverage_ctrl_t::type_controlchange:
2714                    switch (DecodedController.controller_number) {
2715                        case 1:
2716                            encodedcontroller = _lev_ctrl_modwheel;
2717                            break;
2718                        case 2:
2719                            encodedcontroller = _lev_ctrl_breath;
2720                            break;
2721                        case 4:
2722                            encodedcontroller = _lev_ctrl_foot;
2723                            break;
2724                        case 12:
2725                            encodedcontroller = _lev_ctrl_effect1;
2726                            break;
2727                        case 13:
2728                            encodedcontroller = _lev_ctrl_effect2;
2729                            break;
2730                        case 16:
2731                            encodedcontroller = _lev_ctrl_genpurpose1;
2732                            break;
2733                        case 17:
2734                            encodedcontroller = _lev_ctrl_genpurpose2;
2735                            break;
2736                        case 18:
2737                            encodedcontroller = _lev_ctrl_genpurpose3;
2738                            break;
2739                        case 19:
2740                            encodedcontroller = _lev_ctrl_genpurpose4;
2741                            break;
2742                        case 5:
2743                            encodedcontroller = _lev_ctrl_portamentotime;
2744                            break;
2745                        case 64:
2746                            encodedcontroller = _lev_ctrl_sustainpedal;
2747                            break;
2748                        case 65:
2749                            encodedcontroller = _lev_ctrl_portamento;
2750                            break;
2751                        case 66:
2752                            encodedcontroller = _lev_ctrl_sostenutopedal;
2753                            break;
2754                        case 67:
2755                            encodedcontroller = _lev_ctrl_softpedal;
2756                            break;
2757                        case 80:
2758                            encodedcontroller = _lev_ctrl_genpurpose5;
2759                            break;
2760                        case 81:
2761                            encodedcontroller = _lev_ctrl_genpurpose6;
2762                            break;
2763                        case 82:
2764                            encodedcontroller = _lev_ctrl_genpurpose7;
2765                            break;
2766                        case 83:
2767                            encodedcontroller = _lev_ctrl_genpurpose8;
2768                            break;
2769                        case 91:
2770                            encodedcontroller = _lev_ctrl_effect1depth;
2771                            break;
2772                        case 92:
2773                            encodedcontroller = _lev_ctrl_effect2depth;
2774                            break;
2775                        case 93:
2776                            encodedcontroller = _lev_ctrl_effect3depth;
2777                            break;
2778                        case 94:
2779                            encodedcontroller = _lev_ctrl_effect4depth;
2780                            break;
2781                        case 95:
2782                            encodedcontroller = _lev_ctrl_effect5depth;
2783                            break;
2784    
2785                        // format extension (these controllers are so far only
2786                        // supported by LinuxSampler & gigedit) they will *NOT*
2787                        // work with Gigasampler/GigaStudio !
2788                        case 3:
2789                            encodedcontroller = _lev_ctrl_CC3_EXT;
2790                            break;
2791                        case 6:
2792                            encodedcontroller = _lev_ctrl_CC6_EXT;
2793                            break;
2794                        case 7:
2795                            encodedcontroller = _lev_ctrl_CC7_EXT;
2796                            break;
2797                        case 8:
2798                            encodedcontroller = _lev_ctrl_CC8_EXT;
2799                            break;
2800                        case 9:
2801                            encodedcontroller = _lev_ctrl_CC9_EXT;
2802                            break;
2803                        case 10:
2804                            encodedcontroller = _lev_ctrl_CC10_EXT;
2805                            break;
2806                        case 11:
2807                            encodedcontroller = _lev_ctrl_CC11_EXT;
2808                            break;
2809                        case 14:
2810                            encodedcontroller = _lev_ctrl_CC14_EXT;
2811                            break;
2812                        case 15:
2813                            encodedcontroller = _lev_ctrl_CC15_EXT;
2814                            break;
2815                        case 20:
2816                            encodedcontroller = _lev_ctrl_CC20_EXT;
2817                            break;
2818                        case 21:
2819                            encodedcontroller = _lev_ctrl_CC21_EXT;
2820                            break;
2821                        case 22:
2822                            encodedcontroller = _lev_ctrl_CC22_EXT;
2823                            break;
2824                        case 23:
2825                            encodedcontroller = _lev_ctrl_CC23_EXT;
2826                            break;
2827                        case 24:
2828                            encodedcontroller = _lev_ctrl_CC24_EXT;
2829                            break;
2830                        case 25:
2831                            encodedcontroller = _lev_ctrl_CC25_EXT;
2832                            break;
2833                        case 26:
2834                            encodedcontroller = _lev_ctrl_CC26_EXT;
2835                            break;
2836                        case 27:
2837                            encodedcontroller = _lev_ctrl_CC27_EXT;
2838                            break;
2839                        case 28:
2840                            encodedcontroller = _lev_ctrl_CC28_EXT;
2841                            break;
2842                        case 29:
2843                            encodedcontroller = _lev_ctrl_CC29_EXT;
2844                            break;
2845                        case 30:
2846                            encodedcontroller = _lev_ctrl_CC30_EXT;
2847                            break;
2848                        case 31:
2849                            encodedcontroller = _lev_ctrl_CC31_EXT;
2850                            break;
2851                        case 68:
2852                            encodedcontroller = _lev_ctrl_CC68_EXT;
2853                            break;
2854                        case 69:
2855                            encodedcontroller = _lev_ctrl_CC69_EXT;
2856                            break;
2857                        case 70:
2858                            encodedcontroller = _lev_ctrl_CC70_EXT;
2859                            break;
2860                        case 71:
2861                            encodedcontroller = _lev_ctrl_CC71_EXT;
2862                            break;
2863                        case 72:
2864                            encodedcontroller = _lev_ctrl_CC72_EXT;
2865                            break;
2866                        case 73:
2867                            encodedcontroller = _lev_ctrl_CC73_EXT;
2868                            break;
2869                        case 74:
2870                            encodedcontroller = _lev_ctrl_CC74_EXT;
2871                            break;
2872                        case 75:
2873                            encodedcontroller = _lev_ctrl_CC75_EXT;
2874                            break;
2875                        case 76:
2876                            encodedcontroller = _lev_ctrl_CC76_EXT;
2877                            break;
2878                        case 77:
2879                            encodedcontroller = _lev_ctrl_CC77_EXT;
2880                            break;
2881                        case 78:
2882                            encodedcontroller = _lev_ctrl_CC78_EXT;
2883                            break;
2884                        case 79:
2885                            encodedcontroller = _lev_ctrl_CC79_EXT;
2886                            break;
2887                        case 84:
2888                            encodedcontroller = _lev_ctrl_CC84_EXT;
2889                            break;
2890                        case 85:
2891                            encodedcontroller = _lev_ctrl_CC85_EXT;
2892                            break;
2893                        case 86:
2894                            encodedcontroller = _lev_ctrl_CC86_EXT;
2895                            break;
2896                        case 87:
2897                            encodedcontroller = _lev_ctrl_CC87_EXT;
2898                            break;
2899                        case 89:
2900                            encodedcontroller = _lev_ctrl_CC89_EXT;
2901                            break;
2902                        case 90:
2903                            encodedcontroller = _lev_ctrl_CC90_EXT;
2904                            break;
2905                        case 96:
2906                            encodedcontroller = _lev_ctrl_CC96_EXT;
2907                            break;
2908                        case 97:
2909                            encodedcontroller = _lev_ctrl_CC97_EXT;
2910                            break;
2911                        case 102:
2912                            encodedcontroller = _lev_ctrl_CC102_EXT;
2913                            break;
2914                        case 103:
2915                            encodedcontroller = _lev_ctrl_CC103_EXT;
2916                            break;
2917                        case 104:
2918                            encodedcontroller = _lev_ctrl_CC104_EXT;
2919                            break;
2920                        case 105:
2921                            encodedcontroller = _lev_ctrl_CC105_EXT;
2922                            break;
2923                        case 106:
2924                            encodedcontroller = _lev_ctrl_CC106_EXT;
2925                            break;
2926                        case 107:
2927                            encodedcontroller = _lev_ctrl_CC107_EXT;
2928                            break;
2929                        case 108:
2930                            encodedcontroller = _lev_ctrl_CC108_EXT;
2931                            break;
2932                        case 109:
2933                            encodedcontroller = _lev_ctrl_CC109_EXT;
2934                            break;
2935                        case 110:
2936                            encodedcontroller = _lev_ctrl_CC110_EXT;
2937                            break;
2938                        case 111:
2939                            encodedcontroller = _lev_ctrl_CC111_EXT;
2940                            break;
2941                        case 112:
2942                            encodedcontroller = _lev_ctrl_CC112_EXT;
2943                            break;
2944                        case 113:
2945                            encodedcontroller = _lev_ctrl_CC113_EXT;
2946                            break;
2947                        case 114:
2948                            encodedcontroller = _lev_ctrl_CC114_EXT;
2949                            break;
2950                        case 115:
2951                            encodedcontroller = _lev_ctrl_CC115_EXT;
2952                            break;
2953                        case 116:
2954                            encodedcontroller = _lev_ctrl_CC116_EXT;
2955                            break;
2956                        case 117:
2957                            encodedcontroller = _lev_ctrl_CC117_EXT;
2958                            break;
2959                        case 118:
2960                            encodedcontroller = _lev_ctrl_CC118_EXT;
2961                            break;
2962                        case 119:
2963                            encodedcontroller = _lev_ctrl_CC119_EXT;
2964                            break;
2965    
2966                        default:
2967                            throw gig::Exception("leverage controller number is not supported by the gig format");
2968                    }
2969                    break;
2970                default:
2971                    throw gig::Exception("Unknown leverage controller type.");
2972            }
2973            return encodedcontroller;
2974        }
2975    
2976      DimensionRegion::~DimensionRegion() {      DimensionRegion::~DimensionRegion() {
2977          Instances--;          Instances--;
# Line 1001  namespace gig { Line 2986  namespace gig {
2986              delete pVelocityTables;              delete pVelocityTables;
2987              pVelocityTables = NULL;              pVelocityTables = NULL;
2988          }          }
2989            if (VelocityTable) delete[] VelocityTable;
2990      }      }
2991    
2992      /**      /**
# Line 1018  namespace gig { Line 3004  namespace gig {
3004          return pVelocityAttenuationTable[MIDIKeyVelocity];          return pVelocityAttenuationTable[MIDIKeyVelocity];
3005      }      }
3006    
3007        double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
3008            return pVelocityReleaseTable[MIDIKeyVelocity];
3009        }
3010    
3011        double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
3012            return pVelocityCutoffTable[MIDIKeyVelocity];
3013        }
3014    
3015        /**
3016         * Updates the respective member variable and the lookup table / cache
3017         * that depends on this value.
3018         */
3019        void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
3020            pVelocityAttenuationTable =
3021                GetVelocityTable(
3022                    curve, VelocityResponseDepth, VelocityResponseCurveScaling
3023                );
3024            VelocityResponseCurve = curve;
3025        }
3026    
3027        /**
3028         * Updates the respective member variable and the lookup table / cache
3029         * that depends on this value.
3030         */
3031        void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
3032            pVelocityAttenuationTable =
3033                GetVelocityTable(
3034                    VelocityResponseCurve, depth, VelocityResponseCurveScaling
3035                );
3036            VelocityResponseDepth = depth;
3037        }
3038    
3039        /**
3040         * Updates the respective member variable and the lookup table / cache
3041         * that depends on this value.
3042         */
3043        void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
3044            pVelocityAttenuationTable =
3045                GetVelocityTable(
3046                    VelocityResponseCurve, VelocityResponseDepth, scaling
3047                );
3048            VelocityResponseCurveScaling = scaling;
3049        }
3050    
3051        /**
3052         * Updates the respective member variable and the lookup table / cache
3053         * that depends on this value.
3054         */
3055        void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
3056            pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
3057            ReleaseVelocityResponseCurve = curve;
3058        }
3059    
3060        /**
3061         * Updates the respective member variable and the lookup table / cache
3062         * that depends on this value.
3063         */
3064        void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
3065            pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
3066            ReleaseVelocityResponseDepth = depth;
3067        }
3068    
3069        /**
3070         * Updates the respective member variable and the lookup table / cache
3071         * that depends on this value.
3072         */
3073        void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
3074            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
3075            VCFCutoffController = controller;
3076        }
3077    
3078        /**
3079         * Updates the respective member variable and the lookup table / cache
3080         * that depends on this value.
3081         */
3082        void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
3083            pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
3084            VCFVelocityCurve = curve;
3085        }
3086    
3087        /**
3088         * Updates the respective member variable and the lookup table / cache
3089         * that depends on this value.
3090         */
3091        void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
3092            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
3093            VCFVelocityDynamicRange = range;
3094        }
3095    
3096        /**
3097         * Updates the respective member variable and the lookup table / cache
3098         * that depends on this value.
3099         */
3100        void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
3101            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
3102            VCFVelocityScale = scaling;
3103        }
3104    
3105        double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
3106    
3107            // line-segment approximations of the 15 velocity curves
3108    
3109            // linear
3110            const int lin0[] = { 1, 1, 127, 127 };
3111            const int lin1[] = { 1, 21, 127, 127 };
3112            const int lin2[] = { 1, 45, 127, 127 };
3113            const int lin3[] = { 1, 74, 127, 127 };
3114            const int lin4[] = { 1, 127, 127, 127 };
3115    
3116            // non-linear
3117            const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
3118            const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
3119                                 127, 127 };
3120            const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
3121                                 127, 127 };
3122            const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
3123                                 127, 127 };
3124            const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
3125    
3126            // special
3127            const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
3128                                 113, 127, 127, 127 };
3129            const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
3130                                 118, 127, 127, 127 };
3131            const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
3132                                 85, 90, 91, 127, 127, 127 };
3133            const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
3134                                 117, 127, 127, 127 };
3135            const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
3136                                 127, 127 };
3137    
3138            // this is only used by the VCF velocity curve
3139            const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
3140                                 91, 127, 127, 127 };
3141    
3142            const int* const curves[] = { non0, non1, non2, non3, non4,
3143                                          lin0, lin1, lin2, lin3, lin4,
3144                                          spe0, spe1, spe2, spe3, spe4, spe5 };
3145    
3146            double* const table = new double[128];
3147    
3148            const int* curve = curves[curveType * 5 + depth];
3149            const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
3150    
3151            table[0] = 0;
3152            for (int x = 1 ; x < 128 ; x++) {
3153    
3154                if (x > curve[2]) curve += 2;
3155                double y = curve[1] + (x - curve[0]) *
3156                    (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
3157                y = y / 127;
3158    
3159                // Scale up for s > 20, down for s < 20. When
3160                // down-scaling, the curve still ends at 1.0.
3161                if (s < 20 && y >= 0.5)
3162                    y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
3163                else
3164                    y = y * (s / 20.0);
3165                if (y > 1) y = 1;
3166    
3167                table[x] = y;
3168            }
3169            return table;
3170        }
3171    
3172    
3173  // *************** Region ***************  // *************** Region ***************
# Line 1026  namespace gig { Line 3176  namespace gig {
3176      Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {      Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
3177          // Initialization          // Initialization
3178          Dimensions = 0;          Dimensions = 0;
3179          for (int i = 0; i < 32; i++) {          for (int i = 0; i < 256; i++) {
3180              pDimensionRegions[i] = NULL;              pDimensionRegions[i] = NULL;
3181          }          }
3182            Layers = 1;
3183            File* file = (File*) GetParent()->GetParent();
3184            int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
3185    
3186          // Actual Loading          // Actual Loading
3187    
3188            if (!file->GetAutoLoad()) return;
3189    
3190          LoadDimensionRegions(rgnList);          LoadDimensionRegions(rgnList);
3191    
3192          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
3193          if (_3lnk) {          if (_3lnk) {
3194              DimensionRegions = _3lnk->ReadUint32();              DimensionRegions = _3lnk->ReadUint32();
3195              for (int i = 0; i < 5; i++) {              for (int i = 0; i < dimensionBits; i++) {
3196                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
3197                  uint8_t     bits      = _3lnk->ReadUint8();                  uint8_t     bits      = _3lnk->ReadUint8();
3198                    _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
3199                    _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
3200                    uint8_t     zones     = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
3201                  if (dimension == dimension_none) { // inactive dimension                  if (dimension == dimension_none) { // inactive dimension
3202                      pDimensionDefinitions[i].dimension  = dimension_none;                      pDimensionDefinitions[i].dimension  = dimension_none;
3203                      pDimensionDefinitions[i].bits       = 0;                      pDimensionDefinitions[i].bits       = 0;
3204                      pDimensionDefinitions[i].zones      = 0;                      pDimensionDefinitions[i].zones      = 0;
3205                      pDimensionDefinitions[i].split_type = split_type_bit;                      pDimensionDefinitions[i].split_type = split_type_bit;
                     pDimensionDefinitions[i].ranges     = NULL;  
3206                      pDimensionDefinitions[i].zone_size  = 0;                      pDimensionDefinitions[i].zone_size  = 0;
3207                  }                  }
3208                  else { // active dimension                  else { // active dimension
3209                      pDimensionDefinitions[i].dimension = dimension;                      pDimensionDefinitions[i].dimension = dimension;
3210                      pDimensionDefinitions[i].bits      = bits;                      pDimensionDefinitions[i].bits      = bits;
3211                      pDimensionDefinitions[i].zones     = 0x01 << bits; // = pow(2,bits)                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)
3212                      pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||                      pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
3213                                                             dimension == dimension_samplechannel) ? split_type_bit                      pDimensionDefinitions[i].zone_size  = __resolveZoneSize(pDimensionDefinitions[i]);
                                                                                                  : split_type_normal;  
                     pDimensionDefinitions[i].ranges = NULL; // it's not possible to check velocity dimensions for custom defined ranges at this point  
                     pDimensionDefinitions[i].zone_size  =  
                         (pDimensionDefinitions[i].split_type == split_type_normal) ? 128 / pDimensionDefinitions[i].zones  
                                                                                    : 0;  
3214                      Dimensions++;                      Dimensions++;
3215    
3216                        // if this is a layer dimension, remember the amount of layers
3217                        if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
3218                  }                  }
3219                  _3lnk->SetPos(6, RIFF::stream_curpos); // jump forward to next dimension definition                  _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
3220              }              }
3221                for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
3222    
3223              // check velocity dimension (if there is one) for custom defined zone ranges              // if there's a velocity dimension and custom velocity zone splits are used,
3224              for (uint i = 0; i < Dimensions; i++) {              // update the VelocityTables in the dimension regions
3225                  dimension_def_t* pDimDef = pDimensionDefinitions + i;              UpdateVelocityTable();
3226                  if (pDimDef->dimension == dimension_velocity) {  
3227                      if (pDimensionRegions[0]->VelocityUpperLimit == 0) {              // jump to start of the wave pool indices (if not already there)
3228                          // no custom defined ranges              if (file->pVersion && file->pVersion->major == 3)
3229                          pDimDef->split_type = split_type_normal;                  _3lnk->SetPos(68); // version 3 has a different 3lnk structure
3230                          pDimDef->ranges     = NULL;              else
3231                      }                  _3lnk->SetPos(44);
3232                      else { // custom defined ranges  
3233                          pDimDef->split_type = split_type_customvelocity;              // load sample references (if auto loading is enabled)
3234                          pDimDef->ranges     = new range_t[pDimDef->zones];              if (file->GetAutoLoad()) {
3235                          unsigned int bits[5] = {0,0,0,0,0};                  for (uint i = 0; i < DimensionRegions; i++) {
3236                          int previousUpperLimit = -1;                      uint32_t wavepoolindex = _3lnk->ReadUint32();
3237                          for (int velocityZone = 0; velocityZone < pDimDef->zones; velocityZone++) {                      if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
                             bits[i] = velocityZone;  
                             DimensionRegion* pDimRegion = GetDimensionRegionByBit(bits[4],bits[3],bits[2],bits[1],bits[0]);  
   
                             pDimDef->ranges[velocityZone].low  = previousUpperLimit + 1;  
                             pDimDef->ranges[velocityZone].high = pDimRegion->VelocityUpperLimit;  
                             previousUpperLimit = pDimDef->ranges[velocityZone].high;  
                             // fill velocity table  
                             for (int i = pDimDef->ranges[velocityZone].low; i <= pDimDef->ranges[velocityZone].high; i++) {  
                                 VelocityTable[i] = velocityZone;  
                             }  
                         }  
                     }  
3238                  }                  }
3239                    GetSample(); // load global region sample reference
3240              }              }
3241            } else {
3242                DimensionRegions = 0;
3243                for (int i = 0 ; i < 8 ; i++) {
3244                    pDimensionDefinitions[i].dimension  = dimension_none;
3245                    pDimensionDefinitions[i].bits       = 0;
3246                    pDimensionDefinitions[i].zones      = 0;
3247                }
3248            }
3249    
3250            // make sure there is at least one dimension region
3251            if (!DimensionRegions) {
3252                RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
3253                if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
3254                RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
3255                pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
3256                DimensionRegions = 1;
3257            }
3258        }
3259    
3260        /**
3261         * Apply Region settings and all its DimensionRegions to the respective
3262         * RIFF chunks. You have to call File::Save() to make changes persistent.
3263         *
3264         * Usually there is absolutely no need to call this method explicitly.
3265         * It will be called automatically when File::Save() was called.
3266         *
3267         * @param pProgress - callback function for progress notification
3268         * @throws gig::Exception if samples cannot be dereferenced
3269         */
3270        void Region::UpdateChunks(progress_t* pProgress) {
3271            // in the gig format we don't care about the Region's sample reference
3272            // but we still have to provide some existing one to not corrupt the
3273            // file, so to avoid the latter we simply always assign the sample of
3274            // the first dimension region of this region
3275            pSample = pDimensionRegions[0]->pSample;
3276    
3277            // first update base class's chunks
3278            DLS::Region::UpdateChunks(pProgress);
3279    
3280            // update dimension region's chunks
3281            for (int i = 0; i < DimensionRegions; i++) {
3282                pDimensionRegions[i]->UpdateChunks(pProgress);
3283            }
3284    
3285            File* pFile = (File*) GetParent()->GetParent();
3286            bool version3 = pFile->pVersion && pFile->pVersion->major == 3;
3287            const int iMaxDimensions =  version3 ? 8 : 5;
3288            const int iMaxDimensionRegions = version3 ? 256 : 32;
3289    
3290            // make sure '3lnk' chunk exists
3291            RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3292            if (!_3lnk) {
3293                const int _3lnkChunkSize = version3 ? 1092 : 172;
3294                _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3295                memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3296    
3297                // move 3prg to last position
3298                pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), (RIFF::Chunk*)NULL);
3299            }
3300    
3301              // load sample references          // update dimension definitions in '3lnk' chunk
3302              _3lnk->SetPos(44); // jump to start of the wave pool indices (if not already there)          uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3303              for (uint i = 0; i < DimensionRegions; i++) {          store32(&pData[0], DimensionRegions);
3304                  uint32_t wavepoolindex = _3lnk->ReadUint32();          int shift = 0;
3305                  pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);          for (int i = 0; i < iMaxDimensions; i++) {
3306                pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3307                pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3308                pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3309                pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3310                pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3311                // next 3 bytes unknown, always zero?
3312    
3313                shift += pDimensionDefinitions[i].bits;
3314            }
3315    
3316            // update wave pool table in '3lnk' chunk
3317            const int iWavePoolOffset = version3 ? 68 : 44;
3318            for (uint i = 0; i < iMaxDimensionRegions; i++) {
3319                int iWaveIndex = -1;
3320                if (i < DimensionRegions) {
3321                    if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
3322                    File::SampleList::iterator iter = pFile->pSamples->begin();
3323                    File::SampleList::iterator end  = pFile->pSamples->end();
3324                    for (int index = 0; iter != end; ++iter, ++index) {
3325                        if (*iter == pDimensionRegions[i]->pSample) {
3326                            iWaveIndex = index;
3327                            break;
3328                        }
3329                    }
3330              }              }
3331                store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3332          }          }
         else throw gig::Exception("Mandatory <3lnk> chunk not found.");  
3333      }      }
3334    
3335      void Region::LoadDimensionRegions(RIFF::List* rgn) {      void Region::LoadDimensionRegions(RIFF::List* rgn) {
# Line 1111  namespace gig { Line 3339  namespace gig {
3339              RIFF::List* _3ewl = _3prg->GetFirstSubList();              RIFF::List* _3ewl = _3prg->GetFirstSubList();
3340              while (_3ewl) {              while (_3ewl) {
3341                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3342                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3343                      dimensionRegionNr++;                      dimensionRegionNr++;
3344                  }                  }
3345                  _3ewl = _3prg->GetNextSubList();                  _3ewl = _3prg->GetNextSubList();
# Line 1120  namespace gig { Line 3348  namespace gig {
3348          }          }
3349      }      }
3350    
3351      Region::~Region() {      void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3352          for (uint i = 0; i < Dimensions; i++) {          // update KeyRange struct and make sure regions are in correct order
3353              if (pDimensionDefinitions[i].ranges) delete[] pDimensionDefinitions[i].ranges;          DLS::Region::SetKeyRange(Low, High);
3354            // update Region key table for fast lookup
3355            ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3356        }
3357    
3358        void Region::UpdateVelocityTable() {
3359            // get velocity dimension's index
3360            int veldim = -1;
3361            for (int i = 0 ; i < Dimensions ; i++) {
3362                if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
3363                    veldim = i;
3364                    break;
3365                }
3366            }
3367            if (veldim == -1) return;
3368    
3369            int step = 1;
3370            for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3371            int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
3372    
3373            // loop through all dimension regions for all dimensions except the velocity dimension
3374            int dim[8] = { 0 };
3375            for (int i = 0 ; i < DimensionRegions ; i++) {
3376                const int end = i + step * pDimensionDefinitions[veldim].zones;
3377    
3378                // create a velocity table for all cases where the velocity zone is zero
3379                if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3380                    pDimensionRegions[i]->VelocityUpperLimit) {
3381                    // create the velocity table
3382                    uint8_t* table = pDimensionRegions[i]->VelocityTable;
3383                    if (!table) {
3384                        table = new uint8_t[128];
3385                        pDimensionRegions[i]->VelocityTable = table;
3386                    }
3387                    int tableidx = 0;
3388                    int velocityZone = 0;
3389                    if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
3390                        for (int k = i ; k < end ; k += step) {
3391                            DimensionRegion *d = pDimensionRegions[k];
3392                            for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
3393                            velocityZone++;
3394                        }
3395                    } else { // gig2
3396                        for (int k = i ; k < end ; k += step) {
3397                            DimensionRegion *d = pDimensionRegions[k];
3398                            for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
3399                            velocityZone++;
3400                        }
3401                    }
3402                } else {
3403                    if (pDimensionRegions[i]->VelocityTable) {
3404                        delete[] pDimensionRegions[i]->VelocityTable;
3405                        pDimensionRegions[i]->VelocityTable = 0;
3406                    }
3407                }
3408    
3409                // jump to the next case where the velocity zone is zero
3410                int j;
3411                int shift = 0;
3412                for (j = 0 ; j < Dimensions ; j++) {
3413                    if (j == veldim) i += skipveldim; // skip velocity dimension
3414                    else {
3415                        dim[j]++;
3416                        if (dim[j] < pDimensionDefinitions[j].zones) break;
3417                        else {
3418                            // skip unused dimension regions
3419                            dim[j] = 0;
3420                            i += ((1 << pDimensionDefinitions[j].bits) -
3421                                  pDimensionDefinitions[j].zones) << shift;
3422                        }
3423                    }
3424                    shift += pDimensionDefinitions[j].bits;
3425                }
3426                if (j == Dimensions) break;
3427            }
3428        }
3429    
3430        /** @brief Einstein would have dreamed of it - create a new dimension.
3431         *
3432         * Creates a new dimension with the dimension definition given by
3433         * \a pDimDef. The appropriate amount of DimensionRegions will be created.
3434         * There is a hard limit of dimensions and total amount of "bits" all
3435         * dimensions can have. This limit is dependant to what gig file format
3436         * version this file refers to. The gig v2 (and lower) format has a
3437         * dimension limit and total amount of bits limit of 5, whereas the gig v3
3438         * format has a limit of 8.
3439         *
3440         * @param pDimDef - defintion of the new dimension
3441         * @throws gig::Exception if dimension of the same type exists already
3442         * @throws gig::Exception if amount of dimensions or total amount of
3443         *                        dimension bits limit is violated
3444         */
3445        void Region::AddDimension(dimension_def_t* pDimDef) {
3446            // some initial sanity checks of the given dimension definition
3447            if (pDimDef->zones < 2)
3448                throw gig::Exception("Could not add new dimension, amount of requested zones must always be at least two");
3449            if (pDimDef->bits < 1)
3450                throw gig::Exception("Could not add new dimension, amount of requested requested zone bits must always be at least one");
3451            if (pDimDef->dimension == dimension_samplechannel) {
3452                if (pDimDef->zones != 2)
3453                    throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zones must always be 2 for this dimension type");
3454                if (pDimDef->bits != 1)
3455                    throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zone bits must always be 1 for this dimension type");
3456            }
3457    
3458            // check if max. amount of dimensions reached
3459            File* file = (File*) GetParent()->GetParent();
3460            const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5;
3461            if (Dimensions >= iMaxDimensions)
3462                throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
3463            // check if max. amount of dimension bits reached
3464            int iCurrentBits = 0;
3465            for (int i = 0; i < Dimensions; i++)
3466                iCurrentBits += pDimensionDefinitions[i].bits;
3467            if (iCurrentBits >= iMaxDimensions)
3468                throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
3469            const int iNewBits = iCurrentBits + pDimDef->bits;
3470            if (iNewBits > iMaxDimensions)
3471                throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
3472            // check if there's already a dimensions of the same type
3473            for (int i = 0; i < Dimensions; i++)
3474                if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3475                    throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3476    
3477            // pos is where the new dimension should be placed, normally
3478            // last in list, except for the samplechannel dimension which
3479            // has to be first in list
3480            int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3481            int bitpos = 0;
3482            for (int i = 0 ; i < pos ; i++)
3483                bitpos += pDimensionDefinitions[i].bits;
3484    
3485            // make room for the new dimension
3486            for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3487            for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3488                for (int j = Dimensions ; j > pos ; j--) {
3489                    pDimensionRegions[i]->DimensionUpperLimits[j] =
3490                        pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3491                }
3492            }
3493    
3494            // assign definition of new dimension
3495            pDimensionDefinitions[pos] = *pDimDef;
3496    
3497            // auto correct certain dimension definition fields (where possible)
3498            pDimensionDefinitions[pos].split_type  =
3499                __resolveSplitType(pDimensionDefinitions[pos].dimension);
3500            pDimensionDefinitions[pos].zone_size =
3501                __resolveZoneSize(pDimensionDefinitions[pos]);
3502    
3503            // create new dimension region(s) for this new dimension, and make
3504            // sure that the dimension regions are placed correctly in both the
3505            // RIFF list and the pDimensionRegions array
3506            RIFF::Chunk* moveTo = NULL;
3507            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3508            for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3509                for (int k = 0 ; k < (1 << bitpos) ; k++) {
3510                    pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3511                }
3512                for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3513                    for (int k = 0 ; k < (1 << bitpos) ; k++) {
3514                        RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3515                        if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3516                        // create a new dimension region and copy all parameter values from
3517                        // an existing dimension region
3518                        pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3519                            new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3520    
3521                        DimensionRegions++;
3522                    }
3523                }
3524                moveTo = pDimensionRegions[i]->pParentList;
3525            }
3526    
3527            // initialize the upper limits for this dimension
3528            int mask = (1 << bitpos) - 1;
3529            for (int z = 0 ; z < pDimDef->zones ; z++) {
3530                uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3531                for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3532                    pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3533                                      (z << bitpos) |
3534                                      (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3535                }
3536            }
3537    
3538            Dimensions++;
3539    
3540            // if this is a layer dimension, update 'Layers' attribute
3541            if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
3542    
3543            UpdateVelocityTable();
3544        }
3545    
3546        /** @brief Delete an existing dimension.
3547         *
3548         * Deletes the dimension given by \a pDimDef and deletes all respective
3549         * dimension regions, that is all dimension regions where the dimension's
3550         * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
3551         * for example this would delete all dimension regions for the case(s)
3552         * where the sustain pedal is pressed down.
3553         *
3554         * @param pDimDef - dimension to delete
3555         * @throws gig::Exception if given dimension cannot be found
3556         */
3557        void Region::DeleteDimension(dimension_def_t* pDimDef) {
3558            // get dimension's index
3559            int iDimensionNr = -1;
3560            for (int i = 0; i < Dimensions; i++) {
3561                if (&pDimensionDefinitions[i] == pDimDef) {
3562                    iDimensionNr = i;
3563                    break;
3564                }
3565            }
3566            if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
3567    
3568            // get amount of bits below the dimension to delete
3569            int iLowerBits = 0;
3570            for (int i = 0; i < iDimensionNr; i++)
3571                iLowerBits += pDimensionDefinitions[i].bits;
3572    
3573            // get amount ot bits above the dimension to delete
3574            int iUpperBits = 0;
3575            for (int i = iDimensionNr + 1; i < Dimensions; i++)
3576                iUpperBits += pDimensionDefinitions[i].bits;
3577    
3578            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3579    
3580            // delete dimension regions which belong to the given dimension
3581            // (that is where the dimension's bit > 0)
3582            for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
3583                for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
3584                    for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
3585                        int iToDelete = iUpperBit    << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3586                                        iObsoleteBit << iLowerBits |
3587                                        iLowerBit;
3588    
3589                        _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3590                        delete pDimensionRegions[iToDelete];
3591                        pDimensionRegions[iToDelete] = NULL;
3592                        DimensionRegions--;
3593                    }
3594                }
3595            }
3596    
3597            // defrag pDimensionRegions array
3598            // (that is remove the NULL spaces within the pDimensionRegions array)
3599            for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
3600                if (!pDimensionRegions[iTo]) {
3601                    if (iFrom <= iTo) iFrom = iTo + 1;
3602                    while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
3603                    if (iFrom < 256 && pDimensionRegions[iFrom]) {
3604                        pDimensionRegions[iTo]   = pDimensionRegions[iFrom];
3605                        pDimensionRegions[iFrom] = NULL;
3606                    }
3607                }
3608            }
3609    
3610            // remove the this dimension from the upper limits arrays
3611            for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3612                DimensionRegion* d = pDimensionRegions[j];
3613                for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3614                    d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3615                }
3616                d->DimensionUpperLimits[Dimensions - 1] = 127;
3617            }
3618    
3619            // 'remove' dimension definition
3620            for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3621                pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
3622            }
3623            pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
3624            pDimensionDefinitions[Dimensions - 1].bits      = 0;
3625            pDimensionDefinitions[Dimensions - 1].zones     = 0;
3626    
3627            Dimensions--;
3628    
3629            // if this was a layer dimension, update 'Layers' attribute
3630            if (pDimDef->dimension == dimension_layer) Layers = 1;
3631        }
3632    
3633        /** @brief Delete one split zone of a dimension (decrement zone amount).
3634         *
3635         * Instead of deleting an entire dimensions, this method will only delete
3636         * one particular split zone given by @a zone of the Region's dimension
3637         * given by @a type. So this method will simply decrement the amount of
3638         * zones by one of the dimension in question. To be able to do that, the
3639         * respective dimension must exist on this Region and it must have at least
3640         * 3 zones. All DimensionRegion objects associated with the zone will be
3641         * deleted.
3642         *
3643         * @param type - identifies the dimension where a zone shall be deleted
3644         * @param zone - index of the dimension split zone that shall be deleted
3645         * @throws gig::Exception if requested zone could not be deleted
3646         */
3647        void Region::DeleteDimensionZone(dimension_t type, int zone) {
3648            dimension_def_t* oldDef = GetDimensionDefinition(type);
3649            if (!oldDef)
3650                throw gig::Exception("Could not delete dimension zone, no such dimension of given type");
3651            if (oldDef->zones <= 2)
3652                throw gig::Exception("Could not delete dimension zone, because it would end up with only one zone.");
3653            if (zone < 0 || zone >= oldDef->zones)
3654                throw gig::Exception("Could not delete dimension zone, requested zone index out of bounds.");
3655    
3656            const int newZoneSize = oldDef->zones - 1;
3657    
3658            // create a temporary Region which just acts as a temporary copy
3659            // container and will be deleted at the end of this function and will
3660            // also not be visible through the API during this process
3661            gig::Region* tempRgn = NULL;
3662            {
3663                // adding these temporary chunks is probably not even necessary
3664                Instrument* instr = static_cast<Instrument*>(GetParent());
3665                RIFF::List* pCkInstrument = instr->pCkInstrument;
3666                RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3667                if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3668                RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3669                tempRgn = new Region(instr, rgn);
3670            }
3671    
3672            // copy this region's dimensions (with already the dimension split size
3673            // requested by the arguments of this method call) to the temporary
3674            // region, and don't use Region::CopyAssign() here for this task, since
3675            // it would also alter fast lookup helper variables here and there
3676            dimension_def_t newDef;
3677            for (int i = 0; i < Dimensions; ++i) {
3678                dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3679                // is this the dimension requested by the method arguments? ...
3680                if (def.dimension == type) { // ... if yes, decrement zone amount by one
3681                    def.zones = newZoneSize;
3682                    if ((1 << (def.bits - 1)) == def.zones) def.bits--;
3683                    newDef = def;
3684                }
3685                tempRgn->AddDimension(&def);
3686            }
3687    
3688            // find the dimension index in the tempRegion which is the dimension
3689            // type passed to this method (paranoidly expecting different order)
3690            int tempReducedDimensionIndex = -1;
3691            for (int d = 0; d < tempRgn->Dimensions; ++d) {
3692                if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3693                    tempReducedDimensionIndex = d;
3694                    break;
3695                }
3696            }
3697    
3698            // copy dimension regions from this region to the temporary region
3699            for (int iDst = 0; iDst < 256; ++iDst) {
3700                DimensionRegion* dstDimRgn = tempRgn->pDimensionRegions[iDst];
3701                if (!dstDimRgn) continue;
3702                std::map<dimension_t,int> dimCase;
3703                bool isValidZone = true;
3704                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3705                    const int dstBits = tempRgn->pDimensionDefinitions[d].bits;
3706                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3707                        (iDst >> baseBits) & ((1 << dstBits) - 1);
3708                    baseBits += dstBits;
3709                    // there are also DimensionRegion objects of unused zones, skip them
3710                    if (dimCase[tempRgn->pDimensionDefinitions[d].dimension] >= tempRgn->pDimensionDefinitions[d].zones) {
3711                        isValidZone = false;
3712                        break;
3713                    }
3714                }
3715                if (!isValidZone) continue;
3716                // a bit paranoid: cope with the chance that the dimensions would
3717                // have different order in source and destination regions
3718                const bool isLastZone = (dimCase[type] == newZoneSize - 1);
3719                if (dimCase[type] >= zone) dimCase[type]++;
3720                DimensionRegion* srcDimRgn = GetDimensionRegionByBit(dimCase);
3721                dstDimRgn->CopyAssign(srcDimRgn);
3722                // if this is the upper most zone of the dimension passed to this
3723                // method, then correct (raise) its upper limit to 127
3724                if (newDef.split_type == split_type_normal && isLastZone)
3725                    dstDimRgn->DimensionUpperLimits[tempReducedDimensionIndex] = 127;
3726            }
3727    
3728            // now tempRegion's dimensions and DimensionRegions basically reflect
3729            // what we wanted to get for this actual Region here, so we now just
3730            // delete and recreate the dimension in question with the new amount
3731            // zones and then copy back from tempRegion      
3732            DeleteDimension(oldDef);
3733            AddDimension(&newDef);
3734            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3735                DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3736                if (!srcDimRgn) continue;
3737                std::map<dimension_t,int> dimCase;
3738                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3739                    const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3740                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3741                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3742                    baseBits += srcBits;
3743                }
3744                // a bit paranoid: cope with the chance that the dimensions would
3745                // have different order in source and destination regions
3746                DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3747                if (!dstDimRgn) continue;
3748                dstDimRgn->CopyAssign(srcDimRgn);
3749            }
3750    
3751            // delete temporary region
3752            delete tempRgn;
3753    
3754            UpdateVelocityTable();
3755        }
3756    
3757        /** @brief Divide split zone of a dimension in two (increment zone amount).
3758         *
3759         * This will increment the amount of zones for the dimension (given by
3760         * @a type) by one. It will do so by dividing the zone (given by @a zone)
3761         * in the middle of its zone range in two. So the two zones resulting from
3762         * the zone being splitted, will be an equivalent copy regarding all their
3763         * articulation informations and sample reference. The two zones will only
3764         * differ in their zone's upper limit
3765         * (DimensionRegion::DimensionUpperLimits).
3766         *
3767         * @param type - identifies the dimension where a zone shall be splitted
3768         * @param zone - index of the dimension split zone that shall be splitted
3769         * @throws gig::Exception if requested zone could not be splitted
3770         */
3771        void Region::SplitDimensionZone(dimension_t type, int zone) {
3772            dimension_def_t* oldDef = GetDimensionDefinition(type);
3773            if (!oldDef)
3774                throw gig::Exception("Could not split dimension zone, no such dimension of given type");
3775            if (zone < 0 || zone >= oldDef->zones)
3776                throw gig::Exception("Could not split dimension zone, requested zone index out of bounds.");
3777    
3778            const int newZoneSize = oldDef->zones + 1;
3779    
3780            // create a temporary Region which just acts as a temporary copy
3781            // container and will be deleted at the end of this function and will
3782            // also not be visible through the API during this process
3783            gig::Region* tempRgn = NULL;
3784            {
3785                // adding these temporary chunks is probably not even necessary
3786                Instrument* instr = static_cast<Instrument*>(GetParent());
3787                RIFF::List* pCkInstrument = instr->pCkInstrument;
3788                RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3789                if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3790                RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3791                tempRgn = new Region(instr, rgn);
3792            }
3793    
3794            // copy this region's dimensions (with already the dimension split size
3795            // requested by the arguments of this method call) to the temporary
3796            // region, and don't use Region::CopyAssign() here for this task, since
3797            // it would also alter fast lookup helper variables here and there
3798            dimension_def_t newDef;
3799            for (int i = 0; i < Dimensions; ++i) {
3800                dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3801                // is this the dimension requested by the method arguments? ...
3802                if (def.dimension == type) { // ... if yes, increment zone amount by one
3803                    def.zones = newZoneSize;
3804                    if ((1 << oldDef->bits) < newZoneSize) def.bits++;
3805                    newDef = def;
3806                }
3807                tempRgn->AddDimension(&def);
3808            }
3809    
3810            // find the dimension index in the tempRegion which is the dimension
3811            // type passed to this method (paranoidly expecting different order)
3812            int tempIncreasedDimensionIndex = -1;
3813            for (int d = 0; d < tempRgn->Dimensions; ++d) {
3814                if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3815                    tempIncreasedDimensionIndex = d;
3816                    break;
3817                }
3818            }
3819    
3820            // copy dimension regions from this region to the temporary region
3821            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3822                DimensionRegion* srcDimRgn = pDimensionRegions[iSrc];
3823                if (!srcDimRgn) continue;
3824                std::map<dimension_t,int> dimCase;
3825                bool isValidZone = true;
3826                for (int d = 0, baseBits = 0; d < Dimensions; ++d) {
3827                    const int srcBits = pDimensionDefinitions[d].bits;
3828                    dimCase[pDimensionDefinitions[d].dimension] =
3829                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3830                    // there are also DimensionRegion objects for unused zones, skip them
3831                    if (dimCase[pDimensionDefinitions[d].dimension] >= pDimensionDefinitions[d].zones) {
3832                        isValidZone = false;
3833                        break;
3834                    }
3835                    baseBits += srcBits;
3836                }
3837                if (!isValidZone) continue;
3838                // a bit paranoid: cope with the chance that the dimensions would
3839                // have different order in source and destination regions            
3840                if (dimCase[type] > zone) dimCase[type]++;
3841                DimensionRegion* dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3842                dstDimRgn->CopyAssign(srcDimRgn);
3843                // if this is the requested zone to be splitted, then also copy
3844                // the source DimensionRegion to the newly created target zone
3845                // and set the old zones upper limit lower
3846                if (dimCase[type] == zone) {
3847                    // lower old zones upper limit
3848                    if (newDef.split_type == split_type_normal) {
3849                        const int high =
3850                            dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex];
3851                        int low = 0;
3852                        if (zone > 0) {
3853                            std::map<dimension_t,int> lowerCase = dimCase;
3854                            lowerCase[type]--;
3855                            DimensionRegion* dstDimRgnLow = tempRgn->GetDimensionRegionByBit(lowerCase);
3856                            low = dstDimRgnLow->DimensionUpperLimits[tempIncreasedDimensionIndex];
3857                        }
3858                        dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex] = low + (high - low) / 2;
3859                    }
3860                    // fill the newly created zone of the divided zone as well
3861                    dimCase[type]++;
3862                    dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
3863                    dstDimRgn->CopyAssign(srcDimRgn);
3864                }
3865            }
3866    
3867            // now tempRegion's dimensions and DimensionRegions basically reflect
3868            // what we wanted to get for this actual Region here, so we now just
3869            // delete and recreate the dimension in question with the new amount
3870            // zones and then copy back from tempRegion      
3871            DeleteDimension(oldDef);
3872            AddDimension(&newDef);
3873            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3874                DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3875                if (!srcDimRgn) continue;
3876                std::map<dimension_t,int> dimCase;
3877                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3878                    const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3879                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3880                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3881                    baseBits += srcBits;
3882                }
3883                // a bit paranoid: cope with the chance that the dimensions would
3884                // have different order in source and destination regions
3885                DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3886                if (!dstDimRgn) continue;
3887                dstDimRgn->CopyAssign(srcDimRgn);
3888          }          }
3889          for (int i = 0; i < 32; i++) {  
3890            // delete temporary region
3891            delete tempRgn;
3892    
3893            UpdateVelocityTable();
3894        }
3895    
3896        /** @brief Change type of an existing dimension.
3897         *
3898         * Alters the dimension type of a dimension already existing on this
3899         * region. If there is currently no dimension on this Region with type
3900         * @a oldType, then this call with throw an Exception. Likewise there are
3901         * cases where the requested dimension type cannot be performed. For example
3902         * if the new dimension type shall be gig::dimension_samplechannel, and the
3903         * current dimension has more than 2 zones. In such cases an Exception is
3904         * thrown as well.
3905         *
3906         * @param oldType - identifies the existing dimension to be changed
3907         * @param newType - to which dimension type it should be changed to
3908         * @throws gig::Exception if requested change cannot be performed
3909         */
3910        void Region::SetDimensionType(dimension_t oldType, dimension_t newType) {
3911            if (oldType == newType) return;
3912            dimension_def_t* def = GetDimensionDefinition(oldType);
3913            if (!def)
3914                throw gig::Exception("No dimension with provided old dimension type exists on this region");
3915            if (newType == dimension_samplechannel && def->zones != 2)
3916                throw gig::Exception("Cannot change to dimension type 'sample channel', because existing dimension does not have 2 zones");
3917            if (GetDimensionDefinition(newType))
3918                throw gig::Exception("There is already a dimension with requested new dimension type on this region");
3919            def->dimension  = newType;
3920            def->split_type = __resolveSplitType(newType);
3921        }
3922    
3923        DimensionRegion* Region::GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase) {
3924            uint8_t bits[8] = {};
3925            for (std::map<dimension_t,int>::const_iterator it = DimCase.begin();
3926                 it != DimCase.end(); ++it)
3927            {
3928                for (int d = 0; d < Dimensions; ++d) {
3929                    if (pDimensionDefinitions[d].dimension == it->first) {
3930                        bits[d] = it->second;
3931                        goto nextDimCaseSlice;
3932                    }
3933                }
3934                assert(false); // do crash ... too harsh maybe ? ignore it instead ?
3935                nextDimCaseSlice:
3936                ; // noop
3937            }
3938            return GetDimensionRegionByBit(bits);
3939        }
3940    
3941        /**
3942         * Searches in the current Region for a dimension of the given dimension
3943         * type and returns the precise configuration of that dimension in this
3944         * Region.
3945         *
3946         * @param type - dimension type of the sought dimension
3947         * @returns dimension definition or NULL if there is no dimension with
3948         *          sought type in this Region.
3949         */
3950        dimension_def_t* Region::GetDimensionDefinition(dimension_t type) {
3951            for (int i = 0; i < Dimensions; ++i)
3952                if (pDimensionDefinitions[i].dimension == type)
3953                    return &pDimensionDefinitions[i];
3954            return NULL;
3955        }
3956    
3957        Region::~Region() {
3958            for (int i = 0; i < 256; i++) {
3959              if (pDimensionRegions[i]) delete pDimensionRegions[i];              if (pDimensionRegions[i]) delete pDimensionRegions[i];
3960          }          }
3961      }      }
# Line 1142  namespace gig { Line 3973  namespace gig {
3973       * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,       * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
3974       * etc.).       * etc.).
3975       *       *
3976       * @param  Dim4Val  MIDI controller value (0-127) for dimension 4       * @param  DimValues  MIDI controller values (0-127) for dimension 0 to 7
      * @param  Dim3Val  MIDI controller value (0-127) for dimension 3  
      * @param  Dim2Val  MIDI controller value (0-127) for dimension 2  
      * @param  Dim1Val  MIDI controller value (0-127) for dimension 1  
      * @param  Dim0Val  MIDI controller value (0-127) for dimension 0  
3977       * @returns         adress to the DimensionRegion for the given situation       * @returns         adress to the DimensionRegion for the given situation
3978       * @see             pDimensionDefinitions       * @see             pDimensionDefinitions
3979       * @see             Dimensions       * @see             Dimensions
3980       */       */
3981      DimensionRegion* Region::GetDimensionRegionByValue(uint Dim4Val, uint Dim3Val, uint Dim2Val, uint Dim1Val, uint Dim0Val) {      DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
3982          unsigned int bits[5] = {Dim0Val,Dim1Val,Dim2Val,Dim3Val,Dim4Val};          uint8_t bits;
3983            int veldim = -1;
3984            int velbitpos = 0;
3985            int bitpos = 0;
3986            int dimregidx = 0;
3987          for (uint i = 0; i < Dimensions; i++) {          for (uint i = 0; i < Dimensions; i++) {
3988              switch (pDimensionDefinitions[i].split_type) {              if (pDimensionDefinitions[i].dimension == dimension_velocity) {
3989                  case split_type_normal:                  // the velocity dimension must be handled after the other dimensions
3990                      bits[i] /= pDimensionDefinitions[i].zone_size;                  veldim = i;
3991                      break;                  velbitpos = bitpos;
3992                  case split_type_customvelocity:              } else {
3993                      bits[i] = VelocityTable[bits[i]];                  switch (pDimensionDefinitions[i].split_type) {
3994                      break;                      case split_type_normal:
3995                  // else the value is already the sought dimension bit number                          if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
3996                                // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
3997                                for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
3998                                    if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
3999                                }
4000                            } else {
4001                                // gig2: evenly sized zones
4002                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
4003                            }
4004                            break;
4005                        case split_type_bit: // the value is already the sought dimension bit number
4006                            const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
4007                            bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
4008                            break;
4009                    }
4010                    dimregidx |= bits << bitpos;
4011              }              }
4012                bitpos += pDimensionDefinitions[i].bits;
4013            }
4014            DimensionRegion* dimreg = pDimensionRegions[dimregidx & 255];
4015            if (!dimreg) return NULL;
4016            if (veldim != -1) {
4017                // (dimreg is now the dimension region for the lowest velocity)
4018                if (dimreg->VelocityTable) // custom defined zone ranges
4019                    bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4020                else // normal split type
4021                    bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4022    
4023                const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4024                dimregidx |= (bits & limiter_mask) << velbitpos;
4025                dimreg = pDimensionRegions[dimregidx & 255];
4026          }          }
4027          return GetDimensionRegionByBit(bits[4],bits[3],bits[2],bits[1],bits[0]);          return dimreg;
4028        }
4029    
4030        int Region::GetDimensionRegionIndexByValue(const uint DimValues[8]) {
4031            uint8_t bits;
4032            int veldim = -1;
4033            int velbitpos = 0;
4034            int bitpos = 0;
4035            int dimregidx = 0;
4036            for (uint i = 0; i < Dimensions; i++) {
4037                if (pDimensionDefinitions[i].dimension == dimension_velocity) {
4038                    // the velocity dimension must be handled after the other dimensions
4039                    veldim = i;
4040                    velbitpos = bitpos;
4041                } else {
4042                    switch (pDimensionDefinitions[i].split_type) {
4043                        case split_type_normal:
4044                            if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
4045                                // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
4046                                for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
4047                                    if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
4048                                }
4049                            } else {
4050                                // gig2: evenly sized zones
4051                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
4052                            }
4053                            break;
4054                        case split_type_bit: // the value is already the sought dimension bit number
4055                            const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
4056                            bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
4057                            break;
4058                    }
4059                    dimregidx |= bits << bitpos;
4060                }
4061                bitpos += pDimensionDefinitions[i].bits;
4062            }
4063            dimregidx &= 255;
4064            DimensionRegion* dimreg = pDimensionRegions[dimregidx];
4065            if (!dimreg) return -1;
4066            if (veldim != -1) {
4067                // (dimreg is now the dimension region for the lowest velocity)
4068                if (dimreg->VelocityTable) // custom defined zone ranges
4069                    bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4070                else // normal split type
4071                    bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4072    
4073                const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4074                dimregidx |= (bits & limiter_mask) << velbitpos;
4075                dimregidx &= 255;
4076            }
4077            return dimregidx;
4078      }      }
4079    
4080      /**      /**
# Line 1172  namespace gig { Line 4082  namespace gig {
4082       * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>       * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
4083       * instead of calling this method directly!       * instead of calling this method directly!
4084       *       *
4085       * @param Dim4Bit  Bit number for dimension 4       * @param DimBits  Bit numbers for dimension 0 to 7
      * @param Dim3Bit  Bit number for dimension 3  
      * @param Dim2Bit  Bit number for dimension 2  
      * @param Dim1Bit  Bit number for dimension 1  
      * @param Dim0Bit  Bit number for dimension 0  
4086       * @returns        adress to the DimensionRegion for the given dimension       * @returns        adress to the DimensionRegion for the given dimension
4087       *                 bit numbers       *                 bit numbers
4088       * @see            GetDimensionRegionByValue()       * @see            GetDimensionRegionByValue()
4089       */       */
4090      DimensionRegion* Region::GetDimensionRegionByBit(uint8_t Dim4Bit, uint8_t Dim3Bit, uint8_t Dim2Bit, uint8_t Dim1Bit, uint8_t Dim0Bit) {      DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
4091          return *(pDimensionRegions + ((((((((Dim4Bit << pDimensionDefinitions[3].bits) | Dim3Bit)          return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
4092                                                       << pDimensionDefinitions[2].bits) | Dim2Bit)                                                    << pDimensionDefinitions[5].bits | DimBits[5])
4093                                                       << pDimensionDefinitions[1].bits) | Dim1Bit)                                                    << pDimensionDefinitions[4].bits | DimBits[4])
4094                                                       << pDimensionDefinitions[0].bits) | Dim0Bit) );                                                    << pDimensionDefinitions[3].bits | DimBits[3])
4095                                                      << pDimensionDefinitions[2].bits | DimBits[2])
4096                                                      << pDimensionDefinitions[1].bits | DimBits[1])
4097                                                      << pDimensionDefinitions[0].bits | DimBits[0]];
4098      }      }
4099    
4100      /**      /**
# Line 1202  namespace gig { Line 4111  namespace gig {
4111          else         return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));          else         return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
4112      }      }
4113    
4114      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex) {      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
4115            if ((int32_t)WavePoolTableIndex == -1) return NULL;
4116          File* file = (File*) GetParent()->GetParent();          File* file = (File*) GetParent()->GetParent();
4117          unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];          if (!file->pWavePoolTable) return NULL;
4118          Sample* sample = file->GetFirstSample();          // for new files or files >= 2 GB use 64 bit wave pool offsets
4119          while (sample) {          if (file->pRIFF->IsNew() || (file->pRIFF->GetCurrentFileSize() >> 31)) {
4120              if (sample->ulWavePoolOffset == soughtoffset) return static_cast<gig::Sample*>(pSample = sample);              // use 64 bit wave pool offsets (treating this as large file)
4121              sample = file->GetNextSample();              uint64_t soughtoffset =
4122                    uint64_t(file->pWavePoolTable[WavePoolTableIndex]) |
4123                    uint64_t(file->pWavePoolTableHi[WavePoolTableIndex]) << 32;
4124                Sample* sample = file->GetFirstSample(pProgress);
4125                while (sample) {
4126                    if (sample->ullWavePoolOffset == soughtoffset)
4127                        return static_cast<gig::Sample*>(sample);
4128                    sample = file->GetNextSample();
4129                }
4130            } else {
4131                // use extension files and 32 bit wave pool offsets
4132                file_offset_t soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
4133                file_offset_t soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
4134                Sample* sample = file->GetFirstSample(pProgress);
4135                while (sample) {
4136                    if (sample->ullWavePoolOffset == soughtoffset &&
4137                        sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
4138                    sample = file->GetNextSample();
4139                }
4140            }
4141            return NULL;
4142        }
4143        
4144        /**
4145         * Make a (semi) deep copy of the Region object given by @a orig
4146         * and assign it to this object.
4147         *
4148         * Note that all sample pointers referenced by @a orig are simply copied as
4149         * memory address. Thus the respective samples are shared, not duplicated!
4150         *
4151         * @param orig - original Region object to be copied from
4152         */
4153        void Region::CopyAssign(const Region* orig) {
4154            CopyAssign(orig, NULL);
4155        }
4156        
4157        /**
4158         * Make a (semi) deep copy of the Region object given by @a orig and
4159         * assign it to this object
4160         *
4161         * @param mSamples - crosslink map between the foreign file's samples and
4162         *                   this file's samples
4163         */
4164        void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
4165            // handle base classes
4166            DLS::Region::CopyAssign(orig);
4167            
4168            if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
4169                pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
4170            }
4171            
4172            // handle own member variables
4173            for (int i = Dimensions - 1; i >= 0; --i) {
4174                DeleteDimension(&pDimensionDefinitions[i]);
4175            }
4176            Layers = 0; // just to be sure
4177            for (int i = 0; i < orig->Dimensions; i++) {
4178                // we need to copy the dim definition here, to avoid the compiler
4179                // complaining about const-ness issue
4180                dimension_def_t def = orig->pDimensionDefinitions[i];
4181                AddDimension(&def);
4182            }
4183            for (int i = 0; i < 256; i++) {
4184                if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
4185                    pDimensionRegions[i]->CopyAssign(
4186                        orig->pDimensionRegions[i],
4187                        mSamples
4188                    );
4189                }
4190            }
4191            Layers = orig->Layers;
4192        }
4193    
4194    
4195    // *************** MidiRule ***************
4196    // *
4197    
4198        MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
4199            _3ewg->SetPos(36);
4200            Triggers = _3ewg->ReadUint8();
4201            _3ewg->SetPos(40);
4202            ControllerNumber = _3ewg->ReadUint8();
4203            _3ewg->SetPos(46);
4204            for (int i = 0 ; i < Triggers ; i++) {
4205                pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
4206                pTriggers[i].Descending = _3ewg->ReadUint8();
4207                pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
4208                pTriggers[i].Key = _3ewg->ReadUint8();
4209                pTriggers[i].NoteOff = _3ewg->ReadUint8();
4210                pTriggers[i].Velocity = _3ewg->ReadUint8();
4211                pTriggers[i].OverridePedal = _3ewg->ReadUint8();
4212                _3ewg->ReadUint8();
4213            }
4214        }
4215    
4216        MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
4217            ControllerNumber(0),
4218            Triggers(0) {
4219        }
4220    
4221        void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
4222            pData[32] = 4;
4223            pData[33] = 16;
4224            pData[36] = Triggers;
4225            pData[40] = ControllerNumber;
4226            for (int i = 0 ; i < Triggers ; i++) {
4227                pData[46 + i * 8] = pTriggers[i].TriggerPoint;
4228                pData[47 + i * 8] = pTriggers[i].Descending;
4229                pData[48 + i * 8] = pTriggers[i].VelSensitivity;
4230                pData[49 + i * 8] = pTriggers[i].Key;
4231                pData[50 + i * 8] = pTriggers[i].NoteOff;
4232                pData[51 + i * 8] = pTriggers[i].Velocity;
4233                pData[52 + i * 8] = pTriggers[i].OverridePedal;
4234          }          }
4235        }
4236    
4237        MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
4238            _3ewg->SetPos(36);
4239            LegatoSamples = _3ewg->ReadUint8(); // always 12
4240            _3ewg->SetPos(40);
4241            BypassUseController = _3ewg->ReadUint8();
4242            BypassKey = _3ewg->ReadUint8();
4243            BypassController = _3ewg->ReadUint8();
4244            ThresholdTime = _3ewg->ReadUint16();
4245            _3ewg->ReadInt16();
4246            ReleaseTime = _3ewg->ReadUint16();
4247            _3ewg->ReadInt16();
4248            KeyRange.low = _3ewg->ReadUint8();
4249            KeyRange.high = _3ewg->ReadUint8();
4250            _3ewg->SetPos(64);
4251            ReleaseTriggerKey = _3ewg->ReadUint8();
4252            AltSustain1Key = _3ewg->ReadUint8();
4253            AltSustain2Key = _3ewg->ReadUint8();
4254        }
4255    
4256        MidiRuleLegato::MidiRuleLegato() :
4257            LegatoSamples(12),
4258            BypassUseController(false),
4259            BypassKey(0),
4260            BypassController(1),
4261            ThresholdTime(20),
4262            ReleaseTime(20),
4263            ReleaseTriggerKey(0),
4264            AltSustain1Key(0),
4265            AltSustain2Key(0)
4266        {
4267            KeyRange.low = KeyRange.high = 0;
4268        }
4269    
4270        void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
4271            pData[32] = 0;
4272            pData[33] = 16;
4273            pData[36] = LegatoSamples;
4274            pData[40] = BypassUseController;
4275            pData[41] = BypassKey;
4276            pData[42] = BypassController;
4277            store16(&pData[43], ThresholdTime);
4278            store16(&pData[47], ReleaseTime);
4279            pData[51] = KeyRange.low;
4280            pData[52] = KeyRange.high;
4281            pData[64] = ReleaseTriggerKey;
4282            pData[65] = AltSustain1Key;
4283            pData[66] = AltSustain2Key;
4284        }
4285    
4286        MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
4287            _3ewg->SetPos(36);
4288            Articulations = _3ewg->ReadUint8();
4289            int flags = _3ewg->ReadUint8();
4290            Polyphonic = flags & 8;
4291            Chained = flags & 4;
4292            Selector = (flags & 2) ? selector_controller :
4293                (flags & 1) ? selector_key_switch : selector_none;
4294            Patterns = _3ewg->ReadUint8();
4295            _3ewg->ReadUint8(); // chosen row
4296            _3ewg->ReadUint8(); // unknown
4297            _3ewg->ReadUint8(); // unknown
4298            _3ewg->ReadUint8(); // unknown
4299            KeySwitchRange.low = _3ewg->ReadUint8();
4300            KeySwitchRange.high = _3ewg->ReadUint8();
4301            Controller = _3ewg->ReadUint8();
4302            PlayRange.low = _3ewg->ReadUint8();
4303            PlayRange.high = _3ewg->ReadUint8();
4304    
4305            int n = std::min(int(Articulations), 32);
4306            for (int i = 0 ; i < n ; i++) {
4307                _3ewg->ReadString(pArticulations[i], 32);
4308            }
4309            _3ewg->SetPos(1072);
4310            n = std::min(int(Patterns), 32);
4311            for (int i = 0 ; i < n ; i++) {
4312                _3ewg->ReadString(pPatterns[i].Name, 16);
4313                pPatterns[i].Size = _3ewg->ReadUint8();
4314                _3ewg->Read(&pPatterns[i][0], 1, 32);
4315            }
4316        }
4317    
4318        MidiRuleAlternator::MidiRuleAlternator() :
4319            Articulations(0),
4320            Patterns(0),
4321            Selector(selector_none),
4322            Controller(0),
4323            Polyphonic(false),
4324            Chained(false)
4325        {
4326            PlayRange.low = PlayRange.high = 0;
4327            KeySwitchRange.low = KeySwitchRange.high = 0;
4328        }
4329    
4330        void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
4331            pData[32] = 3;
4332            pData[33] = 16;
4333            pData[36] = Articulations;
4334            pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
4335                (Selector == selector_controller ? 2 :
4336                 (Selector == selector_key_switch ? 1 : 0));
4337            pData[38] = Patterns;
4338    
4339            pData[43] = KeySwitchRange.low;
4340            pData[44] = KeySwitchRange.high;
4341            pData[45] = Controller;
4342            pData[46] = PlayRange.low;
4343            pData[47] = PlayRange.high;
4344    
4345            char* str = reinterpret_cast<char*>(pData);
4346            int pos = 48;
4347            int n = std::min(int(Articulations), 32);
4348            for (int i = 0 ; i < n ; i++, pos += 32) {
4349                strncpy(&str[pos], pArticulations[i].c_str(), 32);
4350            }
4351    
4352            pos = 1072;
4353            n = std::min(int(Patterns), 32);
4354            for (int i = 0 ; i < n ; i++, pos += 49) {
4355                strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
4356                pData[pos + 16] = pPatterns[i].Size;
4357                memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
4358            }
4359        }
4360    
4361    // *************** Script ***************
4362    // *
4363    
4364        Script::Script(ScriptGroup* group, RIFF::Chunk* ckScri) {
4365            pGroup = group;
4366            pChunk = ckScri;
4367            if (ckScri) { // object is loaded from file ...
4368                // read header
4369                uint32_t headerSize = ckScri->ReadUint32();
4370                Compression = (Compression_t) ckScri->ReadUint32();
4371                Encoding    = (Encoding_t) ckScri->ReadUint32();
4372                Language    = (Language_t) ckScri->ReadUint32();
4373                Bypass      = (Language_t) ckScri->ReadUint32() & 1;
4374                crc         = ckScri->ReadUint32();
4375                uint32_t nameSize = ckScri->ReadUint32();
4376                Name.resize(nameSize, ' ');
4377                for (int i = 0; i < nameSize; ++i)
4378                    Name[i] = ckScri->ReadUint8();
4379                // to handle potential future extensions of the header
4380                ckScri->SetPos(sizeof(int32_t) + headerSize);
4381                // read actual script data
4382                uint32_t scriptSize = uint32_t(ckScri->GetSize() - ckScri->GetPos());
4383                data.resize(scriptSize);
4384                for (int i = 0; i < scriptSize; ++i)
4385                    data[i] = ckScri->ReadUint8();
4386            } else { // this is a new script object, so just initialize it as such ...
4387                Compression = COMPRESSION_NONE;
4388                Encoding = ENCODING_ASCII;
4389                Language = LANGUAGE_NKSP;
4390                Bypass   = false;
4391                crc      = 0;
4392                Name     = "Unnamed Script";
4393            }
4394        }
4395    
4396        Script::~Script() {
4397        }
4398    
4399        /**
4400         * Returns the current script (i.e. as source code) in text format.
4401         */
4402        String Script::GetScriptAsText() {
4403            String s;
4404            s.resize(data.size(), ' ');
4405            memcpy(&s[0], &data[0], data.size());
4406            return s;
4407        }
4408    
4409        /**
4410         * Replaces the current script with the new script source code text given
4411         * by @a text.
4412         *
4413         * @param text - new script source code
4414         */
4415        void Script::SetScriptAsText(const String& text) {
4416            data.resize(text.size());
4417            memcpy(&data[0], &text[0], text.size());
4418        }
4419    
4420        /**
4421         * Apply this script to the respective RIFF chunks. You have to call
4422         * File::Save() to make changes persistent.
4423         *
4424         * Usually there is absolutely no need to call this method explicitly.
4425         * It will be called automatically when File::Save() was called.
4426         *
4427         * @param pProgress - callback function for progress notification
4428         */
4429        void Script::UpdateChunks(progress_t* pProgress) {
4430            // recalculate CRC32 check sum
4431            __resetCRC(crc);
4432            __calculateCRC(&data[0], data.size(), crc);
4433            __finalizeCRC(crc);
4434            // make sure chunk exists and has the required size
4435            const file_offset_t chunkSize = (file_offset_t) 7*sizeof(int32_t) + Name.size() + data.size();
4436            if (!pChunk) pChunk = pGroup->pList->AddSubChunk(CHUNK_ID_SCRI, chunkSize);
4437            else pChunk->Resize(chunkSize);
4438            // fill the chunk data to be written to disk
4439            uint8_t* pData = (uint8_t*) pChunk->LoadChunkData();
4440            int pos = 0;
4441            store32(&pData[pos], uint32_t(6*sizeof(int32_t) + Name.size())); // total header size
4442            pos += sizeof(int32_t);
4443            store32(&pData[pos], Compression);
4444            pos += sizeof(int32_t);
4445            store32(&pData[pos], Encoding);
4446            pos += sizeof(int32_t);
4447            store32(&pData[pos], Language);
4448            pos += sizeof(int32_t);
4449            store32(&pData[pos], Bypass ? 1 : 0);
4450            pos += sizeof(int32_t);
4451            store32(&pData[pos], crc);
4452            pos += sizeof(int32_t);
4453            store32(&pData[pos], (uint32_t) Name.size());
4454            pos += sizeof(int32_t);
4455            for (int i = 0; i < Name.size(); ++i, ++pos)
4456                pData[pos] = Name[i];
4457            for (int i = 0; i < data.size(); ++i, ++pos)
4458                pData[pos] = data[i];
4459        }
4460    
4461        /**
4462         * Move this script from its current ScriptGroup to another ScriptGroup
4463         * given by @a pGroup.
4464         *
4465         * @param pGroup - script's new group
4466         */
4467        void Script::SetGroup(ScriptGroup* pGroup) {
4468            if (this->pGroup == pGroup) return;
4469            if (pChunk)
4470                pChunk->GetParent()->MoveSubChunk(pChunk, pGroup->pList);
4471            this->pGroup = pGroup;
4472        }
4473    
4474        /**
4475         * Returns the script group this script currently belongs to. Each script
4476         * is a member of exactly one ScriptGroup.
4477         *
4478         * @returns current script group
4479         */
4480        ScriptGroup* Script::GetGroup() const {
4481            return pGroup;
4482        }
4483    
4484        /**
4485         * Make a (semi) deep copy of the Script object given by @a orig
4486         * and assign it to this object. Note: the ScriptGroup this Script
4487         * object belongs to remains untouched by this call.
4488         *
4489         * @param orig - original Script object to be copied from
4490         */
4491        void Script::CopyAssign(const Script* orig) {
4492            Name        = orig->Name;
4493            Compression = orig->Compression;
4494            Encoding    = orig->Encoding;
4495            Language    = orig->Language;
4496            Bypass      = orig->Bypass;
4497            data        = orig->data;
4498        }
4499    
4500        void Script::RemoveAllScriptReferences() {
4501            File* pFile = pGroup->pFile;
4502            for (int i = 0; pFile->GetInstrument(i); ++i) {
4503                Instrument* instr = pFile->GetInstrument(i);
4504                instr->RemoveScript(this);
4505            }
4506        }
4507    
4508    // *************** ScriptGroup ***************
4509    // *
4510    
4511        ScriptGroup::ScriptGroup(File* file, RIFF::List* lstRTIS) {
4512            pFile = file;
4513            pList = lstRTIS;
4514            pScripts = NULL;
4515            if (lstRTIS) {
4516                RIFF::Chunk* ckName = lstRTIS->GetSubChunk(CHUNK_ID_LSNM);
4517                ::LoadString(ckName, Name);
4518            } else {
4519                Name = "Default Group";
4520            }
4521        }
4522    
4523        ScriptGroup::~ScriptGroup() {
4524            if (pScripts) {
4525                std::list<Script*>::iterator iter = pScripts->begin();
4526                std::list<Script*>::iterator end  = pScripts->end();
4527                while (iter != end) {
4528                    delete *iter;
4529                    ++iter;
4530                }
4531                delete pScripts;
4532            }
4533        }
4534    
4535        /**
4536         * Apply this script group to the respective RIFF chunks. You have to call
4537         * File::Save() to make changes persistent.
4538         *
4539         * Usually there is absolutely no need to call this method explicitly.
4540         * It will be called automatically when File::Save() was called.
4541         *
4542         * @param pProgress - callback function for progress notification
4543         */
4544        void ScriptGroup::UpdateChunks(progress_t* pProgress) {
4545            if (pScripts) {
4546                if (!pList)
4547                    pList = pFile->pRIFF->GetSubList(LIST_TYPE_3LS)->AddSubList(LIST_TYPE_RTIS);
4548    
4549                // now store the name of this group as <LSNM> chunk as subchunk of the <RTIS> list chunk
4550                ::SaveString(CHUNK_ID_LSNM, NULL, pList, Name, String("Unnamed Group"), true, 64);
4551    
4552                for (std::list<Script*>::iterator it = pScripts->begin();
4553                     it != pScripts->end(); ++it)
4554                {
4555                    (*it)->UpdateChunks(pProgress);
4556                }
4557            }
4558        }
4559    
4560        /** @brief Get instrument script.
4561         *
4562         * Returns the real-time instrument script with the given index.
4563         *
4564         * @param index - number of the sought script (0..n)
4565         * @returns sought script or NULL if there's no such script
4566         */
4567        Script* ScriptGroup::GetScript(uint index) {
4568            if (!pScripts) LoadScripts();
4569            std::list<Script*>::iterator it = pScripts->begin();
4570            for (uint i = 0; it != pScripts->end(); ++i, ++it)
4571                if (i == index) return *it;
4572          return NULL;          return NULL;
4573      }      }
4574    
4575        /** @brief Add new instrument script.
4576         *
4577         * Adds a new real-time instrument script to the file. The script is not
4578         * actually used / executed unless it is referenced by an instrument to be
4579         * used. This is similar to samples, which you can add to a file, without
4580         * an instrument necessarily actually using it.
4581         *
4582         * You have to call Save() to make this persistent to the file.
4583         *
4584         * @return new empty script object
4585         */
4586        Script* ScriptGroup::AddScript() {
4587            if (!pScripts) LoadScripts();
4588            Script* pScript = new Script(this, NULL);
4589            pScripts->push_back(pScript);
4590            return pScript;
4591        }
4592    
4593        /** @brief Delete an instrument script.
4594         *
4595         * This will delete the given real-time instrument script. References of
4596         * instruments that are using that script will be removed accordingly.
4597         *
4598         * You have to call Save() to make this persistent to the file.
4599         *
4600         * @param pScript - script to delete
4601         * @throws gig::Exception if given script could not be found
4602         */
4603        void ScriptGroup::DeleteScript(Script* pScript) {
4604            if (!pScripts) LoadScripts();
4605            std::list<Script*>::iterator iter =
4606                find(pScripts->begin(), pScripts->end(), pScript);
4607            if (iter == pScripts->end())
4608                throw gig::Exception("Could not delete script, could not find given script");
4609            pScripts->erase(iter);
4610            pScript->RemoveAllScriptReferences();
4611            if (pScript->pChunk)
4612                pScript->pChunk->GetParent()->DeleteSubChunk(pScript->pChunk);
4613            delete pScript;
4614        }
4615    
4616        void ScriptGroup::LoadScripts() {
4617            if (pScripts) return;
4618            pScripts = new std::list<Script*>;
4619            if (!pList) return;
4620    
4621            for (RIFF::Chunk* ck = pList->GetFirstSubChunk(); ck;
4622                 ck = pList->GetNextSubChunk())
4623            {
4624                if (ck->GetChunkID() == CHUNK_ID_SCRI) {
4625                    pScripts->push_back(new Script(this, ck));
4626                }
4627            }
4628        }
4629    
4630  // *************** Instrument ***************  // *************** Instrument ***************
4631  // *  // *
4632    
4633      Instrument::Instrument(File* pFile, RIFF::List* insList) : DLS::Instrument((DLS::File*)pFile, insList) {      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
4634            static const DLS::Info::string_length_t fixedStringLengths[] = {
4635                { CHUNK_ID_INAM, 64 },
4636                { CHUNK_ID_ISFT, 12 },
4637                { 0, 0 }
4638            };
4639            pInfo->SetFixedStringLengths(fixedStringLengths);
4640    
4641          // Initialization          // Initialization
4642          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4643          RegionIndex = -1;          EffectSend = 0;
4644            Attenuation = 0;
4645            FineTune = 0;
4646            PitchbendRange = 2;
4647            PianoReleaseMode = false;
4648            DimensionKeyRange.low = 0;
4649            DimensionKeyRange.high = 0;
4650            pMidiRules = new MidiRule*[3];
4651            pMidiRules[0] = NULL;
4652            pScriptRefs = NULL;
4653    
4654          // Loading          // Loading
4655          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
# Line 1236  namespace gig { Line 4664  namespace gig {
4664                  PianoReleaseMode       = dimkeystart & 0x01;                  PianoReleaseMode       = dimkeystart & 0x01;
4665                  DimensionKeyRange.low  = dimkeystart >> 1;                  DimensionKeyRange.low  = dimkeystart >> 1;
4666                  DimensionKeyRange.high = _3ewg->ReadUint8();                  DimensionKeyRange.high = _3ewg->ReadUint8();
4667    
4668                    if (_3ewg->GetSize() > 32) {
4669                        // read MIDI rules
4670                        int i = 0;
4671                        _3ewg->SetPos(32);
4672                        uint8_t id1 = _3ewg->ReadUint8();
4673                        uint8_t id2 = _3ewg->ReadUint8();
4674    
4675                        if (id2 == 16) {
4676                            if (id1 == 4) {
4677                                pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
4678                            } else if (id1 == 0) {
4679                                pMidiRules[i++] = new MidiRuleLegato(_3ewg);
4680                            } else if (id1 == 3) {
4681                                pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
4682                            } else {
4683                                pMidiRules[i++] = new MidiRuleUnknown;
4684                            }
4685                        }
4686                        else if (id1 != 0 || id2 != 0) {
4687                            pMidiRules[i++] = new MidiRuleUnknown;
4688                        }
4689                        //TODO: all the other types of rules
4690    
4691                        pMidiRules[i] = NULL;
4692                    }
4693              }              }
             else throw gig::Exception("Mandatory <3ewg> chunk not found.");  
4694          }          }
         else throw gig::Exception("Mandatory <lart> list chunk not found.");  
4695    
4696          RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);          if (pFile->GetAutoLoad()) {
4697          if (!lrgn) throw gig::Exception("Mandatory chunks in <ins > chunk not found.");              if (!pRegions) pRegions = new RegionList;
4698          pRegions = new Region*[Regions];              RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
4699          RIFF::List* rgn = lrgn->GetFirstSubList();              if (lrgn) {
4700          unsigned int iRegion = 0;                  RIFF::List* rgn = lrgn->GetFirstSubList();
4701          while (rgn) {                  while (rgn) {
4702              if (rgn->GetListType() == LIST_TYPE_RGN) {                      if (rgn->GetListType() == LIST_TYPE_RGN) {
4703                  pRegions[iRegion] = new Region(this, rgn);                          __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
4704                  iRegion++;                          pRegions->push_back(new Region(this, rgn));
4705              }                      }
4706              rgn = lrgn->GetNextSubList();                      rgn = lrgn->GetNextSubList();
4707          }                  }
4708                    // Creating Region Key Table for fast lookup
4709          // Creating Region Key Table for fast lookup                  UpdateRegionKeyTable();
4710          for (uint iReg = 0; iReg < Regions; iReg++) {              }
4711              for (int iKey = pRegions[iReg]->KeyRange.low; iKey <= pRegions[iReg]->KeyRange.high; iKey++) {          }
4712                  RegionKeyTable[iKey] = pRegions[iReg];  
4713            // own gig format extensions
4714            RIFF::List* lst3LS = insList->GetSubList(LIST_TYPE_3LS);
4715            if (lst3LS) {
4716                RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4717                if (ckSCSL) {
4718                    int headerSize = ckSCSL->ReadUint32();
4719                    int slotCount  = ckSCSL->ReadUint32();
4720                    if (slotCount) {
4721                        int slotSize  = ckSCSL->ReadUint32();
4722                        ckSCSL->SetPos(headerSize); // in case of future header extensions
4723                        int unknownSpace = slotSize - 2*sizeof(uint32_t); // in case of future slot extensions
4724                        for (int i = 0; i < slotCount; ++i) {
4725                            _ScriptPooolEntry e;
4726                            e.fileOffset = ckSCSL->ReadUint32();
4727                            e.bypass     = ckSCSL->ReadUint32() & 1;
4728                            if (unknownSpace) ckSCSL->SetPos(unknownSpace, RIFF::stream_curpos); // in case of future extensions
4729                            scriptPoolFileOffsets.push_back(e);
4730                        }
4731                    }
4732                }
4733            }
4734    
4735            __notify_progress(pProgress, 1.0f); // notify done
4736        }
4737    
4738        void Instrument::UpdateRegionKeyTable() {
4739            for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4740            RegionList::iterator iter = pRegions->begin();
4741            RegionList::iterator end  = pRegions->end();
4742            for (; iter != end; ++iter) {
4743                gig::Region* pRegion = static_cast<gig::Region*>(*iter);
4744                for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) {
4745                    RegionKeyTable[iKey] = pRegion;
4746              }              }
4747          }          }
4748      }      }
4749    
4750      Instrument::~Instrument() {      Instrument::~Instrument() {
4751          for (uint i = 0; i < Regions; i++) {          for (int i = 0 ; pMidiRules[i] ; i++) {
4752              if (pRegions) {              delete pMidiRules[i];
4753                  if (pRegions[i]) delete (pRegions[i]);          }
4754            delete[] pMidiRules;
4755            if (pScriptRefs) delete pScriptRefs;
4756        }
4757    
4758        /**
4759         * Apply Instrument with all its Regions to the respective RIFF chunks.
4760         * You have to call File::Save() to make changes persistent.
4761         *
4762         * Usually there is absolutely no need to call this method explicitly.
4763         * It will be called automatically when File::Save() was called.
4764         *
4765         * @param pProgress - callback function for progress notification
4766         * @throws gig::Exception if samples cannot be dereferenced
4767         */
4768        void Instrument::UpdateChunks(progress_t* pProgress) {
4769            // first update base classes' chunks
4770            DLS::Instrument::UpdateChunks(pProgress);
4771    
4772            // update Regions' chunks
4773            {
4774                RegionList::iterator iter = pRegions->begin();
4775                RegionList::iterator end  = pRegions->end();
4776                for (; iter != end; ++iter)
4777                    (*iter)->UpdateChunks(pProgress);
4778            }
4779    
4780            // make sure 'lart' RIFF list chunk exists
4781            RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
4782            if (!lart)  lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
4783            // make sure '3ewg' RIFF chunk exists
4784            RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4785            if (!_3ewg)  {
4786                File* pFile = (File*) GetParent();
4787    
4788                // 3ewg is bigger in gig3, as it includes the iMIDI rules
4789                int size = (pFile->pVersion && pFile->pVersion->major == 3) ? 16416 : 12;
4790                _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
4791                memset(_3ewg->LoadChunkData(), 0, size);
4792            }
4793            // update '3ewg' RIFF chunk
4794            uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
4795            store16(&pData[0], EffectSend);
4796            store32(&pData[2], Attenuation);
4797            store16(&pData[6], FineTune);
4798            store16(&pData[8], PitchbendRange);
4799            const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
4800                                        DimensionKeyRange.low << 1;
4801            pData[10] = dimkeystart;
4802            pData[11] = DimensionKeyRange.high;
4803    
4804            if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
4805                pData[32] = 0;
4806                pData[33] = 0;
4807            } else {
4808                for (int i = 0 ; pMidiRules[i] ; i++) {
4809                    pMidiRules[i]->UpdateChunks(pData);
4810              }              }
             delete[] pRegions;  
4811          }          }
4812    
4813            // own gig format extensions
4814           if (ScriptSlotCount()) {
4815               // make sure we have converted the original loaded script file
4816               // offsets into valid Script object pointers
4817               LoadScripts();
4818    
4819               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4820               if (!lst3LS) lst3LS = pCkInstrument->AddSubList(LIST_TYPE_3LS);
4821               const int slotCount = (int) pScriptRefs->size();
4822               const int headerSize = 3 * sizeof(uint32_t);
4823               const int slotSize  = 2 * sizeof(uint32_t);
4824               const int totalChunkSize = headerSize + slotCount * slotSize;
4825               RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4826               if (!ckSCSL) ckSCSL = lst3LS->AddSubChunk(CHUNK_ID_SCSL, totalChunkSize);
4827               else ckSCSL->Resize(totalChunkSize);
4828               uint8_t* pData = (uint8_t*) ckSCSL->LoadChunkData();
4829               int pos = 0;
4830               store32(&pData[pos], headerSize);
4831               pos += sizeof(uint32_t);
4832               store32(&pData[pos], slotCount);
4833               pos += sizeof(uint32_t);
4834               store32(&pData[pos], slotSize);
4835               pos += sizeof(uint32_t);
4836               for (int i = 0; i < slotCount; ++i) {
4837                   // arbitrary value, the actual file offset will be updated in
4838                   // UpdateScriptFileOffsets() after the file has been resized
4839                   int bogusFileOffset = 0;
4840                   store32(&pData[pos], bogusFileOffset);
4841                   pos += sizeof(uint32_t);
4842                   store32(&pData[pos], (*pScriptRefs)[i].bypass ? 1 : 0);
4843                   pos += sizeof(uint32_t);
4844               }
4845           } else {
4846               // no script slots, so get rid of any LS custom RIFF chunks (if any)
4847               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4848               if (lst3LS) pCkInstrument->DeleteSubChunk(lst3LS);
4849           }
4850        }
4851    
4852        void Instrument::UpdateScriptFileOffsets() {
4853           // own gig format extensions
4854           if (pScriptRefs && pScriptRefs->size() > 0) {
4855               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
4856               RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4857               const int slotCount = (int) pScriptRefs->size();
4858               const int headerSize = 3 * sizeof(uint32_t);
4859               ckSCSL->SetPos(headerSize);
4860               for (int i = 0; i < slotCount; ++i) {
4861                   uint32_t fileOffset = uint32_t(
4862                        (*pScriptRefs)[i].script->pChunk->GetFilePos() -
4863                        (*pScriptRefs)[i].script->pChunk->GetPos() -
4864                        CHUNK_HEADER_SIZE(ckSCSL->GetFile()->GetFileOffsetSize())
4865                   );
4866                   ckSCSL->WriteUint32(&fileOffset);
4867                   // jump over flags entry (containing the bypass flag)
4868                   ckSCSL->SetPos(sizeof(uint32_t), RIFF::stream_curpos);
4869               }
4870           }        
4871      }      }
4872    
4873      /**      /**
# Line 1279  namespace gig { Line 4878  namespace gig {
4878       *             there is no Region defined for the given \a Key       *             there is no Region defined for the given \a Key
4879       */       */
4880      Region* Instrument::GetRegion(unsigned int Key) {      Region* Instrument::GetRegion(unsigned int Key) {
4881          if (!pRegions || Key > 127) return NULL;          if (!pRegions || pRegions->empty() || Key > 127) return NULL;
4882          return RegionKeyTable[Key];          return RegionKeyTable[Key];
4883    
4884          /*for (int i = 0; i < Regions; i++) {          /*for (int i = 0; i < Regions; i++) {
4885              if (Key <= pRegions[i]->KeyRange.high &&              if (Key <= pRegions[i]->KeyRange.high &&
4886                  Key >= pRegions[i]->KeyRange.low) return pRegions[i];                  Key >= pRegions[i]->KeyRange.low) return pRegions[i];
# Line 1296  namespace gig { Line 4896  namespace gig {
4896       * @see      GetNextRegion()       * @see      GetNextRegion()
4897       */       */
4898      Region* Instrument::GetFirstRegion() {      Region* Instrument::GetFirstRegion() {
4899          if (!Regions) return NULL;          if (!pRegions) return NULL;
4900          RegionIndex = 1;          RegionsIterator = pRegions->begin();
4901          return pRegions[0];          return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4902      }      }
4903    
4904      /**      /**
# Line 1310  namespace gig { Line 4910  namespace gig {
4910       * @see      GetFirstRegion()       * @see      GetFirstRegion()
4911       */       */
4912      Region* Instrument::GetNextRegion() {      Region* Instrument::GetNextRegion() {
4913          if (RegionIndex < 0 || RegionIndex >= Regions) return NULL;          if (!pRegions) return NULL;
4914          return pRegions[RegionIndex++];          RegionsIterator++;
4915            return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
4916        }
4917    
4918        Region* Instrument::AddRegion() {
4919            // create new Region object (and its RIFF chunks)
4920            RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
4921            if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
4922            RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
4923            Region* pNewRegion = new Region(this, rgn);
4924            pRegions->push_back(pNewRegion);
4925            Regions = (uint32_t) pRegions->size();
4926            // update Region key table for fast lookup
4927            UpdateRegionKeyTable();
4928            // done
4929            return pNewRegion;
4930        }
4931    
4932        void Instrument::DeleteRegion(Region* pRegion) {
4933            if (!pRegions) return;
4934            DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
4935            // update Region key table for fast lookup
4936            UpdateRegionKeyTable();
4937        }
4938    
4939        /**
4940         * Move this instrument at the position before @arg dst.
4941         *
4942         * This method can be used to reorder the sequence of instruments in a
4943         * .gig file. This might be helpful especially on large .gig files which
4944         * contain a large number of instruments within the same .gig file. So
4945         * grouping such instruments to similar ones, can help to keep track of them
4946         * when working with such complex .gig files.
4947         *
4948         * When calling this method, this instrument will be removed from in its
4949         * current position in the instruments list and moved to the requested
4950         * target position provided by @param dst. You may also pass NULL as
4951         * argument to this method, in that case this intrument will be moved to the
4952         * very end of the .gig file's instrument list.
4953         *
4954         * You have to call Save() to make the order change persistent to the .gig
4955         * file.
4956         *
4957         * Currently this method is limited to moving the instrument within the same
4958         * .gig file. Trying to move it to another .gig file by calling this method
4959         * will throw an exception.
4960         *
4961         * @param dst - destination instrument at which this instrument will be
4962         *              moved to, or pass NULL for moving to end of list
4963         * @throw gig::Exception if this instrument and target instrument are not
4964         *                       part of the same file
4965         */
4966        void Instrument::MoveTo(Instrument* dst) {
4967            if (dst && GetParent() != dst->GetParent())
4968                throw Exception(
4969                    "gig::Instrument::MoveTo() can only be used for moving within "
4970                    "the same gig file."
4971                );
4972    
4973            File* pFile = (File*) GetParent();
4974    
4975            // move this instrument within the instrument list
4976            {
4977                File::InstrumentList& list = *pFile->pInstruments;
4978    
4979                File::InstrumentList::iterator itFrom =
4980                    std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(this));
4981    
4982                File::InstrumentList::iterator itTo =
4983                    std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(dst));
4984    
4985                list.splice(itTo, list, itFrom);
4986            }
4987    
4988            // move the instrument's actual list RIFF chunk appropriately
4989            RIFF::List* lstCkInstruments = pFile->pRIFF->GetSubList(LIST_TYPE_LINS);
4990            lstCkInstruments->MoveSubChunk(
4991                this->pCkInstrument,
4992                (RIFF::Chunk*) ((dst) ? dst->pCkInstrument : NULL)
4993            );
4994        }
4995    
4996        /**
4997         * Returns a MIDI rule of the instrument.
4998         *
4999         * The list of MIDI rules, at least in gig v3, always contains at
5000         * most two rules. The second rule can only be the DEF filter
5001         * (which currently isn't supported by libgig).
5002         *
5003         * @param i - MIDI rule number
5004         * @returns   pointer address to MIDI rule number i or NULL if there is none
5005         */
5006        MidiRule* Instrument::GetMidiRule(int i) {
5007            return pMidiRules[i];
5008        }
5009    
5010        /**
5011         * Adds the "controller trigger" MIDI rule to the instrument.
5012         *
5013         * @returns the new MIDI rule
5014         */
5015        MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
5016            delete pMidiRules[0];
5017            MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
5018            pMidiRules[0] = r;
5019            pMidiRules[1] = 0;
5020            return r;
5021        }
5022    
5023        /**
5024         * Adds the legato MIDI rule to the instrument.
5025         *
5026         * @returns the new MIDI rule
5027         */
5028        MidiRuleLegato* Instrument::AddMidiRuleLegato() {
5029            delete pMidiRules[0];
5030            MidiRuleLegato* r = new MidiRuleLegato;
5031            pMidiRules[0] = r;
5032            pMidiRules[1] = 0;
5033            return r;
5034        }
5035    
5036        /**
5037         * Adds the alternator MIDI rule to the instrument.
5038         *
5039         * @returns the new MIDI rule
5040         */
5041        MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
5042            delete pMidiRules[0];
5043            MidiRuleAlternator* r = new MidiRuleAlternator;
5044            pMidiRules[0] = r;
5045            pMidiRules[1] = 0;
5046            return r;
5047        }
5048    
5049        /**
5050         * Deletes a MIDI rule from the instrument.
5051         *
5052         * @param i - MIDI rule number
5053         */
5054        void Instrument::DeleteMidiRule(int i) {
5055            delete pMidiRules[i];
5056            pMidiRules[i] = 0;
5057        }
5058    
5059        void Instrument::LoadScripts() {
5060            if (pScriptRefs) return;
5061            pScriptRefs = new std::vector<_ScriptPooolRef>;
5062            if (scriptPoolFileOffsets.empty()) return;
5063            File* pFile = (File*) GetParent();
5064            for (uint k = 0; k < scriptPoolFileOffsets.size(); ++k) {
5065                uint32_t soughtOffset = scriptPoolFileOffsets[k].fileOffset;
5066                for (uint i = 0; pFile->GetScriptGroup(i); ++i) {
5067                    ScriptGroup* group = pFile->GetScriptGroup(i);
5068                    for (uint s = 0; group->GetScript(s); ++s) {
5069                        Script* script = group->GetScript(s);
5070                        if (script->pChunk) {
5071                            uint32_t offset = uint32_t(
5072                                script->pChunk->GetFilePos() -
5073                                script->pChunk->GetPos() -
5074                                CHUNK_HEADER_SIZE(script->pChunk->GetFile()->GetFileOffsetSize())
5075                            );
5076                            if (offset == soughtOffset)
5077                            {
5078                                _ScriptPooolRef ref;
5079                                ref.script = script;
5080                                ref.bypass = scriptPoolFileOffsets[k].bypass;
5081                                pScriptRefs->push_back(ref);
5082                                break;
5083                            }
5084                        }
5085                    }
5086                }
5087            }
5088            // we don't need that anymore
5089            scriptPoolFileOffsets.clear();
5090        }
5091    
5092        /** @brief Get instrument script (gig format extension).
5093         *
5094         * Returns the real-time instrument script of instrument script slot
5095         * @a index.
5096         *
5097         * @note This is an own format extension which did not exist i.e. in the
5098         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5099         * gigedit.
5100         *
5101         * @param index - instrument script slot index
5102         * @returns script or NULL if index is out of bounds
5103         */
5104        Script* Instrument::GetScriptOfSlot(uint index) {
5105            LoadScripts();
5106            if (index >= pScriptRefs->size()) return NULL;
5107            return pScriptRefs->at(index).script;
5108        }
5109    
5110        /** @brief Add new instrument script slot (gig format extension).
5111         *
5112         * Add the given real-time instrument script reference to this instrument,
5113         * which shall be executed by the sampler for for this instrument. The
5114         * script will be added to the end of the script list of this instrument.
5115         * The positions of the scripts in the Instrument's Script list are
5116         * relevant, because they define in which order they shall be executed by
5117         * the sampler. For this reason it is also legal to add the same script
5118         * twice to an instrument, for example you might have a script called
5119         * "MyFilter" which performs an event filter task, and you might have
5120         * another script called "MyNoteTrigger" which triggers new notes, then you
5121         * might for example have the following list of scripts on the instrument:
5122         *
5123         * 1. Script "MyFilter"
5124         * 2. Script "MyNoteTrigger"
5125         * 3. Script "MyFilter"
5126         *
5127         * Which would make sense, because the 2nd script launched new events, which
5128         * you might need to filter as well.
5129         *
5130         * There are two ways to disable / "bypass" scripts. You can either disable
5131         * a script locally for the respective script slot on an instrument (i.e. by
5132         * passing @c false to the 2nd argument of this method, or by calling
5133         * SetScriptBypassed()). Or you can disable a script globally for all slots
5134         * and all instruments by setting Script::Bypass.
5135         *
5136         * @note This is an own format extension which did not exist i.e. in the
5137         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5138         * gigedit.
5139         *
5140         * @param pScript - script that shall be executed for this instrument
5141         * @param bypass  - if enabled, the sampler shall skip executing this
5142         *                  script (in the respective list position)
5143         * @see SetScriptBypassed()
5144         */
5145        void Instrument::AddScriptSlot(Script* pScript, bool bypass) {
5146            LoadScripts();
5147            _ScriptPooolRef ref = { pScript, bypass };
5148            pScriptRefs->push_back(ref);
5149        }
5150    
5151        /** @brief Flip two script slots with each other (gig format extension).
5152         *
5153         * Swaps the position of the two given scripts in the Instrument's Script
5154         * list. The positions of the scripts in the Instrument's Script list are
5155         * relevant, because they define in which order they shall be executed by
5156         * the sampler.
5157         *
5158         * @note This is an own format extension which did not exist i.e. in the
5159         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5160         * gigedit.
5161         *
5162         * @param index1 - index of the first script slot to swap
5163         * @param index2 - index of the second script slot to swap
5164         */
5165        void Instrument::SwapScriptSlots(uint index1, uint index2) {
5166            LoadScripts();
5167            if (index1 >= pScriptRefs->size() || index2 >= pScriptRefs->size())
5168                return;
5169            _ScriptPooolRef tmp = (*pScriptRefs)[index1];
5170            (*pScriptRefs)[index1] = (*pScriptRefs)[index2];
5171            (*pScriptRefs)[index2] = tmp;
5172        }
5173    
5174        /** @brief Remove script slot.
5175         *
5176         * Removes the script slot with the given slot index.
5177         *
5178         * @param index - index of script slot to remove
5179         */
5180        void Instrument::RemoveScriptSlot(uint index) {
5181            LoadScripts();
5182            if (index >= pScriptRefs->size()) return;
5183            pScriptRefs->erase( pScriptRefs->begin() + index );
5184        }
5185    
5186        /** @brief Remove reference to given Script (gig format extension).
5187         *
5188         * This will remove all script slots on the instrument which are referencing
5189         * the given script.
5190         *
5191         * @note This is an own format extension which did not exist i.e. in the
5192         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5193         * gigedit.
5194         *
5195         * @param pScript - script reference to remove from this instrument
5196         * @see RemoveScriptSlot()
5197         */
5198        void Instrument::RemoveScript(Script* pScript) {
5199            LoadScripts();
5200            for (ssize_t i = pScriptRefs->size() - 1; i >= 0; --i) {
5201                if ((*pScriptRefs)[i].script == pScript) {
5202                    pScriptRefs->erase( pScriptRefs->begin() + i );
5203                }
5204            }
5205        }
5206    
5207        /** @brief Instrument's amount of script slots.
5208         *
5209         * This method returns the amount of script slots this instrument currently
5210         * uses.
5211         *
5212         * A script slot is a reference of a real-time instrument script to be
5213         * executed by the sampler. The scripts will be executed by the sampler in
5214         * sequence of the slots. One (same) script may be referenced multiple
5215         * times in different slots.
5216         *
5217         * @note This is an own format extension which did not exist i.e. in the
5218         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5219         * gigedit.
5220         */
5221        uint Instrument::ScriptSlotCount() const {
5222            return uint(pScriptRefs ? pScriptRefs->size() : scriptPoolFileOffsets.size());
5223        }
5224    
5225        /** @brief Whether script execution shall be skipped.
5226         *
5227         * Defines locally for the Script reference slot in the Instrument's Script
5228         * list, whether the script shall be skipped by the sampler regarding
5229         * execution.
5230         *
5231         * It is also possible to ignore exeuction of the script globally, for all
5232         * slots and for all instruments by setting Script::Bypass.
5233         *
5234         * @note This is an own format extension which did not exist i.e. in the
5235         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5236         * gigedit.
5237         *
5238         * @param index - index of the script slot on this instrument
5239         * @see Script::Bypass
5240         */
5241        bool Instrument::IsScriptSlotBypassed(uint index) {
5242            if (index >= ScriptSlotCount()) return false;
5243            return pScriptRefs ? pScriptRefs->at(index).bypass
5244                               : scriptPoolFileOffsets.at(index).bypass;
5245            
5246        }
5247    
5248        /** @brief Defines whether execution shall be skipped.
5249         *
5250         * You can call this method to define locally whether or whether not the
5251         * given script slot shall be executed by the sampler.
5252         *
5253         * @note This is an own format extension which did not exist i.e. in the
5254         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5255         * gigedit.
5256         *
5257         * @param index - script slot index on this instrument
5258         * @param bBypass - if true, the script slot will be skipped by the sampler
5259         * @see Script::Bypass
5260         */
5261        void Instrument::SetScriptSlotBypassed(uint index, bool bBypass) {
5262            if (index >= ScriptSlotCount()) return;
5263            if (pScriptRefs)
5264                pScriptRefs->at(index).bypass = bBypass;
5265            else
5266                scriptPoolFileOffsets.at(index).bypass = bBypass;
5267        }
5268    
5269        /**
5270         * Make a (semi) deep copy of the Instrument object given by @a orig
5271         * and assign it to this object.
5272         *
5273         * Note that all sample pointers referenced by @a orig are simply copied as
5274         * memory address. Thus the respective samples are shared, not duplicated!
5275         *
5276         * @param orig - original Instrument object to be copied from
5277         */
5278        void Instrument::CopyAssign(const Instrument* orig) {
5279            CopyAssign(orig, NULL);
5280        }
5281            
5282        /**
5283         * Make a (semi) deep copy of the Instrument object given by @a orig
5284         * and assign it to this object.
5285         *
5286         * @param orig - original Instrument object to be copied from
5287         * @param mSamples - crosslink map between the foreign file's samples and
5288         *                   this file's samples
5289         */
5290        void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
5291            // handle base class
5292            // (without copying DLS region stuff)
5293            DLS::Instrument::CopyAssignCore(orig);
5294            
5295            // handle own member variables
5296            Attenuation = orig->Attenuation;
5297            EffectSend = orig->EffectSend;
5298            FineTune = orig->FineTune;
5299            PitchbendRange = orig->PitchbendRange;
5300            PianoReleaseMode = orig->PianoReleaseMode;
5301            DimensionKeyRange = orig->DimensionKeyRange;
5302            scriptPoolFileOffsets = orig->scriptPoolFileOffsets;
5303            pScriptRefs = orig->pScriptRefs;
5304            
5305            // free old midi rules
5306            for (int i = 0 ; pMidiRules[i] ; i++) {
5307                delete pMidiRules[i];
5308            }
5309            //TODO: MIDI rule copying
5310            pMidiRules[0] = NULL;
5311            
5312            // delete all old regions
5313            while (Regions) DeleteRegion(GetFirstRegion());
5314            // create new regions and copy them from original
5315            {
5316                RegionList::const_iterator it = orig->pRegions->begin();
5317                for (int i = 0; i < orig->Regions; ++i, ++it) {
5318                    Region* dstRgn = AddRegion();
5319                    //NOTE: Region does semi-deep copy !
5320                    dstRgn->CopyAssign(
5321                        static_cast<gig::Region*>(*it),
5322                        mSamples
5323                    );
5324                }
5325            }
5326    
5327            UpdateRegionKeyTable();
5328        }
5329    
5330    
5331    // *************** Group ***************
5332    // *
5333    
5334        /** @brief Constructor.
5335         *
5336         * @param file   - pointer to the gig::File object
5337         * @param ck3gnm - pointer to 3gnm chunk associated with this group or
5338         *                 NULL if this is a new Group
5339         */
5340        Group::Group(File* file, RIFF::Chunk* ck3gnm) {
5341            pFile      = file;
5342            pNameChunk = ck3gnm;
5343            ::LoadString(pNameChunk, Name);
5344        }
5345    
5346        Group::~Group() {
5347            // remove the chunk associated with this group (if any)
5348            if (pNameChunk) pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
5349        }
5350    
5351        /** @brief Update chunks with current group settings.
5352         *
5353         * Apply current Group field values to the respective chunks. You have
5354         * to call File::Save() to make changes persistent.
5355         *
5356         * Usually there is absolutely no need to call this method explicitly.
5357         * It will be called automatically when File::Save() was called.
5358         *
5359         * @param pProgress - callback function for progress notification
5360         */
5361        void Group::UpdateChunks(progress_t* pProgress) {
5362            // make sure <3gri> and <3gnl> list chunks exist
5363            RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
5364            if (!_3gri) {
5365                _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
5366                pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
5367            }
5368            RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
5369            if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
5370    
5371            if (!pNameChunk && pFile->pVersion && pFile->pVersion->major == 3) {
5372                // v3 has a fixed list of 128 strings, find a free one
5373                for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
5374                    if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
5375                        pNameChunk = ck;
5376                        break;
5377                    }
5378                }
5379            }
5380    
5381            // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
5382            ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
5383        }
5384    
5385        /**
5386         * Returns the first Sample of this Group. You have to call this method
5387         * once before you use GetNextSample().
5388         *
5389         * <b>Notice:</b> this method might block for a long time, in case the
5390         * samples of this .gig file were not scanned yet
5391         *
5392         * @returns  pointer address to first Sample or NULL if there is none
5393         *           applied to this Group
5394         * @see      GetNextSample()
5395         */
5396        Sample* Group::GetFirstSample() {
5397            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5398            for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
5399                if (pSample->GetGroup() == this) return pSample;
5400            }
5401            return NULL;
5402        }
5403    
5404        /**
5405         * Returns the next Sample of the Group. You have to call
5406         * GetFirstSample() once before you can use this method. By calling this
5407         * method multiple times it iterates through the Samples assigned to
5408         * this Group.
5409         *
5410         * @returns  pointer address to the next Sample of this Group or NULL if
5411         *           end reached
5412         * @see      GetFirstSample()
5413         */
5414        Sample* Group::GetNextSample() {
5415            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
5416            for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
5417                if (pSample->GetGroup() == this) return pSample;
5418            }
5419            return NULL;
5420        }
5421    
5422        /**
5423         * Move Sample given by \a pSample from another Group to this Group.
5424         */
5425        void Group::AddSample(Sample* pSample) {
5426            pSample->pGroup = this;
5427        }
5428    
5429        /**
5430         * Move all members of this group to another group (preferably the 1st
5431         * one except this). This method is called explicitly by
5432         * File::DeleteGroup() thus when a Group was deleted. This code was
5433         * intentionally not placed in the destructor!
5434         */
5435        void Group::MoveAll() {
5436            // get "that" other group first
5437            Group* pOtherGroup = NULL;
5438            for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
5439                if (pOtherGroup != this) break;
5440            }
5441            if (!pOtherGroup) throw Exception(
5442                "Could not move samples to another group, since there is no "
5443                "other Group. This is a bug, report it!"
5444            );
5445            // now move all samples of this group to the other group
5446            for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
5447                pOtherGroup->AddSample(pSample);
5448            }
5449      }      }
5450    
5451    
# Line 1319  namespace gig { Line 5453  namespace gig {
5453  // *************** File ***************  // *************** File ***************
5454  // *  // *
5455    
5456        /// Reflects Gigasampler file format version 2.0 (1998-06-28).
5457        const DLS::version_t File::VERSION_2 = {
5458            0, 2, 19980628 & 0xffff, 19980628 >> 16
5459        };
5460    
5461        /// Reflects Gigasampler file format version 3.0 (2003-03-31).
5462        const DLS::version_t File::VERSION_3 = {
5463            0, 3, 20030331 & 0xffff, 20030331 >> 16
5464        };
5465    
5466        static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
5467            { CHUNK_ID_IARL, 256 },
5468            { CHUNK_ID_IART, 128 },
5469            { CHUNK_ID_ICMS, 128 },
5470            { CHUNK_ID_ICMT, 1024 },
5471            { CHUNK_ID_ICOP, 128 },
5472            { CHUNK_ID_ICRD, 128 },
5473            { CHUNK_ID_IENG, 128 },
5474            { CHUNK_ID_IGNR, 128 },
5475            { CHUNK_ID_IKEY, 128 },
5476            { CHUNK_ID_IMED, 128 },
5477            { CHUNK_ID_INAM, 128 },
5478            { CHUNK_ID_IPRD, 128 },
5479            { CHUNK_ID_ISBJ, 128 },
5480            { CHUNK_ID_ISFT, 128 },
5481            { CHUNK_ID_ISRC, 128 },
5482            { CHUNK_ID_ISRF, 128 },
5483            { CHUNK_ID_ITCH, 128 },
5484            { 0, 0 }
5485        };
5486    
5487        File::File() : DLS::File() {
5488            bAutoLoad = true;
5489            *pVersion = VERSION_3;
5490            pGroups = NULL;
5491            pScriptGroups = NULL;
5492            pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5493            pInfo->ArchivalLocation = String(256, ' ');
5494    
5495            // add some mandatory chunks to get the file chunks in right
5496            // order (INFO chunk will be moved to first position later)
5497            pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
5498            pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
5499            pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
5500    
5501            GenerateDLSID();
5502        }
5503    
5504      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
5505          pSamples     = NULL;          bAutoLoad = true;
5506          pInstruments = NULL;          pGroups = NULL;
5507            pScriptGroups = NULL;
5508            pInfo->SetFixedStringLengths(_FileFixedStringLengths);
5509      }      }
5510    
5511      Sample* File::GetFirstSample() {      File::~File() {
5512          if (!pSamples) LoadSamples();          if (pGroups) {
5513                std::list<Group*>::iterator iter = pGroups->begin();
5514                std::list<Group*>::iterator end  = pGroups->end();
5515                while (iter != end) {
5516                    delete *iter;
5517                    ++iter;
5518                }
5519                delete pGroups;
5520            }
5521            if (pScriptGroups) {
5522                std::list<ScriptGroup*>::iterator iter = pScriptGroups->begin();
5523                std::list<ScriptGroup*>::iterator end  = pScriptGroups->end();
5524                while (iter != end) {
5525                    delete *iter;
5526                    ++iter;
5527                }
5528                delete pScriptGroups;
5529            }
5530        }
5531    
5532        Sample* File::GetFirstSample(progress_t* pProgress) {
5533            if (!pSamples) LoadSamples(pProgress);
5534          if (!pSamples) return NULL;          if (!pSamples) return NULL;
5535          SamplesIterator = pSamples->begin();          SamplesIterator = pSamples->begin();
5536          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
# Line 1336  namespace gig { Line 5541  namespace gig {
5541          SamplesIterator++;          SamplesIterator++;
5542          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
5543      }      }
5544        
5545        /**
5546         * Returns Sample object of @a index.
5547         *
5548         * @returns sample object or NULL if index is out of bounds
5549         */
5550        Sample* File::GetSample(uint index) {
5551            if (!pSamples) LoadSamples();
5552            if (!pSamples) return NULL;
5553            DLS::File::SampleList::iterator it = pSamples->begin();
5554            for (int i = 0; i < index; ++i) {
5555                ++it;
5556                if (it == pSamples->end()) return NULL;
5557            }
5558            if (it == pSamples->end()) return NULL;
5559            return static_cast<gig::Sample*>( *it );
5560        }
5561    
5562      void File::LoadSamples() {      /** @brief Add a new sample.
5563          RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);       *
5564          if (wvpl) {       * This will create a new Sample object for the gig file. You have to
5565              unsigned long wvplFileOffset = wvpl->GetFilePos();       * call Save() to make this persistent to the file.
5566              RIFF::List* wave = wvpl->GetFirstSubList();       *
5567              while (wave) {       * @returns pointer to new Sample object
5568                  if (wave->GetListType() == LIST_TYPE_WAVE) {       */
5569                      if (!pSamples) pSamples = new SampleList;      Sample* File::AddSample() {
5570                      unsigned long waveFileOffset = wave->GetFilePos();         if (!pSamples) LoadSamples();
5571                      pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset));         __ensureMandatoryChunksExist();
5572           RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
5573           // create new Sample object and its respective 'wave' list chunk
5574           RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
5575           Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
5576    
5577           // add mandatory chunks to get the chunks in right order
5578           wave->AddSubChunk(CHUNK_ID_FMT, 16);
5579           wave->AddSubList(LIST_TYPE_INFO);
5580    
5581           pSamples->push_back(pSample);
5582           return pSample;
5583        }
5584    
5585        /** @brief Delete a sample.
5586         *
5587         * This will delete the given Sample object from the gig file. Any
5588         * references to this sample from Regions and DimensionRegions will be
5589         * removed. You have to call Save() to make this persistent to the file.
5590         *
5591         * @param pSample - sample to delete
5592         * @throws gig::Exception if given sample could not be found
5593         */
5594        void File::DeleteSample(Sample* pSample) {
5595            if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
5596            SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
5597            if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
5598            if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
5599            pSamples->erase(iter);
5600            delete pSample;
5601    
5602            SampleList::iterator tmp = SamplesIterator;
5603            // remove all references to the sample
5604            for (Instrument* instrument = GetFirstInstrument() ; instrument ;
5605                 instrument = GetNextInstrument()) {
5606                for (Region* region = instrument->GetFirstRegion() ; region ;
5607                     region = instrument->GetNextRegion()) {
5608    
5609                    if (region->GetSample() == pSample) region->SetSample(NULL);
5610    
5611                    for (int i = 0 ; i < region->DimensionRegions ; i++) {
5612                        gig::DimensionRegion *d = region->pDimensionRegions[i];
5613                        if (d->pSample == pSample) d->pSample = NULL;
5614                  }                  }
                 wave = wvpl->GetNextSubList();  
5615              }              }
5616          }          }
5617          else throw gig::Exception("Mandatory <wvpl> chunk not found.");          SamplesIterator = tmp; // restore iterator
5618        }
5619    
5620        void File::LoadSamples() {
5621            LoadSamples(NULL);
5622        }
5623    
5624        void File::LoadSamples(progress_t* pProgress) {
5625            // Groups must be loaded before samples, because samples will try
5626            // to resolve the group they belong to
5627            if (!pGroups) LoadGroups();
5628    
5629            if (!pSamples) pSamples = new SampleList;
5630    
5631            RIFF::File* file = pRIFF;
5632    
5633            // just for progress calculation
5634            int iSampleIndex  = 0;
5635            int iTotalSamples = WavePoolCount;
5636    
5637            // check if samples should be loaded from extension files
5638            // (only for old gig files < 2 GB)
5639            int lastFileNo = 0;
5640            if (!file->IsNew() && !(file->GetCurrentFileSize() >> 31)) {
5641                for (int i = 0 ; i < WavePoolCount ; i++) {
5642                    if (pWavePoolTableHi[i] > lastFileNo) lastFileNo = pWavePoolTableHi[i];
5643                }
5644            }
5645            String name(pRIFF->GetFileName());
5646            int nameLen = (int) name.length();
5647            char suffix[6];
5648            if (nameLen > 4 && name.substr(nameLen - 4) == ".gig") nameLen -= 4;
5649    
5650            for (int fileNo = 0 ; ; ) {
5651                RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
5652                if (wvpl) {
5653                    file_offset_t wvplFileOffset = wvpl->GetFilePos();
5654                    RIFF::List* wave = wvpl->GetFirstSubList();
5655                    while (wave) {
5656                        if (wave->GetListType() == LIST_TYPE_WAVE) {
5657                            // notify current progress
5658                            const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
5659                            __notify_progress(pProgress, subprogress);
5660    
5661                            file_offset_t waveFileOffset = wave->GetFilePos();
5662                            pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, fileNo, iSampleIndex));
5663    
5664                            iSampleIndex++;
5665                        }
5666                        wave = wvpl->GetNextSubList();
5667                    }
5668    
5669                    if (fileNo == lastFileNo) break;
5670    
5671                    // open extension file (*.gx01, *.gx02, ...)
5672                    fileNo++;
5673                    sprintf(suffix, ".gx%02d", fileNo);
5674                    name.replace(nameLen, 5, suffix);
5675                    file = new RIFF::File(name);
5676                    ExtensionFiles.push_back(file);
5677                } else break;
5678            }
5679    
5680            __notify_progress(pProgress, 1.0); // notify done
5681      }      }
5682    
5683      Instrument* File::GetFirstInstrument() {      Instrument* File::GetFirstInstrument() {
5684          if (!pInstruments) LoadInstruments();          if (!pInstruments) LoadInstruments();
5685          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
5686          InstrumentsIterator = pInstruments->begin();          InstrumentsIterator = pInstruments->begin();
5687          return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;          return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5688      }      }
5689    
5690      Instrument* File::GetNextInstrument() {      Instrument* File::GetNextInstrument() {
5691          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
5692          InstrumentsIterator++;          InstrumentsIterator++;
5693          return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;          return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
5694      }      }
5695    
5696      /**      /**
5697       * Returns the instrument with the given index.       * Returns the instrument with the given index.
5698       *       *
5699         * @param index     - number of the sought instrument (0..n)
5700         * @param pProgress - optional: callback function for progress notification
5701       * @returns  sought instrument or NULL if there's no such instrument       * @returns  sought instrument or NULL if there's no such instrument
5702       */       */
5703      Instrument* File::GetInstrument(uint index) {      Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
5704          if (!pInstruments) LoadInstruments();          if (!pInstruments) {
5705                // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
5706    
5707                // sample loading subtask
5708                progress_t subprogress;
5709                __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
5710                __notify_progress(&subprogress, 0.0f);
5711                if (GetAutoLoad())
5712                    GetFirstSample(&subprogress); // now force all samples to be loaded
5713                __notify_progress(&subprogress, 1.0f);
5714    
5715                // instrument loading subtask
5716                if (pProgress && pProgress->callback) {
5717                    subprogress.__range_min = subprogress.__range_max;
5718                    subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
5719                }
5720                __notify_progress(&subprogress, 0.0f);
5721                LoadInstruments(&subprogress);
5722                __notify_progress(&subprogress, 1.0f);
5723            }
5724          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
5725          InstrumentsIterator = pInstruments->begin();          InstrumentsIterator = pInstruments->begin();
5726          for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {          for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
5727              if (i == index) return *InstrumentsIterator;              if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
5728              InstrumentsIterator++;              InstrumentsIterator++;
5729          }          }
5730          return NULL;          return NULL;
5731      }      }
5732    
5733        /** @brief Add a new instrument definition.
5734         *
5735         * This will create a new Instrument object for the gig file. You have
5736         * to call Save() to make this persistent to the file.
5737         *
5738         * @returns pointer to new Instrument object
5739         */
5740        Instrument* File::AddInstrument() {
5741           if (!pInstruments) LoadInstruments();
5742           __ensureMandatoryChunksExist();
5743           RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5744           RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
5745    
5746           // add mandatory chunks to get the chunks in right order
5747           lstInstr->AddSubList(LIST_TYPE_INFO);
5748           lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
5749    
5750           Instrument* pInstrument = new Instrument(this, lstInstr);
5751           pInstrument->GenerateDLSID();
5752    
5753           lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
5754    
5755           // this string is needed for the gig to be loadable in GSt:
5756           pInstrument->pInfo->Software = "Endless Wave";
5757    
5758           pInstruments->push_back(pInstrument);
5759           return pInstrument;
5760        }
5761        
5762        /** @brief Add a duplicate of an existing instrument.
5763         *
5764         * Duplicates the instrument definition given by @a orig and adds it
5765         * to this file. This allows in an instrument editor application to
5766         * easily create variations of an instrument, which will be stored in
5767         * the same .gig file, sharing i.e. the same samples.
5768         *
5769         * Note that all sample pointers referenced by @a orig are simply copied as
5770         * memory address. Thus the respective samples are shared, not duplicated!
5771         *
5772         * You have to call Save() to make this persistent to the file.
5773         *
5774         * @param orig - original instrument to be copied
5775         * @returns duplicated copy of the given instrument
5776         */
5777        Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
5778            Instrument* instr = AddInstrument();
5779            instr->CopyAssign(orig);
5780            return instr;
5781        }
5782        
5783        /** @brief Add content of another existing file.
5784         *
5785         * Duplicates the samples, groups and instruments of the original file
5786         * given by @a pFile and adds them to @c this File. In case @c this File is
5787         * a new one that you haven't saved before, then you have to call
5788         * SetFileName() before calling AddContentOf(), because this method will
5789         * automatically save this file during operation, which is required for
5790         * writing the sample waveform data by disk streaming.
5791         *
5792         * @param pFile - original file whose's content shall be copied from
5793         */
5794        void File::AddContentOf(File* pFile) {
5795            static int iCallCount = -1;
5796            iCallCount++;
5797            std::map<Group*,Group*> mGroups;
5798            std::map<Sample*,Sample*> mSamples;
5799            
5800            // clone sample groups
5801            for (int i = 0; pFile->GetGroup(i); ++i) {
5802                Group* g = AddGroup();
5803                g->Name =
5804                    "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
5805                mGroups[pFile->GetGroup(i)] = g;
5806            }
5807            
5808            // clone samples (not waveform data here yet)
5809            for (int i = 0; pFile->GetSample(i); ++i) {
5810                Sample* s = AddSample();
5811                s->CopyAssignMeta(pFile->GetSample(i));
5812                mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
5813                mSamples[pFile->GetSample(i)] = s;
5814            }
5815    
5816            // clone script groups and their scripts
5817            for (int iGroup = 0; pFile->GetScriptGroup(iGroup); ++iGroup) {
5818                ScriptGroup* sg = pFile->GetScriptGroup(iGroup);
5819                ScriptGroup* dg = AddScriptGroup();
5820                dg->Name = "COPY" + ToString(iCallCount) + "_" + sg->Name;
5821                for (int iScript = 0; sg->GetScript(iScript); ++iScript) {
5822                    Script* ss = sg->GetScript(iScript);
5823                    Script* ds = dg->AddScript();
5824                    ds->CopyAssign(ss);
5825                }
5826            }
5827    
5828            //BUG: For some reason this method only works with this additional
5829            //     Save() call in between here.
5830            //
5831            // Important: The correct one of the 2 Save() methods has to be called
5832            // here, depending on whether the file is completely new or has been
5833            // saved to disk already, otherwise it will result in data corruption.
5834            if (pRIFF->IsNew())
5835                Save(GetFileName());
5836            else
5837                Save();
5838            
5839            // clone instruments
5840            // (passing the crosslink table here for the cloned samples)
5841            for (int i = 0; pFile->GetInstrument(i); ++i) {
5842                Instrument* instr = AddInstrument();
5843                instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
5844            }
5845            
5846            // Mandatory: file needs to be saved to disk at this point, so this
5847            // file has the correct size and data layout for writing the samples'
5848            // waveform data to disk.
5849            Save();
5850            
5851            // clone samples' waveform data
5852            // (using direct read & write disk streaming)
5853            for (int i = 0; pFile->GetSample(i); ++i) {
5854                mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
5855            }
5856        }
5857    
5858        /** @brief Delete an instrument.
5859         *
5860         * This will delete the given Instrument object from the gig file. You
5861         * have to call Save() to make this persistent to the file.
5862         *
5863         * @param pInstrument - instrument to delete
5864         * @throws gig::Exception if given instrument could not be found
5865         */
5866        void File::DeleteInstrument(Instrument* pInstrument) {
5867            if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
5868            InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
5869            if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
5870            pInstruments->erase(iter);
5871            delete pInstrument;
5872        }
5873    
5874      void File::LoadInstruments() {      void File::LoadInstruments() {
5875            LoadInstruments(NULL);
5876        }
5877    
5878        void File::LoadInstruments(progress_t* pProgress) {
5879            if (!pInstruments) pInstruments = new InstrumentList;
5880          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
5881          if (lstInstruments) {          if (lstInstruments) {
5882                int iInstrumentIndex = 0;
5883              RIFF::List* lstInstr = lstInstruments->GetFirstSubList();              RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
5884              while (lstInstr) {              while (lstInstr) {
5885                  if (lstInstr->GetListType() == LIST_TYPE_INS) {                  if (lstInstr->GetListType() == LIST_TYPE_INS) {
5886                      if (!pInstruments) pInstruments = new InstrumentList;                      // notify current progress
5887                      pInstruments->push_back(new Instrument(this, lstInstr));                      const float localProgress = (float) iInstrumentIndex / (float) Instruments;
5888                        __notify_progress(pProgress, localProgress);
5889    
5890                        // divide local progress into subprogress for loading current Instrument
5891                        progress_t subprogress;
5892                        __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
5893    
5894                        pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
5895    
5896                        iInstrumentIndex++;
5897                  }                  }
5898                  lstInstr = lstInstruments->GetNextSubList();                  lstInstr = lstInstruments->GetNextSubList();
5899              }              }
5900                __notify_progress(pProgress, 1.0); // notify done
5901            }
5902        }
5903    
5904        /// Updates the 3crc chunk with the checksum of a sample. The
5905        /// update is done directly to disk, as this method is called
5906        /// after File::Save()
5907        void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
5908            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5909            if (!_3crc) return;
5910    
5911            // get the index of the sample
5912            int iWaveIndex = GetWaveTableIndexOf(pSample);
5913            if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
5914    
5915            // write the CRC-32 checksum to disk
5916            _3crc->SetPos(iWaveIndex * 8);
5917            uint32_t one = 1;
5918            _3crc->WriteUint32(&one); // always 1
5919            _3crc->WriteUint32(&crc);
5920        }
5921    
5922        uint32_t File::GetSampleChecksum(Sample* pSample) {
5923            // get the index of the sample
5924            int iWaveIndex = GetWaveTableIndexOf(pSample);
5925            if (iWaveIndex < 0) throw gig::Exception("Could not retrieve reference crc of sample, could not resolve sample's wave table index");
5926    
5927            return GetSampleChecksumByIndex(iWaveIndex);
5928        }
5929    
5930        uint32_t File::GetSampleChecksumByIndex(int index) {
5931            if (index < 0) throw gig::Exception("Could not retrieve reference crc of sample, invalid wave pool index of sample");
5932    
5933            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5934            if (!_3crc) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
5935            uint8_t* pData = (uint8_t*) _3crc->LoadChunkData();
5936            if (!pData) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
5937    
5938            // read the CRC-32 checksum directly from disk
5939            size_t pos = index * 8;
5940            if (pos + 8 > _3crc->GetNewSize())
5941                throw gig::Exception("Could not retrieve reference crc of sample, could not seek to required position in crc chunk");
5942    
5943            uint32_t one = load32(&pData[pos]); // always 1
5944            if (one != 1)
5945                throw gig::Exception("Could not retrieve reference crc of sample, because reference checksum table is damaged");
5946    
5947            return load32(&pData[pos+4]);
5948        }
5949    
5950        int File::GetWaveTableIndexOf(gig::Sample* pSample) {
5951            if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
5952            File::SampleList::iterator iter = pSamples->begin();
5953            File::SampleList::iterator end  = pSamples->end();
5954            for (int index = 0; iter != end; ++iter, ++index)
5955                if (*iter == pSample)
5956                    return index;
5957            return -1;
5958        }
5959    
5960        /**
5961         * Checks whether the file's "3CRC" chunk was damaged. This chunk contains
5962         * the CRC32 check sums of all samples' raw wave data.
5963         *
5964         * @return true if 3CRC chunk is OK, or false if 3CRC chunk is damaged
5965         */
5966        bool File::VerifySampleChecksumTable() {
5967            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
5968            if (!_3crc) return false;
5969            if (_3crc->GetNewSize() <= 0) return false;
5970            if (_3crc->GetNewSize() % 8) return false;
5971            if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
5972            if (_3crc->GetNewSize() != pSamples->size() * 8) return false;
5973    
5974            const file_offset_t n = _3crc->GetNewSize() / 8;
5975    
5976            uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
5977            if (!pData) return false;
5978    
5979            for (file_offset_t i = 0; i < n; ++i) {
5980                uint32_t one = pData[i*2];
5981                if (one != 1) return false;
5982            }
5983    
5984            return true;
5985        }
5986    
5987        /**
5988         * Recalculates CRC32 checksums for all samples and rebuilds this gig
5989         * file's checksum table with those new checksums. This might usually
5990         * just be necessary if the checksum table was damaged.
5991         *
5992         * @e IMPORTANT: The current implementation of this method only works
5993         * with files that have not been modified since it was loaded, because
5994         * it expects that no externally caused file structure changes are
5995         * required!
5996         *
5997         * Due to the expectation above, this method is currently protected
5998         * and actually only used by the command line tool "gigdump" yet.
5999         *
6000         * @returns true if Save() is required to be called after this call,
6001         *          false if no further action is required
6002         */
6003        bool File::RebuildSampleChecksumTable() {
6004            // make sure sample chunks were scanned
6005            if (!pSamples) GetFirstSample();
6006    
6007            bool bRequiresSave = false;
6008    
6009            // make sure "3CRC" chunk exists with required size
6010            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6011            if (!_3crc) {
6012                _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6013                // the order of einf and 3crc is not the same in v2 and v3
6014                RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6015                if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
6016                bRequiresSave = true;
6017            } else if (_3crc->GetNewSize() != pSamples->size() * 8) {
6018                _3crc->Resize(pSamples->size() * 8);
6019                bRequiresSave = true;
6020            }
6021    
6022            if (bRequiresSave) { // refill CRC table for all samples in RAM ...
6023                uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6024                {
6025                    File::SampleList::iterator iter = pSamples->begin();
6026                    File::SampleList::iterator end  = pSamples->end();
6027                    for (; iter != end; ++iter) {
6028                        gig::Sample* pSample = (gig::Sample*) *iter;
6029                        int index = GetWaveTableIndexOf(pSample);
6030                        if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6031                        pData[index*2]   = 1; // always 1
6032                        pData[index*2+1] = pSample->CalculateWaveDataChecksum();
6033                    }
6034                }
6035            } else { // no file structure changes necessary, so directly write to disk and we are done ...
6036                // make sure file is in write mode
6037                pRIFF->SetMode(RIFF::stream_mode_read_write);
6038                {
6039                    File::SampleList::iterator iter = pSamples->begin();
6040                    File::SampleList::iterator end  = pSamples->end();
6041                    for (; iter != end; ++iter) {
6042                        gig::Sample* pSample = (gig::Sample*) *iter;
6043                        int index = GetWaveTableIndexOf(pSample);
6044                        if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6045                        pSample->crc  = pSample->CalculateWaveDataChecksum();
6046                        SetSampleChecksum(pSample, pSample->crc);
6047                    }
6048                }
6049          }          }
6050          else throw gig::Exception("Mandatory <lins> list chunk not found.");  
6051            return bRequiresSave;
6052        }
6053    
6054        Group* File::GetFirstGroup() {
6055            if (!pGroups) LoadGroups();
6056            // there must always be at least one group
6057            GroupsIterator = pGroups->begin();
6058            return *GroupsIterator;
6059        }
6060    
6061        Group* File::GetNextGroup() {
6062            if (!pGroups) return NULL;
6063            ++GroupsIterator;
6064            return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
6065        }
6066    
6067        /**
6068         * Returns the group with the given index.
6069         *
6070         * @param index - number of the sought group (0..n)
6071         * @returns sought group or NULL if there's no such group
6072         */
6073        Group* File::GetGroup(uint index) {
6074            if (!pGroups) LoadGroups();
6075            GroupsIterator = pGroups->begin();
6076            for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
6077                if (i == index) return *GroupsIterator;
6078                ++GroupsIterator;
6079            }
6080            return NULL;
6081        }
6082    
6083        /**
6084         * Returns the group with the given group name.
6085         *
6086         * Note: group names don't have to be unique in the gig format! So there
6087         * can be multiple groups with the same name. This method will simply
6088         * return the first group found with the given name.
6089         *
6090         * @param name - name of the sought group
6091         * @returns sought group or NULL if there's no group with that name
6092         */
6093        Group* File::GetGroup(String name) {
6094            if (!pGroups) LoadGroups();
6095            GroupsIterator = pGroups->begin();
6096            for (uint i = 0; GroupsIterator != pGroups->end(); ++GroupsIterator, ++i)
6097                if ((*GroupsIterator)->Name == name) return *GroupsIterator;
6098            return NULL;
6099        }
6100    
6101        Group* File::AddGroup() {
6102            if (!pGroups) LoadGroups();
6103            // there must always be at least one group
6104            __ensureMandatoryChunksExist();
6105            Group* pGroup = new Group(this, NULL);
6106            pGroups->push_back(pGroup);
6107            return pGroup;
6108        }
6109    
6110        /** @brief Delete a group and its samples.
6111         *
6112         * This will delete the given Group object and all the samples that
6113         * belong to this group from the gig file. You have to call Save() to
6114         * make this persistent to the file.
6115         *
6116         * @param pGroup - group to delete
6117         * @throws gig::Exception if given group could not be found
6118         */
6119        void File::DeleteGroup(Group* pGroup) {
6120            if (!pGroups) LoadGroups();
6121            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6122            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6123            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6124            // delete all members of this group
6125            for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
6126                DeleteSample(pSample);
6127            }
6128            // now delete this group object
6129            pGroups->erase(iter);
6130            delete pGroup;
6131        }
6132    
6133        /** @brief Delete a group.
6134         *
6135         * This will delete the given Group object from the gig file. All the
6136         * samples that belong to this group will not be deleted, but instead
6137         * be moved to another group. You have to call Save() to make this
6138         * persistent to the file.
6139         *
6140         * @param pGroup - group to delete
6141         * @throws gig::Exception if given group could not be found
6142         */
6143        void File::DeleteGroupOnly(Group* pGroup) {
6144            if (!pGroups) LoadGroups();
6145            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6146            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6147            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6148            // move all members of this group to another group
6149            pGroup->MoveAll();
6150            pGroups->erase(iter);
6151            delete pGroup;
6152        }
6153    
6154        void File::LoadGroups() {
6155            if (!pGroups) pGroups = new std::list<Group*>;
6156            // try to read defined groups from file
6157            RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6158            if (lst3gri) {
6159                RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
6160                if (lst3gnl) {
6161                    RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
6162                    while (ck) {
6163                        if (ck->GetChunkID() == CHUNK_ID_3GNM) {
6164                            if (pVersion && pVersion->major == 3 &&
6165                                strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
6166    
6167                            pGroups->push_back(new Group(this, ck));
6168                        }
6169                        ck = lst3gnl->GetNextSubChunk();
6170                    }
6171                }
6172            }
6173            // if there were no group(s), create at least the mandatory default group
6174            if (!pGroups->size()) {
6175                Group* pGroup = new Group(this, NULL);
6176                pGroup->Name = "Default Group";
6177                pGroups->push_back(pGroup);
6178            }
6179        }
6180    
6181        /** @brief Get instrument script group (by index).
6182         *
6183         * Returns the real-time instrument script group with the given index.
6184         *
6185         * @param index - number of the sought group (0..n)
6186         * @returns sought script group or NULL if there's no such group
6187         */
6188        ScriptGroup* File::GetScriptGroup(uint index) {
6189            if (!pScriptGroups) LoadScriptGroups();
6190            std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6191            for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6192                if (i == index) return *it;
6193            return NULL;
6194        }
6195    
6196        /** @brief Get instrument script group (by name).
6197         *
6198         * Returns the first real-time instrument script group found with the given
6199         * group name. Note that group names may not necessarily be unique.
6200         *
6201         * @param name - name of the sought script group
6202         * @returns sought script group or NULL if there's no such group
6203         */
6204        ScriptGroup* File::GetScriptGroup(const String& name) {
6205            if (!pScriptGroups) LoadScriptGroups();
6206            std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6207            for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6208                if ((*it)->Name == name) return *it;
6209            return NULL;
6210        }
6211    
6212        /** @brief Add new instrument script group.
6213         *
6214         * Adds a new, empty real-time instrument script group to the file.
6215         *
6216         * You have to call Save() to make this persistent to the file.
6217         *
6218         * @return new empty script group
6219         */
6220        ScriptGroup* File::AddScriptGroup() {
6221            if (!pScriptGroups) LoadScriptGroups();
6222            ScriptGroup* pScriptGroup = new ScriptGroup(this, NULL);
6223            pScriptGroups->push_back(pScriptGroup);
6224            return pScriptGroup;
6225        }
6226    
6227        /** @brief Delete an instrument script group.
6228         *
6229         * This will delete the given real-time instrument script group and all its
6230         * instrument scripts it contains. References inside instruments that are
6231         * using the deleted scripts will be removed from the respective instruments
6232         * accordingly.
6233         *
6234         * You have to call Save() to make this persistent to the file.
6235         *
6236         * @param pScriptGroup - script group to delete
6237         * @throws gig::Exception if given script group could not be found
6238         */
6239        void File::DeleteScriptGroup(ScriptGroup* pScriptGroup) {
6240            if (!pScriptGroups) LoadScriptGroups();
6241            std::list<ScriptGroup*>::iterator iter =
6242                find(pScriptGroups->begin(), pScriptGroups->end(), pScriptGroup);
6243            if (iter == pScriptGroups->end())
6244                throw gig::Exception("Could not delete script group, could not find given script group");
6245            pScriptGroups->erase(iter);
6246            for (int i = 0; pScriptGroup->GetScript(i); ++i)
6247                pScriptGroup->DeleteScript(pScriptGroup->GetScript(i));
6248            if (pScriptGroup->pList)
6249                pScriptGroup->pList->GetParent()->DeleteSubChunk(pScriptGroup->pList);
6250            delete pScriptGroup;
6251        }
6252    
6253        void File::LoadScriptGroups() {
6254            if (pScriptGroups) return;
6255            pScriptGroups = new std::list<ScriptGroup*>;
6256            RIFF::List* lstLS = pRIFF->GetSubList(LIST_TYPE_3LS);
6257            if (lstLS) {
6258                for (RIFF::List* lst = lstLS->GetFirstSubList(); lst;
6259                     lst = lstLS->GetNextSubList())
6260                {
6261                    if (lst->GetListType() == LIST_TYPE_RTIS) {
6262                        pScriptGroups->push_back(new ScriptGroup(this, lst));
6263                    }
6264                }
6265            }
6266        }
6267    
6268        /**
6269         * Apply all the gig file's current instruments, samples, groups and settings
6270         * to the respective RIFF chunks. You have to call Save() to make changes
6271         * persistent.
6272         *
6273         * Usually there is absolutely no need to call this method explicitly.
6274         * It will be called automatically when File::Save() was called.
6275         *
6276         * @param pProgress - callback function for progress notification
6277         * @throws Exception - on errors
6278         */
6279        void File::UpdateChunks(progress_t* pProgress) {
6280            bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
6281    
6282            // update own gig format extension chunks
6283            // (not part of the GigaStudio 4 format)
6284            RIFF::List* lst3LS = pRIFF->GetSubList(LIST_TYPE_3LS);
6285            if (!lst3LS) {
6286                lst3LS = pRIFF->AddSubList(LIST_TYPE_3LS);
6287            }
6288            // Make sure <3LS > chunk is placed before <ptbl> chunk. The precise
6289            // location of <3LS > is irrelevant, however it should be located
6290            // before  the actual wave data
6291            RIFF::Chunk* ckPTBL = pRIFF->GetSubChunk(CHUNK_ID_PTBL);
6292            pRIFF->MoveSubChunk(lst3LS, ckPTBL);
6293    
6294            // This must be performed before writing the chunks for instruments,
6295            // because the instruments' script slots will write the file offsets
6296            // of the respective instrument script chunk as reference.
6297            if (pScriptGroups) {
6298                // Update instrument script (group) chunks.
6299                for (std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6300                     it != pScriptGroups->end(); ++it)
6301                {
6302                    (*it)->UpdateChunks(pProgress);
6303                }
6304            }
6305    
6306            // in case no libgig custom format data was added, then remove the
6307            // custom "3LS " chunk again
6308            if (!lst3LS->CountSubChunks()) {
6309                pRIFF->DeleteSubChunk(lst3LS);
6310                lst3LS = NULL;
6311            }
6312    
6313            // first update base class's chunks
6314            DLS::File::UpdateChunks(pProgress);
6315    
6316            if (newFile) {
6317                // INFO was added by Resource::UpdateChunks - make sure it
6318                // is placed first in file
6319                RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
6320                RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
6321                if (first != info) {
6322                    pRIFF->MoveSubChunk(info, first);
6323                }
6324            }
6325    
6326            // update group's chunks
6327            if (pGroups) {
6328                // make sure '3gri' and '3gnl' list chunks exist
6329                // (before updating the Group chunks)
6330                RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6331                if (!_3gri) {
6332                    _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
6333                    pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
6334                }
6335                RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
6336                if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
6337    
6338                // v3: make sure the file has 128 3gnm chunks
6339                // (before updating the Group chunks)
6340                if (pVersion && pVersion->major == 3) {
6341                    RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
6342                    for (int i = 0 ; i < 128 ; i++) {
6343                        if (i >= pGroups->size()) ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
6344                        if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
6345                    }
6346                }
6347    
6348                std::list<Group*>::iterator iter = pGroups->begin();
6349                std::list<Group*>::iterator end  = pGroups->end();
6350                for (; iter != end; ++iter) {
6351                    (*iter)->UpdateChunks(pProgress);
6352                }
6353            }
6354    
6355            // update einf chunk
6356    
6357            // The einf chunk contains statistics about the gig file, such
6358            // as the number of regions and samples used by each
6359            // instrument. It is divided in equally sized parts, where the
6360            // first part contains information about the whole gig file,
6361            // and the rest of the parts map to each instrument in the
6362            // file.
6363            //
6364            // At the end of each part there is a bit map of each sample
6365            // in the file, where a set bit means that the sample is used
6366            // by the file/instrument.
6367            //
6368            // Note that there are several fields with unknown use. These
6369            // are set to zero.
6370    
6371            int sublen = int(pSamples->size() / 8 + 49);
6372            int einfSize = (Instruments + 1) * sublen;
6373    
6374            RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6375            if (einf) {
6376                if (einf->GetSize() != einfSize) {
6377                    einf->Resize(einfSize);
6378                    memset(einf->LoadChunkData(), 0, einfSize);
6379                }
6380            } else if (newFile) {
6381                einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
6382            }
6383            if (einf) {
6384                uint8_t* pData = (uint8_t*) einf->LoadChunkData();
6385    
6386                std::map<gig::Sample*,int> sampleMap;
6387                int sampleIdx = 0;
6388                for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
6389                    sampleMap[pSample] = sampleIdx++;
6390                }
6391    
6392                int totnbusedsamples = 0;
6393                int totnbusedchannels = 0;
6394                int totnbregions = 0;
6395                int totnbdimregions = 0;
6396                int totnbloops = 0;
6397                int instrumentIdx = 0;
6398    
6399                memset(&pData[48], 0, sublen - 48);
6400    
6401                for (Instrument* instrument = GetFirstInstrument() ; instrument ;
6402                     instrument = GetNextInstrument()) {
6403                    int nbusedsamples = 0;
6404                    int nbusedchannels = 0;
6405                    int nbdimregions = 0;
6406                    int nbloops = 0;
6407    
6408                    memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
6409    
6410                    for (Region* region = instrument->GetFirstRegion() ; region ;
6411                         region = instrument->GetNextRegion()) {
6412                        for (int i = 0 ; i < region->DimensionRegions ; i++) {
6413                            gig::DimensionRegion *d = region->pDimensionRegions[i];
6414                            if (d->pSample) {
6415                                int sampleIdx = sampleMap[d->pSample];
6416                                int byte = 48 + sampleIdx / 8;
6417                                int bit = 1 << (sampleIdx & 7);
6418                                if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
6419                                    pData[(instrumentIdx + 1) * sublen + byte] |= bit;
6420                                    nbusedsamples++;
6421                                    nbusedchannels += d->pSample->Channels;
6422    
6423                                    if ((pData[byte] & bit) == 0) {
6424                                        pData[byte] |= bit;
6425                                        totnbusedsamples++;
6426                                        totnbusedchannels += d->pSample->Channels;
6427                                    }
6428                                }
6429                            }
6430                            if (d->SampleLoops) nbloops++;
6431                        }
6432                        nbdimregions += region->DimensionRegions;
6433                    }
6434                    // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6435                    // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
6436                    store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
6437                    store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
6438                    store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
6439                    store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
6440                    store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
6441                    store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
6442                    // next 8 bytes unknown
6443                    store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
6444                    store32(&pData[(instrumentIdx + 1) * sublen + 40], (uint32_t) pSamples->size());
6445                    // next 4 bytes unknown
6446    
6447                    totnbregions += instrument->Regions;
6448                    totnbdimregions += nbdimregions;
6449                    totnbloops += nbloops;
6450                    instrumentIdx++;
6451                }
6452                // first 4 bytes unknown - sometimes 0, sometimes length of einf part
6453                // store32(&pData[0], sublen);
6454                store32(&pData[4], totnbusedchannels);
6455                store32(&pData[8], totnbusedsamples);
6456                store32(&pData[12], Instruments);
6457                store32(&pData[16], totnbregions);
6458                store32(&pData[20], totnbdimregions);
6459                store32(&pData[24], totnbloops);
6460                // next 8 bytes unknown
6461                // next 4 bytes unknown, not always 0
6462                store32(&pData[40], (uint32_t) pSamples->size());
6463                // next 4 bytes unknown
6464            }
6465    
6466            // update 3crc chunk
6467    
6468            // The 3crc chunk contains CRC-32 checksums for the
6469            // samples. When saving a gig file to disk, we first update the 3CRC
6470            // chunk here (in RAM) with the old crc values which we read from the
6471            // 3CRC chunk when we opened the file (available with gig::Sample::crc
6472            // member variable). This step is required, because samples might have
6473            // been deleted by the user since the file was opened, which in turn
6474            // changes the order of the (i.e. old) checksums within the 3crc chunk.
6475            // If a sample was conciously modified by the user (that is if
6476            // Sample::Write() was called later on) then Sample::Write() will just
6477            // update the respective individual checksum(s) directly on disk and
6478            // leaves all other sample checksums untouched.
6479    
6480            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6481            if (_3crc) {
6482                _3crc->Resize(pSamples->size() * 8);
6483            } else /*if (newFile)*/ {
6484                _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6485                // the order of einf and 3crc is not the same in v2 and v3
6486                if (einf && pVersion && pVersion->major == 3) pRIFF->MoveSubChunk(_3crc, einf);
6487            }
6488            { // must be performed in RAM here ...
6489                uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6490                if (pData) {
6491                    File::SampleList::iterator iter = pSamples->begin();
6492                    File::SampleList::iterator end  = pSamples->end();
6493                    for (int index = 0; iter != end; ++iter, ++index) {
6494                        gig::Sample* pSample = (gig::Sample*) *iter;
6495                        pData[index*2]   = 1; // always 1
6496                        pData[index*2+1] = pSample->crc;
6497                    }
6498                }
6499            }
6500        }
6501        
6502        void File::UpdateFileOffsets() {
6503            DLS::File::UpdateFileOffsets();
6504    
6505            for (Instrument* instrument = GetFirstInstrument(); instrument;
6506                 instrument = GetNextInstrument())
6507            {
6508                instrument->UpdateScriptFileOffsets();
6509            }
6510        }
6511    
6512        /**
6513         * Enable / disable automatic loading. By default this properyt is
6514         * enabled and all informations are loaded automatically. However
6515         * loading all Regions, DimensionRegions and especially samples might
6516         * take a long time for large .gig files, and sometimes one might only
6517         * be interested in retrieving very superficial informations like the
6518         * amount of instruments and their names. In this case one might disable
6519         * automatic loading to avoid very slow response times.
6520         *
6521         * @e CAUTION: by disabling this property many pointers (i.e. sample
6522         * references) and informations will have invalid or even undefined
6523         * data! This feature is currently only intended for retrieving very
6524         * superficial informations in a very fast way. Don't use it to retrieve
6525         * details like synthesis informations or even to modify .gig files!
6526         */
6527        void File::SetAutoLoad(bool b) {
6528            bAutoLoad = b;
6529        }
6530    
6531        /**
6532         * Returns whether automatic loading is enabled.
6533         * @see SetAutoLoad()
6534         */
6535        bool File::GetAutoLoad() {
6536            return bAutoLoad;
6537      }      }
6538    
6539    
# Line 1403  namespace gig { Line 6541  namespace gig {
6541  // *************** Exception ***************  // *************** Exception ***************
6542  // *  // *
6543    
6544      Exception::Exception(String Message) : DLS::Exception(Message) {      Exception::Exception() : DLS::Exception() {
6545        }
6546    
6547        Exception::Exception(String format, ...) : DLS::Exception() {
6548            va_list arg;
6549            va_start(arg, format);
6550            Message = assemble(format, arg);
6551            va_end(arg);
6552        }
6553    
6554        Exception::Exception(String format, va_list arg) : DLS::Exception() {
6555            Message = assemble(format, arg);
6556      }      }
6557    
6558      void Exception::PrintMessage() {      void Exception::PrintMessage() {
6559          std::cout << "gig::Exception: " << Message << std::endl;          std::cout << "gig::Exception: " << Message << std::endl;
6560      }      }
6561    
6562    
6563    // *************** functions ***************
6564    // *
6565    
6566        /**
6567         * Returns the name of this C++ library. This is usually "libgig" of
6568         * course. This call is equivalent to RIFF::libraryName() and
6569         * DLS::libraryName().
6570         */
6571        String libraryName() {
6572            return PACKAGE;
6573        }
6574    
6575        /**
6576         * Returns version of this C++ library. This call is equivalent to
6577         * RIFF::libraryVersion() and DLS::libraryVersion().
6578         */
6579        String libraryVersion() {
6580            return VERSION;
6581        }
6582    
6583  } // namespace gig  } // namespace gig

Legend:
Removed from v.55  
changed lines
  Added in v.3327

  ViewVC Help
Powered by ViewVC