Parent Directory
|
Revision Log
* bugfix: refuse RIFF::Chunk::Read() in case chunk has just been added, that is not written physically yet (#82) * bugfix in gig::Sample::LoadSampleData*(): reset sample read position to sample start before trying to (re)load sample data from file (#82)
1 | /*************************************************************************** |
2 | * * |
3 | * libgig - C++ cross-platform Gigasampler format file access library * |
4 | * * |
5 | * Copyright (C) 2003-2009 by Christian Schoenebeck * |
6 | * <cuse@users.sourceforge.net> * |
7 | * * |
8 | * This library is free software; you can redistribute it and/or modify * |
9 | * it under the terms of the GNU General Public License as published by * |
10 | * the Free Software Foundation; either version 2 of the License, or * |
11 | * (at your option) any later version. * |
12 | * * |
13 | * This library is distributed in the hope that it will be useful, * |
14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of * |
15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * |
16 | * GNU General Public License for more details. * |
17 | * * |
18 | * You should have received a copy of the GNU General Public License * |
19 | * along with this library; if not, write to the Free Software * |
20 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * |
21 | * MA 02111-1307 USA * |
22 | ***************************************************************************/ |
23 | |
24 | #include "gig.h" |
25 | |
26 | #include "helper.h" |
27 | |
28 | #include <algorithm> |
29 | #include <math.h> |
30 | #include <iostream> |
31 | |
32 | /// Initial size of the sample buffer which is used for decompression of |
33 | /// compressed sample wave streams - this value should always be bigger than |
34 | /// the biggest sample piece expected to be read by the sampler engine, |
35 | /// otherwise the buffer size will be raised at runtime and thus the buffer |
36 | /// reallocated which is time consuming and unefficient. |
37 | #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB |
38 | |
39 | /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */ |
40 | #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x)) |
41 | #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822)) |
42 | #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01)) |
43 | #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01) |
44 | #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03) |
45 | #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4) |
46 | #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03) |
47 | #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03) |
48 | #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03) |
49 | #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1) |
50 | #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3) |
51 | #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5) |
52 | |
53 | namespace gig { |
54 | |
55 | // *************** progress_t *************** |
56 | // * |
57 | |
58 | progress_t::progress_t() { |
59 | callback = NULL; |
60 | custom = NULL; |
61 | __range_min = 0.0f; |
62 | __range_max = 1.0f; |
63 | } |
64 | |
65 | // private helper function to convert progress of a subprocess into the global progress |
66 | static void __notify_progress(progress_t* pProgress, float subprogress) { |
67 | if (pProgress && pProgress->callback) { |
68 | const float totalrange = pProgress->__range_max - pProgress->__range_min; |
69 | const float totalprogress = pProgress->__range_min + subprogress * totalrange; |
70 | pProgress->factor = totalprogress; |
71 | pProgress->callback(pProgress); // now actually notify about the progress |
72 | } |
73 | } |
74 | |
75 | // private helper function to divide a progress into subprogresses |
76 | static void __divide_progress(progress_t* pParentProgress, progress_t* pSubProgress, float totalTasks, float currentTask) { |
77 | if (pParentProgress && pParentProgress->callback) { |
78 | const float totalrange = pParentProgress->__range_max - pParentProgress->__range_min; |
79 | pSubProgress->callback = pParentProgress->callback; |
80 | pSubProgress->custom = pParentProgress->custom; |
81 | pSubProgress->__range_min = pParentProgress->__range_min + totalrange * currentTask / totalTasks; |
82 | pSubProgress->__range_max = pSubProgress->__range_min + totalrange / totalTasks; |
83 | } |
84 | } |
85 | |
86 | |
87 | // *************** Internal functions for sample decompression *************** |
88 | // * |
89 | |
90 | namespace { |
91 | |
92 | inline int get12lo(const unsigned char* pSrc) |
93 | { |
94 | const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8; |
95 | return x & 0x800 ? x - 0x1000 : x; |
96 | } |
97 | |
98 | inline int get12hi(const unsigned char* pSrc) |
99 | { |
100 | const int x = pSrc[1] >> 4 | pSrc[2] << 4; |
101 | return x & 0x800 ? x - 0x1000 : x; |
102 | } |
103 | |
104 | inline int16_t get16(const unsigned char* pSrc) |
105 | { |
106 | return int16_t(pSrc[0] | pSrc[1] << 8); |
107 | } |
108 | |
109 | inline int get24(const unsigned char* pSrc) |
110 | { |
111 | const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16; |
112 | return x & 0x800000 ? x - 0x1000000 : x; |
113 | } |
114 | |
115 | inline void store24(unsigned char* pDst, int x) |
116 | { |
117 | pDst[0] = x; |
118 | pDst[1] = x >> 8; |
119 | pDst[2] = x >> 16; |
120 | } |
121 | |
122 | void Decompress16(int compressionmode, const unsigned char* params, |
123 | int srcStep, int dstStep, |
124 | const unsigned char* pSrc, int16_t* pDst, |
125 | unsigned long currentframeoffset, |
126 | unsigned long copysamples) |
127 | { |
128 | switch (compressionmode) { |
129 | case 0: // 16 bit uncompressed |
130 | pSrc += currentframeoffset * srcStep; |
131 | while (copysamples) { |
132 | *pDst = get16(pSrc); |
133 | pDst += dstStep; |
134 | pSrc += srcStep; |
135 | copysamples--; |
136 | } |
137 | break; |
138 | |
139 | case 1: // 16 bit compressed to 8 bit |
140 | int y = get16(params); |
141 | int dy = get16(params + 2); |
142 | while (currentframeoffset) { |
143 | dy -= int8_t(*pSrc); |
144 | y -= dy; |
145 | pSrc += srcStep; |
146 | currentframeoffset--; |
147 | } |
148 | while (copysamples) { |
149 | dy -= int8_t(*pSrc); |
150 | y -= dy; |
151 | *pDst = y; |
152 | pDst += dstStep; |
153 | pSrc += srcStep; |
154 | copysamples--; |
155 | } |
156 | break; |
157 | } |
158 | } |
159 | |
160 | void Decompress24(int compressionmode, const unsigned char* params, |
161 | int dstStep, const unsigned char* pSrc, uint8_t* pDst, |
162 | unsigned long currentframeoffset, |
163 | unsigned long copysamples, int truncatedBits) |
164 | { |
165 | int y, dy, ddy, dddy; |
166 | |
167 | #define GET_PARAMS(params) \ |
168 | y = get24(params); \ |
169 | dy = y - get24((params) + 3); \ |
170 | ddy = get24((params) + 6); \ |
171 | dddy = get24((params) + 9) |
172 | |
173 | #define SKIP_ONE(x) \ |
174 | dddy -= (x); \ |
175 | ddy -= dddy; \ |
176 | dy = -dy - ddy; \ |
177 | y += dy |
178 | |
179 | #define COPY_ONE(x) \ |
180 | SKIP_ONE(x); \ |
181 | store24(pDst, y << truncatedBits); \ |
182 | pDst += dstStep |
183 | |
184 | switch (compressionmode) { |
185 | case 2: // 24 bit uncompressed |
186 | pSrc += currentframeoffset * 3; |
187 | while (copysamples) { |
188 | store24(pDst, get24(pSrc) << truncatedBits); |
189 | pDst += dstStep; |
190 | pSrc += 3; |
191 | copysamples--; |
192 | } |
193 | break; |
194 | |
195 | case 3: // 24 bit compressed to 16 bit |
196 | GET_PARAMS(params); |
197 | while (currentframeoffset) { |
198 | SKIP_ONE(get16(pSrc)); |
199 | pSrc += 2; |
200 | currentframeoffset--; |
201 | } |
202 | while (copysamples) { |
203 | COPY_ONE(get16(pSrc)); |
204 | pSrc += 2; |
205 | copysamples--; |
206 | } |
207 | break; |
208 | |
209 | case 4: // 24 bit compressed to 12 bit |
210 | GET_PARAMS(params); |
211 | while (currentframeoffset > 1) { |
212 | SKIP_ONE(get12lo(pSrc)); |
213 | SKIP_ONE(get12hi(pSrc)); |
214 | pSrc += 3; |
215 | currentframeoffset -= 2; |
216 | } |
217 | if (currentframeoffset) { |
218 | SKIP_ONE(get12lo(pSrc)); |
219 | currentframeoffset--; |
220 | if (copysamples) { |
221 | COPY_ONE(get12hi(pSrc)); |
222 | pSrc += 3; |
223 | copysamples--; |
224 | } |
225 | } |
226 | while (copysamples > 1) { |
227 | COPY_ONE(get12lo(pSrc)); |
228 | COPY_ONE(get12hi(pSrc)); |
229 | pSrc += 3; |
230 | copysamples -= 2; |
231 | } |
232 | if (copysamples) { |
233 | COPY_ONE(get12lo(pSrc)); |
234 | } |
235 | break; |
236 | |
237 | case 5: // 24 bit compressed to 8 bit |
238 | GET_PARAMS(params); |
239 | while (currentframeoffset) { |
240 | SKIP_ONE(int8_t(*pSrc++)); |
241 | currentframeoffset--; |
242 | } |
243 | while (copysamples) { |
244 | COPY_ONE(int8_t(*pSrc++)); |
245 | copysamples--; |
246 | } |
247 | break; |
248 | } |
249 | } |
250 | |
251 | const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 }; |
252 | const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 }; |
253 | const int headerSize[] = { 0, 4, 0, 12, 12, 12 }; |
254 | const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 }; |
255 | } |
256 | |
257 | |
258 | |
259 | // *************** Internal CRC-32 (Cyclic Redundancy Check) functions *************** |
260 | // * |
261 | |
262 | static uint32_t* __initCRCTable() { |
263 | static uint32_t res[256]; |
264 | |
265 | for (int i = 0 ; i < 256 ; i++) { |
266 | uint32_t c = i; |
267 | for (int j = 0 ; j < 8 ; j++) { |
268 | c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1; |
269 | } |
270 | res[i] = c; |
271 | } |
272 | return res; |
273 | } |
274 | |
275 | static const uint32_t* __CRCTable = __initCRCTable(); |
276 | |
277 | /** |
278 | * Initialize a CRC variable. |
279 | * |
280 | * @param crc - variable to be initialized |
281 | */ |
282 | inline static void __resetCRC(uint32_t& crc) { |
283 | crc = 0xffffffff; |
284 | } |
285 | |
286 | /** |
287 | * Used to calculate checksums of the sample data in a gig file. The |
288 | * checksums are stored in the 3crc chunk of the gig file and |
289 | * automatically updated when a sample is written with Sample::Write(). |
290 | * |
291 | * One should call __resetCRC() to initialize the CRC variable to be |
292 | * used before calling this function the first time. |
293 | * |
294 | * After initializing the CRC variable one can call this function |
295 | * arbitrary times, i.e. to split the overall CRC calculation into |
296 | * steps. |
297 | * |
298 | * Once the whole data was processed by __calculateCRC(), one should |
299 | * call __encodeCRC() to get the final CRC result. |
300 | * |
301 | * @param buf - pointer to data the CRC shall be calculated of |
302 | * @param bufSize - size of the data to be processed |
303 | * @param crc - variable the CRC sum shall be stored to |
304 | */ |
305 | static void __calculateCRC(unsigned char* buf, int bufSize, uint32_t& crc) { |
306 | for (int i = 0 ; i < bufSize ; i++) { |
307 | crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8); |
308 | } |
309 | } |
310 | |
311 | /** |
312 | * Returns the final CRC result. |
313 | * |
314 | * @param crc - variable previously passed to __calculateCRC() |
315 | */ |
316 | inline static uint32_t __encodeCRC(const uint32_t& crc) { |
317 | return crc ^ 0xffffffff; |
318 | } |
319 | |
320 | |
321 | |
322 | // *************** Other Internal functions *************** |
323 | // * |
324 | |
325 | static split_type_t __resolveSplitType(dimension_t dimension) { |
326 | return ( |
327 | dimension == dimension_layer || |
328 | dimension == dimension_samplechannel || |
329 | dimension == dimension_releasetrigger || |
330 | dimension == dimension_keyboard || |
331 | dimension == dimension_roundrobin || |
332 | dimension == dimension_random || |
333 | dimension == dimension_smartmidi || |
334 | dimension == dimension_roundrobinkeyboard |
335 | ) ? split_type_bit : split_type_normal; |
336 | } |
337 | |
338 | static int __resolveZoneSize(dimension_def_t& dimension_definition) { |
339 | return (dimension_definition.split_type == split_type_normal) |
340 | ? int(128.0 / dimension_definition.zones) : 0; |
341 | } |
342 | |
343 | |
344 | |
345 | // *************** Sample *************** |
346 | // * |
347 | |
348 | unsigned int Sample::Instances = 0; |
349 | buffer_t Sample::InternalDecompressionBuffer; |
350 | |
351 | /** @brief Constructor. |
352 | * |
353 | * Load an existing sample or create a new one. A 'wave' list chunk must |
354 | * be given to this constructor. In case the given 'wave' list chunk |
355 | * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the |
356 | * format and sample data will be loaded from there, otherwise default |
357 | * values will be used and those chunks will be created when |
358 | * File::Save() will be called later on. |
359 | * |
360 | * @param pFile - pointer to gig::File where this sample is |
361 | * located (or will be located) |
362 | * @param waveList - pointer to 'wave' list chunk which is (or |
363 | * will be) associated with this sample |
364 | * @param WavePoolOffset - offset of this sample data from wave pool |
365 | * ('wvpl') list chunk |
366 | * @param fileNo - number of an extension file where this sample |
367 | * is located, 0 otherwise |
368 | */ |
369 | Sample::Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo) : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) { |
370 | static const DLS::Info::string_length_t fixedStringLengths[] = { |
371 | { CHUNK_ID_INAM, 64 }, |
372 | { 0, 0 } |
373 | }; |
374 | pInfo->SetFixedStringLengths(fixedStringLengths); |
375 | Instances++; |
376 | FileNo = fileNo; |
377 | |
378 | __resetCRC(crc); |
379 | |
380 | pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX); |
381 | if (pCk3gix) { |
382 | uint16_t iSampleGroup = pCk3gix->ReadInt16(); |
383 | pGroup = pFile->GetGroup(iSampleGroup); |
384 | } else { // '3gix' chunk missing |
385 | // by default assigned to that mandatory "Default Group" |
386 | pGroup = pFile->GetGroup(0); |
387 | } |
388 | |
389 | pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL); |
390 | if (pCkSmpl) { |
391 | Manufacturer = pCkSmpl->ReadInt32(); |
392 | Product = pCkSmpl->ReadInt32(); |
393 | SamplePeriod = pCkSmpl->ReadInt32(); |
394 | MIDIUnityNote = pCkSmpl->ReadInt32(); |
395 | FineTune = pCkSmpl->ReadInt32(); |
396 | pCkSmpl->Read(&SMPTEFormat, 1, 4); |
397 | SMPTEOffset = pCkSmpl->ReadInt32(); |
398 | Loops = pCkSmpl->ReadInt32(); |
399 | pCkSmpl->ReadInt32(); // manufByt |
400 | LoopID = pCkSmpl->ReadInt32(); |
401 | pCkSmpl->Read(&LoopType, 1, 4); |
402 | LoopStart = pCkSmpl->ReadInt32(); |
403 | LoopEnd = pCkSmpl->ReadInt32(); |
404 | LoopFraction = pCkSmpl->ReadInt32(); |
405 | LoopPlayCount = pCkSmpl->ReadInt32(); |
406 | } else { // 'smpl' chunk missing |
407 | // use default values |
408 | Manufacturer = 0; |
409 | Product = 0; |
410 | SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5); |
411 | MIDIUnityNote = 60; |
412 | FineTune = 0; |
413 | SMPTEFormat = smpte_format_no_offset; |
414 | SMPTEOffset = 0; |
415 | Loops = 0; |
416 | LoopID = 0; |
417 | LoopType = loop_type_normal; |
418 | LoopStart = 0; |
419 | LoopEnd = 0; |
420 | LoopFraction = 0; |
421 | LoopPlayCount = 0; |
422 | } |
423 | |
424 | FrameTable = NULL; |
425 | SamplePos = 0; |
426 | RAMCache.Size = 0; |
427 | RAMCache.pStart = NULL; |
428 | RAMCache.NullExtensionSize = 0; |
429 | |
430 | if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported"); |
431 | |
432 | RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV); |
433 | Compressed = ewav; |
434 | Dithered = false; |
435 | TruncatedBits = 0; |
436 | if (Compressed) { |
437 | uint32_t version = ewav->ReadInt32(); |
438 | if (version == 3 && BitDepth == 24) { |
439 | Dithered = ewav->ReadInt32(); |
440 | ewav->SetPos(Channels == 2 ? 84 : 64); |
441 | TruncatedBits = ewav->ReadInt32(); |
442 | } |
443 | ScanCompressedSample(); |
444 | } |
445 | |
446 | // we use a buffer for decompression and for truncating 24 bit samples to 16 bit |
447 | if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) { |
448 | InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE]; |
449 | InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE; |
450 | } |
451 | FrameOffset = 0; // just for streaming compressed samples |
452 | |
453 | LoopSize = LoopEnd - LoopStart + 1; |
454 | } |
455 | |
456 | /** |
457 | * Apply sample and its settings to the respective RIFF chunks. You have |
458 | * to call File::Save() to make changes persistent. |
459 | * |
460 | * Usually there is absolutely no need to call this method explicitly. |
461 | * It will be called automatically when File::Save() was called. |
462 | * |
463 | * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data |
464 | * was provided yet |
465 | * @throws gig::Exception if there is any invalid sample setting |
466 | */ |
467 | void Sample::UpdateChunks() { |
468 | // first update base class's chunks |
469 | DLS::Sample::UpdateChunks(); |
470 | |
471 | // make sure 'smpl' chunk exists |
472 | pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL); |
473 | if (!pCkSmpl) { |
474 | pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60); |
475 | memset(pCkSmpl->LoadChunkData(), 0, 60); |
476 | } |
477 | // update 'smpl' chunk |
478 | uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData(); |
479 | SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5); |
480 | store32(&pData[0], Manufacturer); |
481 | store32(&pData[4], Product); |
482 | store32(&pData[8], SamplePeriod); |
483 | store32(&pData[12], MIDIUnityNote); |
484 | store32(&pData[16], FineTune); |
485 | store32(&pData[20], SMPTEFormat); |
486 | store32(&pData[24], SMPTEOffset); |
487 | store32(&pData[28], Loops); |
488 | |
489 | // we skip 'manufByt' for now (4 bytes) |
490 | |
491 | store32(&pData[36], LoopID); |
492 | store32(&pData[40], LoopType); |
493 | store32(&pData[44], LoopStart); |
494 | store32(&pData[48], LoopEnd); |
495 | store32(&pData[52], LoopFraction); |
496 | store32(&pData[56], LoopPlayCount); |
497 | |
498 | // make sure '3gix' chunk exists |
499 | pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX); |
500 | if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4); |
501 | // determine appropriate sample group index (to be stored in chunk) |
502 | uint16_t iSampleGroup = 0; // 0 refers to default sample group |
503 | File* pFile = static_cast<File*>(pParent); |
504 | if (pFile->pGroups) { |
505 | std::list<Group*>::iterator iter = pFile->pGroups->begin(); |
506 | std::list<Group*>::iterator end = pFile->pGroups->end(); |
507 | for (int i = 0; iter != end; i++, iter++) { |
508 | if (*iter == pGroup) { |
509 | iSampleGroup = i; |
510 | break; // found |
511 | } |
512 | } |
513 | } |
514 | // update '3gix' chunk |
515 | pData = (uint8_t*) pCk3gix->LoadChunkData(); |
516 | store16(&pData[0], iSampleGroup); |
517 | } |
518 | |
519 | /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points). |
520 | void Sample::ScanCompressedSample() { |
521 | //TODO: we have to add some more scans here (e.g. determine compression rate) |
522 | this->SamplesTotal = 0; |
523 | std::list<unsigned long> frameOffsets; |
524 | |
525 | SamplesPerFrame = BitDepth == 24 ? 256 : 2048; |
526 | WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag |
527 | |
528 | // Scanning |
529 | pCkData->SetPos(0); |
530 | if (Channels == 2) { // Stereo |
531 | for (int i = 0 ; ; i++) { |
532 | // for 24 bit samples every 8:th frame offset is |
533 | // stored, to save some memory |
534 | if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos()); |
535 | |
536 | const int mode_l = pCkData->ReadUint8(); |
537 | const int mode_r = pCkData->ReadUint8(); |
538 | if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode"); |
539 | const unsigned long frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r]; |
540 | |
541 | if (pCkData->RemainingBytes() <= frameSize) { |
542 | SamplesInLastFrame = |
543 | ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) / |
544 | (bitsPerSample[mode_l] + bitsPerSample[mode_r]); |
545 | SamplesTotal += SamplesInLastFrame; |
546 | break; |
547 | } |
548 | SamplesTotal += SamplesPerFrame; |
549 | pCkData->SetPos(frameSize, RIFF::stream_curpos); |
550 | } |
551 | } |
552 | else { // Mono |
553 | for (int i = 0 ; ; i++) { |
554 | if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos()); |
555 | |
556 | const int mode = pCkData->ReadUint8(); |
557 | if (mode > 5) throw gig::Exception("Unknown compression mode"); |
558 | const unsigned long frameSize = bytesPerFrame[mode]; |
559 | |
560 | if (pCkData->RemainingBytes() <= frameSize) { |
561 | SamplesInLastFrame = |
562 | ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode]; |
563 | SamplesTotal += SamplesInLastFrame; |
564 | break; |
565 | } |
566 | SamplesTotal += SamplesPerFrame; |
567 | pCkData->SetPos(frameSize, RIFF::stream_curpos); |
568 | } |
569 | } |
570 | pCkData->SetPos(0); |
571 | |
572 | // Build the frames table (which is used for fast resolving of a frame's chunk offset) |
573 | if (FrameTable) delete[] FrameTable; |
574 | FrameTable = new unsigned long[frameOffsets.size()]; |
575 | std::list<unsigned long>::iterator end = frameOffsets.end(); |
576 | std::list<unsigned long>::iterator iter = frameOffsets.begin(); |
577 | for (int i = 0; iter != end; i++, iter++) { |
578 | FrameTable[i] = *iter; |
579 | } |
580 | } |
581 | |
582 | /** |
583 | * Loads (and uncompresses if needed) the whole sample wave into RAM. Use |
584 | * ReleaseSampleData() to free the memory if you don't need the cached |
585 | * sample data anymore. |
586 | * |
587 | * @returns buffer_t structure with start address and size of the buffer |
588 | * in bytes |
589 | * @see ReleaseSampleData(), Read(), SetPos() |
590 | */ |
591 | buffer_t Sample::LoadSampleData() { |
592 | return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples |
593 | } |
594 | |
595 | /** |
596 | * Reads (uncompresses if needed) and caches the first \a SampleCount |
597 | * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the |
598 | * memory space if you don't need the cached samples anymore. There is no |
599 | * guarantee that exactly \a SampleCount samples will be cached; this is |
600 | * not an error. The size will be eventually truncated e.g. to the |
601 | * beginning of a frame of a compressed sample. This is done for |
602 | * efficiency reasons while streaming the wave by your sampler engine |
603 | * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure |
604 | * that will be returned to determine the actual cached samples, but note |
605 | * that the size is given in bytes! You get the number of actually cached |
606 | * samples by dividing it by the frame size of the sample: |
607 | * @code |
608 | * buffer_t buf = pSample->LoadSampleData(acquired_samples); |
609 | * long cachedsamples = buf.Size / pSample->FrameSize; |
610 | * @endcode |
611 | * |
612 | * @param SampleCount - number of sample points to load into RAM |
613 | * @returns buffer_t structure with start address and size of |
614 | * the cached sample data in bytes |
615 | * @see ReleaseSampleData(), Read(), SetPos() |
616 | */ |
617 | buffer_t Sample::LoadSampleData(unsigned long SampleCount) { |
618 | return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples |
619 | } |
620 | |
621 | /** |
622 | * Loads (and uncompresses if needed) the whole sample wave into RAM. Use |
623 | * ReleaseSampleData() to free the memory if you don't need the cached |
624 | * sample data anymore. |
625 | * The method will add \a NullSamplesCount silence samples past the |
626 | * official buffer end (this won't affect the 'Size' member of the |
627 | * buffer_t structure, that means 'Size' always reflects the size of the |
628 | * actual sample data, the buffer might be bigger though). Silence |
629 | * samples past the official buffer are needed for differential |
630 | * algorithms that always have to take subsequent samples into account |
631 | * (resampling/interpolation would be an important example) and avoids |
632 | * memory access faults in such cases. |
633 | * |
634 | * @param NullSamplesCount - number of silence samples the buffer should |
635 | * be extended past it's data end |
636 | * @returns buffer_t structure with start address and |
637 | * size of the buffer in bytes |
638 | * @see ReleaseSampleData(), Read(), SetPos() |
639 | */ |
640 | buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) { |
641 | return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount); |
642 | } |
643 | |
644 | /** |
645 | * Reads (uncompresses if needed) and caches the first \a SampleCount |
646 | * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the |
647 | * memory space if you don't need the cached samples anymore. There is no |
648 | * guarantee that exactly \a SampleCount samples will be cached; this is |
649 | * not an error. The size will be eventually truncated e.g. to the |
650 | * beginning of a frame of a compressed sample. This is done for |
651 | * efficiency reasons while streaming the wave by your sampler engine |
652 | * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure |
653 | * that will be returned to determine the actual cached samples, but note |
654 | * that the size is given in bytes! You get the number of actually cached |
655 | * samples by dividing it by the frame size of the sample: |
656 | * @code |
657 | * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples); |
658 | * long cachedsamples = buf.Size / pSample->FrameSize; |
659 | * @endcode |
660 | * The method will add \a NullSamplesCount silence samples past the |
661 | * official buffer end (this won't affect the 'Size' member of the |
662 | * buffer_t structure, that means 'Size' always reflects the size of the |
663 | * actual sample data, the buffer might be bigger though). Silence |
664 | * samples past the official buffer are needed for differential |
665 | * algorithms that always have to take subsequent samples into account |
666 | * (resampling/interpolation would be an important example) and avoids |
667 | * memory access faults in such cases. |
668 | * |
669 | * @param SampleCount - number of sample points to load into RAM |
670 | * @param NullSamplesCount - number of silence samples the buffer should |
671 | * be extended past it's data end |
672 | * @returns buffer_t structure with start address and |
673 | * size of the cached sample data in bytes |
674 | * @see ReleaseSampleData(), Read(), SetPos() |
675 | */ |
676 | buffer_t Sample::LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount) { |
677 | if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal; |
678 | if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart; |
679 | unsigned long allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize; |
680 | SetPos(0); // reset read position to begin of sample |
681 | RAMCache.pStart = new int8_t[allocationsize]; |
682 | RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize; |
683 | RAMCache.NullExtensionSize = allocationsize - RAMCache.Size; |
684 | // fill the remaining buffer space with silence samples |
685 | memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize); |
686 | return GetCache(); |
687 | } |
688 | |
689 | /** |
690 | * Returns current cached sample points. A buffer_t structure will be |
691 | * returned which contains address pointer to the begin of the cache and |
692 | * the size of the cached sample data in bytes. Use |
693 | * <i>LoadSampleData()</i> to cache a specific amount of sample points in |
694 | * RAM. |
695 | * |
696 | * @returns buffer_t structure with current cached sample points |
697 | * @see LoadSampleData(); |
698 | */ |
699 | buffer_t Sample::GetCache() { |
700 | // return a copy of the buffer_t structure |
701 | buffer_t result; |
702 | result.Size = this->RAMCache.Size; |
703 | result.pStart = this->RAMCache.pStart; |
704 | result.NullExtensionSize = this->RAMCache.NullExtensionSize; |
705 | return result; |
706 | } |
707 | |
708 | /** |
709 | * Frees the cached sample from RAM if loaded with |
710 | * <i>LoadSampleData()</i> previously. |
711 | * |
712 | * @see LoadSampleData(); |
713 | */ |
714 | void Sample::ReleaseSampleData() { |
715 | if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart; |
716 | RAMCache.pStart = NULL; |
717 | RAMCache.Size = 0; |
718 | RAMCache.NullExtensionSize = 0; |
719 | } |
720 | |
721 | /** @brief Resize sample. |
722 | * |
723 | * Resizes the sample's wave form data, that is the actual size of |
724 | * sample wave data possible to be written for this sample. This call |
725 | * will return immediately and just schedule the resize operation. You |
726 | * should call File::Save() to actually perform the resize operation(s) |
727 | * "physically" to the file. As this can take a while on large files, it |
728 | * is recommended to call Resize() first on all samples which have to be |
729 | * resized and finally to call File::Save() to perform all those resize |
730 | * operations in one rush. |
731 | * |
732 | * The actual size (in bytes) is dependant to the current FrameSize |
733 | * value. You may want to set FrameSize before calling Resize(). |
734 | * |
735 | * <b>Caution:</b> You cannot directly write (i.e. with Write()) to |
736 | * enlarged samples before calling File::Save() as this might exceed the |
737 | * current sample's boundary! |
738 | * |
739 | * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is |
740 | * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with |
741 | * other formats will fail! |
742 | * |
743 | * @param iNewSize - new sample wave data size in sample points (must be |
744 | * greater than zero) |
745 | * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM |
746 | * or if \a iNewSize is less than 1 |
747 | * @throws gig::Exception if existing sample is compressed |
748 | * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize, |
749 | * DLS::Sample::FormatTag, File::Save() |
750 | */ |
751 | void Sample::Resize(int iNewSize) { |
752 | if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)"); |
753 | DLS::Sample::Resize(iNewSize); |
754 | } |
755 | |
756 | /** |
757 | * Sets the position within the sample (in sample points, not in |
758 | * bytes). Use this method and <i>Read()</i> if you don't want to load |
759 | * the sample into RAM, thus for disk streaming. |
760 | * |
761 | * Although the original Gigasampler engine doesn't allow positioning |
762 | * within compressed samples, I decided to implement it. Even though |
763 | * the Gigasampler format doesn't allow to define loops for compressed |
764 | * samples at the moment, positioning within compressed samples might be |
765 | * interesting for some sampler engines though. The only drawback about |
766 | * my decision is that it takes longer to load compressed gig Files on |
767 | * startup, because it's neccessary to scan the samples for some |
768 | * mandatory informations. But I think as it doesn't affect the runtime |
769 | * efficiency, nobody will have a problem with that. |
770 | * |
771 | * @param SampleCount number of sample points to jump |
772 | * @param Whence optional: to which relation \a SampleCount refers |
773 | * to, if omited <i>RIFF::stream_start</i> is assumed |
774 | * @returns the new sample position |
775 | * @see Read() |
776 | */ |
777 | unsigned long Sample::SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence) { |
778 | if (Compressed) { |
779 | switch (Whence) { |
780 | case RIFF::stream_curpos: |
781 | this->SamplePos += SampleCount; |
782 | break; |
783 | case RIFF::stream_end: |
784 | this->SamplePos = this->SamplesTotal - 1 - SampleCount; |
785 | break; |
786 | case RIFF::stream_backward: |
787 | this->SamplePos -= SampleCount; |
788 | break; |
789 | case RIFF::stream_start: default: |
790 | this->SamplePos = SampleCount; |
791 | break; |
792 | } |
793 | if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal; |
794 | |
795 | unsigned long frame = this->SamplePos / 2048; // to which frame to jump |
796 | this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame |
797 | pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame |
798 | return this->SamplePos; |
799 | } |
800 | else { // not compressed |
801 | unsigned long orderedBytes = SampleCount * this->FrameSize; |
802 | unsigned long result = pCkData->SetPos(orderedBytes, Whence); |
803 | return (result == orderedBytes) ? SampleCount |
804 | : result / this->FrameSize; |
805 | } |
806 | } |
807 | |
808 | /** |
809 | * Returns the current position in the sample (in sample points). |
810 | */ |
811 | unsigned long Sample::GetPos() { |
812 | if (Compressed) return SamplePos; |
813 | else return pCkData->GetPos() / FrameSize; |
814 | } |
815 | |
816 | /** |
817 | * Reads \a SampleCount number of sample points from the position stored |
818 | * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves |
819 | * the position within the sample respectively, this method honors the |
820 | * looping informations of the sample (if any). The sample wave stream |
821 | * will be decompressed on the fly if using a compressed sample. Use this |
822 | * method if you don't want to load the sample into RAM, thus for disk |
823 | * streaming. All this methods needs to know to proceed with streaming |
824 | * for the next time you call this method is stored in \a pPlaybackState. |
825 | * You have to allocate and initialize the playback_state_t structure by |
826 | * yourself before you use it to stream a sample: |
827 | * @code |
828 | * gig::playback_state_t playbackstate; |
829 | * playbackstate.position = 0; |
830 | * playbackstate.reverse = false; |
831 | * playbackstate.loop_cycles_left = pSample->LoopPlayCount; |
832 | * @endcode |
833 | * You don't have to take care of things like if there is actually a loop |
834 | * defined or if the current read position is located within a loop area. |
835 | * The method already handles such cases by itself. |
836 | * |
837 | * <b>Caution:</b> If you are using more than one streaming thread, you |
838 | * have to use an external decompression buffer for <b>EACH</b> |
839 | * streaming thread to avoid race conditions and crashes! |
840 | * |
841 | * @param pBuffer destination buffer |
842 | * @param SampleCount number of sample points to read |
843 | * @param pPlaybackState will be used to store and reload the playback |
844 | * state for the next ReadAndLoop() call |
845 | * @param pDimRgn dimension region with looping information |
846 | * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression |
847 | * @returns number of successfully read sample points |
848 | * @see CreateDecompressionBuffer() |
849 | */ |
850 | unsigned long Sample::ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState, |
851 | DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) { |
852 | unsigned long samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend; |
853 | uint8_t* pDst = (uint8_t*) pBuffer; |
854 | |
855 | SetPos(pPlaybackState->position); // recover position from the last time |
856 | |
857 | if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined |
858 | |
859 | const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0]; |
860 | const uint32_t loopEnd = loop.LoopStart + loop.LoopLength; |
861 | |
862 | if (GetPos() <= loopEnd) { |
863 | switch (loop.LoopType) { |
864 | |
865 | case loop_type_bidirectional: { //TODO: not tested yet! |
866 | do { |
867 | // if not endless loop check if max. number of loop cycles have been passed |
868 | if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break; |
869 | |
870 | if (!pPlaybackState->reverse) { // forward playback |
871 | do { |
872 | samplestoloopend = loopEnd - GetPos(); |
873 | readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer); |
874 | samplestoread -= readsamples; |
875 | totalreadsamples += readsamples; |
876 | if (readsamples == samplestoloopend) { |
877 | pPlaybackState->reverse = true; |
878 | break; |
879 | } |
880 | } while (samplestoread && readsamples); |
881 | } |
882 | else { // backward playback |
883 | |
884 | // as we can only read forward from disk, we have to |
885 | // determine the end position within the loop first, |
886 | // read forward from that 'end' and finally after |
887 | // reading, swap all sample frames so it reflects |
888 | // backward playback |
889 | |
890 | unsigned long swapareastart = totalreadsamples; |
891 | unsigned long loopoffset = GetPos() - loop.LoopStart; |
892 | unsigned long samplestoreadinloop = Min(samplestoread, loopoffset); |
893 | unsigned long reverseplaybackend = GetPos() - samplestoreadinloop; |
894 | |
895 | SetPos(reverseplaybackend); |
896 | |
897 | // read samples for backward playback |
898 | do { |
899 | readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer); |
900 | samplestoreadinloop -= readsamples; |
901 | samplestoread -= readsamples; |
902 | totalreadsamples += readsamples; |
903 | } while (samplestoreadinloop && readsamples); |
904 | |
905 | SetPos(reverseplaybackend); // pretend we really read backwards |
906 | |
907 | if (reverseplaybackend == loop.LoopStart) { |
908 | pPlaybackState->loop_cycles_left--; |
909 | pPlaybackState->reverse = false; |
910 | } |
911 | |
912 | // reverse the sample frames for backward playback |
913 | SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize); |
914 | } |
915 | } while (samplestoread && readsamples); |
916 | break; |
917 | } |
918 | |
919 | case loop_type_backward: { // TODO: not tested yet! |
920 | // forward playback (not entered the loop yet) |
921 | if (!pPlaybackState->reverse) do { |
922 | samplestoloopend = loopEnd - GetPos(); |
923 | readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer); |
924 | samplestoread -= readsamples; |
925 | totalreadsamples += readsamples; |
926 | if (readsamples == samplestoloopend) { |
927 | pPlaybackState->reverse = true; |
928 | break; |
929 | } |
930 | } while (samplestoread && readsamples); |
931 | |
932 | if (!samplestoread) break; |
933 | |
934 | // as we can only read forward from disk, we have to |
935 | // determine the end position within the loop first, |
936 | // read forward from that 'end' and finally after |
937 | // reading, swap all sample frames so it reflects |
938 | // backward playback |
939 | |
940 | unsigned long swapareastart = totalreadsamples; |
941 | unsigned long loopoffset = GetPos() - loop.LoopStart; |
942 | unsigned long samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset) |
943 | : samplestoread; |
944 | unsigned long reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength); |
945 | |
946 | SetPos(reverseplaybackend); |
947 | |
948 | // read samples for backward playback |
949 | do { |
950 | // if not endless loop check if max. number of loop cycles have been passed |
951 | if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break; |
952 | samplestoloopend = loopEnd - GetPos(); |
953 | readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer); |
954 | samplestoreadinloop -= readsamples; |
955 | samplestoread -= readsamples; |
956 | totalreadsamples += readsamples; |
957 | if (readsamples == samplestoloopend) { |
958 | pPlaybackState->loop_cycles_left--; |
959 | SetPos(loop.LoopStart); |
960 | } |
961 | } while (samplestoreadinloop && readsamples); |
962 | |
963 | SetPos(reverseplaybackend); // pretend we really read backwards |
964 | |
965 | // reverse the sample frames for backward playback |
966 | SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize); |
967 | break; |
968 | } |
969 | |
970 | default: case loop_type_normal: { |
971 | do { |
972 | // if not endless loop check if max. number of loop cycles have been passed |
973 | if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break; |
974 | samplestoloopend = loopEnd - GetPos(); |
975 | readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer); |
976 | samplestoread -= readsamples; |
977 | totalreadsamples += readsamples; |
978 | if (readsamples == samplestoloopend) { |
979 | pPlaybackState->loop_cycles_left--; |
980 | SetPos(loop.LoopStart); |
981 | } |
982 | } while (samplestoread && readsamples); |
983 | break; |
984 | } |
985 | } |
986 | } |
987 | } |
988 | |
989 | // read on without looping |
990 | if (samplestoread) do { |
991 | readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer); |
992 | samplestoread -= readsamples; |
993 | totalreadsamples += readsamples; |
994 | } while (readsamples && samplestoread); |
995 | |
996 | // store current position |
997 | pPlaybackState->position = GetPos(); |
998 | |
999 | return totalreadsamples; |
1000 | } |
1001 | |
1002 | /** |
1003 | * Reads \a SampleCount number of sample points from the current |
1004 | * position into the buffer pointed by \a pBuffer and increments the |
1005 | * position within the sample. The sample wave stream will be |
1006 | * decompressed on the fly if using a compressed sample. Use this method |
1007 | * and <i>SetPos()</i> if you don't want to load the sample into RAM, |
1008 | * thus for disk streaming. |
1009 | * |
1010 | * <b>Caution:</b> If you are using more than one streaming thread, you |
1011 | * have to use an external decompression buffer for <b>EACH</b> |
1012 | * streaming thread to avoid race conditions and crashes! |
1013 | * |
1014 | * For 16 bit samples, the data in the buffer will be int16_t |
1015 | * (using native endianness). For 24 bit, the buffer will |
1016 | * contain three bytes per sample, little-endian. |
1017 | * |
1018 | * @param pBuffer destination buffer |
1019 | * @param SampleCount number of sample points to read |
1020 | * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression |
1021 | * @returns number of successfully read sample points |
1022 | * @see SetPos(), CreateDecompressionBuffer() |
1023 | */ |
1024 | unsigned long Sample::Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer) { |
1025 | if (SampleCount == 0) return 0; |
1026 | if (!Compressed) { |
1027 | if (BitDepth == 24) { |
1028 | return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize; |
1029 | } |
1030 | else { // 16 bit |
1031 | // (pCkData->Read does endian correction) |
1032 | return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1 |
1033 | : pCkData->Read(pBuffer, SampleCount, 2); |
1034 | } |
1035 | } |
1036 | else { |
1037 | if (this->SamplePos >= this->SamplesTotal) return 0; |
1038 | //TODO: efficiency: maybe we should test for an average compression rate |
1039 | unsigned long assumedsize = GuessSize(SampleCount), |
1040 | remainingbytes = 0, // remaining bytes in the local buffer |
1041 | remainingsamples = SampleCount, |
1042 | copysamples, skipsamples, |
1043 | currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read() |
1044 | this->FrameOffset = 0; |
1045 | |
1046 | buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer; |
1047 | |
1048 | // if decompression buffer too small, then reduce amount of samples to read |
1049 | if (pDecompressionBuffer->Size < assumedsize) { |
1050 | std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl; |
1051 | SampleCount = WorstCaseMaxSamples(pDecompressionBuffer); |
1052 | remainingsamples = SampleCount; |
1053 | assumedsize = GuessSize(SampleCount); |
1054 | } |
1055 | |
1056 | unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart; |
1057 | int16_t* pDst = static_cast<int16_t*>(pBuffer); |
1058 | uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer); |
1059 | remainingbytes = pCkData->Read(pSrc, assumedsize, 1); |
1060 | |
1061 | while (remainingsamples && remainingbytes) { |
1062 | unsigned long framesamples = SamplesPerFrame; |
1063 | unsigned long framebytes, rightChannelOffset = 0, nextFrameOffset; |
1064 | |
1065 | int mode_l = *pSrc++, mode_r = 0; |
1066 | |
1067 | if (Channels == 2) { |
1068 | mode_r = *pSrc++; |
1069 | framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2; |
1070 | rightChannelOffset = bytesPerFrameNoHdr[mode_l]; |
1071 | nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r]; |
1072 | if (remainingbytes < framebytes) { // last frame in sample |
1073 | framesamples = SamplesInLastFrame; |
1074 | if (mode_l == 4 && (framesamples & 1)) { |
1075 | rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3; |
1076 | } |
1077 | else { |
1078 | rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3; |
1079 | } |
1080 | } |
1081 | } |
1082 | else { |
1083 | framebytes = bytesPerFrame[mode_l] + 1; |
1084 | nextFrameOffset = bytesPerFrameNoHdr[mode_l]; |
1085 | if (remainingbytes < framebytes) { |
1086 | framesamples = SamplesInLastFrame; |
1087 | } |
1088 | } |
1089 | |
1090 | // determine how many samples in this frame to skip and read |
1091 | if (currentframeoffset + remainingsamples >= framesamples) { |
1092 | if (currentframeoffset <= framesamples) { |
1093 | copysamples = framesamples - currentframeoffset; |
1094 | skipsamples = currentframeoffset; |
1095 | } |
1096 | else { |
1097 | copysamples = 0; |
1098 | skipsamples = framesamples; |
1099 | } |
1100 | } |
1101 | else { |
1102 | // This frame has enough data for pBuffer, but not |
1103 | // all of the frame is needed. Set file position |
1104 | // to start of this frame for next call to Read. |
1105 | copysamples = remainingsamples; |
1106 | skipsamples = currentframeoffset; |
1107 | pCkData->SetPos(remainingbytes, RIFF::stream_backward); |
1108 | this->FrameOffset = currentframeoffset + copysamples; |
1109 | } |
1110 | remainingsamples -= copysamples; |
1111 | |
1112 | if (remainingbytes > framebytes) { |
1113 | remainingbytes -= framebytes; |
1114 | if (remainingsamples == 0 && |
1115 | currentframeoffset + copysamples == framesamples) { |
1116 | // This frame has enough data for pBuffer, and |
1117 | // all of the frame is needed. Set file |
1118 | // position to start of next frame for next |
1119 | // call to Read. FrameOffset is 0. |
1120 | pCkData->SetPos(remainingbytes, RIFF::stream_backward); |
1121 | } |
1122 | } |
1123 | else remainingbytes = 0; |
1124 | |
1125 | currentframeoffset -= skipsamples; |
1126 | |
1127 | if (copysamples == 0) { |
1128 | // skip this frame |
1129 | pSrc += framebytes - Channels; |
1130 | } |
1131 | else { |
1132 | const unsigned char* const param_l = pSrc; |
1133 | if (BitDepth == 24) { |
1134 | if (mode_l != 2) pSrc += 12; |
1135 | |
1136 | if (Channels == 2) { // Stereo |
1137 | const unsigned char* const param_r = pSrc; |
1138 | if (mode_r != 2) pSrc += 12; |
1139 | |
1140 | Decompress24(mode_l, param_l, 6, pSrc, pDst24, |
1141 | skipsamples, copysamples, TruncatedBits); |
1142 | Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3, |
1143 | skipsamples, copysamples, TruncatedBits); |
1144 | pDst24 += copysamples * 6; |
1145 | } |
1146 | else { // Mono |
1147 | Decompress24(mode_l, param_l, 3, pSrc, pDst24, |
1148 | skipsamples, copysamples, TruncatedBits); |
1149 | pDst24 += copysamples * 3; |
1150 | } |
1151 | } |
1152 | else { // 16 bit |
1153 | if (mode_l) pSrc += 4; |
1154 | |
1155 | int step; |
1156 | if (Channels == 2) { // Stereo |
1157 | const unsigned char* const param_r = pSrc; |
1158 | if (mode_r) pSrc += 4; |
1159 | |
1160 | step = (2 - mode_l) + (2 - mode_r); |
1161 | Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples); |
1162 | Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1, |
1163 | skipsamples, copysamples); |
1164 | pDst += copysamples << 1; |
1165 | } |
1166 | else { // Mono |
1167 | step = 2 - mode_l; |
1168 | Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples); |
1169 | pDst += copysamples; |
1170 | } |
1171 | } |
1172 | pSrc += nextFrameOffset; |
1173 | } |
1174 | |
1175 | // reload from disk to local buffer if needed |
1176 | if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) { |
1177 | assumedsize = GuessSize(remainingsamples); |
1178 | pCkData->SetPos(remainingbytes, RIFF::stream_backward); |
1179 | if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes(); |
1180 | remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1); |
1181 | pSrc = (unsigned char*) pDecompressionBuffer->pStart; |
1182 | } |
1183 | } // while |
1184 | |
1185 | this->SamplePos += (SampleCount - remainingsamples); |
1186 | if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal; |
1187 | return (SampleCount - remainingsamples); |
1188 | } |
1189 | } |
1190 | |
1191 | /** @brief Write sample wave data. |
1192 | * |
1193 | * Writes \a SampleCount number of sample points from the buffer pointed |
1194 | * by \a pBuffer and increments the position within the sample. Use this |
1195 | * method to directly write the sample data to disk, i.e. if you don't |
1196 | * want or cannot load the whole sample data into RAM. |
1197 | * |
1198 | * You have to Resize() the sample to the desired size and call |
1199 | * File::Save() <b>before</b> using Write(). |
1200 | * |
1201 | * Note: there is currently no support for writing compressed samples. |
1202 | * |
1203 | * For 16 bit samples, the data in the source buffer should be |
1204 | * int16_t (using native endianness). For 24 bit, the buffer |
1205 | * should contain three bytes per sample, little-endian. |
1206 | * |
1207 | * @param pBuffer - source buffer |
1208 | * @param SampleCount - number of sample points to write |
1209 | * @throws DLS::Exception if current sample size is too small |
1210 | * @throws gig::Exception if sample is compressed |
1211 | * @see DLS::LoadSampleData() |
1212 | */ |
1213 | unsigned long Sample::Write(void* pBuffer, unsigned long SampleCount) { |
1214 | if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)"); |
1215 | |
1216 | // if this is the first write in this sample, reset the |
1217 | // checksum calculator |
1218 | if (pCkData->GetPos() == 0) { |
1219 | __resetCRC(crc); |
1220 | } |
1221 | if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small"); |
1222 | unsigned long res; |
1223 | if (BitDepth == 24) { |
1224 | res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize; |
1225 | } else { // 16 bit |
1226 | res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1 |
1227 | : pCkData->Write(pBuffer, SampleCount, 2); |
1228 | } |
1229 | __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc); |
1230 | |
1231 | // if this is the last write, update the checksum chunk in the |
1232 | // file |
1233 | if (pCkData->GetPos() == pCkData->GetSize()) { |
1234 | File* pFile = static_cast<File*>(GetParent()); |
1235 | pFile->SetSampleChecksum(this, __encodeCRC(crc)); |
1236 | } |
1237 | return res; |
1238 | } |
1239 | |
1240 | /** |
1241 | * Allocates a decompression buffer for streaming (compressed) samples |
1242 | * with Sample::Read(). If you are using more than one streaming thread |
1243 | * in your application you <b>HAVE</b> to create a decompression buffer |
1244 | * for <b>EACH</b> of your streaming threads and provide it with the |
1245 | * Sample::Read() call in order to avoid race conditions and crashes. |
1246 | * |
1247 | * You should free the memory occupied by the allocated buffer(s) once |
1248 | * you don't need one of your streaming threads anymore by calling |
1249 | * DestroyDecompressionBuffer(). |
1250 | * |
1251 | * @param MaxReadSize - the maximum size (in sample points) you ever |
1252 | * expect to read with one Read() call |
1253 | * @returns allocated decompression buffer |
1254 | * @see DestroyDecompressionBuffer() |
1255 | */ |
1256 | buffer_t Sample::CreateDecompressionBuffer(unsigned long MaxReadSize) { |
1257 | buffer_t result; |
1258 | const double worstCaseHeaderOverhead = |
1259 | (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0; |
1260 | result.Size = (unsigned long) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead); |
1261 | result.pStart = new int8_t[result.Size]; |
1262 | result.NullExtensionSize = 0; |
1263 | return result; |
1264 | } |
1265 | |
1266 | /** |
1267 | * Free decompression buffer, previously created with |
1268 | * CreateDecompressionBuffer(). |
1269 | * |
1270 | * @param DecompressionBuffer - previously allocated decompression |
1271 | * buffer to free |
1272 | */ |
1273 | void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) { |
1274 | if (DecompressionBuffer.Size && DecompressionBuffer.pStart) { |
1275 | delete[] (int8_t*) DecompressionBuffer.pStart; |
1276 | DecompressionBuffer.pStart = NULL; |
1277 | DecompressionBuffer.Size = 0; |
1278 | DecompressionBuffer.NullExtensionSize = 0; |
1279 | } |
1280 | } |
1281 | |
1282 | /** |
1283 | * Returns pointer to the Group this Sample belongs to. In the .gig |
1284 | * format a sample always belongs to one group. If it wasn't explicitly |
1285 | * assigned to a certain group, it will be automatically assigned to a |
1286 | * default group. |
1287 | * |
1288 | * @returns Sample's Group (never NULL) |
1289 | */ |
1290 | Group* Sample::GetGroup() const { |
1291 | return pGroup; |
1292 | } |
1293 | |
1294 | Sample::~Sample() { |
1295 | Instances--; |
1296 | if (!Instances && InternalDecompressionBuffer.Size) { |
1297 | delete[] (unsigned char*) InternalDecompressionBuffer.pStart; |
1298 | InternalDecompressionBuffer.pStart = NULL; |
1299 | InternalDecompressionBuffer.Size = 0; |
1300 | } |
1301 | if (FrameTable) delete[] FrameTable; |
1302 | if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart; |
1303 | } |
1304 | |
1305 | |
1306 | |
1307 | // *************** DimensionRegion *************** |
1308 | // * |
1309 | |
1310 | uint DimensionRegion::Instances = 0; |
1311 | DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL; |
1312 | |
1313 | DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) { |
1314 | Instances++; |
1315 | |
1316 | pSample = NULL; |
1317 | pRegion = pParent; |
1318 | |
1319 | if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4); |
1320 | else memset(&Crossfade, 0, 4); |
1321 | |
1322 | if (!pVelocityTables) pVelocityTables = new VelocityTableMap; |
1323 | |
1324 | RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA); |
1325 | if (_3ewa) { // if '3ewa' chunk exists |
1326 | _3ewa->ReadInt32(); // unknown, always == chunk size ? |
1327 | LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32()); |
1328 | EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32()); |
1329 | _3ewa->ReadInt16(); // unknown |
1330 | LFO1InternalDepth = _3ewa->ReadUint16(); |
1331 | _3ewa->ReadInt16(); // unknown |
1332 | LFO3InternalDepth = _3ewa->ReadInt16(); |
1333 | _3ewa->ReadInt16(); // unknown |
1334 | LFO1ControlDepth = _3ewa->ReadUint16(); |
1335 | _3ewa->ReadInt16(); // unknown |
1336 | LFO3ControlDepth = _3ewa->ReadInt16(); |
1337 | EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32()); |
1338 | EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32()); |
1339 | _3ewa->ReadInt16(); // unknown |
1340 | EG1Sustain = _3ewa->ReadUint16(); |
1341 | EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32()); |
1342 | EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8())); |
1343 | uint8_t eg1ctrloptions = _3ewa->ReadUint8(); |
1344 | EG1ControllerInvert = eg1ctrloptions & 0x01; |
1345 | EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions); |
1346 | EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions); |
1347 | EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions); |
1348 | EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8())); |
1349 | uint8_t eg2ctrloptions = _3ewa->ReadUint8(); |
1350 | EG2ControllerInvert = eg2ctrloptions & 0x01; |
1351 | EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions); |
1352 | EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions); |
1353 | EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions); |
1354 | LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32()); |
1355 | EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32()); |
1356 | EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32()); |
1357 | _3ewa->ReadInt16(); // unknown |
1358 | EG2Sustain = _3ewa->ReadUint16(); |
1359 | EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32()); |
1360 | _3ewa->ReadInt16(); // unknown |
1361 | LFO2ControlDepth = _3ewa->ReadUint16(); |
1362 | LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32()); |
1363 | _3ewa->ReadInt16(); // unknown |
1364 | LFO2InternalDepth = _3ewa->ReadUint16(); |
1365 | int32_t eg1decay2 = _3ewa->ReadInt32(); |
1366 | EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2); |
1367 | EG1InfiniteSustain = (eg1decay2 == 0x7fffffff); |
1368 | _3ewa->ReadInt16(); // unknown |
1369 | EG1PreAttack = _3ewa->ReadUint16(); |
1370 | int32_t eg2decay2 = _3ewa->ReadInt32(); |
1371 | EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2); |
1372 | EG2InfiniteSustain = (eg2decay2 == 0x7fffffff); |
1373 | _3ewa->ReadInt16(); // unknown |
1374 | EG2PreAttack = _3ewa->ReadUint16(); |
1375 | uint8_t velocityresponse = _3ewa->ReadUint8(); |
1376 | if (velocityresponse < 5) { |
1377 | VelocityResponseCurve = curve_type_nonlinear; |
1378 | VelocityResponseDepth = velocityresponse; |
1379 | } else if (velocityresponse < 10) { |
1380 | VelocityResponseCurve = curve_type_linear; |
1381 | VelocityResponseDepth = velocityresponse - 5; |
1382 | } else if (velocityresponse < 15) { |
1383 | VelocityResponseCurve = curve_type_special; |
1384 | VelocityResponseDepth = velocityresponse - 10; |
1385 | } else { |
1386 | VelocityResponseCurve = curve_type_unknown; |
1387 | VelocityResponseDepth = 0; |
1388 | } |
1389 | uint8_t releasevelocityresponse = _3ewa->ReadUint8(); |
1390 | if (releasevelocityresponse < 5) { |
1391 | ReleaseVelocityResponseCurve = curve_type_nonlinear; |
1392 | ReleaseVelocityResponseDepth = releasevelocityresponse; |
1393 | } else if (releasevelocityresponse < 10) { |
1394 | ReleaseVelocityResponseCurve = curve_type_linear; |
1395 | ReleaseVelocityResponseDepth = releasevelocityresponse - 5; |
1396 | } else if (releasevelocityresponse < 15) { |
1397 | ReleaseVelocityResponseCurve = curve_type_special; |
1398 | ReleaseVelocityResponseDepth = releasevelocityresponse - 10; |
1399 | } else { |
1400 | ReleaseVelocityResponseCurve = curve_type_unknown; |
1401 | ReleaseVelocityResponseDepth = 0; |
1402 | } |
1403 | VelocityResponseCurveScaling = _3ewa->ReadUint8(); |
1404 | AttenuationControllerThreshold = _3ewa->ReadInt8(); |
1405 | _3ewa->ReadInt32(); // unknown |
1406 | SampleStartOffset = (uint16_t) _3ewa->ReadInt16(); |
1407 | _3ewa->ReadInt16(); // unknown |
1408 | uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8(); |
1409 | PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass); |
1410 | if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94; |
1411 | else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95; |
1412 | else DimensionBypass = dim_bypass_ctrl_none; |
1413 | uint8_t pan = _3ewa->ReadUint8(); |
1414 | Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit |
1415 | SelfMask = _3ewa->ReadInt8() & 0x01; |
1416 | _3ewa->ReadInt8(); // unknown |
1417 | uint8_t lfo3ctrl = _3ewa->ReadUint8(); |
1418 | LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits |
1419 | LFO3Sync = lfo3ctrl & 0x20; // bit 5 |
1420 | InvertAttenuationController = lfo3ctrl & 0x80; // bit 7 |
1421 | AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8())); |
1422 | uint8_t lfo2ctrl = _3ewa->ReadUint8(); |
1423 | LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits |
1424 | LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7 |
1425 | LFO2Sync = lfo2ctrl & 0x20; // bit 5 |
1426 | bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6 |
1427 | uint8_t lfo1ctrl = _3ewa->ReadUint8(); |
1428 | LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits |
1429 | LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7 |
1430 | LFO1Sync = lfo1ctrl & 0x40; // bit 6 |
1431 | VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl)) |
1432 | : vcf_res_ctrl_none; |
1433 | uint16_t eg3depth = _3ewa->ReadUint16(); |
1434 | EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */ |
1435 | : (-1) * (int16_t) ((eg3depth ^ 0xffff) + 1); /* binary complementary for negatives */ |
1436 | _3ewa->ReadInt16(); // unknown |
1437 | ChannelOffset = _3ewa->ReadUint8() / 4; |
1438 | uint8_t regoptions = _3ewa->ReadUint8(); |
1439 | MSDecode = regoptions & 0x01; // bit 0 |
1440 | SustainDefeat = regoptions & 0x02; // bit 1 |
1441 | _3ewa->ReadInt16(); // unknown |
1442 | VelocityUpperLimit = _3ewa->ReadInt8(); |
1443 | _3ewa->ReadInt8(); // unknown |
1444 | _3ewa->ReadInt16(); // unknown |
1445 | ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay |
1446 | _3ewa->ReadInt8(); // unknown |
1447 | _3ewa->ReadInt8(); // unknown |
1448 | EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7 |
1449 | uint8_t vcfcutoff = _3ewa->ReadUint8(); |
1450 | VCFEnabled = vcfcutoff & 0x80; // bit 7 |
1451 | VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits |
1452 | VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8()); |
1453 | uint8_t vcfvelscale = _3ewa->ReadUint8(); |
1454 | VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7 |
1455 | VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits |
1456 | _3ewa->ReadInt8(); // unknown |
1457 | uint8_t vcfresonance = _3ewa->ReadUint8(); |
1458 | VCFResonance = vcfresonance & 0x7f; // lower 7 bits |
1459 | VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7 |
1460 | uint8_t vcfbreakpoint = _3ewa->ReadUint8(); |
1461 | VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7 |
1462 | VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits |
1463 | uint8_t vcfvelocity = _3ewa->ReadUint8(); |
1464 | VCFVelocityDynamicRange = vcfvelocity % 5; |
1465 | VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5); |
1466 | VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8()); |
1467 | if (VCFType == vcf_type_lowpass) { |
1468 | if (lfo3ctrl & 0x40) // bit 6 |
1469 | VCFType = vcf_type_lowpassturbo; |
1470 | } |
1471 | if (_3ewa->RemainingBytes() >= 8) { |
1472 | _3ewa->Read(DimensionUpperLimits, 1, 8); |
1473 | } else { |
1474 | memset(DimensionUpperLimits, 0, 8); |
1475 | } |
1476 | } else { // '3ewa' chunk does not exist yet |
1477 | // use default values |
1478 | LFO3Frequency = 1.0; |
1479 | EG3Attack = 0.0; |
1480 | LFO1InternalDepth = 0; |
1481 | LFO3InternalDepth = 0; |
1482 | LFO1ControlDepth = 0; |
1483 | LFO3ControlDepth = 0; |
1484 | EG1Attack = 0.0; |
1485 | EG1Decay1 = 0.005; |
1486 | EG1Sustain = 1000; |
1487 | EG1Release = 0.3; |
1488 | EG1Controller.type = eg1_ctrl_t::type_none; |
1489 | EG1Controller.controller_number = 0; |
1490 | EG1ControllerInvert = false; |
1491 | EG1ControllerAttackInfluence = 0; |
1492 | EG1ControllerDecayInfluence = 0; |
1493 | EG1ControllerReleaseInfluence = 0; |
1494 | EG2Controller.type = eg2_ctrl_t::type_none; |
1495 | EG2Controller.controller_number = 0; |
1496 | EG2ControllerInvert = false; |
1497 | EG2ControllerAttackInfluence = 0; |
1498 | EG2ControllerDecayInfluence = 0; |
1499 | EG2ControllerReleaseInfluence = 0; |
1500 | LFO1Frequency = 1.0; |
1501 | EG2Attack = 0.0; |
1502 | EG2Decay1 = 0.005; |
1503 | EG2Sustain = 1000; |
1504 | EG2Release = 0.3; |
1505 | LFO2ControlDepth = 0; |
1506 | LFO2Frequency = 1.0; |
1507 | LFO2InternalDepth = 0; |
1508 | EG1Decay2 = 0.0; |
1509 | EG1InfiniteSustain = true; |
1510 | EG1PreAttack = 0; |
1511 | EG2Decay2 = 0.0; |
1512 | EG2InfiniteSustain = true; |
1513 | EG2PreAttack = 0; |
1514 | VelocityResponseCurve = curve_type_nonlinear; |
1515 | VelocityResponseDepth = 3; |
1516 | ReleaseVelocityResponseCurve = curve_type_nonlinear; |
1517 | ReleaseVelocityResponseDepth = 3; |
1518 | VelocityResponseCurveScaling = 32; |
1519 | AttenuationControllerThreshold = 0; |
1520 | SampleStartOffset = 0; |
1521 | PitchTrack = true; |
1522 | DimensionBypass = dim_bypass_ctrl_none; |
1523 | Pan = 0; |
1524 | SelfMask = true; |
1525 | LFO3Controller = lfo3_ctrl_modwheel; |
1526 | LFO3Sync = false; |
1527 | InvertAttenuationController = false; |
1528 | AttenuationController.type = attenuation_ctrl_t::type_none; |
1529 | AttenuationController.controller_number = 0; |
1530 | LFO2Controller = lfo2_ctrl_internal; |
1531 | LFO2FlipPhase = false; |
1532 | LFO2Sync = false; |
1533 | LFO1Controller = lfo1_ctrl_internal; |
1534 | LFO1FlipPhase = false; |
1535 | LFO1Sync = false; |
1536 | VCFResonanceController = vcf_res_ctrl_none; |
1537 | EG3Depth = 0; |
1538 | ChannelOffset = 0; |
1539 | MSDecode = false; |
1540 | SustainDefeat = false; |
1541 | VelocityUpperLimit = 0; |
1542 | ReleaseTriggerDecay = 0; |
1543 | EG1Hold = false; |
1544 | VCFEnabled = false; |
1545 | VCFCutoff = 0; |
1546 | VCFCutoffController = vcf_cutoff_ctrl_none; |
1547 | VCFCutoffControllerInvert = false; |
1548 | VCFVelocityScale = 0; |
1549 | VCFResonance = 0; |
1550 | VCFResonanceDynamic = false; |
1551 | VCFKeyboardTracking = false; |
1552 | VCFKeyboardTrackingBreakpoint = 0; |
1553 | VCFVelocityDynamicRange = 0x04; |
1554 | VCFVelocityCurve = curve_type_linear; |
1555 | VCFType = vcf_type_lowpass; |
1556 | memset(DimensionUpperLimits, 127, 8); |
1557 | } |
1558 | |
1559 | pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve, |
1560 | VelocityResponseDepth, |
1561 | VelocityResponseCurveScaling); |
1562 | |
1563 | pVelocityReleaseTable = GetReleaseVelocityTable( |
1564 | ReleaseVelocityResponseCurve, |
1565 | ReleaseVelocityResponseDepth |
1566 | ); |
1567 | |
1568 | pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, |
1569 | VCFVelocityDynamicRange, |
1570 | VCFVelocityScale, |
1571 | VCFCutoffController); |
1572 | |
1573 | SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360)); |
1574 | VelocityTable = 0; |
1575 | } |
1576 | |
1577 | /* |
1578 | * Constructs a DimensionRegion by copying all parameters from |
1579 | * another DimensionRegion |
1580 | */ |
1581 | DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) { |
1582 | Instances++; |
1583 | *this = src; // default memberwise shallow copy of all parameters |
1584 | pParentList = _3ewl; // restore the chunk pointer |
1585 | |
1586 | // deep copy of owned structures |
1587 | if (src.VelocityTable) { |
1588 | VelocityTable = new uint8_t[128]; |
1589 | for (int k = 0 ; k < 128 ; k++) |
1590 | VelocityTable[k] = src.VelocityTable[k]; |
1591 | } |
1592 | if (src.pSampleLoops) { |
1593 | pSampleLoops = new DLS::sample_loop_t[src.SampleLoops]; |
1594 | for (int k = 0 ; k < src.SampleLoops ; k++) |
1595 | pSampleLoops[k] = src.pSampleLoops[k]; |
1596 | } |
1597 | } |
1598 | |
1599 | /** |
1600 | * Updates the respective member variable and updates @c SampleAttenuation |
1601 | * which depends on this value. |
1602 | */ |
1603 | void DimensionRegion::SetGain(int32_t gain) { |
1604 | DLS::Sampler::SetGain(gain); |
1605 | SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360)); |
1606 | } |
1607 | |
1608 | /** |
1609 | * Apply dimension region settings to the respective RIFF chunks. You |
1610 | * have to call File::Save() to make changes persistent. |
1611 | * |
1612 | * Usually there is absolutely no need to call this method explicitly. |
1613 | * It will be called automatically when File::Save() was called. |
1614 | */ |
1615 | void DimensionRegion::UpdateChunks() { |
1616 | // first update base class's chunk |
1617 | DLS::Sampler::UpdateChunks(); |
1618 | |
1619 | RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP); |
1620 | uint8_t* pData = (uint8_t*) wsmp->LoadChunkData(); |
1621 | pData[12] = Crossfade.in_start; |
1622 | pData[13] = Crossfade.in_end; |
1623 | pData[14] = Crossfade.out_start; |
1624 | pData[15] = Crossfade.out_end; |
1625 | |
1626 | // make sure '3ewa' chunk exists |
1627 | RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA); |
1628 | if (!_3ewa) { |
1629 | File* pFile = (File*) GetParent()->GetParent()->GetParent(); |
1630 | bool version3 = pFile->pVersion && pFile->pVersion->major == 3; |
1631 | _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, version3 ? 148 : 140); |
1632 | } |
1633 | pData = (uint8_t*) _3ewa->LoadChunkData(); |
1634 | |
1635 | // update '3ewa' chunk with DimensionRegion's current settings |
1636 | |
1637 | const uint32_t chunksize = _3ewa->GetNewSize(); |
1638 | store32(&pData[0], chunksize); // unknown, always chunk size? |
1639 | |
1640 | const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency); |
1641 | store32(&pData[4], lfo3freq); |
1642 | |
1643 | const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack); |
1644 | store32(&pData[8], eg3attack); |
1645 | |
1646 | // next 2 bytes unknown |
1647 | |
1648 | store16(&pData[14], LFO1InternalDepth); |
1649 | |
1650 | // next 2 bytes unknown |
1651 | |
1652 | store16(&pData[18], LFO3InternalDepth); |
1653 | |
1654 | // next 2 bytes unknown |
1655 | |
1656 | store16(&pData[22], LFO1ControlDepth); |
1657 | |
1658 | // next 2 bytes unknown |
1659 | |
1660 | store16(&pData[26], LFO3ControlDepth); |
1661 | |
1662 | const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack); |
1663 | store32(&pData[28], eg1attack); |
1664 | |
1665 | const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1); |
1666 | store32(&pData[32], eg1decay1); |
1667 | |
1668 | // next 2 bytes unknown |
1669 | |
1670 | store16(&pData[38], EG1Sustain); |
1671 | |
1672 | const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release); |
1673 | store32(&pData[40], eg1release); |
1674 | |
1675 | const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller); |
1676 | pData[44] = eg1ctl; |
1677 | |
1678 | const uint8_t eg1ctrloptions = |
1679 | (EG1ControllerInvert ? 0x01 : 0x00) | |
1680 | GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) | |
1681 | GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) | |
1682 | GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence); |
1683 | pData[45] = eg1ctrloptions; |
1684 | |
1685 | const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller); |
1686 | pData[46] = eg2ctl; |
1687 | |
1688 | const uint8_t eg2ctrloptions = |
1689 | (EG2ControllerInvert ? 0x01 : 0x00) | |
1690 | GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) | |
1691 | GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) | |
1692 | GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence); |
1693 | pData[47] = eg2ctrloptions; |
1694 | |
1695 | const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency); |
1696 | store32(&pData[48], lfo1freq); |
1697 | |
1698 | const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack); |
1699 | store32(&pData[52], eg2attack); |
1700 | |
1701 | const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1); |
1702 | store32(&pData[56], eg2decay1); |
1703 | |
1704 | // next 2 bytes unknown |
1705 | |
1706 | store16(&pData[62], EG2Sustain); |
1707 | |
1708 | const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release); |
1709 | store32(&pData[64], eg2release); |
1710 | |
1711 | // next 2 bytes unknown |
1712 | |
1713 | store16(&pData[70], LFO2ControlDepth); |
1714 | |
1715 | const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency); |
1716 | store32(&pData[72], lfo2freq); |
1717 | |
1718 | // next 2 bytes unknown |
1719 | |
1720 | store16(&pData[78], LFO2InternalDepth); |
1721 | |
1722 | const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2); |
1723 | store32(&pData[80], eg1decay2); |
1724 | |
1725 | // next 2 bytes unknown |
1726 | |
1727 | store16(&pData[86], EG1PreAttack); |
1728 | |
1729 | const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2); |
1730 | store32(&pData[88], eg2decay2); |
1731 | |
1732 | // next 2 bytes unknown |
1733 | |
1734 | store16(&pData[94], EG2PreAttack); |
1735 | |
1736 | { |
1737 | if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4"); |
1738 | uint8_t velocityresponse = VelocityResponseDepth; |
1739 | switch (VelocityResponseCurve) { |
1740 | case curve_type_nonlinear: |
1741 | break; |
1742 | case curve_type_linear: |
1743 | velocityresponse += 5; |
1744 | break; |
1745 | case curve_type_special: |
1746 | velocityresponse += 10; |
1747 | break; |
1748 | case curve_type_unknown: |
1749 | default: |
1750 | throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected"); |
1751 | } |
1752 | pData[96] = velocityresponse; |
1753 | } |
1754 | |
1755 | { |
1756 | if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4"); |
1757 | uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth; |
1758 | switch (ReleaseVelocityResponseCurve) { |
1759 | case curve_type_nonlinear: |
1760 | break; |
1761 | case curve_type_linear: |
1762 | releasevelocityresponse += 5; |
1763 | break; |
1764 | case curve_type_special: |
1765 | releasevelocityresponse += 10; |
1766 | break; |
1767 | case curve_type_unknown: |
1768 | default: |
1769 | throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected"); |
1770 | } |
1771 | pData[97] = releasevelocityresponse; |
1772 | } |
1773 | |
1774 | pData[98] = VelocityResponseCurveScaling; |
1775 | |
1776 | pData[99] = AttenuationControllerThreshold; |
1777 | |
1778 | // next 4 bytes unknown |
1779 | |
1780 | store16(&pData[104], SampleStartOffset); |
1781 | |
1782 | // next 2 bytes unknown |
1783 | |
1784 | { |
1785 | uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack); |
1786 | switch (DimensionBypass) { |
1787 | case dim_bypass_ctrl_94: |
1788 | pitchTrackDimensionBypass |= 0x10; |
1789 | break; |
1790 | case dim_bypass_ctrl_95: |
1791 | pitchTrackDimensionBypass |= 0x20; |
1792 | break; |
1793 | case dim_bypass_ctrl_none: |
1794 | //FIXME: should we set anything here? |
1795 | break; |
1796 | default: |
1797 | throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected"); |
1798 | } |
1799 | pData[108] = pitchTrackDimensionBypass; |
1800 | } |
1801 | |
1802 | const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit |
1803 | pData[109] = pan; |
1804 | |
1805 | const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00; |
1806 | pData[110] = selfmask; |
1807 | |
1808 | // next byte unknown |
1809 | |
1810 | { |
1811 | uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits |
1812 | if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5 |
1813 | if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7 |
1814 | if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6 |
1815 | pData[112] = lfo3ctrl; |
1816 | } |
1817 | |
1818 | const uint8_t attenctl = EncodeLeverageController(AttenuationController); |
1819 | pData[113] = attenctl; |
1820 | |
1821 | { |
1822 | uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits |
1823 | if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7 |
1824 | if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5 |
1825 | if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6 |
1826 | pData[114] = lfo2ctrl; |
1827 | } |
1828 | |
1829 | { |
1830 | uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits |
1831 | if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7 |
1832 | if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6 |
1833 | if (VCFResonanceController != vcf_res_ctrl_none) |
1834 | lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController); |
1835 | pData[115] = lfo1ctrl; |
1836 | } |
1837 | |
1838 | const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth |
1839 | : uint16_t(((-EG3Depth) - 1) ^ 0xffff); /* binary complementary for negatives */ |
1840 | pData[116] = eg3depth; |
1841 | |
1842 | // next 2 bytes unknown |
1843 | |
1844 | const uint8_t channeloffset = ChannelOffset * 4; |
1845 | pData[120] = channeloffset; |
1846 | |
1847 | { |
1848 | uint8_t regoptions = 0; |
1849 | if (MSDecode) regoptions |= 0x01; // bit 0 |
1850 | if (SustainDefeat) regoptions |= 0x02; // bit 1 |
1851 | pData[121] = regoptions; |
1852 | } |
1853 | |
1854 | // next 2 bytes unknown |
1855 | |
1856 | pData[124] = VelocityUpperLimit; |
1857 | |
1858 | // next 3 bytes unknown |
1859 | |
1860 | pData[128] = ReleaseTriggerDecay; |
1861 | |
1862 | // next 2 bytes unknown |
1863 | |
1864 | const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7 |
1865 | pData[131] = eg1hold; |
1866 | |
1867 | const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */ |
1868 | (VCFCutoff & 0x7f); /* lower 7 bits */ |
1869 | pData[132] = vcfcutoff; |
1870 | |
1871 | pData[133] = VCFCutoffController; |
1872 | |
1873 | const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */ |
1874 | (VCFVelocityScale & 0x7f); /* lower 7 bits */ |
1875 | pData[134] = vcfvelscale; |
1876 | |
1877 | // next byte unknown |
1878 | |
1879 | const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */ |
1880 | (VCFResonance & 0x7f); /* lower 7 bits */ |
1881 | pData[136] = vcfresonance; |
1882 | |
1883 | const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */ |
1884 | (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */ |
1885 | pData[137] = vcfbreakpoint; |
1886 | |
1887 | const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 | |
1888 | VCFVelocityCurve * 5; |
1889 | pData[138] = vcfvelocity; |
1890 | |
1891 | const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType; |
1892 | pData[139] = vcftype; |
1893 | |
1894 | if (chunksize >= 148) { |
1895 | memcpy(&pData[140], DimensionUpperLimits, 8); |
1896 | } |
1897 | } |
1898 | |
1899 | double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) { |
1900 | curve_type_t curveType = releaseVelocityResponseCurve; |
1901 | uint8_t depth = releaseVelocityResponseDepth; |
1902 | // this models a strange behaviour or bug in GSt: two of the |
1903 | // velocity response curves for release time are not used even |
1904 | // if specified, instead another curve is chosen. |
1905 | if ((curveType == curve_type_nonlinear && depth == 0) || |
1906 | (curveType == curve_type_special && depth == 4)) { |
1907 | curveType = curve_type_nonlinear; |
1908 | depth = 3; |
1909 | } |
1910 | return GetVelocityTable(curveType, depth, 0); |
1911 | } |
1912 | |
1913 | double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve, |
1914 | uint8_t vcfVelocityDynamicRange, |
1915 | uint8_t vcfVelocityScale, |
1916 | vcf_cutoff_ctrl_t vcfCutoffController) |
1917 | { |
1918 | curve_type_t curveType = vcfVelocityCurve; |
1919 | uint8_t depth = vcfVelocityDynamicRange; |
1920 | // even stranger GSt: two of the velocity response curves for |
1921 | // filter cutoff are not used, instead another special curve |
1922 | // is chosen. This curve is not used anywhere else. |
1923 | if ((curveType == curve_type_nonlinear && depth == 0) || |
1924 | (curveType == curve_type_special && depth == 4)) { |
1925 | curveType = curve_type_special; |
1926 | depth = 5; |
1927 | } |
1928 | return GetVelocityTable(curveType, depth, |
1929 | (vcfCutoffController <= vcf_cutoff_ctrl_none2) |
1930 | ? vcfVelocityScale : 0); |
1931 | } |
1932 | |
1933 | // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet |
1934 | double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) |
1935 | { |
1936 | double* table; |
1937 | uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling; |
1938 | if (pVelocityTables->count(tableKey)) { // if key exists |
1939 | table = (*pVelocityTables)[tableKey]; |
1940 | } |
1941 | else { |
1942 | table = CreateVelocityTable(curveType, depth, scaling); |
1943 | (*pVelocityTables)[tableKey] = table; // put the new table into the tables map |
1944 | } |
1945 | return table; |
1946 | } |
1947 | |
1948 | Region* DimensionRegion::GetParent() const { |
1949 | return pRegion; |
1950 | } |
1951 | |
1952 | leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) { |
1953 | leverage_ctrl_t decodedcontroller; |
1954 | switch (EncodedController) { |
1955 | // special controller |
1956 | case _lev_ctrl_none: |
1957 | decodedcontroller.type = leverage_ctrl_t::type_none; |
1958 | decodedcontroller.controller_number = 0; |
1959 | break; |
1960 | case _lev_ctrl_velocity: |
1961 | decodedcontroller.type = leverage_ctrl_t::type_velocity; |
1962 | decodedcontroller.controller_number = 0; |
1963 | break; |
1964 | case _lev_ctrl_channelaftertouch: |
1965 | decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch; |
1966 | decodedcontroller.controller_number = 0; |
1967 | break; |
1968 | |
1969 | // ordinary MIDI control change controller |
1970 | case _lev_ctrl_modwheel: |
1971 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
1972 | decodedcontroller.controller_number = 1; |
1973 | break; |
1974 | case _lev_ctrl_breath: |
1975 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
1976 | decodedcontroller.controller_number = 2; |
1977 | break; |
1978 | case _lev_ctrl_foot: |
1979 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
1980 | decodedcontroller.controller_number = 4; |
1981 | break; |
1982 | case _lev_ctrl_effect1: |
1983 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
1984 | decodedcontroller.controller_number = 12; |
1985 | break; |
1986 | case _lev_ctrl_effect2: |
1987 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
1988 | decodedcontroller.controller_number = 13; |
1989 | break; |
1990 | case _lev_ctrl_genpurpose1: |
1991 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
1992 | decodedcontroller.controller_number = 16; |
1993 | break; |
1994 | case _lev_ctrl_genpurpose2: |
1995 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
1996 | decodedcontroller.controller_number = 17; |
1997 | break; |
1998 | case _lev_ctrl_genpurpose3: |
1999 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2000 | decodedcontroller.controller_number = 18; |
2001 | break; |
2002 | case _lev_ctrl_genpurpose4: |
2003 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2004 | decodedcontroller.controller_number = 19; |
2005 | break; |
2006 | case _lev_ctrl_portamentotime: |
2007 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2008 | decodedcontroller.controller_number = 5; |
2009 | break; |
2010 | case _lev_ctrl_sustainpedal: |
2011 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2012 | decodedcontroller.controller_number = 64; |
2013 | break; |
2014 | case _lev_ctrl_portamento: |
2015 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2016 | decodedcontroller.controller_number = 65; |
2017 | break; |
2018 | case _lev_ctrl_sostenutopedal: |
2019 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2020 | decodedcontroller.controller_number = 66; |
2021 | break; |
2022 | case _lev_ctrl_softpedal: |
2023 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2024 | decodedcontroller.controller_number = 67; |
2025 | break; |
2026 | case _lev_ctrl_genpurpose5: |
2027 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2028 | decodedcontroller.controller_number = 80; |
2029 | break; |
2030 | case _lev_ctrl_genpurpose6: |
2031 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2032 | decodedcontroller.controller_number = 81; |
2033 | break; |
2034 | case _lev_ctrl_genpurpose7: |
2035 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2036 | decodedcontroller.controller_number = 82; |
2037 | break; |
2038 | case _lev_ctrl_genpurpose8: |
2039 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2040 | decodedcontroller.controller_number = 83; |
2041 | break; |
2042 | case _lev_ctrl_effect1depth: |
2043 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2044 | decodedcontroller.controller_number = 91; |
2045 | break; |
2046 | case _lev_ctrl_effect2depth: |
2047 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2048 | decodedcontroller.controller_number = 92; |
2049 | break; |
2050 | case _lev_ctrl_effect3depth: |
2051 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2052 | decodedcontroller.controller_number = 93; |
2053 | break; |
2054 | case _lev_ctrl_effect4depth: |
2055 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2056 | decodedcontroller.controller_number = 94; |
2057 | break; |
2058 | case _lev_ctrl_effect5depth: |
2059 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2060 | decodedcontroller.controller_number = 95; |
2061 | break; |
2062 | |
2063 | // unknown controller type |
2064 | default: |
2065 | throw gig::Exception("Unknown leverage controller type."); |
2066 | } |
2067 | return decodedcontroller; |
2068 | } |
2069 | |
2070 | DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) { |
2071 | _lev_ctrl_t encodedcontroller; |
2072 | switch (DecodedController.type) { |
2073 | // special controller |
2074 | case leverage_ctrl_t::type_none: |
2075 | encodedcontroller = _lev_ctrl_none; |
2076 | break; |
2077 | case leverage_ctrl_t::type_velocity: |
2078 | encodedcontroller = _lev_ctrl_velocity; |
2079 | break; |
2080 | case leverage_ctrl_t::type_channelaftertouch: |
2081 | encodedcontroller = _lev_ctrl_channelaftertouch; |
2082 | break; |
2083 | |
2084 | // ordinary MIDI control change controller |
2085 | case leverage_ctrl_t::type_controlchange: |
2086 | switch (DecodedController.controller_number) { |
2087 | case 1: |
2088 | encodedcontroller = _lev_ctrl_modwheel; |
2089 | break; |
2090 | case 2: |
2091 | encodedcontroller = _lev_ctrl_breath; |
2092 | break; |
2093 | case 4: |
2094 | encodedcontroller = _lev_ctrl_foot; |
2095 | break; |
2096 | case 12: |
2097 | encodedcontroller = _lev_ctrl_effect1; |
2098 | break; |
2099 | case 13: |
2100 | encodedcontroller = _lev_ctrl_effect2; |
2101 | break; |
2102 | case 16: |
2103 | encodedcontroller = _lev_ctrl_genpurpose1; |
2104 | break; |
2105 | case 17: |
2106 | encodedcontroller = _lev_ctrl_genpurpose2; |
2107 | break; |
2108 | case 18: |
2109 | encodedcontroller = _lev_ctrl_genpurpose3; |
2110 | break; |
2111 | case 19: |
2112 | encodedcontroller = _lev_ctrl_genpurpose4; |
2113 | break; |
2114 | case 5: |
2115 | encodedcontroller = _lev_ctrl_portamentotime; |
2116 | break; |
2117 | case 64: |
2118 | encodedcontroller = _lev_ctrl_sustainpedal; |
2119 | break; |
2120 | case 65: |
2121 | encodedcontroller = _lev_ctrl_portamento; |
2122 | break; |
2123 | case 66: |
2124 | encodedcontroller = _lev_ctrl_sostenutopedal; |
2125 | break; |
2126 | case 67: |
2127 | encodedcontroller = _lev_ctrl_softpedal; |
2128 | break; |
2129 | case 80: |
2130 | encodedcontroller = _lev_ctrl_genpurpose5; |
2131 | break; |
2132 | case 81: |
2133 | encodedcontroller = _lev_ctrl_genpurpose6; |
2134 | break; |
2135 | case 82: |
2136 | encodedcontroller = _lev_ctrl_genpurpose7; |
2137 | break; |
2138 | case 83: |
2139 | encodedcontroller = _lev_ctrl_genpurpose8; |
2140 | break; |
2141 | case 91: |
2142 | encodedcontroller = _lev_ctrl_effect1depth; |
2143 | break; |
2144 | case 92: |
2145 | encodedcontroller = _lev_ctrl_effect2depth; |
2146 | break; |
2147 | case 93: |
2148 | encodedcontroller = _lev_ctrl_effect3depth; |
2149 | break; |
2150 | case 94: |
2151 | encodedcontroller = _lev_ctrl_effect4depth; |
2152 | break; |
2153 | case 95: |
2154 | encodedcontroller = _lev_ctrl_effect5depth; |
2155 | break; |
2156 | default: |
2157 | throw gig::Exception("leverage controller number is not supported by the gig format"); |
2158 | } |
2159 | break; |
2160 | default: |
2161 | throw gig::Exception("Unknown leverage controller type."); |
2162 | } |
2163 | return encodedcontroller; |
2164 | } |
2165 | |
2166 | DimensionRegion::~DimensionRegion() { |
2167 | Instances--; |
2168 | if (!Instances) { |
2169 | // delete the velocity->volume tables |
2170 | VelocityTableMap::iterator iter; |
2171 | for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) { |
2172 | double* pTable = iter->second; |
2173 | if (pTable) delete[] pTable; |
2174 | } |
2175 | pVelocityTables->clear(); |
2176 | delete pVelocityTables; |
2177 | pVelocityTables = NULL; |
2178 | } |
2179 | if (VelocityTable) delete[] VelocityTable; |
2180 | } |
2181 | |
2182 | /** |
2183 | * Returns the correct amplitude factor for the given \a MIDIKeyVelocity. |
2184 | * All involved parameters (VelocityResponseCurve, VelocityResponseDepth |
2185 | * and VelocityResponseCurveScaling) involved are taken into account to |
2186 | * calculate the amplitude factor. Use this method when a key was |
2187 | * triggered to get the volume with which the sample should be played |
2188 | * back. |
2189 | * |
2190 | * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127) |
2191 | * @returns amplitude factor (between 0.0 and 1.0) |
2192 | */ |
2193 | double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) { |
2194 | return pVelocityAttenuationTable[MIDIKeyVelocity]; |
2195 | } |
2196 | |
2197 | double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) { |
2198 | return pVelocityReleaseTable[MIDIKeyVelocity]; |
2199 | } |
2200 | |
2201 | double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) { |
2202 | return pVelocityCutoffTable[MIDIKeyVelocity]; |
2203 | } |
2204 | |
2205 | /** |
2206 | * Updates the respective member variable and the lookup table / cache |
2207 | * that depends on this value. |
2208 | */ |
2209 | void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) { |
2210 | pVelocityAttenuationTable = |
2211 | GetVelocityTable( |
2212 | curve, VelocityResponseDepth, VelocityResponseCurveScaling |
2213 | ); |
2214 | VelocityResponseCurve = curve; |
2215 | } |
2216 | |
2217 | /** |
2218 | * Updates the respective member variable and the lookup table / cache |
2219 | * that depends on this value. |
2220 | */ |
2221 | void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) { |
2222 | pVelocityAttenuationTable = |
2223 | GetVelocityTable( |
2224 | VelocityResponseCurve, depth, VelocityResponseCurveScaling |
2225 | ); |
2226 | VelocityResponseDepth = depth; |
2227 | } |
2228 | |
2229 | /** |
2230 | * Updates the respective member variable and the lookup table / cache |
2231 | * that depends on this value. |
2232 | */ |
2233 | void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) { |
2234 | pVelocityAttenuationTable = |
2235 | GetVelocityTable( |
2236 | VelocityResponseCurve, VelocityResponseDepth, scaling |
2237 | ); |
2238 | VelocityResponseCurveScaling = scaling; |
2239 | } |
2240 | |
2241 | /** |
2242 | * Updates the respective member variable and the lookup table / cache |
2243 | * that depends on this value. |
2244 | */ |
2245 | void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) { |
2246 | pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth); |
2247 | ReleaseVelocityResponseCurve = curve; |
2248 | } |
2249 | |
2250 | /** |
2251 | * Updates the respective member variable and the lookup table / cache |
2252 | * that depends on this value. |
2253 | */ |
2254 | void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) { |
2255 | pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth); |
2256 | ReleaseVelocityResponseDepth = depth; |
2257 | } |
2258 | |
2259 | /** |
2260 | * Updates the respective member variable and the lookup table / cache |
2261 | * that depends on this value. |
2262 | */ |
2263 | void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) { |
2264 | pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller); |
2265 | VCFCutoffController = controller; |
2266 | } |
2267 | |
2268 | /** |
2269 | * Updates the respective member variable and the lookup table / cache |
2270 | * that depends on this value. |
2271 | */ |
2272 | void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) { |
2273 | pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController); |
2274 | VCFVelocityCurve = curve; |
2275 | } |
2276 | |
2277 | /** |
2278 | * Updates the respective member variable and the lookup table / cache |
2279 | * that depends on this value. |
2280 | */ |
2281 | void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) { |
2282 | pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController); |
2283 | VCFVelocityDynamicRange = range; |
2284 | } |
2285 | |
2286 | /** |
2287 | * Updates the respective member variable and the lookup table / cache |
2288 | * that depends on this value. |
2289 | */ |
2290 | void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) { |
2291 | pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController); |
2292 | VCFVelocityScale = scaling; |
2293 | } |
2294 | |
2295 | double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) { |
2296 | |
2297 | // line-segment approximations of the 15 velocity curves |
2298 | |
2299 | // linear |
2300 | const int lin0[] = { 1, 1, 127, 127 }; |
2301 | const int lin1[] = { 1, 21, 127, 127 }; |
2302 | const int lin2[] = { 1, 45, 127, 127 }; |
2303 | const int lin3[] = { 1, 74, 127, 127 }; |
2304 | const int lin4[] = { 1, 127, 127, 127 }; |
2305 | |
2306 | // non-linear |
2307 | const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 }; |
2308 | const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127, |
2309 | 127, 127 }; |
2310 | const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127, |
2311 | 127, 127 }; |
2312 | const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127, |
2313 | 127, 127 }; |
2314 | const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 }; |
2315 | |
2316 | // special |
2317 | const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44, |
2318 | 113, 127, 127, 127 }; |
2319 | const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67, |
2320 | 118, 127, 127, 127 }; |
2321 | const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74, |
2322 | 85, 90, 91, 127, 127, 127 }; |
2323 | const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73, |
2324 | 117, 127, 127, 127 }; |
2325 | const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127, |
2326 | 127, 127 }; |
2327 | |
2328 | // this is only used by the VCF velocity curve |
2329 | const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106, |
2330 | 91, 127, 127, 127 }; |
2331 | |
2332 | const int* const curves[] = { non0, non1, non2, non3, non4, |
2333 | lin0, lin1, lin2, lin3, lin4, |
2334 | spe0, spe1, spe2, spe3, spe4, spe5 }; |
2335 | |
2336 | double* const table = new double[128]; |
2337 | |
2338 | const int* curve = curves[curveType * 5 + depth]; |
2339 | const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling |
2340 | |
2341 | table[0] = 0; |
2342 | for (int x = 1 ; x < 128 ; x++) { |
2343 | |
2344 | if (x > curve[2]) curve += 2; |
2345 | double y = curve[1] + (x - curve[0]) * |
2346 | (double(curve[3] - curve[1]) / (curve[2] - curve[0])); |
2347 | y = y / 127; |
2348 | |
2349 | // Scale up for s > 20, down for s < 20. When |
2350 | // down-scaling, the curve still ends at 1.0. |
2351 | if (s < 20 && y >= 0.5) |
2352 | y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1); |
2353 | else |
2354 | y = y * (s / 20.0); |
2355 | if (y > 1) y = 1; |
2356 | |
2357 | table[x] = y; |
2358 | } |
2359 | return table; |
2360 | } |
2361 | |
2362 | |
2363 | // *************** Region *************** |
2364 | // * |
2365 | |
2366 | Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) { |
2367 | // Initialization |
2368 | Dimensions = 0; |
2369 | for (int i = 0; i < 256; i++) { |
2370 | pDimensionRegions[i] = NULL; |
2371 | } |
2372 | Layers = 1; |
2373 | File* file = (File*) GetParent()->GetParent(); |
2374 | int dimensionBits = (file->pVersion && file->pVersion->major == 3) ? 8 : 5; |
2375 | |
2376 | // Actual Loading |
2377 | |
2378 | if (!file->GetAutoLoad()) return; |
2379 | |
2380 | LoadDimensionRegions(rgnList); |
2381 | |
2382 | RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK); |
2383 | if (_3lnk) { |
2384 | DimensionRegions = _3lnk->ReadUint32(); |
2385 | for (int i = 0; i < dimensionBits; i++) { |
2386 | dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8()); |
2387 | uint8_t bits = _3lnk->ReadUint8(); |
2388 | _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1]) |
2389 | _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension) |
2390 | uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits) |
2391 | if (dimension == dimension_none) { // inactive dimension |
2392 | pDimensionDefinitions[i].dimension = dimension_none; |
2393 | pDimensionDefinitions[i].bits = 0; |
2394 | pDimensionDefinitions[i].zones = 0; |
2395 | pDimensionDefinitions[i].split_type = split_type_bit; |
2396 | pDimensionDefinitions[i].zone_size = 0; |
2397 | } |
2398 | else { // active dimension |
2399 | pDimensionDefinitions[i].dimension = dimension; |
2400 | pDimensionDefinitions[i].bits = bits; |
2401 | pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits) |
2402 | pDimensionDefinitions[i].split_type = __resolveSplitType(dimension); |
2403 | pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]); |
2404 | Dimensions++; |
2405 | |
2406 | // if this is a layer dimension, remember the amount of layers |
2407 | if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones; |
2408 | } |
2409 | _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition |
2410 | } |
2411 | for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0; |
2412 | |
2413 | // if there's a velocity dimension and custom velocity zone splits are used, |
2414 | // update the VelocityTables in the dimension regions |
2415 | UpdateVelocityTable(); |
2416 | |
2417 | // jump to start of the wave pool indices (if not already there) |
2418 | if (file->pVersion && file->pVersion->major == 3) |
2419 | _3lnk->SetPos(68); // version 3 has a different 3lnk structure |
2420 | else |
2421 | _3lnk->SetPos(44); |
2422 | |
2423 | // load sample references (if auto loading is enabled) |
2424 | if (file->GetAutoLoad()) { |
2425 | for (uint i = 0; i < DimensionRegions; i++) { |
2426 | uint32_t wavepoolindex = _3lnk->ReadUint32(); |
2427 | if (file->pWavePoolTable) pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex); |
2428 | } |
2429 | GetSample(); // load global region sample reference |
2430 | } |
2431 | } else { |
2432 | DimensionRegions = 0; |
2433 | for (int i = 0 ; i < 8 ; i++) { |
2434 | pDimensionDefinitions[i].dimension = dimension_none; |
2435 | pDimensionDefinitions[i].bits = 0; |
2436 | pDimensionDefinitions[i].zones = 0; |
2437 | } |
2438 | } |
2439 | |
2440 | // make sure there is at least one dimension region |
2441 | if (!DimensionRegions) { |
2442 | RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG); |
2443 | if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG); |
2444 | RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL); |
2445 | pDimensionRegions[0] = new DimensionRegion(this, _3ewl); |
2446 | DimensionRegions = 1; |
2447 | } |
2448 | } |
2449 | |
2450 | /** |
2451 | * Apply Region settings and all its DimensionRegions to the respective |
2452 | * RIFF chunks. You have to call File::Save() to make changes persistent. |
2453 | * |
2454 | * Usually there is absolutely no need to call this method explicitly. |
2455 | * It will be called automatically when File::Save() was called. |
2456 | * |
2457 | * @throws gig::Exception if samples cannot be dereferenced |
2458 | */ |
2459 | void Region::UpdateChunks() { |
2460 | // in the gig format we don't care about the Region's sample reference |
2461 | // but we still have to provide some existing one to not corrupt the |
2462 | // file, so to avoid the latter we simply always assign the sample of |
2463 | // the first dimension region of this region |
2464 | pSample = pDimensionRegions[0]->pSample; |
2465 | |
2466 | // first update base class's chunks |
2467 | DLS::Region::UpdateChunks(); |
2468 | |
2469 | // update dimension region's chunks |
2470 | for (int i = 0; i < DimensionRegions; i++) { |
2471 | pDimensionRegions[i]->UpdateChunks(); |
2472 | } |
2473 | |
2474 | File* pFile = (File*) GetParent()->GetParent(); |
2475 | bool version3 = pFile->pVersion && pFile->pVersion->major == 3; |
2476 | const int iMaxDimensions = version3 ? 8 : 5; |
2477 | const int iMaxDimensionRegions = version3 ? 256 : 32; |
2478 | |
2479 | // make sure '3lnk' chunk exists |
2480 | RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK); |
2481 | if (!_3lnk) { |
2482 | const int _3lnkChunkSize = version3 ? 1092 : 172; |
2483 | _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize); |
2484 | memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize); |
2485 | |
2486 | // move 3prg to last position |
2487 | pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), 0); |
2488 | } |
2489 | |
2490 | // update dimension definitions in '3lnk' chunk |
2491 | uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData(); |
2492 | store32(&pData[0], DimensionRegions); |
2493 | int shift = 0; |
2494 | for (int i = 0; i < iMaxDimensions; i++) { |
2495 | pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension; |
2496 | pData[5 + i * 8] = pDimensionDefinitions[i].bits; |
2497 | pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift; |
2498 | pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift); |
2499 | pData[8 + i * 8] = pDimensionDefinitions[i].zones; |
2500 | // next 3 bytes unknown, always zero? |
2501 | |
2502 | shift += pDimensionDefinitions[i].bits; |
2503 | } |
2504 | |
2505 | // update wave pool table in '3lnk' chunk |
2506 | const int iWavePoolOffset = version3 ? 68 : 44; |
2507 | for (uint i = 0; i < iMaxDimensionRegions; i++) { |
2508 | int iWaveIndex = -1; |
2509 | if (i < DimensionRegions) { |
2510 | if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples"); |
2511 | File::SampleList::iterator iter = pFile->pSamples->begin(); |
2512 | File::SampleList::iterator end = pFile->pSamples->end(); |
2513 | for (int index = 0; iter != end; ++iter, ++index) { |
2514 | if (*iter == pDimensionRegions[i]->pSample) { |
2515 | iWaveIndex = index; |
2516 | break; |
2517 | } |
2518 | } |
2519 | } |
2520 | store32(&pData[iWavePoolOffset + i * 4], iWaveIndex); |
2521 | } |
2522 | } |
2523 | |
2524 | void Region::LoadDimensionRegions(RIFF::List* rgn) { |
2525 | RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG); |
2526 | if (_3prg) { |
2527 | int dimensionRegionNr = 0; |
2528 | RIFF::List* _3ewl = _3prg->GetFirstSubList(); |
2529 | while (_3ewl) { |
2530 | if (_3ewl->GetListType() == LIST_TYPE_3EWL) { |
2531 | pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl); |
2532 | dimensionRegionNr++; |
2533 | } |
2534 | _3ewl = _3prg->GetNextSubList(); |
2535 | } |
2536 | if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found."); |
2537 | } |
2538 | } |
2539 | |
2540 | void Region::SetKeyRange(uint16_t Low, uint16_t High) { |
2541 | // update KeyRange struct and make sure regions are in correct order |
2542 | DLS::Region::SetKeyRange(Low, High); |
2543 | // update Region key table for fast lookup |
2544 | ((gig::Instrument*)GetParent())->UpdateRegionKeyTable(); |
2545 | } |
2546 | |
2547 | void Region::UpdateVelocityTable() { |
2548 | // get velocity dimension's index |
2549 | int veldim = -1; |
2550 | for (int i = 0 ; i < Dimensions ; i++) { |
2551 | if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) { |
2552 | veldim = i; |
2553 | break; |
2554 | } |
2555 | } |
2556 | if (veldim == -1) return; |
2557 | |
2558 | int step = 1; |
2559 | for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits; |
2560 | int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step; |
2561 | int end = step * pDimensionDefinitions[veldim].zones; |
2562 | |
2563 | // loop through all dimension regions for all dimensions except the velocity dimension |
2564 | int dim[8] = { 0 }; |
2565 | for (int i = 0 ; i < DimensionRegions ; i++) { |
2566 | |
2567 | if (pDimensionRegions[i]->DimensionUpperLimits[veldim] || |
2568 | pDimensionRegions[i]->VelocityUpperLimit) { |
2569 | // create the velocity table |
2570 | uint8_t* table = pDimensionRegions[i]->VelocityTable; |
2571 | if (!table) { |
2572 | table = new uint8_t[128]; |
2573 | pDimensionRegions[i]->VelocityTable = table; |
2574 | } |
2575 | int tableidx = 0; |
2576 | int velocityZone = 0; |
2577 | if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3 |
2578 | for (int k = i ; k < end ; k += step) { |
2579 | DimensionRegion *d = pDimensionRegions[k]; |
2580 | for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone; |
2581 | velocityZone++; |
2582 | } |
2583 | } else { // gig2 |
2584 | for (int k = i ; k < end ; k += step) { |
2585 | DimensionRegion *d = pDimensionRegions[k]; |
2586 | for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone; |
2587 | velocityZone++; |
2588 | } |
2589 | } |
2590 | } else { |
2591 | if (pDimensionRegions[i]->VelocityTable) { |
2592 | delete[] pDimensionRegions[i]->VelocityTable; |
2593 | pDimensionRegions[i]->VelocityTable = 0; |
2594 | } |
2595 | } |
2596 | |
2597 | int j; |
2598 | int shift = 0; |
2599 | for (j = 0 ; j < Dimensions ; j++) { |
2600 | if (j == veldim) i += skipveldim; // skip velocity dimension |
2601 | else { |
2602 | dim[j]++; |
2603 | if (dim[j] < pDimensionDefinitions[j].zones) break; |
2604 | else { |
2605 | // skip unused dimension regions |
2606 | dim[j] = 0; |
2607 | i += ((1 << pDimensionDefinitions[j].bits) - |
2608 | pDimensionDefinitions[j].zones) << shift; |
2609 | } |
2610 | } |
2611 | shift += pDimensionDefinitions[j].bits; |
2612 | } |
2613 | if (j == Dimensions) break; |
2614 | } |
2615 | } |
2616 | |
2617 | /** @brief Einstein would have dreamed of it - create a new dimension. |
2618 | * |
2619 | * Creates a new dimension with the dimension definition given by |
2620 | * \a pDimDef. The appropriate amount of DimensionRegions will be created. |
2621 | * There is a hard limit of dimensions and total amount of "bits" all |
2622 | * dimensions can have. This limit is dependant to what gig file format |
2623 | * version this file refers to. The gig v2 (and lower) format has a |
2624 | * dimension limit and total amount of bits limit of 5, whereas the gig v3 |
2625 | * format has a limit of 8. |
2626 | * |
2627 | * @param pDimDef - defintion of the new dimension |
2628 | * @throws gig::Exception if dimension of the same type exists already |
2629 | * @throws gig::Exception if amount of dimensions or total amount of |
2630 | * dimension bits limit is violated |
2631 | */ |
2632 | void Region::AddDimension(dimension_def_t* pDimDef) { |
2633 | // check if max. amount of dimensions reached |
2634 | File* file = (File*) GetParent()->GetParent(); |
2635 | const int iMaxDimensions = (file->pVersion && file->pVersion->major == 3) ? 8 : 5; |
2636 | if (Dimensions >= iMaxDimensions) |
2637 | throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached"); |
2638 | // check if max. amount of dimension bits reached |
2639 | int iCurrentBits = 0; |
2640 | for (int i = 0; i < Dimensions; i++) |
2641 | iCurrentBits += pDimensionDefinitions[i].bits; |
2642 | if (iCurrentBits >= iMaxDimensions) |
2643 | throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached"); |
2644 | const int iNewBits = iCurrentBits + pDimDef->bits; |
2645 | if (iNewBits > iMaxDimensions) |
2646 | throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits"); |
2647 | // check if there's already a dimensions of the same type |
2648 | for (int i = 0; i < Dimensions; i++) |
2649 | if (pDimensionDefinitions[i].dimension == pDimDef->dimension) |
2650 | throw gig::Exception("Could not add new dimension, there is already a dimension of the same type"); |
2651 | |
2652 | // pos is where the new dimension should be placed, normally |
2653 | // last in list, except for the samplechannel dimension which |
2654 | // has to be first in list |
2655 | int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions; |
2656 | int bitpos = 0; |
2657 | for (int i = 0 ; i < pos ; i++) |
2658 | bitpos += pDimensionDefinitions[i].bits; |
2659 | |
2660 | // make room for the new dimension |
2661 | for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1]; |
2662 | for (int i = 0 ; i < (1 << iCurrentBits) ; i++) { |
2663 | for (int j = Dimensions ; j > pos ; j--) { |
2664 | pDimensionRegions[i]->DimensionUpperLimits[j] = |
2665 | pDimensionRegions[i]->DimensionUpperLimits[j - 1]; |
2666 | } |
2667 | } |
2668 | |
2669 | // assign definition of new dimension |
2670 | pDimensionDefinitions[pos] = *pDimDef; |
2671 | |
2672 | // auto correct certain dimension definition fields (where possible) |
2673 | pDimensionDefinitions[pos].split_type = |
2674 | __resolveSplitType(pDimensionDefinitions[pos].dimension); |
2675 | pDimensionDefinitions[pos].zone_size = |
2676 | __resolveZoneSize(pDimensionDefinitions[pos]); |
2677 | |
2678 | // create new dimension region(s) for this new dimension, and make |
2679 | // sure that the dimension regions are placed correctly in both the |
2680 | // RIFF list and the pDimensionRegions array |
2681 | RIFF::Chunk* moveTo = NULL; |
2682 | RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG); |
2683 | for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) { |
2684 | for (int k = 0 ; k < (1 << bitpos) ; k++) { |
2685 | pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k]; |
2686 | } |
2687 | for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) { |
2688 | for (int k = 0 ; k < (1 << bitpos) ; k++) { |
2689 | RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL); |
2690 | if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo); |
2691 | // create a new dimension region and copy all parameter values from |
2692 | // an existing dimension region |
2693 | pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] = |
2694 | new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]); |
2695 | |
2696 | DimensionRegions++; |
2697 | } |
2698 | } |
2699 | moveTo = pDimensionRegions[i]->pParentList; |
2700 | } |
2701 | |
2702 | // initialize the upper limits for this dimension |
2703 | int mask = (1 << bitpos) - 1; |
2704 | for (int z = 0 ; z < pDimDef->zones ; z++) { |
2705 | uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1); |
2706 | for (int i = 0 ; i < 1 << iCurrentBits ; i++) { |
2707 | pDimensionRegions[((i & ~mask) << pDimDef->bits) | |
2708 | (z << bitpos) | |
2709 | (i & mask)]->DimensionUpperLimits[pos] = upperLimit; |
2710 | } |
2711 | } |
2712 | |
2713 | Dimensions++; |
2714 | |
2715 | // if this is a layer dimension, update 'Layers' attribute |
2716 | if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones; |
2717 | |
2718 | UpdateVelocityTable(); |
2719 | } |
2720 | |
2721 | /** @brief Delete an existing dimension. |
2722 | * |
2723 | * Deletes the dimension given by \a pDimDef and deletes all respective |
2724 | * dimension regions, that is all dimension regions where the dimension's |
2725 | * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension |
2726 | * for example this would delete all dimension regions for the case(s) |
2727 | * where the sustain pedal is pressed down. |
2728 | * |
2729 | * @param pDimDef - dimension to delete |
2730 | * @throws gig::Exception if given dimension cannot be found |
2731 | */ |
2732 | void Region::DeleteDimension(dimension_def_t* pDimDef) { |
2733 | // get dimension's index |
2734 | int iDimensionNr = -1; |
2735 | for (int i = 0; i < Dimensions; i++) { |
2736 | if (&pDimensionDefinitions[i] == pDimDef) { |
2737 | iDimensionNr = i; |
2738 | break; |
2739 | } |
2740 | } |
2741 | if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer"); |
2742 | |
2743 | // get amount of bits below the dimension to delete |
2744 | int iLowerBits = 0; |
2745 | for (int i = 0; i < iDimensionNr; i++) |
2746 | iLowerBits += pDimensionDefinitions[i].bits; |
2747 | |
2748 | // get amount ot bits above the dimension to delete |
2749 | int iUpperBits = 0; |
2750 | for (int i = iDimensionNr + 1; i < Dimensions; i++) |
2751 | iUpperBits += pDimensionDefinitions[i].bits; |
2752 | |
2753 | RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG); |
2754 | |
2755 | // delete dimension regions which belong to the given dimension |
2756 | // (that is where the dimension's bit > 0) |
2757 | for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) { |
2758 | for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) { |
2759 | for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) { |
2760 | int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) | |
2761 | iObsoleteBit << iLowerBits | |
2762 | iLowerBit; |
2763 | |
2764 | _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList); |
2765 | delete pDimensionRegions[iToDelete]; |
2766 | pDimensionRegions[iToDelete] = NULL; |
2767 | DimensionRegions--; |
2768 | } |
2769 | } |
2770 | } |
2771 | |
2772 | // defrag pDimensionRegions array |
2773 | // (that is remove the NULL spaces within the pDimensionRegions array) |
2774 | for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) { |
2775 | if (!pDimensionRegions[iTo]) { |
2776 | if (iFrom <= iTo) iFrom = iTo + 1; |
2777 | while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++; |
2778 | if (iFrom < 256 && pDimensionRegions[iFrom]) { |
2779 | pDimensionRegions[iTo] = pDimensionRegions[iFrom]; |
2780 | pDimensionRegions[iFrom] = NULL; |
2781 | } |
2782 | } |
2783 | } |
2784 | |
2785 | // remove the this dimension from the upper limits arrays |
2786 | for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) { |
2787 | DimensionRegion* d = pDimensionRegions[j]; |
2788 | for (int i = iDimensionNr + 1; i < Dimensions; i++) { |
2789 | d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i]; |
2790 | } |
2791 | d->DimensionUpperLimits[Dimensions - 1] = 127; |
2792 | } |
2793 | |
2794 | // 'remove' dimension definition |
2795 | for (int i = iDimensionNr + 1; i < Dimensions; i++) { |
2796 | pDimensionDefinitions[i - 1] = pDimensionDefinitions[i]; |
2797 | } |
2798 | pDimensionDefinitions[Dimensions - 1].dimension = dimension_none; |
2799 | pDimensionDefinitions[Dimensions - 1].bits = 0; |
2800 | pDimensionDefinitions[Dimensions - 1].zones = 0; |
2801 | |
2802 | Dimensions--; |
2803 | |
2804 | // if this was a layer dimension, update 'Layers' attribute |
2805 | if (pDimDef->dimension == dimension_layer) Layers = 1; |
2806 | } |
2807 | |
2808 | Region::~Region() { |
2809 | for (int i = 0; i < 256; i++) { |
2810 | if (pDimensionRegions[i]) delete pDimensionRegions[i]; |
2811 | } |
2812 | } |
2813 | |
2814 | /** |
2815 | * Use this method in your audio engine to get the appropriate dimension |
2816 | * region with it's articulation data for the current situation. Just |
2817 | * call the method with the current MIDI controller values and you'll get |
2818 | * the DimensionRegion with the appropriate articulation data for the |
2819 | * current situation (for this Region of course only). To do that you'll |
2820 | * first have to look which dimensions with which controllers and in |
2821 | * which order are defined for this Region when you load the .gig file. |
2822 | * Special cases are e.g. layer or channel dimensions where you just put |
2823 | * in the index numbers instead of a MIDI controller value (means 0 for |
2824 | * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1, |
2825 | * etc.). |
2826 | * |
2827 | * @param DimValues MIDI controller values (0-127) for dimension 0 to 7 |
2828 | * @returns adress to the DimensionRegion for the given situation |
2829 | * @see pDimensionDefinitions |
2830 | * @see Dimensions |
2831 | */ |
2832 | DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) { |
2833 | uint8_t bits; |
2834 | int veldim = -1; |
2835 | int velbitpos; |
2836 | int bitpos = 0; |
2837 | int dimregidx = 0; |
2838 | for (uint i = 0; i < Dimensions; i++) { |
2839 | if (pDimensionDefinitions[i].dimension == dimension_velocity) { |
2840 | // the velocity dimension must be handled after the other dimensions |
2841 | veldim = i; |
2842 | velbitpos = bitpos; |
2843 | } else { |
2844 | switch (pDimensionDefinitions[i].split_type) { |
2845 | case split_type_normal: |
2846 | if (pDimensionRegions[0]->DimensionUpperLimits[i]) { |
2847 | // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges |
2848 | for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) { |
2849 | if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break; |
2850 | } |
2851 | } else { |
2852 | // gig2: evenly sized zones |
2853 | bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size); |
2854 | } |
2855 | break; |
2856 | case split_type_bit: // the value is already the sought dimension bit number |
2857 | const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff; |
2858 | bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed |
2859 | break; |
2860 | } |
2861 | dimregidx |= bits << bitpos; |
2862 | } |
2863 | bitpos += pDimensionDefinitions[i].bits; |
2864 | } |
2865 | DimensionRegion* dimreg = pDimensionRegions[dimregidx]; |
2866 | if (veldim != -1) { |
2867 | // (dimreg is now the dimension region for the lowest velocity) |
2868 | if (dimreg->VelocityTable) // custom defined zone ranges |
2869 | bits = dimreg->VelocityTable[DimValues[veldim]]; |
2870 | else // normal split type |
2871 | bits = uint8_t(DimValues[veldim] / pDimensionDefinitions[veldim].zone_size); |
2872 | |
2873 | dimregidx |= bits << velbitpos; |
2874 | dimreg = pDimensionRegions[dimregidx]; |
2875 | } |
2876 | return dimreg; |
2877 | } |
2878 | |
2879 | /** |
2880 | * Returns the appropriate DimensionRegion for the given dimension bit |
2881 | * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i> |
2882 | * instead of calling this method directly! |
2883 | * |
2884 | * @param DimBits Bit numbers for dimension 0 to 7 |
2885 | * @returns adress to the DimensionRegion for the given dimension |
2886 | * bit numbers |
2887 | * @see GetDimensionRegionByValue() |
2888 | */ |
2889 | DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) { |
2890 | return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6]) |
2891 | << pDimensionDefinitions[5].bits | DimBits[5]) |
2892 | << pDimensionDefinitions[4].bits | DimBits[4]) |
2893 | << pDimensionDefinitions[3].bits | DimBits[3]) |
2894 | << pDimensionDefinitions[2].bits | DimBits[2]) |
2895 | << pDimensionDefinitions[1].bits | DimBits[1]) |
2896 | << pDimensionDefinitions[0].bits | DimBits[0]]; |
2897 | } |
2898 | |
2899 | /** |
2900 | * Returns pointer address to the Sample referenced with this region. |
2901 | * This is the global Sample for the entire Region (not sure if this is |
2902 | * actually used by the Gigasampler engine - I would only use the Sample |
2903 | * referenced by the appropriate DimensionRegion instead of this sample). |
2904 | * |
2905 | * @returns address to Sample or NULL if there is no reference to a |
2906 | * sample saved in the .gig file |
2907 | */ |
2908 | Sample* Region::GetSample() { |
2909 | if (pSample) return static_cast<gig::Sample*>(pSample); |
2910 | else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex)); |
2911 | } |
2912 | |
2913 | Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) { |
2914 | if ((int32_t)WavePoolTableIndex == -1) return NULL; |
2915 | File* file = (File*) GetParent()->GetParent(); |
2916 | if (!file->pWavePoolTable) return NULL; |
2917 | unsigned long soughtoffset = file->pWavePoolTable[WavePoolTableIndex]; |
2918 | unsigned long soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex]; |
2919 | Sample* sample = file->GetFirstSample(pProgress); |
2920 | while (sample) { |
2921 | if (sample->ulWavePoolOffset == soughtoffset && |
2922 | sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample); |
2923 | sample = file->GetNextSample(); |
2924 | } |
2925 | return NULL; |
2926 | } |
2927 | |
2928 | |
2929 | // *************** MidiRule *************** |
2930 | // * |
2931 | |
2932 | MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) { |
2933 | _3ewg->SetPos(36); |
2934 | Triggers = _3ewg->ReadUint8(); |
2935 | _3ewg->SetPos(40); |
2936 | ControllerNumber = _3ewg->ReadUint8(); |
2937 | _3ewg->SetPos(46); |
2938 | for (int i = 0 ; i < Triggers ; i++) { |
2939 | pTriggers[i].TriggerPoint = _3ewg->ReadUint8(); |
2940 | pTriggers[i].Descending = _3ewg->ReadUint8(); |
2941 | pTriggers[i].VelSensitivity = _3ewg->ReadUint8(); |
2942 | pTriggers[i].Key = _3ewg->ReadUint8(); |
2943 | pTriggers[i].NoteOff = _3ewg->ReadUint8(); |
2944 | pTriggers[i].Velocity = _3ewg->ReadUint8(); |
2945 | pTriggers[i].OverridePedal = _3ewg->ReadUint8(); |
2946 | _3ewg->ReadUint8(); |
2947 | } |
2948 | } |
2949 | |
2950 | |
2951 | // *************** Instrument *************** |
2952 | // * |
2953 | |
2954 | Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) { |
2955 | static const DLS::Info::string_length_t fixedStringLengths[] = { |
2956 | { CHUNK_ID_INAM, 64 }, |
2957 | { CHUNK_ID_ISFT, 12 }, |
2958 | { 0, 0 } |
2959 | }; |
2960 | pInfo->SetFixedStringLengths(fixedStringLengths); |
2961 | |
2962 | // Initialization |
2963 | for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL; |
2964 | EffectSend = 0; |
2965 | Attenuation = 0; |
2966 | FineTune = 0; |
2967 | PitchbendRange = 0; |
2968 | PianoReleaseMode = false; |
2969 | DimensionKeyRange.low = 0; |
2970 | DimensionKeyRange.high = 0; |
2971 | pMidiRules = new MidiRule*[3]; |
2972 | pMidiRules[0] = NULL; |
2973 | |
2974 | // Loading |
2975 | RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART); |
2976 | if (lart) { |
2977 | RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG); |
2978 | if (_3ewg) { |
2979 | EffectSend = _3ewg->ReadUint16(); |
2980 | Attenuation = _3ewg->ReadInt32(); |
2981 | FineTune = _3ewg->ReadInt16(); |
2982 | PitchbendRange = _3ewg->ReadInt16(); |
2983 | uint8_t dimkeystart = _3ewg->ReadUint8(); |
2984 | PianoReleaseMode = dimkeystart & 0x01; |
2985 | DimensionKeyRange.low = dimkeystart >> 1; |
2986 | DimensionKeyRange.high = _3ewg->ReadUint8(); |
2987 | |
2988 | if (_3ewg->GetSize() > 32) { |
2989 | // read MIDI rules |
2990 | int i = 0; |
2991 | _3ewg->SetPos(32); |
2992 | uint8_t id1 = _3ewg->ReadUint8(); |
2993 | uint8_t id2 = _3ewg->ReadUint8(); |
2994 | |
2995 | if (id1 == 4 && id2 == 16) { |
2996 | pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg); |
2997 | } |
2998 | //TODO: all the other types of rules |
2999 | |
3000 | pMidiRules[i] = NULL; |
3001 | } |
3002 | } |
3003 | } |
3004 | |
3005 | if (pFile->GetAutoLoad()) { |
3006 | if (!pRegions) pRegions = new RegionList; |
3007 | RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN); |
3008 | if (lrgn) { |
3009 | RIFF::List* rgn = lrgn->GetFirstSubList(); |
3010 | while (rgn) { |
3011 | if (rgn->GetListType() == LIST_TYPE_RGN) { |
3012 | __notify_progress(pProgress, (float) pRegions->size() / (float) Regions); |
3013 | pRegions->push_back(new Region(this, rgn)); |
3014 | } |
3015 | rgn = lrgn->GetNextSubList(); |
3016 | } |
3017 | // Creating Region Key Table for fast lookup |
3018 | UpdateRegionKeyTable(); |
3019 | } |
3020 | } |
3021 | |
3022 | __notify_progress(pProgress, 1.0f); // notify done |
3023 | } |
3024 | |
3025 | void Instrument::UpdateRegionKeyTable() { |
3026 | for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL; |
3027 | RegionList::iterator iter = pRegions->begin(); |
3028 | RegionList::iterator end = pRegions->end(); |
3029 | for (; iter != end; ++iter) { |
3030 | gig::Region* pRegion = static_cast<gig::Region*>(*iter); |
3031 | for (int iKey = pRegion->KeyRange.low; iKey <= pRegion->KeyRange.high; iKey++) { |
3032 | RegionKeyTable[iKey] = pRegion; |
3033 | } |
3034 | } |
3035 | } |
3036 | |
3037 | Instrument::~Instrument() { |
3038 | delete[] pMidiRules; |
3039 | } |
3040 | |
3041 | /** |
3042 | * Apply Instrument with all its Regions to the respective RIFF chunks. |
3043 | * You have to call File::Save() to make changes persistent. |
3044 | * |
3045 | * Usually there is absolutely no need to call this method explicitly. |
3046 | * It will be called automatically when File::Save() was called. |
3047 | * |
3048 | * @throws gig::Exception if samples cannot be dereferenced |
3049 | */ |
3050 | void Instrument::UpdateChunks() { |