/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Diff of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 55 by schoenebeck, Tue Apr 27 09:06:07 2004 UTC revision 3904 by schoenebeck, Wed May 12 18:55:31 2021 UTC
# Line 1  Line 1 
1  /***************************************************************************  /***************************************************************************
2   *                                                                         *   *                                                                         *
3   *   libgig - C++ cross-platform Gigasampler format file loader library    *   *   libgig - C++ cross-platform Gigasampler format file access library    *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Christian Schoenebeck                     *   *   Copyright (C) 2003-2021 by Christian Schoenebeck                      *
6   *                               <cuse@users.sourceforge.net>              *   *                              <cuse@users.sourceforge.net>               *
7   *                                                                         *   *                                                                         *
8   *   This library is free software; you can redistribute it and/or modify  *   *   This library is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 23  Line 23 
23    
24  #include "gig.h"  #include "gig.h"
25    
26    #include "helper.h"
27    #include "Serialization.h"
28    
29    #include <algorithm>
30    #include <math.h>
31    #include <iostream>
32    #include <assert.h>
33    
34    /// libgig's current file format version (for extending the original Giga file
35    /// format with libgig's own custom data / custom features).
36    #define GIG_FILE_EXT_VERSION    2
37    
38    /// Initial size of the sample buffer which is used for decompression of
39    /// compressed sample wave streams - this value should always be bigger than
40    /// the biggest sample piece expected to be read by the sampler engine,
41    /// otherwise the buffer size will be raised at runtime and thus the buffer
42    /// reallocated which is time consuming and unefficient.
43    #define INITIAL_SAMPLE_BUFFER_SIZE              512000 // 512 kB
44    
45    /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
46    #define GIG_EXP_DECODE(x)                       (pow(1.000000008813822, x))
47    #define GIG_EXP_ENCODE(x)                       (log(x) / log(1.000000008813822))
48    #define GIG_PITCH_TRACK_EXTRACT(x)              (!(x & 0x01))
49    #define GIG_PITCH_TRACK_ENCODE(x)               ((x) ? 0x00 : 0x01)
50    #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x)       ((x >> 4) & 0x03)
51    #define GIG_VCF_RESONANCE_CTRL_ENCODE(x)        ((x & 0x03) << 4)
52    #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x)  ((x >> 1) & 0x03)
53    #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x)   ((x >> 3) & 0x03)
54    #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
55    #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x)   ((x & 0x03) << 1)
56    #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x)    ((x & 0x03) << 3)
57    #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x)  ((x & 0x03) << 5)
58    
59    #define SRLZ(member) \
60        archive->serializeMember(*this, member, #member);
61    
62  namespace gig {  namespace gig {
63    
64    // *************** Internal functions for sample decompression ***************
65    // *
66    
67    namespace {
68    
69        inline int get12lo(const unsigned char* pSrc)
70        {
71            const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
72            return x & 0x800 ? x - 0x1000 : x;
73        }
74    
75        inline int get12hi(const unsigned char* pSrc)
76        {
77            const int x = pSrc[1] >> 4 | pSrc[2] << 4;
78            return x & 0x800 ? x - 0x1000 : x;
79        }
80    
81        inline int16_t get16(const unsigned char* pSrc)
82        {
83            return int16_t(pSrc[0] | pSrc[1] << 8);
84        }
85    
86        inline int get24(const unsigned char* pSrc)
87        {
88            const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
89            return x & 0x800000 ? x - 0x1000000 : x;
90        }
91    
92        inline void store24(unsigned char* pDst, int x)
93        {
94            pDst[0] = x;
95            pDst[1] = x >> 8;
96            pDst[2] = x >> 16;
97        }
98    
99        void Decompress16(int compressionmode, const unsigned char* params,
100                          int srcStep, int dstStep,
101                          const unsigned char* pSrc, int16_t* pDst,
102                          file_offset_t currentframeoffset,
103                          file_offset_t copysamples)
104        {
105            switch (compressionmode) {
106                case 0: // 16 bit uncompressed
107                    pSrc += currentframeoffset * srcStep;
108                    while (copysamples) {
109                        *pDst = get16(pSrc);
110                        pDst += dstStep;
111                        pSrc += srcStep;
112                        copysamples--;
113                    }
114                    break;
115    
116                case 1: // 16 bit compressed to 8 bit
117                    int y  = get16(params);
118                    int dy = get16(params + 2);
119                    while (currentframeoffset) {
120                        dy -= int8_t(*pSrc);
121                        y  -= dy;
122                        pSrc += srcStep;
123                        currentframeoffset--;
124                    }
125                    while (copysamples) {
126                        dy -= int8_t(*pSrc);
127                        y  -= dy;
128                        *pDst = y;
129                        pDst += dstStep;
130                        pSrc += srcStep;
131                        copysamples--;
132                    }
133                    break;
134            }
135        }
136    
137        void Decompress24(int compressionmode, const unsigned char* params,
138                          int dstStep, const unsigned char* pSrc, uint8_t* pDst,
139                          file_offset_t currentframeoffset,
140                          file_offset_t copysamples, int truncatedBits)
141        {
142            int y, dy, ddy, dddy;
143    
144    #define GET_PARAMS(params)                      \
145            y    = get24(params);                   \
146            dy   = y - get24((params) + 3);         \
147            ddy  = get24((params) + 6);             \
148            dddy = get24((params) + 9)
149    
150    #define SKIP_ONE(x)                             \
151            dddy -= (x);                            \
152            ddy  -= dddy;                           \
153            dy   =  -dy - ddy;                      \
154            y    += dy
155    
156    #define COPY_ONE(x)                             \
157            SKIP_ONE(x);                            \
158            store24(pDst, y << truncatedBits);      \
159            pDst += dstStep
160    
161            switch (compressionmode) {
162                case 2: // 24 bit uncompressed
163                    pSrc += currentframeoffset * 3;
164                    while (copysamples) {
165                        store24(pDst, get24(pSrc) << truncatedBits);
166                        pDst += dstStep;
167                        pSrc += 3;
168                        copysamples--;
169                    }
170                    break;
171    
172                case 3: // 24 bit compressed to 16 bit
173                    GET_PARAMS(params);
174                    while (currentframeoffset) {
175                        SKIP_ONE(get16(pSrc));
176                        pSrc += 2;
177                        currentframeoffset--;
178                    }
179                    while (copysamples) {
180                        COPY_ONE(get16(pSrc));
181                        pSrc += 2;
182                        copysamples--;
183                    }
184                    break;
185    
186                case 4: // 24 bit compressed to 12 bit
187                    GET_PARAMS(params);
188                    while (currentframeoffset > 1) {
189                        SKIP_ONE(get12lo(pSrc));
190                        SKIP_ONE(get12hi(pSrc));
191                        pSrc += 3;
192                        currentframeoffset -= 2;
193                    }
194                    if (currentframeoffset) {
195                        SKIP_ONE(get12lo(pSrc));
196                        currentframeoffset--;
197                        if (copysamples) {
198                            COPY_ONE(get12hi(pSrc));
199                            pSrc += 3;
200                            copysamples--;
201                        }
202                    }
203                    while (copysamples > 1) {
204                        COPY_ONE(get12lo(pSrc));
205                        COPY_ONE(get12hi(pSrc));
206                        pSrc += 3;
207                        copysamples -= 2;
208                    }
209                    if (copysamples) {
210                        COPY_ONE(get12lo(pSrc));
211                    }
212                    break;
213    
214                case 5: // 24 bit compressed to 8 bit
215                    GET_PARAMS(params);
216                    while (currentframeoffset) {
217                        SKIP_ONE(int8_t(*pSrc++));
218                        currentframeoffset--;
219                    }
220                    while (copysamples) {
221                        COPY_ONE(int8_t(*pSrc++));
222                        copysamples--;
223                    }
224                    break;
225            }
226        }
227    
228        const int bytesPerFrame[] =      { 4096, 2052, 768, 524, 396, 268 };
229        const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
230        const int headerSize[] =         { 0, 4, 0, 12, 12, 12 };
231        const int bitsPerSample[] =      { 16, 8, 24, 16, 12, 8 };
232    }
233    
234    
235    
236    // *************** Internal CRC-32 (Cyclic Redundancy Check) functions  ***************
237    // *
238    
239        static uint32_t* __initCRCTable() {
240            static uint32_t res[256];
241    
242            for (int i = 0 ; i < 256 ; i++) {
243                uint32_t c = i;
244                for (int j = 0 ; j < 8 ; j++) {
245                    c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
246                }
247                res[i] = c;
248            }
249            return res;
250        }
251    
252        static const uint32_t* __CRCTable = __initCRCTable();
253    
254        /**
255         * Initialize a CRC variable.
256         *
257         * @param crc - variable to be initialized
258         */
259        inline static void __resetCRC(uint32_t& crc) {
260            crc = 0xffffffff;
261        }
262    
263        /**
264         * Used to calculate checksums of the sample data in a gig file. The
265         * checksums are stored in the 3crc chunk of the gig file and
266         * automatically updated when a sample is written with Sample::Write().
267         *
268         * One should call __resetCRC() to initialize the CRC variable to be
269         * used before calling this function the first time.
270         *
271         * After initializing the CRC variable one can call this function
272         * arbitrary times, i.e. to split the overall CRC calculation into
273         * steps.
274         *
275         * Once the whole data was processed by __calculateCRC(), one should
276         * call __finalizeCRC() to get the final CRC result.
277         *
278         * @param buf     - pointer to data the CRC shall be calculated of
279         * @param bufSize - size of the data to be processed
280         * @param crc     - variable the CRC sum shall be stored to
281         */
282        static void __calculateCRC(unsigned char* buf, size_t bufSize, uint32_t& crc) {
283            for (size_t i = 0 ; i < bufSize ; i++) {
284                crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
285            }
286        }
287    
288        /**
289         * Returns the final CRC result.
290         *
291         * @param crc - variable previously passed to __calculateCRC()
292         */
293        inline static void __finalizeCRC(uint32_t& crc) {
294            crc ^= 0xffffffff;
295        }
296    
297    
298    
299    // *************** Other Internal functions  ***************
300    // *
301    
302        static split_type_t __resolveSplitType(dimension_t dimension) {
303            return (
304                dimension == dimension_layer ||
305                dimension == dimension_samplechannel ||
306                dimension == dimension_releasetrigger ||
307                dimension == dimension_keyboard ||
308                dimension == dimension_roundrobin ||
309                dimension == dimension_random ||
310                dimension == dimension_smartmidi ||
311                dimension == dimension_roundrobinkeyboard
312            ) ? split_type_bit : split_type_normal;
313        }
314    
315        static int __resolveZoneSize(dimension_def_t& dimension_definition) {
316            return (dimension_definition.split_type == split_type_normal)
317            ? int(128.0 / dimension_definition.zones) : 0;
318        }
319    
320    
321    
322    // *************** leverage_ctrl_t ***************
323    // *
324    
325        void leverage_ctrl_t::serialize(Serialization::Archive* archive) {
326            SRLZ(type);
327            SRLZ(controller_number);
328        }
329    
330    
331    
332    // *************** crossfade_t ***************
333    // *
334    
335        void crossfade_t::serialize(Serialization::Archive* archive) {
336            SRLZ(in_start);
337            SRLZ(in_end);
338            SRLZ(out_start);
339            SRLZ(out_end);
340        }
341    
342    
343    
344    // *************** eg_opt_t ***************
345    // *
346    
347        eg_opt_t::eg_opt_t() {
348            AttackCancel     = true;
349            AttackHoldCancel = true;
350            Decay1Cancel     = true;
351            Decay2Cancel     = true;
352            ReleaseCancel    = true;
353        }
354    
355        void eg_opt_t::serialize(Serialization::Archive* archive) {
356            SRLZ(AttackCancel);
357            SRLZ(AttackHoldCancel);
358            SRLZ(Decay1Cancel);
359            SRLZ(Decay2Cancel);
360            SRLZ(ReleaseCancel);
361        }
362    
363    
364    
365  // *************** Sample ***************  // *************** Sample ***************
366  // *  // *
367    
368      unsigned int  Sample::Instances               = 0;      size_t       Sample::Instances = 0;
369      void*         Sample::pDecompressionBuffer    = NULL;      buffer_t     Sample::InternalDecompressionBuffer;
     unsigned long Sample::DecompressionBufferSize = 0;  
370    
371      Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) {      /** @brief Constructor.
372         *
373         * Load an existing sample or create a new one. A 'wave' list chunk must
374         * be given to this constructor. In case the given 'wave' list chunk
375         * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
376         * format and sample data will be loaded from there, otherwise default
377         * values will be used and those chunks will be created when
378         * File::Save() will be called later on.
379         *
380         * @param pFile          - pointer to gig::File where this sample is
381         *                         located (or will be located)
382         * @param waveList       - pointer to 'wave' list chunk which is (or
383         *                         will be) associated with this sample
384         * @param WavePoolOffset - offset of this sample data from wave pool
385         *                         ('wvpl') list chunk
386         * @param fileNo         - number of an extension file where this sample
387         *                         is located, 0 otherwise
388         * @param index          - wave pool index of sample (may be -1 on new sample)
389         */
390        Sample::Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo, int index)
391            : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset)
392        {
393            static const DLS::Info::string_length_t fixedStringLengths[] = {
394                { CHUNK_ID_INAM, 64 },
395                { 0, 0 }
396            };
397            pInfo->SetFixedStringLengths(fixedStringLengths);
398          Instances++;          Instances++;
399            FileNo = fileNo;
400    
401            __resetCRC(crc);
402            // if this is not a new sample, try to get the sample's already existing
403            // CRC32 checksum from disk, this checksum will reflect the sample's CRC32
404            // checksum of the time when the sample was consciously modified by the
405            // user for the last time (by calling Sample::Write() that is).
406            if (index >= 0) { // not a new file ...
407                try {
408                    uint32_t crc = pFile->GetSampleChecksumByIndex(index);
409                    this->crc = crc;
410                } catch (...) {}
411            }
412    
413          RIFF::Chunk* _3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);          pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
414          if (!_3gix) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");          if (pCk3gix) {
415          SampleGroup = _3gix->ReadInt16();              pCk3gix->SetPos(0);
416    
417          RIFF::Chunk* smpl = waveList->GetSubChunk(CHUNK_ID_SMPL);              uint16_t iSampleGroup = pCk3gix->ReadInt16();
418          if (!smpl) throw gig::Exception("Mandatory chunks in <wave> list chunk not found.");              pGroup = pFile->GetGroup(iSampleGroup);
419          Manufacturer      = smpl->ReadInt32();          } else { // '3gix' chunk missing
420          Product           = smpl->ReadInt32();              // by default assigned to that mandatory "Default Group"
421          SamplePeriod      = smpl->ReadInt32();              pGroup = pFile->GetGroup(0);
422          MIDIUnityNote     = smpl->ReadInt32();          }
423          FineTune          = smpl->ReadInt32();  
424          smpl->Read(&SMPTEFormat, 1, 4);          pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
425          SMPTEOffset       = smpl->ReadInt32();          if (pCkSmpl) {
426          Loops             = smpl->ReadInt32();              pCkSmpl->SetPos(0);
427          uint32_t manufByt = smpl->ReadInt32();  
428          LoopID            = smpl->ReadInt32();              Manufacturer  = pCkSmpl->ReadInt32();
429          smpl->Read(&LoopType, 1, 4);              Product       = pCkSmpl->ReadInt32();
430          LoopStart         = smpl->ReadInt32();              SamplePeriod  = pCkSmpl->ReadInt32();
431          LoopEnd           = smpl->ReadInt32();              MIDIUnityNote = pCkSmpl->ReadInt32();
432          LoopFraction      = smpl->ReadInt32();              FineTune      = pCkSmpl->ReadInt32();
433          LoopPlayCount     = smpl->ReadInt32();              pCkSmpl->Read(&SMPTEFormat, 1, 4);
434                SMPTEOffset   = pCkSmpl->ReadInt32();
435                Loops         = pCkSmpl->ReadInt32();
436                pCkSmpl->ReadInt32(); // manufByt
437                LoopID        = pCkSmpl->ReadInt32();
438                pCkSmpl->Read(&LoopType, 1, 4);
439                LoopStart     = pCkSmpl->ReadInt32();
440                LoopEnd       = pCkSmpl->ReadInt32();
441                LoopFraction  = pCkSmpl->ReadInt32();
442                LoopPlayCount = pCkSmpl->ReadInt32();
443            } else { // 'smpl' chunk missing
444                // use default values
445                Manufacturer  = 0;
446                Product       = 0;
447                SamplePeriod  = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
448                MIDIUnityNote = 60;
449                FineTune      = 0;
450                SMPTEFormat   = smpte_format_no_offset;
451                SMPTEOffset   = 0;
452                Loops         = 0;
453                LoopID        = 0;
454                LoopType      = loop_type_normal;
455                LoopStart     = 0;
456                LoopEnd       = 0;
457                LoopFraction  = 0;
458                LoopPlayCount = 0;
459            }
460    
461          FrameTable                 = NULL;          FrameTable                 = NULL;
462          SamplePos                  = 0;          SamplePos                  = 0;
# Line 63  namespace gig { Line 464  namespace gig {
464          RAMCache.pStart            = NULL;          RAMCache.pStart            = NULL;
465          RAMCache.NullExtensionSize = 0;          RAMCache.NullExtensionSize = 0;
466    
467          Compressed = (waveList->GetSubChunk(CHUNK_ID_EWAV));          if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
468    
469            RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
470            Compressed        = ewav;
471            Dithered          = false;
472            TruncatedBits     = 0;
473          if (Compressed) {          if (Compressed) {
474              ScanCompressedSample();              ewav->SetPos(0);
475              if (!pDecompressionBuffer) {  
476                  pDecompressionBuffer    = new int8_t[INITIAL_SAMPLE_BUFFER_SIZE];              uint32_t version = ewav->ReadInt32();
477                  DecompressionBufferSize = INITIAL_SAMPLE_BUFFER_SIZE;              if (version > 2 && BitDepth == 24) {
478                    Dithered = ewav->ReadInt32();
479                    ewav->SetPos(Channels == 2 ? 84 : 64);
480                    TruncatedBits = ewav->ReadInt32();
481              }              }
482                ScanCompressedSample();
483            }
484    
485            // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
486            if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
487                InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
488                InternalDecompressionBuffer.Size   = INITIAL_SAMPLE_BUFFER_SIZE;
489            }
490            FrameOffset = 0; // just for streaming compressed samples
491    
492            LoopSize = LoopEnd - LoopStart + 1;
493        }
494    
495        /**
496         * Make a (semi) deep copy of the Sample object given by @a orig (without
497         * the actual waveform data) and assign it to this object.
498         *
499         * Discussion: copying .gig samples is a bit tricky. It requires three
500         * steps:
501         * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
502         *    its new sample waveform data size.
503         * 2. Saving the file (done by File::Save()) so that it gains correct size
504         *    and layout for writing the actual wave form data directly to disc
505         *    in next step.
506         * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
507         *
508         * @param orig - original Sample object to be copied from
509         */
510        void Sample::CopyAssignMeta(const Sample* orig) {
511            // handle base classes
512            DLS::Sample::CopyAssignCore(orig);
513            
514            // handle actual own attributes of this class
515            Manufacturer = orig->Manufacturer;
516            Product = orig->Product;
517            SamplePeriod = orig->SamplePeriod;
518            MIDIUnityNote = orig->MIDIUnityNote;
519            FineTune = orig->FineTune;
520            SMPTEFormat = orig->SMPTEFormat;
521            SMPTEOffset = orig->SMPTEOffset;
522            Loops = orig->Loops;
523            LoopID = orig->LoopID;
524            LoopType = orig->LoopType;
525            LoopStart = orig->LoopStart;
526            LoopEnd = orig->LoopEnd;
527            LoopSize = orig->LoopSize;
528            LoopFraction = orig->LoopFraction;
529            LoopPlayCount = orig->LoopPlayCount;
530            
531            // schedule resizing this sample to the given sample's size
532            Resize(orig->GetSize());
533        }
534    
535        /**
536         * Should be called after CopyAssignMeta() and File::Save() sequence.
537         * Read more about it in the discussion of CopyAssignMeta(). This method
538         * copies the actual waveform data by disk streaming.
539         *
540         * @e CAUTION: this method is currently not thread safe! During this
541         * operation the sample must not be used for other purposes by other
542         * threads!
543         *
544         * @param orig - original Sample object to be copied from
545         */
546        void Sample::CopyAssignWave(const Sample* orig) {
547            const int iReadAtOnce = 32*1024;
548            char* buf = new char[iReadAtOnce * orig->FrameSize];
549            Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
550            file_offset_t restorePos = pOrig->GetPos();
551            pOrig->SetPos(0);
552            SetPos(0);
553            for (file_offset_t n = pOrig->Read(buf, iReadAtOnce); n;
554                               n = pOrig->Read(buf, iReadAtOnce))
555            {
556                Write(buf, n);
557          }          }
558          FrameOffset = 0; // just for streaming compressed samples          pOrig->SetPos(restorePos);
559            delete [] buf;
560        }
561    
562          LoopSize = LoopEnd - LoopStart;      /**
563         * Apply sample and its settings to the respective RIFF chunks. You have
564         * to call File::Save() to make changes persistent.
565         *
566         * Usually there is absolutely no need to call this method explicitly.
567         * It will be called automatically when File::Save() was called.
568         *
569         * @param pProgress - callback function for progress notification
570         * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
571         *                        was provided yet
572         * @throws gig::Exception if there is any invalid sample setting
573         */
574        void Sample::UpdateChunks(progress_t* pProgress) {
575            // first update base class's chunks
576            DLS::Sample::UpdateChunks(pProgress);
577    
578            // make sure 'smpl' chunk exists
579            pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
580            if (!pCkSmpl) {
581                pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
582                memset(pCkSmpl->LoadChunkData(), 0, 60);
583            }
584            // update 'smpl' chunk
585            uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
586            SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
587            store32(&pData[0], Manufacturer);
588            store32(&pData[4], Product);
589            store32(&pData[8], SamplePeriod);
590            store32(&pData[12], MIDIUnityNote);
591            store32(&pData[16], FineTune);
592            store32(&pData[20], SMPTEFormat);
593            store32(&pData[24], SMPTEOffset);
594            store32(&pData[28], Loops);
595    
596            // we skip 'manufByt' for now (4 bytes)
597    
598            store32(&pData[36], LoopID);
599            store32(&pData[40], LoopType);
600            store32(&pData[44], LoopStart);
601            store32(&pData[48], LoopEnd);
602            store32(&pData[52], LoopFraction);
603            store32(&pData[56], LoopPlayCount);
604    
605            // make sure '3gix' chunk exists
606            pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
607            if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
608            // determine appropriate sample group index (to be stored in chunk)
609            uint16_t iSampleGroup = 0; // 0 refers to default sample group
610            File* pFile = static_cast<File*>(pParent);
611            if (pFile->pGroups) {
612                std::list<Group*>::iterator iter = pFile->pGroups->begin();
613                std::list<Group*>::iterator end  = pFile->pGroups->end();
614                for (int i = 0; iter != end; i++, iter++) {
615                    if (*iter == pGroup) {
616                        iSampleGroup = i;
617                        break; // found
618                    }
619                }
620            }
621            // update '3gix' chunk
622            pData = (uint8_t*) pCk3gix->LoadChunkData();
623            store16(&pData[0], iSampleGroup);
624    
625            // if the library user toggled the "Compressed" attribute from true to
626            // false, then the EWAV chunk associated with compressed samples needs
627            // to be deleted
628            RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
629            if (ewav && !Compressed) {
630                pWaveList->DeleteSubChunk(ewav);
631            }
632      }      }
633    
634      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).      /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
635      void Sample::ScanCompressedSample() {      void Sample::ScanCompressedSample() {
636          //TODO: we have to add some more scans here (e.g. determine compression rate)          //TODO: we have to add some more scans here (e.g. determine compression rate)
637          this->SamplesTotal = 0;          this->SamplesTotal = 0;
638          std::list<unsigned long> frameOffsets;          std::list<file_offset_t> frameOffsets;
639    
640            SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
641            WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
642    
643          // Scanning          // Scanning
644          pCkData->SetPos(0);          pCkData->SetPos(0);
645          while (pCkData->GetState() == RIFF::stream_ready) {          if (Channels == 2) { // Stereo
646              frameOffsets.push_back(pCkData->GetPos());              for (int i = 0 ; ; i++) {
647              int16_t compressionmode = pCkData->ReadInt16();                  // for 24 bit samples every 8:th frame offset is
648              this->SamplesTotal += 2048;                  // stored, to save some memory
649              switch (compressionmode) {                  if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
650                  case 1:   // left channel compressed  
651                  case 256: // right channel compressed                  const int mode_l = pCkData->ReadUint8();
652                      pCkData->SetPos(6148, RIFF::stream_curpos);                  const int mode_r = pCkData->ReadUint8();
653                    if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
654                    const file_offset_t frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
655    
656                    if (pCkData->RemainingBytes() <= frameSize) {
657                        SamplesInLastFrame =
658                            ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
659                            (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
660                        SamplesTotal += SamplesInLastFrame;
661                      break;                      break;
662                  case 257: // both channels compressed                  }
663                      pCkData->SetPos(4104, RIFF::stream_curpos);                  SamplesTotal += SamplesPerFrame;
664                    pCkData->SetPos(frameSize, RIFF::stream_curpos);
665                }
666            }
667            else { // Mono
668                for (int i = 0 ; ; i++) {
669                    if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
670    
671                    const int mode = pCkData->ReadUint8();
672                    if (mode > 5) throw gig::Exception("Unknown compression mode");
673                    const file_offset_t frameSize = bytesPerFrame[mode];
674    
675                    if (pCkData->RemainingBytes() <= frameSize) {
676                        SamplesInLastFrame =
677                            ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
678                        SamplesTotal += SamplesInLastFrame;
679                      break;                      break;
680                  default: // both channels uncompressed                  }
681                      pCkData->SetPos(8192, RIFF::stream_curpos);                  SamplesTotal += SamplesPerFrame;
682                    pCkData->SetPos(frameSize, RIFF::stream_curpos);
683              }              }
684          }          }
685          pCkData->SetPos(0);          pCkData->SetPos(0);
686    
         //FIXME: only seen compressed samples with 16 bit stereo so far  
         this->FrameSize = 4;  
         this->BitDepth  = 16;  
   
687          // Build the frames table (which is used for fast resolving of a frame's chunk offset)          // Build the frames table (which is used for fast resolving of a frame's chunk offset)
688          if (FrameTable) delete[] FrameTable;          if (FrameTable) delete[] FrameTable;
689          FrameTable = new unsigned long[frameOffsets.size()];          FrameTable = new file_offset_t[frameOffsets.size()];
690          std::list<unsigned long>::iterator end  = frameOffsets.end();          std::list<file_offset_t>::iterator end  = frameOffsets.end();
691          std::list<unsigned long>::iterator iter = frameOffsets.begin();          std::list<file_offset_t>::iterator iter = frameOffsets.begin();
692          for (int i = 0; iter != end; i++, iter++) {          for (int i = 0; iter != end; i++, iter++) {
693              FrameTable[i] = *iter;              FrameTable[i] = *iter;
694          }          }
# Line 141  namespace gig { Line 719  namespace gig {
719       * that will be returned to determine the actual cached samples, but note       * that will be returned to determine the actual cached samples, but note
720       * that the size is given in bytes! You get the number of actually cached       * that the size is given in bytes! You get the number of actually cached
721       * samples by dividing it by the frame size of the sample:       * samples by dividing it by the frame size of the sample:
722       *       * @code
723       *  buffer_t buf       = pSample->LoadSampleData(acquired_samples);       *  buffer_t buf       = pSample->LoadSampleData(acquired_samples);
724       *  long cachedsamples = buf.Size / pSample->FrameSize;       *  long cachedsamples = buf.Size / pSample->FrameSize;
725         * @endcode
726       *       *
727       * @param SampleCount - number of sample points to load into RAM       * @param SampleCount - number of sample points to load into RAM
728       * @returns             buffer_t structure with start address and size of       * @returns             buffer_t structure with start address and size of
729       *                      the cached sample data in bytes       *                      the cached sample data in bytes
730       * @see                 ReleaseSampleData(), Read(), SetPos()       * @see                 ReleaseSampleData(), Read(), SetPos()
731       */       */
732      buffer_t Sample::LoadSampleData(unsigned long SampleCount) {      buffer_t Sample::LoadSampleData(file_offset_t SampleCount) {
733          return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples          return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
734      }      }
735    
# Line 189  namespace gig { Line 768  namespace gig {
768       * that will be returned to determine the actual cached samples, but note       * that will be returned to determine the actual cached samples, but note
769       * that the size is given in bytes! You get the number of actually cached       * that the size is given in bytes! You get the number of actually cached
770       * samples by dividing it by the frame size of the sample:       * samples by dividing it by the frame size of the sample:
771       *       * @code
772       *  buffer_t buf       = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);       *  buffer_t buf       = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
773       *  long cachedsamples = buf.Size / pSample->FrameSize;       *  long cachedsamples = buf.Size / pSample->FrameSize;
774       *       * @endcode
775       * The method will add \a NullSamplesCount silence samples past the       * The method will add \a NullSamplesCount silence samples past the
776       * official buffer end (this won't affect the 'Size' member of the       * official buffer end (this won't affect the 'Size' member of the
777       * buffer_t structure, that means 'Size' always reflects the size of the       * buffer_t structure, that means 'Size' always reflects the size of the
# Line 209  namespace gig { Line 788  namespace gig {
788       *                           size of the cached sample data in bytes       *                           size of the cached sample data in bytes
789       * @see                      ReleaseSampleData(), Read(), SetPos()       * @see                      ReleaseSampleData(), Read(), SetPos()
790       */       */
791      buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) {      buffer_t Sample::LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount) {
792          if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;          if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
793          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
794          unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;          file_offset_t allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
795            SetPos(0); // reset read position to begin of sample
796          RAMCache.pStart            = new int8_t[allocationsize];          RAMCache.pStart            = new int8_t[allocationsize];
797          RAMCache.Size              = Read(RAMCache.pStart, SampleCount) * this->FrameSize;          RAMCache.Size              = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
798          RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;          RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
# Line 250  namespace gig { Line 830  namespace gig {
830          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
831          RAMCache.pStart = NULL;          RAMCache.pStart = NULL;
832          RAMCache.Size   = 0;          RAMCache.Size   = 0;
833            RAMCache.NullExtensionSize = 0;
834        }
835    
836        /** @brief Resize sample.
837         *
838         * Resizes the sample's wave form data, that is the actual size of
839         * sample wave data possible to be written for this sample. This call
840         * will return immediately and just schedule the resize operation. You
841         * should call File::Save() to actually perform the resize operation(s)
842         * "physically" to the file. As this can take a while on large files, it
843         * is recommended to call Resize() first on all samples which have to be
844         * resized and finally to call File::Save() to perform all those resize
845         * operations in one rush.
846         *
847         * The actual size (in bytes) is dependant to the current FrameSize
848         * value. You may want to set FrameSize before calling Resize().
849         *
850         * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
851         * enlarged samples before calling File::Save() as this might exceed the
852         * current sample's boundary!
853         *
854         * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
855         * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
856         * other formats will fail!
857         *
858         * @param NewSize - new sample wave data size in sample points (must be
859         *                  greater than zero)
860         * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
861         * @throws DLS::Exception if \a NewSize is less than 1 or unrealistic large
862         * @throws gig::Exception if existing sample is compressed
863         * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
864         *      DLS::Sample::FormatTag, File::Save()
865         */
866        void Sample::Resize(file_offset_t NewSize) {
867            if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
868            DLS::Sample::Resize(NewSize);
869      }      }
870    
871      /**      /**
# Line 273  namespace gig { Line 889  namespace gig {
889       * @returns            the new sample position       * @returns            the new sample position
890       * @see                Read()       * @see                Read()
891       */       */
892      unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) {      file_offset_t Sample::SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence) {
893          if (Compressed) {          if (Compressed) {
894              switch (Whence) {              switch (Whence) {
895                  case RIFF::stream_curpos:                  case RIFF::stream_curpos:
# Line 291  namespace gig { Line 907  namespace gig {
907              }              }
908              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
909    
910              unsigned long frame = this->SamplePos / 2048; // to which frame to jump              file_offset_t frame = this->SamplePos / 2048; // to which frame to jump
911              this->FrameOffset   = this->SamplePos % 2048; // offset (in sample points) within that frame              this->FrameOffset   = this->SamplePos % 2048; // offset (in sample points) within that frame
912              pCkData->SetPos(FrameTable[frame]);           // set chunk pointer to the start of sought frame              pCkData->SetPos(FrameTable[frame]);           // set chunk pointer to the start of sought frame
913              return this->SamplePos;              return this->SamplePos;
914          }          }
915          else { // not compressed          else { // not compressed
916              unsigned long orderedBytes = SampleCount * this->FrameSize;              file_offset_t orderedBytes = SampleCount * this->FrameSize;
917              unsigned long result = pCkData->SetPos(orderedBytes, Whence);              file_offset_t result = pCkData->SetPos(orderedBytes, Whence);
918              return (result == orderedBytes) ? SampleCount              return (result == orderedBytes) ? SampleCount
919                                              : result / this->FrameSize;                                              : result / this->FrameSize;
920          }          }
# Line 307  namespace gig { Line 923  namespace gig {
923      /**      /**
924       * Returns the current position in the sample (in sample points).       * Returns the current position in the sample (in sample points).
925       */       */
926      unsigned long Sample::GetPos() {      file_offset_t Sample::GetPos() const {
927          if (Compressed) return SamplePos;          if (Compressed) return SamplePos;
928          else            return pCkData->GetPos() / FrameSize;          else            return pCkData->GetPos() / FrameSize;
929      }      }
# Line 323  namespace gig { Line 939  namespace gig {
939       * for the next time you call this method is stored in \a pPlaybackState.       * for the next time you call this method is stored in \a pPlaybackState.
940       * You have to allocate and initialize the playback_state_t structure by       * You have to allocate and initialize the playback_state_t structure by
941       * yourself before you use it to stream a sample:       * yourself before you use it to stream a sample:
942       *       * @code
943       * <i>       * gig::playback_state_t playbackstate;
944       * gig::playback_state_t playbackstate;                           <br>       * playbackstate.position         = 0;
945       * playbackstate.position         = 0;                            <br>       * playbackstate.reverse          = false;
946       * playbackstate.reverse          = false;                        <br>       * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
947       * playbackstate.loop_cycles_left = pSample->LoopPlayCount;       <br>       * @endcode
      * </i>  
      *  
948       * You don't have to take care of things like if there is actually a loop       * You don't have to take care of things like if there is actually a loop
949       * defined or if the current read position is located within a loop area.       * defined or if the current read position is located within a loop area.
950       * The method already handles such cases by itself.       * The method already handles such cases by itself.
951       *       *
952         * <b>Caution:</b> If you are using more than one streaming thread, you
953         * have to use an external decompression buffer for <b>EACH</b>
954         * streaming thread to avoid race conditions and crashes!
955         *
956       * @param pBuffer          destination buffer       * @param pBuffer          destination buffer
957       * @param SampleCount      number of sample points to read       * @param SampleCount      number of sample points to read
958       * @param pPlaybackState   will be used to store and reload the playback       * @param pPlaybackState   will be used to store and reload the playback
959       *                         state for the next ReadAndLoop() call       *                         state for the next ReadAndLoop() call
960         * @param pDimRgn          dimension region with looping information
961         * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
962       * @returns                number of successfully read sample points       * @returns                number of successfully read sample points
963         * @see                    CreateDecompressionBuffer()
964       */       */
965      unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState) {      file_offset_t Sample::ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState,
966          unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;                                        DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
967            file_offset_t samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
968          uint8_t* pDst = (uint8_t*) pBuffer;          uint8_t* pDst = (uint8_t*) pBuffer;
969    
970          SetPos(pPlaybackState->position); // recover position from the last time          SetPos(pPlaybackState->position); // recover position from the last time
971    
972          if (this->Loops && GetPos() <= this->LoopEnd) { // honor looping if there are loop points defined          if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
973    
974              switch (this->LoopType) {              const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
975                const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
976    
977                  case loop_type_bidirectional: { //TODO: not tested yet!              if (GetPos() <= loopEnd) {
978                      do {                  switch (loop.LoopType) {
                         // if not endless loop check if max. number of loop cycles have been passed  
                         if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;  
   
                         if (!pPlaybackState->reverse) { // forward playback  
                             do {  
                                 samplestoloopend  = this->LoopEnd - GetPos();  
                                 readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend));  
                                 samplestoread    -= readsamples;  
                                 totalreadsamples += readsamples;  
                                 if (readsamples == samplestoloopend) {  
                                     pPlaybackState->reverse = true;  
                                     break;  
                                 }  
                             } while (samplestoread && readsamples);  
                         }  
                         else { // backward playback  
979    
980                              // as we can only read forward from disk, we have to                      case loop_type_bidirectional: { //TODO: not tested yet!
981                              // determine the end position within the loop first,                          do {
982                              // read forward from that 'end' and finally after                              // if not endless loop check if max. number of loop cycles have been passed
983                              // reading, swap all sample frames so it reflects                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
984                              // backward playback  
985                                if (!pPlaybackState->reverse) { // forward playback
986                              unsigned long swapareastart       = totalreadsamples;                                  do {
987                              unsigned long loopoffset          = GetPos() - this->LoopStart;                                      samplestoloopend  = loopEnd - GetPos();
988                              unsigned long samplestoreadinloop = Min(samplestoread, loopoffset);                                      readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
989                              unsigned long reverseplaybackend  = GetPos() - samplestoreadinloop;                                      samplestoread    -= readsamples;
990                                        totalreadsamples += readsamples;
991                              SetPos(reverseplaybackend);                                      if (readsamples == samplestoloopend) {
992                                            pPlaybackState->reverse = true;
993                              // read samples for backward playback                                          break;
994                              do {                                      }
995                                  readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop);                                  } while (samplestoread && readsamples);
996                                  samplestoreadinloop -= readsamples;                              }
997                                  samplestoread       -= readsamples;                              else { // backward playback
                                 totalreadsamples    += readsamples;  
                             } while (samplestoreadinloop && readsamples);  
998    
999                              SetPos(reverseplaybackend); // pretend we really read backwards                                  // as we can only read forward from disk, we have to
1000                                    // determine the end position within the loop first,
1001                                    // read forward from that 'end' and finally after
1002                                    // reading, swap all sample frames so it reflects
1003                                    // backward playback
1004    
1005                                    file_offset_t swapareastart       = totalreadsamples;
1006                                    file_offset_t loopoffset          = GetPos() - loop.LoopStart;
1007                                    file_offset_t samplestoreadinloop = Min(samplestoread, loopoffset);
1008                                    file_offset_t reverseplaybackend  = GetPos() - samplestoreadinloop;
1009    
1010                                    SetPos(reverseplaybackend);
1011    
1012                                    // read samples for backward playback
1013                                    do {
1014                                        readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
1015                                        samplestoreadinloop -= readsamples;
1016                                        samplestoread       -= readsamples;
1017                                        totalreadsamples    += readsamples;
1018                                    } while (samplestoreadinloop && readsamples);
1019    
1020                                    SetPos(reverseplaybackend); // pretend we really read backwards
1021    
1022                                    if (reverseplaybackend == loop.LoopStart) {
1023                                        pPlaybackState->loop_cycles_left--;
1024                                        pPlaybackState->reverse = false;
1025                                    }
1026    
1027                              if (reverseplaybackend == this->LoopStart) {                                  // reverse the sample frames for backward playback
1028                                  pPlaybackState->loop_cycles_left--;                                  if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
1029                                  pPlaybackState->reverse = false;                                      SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1030                              }                              }
1031                            } while (samplestoread && readsamples);
1032                            break;
1033                        }
1034    
1035                              // reverse the sample frames for backward playback                      case loop_type_backward: { // TODO: not tested yet!
1036                              SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);                          // forward playback (not entered the loop yet)
1037                          }                          if (!pPlaybackState->reverse) do {
1038                      } while (samplestoread && readsamples);                              samplestoloopend  = loopEnd - GetPos();
1039                      break;                              readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1040                  }                              samplestoread    -= readsamples;
1041                                totalreadsamples += readsamples;
1042                  case loop_type_backward: { // TODO: not tested yet!                              if (readsamples == samplestoloopend) {
1043                      // forward playback (not entered the loop yet)                                  pPlaybackState->reverse = true;
1044                      if (!pPlaybackState->reverse) do {                                  break;
1045                          samplestoloopend  = this->LoopEnd - GetPos();                              }
1046                          readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend));                          } while (samplestoread && readsamples);
                         samplestoread    -= readsamples;  
                         totalreadsamples += readsamples;  
                         if (readsamples == samplestoloopend) {  
                             pPlaybackState->reverse = true;  
                             break;  
                         }  
                     } while (samplestoread && readsamples);  
1047    
1048                      if (!samplestoread) break;                          if (!samplestoread) break;
1049    
1050                      // as we can only read forward from disk, we have to                          // as we can only read forward from disk, we have to
1051                      // determine the end position within the loop first,                          // determine the end position within the loop first,
1052                      // read forward from that 'end' and finally after                          // read forward from that 'end' and finally after
1053                      // reading, swap all sample frames so it reflects                          // reading, swap all sample frames so it reflects
1054                      // backward playback                          // backward playback
1055    
1056                      unsigned long swapareastart       = totalreadsamples;                          file_offset_t swapareastart       = totalreadsamples;
1057                      unsigned long loopoffset          = GetPos() - this->LoopStart;                          file_offset_t loopoffset          = GetPos() - loop.LoopStart;
1058                      unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * LoopSize - loopoffset)                          file_offset_t samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1059                                                                                : samplestoread;                                                                                    : samplestoread;
1060                      unsigned long reverseplaybackend  = this->LoopStart + Abs((loopoffset - samplestoreadinloop) % this->LoopSize);                          file_offset_t reverseplaybackend  = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1061    
1062                      SetPos(reverseplaybackend);                          SetPos(reverseplaybackend);
1063    
1064                      // read samples for backward playback                          // read samples for backward playback
1065                      do {                          do {
1066                          // if not endless loop check if max. number of loop cycles have been passed                              // if not endless loop check if max. number of loop cycles have been passed
1067                          if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1068                          samplestoloopend     = this->LoopEnd - GetPos();                              samplestoloopend     = loopEnd - GetPos();
1069                          readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend));                              readsamples          = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1070                          samplestoreadinloop -= readsamples;                              samplestoreadinloop -= readsamples;
1071                          samplestoread       -= readsamples;                              samplestoread       -= readsamples;
1072                          totalreadsamples    += readsamples;                              totalreadsamples    += readsamples;
1073                          if (readsamples == samplestoloopend) {                              if (readsamples == samplestoloopend) {
1074                              pPlaybackState->loop_cycles_left--;                                  pPlaybackState->loop_cycles_left--;
1075                              SetPos(this->LoopStart);                                  SetPos(loop.LoopStart);
1076                          }                              }
1077                      } while (samplestoreadinloop && readsamples);                          } while (samplestoreadinloop && readsamples);
1078    
1079                      SetPos(reverseplaybackend); // pretend we really read backwards                          SetPos(reverseplaybackend); // pretend we really read backwards
1080    
1081                      // reverse the sample frames for backward playback                          // reverse the sample frames for backward playback
1082                      SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);                          SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1083                      break;                          break;
1084                  }                      }
1085    
1086                  default: case loop_type_normal: {                      default: case loop_type_normal: {
1087                      do {                          do {
1088                          // if not endless loop check if max. number of loop cycles have been passed                              // if not endless loop check if max. number of loop cycles have been passed
1089                          if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;                              if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1090                          samplestoloopend  = this->LoopEnd - GetPos();                              samplestoloopend  = loopEnd - GetPos();
1091                          readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend));                              readsamples       = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1092                          samplestoread    -= readsamples;                              samplestoread    -= readsamples;
1093                          totalreadsamples += readsamples;                              totalreadsamples += readsamples;
1094                          if (readsamples == samplestoloopend) {                              if (readsamples == samplestoloopend) {
1095                              pPlaybackState->loop_cycles_left--;                                  pPlaybackState->loop_cycles_left--;
1096                              SetPos(this->LoopStart);                                  SetPos(loop.LoopStart);
1097                          }                              }
1098                      } while (samplestoread && readsamples);                          } while (samplestoread && readsamples);
1099                      break;                          break;
1100                        }
1101                  }                  }
1102              }              }
1103          }          }
1104    
1105          // read on without looping          // read on without looping
1106          if (samplestoread) do {          if (samplestoread) do {
1107              readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread);              readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
1108              samplestoread    -= readsamples;              samplestoread    -= readsamples;
1109              totalreadsamples += readsamples;              totalreadsamples += readsamples;
1110          } while (readsamples && samplestoread);          } while (readsamples && samplestoread);
# Line 495  namespace gig { Line 1123  namespace gig {
1123       * and <i>SetPos()</i> if you don't want to load the sample into RAM,       * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1124       * thus for disk streaming.       * thus for disk streaming.
1125       *       *
1126         * <b>Caution:</b> If you are using more than one streaming thread, you
1127         * have to use an external decompression buffer for <b>EACH</b>
1128         * streaming thread to avoid race conditions and crashes!
1129         *
1130         * For 16 bit samples, the data in the buffer will be int16_t
1131         * (using native endianness). For 24 bit, the buffer will
1132         * contain three bytes per sample, little-endian.
1133         *
1134       * @param pBuffer      destination buffer       * @param pBuffer      destination buffer
1135       * @param SampleCount  number of sample points to read       * @param SampleCount  number of sample points to read
1136         * @param pExternalDecompressionBuffer  (optional) external buffer to use for decompression
1137       * @returns            number of successfully read sample points       * @returns            number of successfully read sample points
1138       * @see                SetPos()       * @see                SetPos(), CreateDecompressionBuffer()
1139       */       */
1140      unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount) {      file_offset_t Sample::Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer) {
1141          if (SampleCount == 0) return 0;          if (SampleCount == 0) return 0;
1142          if (!Compressed) return pCkData->Read(pBuffer, SampleCount, FrameSize); //FIXME: channel inversion due to endian correction?          if (!Compressed) {
1143          else { //FIXME: no support for mono compressed samples yet, are there any?              if (BitDepth == 24) {
1144                    return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1145                }
1146                else { // 16 bit
1147                    // (pCkData->Read does endian correction)
1148                    return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1149                                         : pCkData->Read(pBuffer, SampleCount, 2);
1150                }
1151            }
1152            else {
1153              if (this->SamplePos >= this->SamplesTotal) return 0;              if (this->SamplePos >= this->SamplesTotal) return 0;
1154              //TODO: efficiency: we simply assume here that all frames are compressed, maybe we should test for an average compression rate              //TODO: efficiency: maybe we should test for an average compression rate
1155              // best case needed buffer size (all frames compressed)              file_offset_t assumedsize      = GuessSize(SampleCount),
             unsigned long assumedsize      = (SampleCount << 1)  + // *2 (16 Bit, stereo, but assume all frames compressed)  
                                              (SampleCount >> 10) + // 10 bytes header per 2048 sample points  
                                              8194,                 // at least one worst case sample frame  
1156                            remainingbytes   = 0,           // remaining bytes in the local buffer                            remainingbytes   = 0,           // remaining bytes in the local buffer
1157                            remainingsamples = SampleCount,                            remainingsamples = SampleCount,
1158                            copysamples;                            copysamples, skipsamples,
1159              int currentframeoffset = this->FrameOffset;   // offset in current sample frame since last Read()                            currentframeoffset = this->FrameOffset;  // offset in current sample frame since last Read()
1160              this->FrameOffset = 0;              this->FrameOffset = 0;
1161    
1162              if (assumedsize > this->DecompressionBufferSize) {              buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1163                  // local buffer reallocation - hope this won't happen  
1164                  if (this->pDecompressionBuffer) delete[] (int8_t*) this->pDecompressionBuffer;              // if decompression buffer too small, then reduce amount of samples to read
1165                  this->pDecompressionBuffer    = new int8_t[assumedsize << 1]; // double of current needed size              if (pDecompressionBuffer->Size < assumedsize) {
1166                  this->DecompressionBufferSize = assumedsize;                  std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1167                    SampleCount      = WorstCaseMaxSamples(pDecompressionBuffer);
1168                    remainingsamples = SampleCount;
1169                    assumedsize      = GuessSize(SampleCount);
1170              }              }
1171    
1172              int16_t  compressionmode, left, dleft, right, dright;              unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1173              int8_t*  pSrc = (int8_t*)  this->pDecompressionBuffer;              int16_t* pDst = static_cast<int16_t*>(pBuffer);
1174              int16_t* pDst = (int16_t*) pBuffer;              uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1175              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);              remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1176    
1177              while (remainingsamples) {              while (remainingsamples && remainingbytes) {
1178                    file_offset_t framesamples = SamplesPerFrame;
1179                  // reload from disk to local buffer if needed                  file_offset_t framebytes, rightChannelOffset = 0, nextFrameOffset;
1180                  if (remainingbytes < 8194) {  
1181                      if (pCkData->GetState() != RIFF::stream_ready) {                  int mode_l = *pSrc++, mode_r = 0;
1182                          this->SamplePos = this->SamplesTotal;  
1183                          return (SampleCount - remainingsamples);                  if (Channels == 2) {
1184                      }                      mode_r = *pSrc++;
1185                      assumedsize    = remainingsamples;                      framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1186                      assumedsize    = (assumedsize << 1)  + // *2 (16 Bit, stereo, but assume all frames compressed)                      rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1187                                       (assumedsize >> 10) + // 10 bytes header per 2048 sample points                      nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1188                                       8194;                 // at least one worst case sample frame                      if (remainingbytes < framebytes) { // last frame in sample
1189                      pCkData->SetPos(remainingbytes, RIFF::stream_backward);                          framesamples = SamplesInLastFrame;
1190                      if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();                          if (mode_l == 4 && (framesamples & 1)) {
1191                      remainingbytes = pCkData->Read(this->pDecompressionBuffer, assumedsize, 1);                              rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1192                      pSrc = (int8_t*) this->pDecompressionBuffer;                          }
1193                            else {
1194                                rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1195                            }
1196                        }
1197                    }
1198                    else {
1199                        framebytes = bytesPerFrame[mode_l] + 1;
1200                        nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1201                        if (remainingbytes < framebytes) {
1202                            framesamples = SamplesInLastFrame;
1203                        }
1204                  }                  }
1205    
1206                  // determine how many samples in this frame to skip and read                  // determine how many samples in this frame to skip and read
1207                  if (remainingsamples >= 2048) {                  if (currentframeoffset + remainingsamples >= framesamples) {
1208                      copysamples       = 2048 - currentframeoffset;                      if (currentframeoffset <= framesamples) {
1209                      remainingsamples -= copysamples;                          copysamples = framesamples - currentframeoffset;
1210                            skipsamples = currentframeoffset;
1211                        }
1212                        else {
1213                            copysamples = 0;
1214                            skipsamples = framesamples;
1215                        }
1216                  }                  }
1217                  else {                  else {
1218                        // This frame has enough data for pBuffer, but not
1219                        // all of the frame is needed. Set file position
1220                        // to start of this frame for next call to Read.
1221                      copysamples = remainingsamples;                      copysamples = remainingsamples;
1222                      if (currentframeoffset + copysamples > 2048) {                      skipsamples = currentframeoffset;
1223                          copysamples = 2048 - currentframeoffset;                      pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1224                          remainingsamples -= copysamples;                      this->FrameOffset = currentframeoffset + copysamples;
1225                      }                  }
1226                      else {                  remainingsamples -= copysamples;
1227    
1228                    if (remainingbytes > framebytes) {
1229                        remainingbytes -= framebytes;
1230                        if (remainingsamples == 0 &&
1231                            currentframeoffset + copysamples == framesamples) {
1232                            // This frame has enough data for pBuffer, and
1233                            // all of the frame is needed. Set file
1234                            // position to start of next frame for next
1235                            // call to Read. FrameOffset is 0.
1236                          pCkData->SetPos(remainingbytes, RIFF::stream_backward);                          pCkData->SetPos(remainingbytes, RIFF::stream_backward);
                         remainingsamples = 0;  
                         this->FrameOffset = currentframeoffset + copysamples;  
1237                      }                      }
1238                  }                  }
1239                    else remainingbytes = 0;
1240    
1241                  // decompress and copy current frame from local buffer to destination buffer                  currentframeoffset -= skipsamples;
1242                  compressionmode = *(int16_t*)pSrc; pSrc+=2;  
1243                  switch (compressionmode) {                  if (copysamples == 0) {
1244                      case 1: // left channel compressed                      // skip this frame
1245                          remainingbytes -= 6150; // (left 8 bit, right 16 bit, +6 byte header)                      pSrc += framebytes - Channels;
1246                          if (!remainingsamples && copysamples == 2048)                  }
1247                              pCkData->SetPos(remainingbytes, RIFF::stream_backward);                  else {
1248                        const unsigned char* const param_l = pSrc;
1249                          left  = *(int16_t*)pSrc; pSrc+=2;                      if (BitDepth == 24) {
1250                          dleft = *(int16_t*)pSrc; pSrc+=2;                          if (mode_l != 2) pSrc += 12;
1251                          while (currentframeoffset) {  
1252                              dleft -= *pSrc;                          if (Channels == 2) { // Stereo
1253                              left  -= dleft;                              const unsigned char* const param_r = pSrc;
1254                              pSrc+=3; // 8 bit left channel, skip uncompressed right channel (16 bit)                              if (mode_r != 2) pSrc += 12;
1255                              currentframeoffset--;  
1256                          }                              Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1257                          while (copysamples) {                                           skipsamples, copysamples, TruncatedBits);
1258                              dleft -= *pSrc; pSrc++;                              Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1259                              left  -= dleft;                                           skipsamples, copysamples, TruncatedBits);
1260                              *pDst = left; pDst++;                              pDst24 += copysamples * 6;
                             *pDst = *(int16_t*)pSrc; pDst++; pSrc+=2;  
                             copysamples--;  
                         }  
                         break;  
                     case 256: // right channel compressed  
                         remainingbytes -= 6150; // (left 16 bit, right 8 bit, +6 byte header)  
                         if (!remainingsamples && copysamples == 2048)  
                             pCkData->SetPos(remainingbytes, RIFF::stream_backward);  
   
                         right  = *(int16_t*)pSrc; pSrc+=2;  
                         dright = *(int16_t*)pSrc; pSrc+=2;  
                         if (currentframeoffset) {  
                             pSrc+=2; // skip uncompressed left channel, now we can increment by 3  
                             while (currentframeoffset) {  
                                 dright -= *pSrc;  
                                 right  -= dright;  
                                 pSrc+=3; // 8 bit right channel, skip uncompressed left channel (16 bit)  
                                 currentframeoffset--;  
                             }  
                             pSrc-=2; // back aligned to left channel  
1261                          }                          }
1262                          while (copysamples) {                          else { // Mono
1263                              *pDst = *(int16_t*)pSrc; pDst++; pSrc+=2;                              Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1264                              dright -= *pSrc; pSrc++;                                           skipsamples, copysamples, TruncatedBits);
1265                              right  -= dright;                              pDst24 += copysamples * 3;
                             *pDst = right; pDst++;  
                             copysamples--;  
1266                          }                          }
1267                          break;                      }
1268                      case 257: // both channels compressed                      else { // 16 bit
1269                          remainingbytes -= 4106; // (left 8 bit, right 8 bit, +10 byte header)                          if (mode_l) pSrc += 4;
1270                          if (!remainingsamples && copysamples == 2048)  
1271                              pCkData->SetPos(remainingbytes, RIFF::stream_backward);                          int step;
1272                            if (Channels == 2) { // Stereo
1273                          left   = *(int16_t*)pSrc; pSrc+=2;                              const unsigned char* const param_r = pSrc;
1274                          dleft  = *(int16_t*)pSrc; pSrc+=2;                              if (mode_r) pSrc += 4;
1275                          right  = *(int16_t*)pSrc; pSrc+=2;  
1276                          dright = *(int16_t*)pSrc; pSrc+=2;                              step = (2 - mode_l) + (2 - mode_r);
1277                          while (currentframeoffset) {                              Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1278                              dleft  -= *pSrc; pSrc++;                              Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1279                              left   -= dleft;                                           skipsamples, copysamples);
1280                              dright -= *pSrc; pSrc++;                              pDst += copysamples << 1;
                             right  -= dright;  
                             currentframeoffset--;  
1281                          }                          }
1282                          while (copysamples) {                          else { // Mono
1283                              dleft  -= *pSrc; pSrc++;                              step = 2 - mode_l;
1284                              left   -= dleft;                              Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1285                              dright -= *pSrc; pSrc++;                              pDst += copysamples;
                             right  -= dright;  
                             *pDst = left;  pDst++;  
                             *pDst = right; pDst++;  
                             copysamples--;  
1286                          }                          }
1287                          break;                      }
1288                      default: // both channels uncompressed                      pSrc += nextFrameOffset;
                         remainingbytes -= 8194; // (left 16 bit, right 16 bit, +2 byte header)  
                         if (!remainingsamples && copysamples == 2048)  
                             pCkData->SetPos(remainingbytes, RIFF::stream_backward);  
   
                         pSrc += currentframeoffset << 2;  
                         currentframeoffset = 0;  
                         memcpy(pDst, pSrc, copysamples << 2);  
                         pDst += copysamples << 1;  
                         pSrc += copysamples << 2;  
                         break;  
1289                  }                  }
1290              }  
1291                    // reload from disk to local buffer if needed
1292                    if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1293                        assumedsize    = GuessSize(remainingsamples);
1294                        pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1295                        if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1296                        remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1297                        pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1298                    }
1299                } // while
1300    
1301              this->SamplePos += (SampleCount - remainingsamples);              this->SamplePos += (SampleCount - remainingsamples);
1302              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;              if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1303              return (SampleCount - remainingsamples);              return (SampleCount - remainingsamples);
1304          }          }
1305      }      }
1306    
1307        /** @brief Write sample wave data.
1308         *
1309         * Writes \a SampleCount number of sample points from the buffer pointed
1310         * by \a pBuffer and increments the position within the sample. Use this
1311         * method to directly write the sample data to disk, i.e. if you don't
1312         * want or cannot load the whole sample data into RAM.
1313         *
1314         * You have to Resize() the sample to the desired size and call
1315         * File::Save() <b>before</b> using Write().
1316         *
1317         * Note: there is currently no support for writing compressed samples.
1318         *
1319         * For 16 bit samples, the data in the source buffer should be
1320         * int16_t (using native endianness). For 24 bit, the buffer
1321         * should contain three bytes per sample, little-endian.
1322         *
1323         * @param pBuffer     - source buffer
1324         * @param SampleCount - number of sample points to write
1325         * @throws DLS::Exception if current sample size is too small
1326         * @throws gig::Exception if sample is compressed
1327         * @see DLS::LoadSampleData()
1328         */
1329        file_offset_t Sample::Write(void* pBuffer, file_offset_t SampleCount) {
1330            if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1331    
1332            // if this is the first write in this sample, reset the
1333            // checksum calculator
1334            if (pCkData->GetPos() == 0) {
1335                __resetCRC(crc);
1336            }
1337            if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1338            file_offset_t res;
1339            if (BitDepth == 24) {
1340                res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1341            } else { // 16 bit
1342                res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1343                                    : pCkData->Write(pBuffer, SampleCount, 2);
1344            }
1345            __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1346    
1347            // if this is the last write, update the checksum chunk in the
1348            // file
1349            if (pCkData->GetPos() == pCkData->GetSize()) {
1350                __finalizeCRC(crc);
1351                File* pFile = static_cast<File*>(GetParent());
1352                pFile->SetSampleChecksum(this, crc);
1353            }
1354            return res;
1355        }
1356    
1357        /**
1358         * Allocates a decompression buffer for streaming (compressed) samples
1359         * with Sample::Read(). If you are using more than one streaming thread
1360         * in your application you <b>HAVE</b> to create a decompression buffer
1361         * for <b>EACH</b> of your streaming threads and provide it with the
1362         * Sample::Read() call in order to avoid race conditions and crashes.
1363         *
1364         * You should free the memory occupied by the allocated buffer(s) once
1365         * you don't need one of your streaming threads anymore by calling
1366         * DestroyDecompressionBuffer().
1367         *
1368         * @param MaxReadSize - the maximum size (in sample points) you ever
1369         *                      expect to read with one Read() call
1370         * @returns allocated decompression buffer
1371         * @see DestroyDecompressionBuffer()
1372         */
1373        buffer_t Sample::CreateDecompressionBuffer(file_offset_t MaxReadSize) {
1374            buffer_t result;
1375            const double worstCaseHeaderOverhead =
1376                    (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1377            result.Size              = (file_offset_t) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1378            result.pStart            = new int8_t[result.Size];
1379            result.NullExtensionSize = 0;
1380            return result;
1381        }
1382    
1383        /**
1384         * Free decompression buffer, previously created with
1385         * CreateDecompressionBuffer().
1386         *
1387         * @param DecompressionBuffer - previously allocated decompression
1388         *                              buffer to free
1389         */
1390        void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1391            if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1392                delete[] (int8_t*) DecompressionBuffer.pStart;
1393                DecompressionBuffer.pStart = NULL;
1394                DecompressionBuffer.Size   = 0;
1395                DecompressionBuffer.NullExtensionSize = 0;
1396            }
1397        }
1398    
1399        /**
1400         * Returns pointer to the Group this Sample belongs to. In the .gig
1401         * format a sample always belongs to one group. If it wasn't explicitly
1402         * assigned to a certain group, it will be automatically assigned to a
1403         * default group.
1404         *
1405         * @returns Sample's Group (never NULL)
1406         */
1407        Group* Sample::GetGroup() const {
1408            return pGroup;
1409        }
1410    
1411        /**
1412         * Returns the CRC-32 checksum of the sample's raw wave form data at the
1413         * time when this sample's wave form data was modified for the last time
1414         * by calling Write(). This checksum only covers the raw wave form data,
1415         * not any meta informations like i.e. bit depth or loop points. Since
1416         * this method just returns the checksum stored for this sample i.e. when
1417         * the gig file was loaded, this method returns immediately. So it does no
1418         * recalcuation of the checksum with the currently available sample wave
1419         * form data.
1420         *
1421         * @see VerifyWaveData()
1422         */
1423        uint32_t Sample::GetWaveDataCRC32Checksum() {
1424            return crc;
1425        }
1426    
1427        /**
1428         * Checks the integrity of this sample's raw audio wave data. Whenever a
1429         * Sample's raw wave data is intentionally modified (i.e. by calling
1430         * Write() and supplying the new raw audio wave form data) a CRC32 checksum
1431         * is calculated and stored/updated for this sample, along to the sample's
1432         * meta informations.
1433         *
1434         * Now by calling this method the current raw audio wave data is checked
1435         * against the already stored CRC32 check sum in order to check whether the
1436         * sample data had been damaged unintentionally for some reason. Since by
1437         * calling this method always the entire raw audio wave data has to be
1438         * read, verifying all samples this way may take a long time accordingly.
1439         * And that's also the reason why the sample integrity is not checked by
1440         * default whenever a gig file is loaded. So this method must be called
1441         * explicitly to fulfill this task.
1442         *
1443         * @param pActually - (optional) if provided, will be set to the actually
1444         *                    calculated checksum of the current raw wave form data,
1445         *                    you can get the expected checksum instead by calling
1446         *                    GetWaveDataCRC32Checksum()
1447         * @returns true if sample is OK or false if the sample is damaged
1448         * @throws Exception if no checksum had been stored to disk for this
1449         *         sample yet, or on I/O issues
1450         * @see GetWaveDataCRC32Checksum()
1451         */
1452        bool Sample::VerifyWaveData(uint32_t* pActually) {
1453            //File* pFile = static_cast<File*>(GetParent());
1454            uint32_t crc = CalculateWaveDataChecksum();
1455            if (pActually) *pActually = crc;
1456            return crc == this->crc;
1457        }
1458    
1459        uint32_t Sample::CalculateWaveDataChecksum() {
1460            const size_t sz = 20*1024; // 20kB buffer size
1461            std::vector<uint8_t> buffer(sz);
1462            buffer.resize(sz);
1463    
1464            const size_t n = sz / FrameSize;
1465            SetPos(0);
1466            uint32_t crc = 0;
1467            __resetCRC(crc);
1468            while (true) {
1469                file_offset_t nRead = Read(&buffer[0], n);
1470                if (nRead <= 0) break;
1471                __calculateCRC(&buffer[0], nRead * FrameSize, crc);
1472            }
1473            __finalizeCRC(crc);
1474            return crc;
1475        }
1476    
1477      Sample::~Sample() {      Sample::~Sample() {
1478          Instances--;          Instances--;
1479          if (!Instances && pDecompressionBuffer) delete[] (int8_t*) pDecompressionBuffer;          if (!Instances && InternalDecompressionBuffer.Size) {
1480                delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1481                InternalDecompressionBuffer.pStart = NULL;
1482                InternalDecompressionBuffer.Size   = 0;
1483            }
1484          if (FrameTable) delete[] FrameTable;          if (FrameTable) delete[] FrameTable;
1485          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;          if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1486      }      }
# Line 670  namespace gig { Line 1490  namespace gig {
1490  // *************** DimensionRegion ***************  // *************** DimensionRegion ***************
1491  // *  // *
1492    
1493      uint                               DimensionRegion::Instances       = 0;      size_t                             DimensionRegion::Instances       = 0;
1494      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;      DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1495    
1496      DimensionRegion::DimensionRegion(RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {      DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1497          Instances++;          Instances++;
1498    
1499          memcpy(&Crossfade, &SamplerOptions, 4);          pSample = NULL;
1500            pRegion = pParent;
1501    
1502            if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1503            else memset(&Crossfade, 0, 4);
1504    
1505          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;          if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1506    
1507          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);          RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1508          _3ewa->ReadInt32(); // unknown, allways 0x0000008C ?          if (_3ewa) { // if '3ewa' chunk exists
1509          LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              _3ewa->SetPos(0);
1510          EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());  
1511          _3ewa->ReadInt16(); // unknown              _3ewa->ReadInt32(); // unknown, always == chunk size ?
1512          LFO1InternalDepth = _3ewa->ReadUint16();              LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1513          _3ewa->ReadInt16(); // unknown              EG3Attack     = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1514          LFO3InternalDepth = _3ewa->ReadInt16();              _3ewa->ReadInt16(); // unknown
1515          _3ewa->ReadInt16(); // unknown              LFO1InternalDepth = _3ewa->ReadUint16();
1516          LFO1ControlDepth = _3ewa->ReadUint16();              _3ewa->ReadInt16(); // unknown
1517          _3ewa->ReadInt16(); // unknown              LFO3InternalDepth = _3ewa->ReadInt16();
1518          LFO3ControlDepth = _3ewa->ReadInt16();              _3ewa->ReadInt16(); // unknown
1519          EG1Attack           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              LFO1ControlDepth = _3ewa->ReadUint16();
1520          EG1Decay1           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              _3ewa->ReadInt16(); // unknown
1521          _3ewa->ReadInt16(); // unknown              LFO3ControlDepth = _3ewa->ReadInt16();
1522          EG1Sustain          = _3ewa->ReadUint16();              EG1Attack           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1523          EG1Release          = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG1Decay1           = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1524          EG1Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));              _3ewa->ReadInt16(); // unknown
1525          uint8_t eg1ctrloptions        = _3ewa->ReadUint8();              EG1Sustain          = _3ewa->ReadUint16();
1526          EG1ControllerInvert           = eg1ctrloptions & 0x01;              EG1Release          = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1527          EG1ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1528          EG1ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);              uint8_t eg1ctrloptions        = _3ewa->ReadUint8();
1529          EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);              EG1ControllerInvert           = eg1ctrloptions & 0x01;
1530          EG2Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));              EG1ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1531          uint8_t eg2ctrloptions        = _3ewa->ReadUint8();              EG1ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1532          EG2ControllerInvert           = eg2ctrloptions & 0x01;              EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1533          EG2ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2Controller       = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1534          EG2ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);              uint8_t eg2ctrloptions        = _3ewa->ReadUint8();
1535          EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);              EG2ControllerInvert           = eg2ctrloptions & 0x01;
1536          LFO1Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2ControllerAttackInfluence  = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1537          EG2Attack        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2ControllerDecayInfluence   = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1538          EG2Decay1        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1539          _3ewa->ReadInt16(); // unknown              LFO1Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1540          EG2Sustain       = _3ewa->ReadUint16();              EG2Attack        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1541          EG2Release       = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2Decay1        = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1542          _3ewa->ReadInt16(); // unknown              _3ewa->ReadInt16(); // unknown
1543          LFO2ControlDepth = _3ewa->ReadUint16();              EG2Sustain       = _3ewa->ReadUint16();
1544          LFO2Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());              EG2Release       = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1545          _3ewa->ReadInt16(); // unknown              _3ewa->ReadInt16(); // unknown
1546          LFO2InternalDepth = _3ewa->ReadUint16();              LFO2ControlDepth = _3ewa->ReadUint16();
1547          int32_t eg1decay2 = _3ewa->ReadInt32();              LFO2Frequency    = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1548          EG1Decay2          = (double) GIG_EXP_DECODE(eg1decay2);              _3ewa->ReadInt16(); // unknown
1549          EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);              LFO2InternalDepth = _3ewa->ReadUint16();
1550          _3ewa->ReadInt16(); // unknown              int32_t eg1decay2 = _3ewa->ReadInt32();
1551          EG1PreAttack      = _3ewa->ReadUint16();              EG1Decay2          = (double) GIG_EXP_DECODE(eg1decay2);
1552          int32_t eg2decay2 = _3ewa->ReadInt32();              EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1553          EG2Decay2         = (double) GIG_EXP_DECODE(eg2decay2);              _3ewa->ReadInt16(); // unknown
1554          EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);              EG1PreAttack      = _3ewa->ReadUint16();
1555          _3ewa->ReadInt16(); // unknown              int32_t eg2decay2 = _3ewa->ReadInt32();
1556          EG2PreAttack      = _3ewa->ReadUint16();              EG2Decay2         = (double) GIG_EXP_DECODE(eg2decay2);
1557          uint8_t velocityresponse = _3ewa->ReadUint8();              EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1558          if (velocityresponse < 5) {              _3ewa->ReadInt16(); // unknown
1559              VelocityResponseCurve = curve_type_nonlinear;              EG2PreAttack      = _3ewa->ReadUint16();
1560              VelocityResponseDepth = velocityresponse;              uint8_t velocityresponse = _3ewa->ReadUint8();
1561          }              if (velocityresponse < 5) {
1562          else if (velocityresponse < 10) {                  VelocityResponseCurve = curve_type_nonlinear;
1563              VelocityResponseCurve = curve_type_linear;                  VelocityResponseDepth = velocityresponse;
1564              VelocityResponseDepth = velocityresponse - 5;              } else if (velocityresponse < 10) {
1565          }                  VelocityResponseCurve = curve_type_linear;
1566          else if (velocityresponse < 15) {                  VelocityResponseDepth = velocityresponse - 5;
1567              VelocityResponseCurve = curve_type_special;              } else if (velocityresponse < 15) {
1568              VelocityResponseDepth = velocityresponse - 10;                  VelocityResponseCurve = curve_type_special;
1569                    VelocityResponseDepth = velocityresponse - 10;
1570                } else {
1571                    VelocityResponseCurve = curve_type_unknown;
1572                    VelocityResponseDepth = 0;
1573                }
1574                uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1575                if (releasevelocityresponse < 5) {
1576                    ReleaseVelocityResponseCurve = curve_type_nonlinear;
1577                    ReleaseVelocityResponseDepth = releasevelocityresponse;
1578                } else if (releasevelocityresponse < 10) {
1579                    ReleaseVelocityResponseCurve = curve_type_linear;
1580                    ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1581                } else if (releasevelocityresponse < 15) {
1582                    ReleaseVelocityResponseCurve = curve_type_special;
1583                    ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1584                } else {
1585                    ReleaseVelocityResponseCurve = curve_type_unknown;
1586                    ReleaseVelocityResponseDepth = 0;
1587                }
1588                VelocityResponseCurveScaling = _3ewa->ReadUint8();
1589                AttenuationControllerThreshold = _3ewa->ReadInt8();
1590                _3ewa->ReadInt32(); // unknown
1591                SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1592                _3ewa->ReadInt16(); // unknown
1593                uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1594                PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1595                if      (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1596                else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1597                else                                       DimensionBypass = dim_bypass_ctrl_none;
1598                uint8_t pan = _3ewa->ReadUint8();
1599                Pan         = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1600                SelfMask = _3ewa->ReadInt8() & 0x01;
1601                _3ewa->ReadInt8(); // unknown
1602                uint8_t lfo3ctrl = _3ewa->ReadUint8();
1603                LFO3Controller           = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1604                LFO3Sync                 = lfo3ctrl & 0x20; // bit 5
1605                InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1606                AttenuationController  = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1607                uint8_t lfo2ctrl       = _3ewa->ReadUint8();
1608                LFO2Controller         = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1609                LFO2FlipPhase          = lfo2ctrl & 0x80; // bit 7
1610                LFO2Sync               = lfo2ctrl & 0x20; // bit 5
1611                bool extResonanceCtrl  = lfo2ctrl & 0x40; // bit 6
1612                uint8_t lfo1ctrl       = _3ewa->ReadUint8();
1613                LFO1Controller         = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1614                LFO1FlipPhase          = lfo1ctrl & 0x80; // bit 7
1615                LFO1Sync               = lfo1ctrl & 0x40; // bit 6
1616                VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1617                                                            : vcf_res_ctrl_none;
1618                uint16_t eg3depth = _3ewa->ReadUint16();
1619                EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1620                                            : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1621                _3ewa->ReadInt16(); // unknown
1622                ChannelOffset = _3ewa->ReadUint8() / 4;
1623                uint8_t regoptions = _3ewa->ReadUint8();
1624                MSDecode           = regoptions & 0x01; // bit 0
1625                SustainDefeat      = regoptions & 0x02; // bit 1
1626                _3ewa->ReadInt16(); // unknown
1627                VelocityUpperLimit = _3ewa->ReadInt8();
1628                _3ewa->ReadInt8(); // unknown
1629                _3ewa->ReadInt16(); // unknown
1630                ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1631                _3ewa->ReadInt8(); // unknown
1632                _3ewa->ReadInt8(); // unknown
1633                EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1634                uint8_t vcfcutoff = _3ewa->ReadUint8();
1635                VCFEnabled = vcfcutoff & 0x80; // bit 7
1636                VCFCutoff  = vcfcutoff & 0x7f; // lower 7 bits
1637                VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1638                uint8_t vcfvelscale = _3ewa->ReadUint8();
1639                VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1640                VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1641                _3ewa->ReadInt8(); // unknown
1642                uint8_t vcfresonance = _3ewa->ReadUint8();
1643                VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1644                VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1645                uint8_t vcfbreakpoint         = _3ewa->ReadUint8();
1646                VCFKeyboardTracking           = vcfbreakpoint & 0x80; // bit 7
1647                VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1648                uint8_t vcfvelocity = _3ewa->ReadUint8();
1649                VCFVelocityDynamicRange = vcfvelocity % 5;
1650                VCFVelocityCurve        = static_cast<curve_type_t>(vcfvelocity / 5);
1651                VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1652                if (VCFType == vcf_type_lowpass) {
1653                    if (lfo3ctrl & 0x40) // bit 6
1654                        VCFType = vcf_type_lowpassturbo;
1655                }
1656                if (_3ewa->RemainingBytes() >= 8) {
1657                    _3ewa->Read(DimensionUpperLimits, 1, 8);
1658                } else {
1659                    memset(DimensionUpperLimits, 0, 8);
1660                }
1661            } else { // '3ewa' chunk does not exist yet
1662                // use default values
1663                LFO3Frequency                   = 1.0;
1664                EG3Attack                       = 0.0;
1665                LFO1InternalDepth               = 0;
1666                LFO3InternalDepth               = 0;
1667                LFO1ControlDepth                = 0;
1668                LFO3ControlDepth                = 0;
1669                EG1Attack                       = 0.0;
1670                EG1Decay1                       = 0.005;
1671                EG1Sustain                      = 1000;
1672                EG1Release                      = 0.3;
1673                EG1Controller.type              = eg1_ctrl_t::type_none;
1674                EG1Controller.controller_number = 0;
1675                EG1ControllerInvert             = false;
1676                EG1ControllerAttackInfluence    = 0;
1677                EG1ControllerDecayInfluence     = 0;
1678                EG1ControllerReleaseInfluence   = 0;
1679                EG2Controller.type              = eg2_ctrl_t::type_none;
1680                EG2Controller.controller_number = 0;
1681                EG2ControllerInvert             = false;
1682                EG2ControllerAttackInfluence    = 0;
1683                EG2ControllerDecayInfluence     = 0;
1684                EG2ControllerReleaseInfluence   = 0;
1685                LFO1Frequency                   = 1.0;
1686                EG2Attack                       = 0.0;
1687                EG2Decay1                       = 0.005;
1688                EG2Sustain                      = 1000;
1689                EG2Release                      = 60;
1690                LFO2ControlDepth                = 0;
1691                LFO2Frequency                   = 1.0;
1692                LFO2InternalDepth               = 0;
1693                EG1Decay2                       = 0.0;
1694                EG1InfiniteSustain              = true;
1695                EG1PreAttack                    = 0;
1696                EG2Decay2                       = 0.0;
1697                EG2InfiniteSustain              = true;
1698                EG2PreAttack                    = 0;
1699                VelocityResponseCurve           = curve_type_nonlinear;
1700                VelocityResponseDepth           = 3;
1701                ReleaseVelocityResponseCurve    = curve_type_nonlinear;
1702                ReleaseVelocityResponseDepth    = 3;
1703                VelocityResponseCurveScaling    = 32;
1704                AttenuationControllerThreshold  = 0;
1705                SampleStartOffset               = 0;
1706                PitchTrack                      = true;
1707                DimensionBypass                 = dim_bypass_ctrl_none;
1708                Pan                             = 0;
1709                SelfMask                        = true;
1710                LFO3Controller                  = lfo3_ctrl_modwheel;
1711                LFO3Sync                        = false;
1712                InvertAttenuationController     = false;
1713                AttenuationController.type      = attenuation_ctrl_t::type_none;
1714                AttenuationController.controller_number = 0;
1715                LFO2Controller                  = lfo2_ctrl_internal;
1716                LFO2FlipPhase                   = false;
1717                LFO2Sync                        = false;
1718                LFO1Controller                  = lfo1_ctrl_internal;
1719                LFO1FlipPhase                   = false;
1720                LFO1Sync                        = false;
1721                VCFResonanceController          = vcf_res_ctrl_none;
1722                EG3Depth                        = 0;
1723                ChannelOffset                   = 0;
1724                MSDecode                        = false;
1725                SustainDefeat                   = false;
1726                VelocityUpperLimit              = 0;
1727                ReleaseTriggerDecay             = 0;
1728                EG1Hold                         = false;
1729                VCFEnabled                      = false;
1730                VCFCutoff                       = 0;
1731                VCFCutoffController             = vcf_cutoff_ctrl_none;
1732                VCFCutoffControllerInvert       = false;
1733                VCFVelocityScale                = 0;
1734                VCFResonance                    = 0;
1735                VCFResonanceDynamic             = false;
1736                VCFKeyboardTracking             = false;
1737                VCFKeyboardTrackingBreakpoint   = 0;
1738                VCFVelocityDynamicRange         = 0x04;
1739                VCFVelocityCurve                = curve_type_linear;
1740                VCFType                         = vcf_type_lowpass;
1741                memset(DimensionUpperLimits, 127, 8);
1742          }          }
1743          else {  
1744              VelocityResponseCurve = curve_type_unknown;          // chunk for own format extensions, these will *NOT* work with Gigasampler/GigaStudio !
1745              VelocityResponseDepth = 0;          RIFF::Chunk* lsde = _3ewl->GetSubChunk(CHUNK_ID_LSDE);
1746            if (lsde) { // format extension for EG behavior options
1747                lsde->SetPos(0);
1748    
1749                eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
1750                for (int i = 0; i < 2; ++i) { // NOTE: we reserved a 3rd byte for a potential future EG3 option
1751                    unsigned char byte = lsde->ReadUint8();
1752                    pEGOpts[i]->AttackCancel     = byte & 1;
1753                    pEGOpts[i]->AttackHoldCancel = byte & (1 << 1);
1754                    pEGOpts[i]->Decay1Cancel     = byte & (1 << 2);
1755                    pEGOpts[i]->Decay2Cancel     = byte & (1 << 3);
1756                    pEGOpts[i]->ReleaseCancel    = byte & (1 << 4);
1757                }
1758          }          }
1759          uint8_t releasevelocityresponse = _3ewa->ReadUint8();          // format extension for sustain pedal up effect on release trigger samples
1760          if (releasevelocityresponse < 5) {          if (lsde && lsde->GetSize() > 3) { // NOTE: we reserved the 3rd byte for a potential future EG3 option
1761              ReleaseVelocityResponseCurve = curve_type_nonlinear;              lsde->SetPos(3);
1762              ReleaseVelocityResponseDepth = releasevelocityresponse;              uint8_t byte = lsde->ReadUint8();
1763          }              SustainReleaseTrigger   = static_cast<sust_rel_trg_t>(byte & 0x03);
1764          else if (releasevelocityresponse < 10) {              NoNoteOffReleaseTrigger = byte >> 7;
1765              ReleaseVelocityResponseCurve = curve_type_linear;          } else {
1766              ReleaseVelocityResponseDepth = releasevelocityresponse - 5;              SustainReleaseTrigger   = sust_rel_trg_none;
1767          }              NoNoteOffReleaseTrigger = false;
         else if (releasevelocityresponse < 15) {  
             ReleaseVelocityResponseCurve = curve_type_special;  
             ReleaseVelocityResponseDepth = releasevelocityresponse - 10;  
1768          }          }
1769          else {          // format extension for LFOs' wave form, phase displacement and for
1770              ReleaseVelocityResponseCurve = curve_type_unknown;          // LFO3's flip phase
1771              ReleaseVelocityResponseDepth = 0;          if (lsde && lsde->GetSize() > 4) {
1772                lsde->SetPos(4);
1773                LFO1WaveForm = static_cast<lfo_wave_t>( lsde->ReadUint16() );
1774                LFO2WaveForm = static_cast<lfo_wave_t>( lsde->ReadUint16() );
1775                LFO3WaveForm = static_cast<lfo_wave_t>( lsde->ReadUint16() );
1776                lsde->ReadUint16(); // unused 16 bits, reserved for potential future use
1777                LFO1Phase = (double) GIG_EXP_DECODE( lsde->ReadInt32() );
1778                LFO2Phase = (double) GIG_EXP_DECODE( lsde->ReadInt32() );
1779                LFO3Phase = (double) GIG_EXP_DECODE( lsde->ReadInt32() );
1780                const uint32_t flags = lsde->ReadInt32();
1781                LFO3FlipPhase = flags & 1;
1782            } else {
1783                LFO1WaveForm = lfo_wave_sine;
1784                LFO2WaveForm = lfo_wave_sine;
1785                LFO3WaveForm = lfo_wave_sine;
1786                LFO1Phase = 0.0;
1787                LFO2Phase = 0.0;
1788                LFO3Phase = 0.0;
1789                LFO3FlipPhase = false;
1790          }          }
         VelocityResponseCurveScaling = _3ewa->ReadUint8();  
         AttenuationControllerThreshold = _3ewa->ReadInt8();  
         _3ewa->ReadInt32(); // unknown  
         SampleStartOffset = (uint16_t) _3ewa->ReadInt16();  
         _3ewa->ReadInt16(); // unknown  
         uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();  
         PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);  
         if      (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;  
         else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;  
         else                                       DimensionBypass = dim_bypass_ctrl_none;  
         uint8_t pan = _3ewa->ReadUint8();  
         Pan         = (pan < 64) ? pan : (-1) * (int8_t)pan - 63;  
         SelfMask = _3ewa->ReadInt8() & 0x01;  
         _3ewa->ReadInt8(); // unknown  
         uint8_t lfo3ctrl = _3ewa->ReadUint8();  
         LFO3Controller           = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits  
         LFO3Sync                 = lfo3ctrl & 0x20; // bit 5  
         InvertAttenuationController = lfo3ctrl & 0x80; // bit 7  
         if (VCFType == vcf_type_lowpass) {  
             if (lfo3ctrl & 0x40) // bit 6  
                 VCFType = vcf_type_lowpassturbo;  
         }  
         AttenuationController  = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));  
         uint8_t lfo2ctrl       = _3ewa->ReadUint8();  
         LFO2Controller         = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits  
         LFO2FlipPhase          = lfo2ctrl & 0x80; // bit 7  
         LFO2Sync               = lfo2ctrl & 0x20; // bit 5  
         bool extResonanceCtrl  = lfo2ctrl & 0x40; // bit 6  
         uint8_t lfo1ctrl       = _3ewa->ReadUint8();  
         LFO1Controller         = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits  
         LFO1FlipPhase          = lfo1ctrl & 0x80; // bit 7  
         LFO1Sync               = lfo1ctrl & 0x40; // bit 6  
         VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))  
                                                     : vcf_res_ctrl_none;  
         uint16_t eg3depth = _3ewa->ReadUint16();  
         EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */  
                                       : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */  
         _3ewa->ReadInt16(); // unknown  
         ChannelOffset = _3ewa->ReadUint8() / 4;  
         uint8_t regoptions = _3ewa->ReadUint8();  
         MSDecode           = regoptions & 0x01; // bit 0  
         SustainDefeat      = regoptions & 0x02; // bit 1  
         _3ewa->ReadInt16(); // unknown  
         VelocityUpperLimit = _3ewa->ReadInt8();  
         _3ewa->ReadInt8(); // unknown  
         _3ewa->ReadInt16(); // unknown  
         ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay  
         _3ewa->ReadInt8(); // unknown  
         _3ewa->ReadInt8(); // unknown  
         EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7  
         uint8_t vcfcutoff = _3ewa->ReadUint8();  
         VCFEnabled = vcfcutoff & 0x80; // bit 7  
         VCFCutoff  = vcfcutoff & 0x7f; // lower 7 bits  
         VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());  
         VCFVelocityScale = _3ewa->ReadUint8();  
         _3ewa->ReadInt8(); // unknown  
         uint8_t vcfresonance = _3ewa->ReadUint8();  
         VCFResonance = vcfresonance & 0x7f; // lower 7 bits  
         VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7  
         uint8_t vcfbreakpoint         = _3ewa->ReadUint8();  
         VCFKeyboardTracking           = vcfbreakpoint & 0x80; // bit 7  
         VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits  
         uint8_t vcfvelocity = _3ewa->ReadUint8();  
         VCFVelocityDynamicRange = vcfvelocity % 5;  
         VCFVelocityCurve        = static_cast<curve_type_t>(vcfvelocity / 5);  
         VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());  
1791    
1792          // get the corresponding velocity->volume table from the table map or create & calculate that table if it doesn't exist yet          pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1793          uint32_t tableKey = (VelocityResponseCurve<<16) | (VelocityResponseDepth<<8) | VelocityResponseCurveScaling;                                                       VelocityResponseDepth,
1794          if (pVelocityTables->count(tableKey)) { // if key exists                                                       VelocityResponseCurveScaling);
1795              pVelocityAttenuationTable = (*pVelocityTables)[tableKey];  
1796            pVelocityReleaseTable = GetReleaseVelocityTable(
1797                                        ReleaseVelocityResponseCurve,
1798                                        ReleaseVelocityResponseDepth
1799                                    );
1800    
1801            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1802                                                          VCFVelocityDynamicRange,
1803                                                          VCFVelocityScale,
1804                                                          VCFCutoffController);
1805    
1806            SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1807            VelocityTable = 0;
1808        }
1809    
1810        /*
1811         * Constructs a DimensionRegion by copying all parameters from
1812         * another DimensionRegion
1813         */
1814        DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1815            Instances++;
1816            //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1817            *this = src; // default memberwise shallow copy of all parameters
1818            pParentList = _3ewl; // restore the chunk pointer
1819    
1820            // deep copy of owned structures
1821            if (src.VelocityTable) {
1822                VelocityTable = new uint8_t[128];
1823                for (int k = 0 ; k < 128 ; k++)
1824                    VelocityTable[k] = src.VelocityTable[k];
1825          }          }
1826          else {          if (src.pSampleLoops) {
1827              pVelocityAttenuationTable = new double[128];              pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1828              switch (VelocityResponseCurve) { // calculate the new table              for (int k = 0 ; k < src.SampleLoops ; k++)
1829                    pSampleLoops[k] = src.pSampleLoops[k];
1830            }
1831        }
1832        
1833        /**
1834         * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1835         * and assign it to this object.
1836         *
1837         * Note that all sample pointers referenced by @a orig are simply copied as
1838         * memory address. Thus the respective samples are shared, not duplicated!
1839         *
1840         * @param orig - original DimensionRegion object to be copied from
1841         */
1842        void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1843            CopyAssign(orig, NULL);
1844        }
1845    
1846        /**
1847         * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1848         * and assign it to this object.
1849         *
1850         * @param orig - original DimensionRegion object to be copied from
1851         * @param mSamples - crosslink map between the foreign file's samples and
1852         *                   this file's samples
1853         */
1854        void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1855            // delete all allocated data first
1856            if (VelocityTable) delete [] VelocityTable;
1857            if (pSampleLoops) delete [] pSampleLoops;
1858            
1859            // backup parent list pointer
1860            RIFF::List* p = pParentList;
1861            
1862            gig::Sample* pOriginalSample = pSample;
1863            gig::Region* pOriginalRegion = pRegion;
1864            
1865            //NOTE: copy code copied from assignment constructor above, see comment there as well
1866            
1867            *this = *orig; // default memberwise shallow copy of all parameters
1868            
1869            // restore members that shall not be altered
1870            pParentList = p; // restore the chunk pointer
1871            pRegion = pOriginalRegion;
1872            
1873            // only take the raw sample reference reference if the
1874            // two DimensionRegion objects are part of the same file
1875            if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1876                pSample = pOriginalSample;
1877            }
1878            
1879            if (mSamples && mSamples->count(orig->pSample)) {
1880                pSample = mSamples->find(orig->pSample)->second;
1881            }
1882    
1883            // deep copy of owned structures
1884            if (orig->VelocityTable) {
1885                VelocityTable = new uint8_t[128];
1886                for (int k = 0 ; k < 128 ; k++)
1887                    VelocityTable[k] = orig->VelocityTable[k];
1888            }
1889            if (orig->pSampleLoops) {
1890                pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1891                for (int k = 0 ; k < orig->SampleLoops ; k++)
1892                    pSampleLoops[k] = orig->pSampleLoops[k];
1893            }
1894        }
1895    
1896        void DimensionRegion::serialize(Serialization::Archive* archive) {
1897            // in case this class will become backward incompatible one day,
1898            // then set a version and minimum version for this class like:
1899            //archive->setVersion(*this, 2);
1900            //archive->setMinVersion(*this, 1);
1901    
1902            SRLZ(VelocityUpperLimit);
1903            SRLZ(EG1PreAttack);
1904            SRLZ(EG1Attack);
1905            SRLZ(EG1Decay1);
1906            SRLZ(EG1Decay2);
1907            SRLZ(EG1InfiniteSustain);
1908            SRLZ(EG1Sustain);
1909            SRLZ(EG1Release);
1910            SRLZ(EG1Hold);
1911            SRLZ(EG1Controller);
1912            SRLZ(EG1ControllerInvert);
1913            SRLZ(EG1ControllerAttackInfluence);
1914            SRLZ(EG1ControllerDecayInfluence);
1915            SRLZ(EG1ControllerReleaseInfluence);
1916            SRLZ(LFO1WaveForm);
1917            SRLZ(LFO1Frequency);
1918            SRLZ(LFO1Phase);
1919            SRLZ(LFO1InternalDepth);
1920            SRLZ(LFO1ControlDepth);
1921            SRLZ(LFO1Controller);
1922            SRLZ(LFO1FlipPhase);
1923            SRLZ(LFO1Sync);
1924            SRLZ(EG2PreAttack);
1925            SRLZ(EG2Attack);
1926            SRLZ(EG2Decay1);
1927            SRLZ(EG2Decay2);
1928            SRLZ(EG2InfiniteSustain);
1929            SRLZ(EG2Sustain);
1930            SRLZ(EG2Release);
1931            SRLZ(EG2Controller);
1932            SRLZ(EG2ControllerInvert);
1933            SRLZ(EG2ControllerAttackInfluence);
1934            SRLZ(EG2ControllerDecayInfluence);
1935            SRLZ(EG2ControllerReleaseInfluence);
1936            SRLZ(LFO2WaveForm);
1937            SRLZ(LFO2Frequency);
1938            SRLZ(LFO2Phase);
1939            SRLZ(LFO2InternalDepth);
1940            SRLZ(LFO2ControlDepth);
1941            SRLZ(LFO2Controller);
1942            SRLZ(LFO2FlipPhase);
1943            SRLZ(LFO2Sync);
1944            SRLZ(EG3Attack);
1945            SRLZ(EG3Depth);
1946            SRLZ(LFO3WaveForm);
1947            SRLZ(LFO3Frequency);
1948            SRLZ(LFO3Phase);
1949            SRLZ(LFO3InternalDepth);
1950            SRLZ(LFO3ControlDepth);
1951            SRLZ(LFO3Controller);
1952            SRLZ(LFO3FlipPhase);
1953            SRLZ(LFO3Sync);
1954            SRLZ(VCFEnabled);
1955            SRLZ(VCFType);
1956            SRLZ(VCFCutoffController);
1957            SRLZ(VCFCutoffControllerInvert);
1958            SRLZ(VCFCutoff);
1959            SRLZ(VCFVelocityCurve);
1960            SRLZ(VCFVelocityScale);
1961            SRLZ(VCFVelocityDynamicRange);
1962            SRLZ(VCFResonance);
1963            SRLZ(VCFResonanceDynamic);
1964            SRLZ(VCFResonanceController);
1965            SRLZ(VCFKeyboardTracking);
1966            SRLZ(VCFKeyboardTrackingBreakpoint);
1967            SRLZ(VelocityResponseCurve);
1968            SRLZ(VelocityResponseDepth);
1969            SRLZ(VelocityResponseCurveScaling);
1970            SRLZ(ReleaseVelocityResponseCurve);
1971            SRLZ(ReleaseVelocityResponseDepth);
1972            SRLZ(ReleaseTriggerDecay);
1973            SRLZ(Crossfade);
1974            SRLZ(PitchTrack);
1975            SRLZ(DimensionBypass);
1976            SRLZ(Pan);
1977            SRLZ(SelfMask);
1978            SRLZ(AttenuationController);
1979            SRLZ(InvertAttenuationController);
1980            SRLZ(AttenuationControllerThreshold);
1981            SRLZ(ChannelOffset);
1982            SRLZ(SustainDefeat);
1983            SRLZ(MSDecode);
1984            //SRLZ(SampleStartOffset);
1985            SRLZ(SampleAttenuation);
1986            SRLZ(EG1Options);
1987            SRLZ(EG2Options);
1988            SRLZ(SustainReleaseTrigger);
1989            SRLZ(NoNoteOffReleaseTrigger);
1990    
1991            // derived attributes from DLS::Sampler
1992            SRLZ(FineTune);
1993            SRLZ(Gain);
1994        }
1995    
1996        /**
1997         * Updates the respective member variable and updates @c SampleAttenuation
1998         * which depends on this value.
1999         */
2000        void DimensionRegion::SetGain(int32_t gain) {
2001            DLS::Sampler::SetGain(gain);
2002            SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
2003        }
2004    
2005        /**
2006         * Apply dimension region settings to the respective RIFF chunks. You
2007         * have to call File::Save() to make changes persistent.
2008         *
2009         * Usually there is absolutely no need to call this method explicitly.
2010         * It will be called automatically when File::Save() was called.
2011         *
2012         * @param pProgress - callback function for progress notification
2013         */
2014        void DimensionRegion::UpdateChunks(progress_t* pProgress) {
2015            // first update base class's chunk
2016            DLS::Sampler::UpdateChunks(pProgress);
2017    
2018            RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
2019            uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
2020            pData[12] = Crossfade.in_start;
2021            pData[13] = Crossfade.in_end;
2022            pData[14] = Crossfade.out_start;
2023            pData[15] = Crossfade.out_end;
2024    
2025            // make sure '3ewa' chunk exists
2026            RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
2027            if (!_3ewa) {
2028                File* pFile = (File*) GetParent()->GetParent()->GetParent();
2029                bool versiongt2 = pFile->pVersion && pFile->pVersion->major > 2;
2030                _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, versiongt2 ? 148 : 140);
2031            }
2032            pData = (uint8_t*) _3ewa->LoadChunkData();
2033    
2034            // update '3ewa' chunk with DimensionRegion's current settings
2035    
2036            const uint32_t chunksize = (uint32_t) _3ewa->GetNewSize();
2037            store32(&pData[0], chunksize); // unknown, always chunk size?
2038    
2039            const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
2040            store32(&pData[4], lfo3freq);
2041    
2042            const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
2043            store32(&pData[8], eg3attack);
2044    
2045            // next 2 bytes unknown
2046    
2047            store16(&pData[14], LFO1InternalDepth);
2048    
2049            // next 2 bytes unknown
2050    
2051            store16(&pData[18], LFO3InternalDepth);
2052    
2053            // next 2 bytes unknown
2054    
2055            store16(&pData[22], LFO1ControlDepth);
2056    
2057            // next 2 bytes unknown
2058    
2059            store16(&pData[26], LFO3ControlDepth);
2060    
2061            const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
2062            store32(&pData[28], eg1attack);
2063    
2064            const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
2065            store32(&pData[32], eg1decay1);
2066    
2067            // next 2 bytes unknown
2068    
2069            store16(&pData[38], EG1Sustain);
2070    
2071            const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
2072            store32(&pData[40], eg1release);
2073    
2074            const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
2075            pData[44] = eg1ctl;
2076    
2077            const uint8_t eg1ctrloptions =
2078                (EG1ControllerInvert ? 0x01 : 0x00) |
2079                GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
2080                GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
2081                GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
2082            pData[45] = eg1ctrloptions;
2083    
2084            const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
2085            pData[46] = eg2ctl;
2086    
2087            const uint8_t eg2ctrloptions =
2088                (EG2ControllerInvert ? 0x01 : 0x00) |
2089                GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
2090                GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
2091                GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
2092            pData[47] = eg2ctrloptions;
2093    
2094            const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
2095            store32(&pData[48], lfo1freq);
2096    
2097            const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
2098            store32(&pData[52], eg2attack);
2099    
2100            const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
2101            store32(&pData[56], eg2decay1);
2102    
2103            // next 2 bytes unknown
2104    
2105            store16(&pData[62], EG2Sustain);
2106    
2107            const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
2108            store32(&pData[64], eg2release);
2109    
2110            // next 2 bytes unknown
2111    
2112            store16(&pData[70], LFO2ControlDepth);
2113    
2114            const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
2115            store32(&pData[72], lfo2freq);
2116    
2117            // next 2 bytes unknown
2118    
2119            store16(&pData[78], LFO2InternalDepth);
2120    
2121            const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
2122            store32(&pData[80], eg1decay2);
2123    
2124            // next 2 bytes unknown
2125    
2126            store16(&pData[86], EG1PreAttack);
2127    
2128            const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
2129            store32(&pData[88], eg2decay2);
2130    
2131            // next 2 bytes unknown
2132    
2133            store16(&pData[94], EG2PreAttack);
2134    
2135            {
2136                if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
2137                uint8_t velocityresponse = VelocityResponseDepth;
2138                switch (VelocityResponseCurve) {
2139                  case curve_type_nonlinear:                  case curve_type_nonlinear:
2140                      for (int velocity = 0; velocity < 128; velocity++) {                      break;
                         pVelocityAttenuationTable[velocity] =  
                             GIG_VELOCITY_TRANSFORM_NONLINEAR((double)(velocity+1),(double)(VelocityResponseDepth+1),(double)VelocityResponseCurveScaling);  
                         if      (pVelocityAttenuationTable[velocity] > 1.0) pVelocityAttenuationTable[velocity] = 1.0;  
                         else if (pVelocityAttenuationTable[velocity] < 0.0) pVelocityAttenuationTable[velocity] = 0.0;  
                      }  
                      break;  
2141                  case curve_type_linear:                  case curve_type_linear:
2142                      for (int velocity = 0; velocity < 128; velocity++) {                      velocityresponse += 5;
                         pVelocityAttenuationTable[velocity] =  
                             GIG_VELOCITY_TRANSFORM_LINEAR((double)velocity,(double)(VelocityResponseDepth+1),(double)VelocityResponseCurveScaling);  
                         if      (pVelocityAttenuationTable[velocity] > 1.0) pVelocityAttenuationTable[velocity] = 1.0;  
                         else if (pVelocityAttenuationTable[velocity] < 0.0) pVelocityAttenuationTable[velocity] = 0.0;  
                     }  
2143                      break;                      break;
2144                  case curve_type_special:                  case curve_type_special:
2145                      for (int velocity = 0; velocity < 128; velocity++) {                      velocityresponse += 10;
2146                          pVelocityAttenuationTable[velocity] =                      break;
2147                              GIG_VELOCITY_TRANSFORM_SPECIAL((double)(velocity+1),(double)(VelocityResponseDepth+1),(double)VelocityResponseCurveScaling);                  case curve_type_unknown:
2148                          if      (pVelocityAttenuationTable[velocity] > 1.0) pVelocityAttenuationTable[velocity] = 1.0;                  default:
2149                          else if (pVelocityAttenuationTable[velocity] < 0.0) pVelocityAttenuationTable[velocity] = 0.0;                      throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
2150                      }              }
2151                pData[96] = velocityresponse;
2152            }
2153    
2154            {
2155                if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
2156                uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
2157                switch (ReleaseVelocityResponseCurve) {
2158                    case curve_type_nonlinear:
2159                        break;
2160                    case curve_type_linear:
2161                        releasevelocityresponse += 5;
2162                        break;
2163                    case curve_type_special:
2164                        releasevelocityresponse += 10;
2165                      break;                      break;
2166                  case curve_type_unknown:                  case curve_type_unknown:
2167                  default:                  default:
2168                      throw gig::Exception("Unknown transform curve type.");                      throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
2169                }
2170                pData[97] = releasevelocityresponse;
2171            }
2172    
2173            pData[98] = VelocityResponseCurveScaling;
2174    
2175            pData[99] = AttenuationControllerThreshold;
2176    
2177            // next 4 bytes unknown
2178    
2179            store16(&pData[104], SampleStartOffset);
2180    
2181            // next 2 bytes unknown
2182    
2183            {
2184                uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
2185                switch (DimensionBypass) {
2186                    case dim_bypass_ctrl_94:
2187                        pitchTrackDimensionBypass |= 0x10;
2188                        break;
2189                    case dim_bypass_ctrl_95:
2190                        pitchTrackDimensionBypass |= 0x20;
2191                        break;
2192                    case dim_bypass_ctrl_none:
2193                        //FIXME: should we set anything here?
2194                        break;
2195                    default:
2196                        throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
2197                }
2198                pData[108] = pitchTrackDimensionBypass;
2199            }
2200    
2201            const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
2202            pData[109] = pan;
2203    
2204            const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
2205            pData[110] = selfmask;
2206    
2207            // next byte unknown
2208    
2209            {
2210                uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
2211                if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
2212                if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
2213                if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
2214                pData[112] = lfo3ctrl;
2215            }
2216    
2217            const uint8_t attenctl = EncodeLeverageController(AttenuationController);
2218            pData[113] = attenctl;
2219    
2220            {
2221                uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
2222                if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
2223                if (LFO2Sync)      lfo2ctrl |= 0x20; // bit 5
2224                if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
2225                pData[114] = lfo2ctrl;
2226            }
2227    
2228            {
2229                uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
2230                if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
2231                if (LFO1Sync)      lfo1ctrl |= 0x40; // bit 6
2232                if (VCFResonanceController != vcf_res_ctrl_none)
2233                    lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
2234                pData[115] = lfo1ctrl;
2235            }
2236    
2237            const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
2238                                                      : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
2239            store16(&pData[116], eg3depth);
2240    
2241            // next 2 bytes unknown
2242    
2243            const uint8_t channeloffset = ChannelOffset * 4;
2244            pData[120] = channeloffset;
2245    
2246            {
2247                uint8_t regoptions = 0;
2248                if (MSDecode)      regoptions |= 0x01; // bit 0
2249                if (SustainDefeat) regoptions |= 0x02; // bit 1
2250                pData[121] = regoptions;
2251            }
2252    
2253            // next 2 bytes unknown
2254    
2255            pData[124] = VelocityUpperLimit;
2256    
2257            // next 3 bytes unknown
2258    
2259            pData[128] = ReleaseTriggerDecay;
2260    
2261            // next 2 bytes unknown
2262    
2263            const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2264            pData[131] = eg1hold;
2265    
2266            const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) |  /* bit 7 */
2267                                      (VCFCutoff & 0x7f);   /* lower 7 bits */
2268            pData[132] = vcfcutoff;
2269    
2270            pData[133] = VCFCutoffController;
2271    
2272            const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2273                                        (VCFVelocityScale & 0x7f); /* lower 7 bits */
2274            pData[134] = vcfvelscale;
2275    
2276            // next byte unknown
2277    
2278            const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2279                                         (VCFResonance & 0x7f); /* lower 7 bits */
2280            pData[136] = vcfresonance;
2281    
2282            const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2283                                          (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2284            pData[137] = vcfbreakpoint;
2285    
2286            const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2287                                        VCFVelocityCurve * 5;
2288            pData[138] = vcfvelocity;
2289    
2290            const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2291            pData[139] = vcftype;
2292    
2293            if (chunksize >= 148) {
2294                memcpy(&pData[140], DimensionUpperLimits, 8);
2295            }
2296    
2297            // chunk for own format extensions, these will *NOT* work with
2298            // Gigasampler/GigaStudio !
2299            RIFF::Chunk* lsde = pParentList->GetSubChunk(CHUNK_ID_LSDE);
2300            const int lsdeSize =
2301                3 /* EG cancel options */ +
2302                1 /* sustain pedal up on release trigger option */ +
2303                8 /* LFOs' wave forms */ + 12 /* LFOs' phase */ + 4 /* flags (LFO3FlipPhase) */;
2304            if (!lsde && UsesAnyGigFormatExtension()) {
2305                // only add this "LSDE" chunk if there is some (format extension)
2306                // setting effective that would require our "LSDE" format extension
2307                // chunk to be stored
2308                lsde = pParentList->AddSubChunk(CHUNK_ID_LSDE, lsdeSize);
2309                // move LSDE chunk to the end of parent list
2310                pParentList->MoveSubChunk(lsde, (RIFF::Chunk*)NULL);
2311            }
2312            if (lsde) {
2313                if (lsde->GetNewSize() < lsdeSize)
2314                    lsde->Resize(lsdeSize);
2315                // format extension for EG behavior options
2316                unsigned char* pData = (unsigned char*) lsde->LoadChunkData();
2317                eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
2318                for (int i = 0; i < 2; ++i) { // NOTE: we reserved the 3rd byte for a potential future EG3 option
2319                    pData[i] =
2320                        (pEGOpts[i]->AttackCancel     ? 1 : 0) |
2321                        (pEGOpts[i]->AttackHoldCancel ? (1<<1) : 0) |
2322                        (pEGOpts[i]->Decay1Cancel     ? (1<<2) : 0) |
2323                        (pEGOpts[i]->Decay2Cancel     ? (1<<3) : 0) |
2324                        (pEGOpts[i]->ReleaseCancel    ? (1<<4) : 0);
2325              }              }
2326              (*pVelocityTables)[tableKey] = pVelocityAttenuationTable; // put the new table into the tables map              // format extension for release trigger options
2327                pData[3] = static_cast<uint8_t>(SustainReleaseTrigger) | (NoNoteOffReleaseTrigger ? (1<<7) : 0);
2328                // format extension for LFOs' wave form, phase displacement and for
2329                // LFO3's flip phase
2330                store16(&pData[4], LFO1WaveForm);
2331                store16(&pData[6], LFO2WaveForm);
2332                store16(&pData[8], LFO3WaveForm);
2333                //NOTE: 16 bits reserved here for potential future use !
2334                const int32_t lfo1Phase = (int32_t) GIG_EXP_ENCODE(LFO1Phase);
2335                const int32_t lfo2Phase = (int32_t) GIG_EXP_ENCODE(LFO2Phase);
2336                const int32_t lfo3Phase = (int32_t) GIG_EXP_ENCODE(LFO3Phase);
2337                store32(&pData[12], lfo1Phase);
2338                store32(&pData[16], lfo2Phase);
2339                store32(&pData[20], lfo3Phase);
2340                const int32_t flags = LFO3FlipPhase ? 1 : 0;
2341                store32(&pData[24], flags);
2342    
2343                // compile time sanity check: is our last store access here
2344                // consistent with the initial lsdeSize value assignment?
2345                static_assert(lsdeSize == 28, "Inconsistency in assumed 'LSDE' RIFF chunk size");
2346            }
2347        }
2348    
2349        /**
2350         * Returns @c true in case this DimensionRegion object uses any gig format
2351         * extension, that is whether this DimensionRegion object currently has any
2352         * setting effective that would require our "LSDE" RIFF chunk to be stored
2353         * to the gig file.
2354         *
2355         * Right now this is a private method. It is considerable though this method
2356         * to become (in slightly modified form) a public API method in future, i.e.
2357         * to allow instrument editors to visualize and/or warn the user of any
2358         * format extension being used. Right now this method really just serves to
2359         * answer the question whether an LSDE chunk is required, for the public API
2360         * purpose this method would also need to check whether any other setting
2361         * stored to the regular value '3ewa' chunk, is actually a format extension
2362         * as well.
2363         */
2364        bool DimensionRegion::UsesAnyGigFormatExtension() const {
2365            eg_opt_t defaultOpt;
2366            return memcmp(&EG1Options, &defaultOpt, sizeof(eg_opt_t)) ||
2367                   memcmp(&EG2Options, &defaultOpt, sizeof(eg_opt_t)) ||
2368                   SustainReleaseTrigger || NoNoteOffReleaseTrigger ||
2369                   LFO1WaveForm || LFO2WaveForm || LFO3WaveForm ||
2370                   LFO1Phase || LFO2Phase || LFO3Phase ||
2371                   LFO3FlipPhase;
2372        }
2373    
2374        double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2375            curve_type_t curveType = releaseVelocityResponseCurve;
2376            uint8_t depth = releaseVelocityResponseDepth;
2377            // this models a strange behaviour or bug in GSt: two of the
2378            // velocity response curves for release time are not used even
2379            // if specified, instead another curve is chosen.
2380            if ((curveType == curve_type_nonlinear && depth == 0) ||
2381                (curveType == curve_type_special   && depth == 4)) {
2382                curveType = curve_type_nonlinear;
2383                depth = 3;
2384            }
2385            return GetVelocityTable(curveType, depth, 0);
2386        }
2387    
2388        double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2389                                                        uint8_t vcfVelocityDynamicRange,
2390                                                        uint8_t vcfVelocityScale,
2391                                                        vcf_cutoff_ctrl_t vcfCutoffController)
2392        {
2393            curve_type_t curveType = vcfVelocityCurve;
2394            uint8_t depth = vcfVelocityDynamicRange;
2395            // even stranger GSt: two of the velocity response curves for
2396            // filter cutoff are not used, instead another special curve
2397            // is chosen. This curve is not used anywhere else.
2398            if ((curveType == curve_type_nonlinear && depth == 0) ||
2399                (curveType == curve_type_special   && depth == 4)) {
2400                curveType = curve_type_special;
2401                depth = 5;
2402            }
2403            return GetVelocityTable(curveType, depth,
2404                                    (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2405                                        ? vcfVelocityScale : 0);
2406        }
2407    
2408        // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2409        double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2410        {
2411            // sanity check input parameters
2412            // (fallback to some default parameters on ill input)
2413            switch (curveType) {
2414                case curve_type_nonlinear:
2415                case curve_type_linear:
2416                    if (depth > 4) {
2417                        printf("Warning: Invalid depth (0x%x) for velocity curve type (0x%x).\n", depth, curveType);
2418                        depth   = 0;
2419                        scaling = 0;
2420                    }
2421                    break;
2422                case curve_type_special:
2423                    if (depth > 5) {
2424                        printf("Warning: Invalid depth (0x%x) for velocity curve type 'special'.\n", depth);
2425                        depth   = 0;
2426                        scaling = 0;
2427                    }
2428                    break;
2429                case curve_type_unknown:
2430                default:
2431                    printf("Warning: Unknown velocity curve type (0x%x).\n", curveType);
2432                    curveType = curve_type_linear;
2433                    depth     = 0;
2434                    scaling   = 0;
2435                    break;
2436            }
2437    
2438            double* table;
2439            uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2440            if (pVelocityTables->count(tableKey)) { // if key exists
2441                table = (*pVelocityTables)[tableKey];
2442          }          }
2443            else {
2444                table = CreateVelocityTable(curveType, depth, scaling);
2445                (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
2446            }
2447            return table;
2448        }
2449    
2450        Region* DimensionRegion::GetParent() const {
2451            return pRegion;
2452      }      }
2453    
2454    // show error if some _lev_ctrl_* enum entry is not listed in the following function
2455    // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2456    // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2457    //#pragma GCC diagnostic push
2458    //#pragma GCC diagnostic error "-Wswitch"
2459    
2460      leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {      leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2461          leverage_ctrl_t decodedcontroller;          leverage_ctrl_t decodedcontroller;
2462          switch (EncodedController) {          switch (EncodedController) {
# Line 981  namespace gig { Line 2568  namespace gig {
2568                  decodedcontroller.controller_number = 95;                  decodedcontroller.controller_number = 95;
2569                  break;                  break;
2570    
2571                // format extension (these controllers are so far only supported by
2572                // LinuxSampler & gigedit) they will *NOT* work with
2573                // Gigasampler/GigaStudio !
2574                case _lev_ctrl_CC3_EXT:
2575                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2576                    decodedcontroller.controller_number = 3;
2577                    break;
2578                case _lev_ctrl_CC6_EXT:
2579                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2580                    decodedcontroller.controller_number = 6;
2581                    break;
2582                case _lev_ctrl_CC7_EXT:
2583                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2584                    decodedcontroller.controller_number = 7;
2585                    break;
2586                case _lev_ctrl_CC8_EXT:
2587                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2588                    decodedcontroller.controller_number = 8;
2589                    break;
2590                case _lev_ctrl_CC9_EXT:
2591                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2592                    decodedcontroller.controller_number = 9;
2593                    break;
2594                case _lev_ctrl_CC10_EXT:
2595                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2596                    decodedcontroller.controller_number = 10;
2597                    break;
2598                case _lev_ctrl_CC11_EXT:
2599                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2600                    decodedcontroller.controller_number = 11;
2601                    break;
2602                case _lev_ctrl_CC14_EXT:
2603                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2604                    decodedcontroller.controller_number = 14;
2605                    break;
2606                case _lev_ctrl_CC15_EXT:
2607                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2608                    decodedcontroller.controller_number = 15;
2609                    break;
2610                case _lev_ctrl_CC20_EXT:
2611                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2612                    decodedcontroller.controller_number = 20;
2613                    break;
2614                case _lev_ctrl_CC21_EXT:
2615                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2616                    decodedcontroller.controller_number = 21;
2617                    break;
2618                case _lev_ctrl_CC22_EXT:
2619                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2620                    decodedcontroller.controller_number = 22;
2621                    break;
2622                case _lev_ctrl_CC23_EXT:
2623                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2624                    decodedcontroller.controller_number = 23;
2625                    break;
2626                case _lev_ctrl_CC24_EXT:
2627                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2628                    decodedcontroller.controller_number = 24;
2629                    break;
2630                case _lev_ctrl_CC25_EXT:
2631                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2632                    decodedcontroller.controller_number = 25;
2633                    break;
2634                case _lev_ctrl_CC26_EXT:
2635                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2636                    decodedcontroller.controller_number = 26;
2637                    break;
2638                case _lev_ctrl_CC27_EXT:
2639                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2640                    decodedcontroller.controller_number = 27;
2641                    break;
2642                case _lev_ctrl_CC28_EXT:
2643                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2644                    decodedcontroller.controller_number = 28;
2645                    break;
2646                case _lev_ctrl_CC29_EXT:
2647                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2648                    decodedcontroller.controller_number = 29;
2649                    break;
2650                case _lev_ctrl_CC30_EXT:
2651                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2652                    decodedcontroller.controller_number = 30;
2653                    break;
2654                case _lev_ctrl_CC31_EXT:
2655                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2656                    decodedcontroller.controller_number = 31;
2657                    break;
2658                case _lev_ctrl_CC68_EXT:
2659                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2660                    decodedcontroller.controller_number = 68;
2661                    break;
2662                case _lev_ctrl_CC69_EXT:
2663                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2664                    decodedcontroller.controller_number = 69;
2665                    break;
2666                case _lev_ctrl_CC70_EXT:
2667                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2668                    decodedcontroller.controller_number = 70;
2669                    break;
2670                case _lev_ctrl_CC71_EXT:
2671                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2672                    decodedcontroller.controller_number = 71;
2673                    break;
2674                case _lev_ctrl_CC72_EXT:
2675                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2676                    decodedcontroller.controller_number = 72;
2677                    break;
2678                case _lev_ctrl_CC73_EXT:
2679                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2680                    decodedcontroller.controller_number = 73;
2681                    break;
2682                case _lev_ctrl_CC74_EXT:
2683                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2684                    decodedcontroller.controller_number = 74;
2685                    break;
2686                case _lev_ctrl_CC75_EXT:
2687                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2688                    decodedcontroller.controller_number = 75;
2689                    break;
2690                case _lev_ctrl_CC76_EXT:
2691                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2692                    decodedcontroller.controller_number = 76;
2693                    break;
2694                case _lev_ctrl_CC77_EXT:
2695                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2696                    decodedcontroller.controller_number = 77;
2697                    break;
2698                case _lev_ctrl_CC78_EXT:
2699                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2700                    decodedcontroller.controller_number = 78;
2701                    break;
2702                case _lev_ctrl_CC79_EXT:
2703                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2704                    decodedcontroller.controller_number = 79;
2705                    break;
2706                case _lev_ctrl_CC84_EXT:
2707                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2708                    decodedcontroller.controller_number = 84;
2709                    break;
2710                case _lev_ctrl_CC85_EXT:
2711                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2712                    decodedcontroller.controller_number = 85;
2713                    break;
2714                case _lev_ctrl_CC86_EXT:
2715                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2716                    decodedcontroller.controller_number = 86;
2717                    break;
2718                case _lev_ctrl_CC87_EXT:
2719                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2720                    decodedcontroller.controller_number = 87;
2721                    break;
2722                case _lev_ctrl_CC89_EXT:
2723                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2724                    decodedcontroller.controller_number = 89;
2725                    break;
2726                case _lev_ctrl_CC90_EXT:
2727                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2728                    decodedcontroller.controller_number = 90;
2729                    break;
2730                case _lev_ctrl_CC96_EXT:
2731                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2732                    decodedcontroller.controller_number = 96;
2733                    break;
2734                case _lev_ctrl_CC97_EXT:
2735                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2736                    decodedcontroller.controller_number = 97;
2737                    break;
2738                case _lev_ctrl_CC102_EXT:
2739                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2740                    decodedcontroller.controller_number = 102;
2741                    break;
2742                case _lev_ctrl_CC103_EXT:
2743                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2744                    decodedcontroller.controller_number = 103;
2745                    break;
2746                case _lev_ctrl_CC104_EXT:
2747                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2748                    decodedcontroller.controller_number = 104;
2749                    break;
2750                case _lev_ctrl_CC105_EXT:
2751                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2752                    decodedcontroller.controller_number = 105;
2753                    break;
2754                case _lev_ctrl_CC106_EXT:
2755                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2756                    decodedcontroller.controller_number = 106;
2757                    break;
2758                case _lev_ctrl_CC107_EXT:
2759                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2760                    decodedcontroller.controller_number = 107;
2761                    break;
2762                case _lev_ctrl_CC108_EXT:
2763                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2764                    decodedcontroller.controller_number = 108;
2765                    break;
2766                case _lev_ctrl_CC109_EXT:
2767                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2768                    decodedcontroller.controller_number = 109;
2769                    break;
2770                case _lev_ctrl_CC110_EXT:
2771                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2772                    decodedcontroller.controller_number = 110;
2773                    break;
2774                case _lev_ctrl_CC111_EXT:
2775                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2776                    decodedcontroller.controller_number = 111;
2777                    break;
2778                case _lev_ctrl_CC112_EXT:
2779                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2780                    decodedcontroller.controller_number = 112;
2781                    break;
2782                case _lev_ctrl_CC113_EXT:
2783                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2784                    decodedcontroller.controller_number = 113;
2785                    break;
2786                case _lev_ctrl_CC114_EXT:
2787                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2788                    decodedcontroller.controller_number = 114;
2789                    break;
2790                case _lev_ctrl_CC115_EXT:
2791                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2792                    decodedcontroller.controller_number = 115;
2793                    break;
2794                case _lev_ctrl_CC116_EXT:
2795                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2796                    decodedcontroller.controller_number = 116;
2797                    break;
2798                case _lev_ctrl_CC117_EXT:
2799                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2800                    decodedcontroller.controller_number = 117;
2801                    break;
2802                case _lev_ctrl_CC118_EXT:
2803                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2804                    decodedcontroller.controller_number = 118;
2805                    break;
2806                case _lev_ctrl_CC119_EXT:
2807                    decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2808                    decodedcontroller.controller_number = 119;
2809                    break;
2810    
2811              // unknown controller type              // unknown controller type
2812              default:              default:
2813                  throw gig::Exception("Unknown leverage controller type.");                  decodedcontroller.type = leverage_ctrl_t::type_none;
2814                    decodedcontroller.controller_number = 0;
2815                    printf("Warning: Unknown leverage controller type (0x%x).\n", EncodedController);
2816                    break;
2817          }          }
2818          return decodedcontroller;          return decodedcontroller;
2819      }      }
2820        
2821    // see above (diagnostic push not supported prior GCC 4.6)
2822    //#pragma GCC diagnostic pop
2823    
2824        DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2825            _lev_ctrl_t encodedcontroller;
2826            switch (DecodedController.type) {
2827                // special controller
2828                case leverage_ctrl_t::type_none:
2829                    encodedcontroller = _lev_ctrl_none;
2830                    break;
2831                case leverage_ctrl_t::type_velocity:
2832                    encodedcontroller = _lev_ctrl_velocity;
2833                    break;
2834                case leverage_ctrl_t::type_channelaftertouch:
2835                    encodedcontroller = _lev_ctrl_channelaftertouch;
2836                    break;
2837    
2838                // ordinary MIDI control change controller
2839                case leverage_ctrl_t::type_controlchange:
2840                    switch (DecodedController.controller_number) {
2841                        case 1:
2842                            encodedcontroller = _lev_ctrl_modwheel;
2843                            break;
2844                        case 2:
2845                            encodedcontroller = _lev_ctrl_breath;
2846                            break;
2847                        case 4:
2848                            encodedcontroller = _lev_ctrl_foot;
2849                            break;
2850                        case 12:
2851                            encodedcontroller = _lev_ctrl_effect1;
2852                            break;
2853                        case 13:
2854                            encodedcontroller = _lev_ctrl_effect2;
2855                            break;
2856                        case 16:
2857                            encodedcontroller = _lev_ctrl_genpurpose1;
2858                            break;
2859                        case 17:
2860                            encodedcontroller = _lev_ctrl_genpurpose2;
2861                            break;
2862                        case 18:
2863                            encodedcontroller = _lev_ctrl_genpurpose3;
2864                            break;
2865                        case 19:
2866                            encodedcontroller = _lev_ctrl_genpurpose4;
2867                            break;
2868                        case 5:
2869                            encodedcontroller = _lev_ctrl_portamentotime;
2870                            break;
2871                        case 64:
2872                            encodedcontroller = _lev_ctrl_sustainpedal;
2873                            break;
2874                        case 65:
2875                            encodedcontroller = _lev_ctrl_portamento;
2876                            break;
2877                        case 66:
2878                            encodedcontroller = _lev_ctrl_sostenutopedal;
2879                            break;
2880                        case 67:
2881                            encodedcontroller = _lev_ctrl_softpedal;
2882                            break;
2883                        case 80:
2884                            encodedcontroller = _lev_ctrl_genpurpose5;
2885                            break;
2886                        case 81:
2887                            encodedcontroller = _lev_ctrl_genpurpose6;
2888                            break;
2889                        case 82:
2890                            encodedcontroller = _lev_ctrl_genpurpose7;
2891                            break;
2892                        case 83:
2893                            encodedcontroller = _lev_ctrl_genpurpose8;
2894                            break;
2895                        case 91:
2896                            encodedcontroller = _lev_ctrl_effect1depth;
2897                            break;
2898                        case 92:
2899                            encodedcontroller = _lev_ctrl_effect2depth;
2900                            break;
2901                        case 93:
2902                            encodedcontroller = _lev_ctrl_effect3depth;
2903                            break;
2904                        case 94:
2905                            encodedcontroller = _lev_ctrl_effect4depth;
2906                            break;
2907                        case 95:
2908                            encodedcontroller = _lev_ctrl_effect5depth;
2909                            break;
2910    
2911                        // format extension (these controllers are so far only
2912                        // supported by LinuxSampler & gigedit) they will *NOT*
2913                        // work with Gigasampler/GigaStudio !
2914                        case 3:
2915                            encodedcontroller = _lev_ctrl_CC3_EXT;
2916                            break;
2917                        case 6:
2918                            encodedcontroller = _lev_ctrl_CC6_EXT;
2919                            break;
2920                        case 7:
2921                            encodedcontroller = _lev_ctrl_CC7_EXT;
2922                            break;
2923                        case 8:
2924                            encodedcontroller = _lev_ctrl_CC8_EXT;
2925                            break;
2926                        case 9:
2927                            encodedcontroller = _lev_ctrl_CC9_EXT;
2928                            break;
2929                        case 10:
2930                            encodedcontroller = _lev_ctrl_CC10_EXT;
2931                            break;
2932                        case 11:
2933                            encodedcontroller = _lev_ctrl_CC11_EXT;
2934                            break;
2935                        case 14:
2936                            encodedcontroller = _lev_ctrl_CC14_EXT;
2937                            break;
2938                        case 15:
2939                            encodedcontroller = _lev_ctrl_CC15_EXT;
2940                            break;
2941                        case 20:
2942                            encodedcontroller = _lev_ctrl_CC20_EXT;
2943                            break;
2944                        case 21:
2945                            encodedcontroller = _lev_ctrl_CC21_EXT;
2946                            break;
2947                        case 22:
2948                            encodedcontroller = _lev_ctrl_CC22_EXT;
2949                            break;
2950                        case 23:
2951                            encodedcontroller = _lev_ctrl_CC23_EXT;
2952                            break;
2953                        case 24:
2954                            encodedcontroller = _lev_ctrl_CC24_EXT;
2955                            break;
2956                        case 25:
2957                            encodedcontroller = _lev_ctrl_CC25_EXT;
2958                            break;
2959                        case 26:
2960                            encodedcontroller = _lev_ctrl_CC26_EXT;
2961                            break;
2962                        case 27:
2963                            encodedcontroller = _lev_ctrl_CC27_EXT;
2964                            break;
2965                        case 28:
2966                            encodedcontroller = _lev_ctrl_CC28_EXT;
2967                            break;
2968                        case 29:
2969                            encodedcontroller = _lev_ctrl_CC29_EXT;
2970                            break;
2971                        case 30:
2972                            encodedcontroller = _lev_ctrl_CC30_EXT;
2973                            break;
2974                        case 31:
2975                            encodedcontroller = _lev_ctrl_CC31_EXT;
2976                            break;
2977                        case 68:
2978                            encodedcontroller = _lev_ctrl_CC68_EXT;
2979                            break;
2980                        case 69:
2981                            encodedcontroller = _lev_ctrl_CC69_EXT;
2982                            break;
2983                        case 70:
2984                            encodedcontroller = _lev_ctrl_CC70_EXT;
2985                            break;
2986                        case 71:
2987                            encodedcontroller = _lev_ctrl_CC71_EXT;
2988                            break;
2989                        case 72:
2990                            encodedcontroller = _lev_ctrl_CC72_EXT;
2991                            break;
2992                        case 73:
2993                            encodedcontroller = _lev_ctrl_CC73_EXT;
2994                            break;
2995                        case 74:
2996                            encodedcontroller = _lev_ctrl_CC74_EXT;
2997                            break;
2998                        case 75:
2999                            encodedcontroller = _lev_ctrl_CC75_EXT;
3000                            break;
3001                        case 76:
3002                            encodedcontroller = _lev_ctrl_CC76_EXT;
3003                            break;
3004                        case 77:
3005                            encodedcontroller = _lev_ctrl_CC77_EXT;
3006                            break;
3007                        case 78:
3008                            encodedcontroller = _lev_ctrl_CC78_EXT;
3009                            break;
3010                        case 79:
3011                            encodedcontroller = _lev_ctrl_CC79_EXT;
3012                            break;
3013                        case 84:
3014                            encodedcontroller = _lev_ctrl_CC84_EXT;
3015                            break;
3016                        case 85:
3017                            encodedcontroller = _lev_ctrl_CC85_EXT;
3018                            break;
3019                        case 86:
3020                            encodedcontroller = _lev_ctrl_CC86_EXT;
3021                            break;
3022                        case 87:
3023                            encodedcontroller = _lev_ctrl_CC87_EXT;
3024                            break;
3025                        case 89:
3026                            encodedcontroller = _lev_ctrl_CC89_EXT;
3027                            break;
3028                        case 90:
3029                            encodedcontroller = _lev_ctrl_CC90_EXT;
3030                            break;
3031                        case 96:
3032                            encodedcontroller = _lev_ctrl_CC96_EXT;
3033                            break;
3034                        case 97:
3035                            encodedcontroller = _lev_ctrl_CC97_EXT;
3036                            break;
3037                        case 102:
3038                            encodedcontroller = _lev_ctrl_CC102_EXT;
3039                            break;
3040                        case 103:
3041                            encodedcontroller = _lev_ctrl_CC103_EXT;
3042                            break;
3043                        case 104:
3044                            encodedcontroller = _lev_ctrl_CC104_EXT;
3045                            break;
3046                        case 105:
3047                            encodedcontroller = _lev_ctrl_CC105_EXT;
3048                            break;
3049                        case 106:
3050                            encodedcontroller = _lev_ctrl_CC106_EXT;
3051                            break;
3052                        case 107:
3053                            encodedcontroller = _lev_ctrl_CC107_EXT;
3054                            break;
3055                        case 108:
3056                            encodedcontroller = _lev_ctrl_CC108_EXT;
3057                            break;
3058                        case 109:
3059                            encodedcontroller = _lev_ctrl_CC109_EXT;
3060                            break;
3061                        case 110:
3062                            encodedcontroller = _lev_ctrl_CC110_EXT;
3063                            break;
3064                        case 111:
3065                            encodedcontroller = _lev_ctrl_CC111_EXT;
3066                            break;
3067                        case 112:
3068                            encodedcontroller = _lev_ctrl_CC112_EXT;
3069                            break;
3070                        case 113:
3071                            encodedcontroller = _lev_ctrl_CC113_EXT;
3072                            break;
3073                        case 114:
3074                            encodedcontroller = _lev_ctrl_CC114_EXT;
3075                            break;
3076                        case 115:
3077                            encodedcontroller = _lev_ctrl_CC115_EXT;
3078                            break;
3079                        case 116:
3080                            encodedcontroller = _lev_ctrl_CC116_EXT;
3081                            break;
3082                        case 117:
3083                            encodedcontroller = _lev_ctrl_CC117_EXT;
3084                            break;
3085                        case 118:
3086                            encodedcontroller = _lev_ctrl_CC118_EXT;
3087                            break;
3088                        case 119:
3089                            encodedcontroller = _lev_ctrl_CC119_EXT;
3090                            break;
3091    
3092                        default:
3093                            throw gig::Exception("leverage controller number is not supported by the gig format");
3094                    }
3095                    break;
3096                default:
3097                    throw gig::Exception("Unknown leverage controller type.");
3098            }
3099            return encodedcontroller;
3100        }
3101    
3102      DimensionRegion::~DimensionRegion() {      DimensionRegion::~DimensionRegion() {
3103          Instances--;          Instances--;
# Line 1001  namespace gig { Line 3112  namespace gig {
3112              delete pVelocityTables;              delete pVelocityTables;
3113              pVelocityTables = NULL;              pVelocityTables = NULL;
3114          }          }
3115            if (VelocityTable) delete[] VelocityTable;
3116      }      }
3117    
3118      /**      /**
# Line 1018  namespace gig { Line 3130  namespace gig {
3130          return pVelocityAttenuationTable[MIDIKeyVelocity];          return pVelocityAttenuationTable[MIDIKeyVelocity];
3131      }      }
3132    
3133        double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
3134            return pVelocityReleaseTable[MIDIKeyVelocity];
3135        }
3136    
3137        double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
3138            return pVelocityCutoffTable[MIDIKeyVelocity];
3139        }
3140    
3141        /**
3142         * Updates the respective member variable and the lookup table / cache
3143         * that depends on this value.
3144         */
3145        void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
3146            pVelocityAttenuationTable =
3147                GetVelocityTable(
3148                    curve, VelocityResponseDepth, VelocityResponseCurveScaling
3149                );
3150            VelocityResponseCurve = curve;
3151        }
3152    
3153        /**
3154         * Updates the respective member variable and the lookup table / cache
3155         * that depends on this value.
3156         */
3157        void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
3158            pVelocityAttenuationTable =
3159                GetVelocityTable(
3160                    VelocityResponseCurve, depth, VelocityResponseCurveScaling
3161                );
3162            VelocityResponseDepth = depth;
3163        }
3164    
3165        /**
3166         * Updates the respective member variable and the lookup table / cache
3167         * that depends on this value.
3168         */
3169        void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
3170            pVelocityAttenuationTable =
3171                GetVelocityTable(
3172                    VelocityResponseCurve, VelocityResponseDepth, scaling
3173                );
3174            VelocityResponseCurveScaling = scaling;
3175        }
3176    
3177        /**
3178         * Updates the respective member variable and the lookup table / cache
3179         * that depends on this value.
3180         */
3181        void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
3182            pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
3183            ReleaseVelocityResponseCurve = curve;
3184        }
3185    
3186        /**
3187         * Updates the respective member variable and the lookup table / cache
3188         * that depends on this value.
3189         */
3190        void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
3191            pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
3192            ReleaseVelocityResponseDepth = depth;
3193        }
3194    
3195        /**
3196         * Updates the respective member variable and the lookup table / cache
3197         * that depends on this value.
3198         */
3199        void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
3200            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
3201            VCFCutoffController = controller;
3202        }
3203    
3204        /**
3205         * Updates the respective member variable and the lookup table / cache
3206         * that depends on this value.
3207         */
3208        void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
3209            pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
3210            VCFVelocityCurve = curve;
3211        }
3212    
3213        /**
3214         * Updates the respective member variable and the lookup table / cache
3215         * that depends on this value.
3216         */
3217        void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
3218            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
3219            VCFVelocityDynamicRange = range;
3220        }
3221    
3222        /**
3223         * Updates the respective member variable and the lookup table / cache
3224         * that depends on this value.
3225         */
3226        void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
3227            pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
3228            VCFVelocityScale = scaling;
3229        }
3230    
3231        double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
3232    
3233            // line-segment approximations of the 15 velocity curves
3234    
3235            // linear
3236            const int lin0[] = { 1, 1, 127, 127 };
3237            const int lin1[] = { 1, 21, 127, 127 };
3238            const int lin2[] = { 1, 45, 127, 127 };
3239            const int lin3[] = { 1, 74, 127, 127 };
3240            const int lin4[] = { 1, 127, 127, 127 };
3241    
3242            // non-linear
3243            const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
3244            const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
3245                                 127, 127 };
3246            const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
3247                                 127, 127 };
3248            const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
3249                                 127, 127 };
3250            const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
3251    
3252            // special
3253            const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
3254                                 113, 127, 127, 127 };
3255            const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
3256                                 118, 127, 127, 127 };
3257            const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
3258                                 85, 90, 91, 127, 127, 127 };
3259            const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
3260                                 117, 127, 127, 127 };
3261            const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
3262                                 127, 127 };
3263    
3264            // this is only used by the VCF velocity curve
3265            const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
3266                                 91, 127, 127, 127 };
3267    
3268            const int* const curves[] = { non0, non1, non2, non3, non4,
3269                                          lin0, lin1, lin2, lin3, lin4,
3270                                          spe0, spe1, spe2, spe3, spe4, spe5 };
3271    
3272            double* const table = new double[128];
3273    
3274            const int* curve = curves[curveType * 5 + depth];
3275            const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
3276    
3277            table[0] = 0;
3278            for (int x = 1 ; x < 128 ; x++) {
3279    
3280                if (x > curve[2]) curve += 2;
3281                double y = curve[1] + (x - curve[0]) *
3282                    (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
3283                y = y / 127;
3284    
3285                // Scale up for s > 20, down for s < 20. When
3286                // down-scaling, the curve still ends at 1.0.
3287                if (s < 20 && y >= 0.5)
3288                    y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
3289                else
3290                    y = y * (s / 20.0);
3291                if (y > 1) y = 1;
3292    
3293                table[x] = y;
3294            }
3295            return table;
3296        }
3297    
3298    
3299  // *************** Region ***************  // *************** Region ***************
# Line 1026  namespace gig { Line 3302  namespace gig {
3302      Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {      Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
3303          // Initialization          // Initialization
3304          Dimensions = 0;          Dimensions = 0;
3305          for (int i = 0; i < 32; i++) {          for (int i = 0; i < 256; i++) {
3306              pDimensionRegions[i] = NULL;              pDimensionRegions[i] = NULL;
3307          }          }
3308            Layers = 1;
3309            File* file = (File*) GetParent()->GetParent();
3310            int dimensionBits = (file->pVersion && file->pVersion->major > 2) ? 8 : 5;
3311    
3312          // Actual Loading          // Actual Loading
3313    
3314            if (!file->GetAutoLoad()) return;
3315    
3316          LoadDimensionRegions(rgnList);          LoadDimensionRegions(rgnList);
3317    
3318          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);          RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
3319          if (_3lnk) {          if (_3lnk) {
3320                _3lnk->SetPos(0);
3321    
3322              DimensionRegions = _3lnk->ReadUint32();              DimensionRegions = _3lnk->ReadUint32();
3323              for (int i = 0; i < 5; i++) {              for (int i = 0; i < dimensionBits; i++) {
3324                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());                  dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
3325                  uint8_t     bits      = _3lnk->ReadUint8();                  uint8_t     bits      = _3lnk->ReadUint8();
3326                    _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
3327                    _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
3328                    uint8_t     zones     = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
3329                  if (dimension == dimension_none) { // inactive dimension                  if (dimension == dimension_none) { // inactive dimension
3330                      pDimensionDefinitions[i].dimension  = dimension_none;                      pDimensionDefinitions[i].dimension  = dimension_none;
3331                      pDimensionDefinitions[i].bits       = 0;                      pDimensionDefinitions[i].bits       = 0;
3332                      pDimensionDefinitions[i].zones      = 0;                      pDimensionDefinitions[i].zones      = 0;
3333                      pDimensionDefinitions[i].split_type = split_type_bit;                      pDimensionDefinitions[i].split_type = split_type_bit;
                     pDimensionDefinitions[i].ranges     = NULL;  
3334                      pDimensionDefinitions[i].zone_size  = 0;                      pDimensionDefinitions[i].zone_size  = 0;
3335                  }                  }
3336                  else { // active dimension                  else { // active dimension
3337                      pDimensionDefinitions[i].dimension = dimension;                      pDimensionDefinitions[i].dimension = dimension;
3338                      pDimensionDefinitions[i].bits      = bits;                      pDimensionDefinitions[i].bits      = bits;
3339                      pDimensionDefinitions[i].zones     = 0x01 << bits; // = pow(2,bits)                      pDimensionDefinitions[i].zones     = zones ? zones : 0x01 << bits; // = pow(2,bits)
3340                      pDimensionDefinitions[i].split_type = (dimension == dimension_layer ||                      pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
3341                                                             dimension == dimension_samplechannel) ? split_type_bit                      pDimensionDefinitions[i].zone_size  = __resolveZoneSize(pDimensionDefinitions[i]);
                                                                                                  : split_type_normal;  
                     pDimensionDefinitions[i].ranges = NULL; // it's not possible to check velocity dimensions for custom defined ranges at this point  
                     pDimensionDefinitions[i].zone_size  =  
                         (pDimensionDefinitions[i].split_type == split_type_normal) ? 128 / pDimensionDefinitions[i].zones  
                                                                                    : 0;  
3342                      Dimensions++;                      Dimensions++;
3343    
3344                        // if this is a layer dimension, remember the amount of layers
3345                        if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
3346                  }                  }
3347                  _3lnk->SetPos(6, RIFF::stream_curpos); // jump forward to next dimension definition                  _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
3348              }              }
3349                for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
3350    
3351              // check velocity dimension (if there is one) for custom defined zone ranges              // if there's a velocity dimension and custom velocity zone splits are used,
3352              for (uint i = 0; i < Dimensions; i++) {              // update the VelocityTables in the dimension regions
3353                  dimension_def_t* pDimDef = pDimensionDefinitions + i;              UpdateVelocityTable();
3354                  if (pDimDef->dimension == dimension_velocity) {  
3355                      if (pDimensionRegions[0]->VelocityUpperLimit == 0) {              // jump to start of the wave pool indices (if not already there)
3356                          // no custom defined ranges              if (file->pVersion && file->pVersion->major > 2)
3357                          pDimDef->split_type = split_type_normal;                  _3lnk->SetPos(68); // version 3 has a different 3lnk structure
3358                          pDimDef->ranges     = NULL;              else
3359                      }                  _3lnk->SetPos(44);
3360                      else { // custom defined ranges  
3361                          pDimDef->split_type = split_type_customvelocity;              // load sample references (if auto loading is enabled)
3362                          pDimDef->ranges     = new range_t[pDimDef->zones];              if (file->GetAutoLoad()) {
3363                          unsigned int bits[5] = {0,0,0,0,0};                  for (uint i = 0; i < DimensionRegions; i++) {
3364                          int previousUpperLimit = -1;                      uint32_t wavepoolindex = _3lnk->ReadUint32();
3365                          for (int velocityZone = 0; velocityZone < pDimDef->zones; velocityZone++) {                      if (file->pWavePoolTable && pDimensionRegions[i])
3366                              bits[i] = velocityZone;                          pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
3367                              DimensionRegion* pDimRegion = GetDimensionRegionByBit(bits[4],bits[3],bits[2],bits[1],bits[0]);                  }
3368                    GetSample(); // load global region sample reference
3369                              pDimDef->ranges[velocityZone].low  = previousUpperLimit + 1;              }
3370                              pDimDef->ranges[velocityZone].high = pDimRegion->VelocityUpperLimit;          } else {
3371                              previousUpperLimit = pDimDef->ranges[velocityZone].high;              DimensionRegions = 0;
3372                              // fill velocity table              for (int i = 0 ; i < 8 ; i++) {
3373                              for (int i = pDimDef->ranges[velocityZone].low; i <= pDimDef->ranges[velocityZone].high; i++) {                  pDimensionDefinitions[i].dimension  = dimension_none;
3374                                  VelocityTable[i] = velocityZone;                  pDimensionDefinitions[i].bits       = 0;
3375                              }                  pDimensionDefinitions[i].zones      = 0;
3376                          }              }
3377            }
3378    
3379            // make sure there is at least one dimension region
3380            if (!DimensionRegions) {
3381                RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
3382                if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
3383                RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
3384                pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
3385                DimensionRegions = 1;
3386            }
3387        }
3388    
3389        /**
3390         * Apply Region settings and all its DimensionRegions to the respective
3391         * RIFF chunks. You have to call File::Save() to make changes persistent.
3392         *
3393         * Usually there is absolutely no need to call this method explicitly.
3394         * It will be called automatically when File::Save() was called.
3395         *
3396         * @param pProgress - callback function for progress notification
3397         * @throws gig::Exception if samples cannot be dereferenced
3398         */
3399        void Region::UpdateChunks(progress_t* pProgress) {
3400            // in the gig format we don't care about the Region's sample reference
3401            // but we still have to provide some existing one to not corrupt the
3402            // file, so to avoid the latter we simply always assign the sample of
3403            // the first dimension region of this region
3404            pSample = pDimensionRegions[0]->pSample;
3405    
3406            // first update base class's chunks
3407            DLS::Region::UpdateChunks(pProgress);
3408    
3409            // update dimension region's chunks
3410            for (int i = 0; i < DimensionRegions; i++) {
3411                pDimensionRegions[i]->UpdateChunks(pProgress);
3412            }
3413    
3414            File* pFile = (File*) GetParent()->GetParent();
3415            const bool versiongt2 = pFile->pVersion && pFile->pVersion->major > 2;
3416            const int iMaxDimensions =  versiongt2 ? 8 : 5;
3417            const int iMaxDimensionRegions = versiongt2 ? 256 : 32;
3418    
3419            // make sure '3lnk' chunk exists
3420            RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3421            if (!_3lnk) {
3422                const int _3lnkChunkSize = versiongt2 ? 1092 : 172;
3423                _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3424                memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3425    
3426                // move 3prg to last position
3427                pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), (RIFF::Chunk*)NULL);
3428            }
3429    
3430            // update dimension definitions in '3lnk' chunk
3431            uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3432            store32(&pData[0], DimensionRegions);
3433            int shift = 0;
3434            for (int i = 0; i < iMaxDimensions; i++) {
3435                pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3436                pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3437                pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3438                pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3439                pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3440                // next 3 bytes unknown, always zero?
3441    
3442                shift += pDimensionDefinitions[i].bits;
3443            }
3444    
3445            // update wave pool table in '3lnk' chunk
3446            const int iWavePoolOffset = versiongt2 ? 68 : 44;
3447            for (uint i = 0; i < iMaxDimensionRegions; i++) {
3448                int iWaveIndex = -1;
3449                if (i < DimensionRegions) {
3450                    if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
3451                    File::SampleList::iterator iter = pFile->pSamples->begin();
3452                    File::SampleList::iterator end  = pFile->pSamples->end();
3453                    for (int index = 0; iter != end; ++iter, ++index) {
3454                        if (*iter == pDimensionRegions[i]->pSample) {
3455                            iWaveIndex = index;
3456                            break;
3457                      }                      }
3458                  }                  }
3459              }              }
3460                store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3461            }
3462    
3463              // load sample references          // The following chunks are just added for compatibility with the
3464              _3lnk->SetPos(44); // jump to start of the wave pool indices (if not already there)          // GigaStudio software, which would show a warning if these were
3465              for (uint i = 0; i < DimensionRegions; i++) {          // missing. However currently these chunks don't cover any useful
3466                  uint32_t wavepoolindex = _3lnk->ReadUint32();          // data. So if this gig file uses any of our own gig format
3467                  pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);          // extensions which would cause this gig file to be unloadable
3468            // with GSt software anyway, then just skip these GSt compatibility
3469            // chunks here as well.
3470            if (versiongt2 && !UsesAnyGigFormatExtension()) {
3471                // add 3dnm list which always seems to be empty
3472                RIFF::List* _3dnm = pCkRegion->GetSubList(LIST_TYPE_3DNM);
3473                if (!_3dnm) _3dnm = pCkRegion->AddSubList(LIST_TYPE_3DNM);
3474    
3475                // add 3ddp chunk which always seems to have 16 bytes of 0xFF
3476                RIFF::Chunk* _3ddp = pCkRegion->GetSubChunk(CHUNK_ID_3DDP);
3477                if (!_3ddp) _3ddp =  pCkRegion->AddSubChunk(CHUNK_ID_3DDP, 16);
3478                uint8_t* pData = (uint8_t*) _3ddp->LoadChunkData();
3479                for (int i = 0; i < 16; i += 4) {
3480                    store32(&pData[i], 0xFFFFFFFF);
3481              }              }
3482    
3483                // move 3dnm and 3ddp to the end of the region list
3484                pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3DNM), (RIFF::Chunk*)NULL);
3485                pCkRegion->MoveSubChunk(pCkRegion->GetSubChunk(CHUNK_ID_3DDP), (RIFF::Chunk*)NULL);
3486            } else {
3487                // this is intended for the user switching from GSt >= 3 version
3488                // back to an older format version, delete GSt3 chunks ...
3489                RIFF::List* _3dnm = pCkRegion->GetSubList(LIST_TYPE_3DNM);
3490                if (_3dnm) pCkRegion->DeleteSubChunk(_3dnm);
3491    
3492                RIFF::Chunk* _3ddp = pCkRegion->GetSubChunk(CHUNK_ID_3DDP);
3493                if (_3ddp) pCkRegion->DeleteSubChunk(_3ddp);
3494          }          }
         else throw gig::Exception("Mandatory <3lnk> chunk not found.");  
3495      }      }
3496    
3497      void Region::LoadDimensionRegions(RIFF::List* rgn) {      void Region::LoadDimensionRegions(RIFF::List* rgn) {
# Line 1111  namespace gig { Line 3501  namespace gig {
3501              RIFF::List* _3ewl = _3prg->GetFirstSubList();              RIFF::List* _3ewl = _3prg->GetFirstSubList();
3502              while (_3ewl) {              while (_3ewl) {
3503                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {                  if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3504                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(_3ewl);                      pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3505                      dimensionRegionNr++;                      dimensionRegionNr++;
3506                  }                  }
3507                  _3ewl = _3prg->GetNextSubList();                  _3ewl = _3prg->GetNextSubList();
# Line 1120  namespace gig { Line 3510  namespace gig {
3510          }          }
3511      }      }
3512    
3513      Region::~Region() {      void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3514          for (uint i = 0; i < Dimensions; i++) {          // update KeyRange struct and make sure regions are in correct order
3515              if (pDimensionDefinitions[i].ranges) delete[] pDimensionDefinitions[i].ranges;          DLS::Region::SetKeyRange(Low, High);
3516            // update Region key table for fast lookup
3517            ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3518        }
3519    
3520        void Region::UpdateVelocityTable() {
3521            // get velocity dimension's index
3522            int veldim = -1;
3523            for (int i = 0 ; i < Dimensions ; i++) {
3524                if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
3525                    veldim = i;
3526                    break;
3527                }
3528            }
3529            if (veldim == -1) return;
3530    
3531            int step = 1;
3532            for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3533            int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
3534    
3535            // loop through all dimension regions for all dimensions except the velocity dimension
3536            int dim[8] = { 0 };
3537            for (int i = 0 ; i < DimensionRegions ; i++) {
3538                const int end = i + step * pDimensionDefinitions[veldim].zones;
3539    
3540                // create a velocity table for all cases where the velocity zone is zero
3541                if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3542                    pDimensionRegions[i]->VelocityUpperLimit) {
3543                    // create the velocity table
3544                    uint8_t* table = pDimensionRegions[i]->VelocityTable;
3545                    if (!table) {
3546                        table = new uint8_t[128];
3547                        pDimensionRegions[i]->VelocityTable = table;
3548                    }
3549                    int tableidx = 0;
3550                    int velocityZone = 0;
3551                    if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
3552                        for (int k = i ; k < end ; k += step) {
3553                            DimensionRegion *d = pDimensionRegions[k];
3554                            for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
3555                            velocityZone++;
3556                        }
3557                    } else { // gig2
3558                        for (int k = i ; k < end ; k += step) {
3559                            DimensionRegion *d = pDimensionRegions[k];
3560                            for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
3561                            velocityZone++;
3562                        }
3563                    }
3564                } else {
3565                    if (pDimensionRegions[i]->VelocityTable) {
3566                        delete[] pDimensionRegions[i]->VelocityTable;
3567                        pDimensionRegions[i]->VelocityTable = 0;
3568                    }
3569                }
3570    
3571                // jump to the next case where the velocity zone is zero
3572                int j;
3573                int shift = 0;
3574                for (j = 0 ; j < Dimensions ; j++) {
3575                    if (j == veldim) i += skipveldim; // skip velocity dimension
3576                    else {
3577                        dim[j]++;
3578                        if (dim[j] < pDimensionDefinitions[j].zones) break;
3579                        else {
3580                            // skip unused dimension regions
3581                            dim[j] = 0;
3582                            i += ((1 << pDimensionDefinitions[j].bits) -
3583                                  pDimensionDefinitions[j].zones) << shift;
3584                        }
3585                    }
3586                    shift += pDimensionDefinitions[j].bits;
3587                }
3588                if (j == Dimensions) break;
3589            }
3590        }
3591    
3592        /** @brief Einstein would have dreamed of it - create a new dimension.
3593         *
3594         * Creates a new dimension with the dimension definition given by
3595         * \a pDimDef. The appropriate amount of DimensionRegions will be created.
3596         * There is a hard limit of dimensions and total amount of "bits" all
3597         * dimensions can have. This limit is dependant to what gig file format
3598         * version this file refers to. The gig v2 (and lower) format has a
3599         * dimension limit and total amount of bits limit of 5, whereas the gig v3
3600         * format has a limit of 8.
3601         *
3602         * @param pDimDef - defintion of the new dimension
3603         * @throws gig::Exception if dimension of the same type exists already
3604         * @throws gig::Exception if amount of dimensions or total amount of
3605         *                        dimension bits limit is violated
3606         */
3607        void Region::AddDimension(dimension_def_t* pDimDef) {
3608            // some initial sanity checks of the given dimension definition
3609            if (pDimDef->zones < 2)
3610                throw gig::Exception("Could not add new dimension, amount of requested zones must always be at least two");
3611            if (pDimDef->bits < 1)
3612                throw gig::Exception("Could not add new dimension, amount of requested requested zone bits must always be at least one");
3613            if (pDimDef->dimension == dimension_samplechannel) {
3614                if (pDimDef->zones != 2)
3615                    throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zones must always be 2 for this dimension type");
3616                if (pDimDef->bits != 1)
3617                    throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zone bits must always be 1 for this dimension type");
3618            }
3619    
3620            // check if max. amount of dimensions reached
3621            File* file = (File*) GetParent()->GetParent();
3622            const int iMaxDimensions = (file->pVersion && file->pVersion->major > 2) ? 8 : 5;
3623            if (Dimensions >= iMaxDimensions)
3624                throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
3625            // check if max. amount of dimension bits reached
3626            int iCurrentBits = 0;
3627            for (int i = 0; i < Dimensions; i++)
3628                iCurrentBits += pDimensionDefinitions[i].bits;
3629            if (iCurrentBits >= iMaxDimensions)
3630                throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
3631            const int iNewBits = iCurrentBits + pDimDef->bits;
3632            if (iNewBits > iMaxDimensions)
3633                throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
3634            // check if there's already a dimensions of the same type
3635            for (int i = 0; i < Dimensions; i++)
3636                if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3637                    throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3638    
3639            // pos is where the new dimension should be placed, normally
3640            // last in list, except for the samplechannel dimension which
3641            // has to be first in list
3642            int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3643            int bitpos = 0;
3644            for (int i = 0 ; i < pos ; i++)
3645                bitpos += pDimensionDefinitions[i].bits;
3646    
3647            // make room for the new dimension
3648            for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3649            for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3650                for (int j = Dimensions ; j > pos ; j--) {
3651                    pDimensionRegions[i]->DimensionUpperLimits[j] =
3652                        pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3653                }
3654            }
3655    
3656            // assign definition of new dimension
3657            pDimensionDefinitions[pos] = *pDimDef;
3658    
3659            // auto correct certain dimension definition fields (where possible)
3660            pDimensionDefinitions[pos].split_type  =
3661                __resolveSplitType(pDimensionDefinitions[pos].dimension);
3662            pDimensionDefinitions[pos].zone_size =
3663                __resolveZoneSize(pDimensionDefinitions[pos]);
3664    
3665            // create new dimension region(s) for this new dimension, and make
3666            // sure that the dimension regions are placed correctly in both the
3667            // RIFF list and the pDimensionRegions array
3668            RIFF::Chunk* moveTo = NULL;
3669            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3670            for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3671                for (int k = 0 ; k < (1 << bitpos) ; k++) {
3672                    pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3673                }
3674                for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3675                    for (int k = 0 ; k < (1 << bitpos) ; k++) {
3676                        RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3677                        if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3678                        // create a new dimension region and copy all parameter values from
3679                        // an existing dimension region
3680                        pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3681                            new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3682    
3683                        DimensionRegions++;
3684                    }
3685                }
3686                moveTo = pDimensionRegions[i]->pParentList;
3687            }
3688    
3689            // initialize the upper limits for this dimension
3690            int mask = (1 << bitpos) - 1;
3691            for (int z = 0 ; z < pDimDef->zones ; z++) {
3692                uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3693                for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3694                    pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3695                                      (z << bitpos) |
3696                                      (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3697                }
3698            }
3699    
3700            Dimensions++;
3701    
3702            // if this is a layer dimension, update 'Layers' attribute
3703            if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
3704    
3705            UpdateVelocityTable();
3706        }
3707    
3708        /** @brief Delete an existing dimension.
3709         *
3710         * Deletes the dimension given by \a pDimDef and deletes all respective
3711         * dimension regions, that is all dimension regions where the dimension's
3712         * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
3713         * for example this would delete all dimension regions for the case(s)
3714         * where the sustain pedal is pressed down.
3715         *
3716         * @param pDimDef - dimension to delete
3717         * @throws gig::Exception if given dimension cannot be found
3718         */
3719        void Region::DeleteDimension(dimension_def_t* pDimDef) {
3720            // get dimension's index
3721            int iDimensionNr = -1;
3722            for (int i = 0; i < Dimensions; i++) {
3723                if (&pDimensionDefinitions[i] == pDimDef) {
3724                    iDimensionNr = i;
3725                    break;
3726                }
3727          }          }
3728          for (int i = 0; i < 32; i++) {          if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
3729    
3730            // get amount of bits below the dimension to delete
3731            int iLowerBits = 0;
3732            for (int i = 0; i < iDimensionNr; i++)
3733                iLowerBits += pDimensionDefinitions[i].bits;
3734    
3735            // get amount ot bits above the dimension to delete
3736            int iUpperBits = 0;
3737            for (int i = iDimensionNr + 1; i < Dimensions; i++)
3738                iUpperBits += pDimensionDefinitions[i].bits;
3739    
3740            RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3741    
3742            // delete dimension regions which belong to the given dimension
3743            // (that is where the dimension's bit > 0)
3744            for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
3745                for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
3746                    for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
3747                        int iToDelete = iUpperBit    << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3748                                        iObsoleteBit << iLowerBits |
3749                                        iLowerBit;
3750    
3751                        _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3752                        delete pDimensionRegions[iToDelete];
3753                        pDimensionRegions[iToDelete] = NULL;
3754                        DimensionRegions--;
3755                    }
3756                }
3757            }
3758    
3759            // defrag pDimensionRegions array
3760            // (that is remove the NULL spaces within the pDimensionRegions array)
3761            for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
3762                if (!pDimensionRegions[iTo]) {
3763                    if (iFrom <= iTo) iFrom = iTo + 1;
3764                    while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
3765                    if (iFrom < 256 && pDimensionRegions[iFrom]) {
3766                        pDimensionRegions[iTo]   = pDimensionRegions[iFrom];
3767                        pDimensionRegions[iFrom] = NULL;
3768                    }
3769                }
3770            }
3771    
3772            // remove the this dimension from the upper limits arrays
3773            for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3774                DimensionRegion* d = pDimensionRegions[j];
3775                for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3776                    d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3777                }
3778                d->DimensionUpperLimits[Dimensions - 1] = 127;
3779            }
3780    
3781            // 'remove' dimension definition
3782            for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3783                pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
3784            }
3785            pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
3786            pDimensionDefinitions[Dimensions - 1].bits      = 0;
3787            pDimensionDefinitions[Dimensions - 1].zones     = 0;
3788    
3789            Dimensions--;
3790    
3791            // if this was a layer dimension, update 'Layers' attribute
3792            if (pDimDef->dimension == dimension_layer) Layers = 1;
3793        }
3794    
3795        /** @brief Delete one split zone of a dimension (decrement zone amount).
3796         *
3797         * Instead of deleting an entire dimensions, this method will only delete
3798         * one particular split zone given by @a zone of the Region's dimension
3799         * given by @a type. So this method will simply decrement the amount of
3800         * zones by one of the dimension in question. To be able to do that, the
3801         * respective dimension must exist on this Region and it must have at least
3802         * 3 zones. All DimensionRegion objects associated with the zone will be
3803         * deleted.
3804         *
3805         * @param type - identifies the dimension where a zone shall be deleted
3806         * @param zone - index of the dimension split zone that shall be deleted
3807         * @throws gig::Exception if requested zone could not be deleted
3808         */
3809        void Region::DeleteDimensionZone(dimension_t type, int zone) {
3810            if (!Dimensions)
3811                throw gig::Exception("Could not delete dimension zone, because there is no dimension at all.");
3812            dimension_def_t* oldDef = GetDimensionDefinition(type);
3813            if (!oldDef)
3814                throw gig::Exception("Could not delete dimension zone, no such dimension of given type");
3815            if (oldDef->zones <= 2)
3816                throw gig::Exception("Could not delete dimension zone, because it would end up with only one zone.");
3817            if (zone < 0 || zone >= oldDef->zones)
3818                throw gig::Exception("Could not delete dimension zone, requested zone index out of bounds.");
3819    
3820            const int newZoneSize = oldDef->zones - 1;
3821    
3822            // create a temporary Region which just acts as a temporary copy
3823            // container and will be deleted at the end of this function and will
3824            // also not be visible through the API during this process
3825            gig::Region* tempRgn = NULL;
3826            {
3827                // adding these temporary chunks is probably not even necessary
3828                Instrument* instr = static_cast<Instrument*>(GetParent());
3829                RIFF::List* pCkInstrument = instr->pCkInstrument;
3830                RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3831                if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3832                RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3833                tempRgn = new Region(instr, rgn);
3834            }
3835    
3836            // copy this region's dimensions (with already the dimension split size
3837            // requested by the arguments of this method call) to the temporary
3838            // region, and don't use Region::CopyAssign() here for this task, since
3839            // it would also alter fast lookup helper variables here and there
3840            dimension_def_t newDef = {};
3841            for (int i = 0; i < Dimensions; ++i) {
3842                dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3843                // is this the dimension requested by the method arguments? ...
3844                if (def.dimension == type) { // ... if yes, decrement zone amount by one
3845                    def.zones = newZoneSize;
3846                    if ((1 << (def.bits - 1)) == def.zones) def.bits--;
3847                    newDef = def;
3848                }
3849                tempRgn->AddDimension(&def);
3850            }
3851            // silence clang sanitizer warning
3852            if (newDef.dimension == dimension_none)
3853                throw gig::Exception("Unexpected internal failure resolving dimension in DeleteDimensionZone() [this is a bug].");
3854    
3855            // find the dimension index in the tempRegion which is the dimension
3856            // type passed to this method (paranoidly expecting different order)
3857            int tempReducedDimensionIndex = -1;
3858            for (int d = 0; d < tempRgn->Dimensions; ++d) {
3859                if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3860                    tempReducedDimensionIndex = d;
3861                    break;
3862                }
3863            }
3864    
3865            // copy dimension regions from this region to the temporary region
3866            for (int iDst = 0; iDst < 256; ++iDst) {
3867                DimensionRegion* dstDimRgn = tempRgn->pDimensionRegions[iDst];
3868                if (!dstDimRgn) continue;
3869                std::map<dimension_t,int> dimCase;
3870                bool isValidZone = true;
3871                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3872                    const int dstBits = tempRgn->pDimensionDefinitions[d].bits;
3873                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3874                        (iDst >> baseBits) & ((1 << dstBits) - 1);
3875                    baseBits += dstBits;
3876                    // there are also DimensionRegion objects of unused zones, skip them
3877                    if (dimCase[tempRgn->pDimensionDefinitions[d].dimension] >= tempRgn->pDimensionDefinitions[d].zones) {
3878                        isValidZone = false;
3879                        break;
3880                    }
3881                }
3882                if (!isValidZone) continue;
3883                // a bit paranoid: cope with the chance that the dimensions would
3884                // have different order in source and destination regions
3885                const bool isLastZone = (dimCase[type] == newZoneSize - 1);
3886                if (dimCase[type] >= zone) dimCase[type]++;
3887                DimensionRegion* srcDimRgn = GetDimensionRegionByBit(dimCase);
3888                dstDimRgn->CopyAssign(srcDimRgn);
3889                // if this is the upper most zone of the dimension passed to this
3890                // method, then correct (raise) its upper limit to 127
3891                if (newDef.split_type == split_type_normal && isLastZone)
3892                    dstDimRgn->DimensionUpperLimits[tempReducedDimensionIndex] = 127;
3893            }
3894    
3895            // now tempRegion's dimensions and DimensionRegions basically reflect
3896            // what we wanted to get for this actual Region here, so we now just
3897            // delete and recreate the dimension in question with the new amount
3898            // zones and then copy back from tempRegion. we're actually deleting and
3899            // recreating all dimensions here, to avoid altering the precise order
3900            // of the dimensions (which would not be an error per se, but it would
3901            // cause usability issues with instrument editors)
3902            {
3903                std::vector<dimension_def_t> oldDefs;
3904                for (int i = 0; i < Dimensions; ++i)
3905                    oldDefs.push_back(pDimensionDefinitions[i]); // copy, don't reference
3906                for (int i = Dimensions - 1; i >= 0; --i)
3907                    DeleteDimension(&pDimensionDefinitions[i]);
3908                for (int i = 0; i < oldDefs.size(); ++i) {
3909                    dimension_def_t& def = oldDefs[i];
3910                    AddDimension(
3911                        (def.dimension == newDef.dimension) ? &newDef : &def
3912                    );
3913                }
3914            }
3915            for (int iSrc = 0; iSrc < 256; ++iSrc) {
3916                DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3917                if (!srcDimRgn) continue;
3918                std::map<dimension_t,int> dimCase;
3919                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3920                    const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3921                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3922                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
3923                    baseBits += srcBits;
3924                }
3925                // a bit paranoid: cope with the chance that the dimensions would
3926                // have different order in source and destination regions
3927                DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3928                if (!dstDimRgn) continue;
3929                dstDimRgn->CopyAssign(srcDimRgn);
3930            }
3931    
3932            // delete temporary region
3933            tempRgn->DeleteChunks();
3934            delete tempRgn;
3935    
3936            UpdateVelocityTable();
3937        }
3938    
3939        /** @brief Divide split zone of a dimension in two (increment zone amount).
3940         *
3941         * This will increment the amount of zones for the dimension (given by
3942         * @a type) by one. It will do so by dividing the zone (given by @a zone)
3943         * in the middle of its zone range in two. So the two zones resulting from
3944         * the zone being splitted, will be an equivalent copy regarding all their
3945         * articulation informations and sample reference. The two zones will only
3946         * differ in their zone's upper limit
3947         * (DimensionRegion::DimensionUpperLimits).
3948         *
3949         * @param type - identifies the dimension where a zone shall be splitted
3950         * @param zone - index of the dimension split zone that shall be splitted
3951         * @throws gig::Exception if requested zone could not be splitted
3952         */
3953        void Region::SplitDimensionZone(dimension_t type, int zone) {
3954            if (!Dimensions)
3955                throw gig::Exception("Could not split dimension zone, because there is no dimension at all.");
3956            dimension_def_t* oldDef = GetDimensionDefinition(type);
3957            if (!oldDef)
3958                throw gig::Exception("Could not split dimension zone, no such dimension of given type");
3959            if (zone < 0 || zone >= oldDef->zones)
3960                throw gig::Exception("Could not split dimension zone, requested zone index out of bounds.");
3961    
3962            const int newZoneSize = oldDef->zones + 1;
3963    
3964            // create a temporary Region which just acts as a temporary copy
3965            // container and will be deleted at the end of this function and will
3966            // also not be visible through the API during this process
3967            gig::Region* tempRgn = NULL;
3968            {
3969                // adding these temporary chunks is probably not even necessary
3970                Instrument* instr = static_cast<Instrument*>(GetParent());
3971                RIFF::List* pCkInstrument = instr->pCkInstrument;
3972                RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3973                if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3974                RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3975                tempRgn = new Region(instr, rgn);
3976            }
3977    
3978            // copy this region's dimensions (with already the dimension split size
3979            // requested by the arguments of this method call) to the temporary
3980            // region, and don't use Region::CopyAssign() here for this task, since
3981            // it would also alter fast lookup helper variables here and there
3982            dimension_def_t newDef = {};
3983            for (int i = 0; i < Dimensions; ++i) {
3984                dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3985                // is this the dimension requested by the method arguments? ...
3986                if (def.dimension == type) { // ... if yes, increment zone amount by one
3987                    def.zones = newZoneSize;
3988                    if ((1 << oldDef->bits) < newZoneSize) def.bits++;
3989                    newDef = def;
3990                }
3991                tempRgn->AddDimension(&def);
3992            }
3993            // silence clang sanitizer warning
3994            if (newDef.dimension == dimension_none)
3995                throw gig::Exception("Unexpected internal failure resolving dimension in SplitDimensionZone() [this is a bug].");
3996    
3997            // find the dimension index in the tempRegion which is the dimension
3998            // type passed to this method (paranoidly expecting different order)
3999            int tempIncreasedDimensionIndex = -1;
4000            for (int d = 0; d < tempRgn->Dimensions; ++d) {
4001                if (tempRgn->pDimensionDefinitions[d].dimension == type) {
4002                    tempIncreasedDimensionIndex = d;
4003                    break;
4004                }
4005            }
4006    
4007            // copy dimension regions from this region to the temporary region
4008            for (int iSrc = 0; iSrc < 256; ++iSrc) {
4009                DimensionRegion* srcDimRgn = pDimensionRegions[iSrc];
4010                if (!srcDimRgn) continue;
4011                std::map<dimension_t,int> dimCase;
4012                bool isValidZone = true;
4013                for (int d = 0, baseBits = 0; d < Dimensions; ++d) {
4014                    const int srcBits = pDimensionDefinitions[d].bits;
4015                    dimCase[pDimensionDefinitions[d].dimension] =
4016                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
4017                    // there are also DimensionRegion objects for unused zones, skip them
4018                    if (dimCase[pDimensionDefinitions[d].dimension] >= pDimensionDefinitions[d].zones) {
4019                        isValidZone = false;
4020                        break;
4021                    }
4022                    baseBits += srcBits;
4023                }
4024                if (!isValidZone) continue;
4025                // a bit paranoid: cope with the chance that the dimensions would
4026                // have different order in source and destination regions            
4027                if (dimCase[type] > zone) dimCase[type]++;
4028                DimensionRegion* dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
4029                dstDimRgn->CopyAssign(srcDimRgn);
4030                // if this is the requested zone to be splitted, then also copy
4031                // the source DimensionRegion to the newly created target zone
4032                // and set the old zones upper limit lower
4033                if (dimCase[type] == zone) {
4034                    // lower old zones upper limit
4035                    if (newDef.split_type == split_type_normal) {
4036                        const int high =
4037                            dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex];
4038                        int low = 0;
4039                        if (zone > 0) {
4040                            std::map<dimension_t,int> lowerCase = dimCase;
4041                            lowerCase[type]--;
4042                            DimensionRegion* dstDimRgnLow = tempRgn->GetDimensionRegionByBit(lowerCase);
4043                            low = dstDimRgnLow->DimensionUpperLimits[tempIncreasedDimensionIndex];
4044                        }
4045                        dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex] = low + (high - low) / 2;
4046                    }
4047                    // fill the newly created zone of the divided zone as well
4048                    dimCase[type]++;
4049                    dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
4050                    dstDimRgn->CopyAssign(srcDimRgn);
4051                }
4052            }
4053    
4054            // now tempRegion's dimensions and DimensionRegions basically reflect
4055            // what we wanted to get for this actual Region here, so we now just
4056            // delete and recreate the dimension in question with the new amount
4057            // zones and then copy back from tempRegion. we're actually deleting and
4058            // recreating all dimensions here, to avoid altering the precise order
4059            // of the dimensions (which would not be an error per se, but it would
4060            // cause usability issues with instrument editors)
4061            {
4062                std::vector<dimension_def_t> oldDefs;
4063                for (int i = 0; i < Dimensions; ++i)
4064                    oldDefs.push_back(pDimensionDefinitions[i]); // copy, don't reference
4065                for (int i = Dimensions - 1; i >= 0; --i)
4066                    DeleteDimension(&pDimensionDefinitions[i]);
4067                for (int i = 0; i < oldDefs.size(); ++i) {
4068                    dimension_def_t& def = oldDefs[i];
4069                    AddDimension(
4070                        (def.dimension == newDef.dimension) ? &newDef : &def
4071                    );
4072                }
4073            }
4074            for (int iSrc = 0; iSrc < 256; ++iSrc) {
4075                DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
4076                if (!srcDimRgn) continue;
4077                std::map<dimension_t,int> dimCase;
4078                for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
4079                    const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
4080                    dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
4081                        (iSrc >> baseBits) & ((1 << srcBits) - 1);
4082                    baseBits += srcBits;
4083                }
4084                // a bit paranoid: cope with the chance that the dimensions would
4085                // have different order in source and destination regions
4086                DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
4087                if (!dstDimRgn) continue;
4088                dstDimRgn->CopyAssign(srcDimRgn);
4089            }
4090    
4091            // delete temporary region
4092            tempRgn->DeleteChunks();
4093            delete tempRgn;
4094    
4095            UpdateVelocityTable();
4096        }
4097    
4098        /** @brief Change type of an existing dimension.
4099         *
4100         * Alters the dimension type of a dimension already existing on this
4101         * region. If there is currently no dimension on this Region with type
4102         * @a oldType, then this call with throw an Exception. Likewise there are
4103         * cases where the requested dimension type cannot be performed. For example
4104         * if the new dimension type shall be gig::dimension_samplechannel, and the
4105         * current dimension has more than 2 zones. In such cases an Exception is
4106         * thrown as well.
4107         *
4108         * @param oldType - identifies the existing dimension to be changed
4109         * @param newType - to which dimension type it should be changed to
4110         * @throws gig::Exception if requested change cannot be performed
4111         */
4112        void Region::SetDimensionType(dimension_t oldType, dimension_t newType) {
4113            if (oldType == newType) return;
4114            dimension_def_t* def = GetDimensionDefinition(oldType);
4115            if (!def)
4116                throw gig::Exception("No dimension with provided old dimension type exists on this region");
4117            if (newType == dimension_samplechannel && def->zones != 2)
4118                throw gig::Exception("Cannot change to dimension type 'sample channel', because existing dimension does not have 2 zones");
4119            if (GetDimensionDefinition(newType))
4120                throw gig::Exception("There is already a dimension with requested new dimension type on this region");
4121            def->dimension  = newType;
4122            def->split_type = __resolveSplitType(newType);
4123        }
4124    
4125        DimensionRegion* Region::GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase) {
4126            uint8_t bits[8] = {};
4127            for (std::map<dimension_t,int>::const_iterator it = DimCase.begin();
4128                 it != DimCase.end(); ++it)
4129            {
4130                for (int d = 0; d < Dimensions; ++d) {
4131                    if (pDimensionDefinitions[d].dimension == it->first) {
4132                        bits[d] = it->second;
4133                        goto nextDimCaseSlice;
4134                    }
4135                }
4136                assert(false); // do crash ... too harsh maybe ? ignore it instead ?
4137                nextDimCaseSlice:
4138                ; // noop
4139            }
4140            return GetDimensionRegionByBit(bits);
4141        }
4142    
4143        /**
4144         * Searches in the current Region for a dimension of the given dimension
4145         * type and returns the precise configuration of that dimension in this
4146         * Region.
4147         *
4148         * @param type - dimension type of the sought dimension
4149         * @returns dimension definition or NULL if there is no dimension with
4150         *          sought type in this Region.
4151         */
4152        dimension_def_t* Region::GetDimensionDefinition(dimension_t type) {
4153            for (int i = 0; i < Dimensions; ++i)
4154                if (pDimensionDefinitions[i].dimension == type)
4155                    return &pDimensionDefinitions[i];
4156            return NULL;
4157        }
4158    
4159        Region::~Region() {
4160            for (int i = 0; i < 256; i++) {
4161              if (pDimensionRegions[i]) delete pDimensionRegions[i];              if (pDimensionRegions[i]) delete pDimensionRegions[i];
4162          }          }
4163      }      }
# Line 1142  namespace gig { Line 4175  namespace gig {
4175       * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,       * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
4176       * etc.).       * etc.).
4177       *       *
4178       * @param  Dim4Val  MIDI controller value (0-127) for dimension 4       * @param  DimValues  MIDI controller values (0-127) for dimension 0 to 7
      * @param  Dim3Val  MIDI controller value (0-127) for dimension 3  
      * @param  Dim2Val  MIDI controller value (0-127) for dimension 2  
      * @param  Dim1Val  MIDI controller value (0-127) for dimension 1  
      * @param  Dim0Val  MIDI controller value (0-127) for dimension 0  
4179       * @returns         adress to the DimensionRegion for the given situation       * @returns         adress to the DimensionRegion for the given situation
4180       * @see             pDimensionDefinitions       * @see             pDimensionDefinitions
4181       * @see             Dimensions       * @see             Dimensions
4182       */       */
4183      DimensionRegion* Region::GetDimensionRegionByValue(uint Dim4Val, uint Dim3Val, uint Dim2Val, uint Dim1Val, uint Dim0Val) {      DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
4184          unsigned int bits[5] = {Dim0Val,Dim1Val,Dim2Val,Dim3Val,Dim4Val};          uint8_t bits;
4185            int veldim = -1;
4186            int velbitpos = 0;
4187            int bitpos = 0;
4188            int dimregidx = 0;
4189          for (uint i = 0; i < Dimensions; i++) {          for (uint i = 0; i < Dimensions; i++) {
4190              switch (pDimensionDefinitions[i].split_type) {              if (pDimensionDefinitions[i].dimension == dimension_velocity) {
4191                  case split_type_normal:                  // the velocity dimension must be handled after the other dimensions
4192                      bits[i] /= pDimensionDefinitions[i].zone_size;                  veldim = i;
4193                      break;                  velbitpos = bitpos;
4194                  case split_type_customvelocity:              } else {
4195                      bits[i] = VelocityTable[bits[i]];                  switch (pDimensionDefinitions[i].split_type) {
4196                      break;                      case split_type_normal:
4197                  // else the value is already the sought dimension bit number                          if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
4198                                // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
4199                                for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
4200                                    if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
4201                                }
4202                            } else {
4203                                // gig2: evenly sized zones
4204                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
4205                            }
4206                            break;
4207                        case split_type_bit: // the value is already the sought dimension bit number
4208                            const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
4209                            bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
4210                            break;
4211                    }
4212                    dimregidx |= bits << bitpos;
4213                }
4214                bitpos += pDimensionDefinitions[i].bits;
4215            }
4216            DimensionRegion* dimreg = pDimensionRegions[dimregidx & 255];
4217            if (!dimreg) return NULL;
4218            if (veldim != -1) {
4219                // (dimreg is now the dimension region for the lowest velocity)
4220                if (dimreg->VelocityTable) // custom defined zone ranges
4221                    bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4222                else // normal split type
4223                    bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4224    
4225                const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4226                dimregidx |= (bits & limiter_mask) << velbitpos;
4227                dimreg = pDimensionRegions[dimregidx & 255];
4228            }
4229            return dimreg;
4230        }
4231    
4232        int Region::GetDimensionRegionIndexByValue(const uint DimValues[8]) {
4233            uint8_t bits;
4234            int veldim = -1;
4235            int velbitpos = 0;
4236            int bitpos = 0;
4237            int dimregidx = 0;
4238            for (uint i = 0; i < Dimensions; i++) {
4239                if (pDimensionDefinitions[i].dimension == dimension_velocity) {
4240                    // the velocity dimension must be handled after the other dimensions
4241                    veldim = i;
4242                    velbitpos = bitpos;
4243                } else {
4244                    switch (pDimensionDefinitions[i].split_type) {
4245                        case split_type_normal:
4246                            if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
4247                                // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
4248                                for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
4249                                    if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
4250                                }
4251                            } else {
4252                                // gig2: evenly sized zones
4253                                bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
4254                            }
4255                            break;
4256                        case split_type_bit: // the value is already the sought dimension bit number
4257                            const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
4258                            bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
4259                            break;
4260                    }
4261                    dimregidx |= bits << bitpos;
4262              }              }
4263                bitpos += pDimensionDefinitions[i].bits;
4264            }
4265            dimregidx &= 255;
4266            DimensionRegion* dimreg = pDimensionRegions[dimregidx];
4267            if (!dimreg) return -1;
4268            if (veldim != -1) {
4269                // (dimreg is now the dimension region for the lowest velocity)
4270                if (dimreg->VelocityTable) // custom defined zone ranges
4271                    bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4272                else // normal split type
4273                    bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4274    
4275                const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4276                dimregidx |= (bits & limiter_mask) << velbitpos;
4277                dimregidx &= 255;
4278          }          }
4279          return GetDimensionRegionByBit(bits[4],bits[3],bits[2],bits[1],bits[0]);          return dimregidx;
4280      }      }
4281    
4282      /**      /**
# Line 1172  namespace gig { Line 4284  namespace gig {
4284       * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>       * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
4285       * instead of calling this method directly!       * instead of calling this method directly!
4286       *       *
4287       * @param Dim4Bit  Bit number for dimension 4       * @param DimBits  Bit numbers for dimension 0 to 7
      * @param Dim3Bit  Bit number for dimension 3  
      * @param Dim2Bit  Bit number for dimension 2  
      * @param Dim1Bit  Bit number for dimension 1  
      * @param Dim0Bit  Bit number for dimension 0  
4288       * @returns        adress to the DimensionRegion for the given dimension       * @returns        adress to the DimensionRegion for the given dimension
4289       *                 bit numbers       *                 bit numbers
4290       * @see            GetDimensionRegionByValue()       * @see            GetDimensionRegionByValue()
4291       */       */
4292      DimensionRegion* Region::GetDimensionRegionByBit(uint8_t Dim4Bit, uint8_t Dim3Bit, uint8_t Dim2Bit, uint8_t Dim1Bit, uint8_t Dim0Bit) {      DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
4293          return *(pDimensionRegions + ((((((((Dim4Bit << pDimensionDefinitions[3].bits) | Dim3Bit)          return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
4294                                                       << pDimensionDefinitions[2].bits) | Dim2Bit)                                                    << pDimensionDefinitions[5].bits | DimBits[5])
4295                                                       << pDimensionDefinitions[1].bits) | Dim1Bit)                                                    << pDimensionDefinitions[4].bits | DimBits[4])
4296                                                       << pDimensionDefinitions[0].bits) | Dim0Bit) );                                                    << pDimensionDefinitions[3].bits | DimBits[3])
4297                                                      << pDimensionDefinitions[2].bits | DimBits[2])
4298                                                      << pDimensionDefinitions[1].bits | DimBits[1])
4299                                                      << pDimensionDefinitions[0].bits | DimBits[0]];
4300      }      }
4301    
4302      /**      /**
# Line 1202  namespace gig { Line 4313  namespace gig {
4313          else         return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));          else         return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
4314      }      }
4315    
4316      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex) {      Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
4317            if ((int32_t)WavePoolTableIndex == -1) return NULL;
4318          File* file = (File*) GetParent()->GetParent();          File* file = (File*) GetParent()->GetParent();
4319          unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex];          if (!file->pWavePoolTable) return NULL;
4320          Sample* sample = file->GetFirstSample();          if (WavePoolTableIndex + 1 > file->WavePoolCount) return NULL;
4321          while (sample) {          // for new files or files >= 2 GB use 64 bit wave pool offsets
4322              if (sample->ulWavePoolOffset == soughtoffset) return static_cast<gig::Sample*>(pSample = sample);          if (file->pRIFF->IsNew() || (file->pRIFF->GetCurrentFileSize() >> 31)) {
4323              sample = file->GetNextSample();              // use 64 bit wave pool offsets (treating this as large file)
4324                uint64_t soughtoffset =
4325                    uint64_t(file->pWavePoolTable[WavePoolTableIndex]) |
4326                    uint64_t(file->pWavePoolTableHi[WavePoolTableIndex]) << 32;
4327                Sample* sample = file->GetFirstSample(pProgress);
4328                while (sample) {
4329                    if (sample->ullWavePoolOffset == soughtoffset)
4330                        return static_cast<gig::Sample*>(sample);
4331                    sample = file->GetNextSample();
4332                }
4333            } else {
4334                // use extension files and 32 bit wave pool offsets
4335                file_offset_t soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
4336                file_offset_t soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
4337                Sample* sample = file->GetFirstSample(pProgress);
4338                while (sample) {
4339                    if (sample->ullWavePoolOffset == soughtoffset &&
4340                        sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
4341                    sample = file->GetNextSample();
4342                }
4343            }
4344            return NULL;
4345        }
4346        
4347        /**
4348         * Make a (semi) deep copy of the Region object given by @a orig
4349         * and assign it to this object.
4350         *
4351         * Note that all sample pointers referenced by @a orig are simply copied as
4352         * memory address. Thus the respective samples are shared, not duplicated!
4353         *
4354         * @param orig - original Region object to be copied from
4355         */
4356        void Region::CopyAssign(const Region* orig) {
4357            CopyAssign(orig, NULL);
4358        }
4359        
4360        /**
4361         * Make a (semi) deep copy of the Region object given by @a orig and
4362         * assign it to this object
4363         *
4364         * @param mSamples - crosslink map between the foreign file's samples and
4365         *                   this file's samples
4366         */
4367        void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
4368            // handle base classes
4369            DLS::Region::CopyAssign(orig);
4370            
4371            if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
4372                pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
4373            }
4374            
4375            // handle own member variables
4376            for (int i = Dimensions - 1; i >= 0; --i) {
4377                DeleteDimension(&pDimensionDefinitions[i]);
4378            }
4379            Layers = 0; // just to be sure
4380            for (int i = 0; i < orig->Dimensions; i++) {
4381                // we need to copy the dim definition here, to avoid the compiler
4382                // complaining about const-ness issue
4383                dimension_def_t def = orig->pDimensionDefinitions[i];
4384                AddDimension(&def);
4385            }
4386            for (int i = 0; i < 256; i++) {
4387                if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
4388                    pDimensionRegions[i]->CopyAssign(
4389                        orig->pDimensionRegions[i],
4390                        mSamples
4391                    );
4392                }
4393            }
4394            Layers = orig->Layers;
4395        }
4396    
4397        /**
4398         * Returns @c true in case this Region object uses any gig format
4399         * extension, that is e.g. whether any DimensionRegion object currently
4400         * has any setting effective that would require our "LSDE" RIFF chunk to
4401         * be stored to the gig file.
4402         *
4403         * Right now this is a private method. It is considerable though this method
4404         * to become (in slightly modified form) a public API method in future, i.e.
4405         * to allow instrument editors to visualize and/or warn the user of any gig
4406         * format extension being used. See also comments on
4407         * DimensionRegion::UsesAnyGigFormatExtension() for details about such a
4408         * potential public API change in future.
4409         */
4410        bool Region::UsesAnyGigFormatExtension() const {
4411            for (int i = 0; i < 256; i++) {
4412                if (pDimensionRegions[i]) {
4413                    if (pDimensionRegions[i]->UsesAnyGigFormatExtension())
4414                        return true;
4415                }
4416            }
4417            return false;
4418        }
4419    
4420    
4421    // *************** MidiRule ***************
4422    // *
4423    
4424        MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
4425            _3ewg->SetPos(36);
4426            Triggers = _3ewg->ReadUint8();
4427            _3ewg->SetPos(40);
4428            ControllerNumber = _3ewg->ReadUint8();
4429            _3ewg->SetPos(46);
4430            for (int i = 0 ; i < Triggers ; i++) {
4431                pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
4432                pTriggers[i].Descending = _3ewg->ReadUint8();
4433                pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
4434                pTriggers[i].Key = _3ewg->ReadUint8();
4435                pTriggers[i].NoteOff = _3ewg->ReadUint8();
4436                pTriggers[i].Velocity = _3ewg->ReadUint8();
4437                pTriggers[i].OverridePedal = _3ewg->ReadUint8();
4438                _3ewg->ReadUint8();
4439            }
4440        }
4441    
4442        MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
4443            ControllerNumber(0),
4444            Triggers(0) {
4445        }
4446    
4447        void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
4448            pData[32] = 4;
4449            pData[33] = 16;
4450            pData[36] = Triggers;
4451            pData[40] = ControllerNumber;
4452            for (int i = 0 ; i < Triggers ; i++) {
4453                pData[46 + i * 8] = pTriggers[i].TriggerPoint;
4454                pData[47 + i * 8] = pTriggers[i].Descending;
4455                pData[48 + i * 8] = pTriggers[i].VelSensitivity;
4456                pData[49 + i * 8] = pTriggers[i].Key;
4457                pData[50 + i * 8] = pTriggers[i].NoteOff;
4458                pData[51 + i * 8] = pTriggers[i].Velocity;
4459                pData[52 + i * 8] = pTriggers[i].OverridePedal;
4460            }
4461        }
4462    
4463        MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
4464            _3ewg->SetPos(36);
4465            LegatoSamples = _3ewg->ReadUint8(); // always 12
4466            _3ewg->SetPos(40);
4467            BypassUseController = _3ewg->ReadUint8();
4468            BypassKey = _3ewg->ReadUint8();
4469            BypassController = _3ewg->ReadUint8();
4470            ThresholdTime = _3ewg->ReadUint16();
4471            _3ewg->ReadInt16();
4472            ReleaseTime = _3ewg->ReadUint16();
4473            _3ewg->ReadInt16();
4474            KeyRange.low = _3ewg->ReadUint8();
4475            KeyRange.high = _3ewg->ReadUint8();
4476            _3ewg->SetPos(64);
4477            ReleaseTriggerKey = _3ewg->ReadUint8();
4478            AltSustain1Key = _3ewg->ReadUint8();
4479            AltSustain2Key = _3ewg->ReadUint8();
4480        }
4481    
4482        MidiRuleLegato::MidiRuleLegato() :
4483            LegatoSamples(12),
4484            BypassUseController(false),
4485            BypassKey(0),
4486            BypassController(1),
4487            ThresholdTime(20),
4488            ReleaseTime(20),
4489            ReleaseTriggerKey(0),
4490            AltSustain1Key(0),
4491            AltSustain2Key(0)
4492        {
4493            KeyRange.low = KeyRange.high = 0;
4494        }
4495    
4496        void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
4497            pData[32] = 0;
4498            pData[33] = 16;
4499            pData[36] = LegatoSamples;
4500            pData[40] = BypassUseController;
4501            pData[41] = BypassKey;
4502            pData[42] = BypassController;
4503            store16(&pData[43], ThresholdTime);
4504            store16(&pData[47], ReleaseTime);
4505            pData[51] = KeyRange.low;
4506            pData[52] = KeyRange.high;
4507            pData[64] = ReleaseTriggerKey;
4508            pData[65] = AltSustain1Key;
4509            pData[66] = AltSustain2Key;
4510        }
4511    
4512        MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
4513            _3ewg->SetPos(36);
4514            Articulations = _3ewg->ReadUint8();
4515            int flags = _3ewg->ReadUint8();
4516            Polyphonic = flags & 8;
4517            Chained = flags & 4;
4518            Selector = (flags & 2) ? selector_controller :
4519                (flags & 1) ? selector_key_switch : selector_none;
4520            Patterns = _3ewg->ReadUint8();
4521            _3ewg->ReadUint8(); // chosen row
4522            _3ewg->ReadUint8(); // unknown
4523            _3ewg->ReadUint8(); // unknown
4524            _3ewg->ReadUint8(); // unknown
4525            KeySwitchRange.low = _3ewg->ReadUint8();
4526            KeySwitchRange.high = _3ewg->ReadUint8();
4527            Controller = _3ewg->ReadUint8();
4528            PlayRange.low = _3ewg->ReadUint8();
4529            PlayRange.high = _3ewg->ReadUint8();
4530    
4531            int n = std::min(int(Articulations), 32);
4532            for (int i = 0 ; i < n ; i++) {
4533                _3ewg->ReadString(pArticulations[i], 32);
4534            }
4535            _3ewg->SetPos(1072);
4536            n = std::min(int(Patterns), 32);
4537            for (int i = 0 ; i < n ; i++) {
4538                _3ewg->ReadString(pPatterns[i].Name, 16);
4539                pPatterns[i].Size = _3ewg->ReadUint8();
4540                _3ewg->Read(&pPatterns[i][0], 1, 32);
4541            }
4542        }
4543    
4544        MidiRuleAlternator::MidiRuleAlternator() :
4545            Articulations(0),
4546            Patterns(0),
4547            Selector(selector_none),
4548            Controller(0),
4549            Polyphonic(false),
4550            Chained(false)
4551        {
4552            PlayRange.low = PlayRange.high = 0;
4553            KeySwitchRange.low = KeySwitchRange.high = 0;
4554        }
4555    
4556        void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
4557            pData[32] = 3;
4558            pData[33] = 16;
4559            pData[36] = Articulations;
4560            pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
4561                (Selector == selector_controller ? 2 :
4562                 (Selector == selector_key_switch ? 1 : 0));
4563            pData[38] = Patterns;
4564    
4565            pData[43] = KeySwitchRange.low;
4566            pData[44] = KeySwitchRange.high;
4567            pData[45] = Controller;
4568            pData[46] = PlayRange.low;
4569            pData[47] = PlayRange.high;
4570    
4571            char* str = reinterpret_cast<char*>(pData);
4572            int pos = 48;
4573            int n = std::min(int(Articulations), 32);
4574            for (int i = 0 ; i < n ; i++, pos += 32) {
4575                strncpy(&str[pos], pArticulations[i].c_str(), 32);
4576            }
4577    
4578            pos = 1072;
4579            n = std::min(int(Patterns), 32);
4580            for (int i = 0 ; i < n ; i++, pos += 49) {
4581                strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
4582                pData[pos + 16] = pPatterns[i].Size;
4583                memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
4584            }
4585        }
4586    
4587    // *************** Script ***************
4588    // *
4589    
4590        Script::Script(ScriptGroup* group, RIFF::Chunk* ckScri) {
4591            pGroup = group;
4592            pChunk = ckScri;
4593            if (ckScri) { // object is loaded from file ...
4594                ckScri->SetPos(0);
4595    
4596                // read header
4597                uint32_t headerSize = ckScri->ReadUint32();
4598                Compression = (Compression_t) ckScri->ReadUint32();
4599                Encoding    = (Encoding_t) ckScri->ReadUint32();
4600                Language    = (Language_t) ckScri->ReadUint32();
4601                Bypass      = ckScri->ReadUint32() & 1;
4602                crc         = ckScri->ReadUint32();
4603                uint32_t nameSize = ckScri->ReadUint32();
4604                Name.resize(nameSize, ' ');
4605                for (int i = 0; i < nameSize; ++i)
4606                    Name[i] = ckScri->ReadUint8();
4607                // check if an uuid was already stored along with this script
4608                if (headerSize >= 6*sizeof(int32_t) + nameSize + 16) { // yes ...
4609                    for (uint i = 0; i < 16; ++i) {
4610                        Uuid[i] = ckScri->ReadUint8();
4611                    }
4612                } else { // no uuid yet, generate one now ...
4613                    GenerateUuid();
4614                }
4615                // to handle potential future extensions of the header
4616                ckScri->SetPos(sizeof(int32_t) + headerSize);
4617                // read actual script data
4618                uint32_t scriptSize = uint32_t(ckScri->GetSize() - ckScri->GetPos());
4619                data.resize(scriptSize);
4620                for (int i = 0; i < scriptSize; ++i)
4621                    data[i] = ckScri->ReadUint8();
4622            } else { // this is a new script object, so just initialize it as such ...
4623                Compression = COMPRESSION_NONE;
4624                Encoding = ENCODING_ASCII;
4625                Language = LANGUAGE_NKSP;
4626                Bypass   = false;
4627                crc      = 0;
4628                Name     = "Unnamed Script";
4629                GenerateUuid();
4630            }
4631        }
4632    
4633        Script::~Script() {
4634        }
4635    
4636        /**
4637         * Returns the current script (i.e. as source code) in text format.
4638         */
4639        String Script::GetScriptAsText() {
4640            String s;
4641            s.resize(data.size(), ' ');
4642            memcpy(&s[0], &data[0], data.size());
4643            return s;
4644        }
4645    
4646        /**
4647         * Replaces the current script with the new script source code text given
4648         * by @a text.
4649         *
4650         * @param text - new script source code
4651         */
4652        void Script::SetScriptAsText(const String& text) {
4653            data.resize(text.size());
4654            memcpy(&data[0], &text[0], text.size());
4655        }
4656    
4657        /** @brief Remove all RIFF chunks associated with this Script object.
4658         *
4659         * At the moment Script::DeleteChunks() does nothing. It is
4660         * recommended to call this method explicitly though from deriving classes's
4661         * own overridden implementation of this method to avoid potential future
4662         * compatiblity issues.
4663         *
4664         * See DLS::Storage::DeleteChunks() for details.
4665         */
4666        void Script::DeleteChunks() {
4667        }
4668    
4669        /**
4670         * Apply this script to the respective RIFF chunks. You have to call
4671         * File::Save() to make changes persistent.
4672         *
4673         * Usually there is absolutely no need to call this method explicitly.
4674         * It will be called automatically when File::Save() was called.
4675         *
4676         * @param pProgress - callback function for progress notification
4677         */
4678        void Script::UpdateChunks(progress_t* pProgress) {
4679            // recalculate CRC32 check sum
4680            __resetCRC(crc);
4681            __calculateCRC(&data[0], data.size(), crc);
4682            __finalizeCRC(crc);
4683            // make sure chunk exists and has the required size
4684            const file_offset_t chunkSize =
4685                (file_offset_t) 7*sizeof(int32_t) + Name.size() + 16 + data.size();
4686            if (!pChunk) pChunk = pGroup->pList->AddSubChunk(CHUNK_ID_SCRI, chunkSize);
4687            else pChunk->Resize(chunkSize);
4688            // fill the chunk data to be written to disk
4689            uint8_t* pData = (uint8_t*) pChunk->LoadChunkData();
4690            int pos = 0;
4691            store32(&pData[pos], uint32_t(6*sizeof(int32_t) + Name.size() + 16)); // total header size
4692            pos += sizeof(int32_t);
4693            store32(&pData[pos], Compression);
4694            pos += sizeof(int32_t);
4695            store32(&pData[pos], Encoding);
4696            pos += sizeof(int32_t);
4697            store32(&pData[pos], Language);
4698            pos += sizeof(int32_t);
4699            store32(&pData[pos], Bypass ? 1 : 0);
4700            pos += sizeof(int32_t);
4701            store32(&pData[pos], crc);
4702            pos += sizeof(int32_t);
4703            store32(&pData[pos], (uint32_t) Name.size());
4704            pos += sizeof(int32_t);
4705            for (int i = 0; i < Name.size(); ++i, ++pos)
4706                pData[pos] = Name[i];
4707            for (int i = 0; i < 16; ++i, ++pos)
4708                pData[pos] = Uuid[i];
4709            for (int i = 0; i < data.size(); ++i, ++pos)
4710                pData[pos] = data[i];
4711        }
4712    
4713        /**
4714         * Generate a new Universally Unique Identifier (UUID) for this script.
4715         */
4716        void Script::GenerateUuid() {
4717            DLS::dlsid_t dlsid;
4718            DLS::Resource::GenerateDLSID(&dlsid);
4719            Uuid[0]  = dlsid.ulData1       & 0xff;
4720            Uuid[1]  = dlsid.ulData1 >>  8 & 0xff;
4721            Uuid[2]  = dlsid.ulData1 >> 16 & 0xff;
4722            Uuid[3]  = dlsid.ulData1 >> 24 & 0xff;
4723            Uuid[4]  = dlsid.usData2       & 0xff;
4724            Uuid[5]  = dlsid.usData2 >>  8 & 0xff;
4725            Uuid[6]  = dlsid.usData3       & 0xff;
4726            Uuid[7]  = dlsid.usData3 >>  8 & 0xff;
4727            Uuid[8]  = dlsid.abData[0];
4728            Uuid[9]  = dlsid.abData[1];
4729            Uuid[10] = dlsid.abData[2];
4730            Uuid[11] = dlsid.abData[3];
4731            Uuid[12] = dlsid.abData[4];
4732            Uuid[13] = dlsid.abData[5];
4733            Uuid[14] = dlsid.abData[6];
4734            Uuid[15] = dlsid.abData[7];
4735        }
4736    
4737        /**
4738         * Move this script from its current ScriptGroup to another ScriptGroup
4739         * given by @a pGroup.
4740         *
4741         * @param pGroup - script's new group
4742         */
4743        void Script::SetGroup(ScriptGroup* pGroup) {
4744            if (this->pGroup == pGroup) return;
4745            if (pChunk)
4746                pChunk->GetParent()->MoveSubChunk(pChunk, pGroup->pList);
4747            this->pGroup = pGroup;
4748        }
4749    
4750        /**
4751         * Returns the script group this script currently belongs to. Each script
4752         * is a member of exactly one ScriptGroup.
4753         *
4754         * @returns current script group
4755         */
4756        ScriptGroup* Script::GetGroup() const {
4757            return pGroup;
4758        }
4759    
4760        /**
4761         * Make a (semi) deep copy of the Script object given by @a orig
4762         * and assign it to this object. Note: the ScriptGroup this Script
4763         * object belongs to remains untouched by this call.
4764         *
4765         * @param orig - original Script object to be copied from
4766         */
4767        void Script::CopyAssign(const Script* orig) {
4768            Name        = orig->Name;
4769            Compression = orig->Compression;
4770            Encoding    = orig->Encoding;
4771            Language    = orig->Language;
4772            Bypass      = orig->Bypass;
4773            data        = orig->data;
4774        }
4775    
4776        void Script::RemoveAllScriptReferences() {
4777            File* pFile = pGroup->pFile;
4778            for (int i = 0; pFile->GetInstrument(i); ++i) {
4779                Instrument* instr = pFile->GetInstrument(i);
4780                instr->RemoveScript(this);
4781            }
4782        }
4783    
4784    // *************** ScriptGroup ***************
4785    // *
4786    
4787        ScriptGroup::ScriptGroup(File* file, RIFF::List* lstRTIS) {
4788            pFile = file;
4789            pList = lstRTIS;
4790            pScripts = NULL;
4791            if (lstRTIS) {
4792                RIFF::Chunk* ckName = lstRTIS->GetSubChunk(CHUNK_ID_LSNM);
4793                ::LoadString(ckName, Name);
4794            } else {
4795                Name = "Default Group";
4796            }
4797        }
4798    
4799        ScriptGroup::~ScriptGroup() {
4800            if (pScripts) {
4801                std::list<Script*>::iterator iter = pScripts->begin();
4802                std::list<Script*>::iterator end  = pScripts->end();
4803                while (iter != end) {
4804                    delete *iter;
4805                    ++iter;
4806                }
4807                delete pScripts;
4808            }
4809        }
4810    
4811        /** @brief Remove all RIFF chunks associated with this ScriptGroup object.
4812         *
4813         * At the moment ScriptGroup::DeleteChunks() does nothing. It is
4814         * recommended to call this method explicitly though from deriving classes's
4815         * own overridden implementation of this method to avoid potential future
4816         * compatiblity issues.
4817         *
4818         * See DLS::Storage::DeleteChunks() for details.
4819         */
4820        void ScriptGroup::DeleteChunks() {
4821        }
4822    
4823        /**
4824         * Apply this script group to the respective RIFF chunks. You have to call
4825         * File::Save() to make changes persistent.
4826         *
4827         * Usually there is absolutely no need to call this method explicitly.
4828         * It will be called automatically when File::Save() was called.
4829         *
4830         * @param pProgress - callback function for progress notification
4831         */
4832        void ScriptGroup::UpdateChunks(progress_t* pProgress) {
4833            if (pScripts) {
4834                if (!pList)
4835                    pList = pFile->pRIFF->GetSubList(LIST_TYPE_3LS)->AddSubList(LIST_TYPE_RTIS);
4836    
4837                // now store the name of this group as <LSNM> chunk as subchunk of the <RTIS> list chunk
4838                ::SaveString(CHUNK_ID_LSNM, NULL, pList, Name, String("Unnamed Group"), true, 64);
4839    
4840                for (std::list<Script*>::iterator it = pScripts->begin();
4841                     it != pScripts->end(); ++it)
4842                {
4843                    (*it)->UpdateChunks(pProgress);
4844                }
4845          }          }
4846        }
4847    
4848        /** @brief Get instrument script.
4849         *
4850         * Returns the real-time instrument script with the given index.
4851         *
4852         * @param index - number of the sought script (0..n)
4853         * @returns sought script or NULL if there's no such script
4854         */
4855        Script* ScriptGroup::GetScript(uint index) {
4856            if (!pScripts) LoadScripts();
4857            std::list<Script*>::iterator it = pScripts->begin();
4858            for (uint i = 0; it != pScripts->end(); ++i, ++it)
4859                if (i == index) return *it;
4860          return NULL;          return NULL;
4861      }      }
4862    
4863        /** @brief Add new instrument script.
4864         *
4865         * Adds a new real-time instrument script to the file. The script is not
4866         * actually used / executed unless it is referenced by an instrument to be
4867         * used. This is similar to samples, which you can add to a file, without
4868         * an instrument necessarily actually using it.
4869         *
4870         * You have to call Save() to make this persistent to the file.
4871         *
4872         * @return new empty script object
4873         */
4874        Script* ScriptGroup::AddScript() {
4875            if (!pScripts) LoadScripts();
4876            Script* pScript = new Script(this, NULL);
4877            pScripts->push_back(pScript);
4878            return pScript;
4879        }
4880    
4881        /** @brief Delete an instrument script.
4882         *
4883         * This will delete the given real-time instrument script. References of
4884         * instruments that are using that script will be removed accordingly.
4885         *
4886         * You have to call Save() to make this persistent to the file.
4887         *
4888         * @param pScript - script to delete
4889         * @throws gig::Exception if given script could not be found
4890         */
4891        void ScriptGroup::DeleteScript(Script* pScript) {
4892            if (!pScripts) LoadScripts();
4893            std::list<Script*>::iterator iter =
4894                find(pScripts->begin(), pScripts->end(), pScript);
4895            if (iter == pScripts->end())
4896                throw gig::Exception("Could not delete script, could not find given script");
4897            pScripts->erase(iter);
4898            pScript->RemoveAllScriptReferences();
4899            if (pScript->pChunk)
4900                pScript->pChunk->GetParent()->DeleteSubChunk(pScript->pChunk);
4901            delete pScript;
4902        }
4903    
4904        void ScriptGroup::LoadScripts() {
4905            if (pScripts) return;
4906            pScripts = new std::list<Script*>;
4907            if (!pList) return;
4908    
4909            for (RIFF::Chunk* ck = pList->GetFirstSubChunk(); ck;
4910                 ck = pList->GetNextSubChunk())
4911            {
4912                if (ck->GetChunkID() == CHUNK_ID_SCRI) {
4913                    pScripts->push_back(new Script(this, ck));
4914                }
4915            }
4916        }
4917    
4918  // *************** Instrument ***************  // *************** Instrument ***************
4919  // *  // *
4920    
4921      Instrument::Instrument(File* pFile, RIFF::List* insList) : DLS::Instrument((DLS::File*)pFile, insList) {      Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
4922            static const DLS::Info::string_length_t fixedStringLengths[] = {
4923                { CHUNK_ID_INAM, 64 },
4924                { CHUNK_ID_ISFT, 12 },
4925                { 0, 0 }
4926            };
4927            pInfo->SetFixedStringLengths(fixedStringLengths);
4928    
4929          // Initialization          // Initialization
4930          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;          for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4931          RegionIndex = -1;          EffectSend = 0;
4932            Attenuation = 0;
4933            FineTune = 0;
4934            PitchbendRange = 2;
4935            PianoReleaseMode = false;
4936            DimensionKeyRange.low = 0;
4937            DimensionKeyRange.high = 0;
4938            pMidiRules = new MidiRule*[3];
4939            pMidiRules[0] = NULL;
4940            pScriptRefs = NULL;
4941    
4942          // Loading          // Loading
4943          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);          RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
4944          if (lart) {          if (lart) {
4945              RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);              RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4946              if (_3ewg) {              if (_3ewg) {
4947                    _3ewg->SetPos(0);
4948    
4949                  EffectSend             = _3ewg->ReadUint16();                  EffectSend             = _3ewg->ReadUint16();
4950                  Attenuation            = _3ewg->ReadInt32();                  Attenuation            = _3ewg->ReadInt32();
4951                  FineTune               = _3ewg->ReadInt16();                  FineTune               = _3ewg->ReadInt16();
# Line 1236  namespace gig { Line 4954  namespace gig {
4954                  PianoReleaseMode       = dimkeystart & 0x01;                  PianoReleaseMode       = dimkeystart & 0x01;
4955                  DimensionKeyRange.low  = dimkeystart >> 1;                  DimensionKeyRange.low  = dimkeystart >> 1;
4956                  DimensionKeyRange.high = _3ewg->ReadUint8();                  DimensionKeyRange.high = _3ewg->ReadUint8();
4957    
4958                    if (_3ewg->GetSize() > 32) {
4959                        // read MIDI rules
4960                        int i = 0;
4961                        _3ewg->SetPos(32);
4962                        uint8_t id1 = _3ewg->ReadUint8();
4963                        uint8_t id2 = _3ewg->ReadUint8();
4964    
4965                        if (id2 == 16) {
4966                            if (id1 == 4) {
4967                                pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
4968                            } else if (id1 == 0) {
4969                                pMidiRules[i++] = new MidiRuleLegato(_3ewg);
4970                            } else if (id1 == 3) {
4971                                pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
4972                            } else {
4973                                pMidiRules[i++] = new MidiRuleUnknown;
4974                            }
4975                        }
4976                        else if (id1 != 0 || id2 != 0) {
4977                            pMidiRules[i++] = new MidiRuleUnknown;
4978                        }
4979                        //TODO: all the other types of rules
4980    
4981                        pMidiRules[i] = NULL;
4982                    }
4983              }              }
             else throw gig::Exception("Mandatory <3ewg> chunk not found.");  
4984          }          }
         else throw gig::Exception("Mandatory <lart> list chunk not found.");  
4985    
4986          RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);          if (pFile->GetAutoLoad()) {
4987          if (!lrgn) throw gig::Exception("Mandatory chunks in <ins > chunk not found.");              if (!pRegions) pRegions = new RegionList;
4988          pRegions = new Region*[Regions];              RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
4989          RIFF::List* rgn = lrgn->GetFirstSubList();              if (lrgn) {
4990          unsigned int iRegion = 0;                  RIFF::List* rgn = lrgn->GetFirstSubList();
4991          while (rgn) {                  while (rgn) {
4992              if (rgn->GetListType() == LIST_TYPE_RGN) {                      if (rgn->GetListType() == LIST_TYPE_RGN) {
4993                  pRegions[iRegion] = new Region(this, rgn);                          if (pProgress)
4994                  iRegion++;                              __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
4995              }                          pRegions->push_back(new Region(this, rgn));
4996              rgn = lrgn->GetNextSubList();                      }
4997          }                      rgn = lrgn->GetNextSubList();
4998                    }
4999          // Creating Region Key Table for fast lookup                  // Creating Region Key Table for fast lookup
5000          for (uint iReg = 0; iReg < Regions; iReg++) {                  UpdateRegionKeyTable();
5001              for (int iKey = pRegions[iReg]->KeyRange.low; iKey <= pRegions[iReg]->KeyRange.high; iKey++) {              }
5002                  RegionKeyTable[iKey] = pRegions[iReg];          }
5003    
5004            // own gig format extensions
5005            RIFF::List* lst3LS = insList->GetSubList(LIST_TYPE_3LS);
5006            if (lst3LS) {
5007                // script slots (that is references to instrument scripts)
5008                RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
5009                if (ckSCSL) {
5010                    ckSCSL->SetPos(0);
5011    
5012                    int headerSize = ckSCSL->ReadUint32();
5013                    int slotCount  = ckSCSL->ReadUint32();
5014                    if (slotCount) {
5015                        int slotSize  = ckSCSL->ReadUint32();
5016                        ckSCSL->SetPos(headerSize); // in case of future header extensions
5017                        int unknownSpace = slotSize - 2*sizeof(uint32_t); // in case of future slot extensions
5018                        for (int i = 0; i < slotCount; ++i) {
5019                            _ScriptPooolEntry e;
5020                            e.fileOffset = ckSCSL->ReadUint32();
5021                            e.bypass     = ckSCSL->ReadUint32() & 1;
5022                            if (unknownSpace) ckSCSL->SetPos(unknownSpace, RIFF::stream_curpos); // in case of future extensions
5023                            scriptPoolFileOffsets.push_back(e);
5024                        }
5025                    }
5026                }
5027    
5028                // overridden script 'patch' variables
5029                RIFF::Chunk* ckSCPV = lst3LS->GetSubChunk(CHUNK_ID_SCPV);
5030                if (ckSCPV) {
5031                    ckSCPV->SetPos(0);
5032    
5033                    int nScripts = ckSCPV->ReadUint32();
5034                    for (int iScript = 0; iScript < nScripts; ++iScript) {
5035                        _UUID uuid;
5036                        for (int i = 0; i < 16; ++i)
5037                            uuid[i] = ckSCPV->ReadUint8();
5038                        uint slot = ckSCPV->ReadUint32();
5039                        ckSCPV->ReadUint32(); // unused, reserved 32 bit
5040                        int nVars = ckSCPV->ReadUint32();
5041                        for (int iVar = 0; iVar < nVars; ++iVar) {
5042                            uint8_t type = ckSCPV->ReadUint8();
5043                            ckSCPV->ReadUint8();  // unused, reserved byte
5044                            int blobSize = ckSCPV->ReadUint16();
5045                            RIFF::file_offset_t pos = ckSCPV->GetPos();
5046                            // assuming 1st bit is set in 'type', otherwise blob not
5047                            // supported for decoding
5048                            if (type & 1) {
5049                                String name, value;
5050                                int len = ckSCPV->ReadUint16();
5051                                for (int i = 0; i < len; ++i)
5052                                    name += (char) ckSCPV->ReadUint8();
5053                                len = ckSCPV->ReadUint16();
5054                                for (int i = 0; i < len; ++i)
5055                                    value += (char) ckSCPV->ReadUint8();
5056                                if (!name.empty()) // 'name' should never be empty, but just to be sure
5057                                    scriptVars[uuid][slot][name] = value;
5058                            }
5059                            // also for potential future extensions: seek forward
5060                            // according to blob size
5061                            ckSCPV->SetPos(pos + blobSize);
5062                        }
5063                    }
5064                }
5065            }
5066    
5067            if (pProgress)
5068                __notify_progress(pProgress, 1.0f); // notify done
5069        }
5070    
5071        void Instrument::UpdateRegionKeyTable() {
5072            for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
5073            RegionList::iterator iter = pRegions->begin();
5074            RegionList::iterator end  = pRegions->end();
5075            for (; iter != end; ++iter) {
5076                gig::Region* pRegion = static_cast<gig::Region*>(*iter);
5077                const int low  = std::max(int(pRegion->KeyRange.low), 0);
5078                const int high = std::min(int(pRegion->KeyRange.high), 127);
5079                for (int iKey = low; iKey <= high; iKey++) {
5080                    RegionKeyTable[iKey] = pRegion;
5081              }              }
5082          }          }
5083      }      }
5084    
5085      Instrument::~Instrument() {      Instrument::~Instrument() {
5086          for (uint i = 0; i < Regions; i++) {          for (int i = 0 ; pMidiRules[i] ; i++) {
5087              if (pRegions) {              delete pMidiRules[i];
5088                  if (pRegions[i]) delete (pRegions[i]);          }
5089            delete[] pMidiRules;
5090            if (pScriptRefs) delete pScriptRefs;
5091        }
5092    
5093        /**
5094         * Apply Instrument with all its Regions to the respective RIFF chunks.
5095         * You have to call File::Save() to make changes persistent.
5096         *
5097         * Usually there is absolutely no need to call this method explicitly.
5098         * It will be called automatically when File::Save() was called.
5099         *
5100         * @param pProgress - callback function for progress notification
5101         * @throws gig::Exception if samples cannot be dereferenced
5102         */
5103        void Instrument::UpdateChunks(progress_t* pProgress) {
5104            // first update base classes' chunks
5105            DLS::Instrument::UpdateChunks(pProgress);
5106    
5107            // update Regions' chunks
5108            {
5109                RegionList::iterator iter = pRegions->begin();
5110                RegionList::iterator end  = pRegions->end();
5111                for (; iter != end; ++iter)
5112                    (*iter)->UpdateChunks(pProgress);
5113            }
5114    
5115            // make sure 'lart' RIFF list chunk exists
5116            RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
5117            if (!lart)  lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
5118            // make sure '3ewg' RIFF chunk exists
5119            RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
5120            if (!_3ewg)  {
5121                File* pFile = (File*) GetParent();
5122    
5123                // 3ewg is bigger in gig3, as it includes the iMIDI rules
5124                int size = (pFile->pVersion && pFile->pVersion->major > 2) ? 16416 : 12;
5125                _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
5126                memset(_3ewg->LoadChunkData(), 0, size);
5127            }
5128            // update '3ewg' RIFF chunk
5129            uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
5130            store16(&pData[0], EffectSend);
5131            store32(&pData[2], Attenuation);
5132            store16(&pData[6], FineTune);
5133            store16(&pData[8], PitchbendRange);
5134            const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
5135                                        DimensionKeyRange.low << 1;
5136            pData[10] = dimkeystart;
5137            pData[11] = DimensionKeyRange.high;
5138    
5139            if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
5140                pData[32] = 0;
5141                pData[33] = 0;
5142            } else {
5143                for (int i = 0 ; pMidiRules[i] ; i++) {
5144                    pMidiRules[i]->UpdateChunks(pData);
5145              }              }
             delete[] pRegions;  
5146          }          }
5147    
5148            // own gig format extensions
5149           if (ScriptSlotCount()) {
5150               // make sure we have converted the original loaded script file
5151               // offsets into valid Script object pointers
5152               LoadScripts();
5153    
5154               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
5155               if (!lst3LS) lst3LS = pCkInstrument->AddSubList(LIST_TYPE_3LS);
5156    
5157               // save script slots (that is references to instrument scripts)
5158               const int slotCount = (int) pScriptRefs->size();
5159               const int headerSize = 3 * sizeof(uint32_t);
5160               const int slotSize  = 2 * sizeof(uint32_t);
5161               const int totalChunkSize = headerSize + slotCount * slotSize;
5162               RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
5163               if (!ckSCSL) ckSCSL = lst3LS->AddSubChunk(CHUNK_ID_SCSL, totalChunkSize);
5164               else ckSCSL->Resize(totalChunkSize);
5165               uint8_t* pData = (uint8_t*) ckSCSL->LoadChunkData();
5166               int pos = 0;
5167               store32(&pData[pos], headerSize);
5168               pos += sizeof(uint32_t);
5169               store32(&pData[pos], slotCount);
5170               pos += sizeof(uint32_t);
5171               store32(&pData[pos], slotSize);
5172               pos += sizeof(uint32_t);
5173               for (int i = 0; i < slotCount; ++i) {
5174                   // arbitrary value, the actual file offset will be updated in
5175                   // UpdateScriptFileOffsets() after the file has been resized
5176                   int bogusFileOffset = 0;
5177                   store32(&pData[pos], bogusFileOffset);
5178                   pos += sizeof(uint32_t);
5179                   store32(&pData[pos], (*pScriptRefs)[i].bypass ? 1 : 0);
5180                   pos += sizeof(uint32_t);
5181               }
5182    
5183               // save overridden script 'patch' variables ...
5184    
5185               // the actual 'scriptVars' member variable might contain variables of
5186               // scripts which are currently no longer assigned to any script slot
5187               // of this instrument, we need to get rid of these variables here to
5188               // prevent saving those persistently, however instead of touching the
5189               // member variable 'scriptVars' directly, rather strip a separate
5190               // copy such that the overridden values are not lost during an
5191               // instrument editor session (i.e. if script might be re-assigned)
5192               _VarsByScript vars = stripScriptVars();
5193               if (!vars.empty()) {
5194                   // determine total size required for 'SCPV' RIFF chunk, and the
5195                   // total amount of scripts being overridden (the latter is
5196                   // required because a script might be used on several script
5197                   // slots, hence vars.size() could then not be used here instead)
5198                   size_t totalChunkSize = 4;
5199                   size_t totalScriptsOverridden = 0;
5200                   for (const auto& script : vars) {
5201                       for (const auto& slot : script.second) {
5202                           totalScriptsOverridden++;
5203                           totalChunkSize += 16 + 4 + 4 + 4;
5204                           for (const auto& var : slot.second) {
5205                               totalChunkSize += 4 + 2 + var.first.length() +
5206                                                     2 + var.second.length();
5207                           }
5208                       }
5209                   }
5210    
5211                   // ensure 'SCPV' RIFF chunk exists (with required size)
5212                   RIFF::Chunk* ckSCPV = lst3LS->GetSubChunk(CHUNK_ID_SCPV);
5213                   if (!ckSCPV) ckSCPV = lst3LS->AddSubChunk(CHUNK_ID_SCPV, totalChunkSize);
5214                   else ckSCPV->Resize(totalChunkSize);
5215    
5216                   // store the actual data to 'SCPV' RIFF chunk
5217                   uint8_t* pData = (uint8_t*) ckSCPV->LoadChunkData();
5218                   int pos = 0;
5219                   store32(&pData[pos], (uint32_t) totalScriptsOverridden); // scripts count
5220                   pos += 4;
5221                   for (const auto& script : vars) {
5222                       for (const auto& slot : script.second) {
5223                           for (int i = 0; i < 16; ++i)
5224                               pData[pos+i] = script.first[i]; // uuid
5225                           pos += 16;
5226                           store32(&pData[pos], (uint32_t) slot.first); // slot index
5227                           pos += 4;
5228                           store32(&pData[pos], (uint32_t) 0); // unused, reserved 32 bit
5229                           pos += 4;
5230                           store32(&pData[pos], (uint32_t) slot.second.size()); // variables count
5231                           pos += 4;
5232                           for (const auto& var : slot.second) {
5233                               pData[pos++] = 1; // type
5234                               pData[pos++] = 0; // reserved byte
5235                               store16(&pData[pos], 2 + var.first.size() + 2 + var.second.size()); // blob size
5236                               pos += 2;
5237                               store16(&pData[pos], var.first.size()); // variable name length
5238                               pos += 2;
5239                               for (int i = 0; i < var.first.size(); ++i)
5240                                   pData[pos++] = var.first[i];
5241                               store16(&pData[pos], var.second.size()); // variable value length
5242                               pos += 2;
5243                               for (int i = 0; i < var.second.size(); ++i)
5244                                   pData[pos++] = var.second[i];
5245                           }
5246                       }
5247                   }
5248               } else {
5249                   // no script variable overridden by this instrument, so get rid
5250                   // of 'SCPV' RIFF chunk (if any)
5251                   RIFF::Chunk* ckSCPV = lst3LS->GetSubChunk(CHUNK_ID_SCPV);
5252                   if (ckSCPV) lst3LS->DeleteSubChunk(ckSCPV);
5253               }
5254           } else {
5255               // no script slots, so get rid of any LS custom RIFF chunks (if any)
5256               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
5257               if (lst3LS) pCkInstrument->DeleteSubChunk(lst3LS);
5258           }
5259        }
5260    
5261        void Instrument::UpdateScriptFileOffsets() {
5262           // own gig format extensions
5263           if (pScriptRefs && pScriptRefs->size() > 0) {
5264               RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
5265               RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
5266               const int slotCount = (int) pScriptRefs->size();
5267               const int headerSize = 3 * sizeof(uint32_t);
5268               ckSCSL->SetPos(headerSize);
5269               for (int i = 0; i < slotCount; ++i) {
5270                   uint32_t fileOffset = uint32_t(
5271                        (*pScriptRefs)[i].script->pChunk->GetFilePos() -
5272                        (*pScriptRefs)[i].script->pChunk->GetPos() -
5273                        CHUNK_HEADER_SIZE(ckSCSL->GetFile()->GetFileOffsetSize())
5274                   );
5275                   ckSCSL->WriteUint32(&fileOffset);
5276                   // jump over flags entry (containing the bypass flag)
5277                   ckSCSL->SetPos(sizeof(uint32_t), RIFF::stream_curpos);
5278               }
5279           }        
5280      }      }
5281    
5282      /**      /**
# Line 1279  namespace gig { Line 5287  namespace gig {
5287       *             there is no Region defined for the given \a Key       *             there is no Region defined for the given \a Key
5288       */       */
5289      Region* Instrument::GetRegion(unsigned int Key) {      Region* Instrument::GetRegion(unsigned int Key) {
5290          if (!pRegions || Key > 127) return NULL;          if (!pRegions || pRegions->empty() || Key > 127) return NULL;
5291          return RegionKeyTable[Key];          return RegionKeyTable[Key];
5292    
5293          /*for (int i = 0; i < Regions; i++) {          /*for (int i = 0; i < Regions; i++) {
5294              if (Key <= pRegions[i]->KeyRange.high &&              if (Key <= pRegions[i]->KeyRange.high &&
5295                  Key >= pRegions[i]->KeyRange.low) return pRegions[i];                  Key >= pRegions[i]->KeyRange.low) return pRegions[i];
# Line 1296  namespace gig { Line 5305  namespace gig {
5305       * @see      GetNextRegion()       * @see      GetNextRegion()
5306       */       */
5307      Region* Instrument::GetFirstRegion() {      Region* Instrument::GetFirstRegion() {
5308          if (!Regions) return NULL;          if (!pRegions) return NULL;
5309          RegionIndex = 1;          RegionsIterator = pRegions->begin();
5310          return pRegions[0];          return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
5311      }      }
5312    
5313      /**      /**
# Line 1310  namespace gig { Line 5319  namespace gig {
5319       * @see      GetFirstRegion()       * @see      GetFirstRegion()
5320       */       */
5321      Region* Instrument::GetNextRegion() {      Region* Instrument::GetNextRegion() {
5322          if (RegionIndex < 0 || RegionIndex >= Regions) return NULL;          if (!pRegions) return NULL;
5323          return pRegions[RegionIndex++];          RegionsIterator++;
5324            return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
5325        }
5326    
5327        Region* Instrument::AddRegion() {
5328            // create new Region object (and its RIFF chunks)
5329            RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
5330            if (!lrgn)  lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
5331            RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
5332            Region* pNewRegion = new Region(this, rgn);
5333            pRegions->push_back(pNewRegion);
5334            Regions = (uint32_t) pRegions->size();
5335            // update Region key table for fast lookup
5336            UpdateRegionKeyTable();
5337            // done
5338            return pNewRegion;
5339        }
5340    
5341        void Instrument::DeleteRegion(Region* pRegion) {
5342            if (!pRegions) return;
5343            DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
5344            // update Region key table for fast lookup
5345            UpdateRegionKeyTable();
5346        }
5347    
5348        /**
5349         * Move this instrument at the position before @arg dst.
5350         *
5351         * This method can be used to reorder the sequence of instruments in a
5352         * .gig file. This might be helpful especially on large .gig files which
5353         * contain a large number of instruments within the same .gig file. So
5354         * grouping such instruments to similar ones, can help to keep track of them
5355         * when working with such complex .gig files.
5356         *
5357         * When calling this method, this instrument will be removed from in its
5358         * current position in the instruments list and moved to the requested
5359         * target position provided by @param dst. You may also pass NULL as
5360         * argument to this method, in that case this intrument will be moved to the
5361         * very end of the .gig file's instrument list.
5362         *
5363         * You have to call Save() to make the order change persistent to the .gig
5364         * file.
5365         *
5366         * Currently this method is limited to moving the instrument within the same
5367         * .gig file. Trying to move it to another .gig file by calling this method
5368         * will throw an exception.
5369         *
5370         * @param dst - destination instrument at which this instrument will be
5371         *              moved to, or pass NULL for moving to end of list
5372         * @throw gig::Exception if this instrument and target instrument are not
5373         *                       part of the same file
5374         */
5375        void Instrument::MoveTo(Instrument* dst) {
5376            if (dst && GetParent() != dst->GetParent())
5377                throw Exception(
5378                    "gig::Instrument::MoveTo() can only be used for moving within "
5379                    "the same gig file."
5380                );
5381    
5382            File* pFile = (File*) GetParent();
5383    
5384            // move this instrument within the instrument list
5385            {
5386                File::InstrumentList& list = *pFile->pInstruments;
5387    
5388                File::InstrumentList::iterator itFrom =
5389                    std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(this));
5390    
5391                File::InstrumentList::iterator itTo =
5392                    std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(dst));
5393    
5394                list.splice(itTo, list, itFrom);
5395            }
5396    
5397            // move the instrument's actual list RIFF chunk appropriately
5398            RIFF::List* lstCkInstruments = pFile->pRIFF->GetSubList(LIST_TYPE_LINS);
5399            lstCkInstruments->MoveSubChunk(
5400                this->pCkInstrument,
5401                (RIFF::Chunk*) ((dst) ? dst->pCkInstrument : NULL)
5402            );
5403        }
5404    
5405        /**
5406         * Returns a MIDI rule of the instrument.
5407         *
5408         * The list of MIDI rules, at least in gig v3, always contains at
5409         * most two rules. The second rule can only be the DEF filter
5410         * (which currently isn't supported by libgig).
5411         *
5412         * @param i - MIDI rule number
5413         * @returns   pointer address to MIDI rule number i or NULL if there is none
5414         */
5415        MidiRule* Instrument::GetMidiRule(int i) {
5416            return pMidiRules[i];
5417        }
5418    
5419        /**
5420         * Adds the "controller trigger" MIDI rule to the instrument.
5421         *
5422         * @returns the new MIDI rule
5423         */
5424        MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
5425            delete pMidiRules[0];
5426            MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
5427            pMidiRules[0] = r;
5428            pMidiRules[1] = 0;
5429            return r;
5430        }
5431    
5432        /**
5433         * Adds the legato MIDI rule to the instrument.
5434         *
5435         * @returns the new MIDI rule
5436         */
5437        MidiRuleLegato* Instrument::AddMidiRuleLegato() {
5438            delete pMidiRules[0];
5439            MidiRuleLegato* r = new MidiRuleLegato;
5440            pMidiRules[0] = r;
5441            pMidiRules[1] = 0;
5442            return r;
5443        }
5444    
5445        /**
5446         * Adds the alternator MIDI rule to the instrument.
5447         *
5448         * @returns the new MIDI rule
5449         */
5450        MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
5451            delete pMidiRules[0];
5452            MidiRuleAlternator* r = new MidiRuleAlternator;
5453            pMidiRules[0] = r;
5454            pMidiRules[1] = 0;
5455            return r;
5456        }
5457    
5458        /**
5459         * Deletes a MIDI rule from the instrument.
5460         *
5461         * @param i - MIDI rule number
5462         */
5463        void Instrument::DeleteMidiRule(int i) {
5464            delete pMidiRules[i];
5465            pMidiRules[i] = 0;
5466        }
5467    
5468        void Instrument::LoadScripts() {
5469            if (pScriptRefs) return;
5470            pScriptRefs = new std::vector<_ScriptPooolRef>;
5471            if (scriptPoolFileOffsets.empty()) return;
5472            File* pFile = (File*) GetParent();
5473            for (uint k = 0; k < scriptPoolFileOffsets.size(); ++k) {
5474                uint32_t soughtOffset = scriptPoolFileOffsets[k].fileOffset;
5475                for (uint i = 0; pFile->GetScriptGroup(i); ++i) {
5476                    ScriptGroup* group = pFile->GetScriptGroup(i);
5477                    for (uint s = 0; group->GetScript(s); ++s) {
5478                        Script* script = group->GetScript(s);
5479                        if (script->pChunk) {
5480                            uint32_t offset = uint32_t(
5481                                script->pChunk->GetFilePos() -
5482                                script->pChunk->GetPos() -
5483                                CHUNK_HEADER_SIZE(script->pChunk->GetFile()->GetFileOffsetSize())
5484                            );
5485                            if (offset == soughtOffset)
5486                            {
5487                                _ScriptPooolRef ref;
5488                                ref.script = script;
5489                                ref.bypass = scriptPoolFileOffsets[k].bypass;
5490                                pScriptRefs->push_back(ref);
5491                                break;
5492                            }
5493                        }
5494                    }
5495                }
5496            }
5497            // we don't need that anymore
5498            scriptPoolFileOffsets.clear();
5499        }
5500    
5501        /** @brief Get instrument script (gig format extension).
5502         *
5503         * Returns the real-time instrument script of instrument script slot
5504         * @a index.
5505         *
5506         * @note This is an own format extension which did not exist i.e. in the
5507         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5508         * gigedit.
5509         *
5510         * @param index - instrument script slot index
5511         * @returns script or NULL if index is out of bounds
5512         */
5513        Script* Instrument::GetScriptOfSlot(uint index) {
5514            LoadScripts();
5515            if (index >= pScriptRefs->size()) return NULL;
5516            return pScriptRefs->at(index).script;
5517        }
5518    
5519        /** @brief Add new instrument script slot (gig format extension).
5520         *
5521         * Add the given real-time instrument script reference to this instrument,
5522         * which shall be executed by the sampler for for this instrument. The
5523         * script will be added to the end of the script list of this instrument.
5524         * The positions of the scripts in the Instrument's Script list are
5525         * relevant, because they define in which order they shall be executed by
5526         * the sampler. For this reason it is also legal to add the same script
5527         * twice to an instrument, for example you might have a script called
5528         * "MyFilter" which performs an event filter task, and you might have
5529         * another script called "MyNoteTrigger" which triggers new notes, then you
5530         * might for example have the following list of scripts on the instrument:
5531         *
5532         * 1. Script "MyFilter"
5533         * 2. Script "MyNoteTrigger"
5534         * 3. Script "MyFilter"
5535         *
5536         * Which would make sense, because the 2nd script launched new events, which
5537         * you might need to filter as well.
5538         *
5539         * There are two ways to disable / "bypass" scripts. You can either disable
5540         * a script locally for the respective script slot on an instrument (i.e. by
5541         * passing @c false to the 2nd argument of this method, or by calling
5542         * SetScriptBypassed()). Or you can disable a script globally for all slots
5543         * and all instruments by setting Script::Bypass.
5544         *
5545         * @note This is an own format extension which did not exist i.e. in the
5546         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5547         * gigedit.
5548         *
5549         * @param pScript - script that shall be executed for this instrument
5550         * @param bypass  - if enabled, the sampler shall skip executing this
5551         *                  script (in the respective list position)
5552         * @see SetScriptBypassed()
5553         */
5554        void Instrument::AddScriptSlot(Script* pScript, bool bypass) {
5555            LoadScripts();
5556            _ScriptPooolRef ref = { pScript, bypass };
5557            pScriptRefs->push_back(ref);
5558        }
5559    
5560        /** @brief Flip two script slots with each other (gig format extension).
5561         *
5562         * Swaps the position of the two given scripts in the Instrument's Script
5563         * list. The positions of the scripts in the Instrument's Script list are
5564         * relevant, because they define in which order they shall be executed by
5565         * the sampler.
5566         *
5567         * @note This is an own format extension which did not exist i.e. in the
5568         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5569         * gigedit.
5570         *
5571         * @param index1 - index of the first script slot to swap
5572         * @param index2 - index of the second script slot to swap
5573         */
5574        void Instrument::SwapScriptSlots(uint index1, uint index2) {
5575            LoadScripts();
5576            if (index1 >= pScriptRefs->size() || index2 >= pScriptRefs->size())
5577                return;
5578            _ScriptPooolRef tmp = (*pScriptRefs)[index1];
5579            (*pScriptRefs)[index1] = (*pScriptRefs)[index2];
5580            (*pScriptRefs)[index2] = tmp;
5581        }
5582    
5583        /** @brief Remove script slot.
5584         *
5585         * Removes the script slot with the given slot index.
5586         *
5587         * @param index - index of script slot to remove
5588         */
5589        void Instrument::RemoveScriptSlot(uint index) {
5590            LoadScripts();
5591            if (index >= pScriptRefs->size()) return;
5592            pScriptRefs->erase( pScriptRefs->begin() + index );
5593        }
5594    
5595        /** @brief Remove reference to given Script (gig format extension).
5596         *
5597         * This will remove all script slots on the instrument which are referencing
5598         * the given script.
5599         *
5600         * @note This is an own format extension which did not exist i.e. in the
5601         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5602         * gigedit.
5603         *
5604         * @param pScript - script reference to remove from this instrument
5605         * @see RemoveScriptSlot()
5606         */
5607        void Instrument::RemoveScript(Script* pScript) {
5608            LoadScripts();
5609            for (ssize_t i = pScriptRefs->size() - 1; i >= 0; --i) {
5610                if ((*pScriptRefs)[i].script == pScript) {
5611                    pScriptRefs->erase( pScriptRefs->begin() + i );
5612                }
5613            }
5614        }
5615    
5616        /** @brief Instrument's amount of script slots.
5617         *
5618         * This method returns the amount of script slots this instrument currently
5619         * uses.
5620         *
5621         * A script slot is a reference of a real-time instrument script to be
5622         * executed by the sampler. The scripts will be executed by the sampler in
5623         * sequence of the slots. One (same) script may be referenced multiple
5624         * times in different slots.
5625         *
5626         * @note This is an own format extension which did not exist i.e. in the
5627         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5628         * gigedit.
5629         */
5630        uint Instrument::ScriptSlotCount() const {
5631            return uint(pScriptRefs ? pScriptRefs->size() : scriptPoolFileOffsets.size());
5632        }
5633    
5634        /** @brief Whether script execution shall be skipped.
5635         *
5636         * Defines locally for the Script reference slot in the Instrument's Script
5637         * list, whether the script shall be skipped by the sampler regarding
5638         * execution.
5639         *
5640         * It is also possible to ignore exeuction of the script globally, for all
5641         * slots and for all instruments by setting Script::Bypass.
5642         *
5643         * @note This is an own format extension which did not exist i.e. in the
5644         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5645         * gigedit.
5646         *
5647         * @param index - index of the script slot on this instrument
5648         * @see Script::Bypass
5649         */
5650        bool Instrument::IsScriptSlotBypassed(uint index) {
5651            if (index >= ScriptSlotCount()) return false;
5652            return pScriptRefs ? pScriptRefs->at(index).bypass
5653                               : scriptPoolFileOffsets.at(index).bypass;
5654            
5655        }
5656    
5657        /** @brief Defines whether execution shall be skipped.
5658         *
5659         * You can call this method to define locally whether or whether not the
5660         * given script slot shall be executed by the sampler.
5661         *
5662         * @note This is an own format extension which did not exist i.e. in the
5663         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5664         * gigedit.
5665         *
5666         * @param index - script slot index on this instrument
5667         * @param bBypass - if true, the script slot will be skipped by the sampler
5668         * @see Script::Bypass
5669         */
5670        void Instrument::SetScriptSlotBypassed(uint index, bool bBypass) {
5671            if (index >= ScriptSlotCount()) return;
5672            if (pScriptRefs)
5673                pScriptRefs->at(index).bypass = bBypass;
5674            else
5675                scriptPoolFileOffsets.at(index).bypass = bBypass;
5676        }
5677    
5678        /// type cast (by copy) uint8_t[16] -> std::array<uint8_t,16>
5679        inline std::array<uint8_t,16> _UUIDFromCArray(const uint8_t* pData) {
5680            std::array<uint8_t,16> uuid;
5681            memcpy(&uuid[0], pData, 16);
5682            return uuid;
5683        }
5684    
5685        /**
5686         * Returns true if this @c Instrument has any script slot which references
5687         * the @c Script identified by passed @p uuid.
5688         */
5689        bool Instrument::ReferencesScriptWithUuid(const _UUID& uuid) {
5690            const uint nSlots = ScriptSlotCount();
5691            for (uint iSlot = 0; iSlot < nSlots; ++iSlot)
5692                if (_UUIDFromCArray(&GetScriptOfSlot(iSlot)->Uuid[0]) == uuid)
5693                    return true;
5694            return false;
5695        }
5696    
5697        /** @brief Checks whether a certain script 'patch' variable value is set.
5698         *
5699         * Returns @c true if the initial value for the requested script variable is
5700         * currently overridden by this instrument.
5701         *
5702         * @remarks Real-time instrument scripts allow to declare special 'patch'
5703         * variables, which essentially behave like regular variables of their data
5704         * type, however their initial value may optionally be overridden on a per
5705         * instrument basis. That allows to share scripts between instruments while
5706         * still being able to fine tune certain aspects of the script for each
5707         * instrument individually.
5708         *
5709         * @note This is an own format extension which did not exist i.e. in the
5710         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5711         * Gigedit.
5712         *
5713         * @param slot - script slot index of the variable to be retrieved
5714         * @param variable - name of the 'patch' variable in that script
5715         */
5716        bool Instrument::IsScriptPatchVariableSet(int slot, String variable) {
5717            if (variable.empty()) return false;
5718            Script* script = GetScriptOfSlot(slot);
5719            if (!script) return false;
5720            const _UUID uuid = _UUIDFromCArray(&script->Uuid[0]);
5721            if (!scriptVars.count(uuid)) return false;
5722            const _VarsBySlot& slots = scriptVars.find(uuid)->second;
5723            if (slots.empty()) return false;
5724            if (slots.count(slot))
5725                return slots.find(slot)->second.count(variable);
5726            else
5727                return slots.begin()->second.count(variable);
5728        }
5729    
5730        /** @brief Get all overridden script 'patch' variables.
5731         *
5732         * Returns map of key-value pairs reflecting all patch variables currently
5733         * being overridden by this instrument for the given script @p slot, where
5734         * key is the variable name and value is the hereby currently overridden
5735         * value for that variable.
5736         *
5737         * @remarks Real-time instrument scripts allow to declare special 'patch'
5738         * variables, which essentially behave like regular variables of their data
5739         * type, however their initial value may optionally be overridden on a per
5740         * instrument basis. That allows to share scripts between instruments while
5741         * still being able to fine tune certain aspects of the script for each
5742         * instrument individually.
5743         *
5744         * @note This is an own format extension which did not exist i.e. in the
5745         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5746         * Gigedit.
5747         *
5748         * @param slot - script slot index of the variable to be retrieved
5749         */
5750        std::map<String,String> Instrument::GetScriptPatchVariables(int slot) {
5751            Script* script = GetScriptOfSlot(slot);
5752            if (!script) return std::map<String,String>();
5753            const _UUID uuid = _UUIDFromCArray(&script->Uuid[0]);
5754            if (!scriptVars.count(uuid)) return std::map<String,String>();
5755            const _VarsBySlot& slots = scriptVars.find(uuid)->second;
5756            if (slots.empty()) return std::map<String,String>();
5757            const _PatchVars& vars =
5758                (slots.count(slot)) ?
5759                    slots.find(slot)->second : slots.begin()->second;
5760            return vars;
5761        }
5762    
5763        /** @brief Get overridden initial value for 'patch' variable.
5764         *
5765         * Returns current initial value for the requested script variable being
5766         * overridden by this instrument.
5767         *
5768         * @remarks Real-time instrument scripts allow to declare special 'patch'
5769         * variables, which essentially behave like regular variables of their data
5770         * type, however their initial value may optionally be overridden on a per
5771         * instrument basis. That allows to share scripts between instruments while
5772         * still being able to fine tune certain aspects of the script for each
5773         * instrument individually.
5774         *
5775         * @note This is an own format extension which did not exist i.e. in the
5776         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5777         * Gigedit.
5778         *
5779         * @param slot - script slot index of the variable to be retrieved
5780         * @param variable - name of the 'patch' variable in that script
5781         */
5782        String Instrument::GetScriptPatchVariable(int slot, String variable) {
5783            std::map<String,String> vars = GetScriptPatchVariables(slot);
5784            return (vars.count(variable)) ? vars.find(variable)->second : "";
5785        }
5786    
5787        /** @brief Override initial value for 'patch' variable.
5788         *
5789         * Overrides initial value for the requested script variable for this
5790         * instrument with the passed value.
5791         *
5792         * @remarks Real-time instrument scripts allow to declare special 'patch'
5793         * variables, which essentially behave like regular variables of their data
5794         * type, however their initial value may optionally be overridden on a per
5795         * instrument basis. That allows to share scripts between instruments while
5796         * still being able to fine tune certain aspects of the script for each
5797         * instrument individually.
5798         *
5799         * @note This is an own format extension which did not exist i.e. in the
5800         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5801         * Gigedit.
5802         *
5803         * @param slot - script slot index of the variable to be set
5804         * @param variable - name of the 'patch' variable in that script
5805         * @param value - overridden initial value for that script variable
5806         * @throws gig::Exception if given script @p slot index is invalid or given
5807         *         @p variable name is empty
5808         */
5809        void Instrument::SetScriptPatchVariable(int slot, String variable, String value) {
5810            if (variable.empty())
5811                throw Exception("Variable name must not be empty");
5812            Script* script = GetScriptOfSlot(slot);
5813            if (!script)
5814                throw Exception("No script slot with index " + ToString(slot));
5815            const _UUID uuid = _UUIDFromCArray(&script->Uuid[0]);
5816            scriptVars[uuid][slot][variable] = value;
5817        }
5818    
5819        /** @brief Drop overridden initial value(s) for 'patch' variable(s).
5820         *
5821         * Reverts initial value(s) for requested script variable(s) back to their
5822         * default initial value(s) defined in the script itself.
5823         *
5824         * Both arguments of this method are optional. The most obvious use case of
5825         * this method would be passing a valid script @p slot index and a
5826         * (non-emtpy string as) @p variable name to this method, which would cause
5827         * that single variable to be unset for that specific script slot (on this
5828         * @c Instrument level).
5829         *
5830         * Not passing a value (or @c -1 for @p slot and/or empty string for
5831         * @p variable) means 'wildcard'. So accordingly absence of argument(s) will
5832         * cause all variables and/or for all script slots being unset. Hence this
5833         * method serves 2^2 = 4 possible use cases in total and accordingly covers
5834         * 4 different behaviours in one method.
5835         *
5836         * @remarks Real-time instrument scripts allow to declare special 'patch'
5837         * variables, which essentially behave like regular variables of their data
5838         * type, however their initial value may optionally be overridden on a per
5839         * instrument basis. That allows to share scripts between instruments while
5840         * still being able to fine tune certain aspects of the script for each
5841         * instrument individually.
5842         *
5843         * @note This is an own format extension which did not exist i.e. in the
5844         * GigaStudio 4 software. It will currently only work with LinuxSampler and
5845         * Gigedit.
5846         *
5847         * @param slot - script slot index of the variable to be unset
5848         * @param variable - name of the 'patch' variable in that script
5849         */
5850        void Instrument::UnsetScriptPatchVariable(int slot, String variable) {
5851            Script* script = GetScriptOfSlot(slot);
5852    
5853            // option 1: unset a particular variable of one particular script slot
5854            if (slot != -1 && !variable.empty()) {
5855                if (!script) return;
5856                const _UUID uuid = _UUIDFromCArray(&script->Uuid[0]);
5857                if (!scriptVars.count(uuid)) return;
5858                if (!scriptVars[uuid].count(slot)) return;
5859                if (scriptVars[uuid][slot].count(variable))
5860                    scriptVars[uuid][slot].erase(
5861                        scriptVars[uuid][slot].find(variable)
5862                    );
5863                if (scriptVars[uuid][slot].empty())
5864                    scriptVars[uuid].erase( scriptVars[uuid].find(slot) );
5865                if (scriptVars[uuid].empty())
5866                    scriptVars.erase( scriptVars.find(uuid) );
5867                return;
5868            }
5869    
5870            // option 2: unset all variables of all script slots
5871            if (slot == -1 && variable.empty()) {
5872                scriptVars.clear();
5873                return;
5874            }
5875    
5876            // option 3: unset all variables of one particular script slot only
5877            if (slot != -1) {
5878                if (!script) return;
5879                const _UUID uuid = _UUIDFromCArray(&script->Uuid[0]);
5880                if (scriptVars.count(uuid))
5881                    scriptVars.erase( scriptVars.find(uuid) );
5882                return;
5883            }
5884    
5885            // option 4: unset a particular variable of all script slots
5886            _VarsByScript::iterator itScript = scriptVars.begin();
5887            _VarsByScript::iterator endScript = scriptVars.end();
5888            while (itScript != endScript) {
5889                _VarsBySlot& slots = itScript->second;
5890                _VarsBySlot::iterator itSlot = slots.begin();
5891                _VarsBySlot::iterator endSlot = slots.end();
5892                while (itSlot != endSlot) {
5893                    _PatchVars& vars = itSlot->second;
5894                    if (vars.count(variable))
5895                        vars.erase( vars.find(variable) );
5896                    if (vars.empty())
5897                        slots.erase(itSlot++); // postfix increment to avoid iterator invalidation
5898                    else
5899                        ++itSlot;
5900                }
5901                if (slots.empty())
5902                    scriptVars.erase(itScript++); // postfix increment to avoid iterator invalidation
5903                else
5904                    ++itScript;
5905            }
5906        }
5907    
5908        /**
5909         * Returns stripped version of member variable @c scriptVars, where scripts
5910         * no longer referenced by this @c Instrument are filtered out, and so are
5911         * variables of meanwhile obsolete slots (i.e. a script still being
5912         * referenced, but previously overridden on a script slot which either no
5913         * longer exists or is hosting another script now).
5914         */
5915        Instrument::_VarsByScript Instrument::stripScriptVars() {
5916            _VarsByScript vars;
5917            _VarsByScript::const_iterator itScript = scriptVars.begin();
5918            _VarsByScript::const_iterator endScript = scriptVars.end();
5919            for (; itScript != endScript; ++itScript) {
5920                const _UUID& uuid = itScript->first;
5921                if (!ReferencesScriptWithUuid(uuid))
5922                    continue;
5923                const _VarsBySlot& slots = itScript->second;
5924                _VarsBySlot::const_iterator itSlot = slots.begin();
5925                _VarsBySlot::const_iterator endSlot = slots.end();
5926                for (; itSlot != endSlot; ++itSlot) {
5927                    Script* script = GetScriptOfSlot(itSlot->first);
5928                    if (!script) continue;
5929                    if (_UUIDFromCArray(&script->Uuid[0]) != uuid) continue;
5930                    if (itSlot->second.empty()) continue;
5931                    vars[uuid][itSlot->first] = itSlot->second;
5932                }
5933            }
5934            return vars;
5935        }
5936    
5937        /**
5938         * Make a (semi) deep copy of the Instrument object given by @a orig
5939         * and assign it to this object.
5940         *
5941         * Note that all sample pointers referenced by @a orig are simply copied as
5942         * memory address. Thus the respective samples are shared, not duplicated!
5943         *
5944         * @param orig - original Instrument object to be copied from
5945         */
5946        void Instrument::CopyAssign(const Instrument* orig) {
5947            CopyAssign(orig, NULL);
5948        }
5949            
5950        /**
5951         * Make a (semi) deep copy of the Instrument object given by @a orig
5952         * and assign it to this object.
5953         *
5954         * @param orig - original Instrument object to be copied from
5955         * @param mSamples - crosslink map between the foreign file's samples and
5956         *                   this file's samples
5957         */
5958        void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
5959            // handle base class
5960            // (without copying DLS region stuff)
5961            DLS::Instrument::CopyAssignCore(orig);
5962            
5963            // handle own member variables
5964            Attenuation = orig->Attenuation;
5965            EffectSend = orig->EffectSend;
5966            FineTune = orig->FineTune;
5967            PitchbendRange = orig->PitchbendRange;
5968            PianoReleaseMode = orig->PianoReleaseMode;
5969            DimensionKeyRange = orig->DimensionKeyRange;
5970            scriptPoolFileOffsets = orig->scriptPoolFileOffsets;
5971            // deep copy of pScriptRefs required (to avoid undefined behaviour)
5972            if (pScriptRefs) delete pScriptRefs;
5973            pScriptRefs = new std::vector<_ScriptPooolRef>;
5974            if (orig->pScriptRefs)
5975                *pScriptRefs = *orig->pScriptRefs;
5976            scriptVars = orig->scriptVars;
5977            
5978            // free old midi rules
5979            for (int i = 0 ; pMidiRules[i] ; i++) {
5980                delete pMidiRules[i];
5981            }
5982            //TODO: MIDI rule copying
5983            pMidiRules[0] = NULL;
5984            
5985            // delete all old regions
5986            while (Regions) DeleteRegion(GetFirstRegion());
5987            // create new regions and copy them from original
5988            {
5989                RegionList::const_iterator it = orig->pRegions->begin();
5990                for (int i = 0; i < orig->Regions; ++i, ++it) {
5991                    Region* dstRgn = AddRegion();
5992                    //NOTE: Region does semi-deep copy !
5993                    dstRgn->CopyAssign(
5994                        static_cast<gig::Region*>(*it),
5995                        mSamples
5996                    );
5997                }
5998            }
5999    
6000            UpdateRegionKeyTable();
6001        }
6002    
6003        /**
6004         * Returns @c true in case this Instrument object uses any gig format
6005         * extension, that is e.g. whether any DimensionRegion object currently
6006         * has any setting effective that would require our "LSDE" RIFF chunk to
6007         * be stored to the gig file.
6008         *
6009         * Right now this is a private method. It is considerable though this method
6010         * to become (in slightly modified form) a public API method in future, i.e.
6011         * to allow instrument editors to visualize and/or warn the user of any gig
6012         * format extension being used. See also comments on
6013         * DimensionRegion::UsesAnyGigFormatExtension() for details about such a
6014         * potential public API change in future.
6015         */
6016        bool Instrument::UsesAnyGigFormatExtension() const {
6017            if (!pRegions) return false;
6018            if (!scriptVars.empty()) return true;
6019            RegionList::const_iterator iter = pRegions->begin();
6020            RegionList::const_iterator end  = pRegions->end();
6021            for (; iter != end; ++iter) {
6022                gig::Region* rgn = static_cast<gig::Region*>(*iter);
6023                if (rgn->UsesAnyGigFormatExtension())
6024                    return true;
6025            }
6026            return false;
6027        }
6028    
6029    
6030    // *************** Group ***************
6031    // *
6032    
6033        /** @brief Constructor.
6034         *
6035         * @param file   - pointer to the gig::File object
6036         * @param ck3gnm - pointer to 3gnm chunk associated with this group or
6037         *                 NULL if this is a new Group
6038         */
6039        Group::Group(File* file, RIFF::Chunk* ck3gnm) {
6040            pFile      = file;
6041            pNameChunk = ck3gnm;
6042            ::LoadString(pNameChunk, Name);
6043        }
6044    
6045        /** @brief Destructor.
6046         *
6047         * Currently this destructor implementation does nothing.
6048         */
6049        Group::~Group() {
6050        }
6051    
6052        /** @brief Remove all RIFF chunks associated with this Group object.
6053         *
6054         * See DLS::Storage::DeleteChunks() for details.
6055         */
6056        void Group::DeleteChunks() {
6057            // handle own RIFF chunks
6058            if (pNameChunk) {
6059                pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
6060                pNameChunk = NULL;
6061            }
6062        }
6063    
6064        /** @brief Update chunks with current group settings.
6065         *
6066         * Apply current Group field values to the respective chunks. You have
6067         * to call File::Save() to make changes persistent.
6068         *
6069         * Usually there is absolutely no need to call this method explicitly.
6070         * It will be called automatically when File::Save() was called.
6071         *
6072         * @param pProgress - callback function for progress notification
6073         */
6074        void Group::UpdateChunks(progress_t* pProgress) {
6075            // make sure <3gri> and <3gnl> list chunks exist
6076            RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
6077            if (!_3gri) {
6078                _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
6079                pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
6080            }
6081            RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
6082            if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
6083    
6084            if (!pNameChunk && pFile->pVersion && pFile->pVersion->major > 2) {
6085                // v3 has a fixed list of 128 strings, find a free one
6086                for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
6087                    if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
6088                        pNameChunk = ck;
6089                        break;
6090                    }
6091                }
6092            }
6093    
6094            // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
6095            ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
6096        }
6097    
6098        /**
6099         * Returns the first Sample of this Group. You have to call this method
6100         * once before you use GetNextSample().
6101         *
6102         * <b>Notice:</b> this method might block for a long time, in case the
6103         * samples of this .gig file were not scanned yet
6104         *
6105         * @returns  pointer address to first Sample or NULL if there is none
6106         *           applied to this Group
6107         * @see      GetNextSample()
6108         */
6109        Sample* Group::GetFirstSample() {
6110            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
6111            for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
6112                if (pSample->GetGroup() == this) return pSample;
6113            }
6114            return NULL;
6115        }
6116    
6117        /**
6118         * Returns the next Sample of the Group. You have to call
6119         * GetFirstSample() once before you can use this method. By calling this
6120         * method multiple times it iterates through the Samples assigned to
6121         * this Group.
6122         *
6123         * @returns  pointer address to the next Sample of this Group or NULL if
6124         *           end reached
6125         * @see      GetFirstSample()
6126         */
6127        Sample* Group::GetNextSample() {
6128            // FIXME: lazy und unsafe implementation, should be an autonomous iterator
6129            for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
6130                if (pSample->GetGroup() == this) return pSample;
6131            }
6132            return NULL;
6133        }
6134    
6135        /**
6136         * Move Sample given by \a pSample from another Group to this Group.
6137         */
6138        void Group::AddSample(Sample* pSample) {
6139            pSample->pGroup = this;
6140        }
6141    
6142        /**
6143         * Move all members of this group to another group (preferably the 1st
6144         * one except this). This method is called explicitly by
6145         * File::DeleteGroup() thus when a Group was deleted. This code was
6146         * intentionally not placed in the destructor!
6147         */
6148        void Group::MoveAll() {
6149            // get "that" other group first
6150            Group* pOtherGroup = NULL;
6151            for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
6152                if (pOtherGroup != this) break;
6153            }
6154            if (!pOtherGroup) throw Exception(
6155                "Could not move samples to another group, since there is no "
6156                "other Group. This is a bug, report it!"
6157            );
6158            // now move all samples of this group to the other group
6159            for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
6160                pOtherGroup->AddSample(pSample);
6161            }
6162      }      }
6163    
6164    
# Line 1319  namespace gig { Line 6166  namespace gig {
6166  // *************** File ***************  // *************** File ***************
6167  // *  // *
6168    
6169        /// Reflects Gigasampler file format version 2.0 (1998-06-28).
6170        const DLS::version_t File::VERSION_2 = {
6171            0, 2, 19980628 & 0xffff, 19980628 >> 16
6172        };
6173    
6174        /// Reflects Gigasampler file format version 3.0 (2003-03-31).
6175        const DLS::version_t File::VERSION_3 = {
6176            0, 3, 20030331 & 0xffff, 20030331 >> 16
6177        };
6178    
6179        /// Reflects Gigasampler file format version 4.0 (2007-10-12).
6180        const DLS::version_t File::VERSION_4 = {
6181            0, 4, 20071012 & 0xffff, 20071012 >> 16
6182        };
6183    
6184        static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
6185            { CHUNK_ID_IARL, 256 },
6186            { CHUNK_ID_IART, 128 },
6187            { CHUNK_ID_ICMS, 128 },
6188            { CHUNK_ID_ICMT, 1024 },
6189            { CHUNK_ID_ICOP, 128 },
6190            { CHUNK_ID_ICRD, 128 },
6191            { CHUNK_ID_IENG, 128 },
6192            { CHUNK_ID_IGNR, 128 },
6193            { CHUNK_ID_IKEY, 128 },
6194            { CHUNK_ID_IMED, 128 },
6195            { CHUNK_ID_INAM, 128 },
6196            { CHUNK_ID_IPRD, 128 },
6197            { CHUNK_ID_ISBJ, 128 },
6198            { CHUNK_ID_ISFT, 128 },
6199            { CHUNK_ID_ISRC, 128 },
6200            { CHUNK_ID_ISRF, 128 },
6201            { CHUNK_ID_ITCH, 128 },
6202            { 0, 0 }
6203        };
6204    
6205        File::File() : DLS::File() {
6206            bAutoLoad = true;
6207            *pVersion = VERSION_3;
6208            pGroups = NULL;
6209            pScriptGroups = NULL;
6210            pInfo->SetFixedStringLengths(_FileFixedStringLengths);
6211            pInfo->ArchivalLocation = String(256, ' ');
6212    
6213            // add some mandatory chunks to get the file chunks in right
6214            // order (INFO chunk will be moved to first position later)
6215            pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
6216            pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
6217            pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
6218    
6219            GenerateDLSID();
6220        }
6221    
6222      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {      File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
6223          pSamples     = NULL;          bAutoLoad = true;
6224          pInstruments = NULL;          pGroups = NULL;
6225            pScriptGroups = NULL;
6226            pInfo->SetFixedStringLengths(_FileFixedStringLengths);
6227      }      }
6228    
6229      Sample* File::GetFirstSample() {      File::~File() {
6230          if (!pSamples) LoadSamples();          if (pGroups) {
6231                std::list<Group*>::iterator iter = pGroups->begin();
6232                std::list<Group*>::iterator end  = pGroups->end();
6233                while (iter != end) {
6234                    delete *iter;
6235                    ++iter;
6236                }
6237                delete pGroups;
6238            }
6239            if (pScriptGroups) {
6240                std::list<ScriptGroup*>::iterator iter = pScriptGroups->begin();
6241                std::list<ScriptGroup*>::iterator end  = pScriptGroups->end();
6242                while (iter != end) {
6243                    delete *iter;
6244                    ++iter;
6245                }
6246                delete pScriptGroups;
6247            }
6248        }
6249    
6250        Sample* File::GetFirstSample(progress_t* pProgress) {
6251            if (!pSamples) LoadSamples(pProgress);
6252          if (!pSamples) return NULL;          if (!pSamples) return NULL;
6253          SamplesIterator = pSamples->begin();          SamplesIterator = pSamples->begin();
6254          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
# Line 1336  namespace gig { Line 6259  namespace gig {
6259          SamplesIterator++;          SamplesIterator++;
6260          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );          return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
6261      }      }
6262        
6263        /**
6264         * Returns Sample object of @a index.
6265         *
6266         * @returns sample object or NULL if index is out of bounds
6267         */
6268        Sample* File::GetSample(uint index) {
6269            if (!pSamples) LoadSamples();
6270            if (!pSamples) return NULL;
6271            DLS::File::SampleList::iterator it = pSamples->begin();
6272            for (int i = 0; i < index; ++i) {
6273                ++it;
6274                if (it == pSamples->end()) return NULL;
6275            }
6276            if (it == pSamples->end()) return NULL;
6277            return static_cast<gig::Sample*>( *it );
6278        }
6279    
6280        /**
6281         * Returns the total amount of samples of this gig file.
6282         *
6283         * Note that this method might block for a long time in case it is required
6284         * to load the sample info for the first time.
6285         *
6286         * @returns total amount of samples
6287         */
6288        size_t File::CountSamples() {
6289            if (!pSamples) LoadSamples();
6290            if (!pSamples) return 0;
6291            return pSamples->size();
6292        }
6293    
6294        /** @brief Add a new sample.
6295         *
6296         * This will create a new Sample object for the gig file. You have to
6297         * call Save() to make this persistent to the file.
6298         *
6299         * @returns pointer to new Sample object
6300         */
6301        Sample* File::AddSample() {
6302           if (!pSamples) LoadSamples();
6303           __ensureMandatoryChunksExist();
6304           RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
6305           // create new Sample object and its respective 'wave' list chunk
6306           RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
6307           Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
6308    
6309           // add mandatory chunks to get the chunks in right order
6310           wave->AddSubChunk(CHUNK_ID_FMT, 16);
6311           wave->AddSubList(LIST_TYPE_INFO);
6312    
6313           pSamples->push_back(pSample);
6314           return pSample;
6315        }
6316    
6317        /** @brief Delete a sample.
6318         *
6319         * This will delete the given Sample object from the gig file. Any
6320         * references to this sample from Regions and DimensionRegions will be
6321         * removed. You have to call Save() to make this persistent to the file.
6322         *
6323         * @param pSample - sample to delete
6324         * @throws gig::Exception if given sample could not be found
6325         */
6326        void File::DeleteSample(Sample* pSample) {
6327            if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
6328            SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
6329            if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
6330            if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
6331            pSamples->erase(iter);
6332            pSample->DeleteChunks();
6333            delete pSample;
6334    
6335            SampleList::iterator tmp = SamplesIterator;
6336            // remove all references to the sample
6337            for (Instrument* instrument = GetFirstInstrument() ; instrument ;
6338                 instrument = GetNextInstrument()) {
6339                for (Region* region = instrument->GetFirstRegion() ; region ;
6340                     region = instrument->GetNextRegion()) {
6341    
6342                    if (region->GetSample() == pSample) region->SetSample(NULL);
6343    
6344                    for (int i = 0 ; i < region->DimensionRegions ; i++) {
6345                        gig::DimensionRegion *d = region->pDimensionRegions[i];
6346                        if (d->pSample == pSample) d->pSample = NULL;
6347                    }
6348                }
6349            }
6350            SamplesIterator = tmp; // restore iterator
6351        }
6352    
6353      void File::LoadSamples() {      void File::LoadSamples() {
6354          RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);          LoadSamples(NULL);
6355          if (wvpl) {      }
6356              unsigned long wvplFileOffset = wvpl->GetFilePos();  
6357              RIFF::List* wave = wvpl->GetFirstSubList();      void File::LoadSamples(progress_t* pProgress) {
6358              while (wave) {          // Groups must be loaded before samples, because samples will try
6359                  if (wave->GetListType() == LIST_TYPE_WAVE) {          // to resolve the group they belong to
6360                      if (!pSamples) pSamples = new SampleList;          if (!pGroups) LoadGroups();
6361                      unsigned long waveFileOffset = wave->GetFilePos();  
6362                      pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset));          if (!pSamples) pSamples = new SampleList;
6363    
6364            RIFF::File* file = pRIFF;
6365    
6366            // just for progress calculation
6367            int iSampleIndex  = 0;
6368            int iTotalSamples = WavePoolCount;
6369    
6370            // just for assembling path of optional extension files to be read
6371            const std::string folder = parentPath(pRIFF->GetFileName());
6372            const std::string baseName = pathWithoutExtension(pRIFF->GetFileName());
6373    
6374            // the main gig file and the extension files (.gx01, ... , .gx98) may
6375            // contain wave data (wave pool)
6376            std::vector<RIFF::File*> poolFiles;
6377            poolFiles.push_back(pRIFF);
6378    
6379            // get info about all extension files
6380            RIFF::Chunk* ckXfil = pRIFF->GetSubChunk(CHUNK_ID_XFIL);
6381            if (ckXfil) { // there are extension files (.gx01, ... , .gx98) ...
6382                const uint32_t n = ckXfil->ReadInt32();
6383                for (int i = 0; i < n; i++) {
6384                    // read the filename and load the extension file
6385                    std::string name;
6386                    ckXfil->ReadString(name, 128);
6387                    std::string path = concatPath(folder, name);
6388                    RIFF::File* pExtFile = new RIFF::File(path);
6389                    // check that the dlsids match
6390                    RIFF::Chunk* ckDLSID = pExtFile->GetSubChunk(CHUNK_ID_DLID);
6391                    if (ckDLSID) {
6392                        ::DLS::dlsid_t idExpected;
6393                        idExpected.ulData1 = ckXfil->ReadInt32();
6394                        idExpected.usData2 = ckXfil->ReadInt16();
6395                        idExpected.usData3 = ckXfil->ReadInt16();
6396                        ckXfil->Read(idExpected.abData, 8, 1);
6397                        ::DLS::dlsid_t idFound;
6398                        ckDLSID->Read(&idFound.ulData1, 1, 4);
6399                        ckDLSID->Read(&idFound.usData2, 1, 2);
6400                        ckDLSID->Read(&idFound.usData3, 1, 2);
6401                        ckDLSID->Read(idFound.abData, 8, 1);
6402                        if (memcmp(&idExpected, &idFound, 16) != 0)
6403                            throw gig::Exception("dlsid mismatch for extension file: %s", path.c_str());
6404                    }
6405                    poolFiles.push_back(pExtFile);
6406                    ExtensionFiles.push_back(pExtFile);
6407                }
6408            }
6409    
6410            // check if a .gx99 (GigaPulse) file exists
6411            RIFF::Chunk* ckDoxf = pRIFF->GetSubChunk(CHUNK_ID_DOXF);
6412            if (ckDoxf) { // there is a .gx99 (GigaPulse) file ...
6413                std::string path = baseName + ".gx99";
6414                RIFF::File* pExtFile = new RIFF::File(path);
6415    
6416                // skip unused int and filename
6417                ckDoxf->SetPos(132, RIFF::stream_curpos);
6418    
6419                // check that the dlsids match
6420                RIFF::Chunk* ckDLSID = pExtFile->GetSubChunk(CHUNK_ID_DLID);
6421                if (ckDLSID) {
6422                    ::DLS::dlsid_t idExpected;
6423                    idExpected.ulData1 = ckDoxf->ReadInt32();
6424                    idExpected.usData2 = ckDoxf->ReadInt16();
6425                    idExpected.usData3 = ckDoxf->ReadInt16();
6426                    ckDoxf->Read(idExpected.abData, 8, 1);
6427                    ::DLS::dlsid_t idFound;
6428                    ckDLSID->Read(&idFound.ulData1, 1, 4);
6429                    ckDLSID->Read(&idFound.usData2, 1, 2);
6430                    ckDLSID->Read(&idFound.usData3, 1, 2);
6431                    ckDLSID->Read(idFound.abData, 8, 1);
6432                    if (memcmp(&idExpected, &idFound, 16) != 0)
6433                        throw gig::Exception("dlsid mismatch for GigaPulse file: %s", path.c_str());
6434                }
6435                poolFiles.push_back(pExtFile);
6436                ExtensionFiles.push_back(pExtFile);
6437            }
6438    
6439            // load samples from extension files (if required)
6440            for (int i = 0; i < poolFiles.size(); i++) {
6441                RIFF::File* file = poolFiles[i];
6442                RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
6443                if (wvpl) {
6444                    file_offset_t wvplFileOffset = wvpl->GetFilePos() -
6445                                                   wvpl->GetPos(); // should be zero, but just to be sure
6446                    RIFF::List* wave = wvpl->GetFirstSubList();
6447                    while (wave) {
6448                        if (wave->GetListType() == LIST_TYPE_WAVE) {
6449                            // notify current progress
6450                            if (pProgress) {
6451                                const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
6452                                __notify_progress(pProgress, subprogress);
6453                            }
6454    
6455                            file_offset_t waveFileOffset = wave->GetFilePos();
6456                            pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, i, iSampleIndex));
6457    
6458                            iSampleIndex++;
6459                        }
6460                        wave = wvpl->GetNextSubList();
6461                  }                  }
                 wave = wvpl->GetNextSubList();  
6462              }              }
6463          }          }
6464          else throw gig::Exception("Mandatory <wvpl> chunk not found.");  
6465            if (pProgress)
6466                __notify_progress(pProgress, 1.0); // notify done
6467      }      }
6468    
6469      Instrument* File::GetFirstInstrument() {      Instrument* File::GetFirstInstrument() {
6470          if (!pInstruments) LoadInstruments();          if (!pInstruments) LoadInstruments();
6471          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
6472          InstrumentsIterator = pInstruments->begin();          InstrumentsIterator = pInstruments->begin();
6473          return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;          return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
6474      }      }
6475    
6476      Instrument* File::GetNextInstrument() {      Instrument* File::GetNextInstrument() {
6477          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
6478          InstrumentsIterator++;          InstrumentsIterator++;
6479          return (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL;          return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
6480        }
6481    
6482        /**
6483         * Returns the total amount of instruments of this gig file.
6484         *
6485         * Note that this method might block for a long time in case it is required
6486         * to load the instruments info for the first time.
6487         *
6488         * @returns total amount of instruments
6489         */
6490        size_t File::CountInstruments() {
6491            if (!pInstruments) LoadInstruments();
6492            if (!pInstruments) return 0;
6493            return pInstruments->size();
6494      }      }
6495    
6496      /**      /**
6497       * Returns the instrument with the given index.       * Returns the instrument with the given index.
6498       *       *
6499         * @param index     - number of the sought instrument (0..n)
6500         * @param pProgress - optional: callback function for progress notification
6501       * @returns  sought instrument or NULL if there's no such instrument       * @returns  sought instrument or NULL if there's no such instrument
6502       */       */
6503      Instrument* File::GetInstrument(uint index) {      Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
6504          if (!pInstruments) LoadInstruments();          if (!pInstruments) {
6505                // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
6506    
6507                if (pProgress) {
6508                    // sample loading subtask
6509                    progress_t subprogress;
6510                    __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
6511                    __notify_progress(&subprogress, 0.0f);
6512                    if (GetAutoLoad())
6513                        GetFirstSample(&subprogress); // now force all samples to be loaded
6514                    __notify_progress(&subprogress, 1.0f);
6515    
6516                    // instrument loading subtask
6517                    if (pProgress->callback) {
6518                        subprogress.__range_min = subprogress.__range_max;
6519                        subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
6520                    }
6521                    __notify_progress(&subprogress, 0.0f);
6522                    LoadInstruments(&subprogress);
6523                    __notify_progress(&subprogress, 1.0f);
6524                } else {
6525                    // sample loading subtask
6526                    if (GetAutoLoad())
6527                        GetFirstSample(); // now force all samples to be loaded
6528    
6529                    // instrument loading subtask
6530                    LoadInstruments();
6531                }
6532            }
6533          if (!pInstruments) return NULL;          if (!pInstruments) return NULL;
6534          InstrumentsIterator = pInstruments->begin();          InstrumentsIterator = pInstruments->begin();
6535          for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {          for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
6536              if (i == index) return *InstrumentsIterator;              if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
6537              InstrumentsIterator++;              InstrumentsIterator++;
6538          }          }
6539          return NULL;          return NULL;
6540      }      }
6541    
6542        /** @brief Add a new instrument definition.
6543         *
6544         * This will create a new Instrument object for the gig file. You have
6545         * to call Save() to make this persistent to the file.
6546         *
6547         * @returns pointer to new Instrument object
6548         */
6549        Instrument* File::AddInstrument() {
6550           if (!pInstruments) LoadInstruments();
6551           __ensureMandatoryChunksExist();
6552           RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
6553           RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
6554    
6555           // add mandatory chunks to get the chunks in right order
6556           lstInstr->AddSubList(LIST_TYPE_INFO);
6557           lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
6558    
6559           Instrument* pInstrument = new Instrument(this, lstInstr);
6560           pInstrument->GenerateDLSID();
6561    
6562           lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
6563    
6564           // this string is needed for the gig to be loadable in GSt:
6565           pInstrument->pInfo->Software = "Endless Wave";
6566    
6567           pInstruments->push_back(pInstrument);
6568           return pInstrument;
6569        }
6570        
6571        /** @brief Add a duplicate of an existing instrument.
6572         *
6573         * Duplicates the instrument definition given by @a orig and adds it
6574         * to this file. This allows in an instrument editor application to
6575         * easily create variations of an instrument, which will be stored in
6576         * the same .gig file, sharing i.e. the same samples.
6577         *
6578         * Note that all sample pointers referenced by @a orig are simply copied as
6579         * memory address. Thus the respective samples are shared, not duplicated!
6580         *
6581         * You have to call Save() to make this persistent to the file.
6582         *
6583         * @param orig - original instrument to be copied
6584         * @returns duplicated copy of the given instrument
6585         */
6586        Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
6587            Instrument* instr = AddInstrument();
6588            instr->CopyAssign(orig);
6589            return instr;
6590        }
6591        
6592        /** @brief Add content of another existing file.
6593         *
6594         * Duplicates the samples, groups and instruments of the original file
6595         * given by @a pFile and adds them to @c this File. In case @c this File is
6596         * a new one that you haven't saved before, then you have to call
6597         * SetFileName() before calling AddContentOf(), because this method will
6598         * automatically save this file during operation, which is required for
6599         * writing the sample waveform data by disk streaming.
6600         *
6601         * @param pFile - original file whose's content shall be copied from
6602         */
6603        void File::AddContentOf(File* pFile) {
6604            static int iCallCount = -1;
6605            iCallCount++;
6606            std::map<Group*,Group*> mGroups;
6607            std::map<Sample*,Sample*> mSamples;
6608            
6609            // clone sample groups
6610            for (int i = 0; pFile->GetGroup(i); ++i) {
6611                Group* g = AddGroup();
6612                g->Name =
6613                    "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
6614                mGroups[pFile->GetGroup(i)] = g;
6615            }
6616            
6617            // clone samples (not waveform data here yet)
6618            for (int i = 0; pFile->GetSample(i); ++i) {
6619                Sample* s = AddSample();
6620                s->CopyAssignMeta(pFile->GetSample(i));
6621                mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
6622                mSamples[pFile->GetSample(i)] = s;
6623            }
6624    
6625            // clone script groups and their scripts
6626            for (int iGroup = 0; pFile->GetScriptGroup(iGroup); ++iGroup) {
6627                ScriptGroup* sg = pFile->GetScriptGroup(iGroup);
6628                ScriptGroup* dg = AddScriptGroup();
6629                dg->Name = "COPY" + ToString(iCallCount) + "_" + sg->Name;
6630                for (int iScript = 0; sg->GetScript(iScript); ++iScript) {
6631                    Script* ss = sg->GetScript(iScript);
6632                    Script* ds = dg->AddScript();
6633                    ds->CopyAssign(ss);
6634                }
6635            }
6636    
6637            //BUG: For some reason this method only works with this additional
6638            //     Save() call in between here.
6639            //
6640            // Important: The correct one of the 2 Save() methods has to be called
6641            // here, depending on whether the file is completely new or has been
6642            // saved to disk already, otherwise it will result in data corruption.
6643            if (pRIFF->IsNew())
6644                Save(GetFileName());
6645            else
6646                Save();
6647            
6648            // clone instruments
6649            // (passing the crosslink table here for the cloned samples)
6650            for (int i = 0; pFile->GetInstrument(i); ++i) {
6651                Instrument* instr = AddInstrument();
6652                instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
6653            }
6654            
6655            // Mandatory: file needs to be saved to disk at this point, so this
6656            // file has the correct size and data layout for writing the samples'
6657            // waveform data to disk.
6658            Save();
6659            
6660            // clone samples' waveform data
6661            // (using direct read & write disk streaming)
6662            for (int i = 0; pFile->GetSample(i); ++i) {
6663                mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
6664            }
6665        }
6666    
6667        /** @brief Delete an instrument.
6668         *
6669         * This will delete the given Instrument object from the gig file. You
6670         * have to call Save() to make this persistent to the file.
6671         *
6672         * @param pInstrument - instrument to delete
6673         * @throws gig::Exception if given instrument could not be found
6674         */
6675        void File::DeleteInstrument(Instrument* pInstrument) {
6676            if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
6677            InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
6678            if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
6679            pInstruments->erase(iter);
6680            pInstrument->DeleteChunks();
6681            delete pInstrument;
6682        }
6683    
6684      void File::LoadInstruments() {      void File::LoadInstruments() {
6685            LoadInstruments(NULL);
6686        }
6687    
6688        void File::LoadInstruments(progress_t* pProgress) {
6689            if (!pInstruments) pInstruments = new InstrumentList;
6690          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);          RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
6691          if (lstInstruments) {          if (lstInstruments) {
6692                int iInstrumentIndex = 0;
6693              RIFF::List* lstInstr = lstInstruments->GetFirstSubList();              RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
6694              while (lstInstr) {              while (lstInstr) {
6695                  if (lstInstr->GetListType() == LIST_TYPE_INS) {                  if (lstInstr->GetListType() == LIST_TYPE_INS) {
6696                      if (!pInstruments) pInstruments = new InstrumentList;                      if (pProgress) {
6697                      pInstruments->push_back(new Instrument(this, lstInstr));                          // notify current progress
6698                            const float localProgress = (float) iInstrumentIndex / (float) Instruments;
6699                            __notify_progress(pProgress, localProgress);
6700    
6701                            // divide local progress into subprogress for loading current Instrument
6702                            progress_t subprogress;
6703                            __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
6704    
6705                            pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
6706                        } else {
6707                            pInstruments->push_back(new Instrument(this, lstInstr));
6708                        }
6709    
6710                        iInstrumentIndex++;
6711                  }                  }
6712                  lstInstr = lstInstruments->GetNextSubList();                  lstInstr = lstInstruments->GetNextSubList();
6713              }              }
6714                if (pProgress)
6715                    __notify_progress(pProgress, 1.0); // notify done
6716            }
6717        }
6718    
6719        /// Updates the 3crc chunk with the checksum of a sample. The
6720        /// update is done directly to disk, as this method is called
6721        /// after File::Save()
6722        void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
6723            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6724            if (!_3crc) return;
6725    
6726            // get the index of the sample
6727            int iWaveIndex = GetWaveTableIndexOf(pSample);
6728            if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
6729    
6730            // write the CRC-32 checksum to disk
6731            _3crc->SetPos(iWaveIndex * 8);
6732            uint32_t one = 1;
6733            _3crc->WriteUint32(&one); // always 1
6734            _3crc->WriteUint32(&crc);
6735        }
6736    
6737        uint32_t File::GetSampleChecksum(Sample* pSample) {
6738            // get the index of the sample
6739            int iWaveIndex = GetWaveTableIndexOf(pSample);
6740            if (iWaveIndex < 0) throw gig::Exception("Could not retrieve reference crc of sample, could not resolve sample's wave table index");
6741    
6742            return GetSampleChecksumByIndex(iWaveIndex);
6743        }
6744    
6745        uint32_t File::GetSampleChecksumByIndex(int index) {
6746            if (index < 0) throw gig::Exception("Could not retrieve reference crc of sample, invalid wave pool index of sample");
6747    
6748            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6749            if (!_3crc) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
6750            uint8_t* pData = (uint8_t*) _3crc->LoadChunkData();
6751            if (!pData) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
6752    
6753            // read the CRC-32 checksum directly from disk
6754            size_t pos = index * 8;
6755            if (pos + 8 > _3crc->GetNewSize())
6756                throw gig::Exception("Could not retrieve reference crc of sample, could not seek to required position in crc chunk");
6757    
6758            uint32_t one = load32(&pData[pos]); // always 1
6759            if (one != 1)
6760                throw gig::Exception("Could not retrieve reference crc of sample, because reference checksum table is damaged");
6761    
6762            return load32(&pData[pos+4]);
6763        }
6764    
6765        int File::GetWaveTableIndexOf(gig::Sample* pSample) {
6766            if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
6767            File::SampleList::iterator iter = pSamples->begin();
6768            File::SampleList::iterator end  = pSamples->end();
6769            for (int index = 0; iter != end; ++iter, ++index)
6770                if (*iter == pSample)
6771                    return index;
6772            return -1;
6773        }
6774    
6775        /**
6776         * Checks whether the file's "3CRC" chunk was damaged. This chunk contains
6777         * the CRC32 check sums of all samples' raw wave data.
6778         *
6779         * @return true if 3CRC chunk is OK, or false if 3CRC chunk is damaged
6780         */
6781        bool File::VerifySampleChecksumTable() {
6782            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6783            if (!_3crc) return false;
6784            if (_3crc->GetNewSize() <= 0) return false;
6785            if (_3crc->GetNewSize() % 8) return false;
6786            if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
6787            if (_3crc->GetNewSize() != pSamples->size() * 8) return false;
6788    
6789            const file_offset_t n = _3crc->GetNewSize() / 8;
6790    
6791            uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6792            if (!pData) return false;
6793    
6794            for (file_offset_t i = 0; i < n; ++i) {
6795                uint32_t one = pData[i*2];
6796                if (one != 1) return false;
6797            }
6798    
6799            return true;
6800        }
6801    
6802        /**
6803         * Recalculates CRC32 checksums for all samples and rebuilds this gig
6804         * file's checksum table with those new checksums. This might usually
6805         * just be necessary if the checksum table was damaged.
6806         *
6807         * @e IMPORTANT: The current implementation of this method only works
6808         * with files that have not been modified since it was loaded, because
6809         * it expects that no externally caused file structure changes are
6810         * required!
6811         *
6812         * Due to the expectation above, this method is currently protected
6813         * and actually only used by the command line tool "gigdump" yet.
6814         *
6815         * @returns true if Save() is required to be called after this call,
6816         *          false if no further action is required
6817         */
6818        bool File::RebuildSampleChecksumTable() {
6819            // make sure sample chunks were scanned
6820            if (!pSamples) GetFirstSample();
6821    
6822            bool bRequiresSave = false;
6823    
6824            // make sure "3CRC" chunk exists with required size
6825            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6826            if (!_3crc) {
6827                _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6828                // the order of einf and 3crc is not the same in v2 and v3
6829                RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6830                if (einf && pVersion && pVersion->major > 2) pRIFF->MoveSubChunk(_3crc, einf);
6831                bRequiresSave = true;
6832            } else if (_3crc->GetNewSize() != pSamples->size() * 8) {
6833                _3crc->Resize(pSamples->size() * 8);
6834                bRequiresSave = true;
6835            }
6836    
6837            if (bRequiresSave) { // refill CRC table for all samples in RAM ...
6838                uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6839                {
6840                    File::SampleList::iterator iter = pSamples->begin();
6841                    File::SampleList::iterator end  = pSamples->end();
6842                    for (; iter != end; ++iter) {
6843                        gig::Sample* pSample = (gig::Sample*) *iter;
6844                        int index = GetWaveTableIndexOf(pSample);
6845                        if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6846                        pData[index*2]   = 1; // always 1
6847                        pData[index*2+1] = pSample->CalculateWaveDataChecksum();
6848                    }
6849                }
6850            } else { // no file structure changes necessary, so directly write to disk and we are done ...
6851                // make sure file is in write mode
6852                pRIFF->SetMode(RIFF::stream_mode_read_write);
6853                {
6854                    File::SampleList::iterator iter = pSamples->begin();
6855                    File::SampleList::iterator end  = pSamples->end();
6856                    for (; iter != end; ++iter) {
6857                        gig::Sample* pSample = (gig::Sample*) *iter;
6858                        int index = GetWaveTableIndexOf(pSample);
6859                        if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6860                        pSample->crc  = pSample->CalculateWaveDataChecksum();
6861                        SetSampleChecksum(pSample, pSample->crc);
6862                    }
6863                }
6864            }
6865    
6866            return bRequiresSave;
6867        }
6868    
6869        Group* File::GetFirstGroup() {
6870            if (!pGroups) LoadGroups();
6871            // there must always be at least one group
6872            GroupsIterator = pGroups->begin();
6873            return *GroupsIterator;
6874        }
6875    
6876        Group* File::GetNextGroup() {
6877            if (!pGroups) return NULL;
6878            ++GroupsIterator;
6879            return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
6880        }
6881    
6882        /**
6883         * Returns the group with the given index.
6884         *
6885         * @param index - number of the sought group (0..n)
6886         * @returns sought group or NULL if there's no such group
6887         */
6888        Group* File::GetGroup(uint index) {
6889            if (!pGroups) LoadGroups();
6890            GroupsIterator = pGroups->begin();
6891            for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
6892                if (i == index) return *GroupsIterator;
6893                ++GroupsIterator;
6894            }
6895            return NULL;
6896        }
6897    
6898        /**
6899         * Returns the group with the given group name.
6900         *
6901         * Note: group names don't have to be unique in the gig format! So there
6902         * can be multiple groups with the same name. This method will simply
6903         * return the first group found with the given name.
6904         *
6905         * @param name - name of the sought group
6906         * @returns sought group or NULL if there's no group with that name
6907         */
6908        Group* File::GetGroup(String name) {
6909            if (!pGroups) LoadGroups();
6910            GroupsIterator = pGroups->begin();
6911            for (uint i = 0; GroupsIterator != pGroups->end(); ++GroupsIterator, ++i)
6912                if ((*GroupsIterator)->Name == name) return *GroupsIterator;
6913            return NULL;
6914        }
6915    
6916        Group* File::AddGroup() {
6917            if (!pGroups) LoadGroups();
6918            // there must always be at least one group
6919            __ensureMandatoryChunksExist();
6920            Group* pGroup = new Group(this, NULL);
6921            pGroups->push_back(pGroup);
6922            return pGroup;
6923        }
6924    
6925        /** @brief Delete a group and its samples.
6926         *
6927         * This will delete the given Group object and all the samples that
6928         * belong to this group from the gig file. You have to call Save() to
6929         * make this persistent to the file.
6930         *
6931         * @param pGroup - group to delete
6932         * @throws gig::Exception if given group could not be found
6933         */
6934        void File::DeleteGroup(Group* pGroup) {
6935            if (!pGroups) LoadGroups();
6936            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6937            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6938            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6939            // delete all members of this group
6940            for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
6941                DeleteSample(pSample);
6942            }
6943            // now delete this group object
6944            pGroups->erase(iter);
6945            pGroup->DeleteChunks();
6946            delete pGroup;
6947        }
6948    
6949        /** @brief Delete a group.
6950         *
6951         * This will delete the given Group object from the gig file. All the
6952         * samples that belong to this group will not be deleted, but instead
6953         * be moved to another group. You have to call Save() to make this
6954         * persistent to the file.
6955         *
6956         * @param pGroup - group to delete
6957         * @throws gig::Exception if given group could not be found
6958         */
6959        void File::DeleteGroupOnly(Group* pGroup) {
6960            if (!pGroups) LoadGroups();
6961            std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6962            if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6963            if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6964            // move all members of this group to another group
6965            pGroup->MoveAll();
6966            pGroups->erase(iter);
6967            pGroup->DeleteChunks();
6968            delete pGroup;
6969        }
6970    
6971        void File::LoadGroups() {
6972            if (!pGroups) pGroups = new std::list<Group*>;
6973            // try to read defined groups from file
6974            RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6975            if (lst3gri) {
6976                RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
6977                if (lst3gnl) {
6978                    RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
6979                    while (ck) {
6980                        if (ck->GetChunkID() == CHUNK_ID_3GNM) {
6981                            if (pVersion && pVersion->major > 2 &&
6982                                strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
6983    
6984                            pGroups->push_back(new Group(this, ck));
6985                        }
6986                        ck = lst3gnl->GetNextSubChunk();
6987                    }
6988                }
6989            }
6990            // if there were no group(s), create at least the mandatory default group
6991            if (!pGroups->size()) {
6992                Group* pGroup = new Group(this, NULL);
6993                pGroup->Name = "Default Group";
6994                pGroups->push_back(pGroup);
6995            }
6996        }
6997    
6998        /** @brief Get instrument script group (by index).
6999         *
7000         * Returns the real-time instrument script group with the given index.
7001         *
7002         * @param index - number of the sought group (0..n)
7003         * @returns sought script group or NULL if there's no such group
7004         */
7005        ScriptGroup* File::GetScriptGroup(uint index) {
7006            if (!pScriptGroups) LoadScriptGroups();
7007            std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
7008            for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
7009                if (i == index) return *it;
7010            return NULL;
7011        }
7012    
7013        /** @brief Get instrument script group (by name).
7014         *
7015         * Returns the first real-time instrument script group found with the given
7016         * group name. Note that group names may not necessarily be unique.
7017         *
7018         * @param name - name of the sought script group
7019         * @returns sought script group or NULL if there's no such group
7020         */
7021        ScriptGroup* File::GetScriptGroup(const String& name) {
7022            if (!pScriptGroups) LoadScriptGroups();
7023            std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
7024            for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
7025                if ((*it)->Name == name) return *it;
7026            return NULL;
7027        }
7028    
7029        /** @brief Add new instrument script group.
7030         *
7031         * Adds a new, empty real-time instrument script group to the file.
7032         *
7033         * You have to call Save() to make this persistent to the file.
7034         *
7035         * @return new empty script group
7036         */
7037        ScriptGroup* File::AddScriptGroup() {
7038            if (!pScriptGroups) LoadScriptGroups();
7039            ScriptGroup* pScriptGroup = new ScriptGroup(this, NULL);
7040            pScriptGroups->push_back(pScriptGroup);
7041            return pScriptGroup;
7042        }
7043    
7044        /** @brief Delete an instrument script group.
7045         *
7046         * This will delete the given real-time instrument script group and all its
7047         * instrument scripts it contains. References inside instruments that are
7048         * using the deleted scripts will be removed from the respective instruments
7049         * accordingly.
7050         *
7051         * You have to call Save() to make this persistent to the file.
7052         *
7053         * @param pScriptGroup - script group to delete
7054         * @throws gig::Exception if given script group could not be found
7055         */
7056        void File::DeleteScriptGroup(ScriptGroup* pScriptGroup) {
7057            if (!pScriptGroups) LoadScriptGroups();
7058            std::list<ScriptGroup*>::iterator iter =
7059                find(pScriptGroups->begin(), pScriptGroups->end(), pScriptGroup);
7060            if (iter == pScriptGroups->end())
7061                throw gig::Exception("Could not delete script group, could not find given script group");
7062            pScriptGroups->erase(iter);
7063            for (int i = 0; pScriptGroup->GetScript(i); ++i)
7064                pScriptGroup->DeleteScript(pScriptGroup->GetScript(i));
7065            if (pScriptGroup->pList)
7066                pScriptGroup->pList->GetParent()->DeleteSubChunk(pScriptGroup->pList);
7067            pScriptGroup->DeleteChunks();
7068            delete pScriptGroup;
7069        }
7070    
7071        void File::LoadScriptGroups() {
7072            if (pScriptGroups) return;
7073            pScriptGroups = new std::list<ScriptGroup*>;
7074            RIFF::List* lstLS = pRIFF->GetSubList(LIST_TYPE_3LS);
7075            if (lstLS) {
7076                for (RIFF::List* lst = lstLS->GetFirstSubList(); lst;
7077                     lst = lstLS->GetNextSubList())
7078                {
7079                    if (lst->GetListType() == LIST_TYPE_RTIS) {
7080                        pScriptGroups->push_back(new ScriptGroup(this, lst));
7081                    }
7082                }
7083            }
7084        }
7085    
7086        /**
7087         * Apply all the gig file's current instruments, samples, groups and settings
7088         * to the respective RIFF chunks. You have to call Save() to make changes
7089         * persistent.
7090         *
7091         * Usually there is absolutely no need to call this method explicitly.
7092         * It will be called automatically when File::Save() was called.
7093         *
7094         * @param pProgress - callback function for progress notification
7095         * @throws Exception - on errors
7096         */
7097        void File::UpdateChunks(progress_t* pProgress) {
7098            bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
7099    
7100            // update own gig format extension chunks
7101            // (not part of the GigaStudio 4 format)
7102            RIFF::List* lst3LS = pRIFF->GetSubList(LIST_TYPE_3LS);
7103            if (!lst3LS) {
7104                lst3LS = pRIFF->AddSubList(LIST_TYPE_3LS);
7105            }
7106            // Make sure <3LS > chunk is placed before <ptbl> chunk. The precise
7107            // location of <3LS > is irrelevant, however it should be located
7108            // before  the actual wave data
7109            RIFF::Chunk* ckPTBL = pRIFF->GetSubChunk(CHUNK_ID_PTBL);
7110            pRIFF->MoveSubChunk(lst3LS, ckPTBL);
7111    
7112            // This must be performed before writing the chunks for instruments,
7113            // because the instruments' script slots will write the file offsets
7114            // of the respective instrument script chunk as reference.
7115            if (pScriptGroups) {
7116                // Update instrument script (group) chunks.
7117                for (std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
7118                     it != pScriptGroups->end(); ++it)
7119                {
7120                    (*it)->UpdateChunks(pProgress);
7121                }
7122            }
7123    
7124            // in case no libgig custom format data was added, then remove the
7125            // custom "3LS " chunk again
7126            if (!lst3LS->CountSubChunks()) {
7127                pRIFF->DeleteSubChunk(lst3LS);
7128                lst3LS = NULL;
7129            }
7130    
7131            // first update base class's chunks
7132            DLS::File::UpdateChunks(pProgress);
7133    
7134            if (newFile) {
7135                // INFO was added by Resource::UpdateChunks - make sure it
7136                // is placed first in file
7137                RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
7138                RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
7139                if (first != info) {
7140                    pRIFF->MoveSubChunk(info, first);
7141                }
7142            }
7143    
7144            // update group's chunks
7145            if (pGroups) {
7146                // make sure '3gri' and '3gnl' list chunks exist
7147                // (before updating the Group chunks)
7148                RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
7149                if (!_3gri) {
7150                    _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
7151                    pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
7152                }
7153                RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
7154                if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
7155    
7156                // v3: make sure the file has 128 3gnm chunks
7157                // (before updating the Group chunks)
7158                if (pVersion && pVersion->major > 2) {
7159                    RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
7160                    for (int i = 0 ; i < 128 ; i++) {
7161                        // create 128 empty placeholder strings which will either
7162                        // be filled by Group::UpdateChunks below or left empty.
7163                        ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
7164                        if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
7165                    }
7166                }
7167    
7168                std::list<Group*>::iterator iter = pGroups->begin();
7169                std::list<Group*>::iterator end  = pGroups->end();
7170                for (; iter != end; ++iter) {
7171                    (*iter)->UpdateChunks(pProgress);
7172                }
7173            }
7174    
7175            // update einf chunk
7176    
7177            // The einf chunk contains statistics about the gig file, such
7178            // as the number of regions and samples used by each
7179            // instrument. It is divided in equally sized parts, where the
7180            // first part contains information about the whole gig file,
7181            // and the rest of the parts map to each instrument in the
7182            // file.
7183            //
7184            // At the end of each part there is a bit map of each sample
7185            // in the file, where a set bit means that the sample is used
7186            // by the file/instrument.
7187            //
7188            // Note that there are several fields with unknown use. These
7189            // are set to zero.
7190    
7191            int sublen = int(pSamples->size() / 8 + 49);
7192            int einfSize = (Instruments + 1) * sublen;
7193    
7194            RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
7195            if (einf) {
7196                if (einf->GetSize() != einfSize) {
7197                    einf->Resize(einfSize);
7198                    memset(einf->LoadChunkData(), 0, einfSize);
7199                }
7200            } else if (newFile) {
7201                einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
7202            }
7203            if (einf) {
7204                uint8_t* pData = (uint8_t*) einf->LoadChunkData();
7205    
7206                std::map<gig::Sample*,int> sampleMap;
7207                int sampleIdx = 0;
7208                for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
7209                    sampleMap[pSample] = sampleIdx++;
7210                }
7211    
7212                int totnbusedsamples = 0;
7213                int totnbusedchannels = 0;
7214                int totnbregions = 0;
7215                int totnbdimregions = 0;
7216                int totnbloops = 0;
7217                int instrumentIdx = 0;
7218    
7219                memset(&pData[48], 0, sublen - 48);
7220    
7221                for (Instrument* instrument = GetFirstInstrument() ; instrument ;
7222                     instrument = GetNextInstrument()) {
7223                    int nbusedsamples = 0;
7224                    int nbusedchannels = 0;
7225                    int nbdimregions = 0;
7226                    int nbloops = 0;
7227    
7228                    memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
7229    
7230                    for (Region* region = instrument->GetFirstRegion() ; region ;
7231                         region = instrument->GetNextRegion()) {
7232                        for (int i = 0 ; i < region->DimensionRegions ; i++) {
7233                            gig::DimensionRegion *d = region->pDimensionRegions[i];
7234                            if (d->pSample) {
7235                                int sampleIdx = sampleMap[d->pSample];
7236                                int byte = 48 + sampleIdx / 8;
7237                                int bit = 1 << (sampleIdx & 7);
7238                                if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
7239                                    pData[(instrumentIdx + 1) * sublen + byte] |= bit;
7240                                    nbusedsamples++;
7241                                    nbusedchannels += d->pSample->Channels;
7242    
7243                                    if ((pData[byte] & bit) == 0) {
7244                                        pData[byte] |= bit;
7245                                        totnbusedsamples++;
7246                                        totnbusedchannels += d->pSample->Channels;
7247                                    }
7248                                }
7249                            }
7250                            if (d->SampleLoops) nbloops++;
7251                        }
7252                        nbdimregions += region->DimensionRegions;
7253                    }
7254                    // first 4 bytes unknown - sometimes 0, sometimes length of einf part
7255                    // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
7256                    store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
7257                    store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
7258                    store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
7259                    store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
7260                    store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
7261                    store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
7262                    // next 8 bytes unknown
7263                    store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
7264                    store32(&pData[(instrumentIdx + 1) * sublen + 40], (uint32_t) pSamples->size());
7265                    // next 4 bytes unknown
7266    
7267                    totnbregions += instrument->Regions;
7268                    totnbdimregions += nbdimregions;
7269                    totnbloops += nbloops;
7270                    instrumentIdx++;
7271                }
7272                // first 4 bytes unknown - sometimes 0, sometimes length of einf part
7273                // store32(&pData[0], sublen);
7274                store32(&pData[4], totnbusedchannels);
7275                store32(&pData[8], totnbusedsamples);
7276                store32(&pData[12], Instruments);
7277                store32(&pData[16], totnbregions);
7278                store32(&pData[20], totnbdimregions);
7279                store32(&pData[24], totnbloops);
7280                // next 8 bytes unknown
7281                // next 4 bytes unknown, not always 0
7282                store32(&pData[40], (uint32_t) pSamples->size());
7283                // next 4 bytes unknown
7284          }          }
7285          else throw gig::Exception("Mandatory <lins> list chunk not found.");  
7286            // update 3crc chunk
7287    
7288            // The 3crc chunk contains CRC-32 checksums for the
7289            // samples. When saving a gig file to disk, we first update the 3CRC
7290            // chunk here (in RAM) with the old crc values which we read from the
7291            // 3CRC chunk when we opened the file (available with gig::Sample::crc
7292            // member variable). This step is required, because samples might have
7293            // been deleted by the user since the file was opened, which in turn
7294            // changes the order of the (i.e. old) checksums within the 3crc chunk.
7295            // If a sample was conciously modified by the user (that is if
7296            // Sample::Write() was called later on) then Sample::Write() will just
7297            // update the respective individual checksum(s) directly on disk and
7298            // leaves all other sample checksums untouched.
7299    
7300            RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
7301            if (_3crc) {
7302                _3crc->Resize(pSamples->size() * 8);
7303            } else /*if (newFile)*/ {
7304                _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
7305                // the order of einf and 3crc is not the same in v2 and v3
7306                if (einf && pVersion && pVersion->major > 2) pRIFF->MoveSubChunk(_3crc, einf);
7307            }
7308            { // must be performed in RAM here ...
7309                uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
7310                if (pData) {
7311                    File::SampleList::iterator iter = pSamples->begin();
7312                    File::SampleList::iterator end  = pSamples->end();
7313                    for (int index = 0; iter != end; ++iter, ++index) {
7314                        gig::Sample* pSample = (gig::Sample*) *iter;
7315                        pData[index*2]   = 1; // always 1
7316                        pData[index*2+1] = pSample->crc;
7317                    }
7318                }
7319            }
7320        }
7321        
7322        void File::UpdateFileOffsets() {
7323            DLS::File::UpdateFileOffsets();
7324    
7325            for (Instrument* instrument = GetFirstInstrument(); instrument;
7326                 instrument = GetNextInstrument())
7327            {
7328                instrument->UpdateScriptFileOffsets();
7329            }
7330        }
7331    
7332        /**
7333         * Enable / disable automatic loading. By default this property is
7334         * enabled and every information is loaded automatically. However
7335         * loading all Regions, DimensionRegions and especially samples might
7336         * take a long time for large .gig files, and sometimes one might only
7337         * be interested in retrieving very superficial informations like the
7338         * amount of instruments and their names. In this case one might disable
7339         * automatic loading to avoid very slow response times.
7340         *
7341         * @e CAUTION: by disabling this property many pointers (i.e. sample
7342         * references) and attributes will have invalid or even undefined
7343         * data! This feature is currently only intended for retrieving very
7344         * superficial information in a very fast way. Don't use it to retrieve
7345         * details like synthesis information or even to modify .gig files!
7346         */
7347        void File::SetAutoLoad(bool b) {
7348            bAutoLoad = b;
7349      }      }
7350    
7351        /**
7352         * Returns whether automatic loading is enabled.
7353         * @see SetAutoLoad()
7354         */
7355        bool File::GetAutoLoad() {
7356            return bAutoLoad;
7357        }
7358    
7359        /**
7360         * Returns @c true in case this gig File object uses any gig format
7361         * extension, that is e.g. whether any DimensionRegion object currently
7362         * has any setting effective that would require our "LSDE" RIFF chunk to
7363         * be stored to the gig file.
7364         *
7365         * Right now this is a private method. It is considerable though this method
7366         * to become (in slightly modified form) a public API method in future, i.e.
7367         * to allow instrument editors to visualize and/or warn the user of any gig
7368         * format extension being used. See also comments on
7369         * DimensionRegion::UsesAnyGigFormatExtension() for details about such a
7370         * potential public API change in future.
7371         */
7372        bool File::UsesAnyGigFormatExtension() const {
7373            if (!pInstruments) return false;
7374            InstrumentList::iterator iter = pInstruments->begin();
7375            InstrumentList::iterator end  = pInstruments->end();
7376            for (; iter != end; ++iter) {
7377                Instrument* pInstrument = static_cast<gig::Instrument*>(*iter);
7378                if (pInstrument->UsesAnyGigFormatExtension())
7379                    return true;
7380            }
7381            return false;
7382        }
7383    
7384    
7385  // *************** Exception ***************  // *************** Exception ***************
7386  // *  // *
7387    
7388      Exception::Exception(String Message) : DLS::Exception(Message) {      Exception::Exception() : DLS::Exception() {
7389        }
7390    
7391        Exception::Exception(String format, ...) : DLS::Exception() {
7392            va_list arg;
7393            va_start(arg, format);
7394            Message = assemble(format, arg);
7395            va_end(arg);
7396        }
7397    
7398        Exception::Exception(String format, va_list arg) : DLS::Exception() {
7399            Message = assemble(format, arg);
7400      }      }
7401    
7402      void Exception::PrintMessage() {      void Exception::PrintMessage() {
7403          std::cout << "gig::Exception: " << Message << std::endl;          std::cout << "gig::Exception: " << Message << std::endl;
7404      }      }
7405    
7406    
7407    // *************** functions ***************
7408    // *
7409    
7410        /**
7411         * Returns the name of this C++ library. This is usually "libgig" of
7412         * course. This call is equivalent to RIFF::libraryName() and
7413         * DLS::libraryName().
7414         */
7415        String libraryName() {
7416            return PACKAGE;
7417        }
7418    
7419        /**
7420         * Returns version of this C++ library. This call is equivalent to
7421         * RIFF::libraryVersion() and DLS::libraryVersion().
7422         */
7423        String libraryVersion() {
7424            return VERSION;
7425        }
7426    
7427  } // namespace gig  } // namespace gig

Legend:
Removed from v.55  
changed lines
  Added in v.3904

  ViewVC Help
Powered by ViewVC