/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Contents of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3656 - (show annotations) (download)
Sat Dec 14 17:04:28 2019 UTC (3 years, 11 months ago) by schoenebeck
File size: 296985 byte(s)
* Compatibility fix (gig.cpp): GigaStudio always expects 128 '3gnm' RIFF
  chunks (patch by Ivan Maguidhir).

1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file access library *
4 * *
5 * Copyright (C) 2003-2019 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #include "gig.h"
25
26 #include "helper.h"
27 #include "Serialization.h"
28
29 #include <algorithm>
30 #include <math.h>
31 #include <iostream>
32 #include <assert.h>
33
34 /// libgig's current file format version (for extending the original Giga file
35 /// format with libgig's own custom data / custom features).
36 #define GIG_FILE_EXT_VERSION 2
37
38 /// Initial size of the sample buffer which is used for decompression of
39 /// compressed sample wave streams - this value should always be bigger than
40 /// the biggest sample piece expected to be read by the sampler engine,
41 /// otherwise the buffer size will be raised at runtime and thus the buffer
42 /// reallocated which is time consuming and unefficient.
43 #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
44
45 /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
46 #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
47 #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
48 #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
49 #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
50 #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
51 #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
52 #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
53 #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
54 #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
55 #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
56 #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
57 #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
58
59 #define SRLZ(member) \
60 archive->serializeMember(*this, member, #member);
61
62 namespace gig {
63
64 // *************** Internal functions for sample decompression ***************
65 // *
66
67 namespace {
68
69 inline int get12lo(const unsigned char* pSrc)
70 {
71 const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
72 return x & 0x800 ? x - 0x1000 : x;
73 }
74
75 inline int get12hi(const unsigned char* pSrc)
76 {
77 const int x = pSrc[1] >> 4 | pSrc[2] << 4;
78 return x & 0x800 ? x - 0x1000 : x;
79 }
80
81 inline int16_t get16(const unsigned char* pSrc)
82 {
83 return int16_t(pSrc[0] | pSrc[1] << 8);
84 }
85
86 inline int get24(const unsigned char* pSrc)
87 {
88 const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
89 return x & 0x800000 ? x - 0x1000000 : x;
90 }
91
92 inline void store24(unsigned char* pDst, int x)
93 {
94 pDst[0] = x;
95 pDst[1] = x >> 8;
96 pDst[2] = x >> 16;
97 }
98
99 void Decompress16(int compressionmode, const unsigned char* params,
100 int srcStep, int dstStep,
101 const unsigned char* pSrc, int16_t* pDst,
102 file_offset_t currentframeoffset,
103 file_offset_t copysamples)
104 {
105 switch (compressionmode) {
106 case 0: // 16 bit uncompressed
107 pSrc += currentframeoffset * srcStep;
108 while (copysamples) {
109 *pDst = get16(pSrc);
110 pDst += dstStep;
111 pSrc += srcStep;
112 copysamples--;
113 }
114 break;
115
116 case 1: // 16 bit compressed to 8 bit
117 int y = get16(params);
118 int dy = get16(params + 2);
119 while (currentframeoffset) {
120 dy -= int8_t(*pSrc);
121 y -= dy;
122 pSrc += srcStep;
123 currentframeoffset--;
124 }
125 while (copysamples) {
126 dy -= int8_t(*pSrc);
127 y -= dy;
128 *pDst = y;
129 pDst += dstStep;
130 pSrc += srcStep;
131 copysamples--;
132 }
133 break;
134 }
135 }
136
137 void Decompress24(int compressionmode, const unsigned char* params,
138 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
139 file_offset_t currentframeoffset,
140 file_offset_t copysamples, int truncatedBits)
141 {
142 int y, dy, ddy, dddy;
143
144 #define GET_PARAMS(params) \
145 y = get24(params); \
146 dy = y - get24((params) + 3); \
147 ddy = get24((params) + 6); \
148 dddy = get24((params) + 9)
149
150 #define SKIP_ONE(x) \
151 dddy -= (x); \
152 ddy -= dddy; \
153 dy = -dy - ddy; \
154 y += dy
155
156 #define COPY_ONE(x) \
157 SKIP_ONE(x); \
158 store24(pDst, y << truncatedBits); \
159 pDst += dstStep
160
161 switch (compressionmode) {
162 case 2: // 24 bit uncompressed
163 pSrc += currentframeoffset * 3;
164 while (copysamples) {
165 store24(pDst, get24(pSrc) << truncatedBits);
166 pDst += dstStep;
167 pSrc += 3;
168 copysamples--;
169 }
170 break;
171
172 case 3: // 24 bit compressed to 16 bit
173 GET_PARAMS(params);
174 while (currentframeoffset) {
175 SKIP_ONE(get16(pSrc));
176 pSrc += 2;
177 currentframeoffset--;
178 }
179 while (copysamples) {
180 COPY_ONE(get16(pSrc));
181 pSrc += 2;
182 copysamples--;
183 }
184 break;
185
186 case 4: // 24 bit compressed to 12 bit
187 GET_PARAMS(params);
188 while (currentframeoffset > 1) {
189 SKIP_ONE(get12lo(pSrc));
190 SKIP_ONE(get12hi(pSrc));
191 pSrc += 3;
192 currentframeoffset -= 2;
193 }
194 if (currentframeoffset) {
195 SKIP_ONE(get12lo(pSrc));
196 currentframeoffset--;
197 if (copysamples) {
198 COPY_ONE(get12hi(pSrc));
199 pSrc += 3;
200 copysamples--;
201 }
202 }
203 while (copysamples > 1) {
204 COPY_ONE(get12lo(pSrc));
205 COPY_ONE(get12hi(pSrc));
206 pSrc += 3;
207 copysamples -= 2;
208 }
209 if (copysamples) {
210 COPY_ONE(get12lo(pSrc));
211 }
212 break;
213
214 case 5: // 24 bit compressed to 8 bit
215 GET_PARAMS(params);
216 while (currentframeoffset) {
217 SKIP_ONE(int8_t(*pSrc++));
218 currentframeoffset--;
219 }
220 while (copysamples) {
221 COPY_ONE(int8_t(*pSrc++));
222 copysamples--;
223 }
224 break;
225 }
226 }
227
228 const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
229 const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
230 const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
231 const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
232 }
233
234
235
236 // *************** Internal CRC-32 (Cyclic Redundancy Check) functions ***************
237 // *
238
239 static uint32_t* __initCRCTable() {
240 static uint32_t res[256];
241
242 for (int i = 0 ; i < 256 ; i++) {
243 uint32_t c = i;
244 for (int j = 0 ; j < 8 ; j++) {
245 c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
246 }
247 res[i] = c;
248 }
249 return res;
250 }
251
252 static const uint32_t* __CRCTable = __initCRCTable();
253
254 /**
255 * Initialize a CRC variable.
256 *
257 * @param crc - variable to be initialized
258 */
259 inline static void __resetCRC(uint32_t& crc) {
260 crc = 0xffffffff;
261 }
262
263 /**
264 * Used to calculate checksums of the sample data in a gig file. The
265 * checksums are stored in the 3crc chunk of the gig file and
266 * automatically updated when a sample is written with Sample::Write().
267 *
268 * One should call __resetCRC() to initialize the CRC variable to be
269 * used before calling this function the first time.
270 *
271 * After initializing the CRC variable one can call this function
272 * arbitrary times, i.e. to split the overall CRC calculation into
273 * steps.
274 *
275 * Once the whole data was processed by __calculateCRC(), one should
276 * call __finalizeCRC() to get the final CRC result.
277 *
278 * @param buf - pointer to data the CRC shall be calculated of
279 * @param bufSize - size of the data to be processed
280 * @param crc - variable the CRC sum shall be stored to
281 */
282 static void __calculateCRC(unsigned char* buf, size_t bufSize, uint32_t& crc) {
283 for (size_t i = 0 ; i < bufSize ; i++) {
284 crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
285 }
286 }
287
288 /**
289 * Returns the final CRC result.
290 *
291 * @param crc - variable previously passed to __calculateCRC()
292 */
293 inline static void __finalizeCRC(uint32_t& crc) {
294 crc ^= 0xffffffff;
295 }
296
297
298
299 // *************** Other Internal functions ***************
300 // *
301
302 static split_type_t __resolveSplitType(dimension_t dimension) {
303 return (
304 dimension == dimension_layer ||
305 dimension == dimension_samplechannel ||
306 dimension == dimension_releasetrigger ||
307 dimension == dimension_keyboard ||
308 dimension == dimension_roundrobin ||
309 dimension == dimension_random ||
310 dimension == dimension_smartmidi ||
311 dimension == dimension_roundrobinkeyboard
312 ) ? split_type_bit : split_type_normal;
313 }
314
315 static int __resolveZoneSize(dimension_def_t& dimension_definition) {
316 return (dimension_definition.split_type == split_type_normal)
317 ? int(128.0 / dimension_definition.zones) : 0;
318 }
319
320
321
322 // *************** leverage_ctrl_t ***************
323 // *
324
325 void leverage_ctrl_t::serialize(Serialization::Archive* archive) {
326 SRLZ(type);
327 SRLZ(controller_number);
328 }
329
330
331
332 // *************** crossfade_t ***************
333 // *
334
335 void crossfade_t::serialize(Serialization::Archive* archive) {
336 SRLZ(in_start);
337 SRLZ(in_end);
338 SRLZ(out_start);
339 SRLZ(out_end);
340 }
341
342
343
344 // *************** eg_opt_t ***************
345 // *
346
347 eg_opt_t::eg_opt_t() {
348 AttackCancel = true;
349 AttackHoldCancel = true;
350 Decay1Cancel = true;
351 Decay2Cancel = true;
352 ReleaseCancel = true;
353 }
354
355 void eg_opt_t::serialize(Serialization::Archive* archive) {
356 SRLZ(AttackCancel);
357 SRLZ(AttackHoldCancel);
358 SRLZ(Decay1Cancel);
359 SRLZ(Decay2Cancel);
360 SRLZ(ReleaseCancel);
361 }
362
363
364
365 // *************** Sample ***************
366 // *
367
368 size_t Sample::Instances = 0;
369 buffer_t Sample::InternalDecompressionBuffer;
370
371 /** @brief Constructor.
372 *
373 * Load an existing sample or create a new one. A 'wave' list chunk must
374 * be given to this constructor. In case the given 'wave' list chunk
375 * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
376 * format and sample data will be loaded from there, otherwise default
377 * values will be used and those chunks will be created when
378 * File::Save() will be called later on.
379 *
380 * @param pFile - pointer to gig::File where this sample is
381 * located (or will be located)
382 * @param waveList - pointer to 'wave' list chunk which is (or
383 * will be) associated with this sample
384 * @param WavePoolOffset - offset of this sample data from wave pool
385 * ('wvpl') list chunk
386 * @param fileNo - number of an extension file where this sample
387 * is located, 0 otherwise
388 * @param index - wave pool index of sample (may be -1 on new sample)
389 */
390 Sample::Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo, int index)
391 : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset)
392 {
393 static const DLS::Info::string_length_t fixedStringLengths[] = {
394 { CHUNK_ID_INAM, 64 },
395 { 0, 0 }
396 };
397 pInfo->SetFixedStringLengths(fixedStringLengths);
398 Instances++;
399 FileNo = fileNo;
400
401 __resetCRC(crc);
402 // if this is not a new sample, try to get the sample's already existing
403 // CRC32 checksum from disk, this checksum will reflect the sample's CRC32
404 // checksum of the time when the sample was consciously modified by the
405 // user for the last time (by calling Sample::Write() that is).
406 if (index >= 0) { // not a new file ...
407 try {
408 uint32_t crc = pFile->GetSampleChecksumByIndex(index);
409 this->crc = crc;
410 } catch (...) {}
411 }
412
413 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
414 if (pCk3gix) {
415 pCk3gix->SetPos(0);
416
417 uint16_t iSampleGroup = pCk3gix->ReadInt16();
418 pGroup = pFile->GetGroup(iSampleGroup);
419 } else { // '3gix' chunk missing
420 // by default assigned to that mandatory "Default Group"
421 pGroup = pFile->GetGroup(0);
422 }
423
424 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
425 if (pCkSmpl) {
426 pCkSmpl->SetPos(0);
427
428 Manufacturer = pCkSmpl->ReadInt32();
429 Product = pCkSmpl->ReadInt32();
430 SamplePeriod = pCkSmpl->ReadInt32();
431 MIDIUnityNote = pCkSmpl->ReadInt32();
432 FineTune = pCkSmpl->ReadInt32();
433 pCkSmpl->Read(&SMPTEFormat, 1, 4);
434 SMPTEOffset = pCkSmpl->ReadInt32();
435 Loops = pCkSmpl->ReadInt32();
436 pCkSmpl->ReadInt32(); // manufByt
437 LoopID = pCkSmpl->ReadInt32();
438 pCkSmpl->Read(&LoopType, 1, 4);
439 LoopStart = pCkSmpl->ReadInt32();
440 LoopEnd = pCkSmpl->ReadInt32();
441 LoopFraction = pCkSmpl->ReadInt32();
442 LoopPlayCount = pCkSmpl->ReadInt32();
443 } else { // 'smpl' chunk missing
444 // use default values
445 Manufacturer = 0;
446 Product = 0;
447 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
448 MIDIUnityNote = 60;
449 FineTune = 0;
450 SMPTEFormat = smpte_format_no_offset;
451 SMPTEOffset = 0;
452 Loops = 0;
453 LoopID = 0;
454 LoopType = loop_type_normal;
455 LoopStart = 0;
456 LoopEnd = 0;
457 LoopFraction = 0;
458 LoopPlayCount = 0;
459 }
460
461 FrameTable = NULL;
462 SamplePos = 0;
463 RAMCache.Size = 0;
464 RAMCache.pStart = NULL;
465 RAMCache.NullExtensionSize = 0;
466
467 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
468
469 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
470 Compressed = ewav;
471 Dithered = false;
472 TruncatedBits = 0;
473 if (Compressed) {
474 ewav->SetPos(0);
475
476 uint32_t version = ewav->ReadInt32();
477 if (version > 2 && BitDepth == 24) {
478 Dithered = ewav->ReadInt32();
479 ewav->SetPos(Channels == 2 ? 84 : 64);
480 TruncatedBits = ewav->ReadInt32();
481 }
482 ScanCompressedSample();
483 }
484
485 // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
486 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
487 InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
488 InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
489 }
490 FrameOffset = 0; // just for streaming compressed samples
491
492 LoopSize = LoopEnd - LoopStart + 1;
493 }
494
495 /**
496 * Make a (semi) deep copy of the Sample object given by @a orig (without
497 * the actual waveform data) and assign it to this object.
498 *
499 * Discussion: copying .gig samples is a bit tricky. It requires three
500 * steps:
501 * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
502 * its new sample waveform data size.
503 * 2. Saving the file (done by File::Save()) so that it gains correct size
504 * and layout for writing the actual wave form data directly to disc
505 * in next step.
506 * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
507 *
508 * @param orig - original Sample object to be copied from
509 */
510 void Sample::CopyAssignMeta(const Sample* orig) {
511 // handle base classes
512 DLS::Sample::CopyAssignCore(orig);
513
514 // handle actual own attributes of this class
515 Manufacturer = orig->Manufacturer;
516 Product = orig->Product;
517 SamplePeriod = orig->SamplePeriod;
518 MIDIUnityNote = orig->MIDIUnityNote;
519 FineTune = orig->FineTune;
520 SMPTEFormat = orig->SMPTEFormat;
521 SMPTEOffset = orig->SMPTEOffset;
522 Loops = orig->Loops;
523 LoopID = orig->LoopID;
524 LoopType = orig->LoopType;
525 LoopStart = orig->LoopStart;
526 LoopEnd = orig->LoopEnd;
527 LoopSize = orig->LoopSize;
528 LoopFraction = orig->LoopFraction;
529 LoopPlayCount = orig->LoopPlayCount;
530
531 // schedule resizing this sample to the given sample's size
532 Resize(orig->GetSize());
533 }
534
535 /**
536 * Should be called after CopyAssignMeta() and File::Save() sequence.
537 * Read more about it in the discussion of CopyAssignMeta(). This method
538 * copies the actual waveform data by disk streaming.
539 *
540 * @e CAUTION: this method is currently not thread safe! During this
541 * operation the sample must not be used for other purposes by other
542 * threads!
543 *
544 * @param orig - original Sample object to be copied from
545 */
546 void Sample::CopyAssignWave(const Sample* orig) {
547 const int iReadAtOnce = 32*1024;
548 char* buf = new char[iReadAtOnce * orig->FrameSize];
549 Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
550 file_offset_t restorePos = pOrig->GetPos();
551 pOrig->SetPos(0);
552 SetPos(0);
553 for (file_offset_t n = pOrig->Read(buf, iReadAtOnce); n;
554 n = pOrig->Read(buf, iReadAtOnce))
555 {
556 Write(buf, n);
557 }
558 pOrig->SetPos(restorePos);
559 delete [] buf;
560 }
561
562 /**
563 * Apply sample and its settings to the respective RIFF chunks. You have
564 * to call File::Save() to make changes persistent.
565 *
566 * Usually there is absolutely no need to call this method explicitly.
567 * It will be called automatically when File::Save() was called.
568 *
569 * @param pProgress - callback function for progress notification
570 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
571 * was provided yet
572 * @throws gig::Exception if there is any invalid sample setting
573 */
574 void Sample::UpdateChunks(progress_t* pProgress) {
575 // first update base class's chunks
576 DLS::Sample::UpdateChunks(pProgress);
577
578 // make sure 'smpl' chunk exists
579 pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
580 if (!pCkSmpl) {
581 pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
582 memset(pCkSmpl->LoadChunkData(), 0, 60);
583 }
584 // update 'smpl' chunk
585 uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
586 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
587 store32(&pData[0], Manufacturer);
588 store32(&pData[4], Product);
589 store32(&pData[8], SamplePeriod);
590 store32(&pData[12], MIDIUnityNote);
591 store32(&pData[16], FineTune);
592 store32(&pData[20], SMPTEFormat);
593 store32(&pData[24], SMPTEOffset);
594 store32(&pData[28], Loops);
595
596 // we skip 'manufByt' for now (4 bytes)
597
598 store32(&pData[36], LoopID);
599 store32(&pData[40], LoopType);
600 store32(&pData[44], LoopStart);
601 store32(&pData[48], LoopEnd);
602 store32(&pData[52], LoopFraction);
603 store32(&pData[56], LoopPlayCount);
604
605 // make sure '3gix' chunk exists
606 pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
607 if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
608 // determine appropriate sample group index (to be stored in chunk)
609 uint16_t iSampleGroup = 0; // 0 refers to default sample group
610 File* pFile = static_cast<File*>(pParent);
611 if (pFile->pGroups) {
612 std::list<Group*>::iterator iter = pFile->pGroups->begin();
613 std::list<Group*>::iterator end = pFile->pGroups->end();
614 for (int i = 0; iter != end; i++, iter++) {
615 if (*iter == pGroup) {
616 iSampleGroup = i;
617 break; // found
618 }
619 }
620 }
621 // update '3gix' chunk
622 pData = (uint8_t*) pCk3gix->LoadChunkData();
623 store16(&pData[0], iSampleGroup);
624
625 // if the library user toggled the "Compressed" attribute from true to
626 // false, then the EWAV chunk associated with compressed samples needs
627 // to be deleted
628 RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
629 if (ewav && !Compressed) {
630 pWaveList->DeleteSubChunk(ewav);
631 }
632 }
633
634 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
635 void Sample::ScanCompressedSample() {
636 //TODO: we have to add some more scans here (e.g. determine compression rate)
637 this->SamplesTotal = 0;
638 std::list<file_offset_t> frameOffsets;
639
640 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
641 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
642
643 // Scanning
644 pCkData->SetPos(0);
645 if (Channels == 2) { // Stereo
646 for (int i = 0 ; ; i++) {
647 // for 24 bit samples every 8:th frame offset is
648 // stored, to save some memory
649 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
650
651 const int mode_l = pCkData->ReadUint8();
652 const int mode_r = pCkData->ReadUint8();
653 if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
654 const file_offset_t frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
655
656 if (pCkData->RemainingBytes() <= frameSize) {
657 SamplesInLastFrame =
658 ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
659 (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
660 SamplesTotal += SamplesInLastFrame;
661 break;
662 }
663 SamplesTotal += SamplesPerFrame;
664 pCkData->SetPos(frameSize, RIFF::stream_curpos);
665 }
666 }
667 else { // Mono
668 for (int i = 0 ; ; i++) {
669 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
670
671 const int mode = pCkData->ReadUint8();
672 if (mode > 5) throw gig::Exception("Unknown compression mode");
673 const file_offset_t frameSize = bytesPerFrame[mode];
674
675 if (pCkData->RemainingBytes() <= frameSize) {
676 SamplesInLastFrame =
677 ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
678 SamplesTotal += SamplesInLastFrame;
679 break;
680 }
681 SamplesTotal += SamplesPerFrame;
682 pCkData->SetPos(frameSize, RIFF::stream_curpos);
683 }
684 }
685 pCkData->SetPos(0);
686
687 // Build the frames table (which is used for fast resolving of a frame's chunk offset)
688 if (FrameTable) delete[] FrameTable;
689 FrameTable = new file_offset_t[frameOffsets.size()];
690 std::list<file_offset_t>::iterator end = frameOffsets.end();
691 std::list<file_offset_t>::iterator iter = frameOffsets.begin();
692 for (int i = 0; iter != end; i++, iter++) {
693 FrameTable[i] = *iter;
694 }
695 }
696
697 /**
698 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
699 * ReleaseSampleData() to free the memory if you don't need the cached
700 * sample data anymore.
701 *
702 * @returns buffer_t structure with start address and size of the buffer
703 * in bytes
704 * @see ReleaseSampleData(), Read(), SetPos()
705 */
706 buffer_t Sample::LoadSampleData() {
707 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
708 }
709
710 /**
711 * Reads (uncompresses if needed) and caches the first \a SampleCount
712 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
713 * memory space if you don't need the cached samples anymore. There is no
714 * guarantee that exactly \a SampleCount samples will be cached; this is
715 * not an error. The size will be eventually truncated e.g. to the
716 * beginning of a frame of a compressed sample. This is done for
717 * efficiency reasons while streaming the wave by your sampler engine
718 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
719 * that will be returned to determine the actual cached samples, but note
720 * that the size is given in bytes! You get the number of actually cached
721 * samples by dividing it by the frame size of the sample:
722 * @code
723 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
724 * long cachedsamples = buf.Size / pSample->FrameSize;
725 * @endcode
726 *
727 * @param SampleCount - number of sample points to load into RAM
728 * @returns buffer_t structure with start address and size of
729 * the cached sample data in bytes
730 * @see ReleaseSampleData(), Read(), SetPos()
731 */
732 buffer_t Sample::LoadSampleData(file_offset_t SampleCount) {
733 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
734 }
735
736 /**
737 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
738 * ReleaseSampleData() to free the memory if you don't need the cached
739 * sample data anymore.
740 * The method will add \a NullSamplesCount silence samples past the
741 * official buffer end (this won't affect the 'Size' member of the
742 * buffer_t structure, that means 'Size' always reflects the size of the
743 * actual sample data, the buffer might be bigger though). Silence
744 * samples past the official buffer are needed for differential
745 * algorithms that always have to take subsequent samples into account
746 * (resampling/interpolation would be an important example) and avoids
747 * memory access faults in such cases.
748 *
749 * @param NullSamplesCount - number of silence samples the buffer should
750 * be extended past it's data end
751 * @returns buffer_t structure with start address and
752 * size of the buffer in bytes
753 * @see ReleaseSampleData(), Read(), SetPos()
754 */
755 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
756 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
757 }
758
759 /**
760 * Reads (uncompresses if needed) and caches the first \a SampleCount
761 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
762 * memory space if you don't need the cached samples anymore. There is no
763 * guarantee that exactly \a SampleCount samples will be cached; this is
764 * not an error. The size will be eventually truncated e.g. to the
765 * beginning of a frame of a compressed sample. This is done for
766 * efficiency reasons while streaming the wave by your sampler engine
767 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
768 * that will be returned to determine the actual cached samples, but note
769 * that the size is given in bytes! You get the number of actually cached
770 * samples by dividing it by the frame size of the sample:
771 * @code
772 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
773 * long cachedsamples = buf.Size / pSample->FrameSize;
774 * @endcode
775 * The method will add \a NullSamplesCount silence samples past the
776 * official buffer end (this won't affect the 'Size' member of the
777 * buffer_t structure, that means 'Size' always reflects the size of the
778 * actual sample data, the buffer might be bigger though). Silence
779 * samples past the official buffer are needed for differential
780 * algorithms that always have to take subsequent samples into account
781 * (resampling/interpolation would be an important example) and avoids
782 * memory access faults in such cases.
783 *
784 * @param SampleCount - number of sample points to load into RAM
785 * @param NullSamplesCount - number of silence samples the buffer should
786 * be extended past it's data end
787 * @returns buffer_t structure with start address and
788 * size of the cached sample data in bytes
789 * @see ReleaseSampleData(), Read(), SetPos()
790 */
791 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount) {
792 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
793 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
794 file_offset_t allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
795 SetPos(0); // reset read position to begin of sample
796 RAMCache.pStart = new int8_t[allocationsize];
797 RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
798 RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
799 // fill the remaining buffer space with silence samples
800 memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
801 return GetCache();
802 }
803
804 /**
805 * Returns current cached sample points. A buffer_t structure will be
806 * returned which contains address pointer to the begin of the cache and
807 * the size of the cached sample data in bytes. Use
808 * <i>LoadSampleData()</i> to cache a specific amount of sample points in
809 * RAM.
810 *
811 * @returns buffer_t structure with current cached sample points
812 * @see LoadSampleData();
813 */
814 buffer_t Sample::GetCache() {
815 // return a copy of the buffer_t structure
816 buffer_t result;
817 result.Size = this->RAMCache.Size;
818 result.pStart = this->RAMCache.pStart;
819 result.NullExtensionSize = this->RAMCache.NullExtensionSize;
820 return result;
821 }
822
823 /**
824 * Frees the cached sample from RAM if loaded with
825 * <i>LoadSampleData()</i> previously.
826 *
827 * @see LoadSampleData();
828 */
829 void Sample::ReleaseSampleData() {
830 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
831 RAMCache.pStart = NULL;
832 RAMCache.Size = 0;
833 RAMCache.NullExtensionSize = 0;
834 }
835
836 /** @brief Resize sample.
837 *
838 * Resizes the sample's wave form data, that is the actual size of
839 * sample wave data possible to be written for this sample. This call
840 * will return immediately and just schedule the resize operation. You
841 * should call File::Save() to actually perform the resize operation(s)
842 * "physically" to the file. As this can take a while on large files, it
843 * is recommended to call Resize() first on all samples which have to be
844 * resized and finally to call File::Save() to perform all those resize
845 * operations in one rush.
846 *
847 * The actual size (in bytes) is dependant to the current FrameSize
848 * value. You may want to set FrameSize before calling Resize().
849 *
850 * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
851 * enlarged samples before calling File::Save() as this might exceed the
852 * current sample's boundary!
853 *
854 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
855 * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
856 * other formats will fail!
857 *
858 * @param NewSize - new sample wave data size in sample points (must be
859 * greater than zero)
860 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
861 * @throws DLS::Exception if \a NewSize is less than 1 or unrealistic large
862 * @throws gig::Exception if existing sample is compressed
863 * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
864 * DLS::Sample::FormatTag, File::Save()
865 */
866 void Sample::Resize(file_offset_t NewSize) {
867 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
868 DLS::Sample::Resize(NewSize);
869 }
870
871 /**
872 * Sets the position within the sample (in sample points, not in
873 * bytes). Use this method and <i>Read()</i> if you don't want to load
874 * the sample into RAM, thus for disk streaming.
875 *
876 * Although the original Gigasampler engine doesn't allow positioning
877 * within compressed samples, I decided to implement it. Even though
878 * the Gigasampler format doesn't allow to define loops for compressed
879 * samples at the moment, positioning within compressed samples might be
880 * interesting for some sampler engines though. The only drawback about
881 * my decision is that it takes longer to load compressed gig Files on
882 * startup, because it's neccessary to scan the samples for some
883 * mandatory informations. But I think as it doesn't affect the runtime
884 * efficiency, nobody will have a problem with that.
885 *
886 * @param SampleCount number of sample points to jump
887 * @param Whence optional: to which relation \a SampleCount refers
888 * to, if omited <i>RIFF::stream_start</i> is assumed
889 * @returns the new sample position
890 * @see Read()
891 */
892 file_offset_t Sample::SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence) {
893 if (Compressed) {
894 switch (Whence) {
895 case RIFF::stream_curpos:
896 this->SamplePos += SampleCount;
897 break;
898 case RIFF::stream_end:
899 this->SamplePos = this->SamplesTotal - 1 - SampleCount;
900 break;
901 case RIFF::stream_backward:
902 this->SamplePos -= SampleCount;
903 break;
904 case RIFF::stream_start: default:
905 this->SamplePos = SampleCount;
906 break;
907 }
908 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
909
910 file_offset_t frame = this->SamplePos / 2048; // to which frame to jump
911 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
912 pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
913 return this->SamplePos;
914 }
915 else { // not compressed
916 file_offset_t orderedBytes = SampleCount * this->FrameSize;
917 file_offset_t result = pCkData->SetPos(orderedBytes, Whence);
918 return (result == orderedBytes) ? SampleCount
919 : result / this->FrameSize;
920 }
921 }
922
923 /**
924 * Returns the current position in the sample (in sample points).
925 */
926 file_offset_t Sample::GetPos() const {
927 if (Compressed) return SamplePos;
928 else return pCkData->GetPos() / FrameSize;
929 }
930
931 /**
932 * Reads \a SampleCount number of sample points from the position stored
933 * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
934 * the position within the sample respectively, this method honors the
935 * looping informations of the sample (if any). The sample wave stream
936 * will be decompressed on the fly if using a compressed sample. Use this
937 * method if you don't want to load the sample into RAM, thus for disk
938 * streaming. All this methods needs to know to proceed with streaming
939 * for the next time you call this method is stored in \a pPlaybackState.
940 * You have to allocate and initialize the playback_state_t structure by
941 * yourself before you use it to stream a sample:
942 * @code
943 * gig::playback_state_t playbackstate;
944 * playbackstate.position = 0;
945 * playbackstate.reverse = false;
946 * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
947 * @endcode
948 * You don't have to take care of things like if there is actually a loop
949 * defined or if the current read position is located within a loop area.
950 * The method already handles such cases by itself.
951 *
952 * <b>Caution:</b> If you are using more than one streaming thread, you
953 * have to use an external decompression buffer for <b>EACH</b>
954 * streaming thread to avoid race conditions and crashes!
955 *
956 * @param pBuffer destination buffer
957 * @param SampleCount number of sample points to read
958 * @param pPlaybackState will be used to store and reload the playback
959 * state for the next ReadAndLoop() call
960 * @param pDimRgn dimension region with looping information
961 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
962 * @returns number of successfully read sample points
963 * @see CreateDecompressionBuffer()
964 */
965 file_offset_t Sample::ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState,
966 DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
967 file_offset_t samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
968 uint8_t* pDst = (uint8_t*) pBuffer;
969
970 SetPos(pPlaybackState->position); // recover position from the last time
971
972 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
973
974 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
975 const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
976
977 if (GetPos() <= loopEnd) {
978 switch (loop.LoopType) {
979
980 case loop_type_bidirectional: { //TODO: not tested yet!
981 do {
982 // if not endless loop check if max. number of loop cycles have been passed
983 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
984
985 if (!pPlaybackState->reverse) { // forward playback
986 do {
987 samplestoloopend = loopEnd - GetPos();
988 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
989 samplestoread -= readsamples;
990 totalreadsamples += readsamples;
991 if (readsamples == samplestoloopend) {
992 pPlaybackState->reverse = true;
993 break;
994 }
995 } while (samplestoread && readsamples);
996 }
997 else { // backward playback
998
999 // as we can only read forward from disk, we have to
1000 // determine the end position within the loop first,
1001 // read forward from that 'end' and finally after
1002 // reading, swap all sample frames so it reflects
1003 // backward playback
1004
1005 file_offset_t swapareastart = totalreadsamples;
1006 file_offset_t loopoffset = GetPos() - loop.LoopStart;
1007 file_offset_t samplestoreadinloop = Min(samplestoread, loopoffset);
1008 file_offset_t reverseplaybackend = GetPos() - samplestoreadinloop;
1009
1010 SetPos(reverseplaybackend);
1011
1012 // read samples for backward playback
1013 do {
1014 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
1015 samplestoreadinloop -= readsamples;
1016 samplestoread -= readsamples;
1017 totalreadsamples += readsamples;
1018 } while (samplestoreadinloop && readsamples);
1019
1020 SetPos(reverseplaybackend); // pretend we really read backwards
1021
1022 if (reverseplaybackend == loop.LoopStart) {
1023 pPlaybackState->loop_cycles_left--;
1024 pPlaybackState->reverse = false;
1025 }
1026
1027 // reverse the sample frames for backward playback
1028 if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
1029 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1030 }
1031 } while (samplestoread && readsamples);
1032 break;
1033 }
1034
1035 case loop_type_backward: { // TODO: not tested yet!
1036 // forward playback (not entered the loop yet)
1037 if (!pPlaybackState->reverse) do {
1038 samplestoloopend = loopEnd - GetPos();
1039 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1040 samplestoread -= readsamples;
1041 totalreadsamples += readsamples;
1042 if (readsamples == samplestoloopend) {
1043 pPlaybackState->reverse = true;
1044 break;
1045 }
1046 } while (samplestoread && readsamples);
1047
1048 if (!samplestoread) break;
1049
1050 // as we can only read forward from disk, we have to
1051 // determine the end position within the loop first,
1052 // read forward from that 'end' and finally after
1053 // reading, swap all sample frames so it reflects
1054 // backward playback
1055
1056 file_offset_t swapareastart = totalreadsamples;
1057 file_offset_t loopoffset = GetPos() - loop.LoopStart;
1058 file_offset_t samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1059 : samplestoread;
1060 file_offset_t reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1061
1062 SetPos(reverseplaybackend);
1063
1064 // read samples for backward playback
1065 do {
1066 // if not endless loop check if max. number of loop cycles have been passed
1067 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1068 samplestoloopend = loopEnd - GetPos();
1069 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1070 samplestoreadinloop -= readsamples;
1071 samplestoread -= readsamples;
1072 totalreadsamples += readsamples;
1073 if (readsamples == samplestoloopend) {
1074 pPlaybackState->loop_cycles_left--;
1075 SetPos(loop.LoopStart);
1076 }
1077 } while (samplestoreadinloop && readsamples);
1078
1079 SetPos(reverseplaybackend); // pretend we really read backwards
1080
1081 // reverse the sample frames for backward playback
1082 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1083 break;
1084 }
1085
1086 default: case loop_type_normal: {
1087 do {
1088 // if not endless loop check if max. number of loop cycles have been passed
1089 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1090 samplestoloopend = loopEnd - GetPos();
1091 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1092 samplestoread -= readsamples;
1093 totalreadsamples += readsamples;
1094 if (readsamples == samplestoloopend) {
1095 pPlaybackState->loop_cycles_left--;
1096 SetPos(loop.LoopStart);
1097 }
1098 } while (samplestoread && readsamples);
1099 break;
1100 }
1101 }
1102 }
1103 }
1104
1105 // read on without looping
1106 if (samplestoread) do {
1107 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
1108 samplestoread -= readsamples;
1109 totalreadsamples += readsamples;
1110 } while (readsamples && samplestoread);
1111
1112 // store current position
1113 pPlaybackState->position = GetPos();
1114
1115 return totalreadsamples;
1116 }
1117
1118 /**
1119 * Reads \a SampleCount number of sample points from the current
1120 * position into the buffer pointed by \a pBuffer and increments the
1121 * position within the sample. The sample wave stream will be
1122 * decompressed on the fly if using a compressed sample. Use this method
1123 * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1124 * thus for disk streaming.
1125 *
1126 * <b>Caution:</b> If you are using more than one streaming thread, you
1127 * have to use an external decompression buffer for <b>EACH</b>
1128 * streaming thread to avoid race conditions and crashes!
1129 *
1130 * For 16 bit samples, the data in the buffer will be int16_t
1131 * (using native endianness). For 24 bit, the buffer will
1132 * contain three bytes per sample, little-endian.
1133 *
1134 * @param pBuffer destination buffer
1135 * @param SampleCount number of sample points to read
1136 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
1137 * @returns number of successfully read sample points
1138 * @see SetPos(), CreateDecompressionBuffer()
1139 */
1140 file_offset_t Sample::Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer) {
1141 if (SampleCount == 0) return 0;
1142 if (!Compressed) {
1143 if (BitDepth == 24) {
1144 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1145 }
1146 else { // 16 bit
1147 // (pCkData->Read does endian correction)
1148 return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1149 : pCkData->Read(pBuffer, SampleCount, 2);
1150 }
1151 }
1152 else {
1153 if (this->SamplePos >= this->SamplesTotal) return 0;
1154 //TODO: efficiency: maybe we should test for an average compression rate
1155 file_offset_t assumedsize = GuessSize(SampleCount),
1156 remainingbytes = 0, // remaining bytes in the local buffer
1157 remainingsamples = SampleCount,
1158 copysamples, skipsamples,
1159 currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
1160 this->FrameOffset = 0;
1161
1162 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1163
1164 // if decompression buffer too small, then reduce amount of samples to read
1165 if (pDecompressionBuffer->Size < assumedsize) {
1166 std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1167 SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1168 remainingsamples = SampleCount;
1169 assumedsize = GuessSize(SampleCount);
1170 }
1171
1172 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1173 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1174 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1175 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1176
1177 while (remainingsamples && remainingbytes) {
1178 file_offset_t framesamples = SamplesPerFrame;
1179 file_offset_t framebytes, rightChannelOffset = 0, nextFrameOffset;
1180
1181 int mode_l = *pSrc++, mode_r = 0;
1182
1183 if (Channels == 2) {
1184 mode_r = *pSrc++;
1185 framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1186 rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1187 nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1188 if (remainingbytes < framebytes) { // last frame in sample
1189 framesamples = SamplesInLastFrame;
1190 if (mode_l == 4 && (framesamples & 1)) {
1191 rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1192 }
1193 else {
1194 rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1195 }
1196 }
1197 }
1198 else {
1199 framebytes = bytesPerFrame[mode_l] + 1;
1200 nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1201 if (remainingbytes < framebytes) {
1202 framesamples = SamplesInLastFrame;
1203 }
1204 }
1205
1206 // determine how many samples in this frame to skip and read
1207 if (currentframeoffset + remainingsamples >= framesamples) {
1208 if (currentframeoffset <= framesamples) {
1209 copysamples = framesamples - currentframeoffset;
1210 skipsamples = currentframeoffset;
1211 }
1212 else {
1213 copysamples = 0;
1214 skipsamples = framesamples;
1215 }
1216 }
1217 else {
1218 // This frame has enough data for pBuffer, but not
1219 // all of the frame is needed. Set file position
1220 // to start of this frame for next call to Read.
1221 copysamples = remainingsamples;
1222 skipsamples = currentframeoffset;
1223 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1224 this->FrameOffset = currentframeoffset + copysamples;
1225 }
1226 remainingsamples -= copysamples;
1227
1228 if (remainingbytes > framebytes) {
1229 remainingbytes -= framebytes;
1230 if (remainingsamples == 0 &&
1231 currentframeoffset + copysamples == framesamples) {
1232 // This frame has enough data for pBuffer, and
1233 // all of the frame is needed. Set file
1234 // position to start of next frame for next
1235 // call to Read. FrameOffset is 0.
1236 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1237 }
1238 }
1239 else remainingbytes = 0;
1240
1241 currentframeoffset -= skipsamples;
1242
1243 if (copysamples == 0) {
1244 // skip this frame
1245 pSrc += framebytes - Channels;
1246 }
1247 else {
1248 const unsigned char* const param_l = pSrc;
1249 if (BitDepth == 24) {
1250 if (mode_l != 2) pSrc += 12;
1251
1252 if (Channels == 2) { // Stereo
1253 const unsigned char* const param_r = pSrc;
1254 if (mode_r != 2) pSrc += 12;
1255
1256 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1257 skipsamples, copysamples, TruncatedBits);
1258 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1259 skipsamples, copysamples, TruncatedBits);
1260 pDst24 += copysamples * 6;
1261 }
1262 else { // Mono
1263 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1264 skipsamples, copysamples, TruncatedBits);
1265 pDst24 += copysamples * 3;
1266 }
1267 }
1268 else { // 16 bit
1269 if (mode_l) pSrc += 4;
1270
1271 int step;
1272 if (Channels == 2) { // Stereo
1273 const unsigned char* const param_r = pSrc;
1274 if (mode_r) pSrc += 4;
1275
1276 step = (2 - mode_l) + (2 - mode_r);
1277 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1278 Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1279 skipsamples, copysamples);
1280 pDst += copysamples << 1;
1281 }
1282 else { // Mono
1283 step = 2 - mode_l;
1284 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1285 pDst += copysamples;
1286 }
1287 }
1288 pSrc += nextFrameOffset;
1289 }
1290
1291 // reload from disk to local buffer if needed
1292 if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1293 assumedsize = GuessSize(remainingsamples);
1294 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1295 if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1296 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1297 pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1298 }
1299 } // while
1300
1301 this->SamplePos += (SampleCount - remainingsamples);
1302 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1303 return (SampleCount - remainingsamples);
1304 }
1305 }
1306
1307 /** @brief Write sample wave data.
1308 *
1309 * Writes \a SampleCount number of sample points from the buffer pointed
1310 * by \a pBuffer and increments the position within the sample. Use this
1311 * method to directly write the sample data to disk, i.e. if you don't
1312 * want or cannot load the whole sample data into RAM.
1313 *
1314 * You have to Resize() the sample to the desired size and call
1315 * File::Save() <b>before</b> using Write().
1316 *
1317 * Note: there is currently no support for writing compressed samples.
1318 *
1319 * For 16 bit samples, the data in the source buffer should be
1320 * int16_t (using native endianness). For 24 bit, the buffer
1321 * should contain three bytes per sample, little-endian.
1322 *
1323 * @param pBuffer - source buffer
1324 * @param SampleCount - number of sample points to write
1325 * @throws DLS::Exception if current sample size is too small
1326 * @throws gig::Exception if sample is compressed
1327 * @see DLS::LoadSampleData()
1328 */
1329 file_offset_t Sample::Write(void* pBuffer, file_offset_t SampleCount) {
1330 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1331
1332 // if this is the first write in this sample, reset the
1333 // checksum calculator
1334 if (pCkData->GetPos() == 0) {
1335 __resetCRC(crc);
1336 }
1337 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1338 file_offset_t res;
1339 if (BitDepth == 24) {
1340 res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1341 } else { // 16 bit
1342 res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1343 : pCkData->Write(pBuffer, SampleCount, 2);
1344 }
1345 __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1346
1347 // if this is the last write, update the checksum chunk in the
1348 // file
1349 if (pCkData->GetPos() == pCkData->GetSize()) {
1350 __finalizeCRC(crc);
1351 File* pFile = static_cast<File*>(GetParent());
1352 pFile->SetSampleChecksum(this, crc);
1353 }
1354 return res;
1355 }
1356
1357 /**
1358 * Allocates a decompression buffer for streaming (compressed) samples
1359 * with Sample::Read(). If you are using more than one streaming thread
1360 * in your application you <b>HAVE</b> to create a decompression buffer
1361 * for <b>EACH</b> of your streaming threads and provide it with the
1362 * Sample::Read() call in order to avoid race conditions and crashes.
1363 *
1364 * You should free the memory occupied by the allocated buffer(s) once
1365 * you don't need one of your streaming threads anymore by calling
1366 * DestroyDecompressionBuffer().
1367 *
1368 * @param MaxReadSize - the maximum size (in sample points) you ever
1369 * expect to read with one Read() call
1370 * @returns allocated decompression buffer
1371 * @see DestroyDecompressionBuffer()
1372 */
1373 buffer_t Sample::CreateDecompressionBuffer(file_offset_t MaxReadSize) {
1374 buffer_t result;
1375 const double worstCaseHeaderOverhead =
1376 (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1377 result.Size = (file_offset_t) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1378 result.pStart = new int8_t[result.Size];
1379 result.NullExtensionSize = 0;
1380 return result;
1381 }
1382
1383 /**
1384 * Free decompression buffer, previously created with
1385 * CreateDecompressionBuffer().
1386 *
1387 * @param DecompressionBuffer - previously allocated decompression
1388 * buffer to free
1389 */
1390 void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1391 if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1392 delete[] (int8_t*) DecompressionBuffer.pStart;
1393 DecompressionBuffer.pStart = NULL;
1394 DecompressionBuffer.Size = 0;
1395 DecompressionBuffer.NullExtensionSize = 0;
1396 }
1397 }
1398
1399 /**
1400 * Returns pointer to the Group this Sample belongs to. In the .gig
1401 * format a sample always belongs to one group. If it wasn't explicitly
1402 * assigned to a certain group, it will be automatically assigned to a
1403 * default group.
1404 *
1405 * @returns Sample's Group (never NULL)
1406 */
1407 Group* Sample::GetGroup() const {
1408 return pGroup;
1409 }
1410
1411 /**
1412 * Returns the CRC-32 checksum of the sample's raw wave form data at the
1413 * time when this sample's wave form data was modified for the last time
1414 * by calling Write(). This checksum only covers the raw wave form data,
1415 * not any meta informations like i.e. bit depth or loop points. Since
1416 * this method just returns the checksum stored for this sample i.e. when
1417 * the gig file was loaded, this method returns immediately. So it does no
1418 * recalcuation of the checksum with the currently available sample wave
1419 * form data.
1420 *
1421 * @see VerifyWaveData()
1422 */
1423 uint32_t Sample::GetWaveDataCRC32Checksum() {
1424 return crc;
1425 }
1426
1427 /**
1428 * Checks the integrity of this sample's raw audio wave data. Whenever a
1429 * Sample's raw wave data is intentionally modified (i.e. by calling
1430 * Write() and supplying the new raw audio wave form data) a CRC32 checksum
1431 * is calculated and stored/updated for this sample, along to the sample's
1432 * meta informations.
1433 *
1434 * Now by calling this method the current raw audio wave data is checked
1435 * against the already stored CRC32 check sum in order to check whether the
1436 * sample data had been damaged unintentionally for some reason. Since by
1437 * calling this method always the entire raw audio wave data has to be
1438 * read, verifying all samples this way may take a long time accordingly.
1439 * And that's also the reason why the sample integrity is not checked by
1440 * default whenever a gig file is loaded. So this method must be called
1441 * explicitly to fulfill this task.
1442 *
1443 * @param pActually - (optional) if provided, will be set to the actually
1444 * calculated checksum of the current raw wave form data,
1445 * you can get the expected checksum instead by calling
1446 * GetWaveDataCRC32Checksum()
1447 * @returns true if sample is OK or false if the sample is damaged
1448 * @throws Exception if no checksum had been stored to disk for this
1449 * sample yet, or on I/O issues
1450 * @see GetWaveDataCRC32Checksum()
1451 */
1452 bool Sample::VerifyWaveData(uint32_t* pActually) {
1453 //File* pFile = static_cast<File*>(GetParent());
1454 uint32_t crc = CalculateWaveDataChecksum();
1455 if (pActually) *pActually = crc;
1456 return crc == this->crc;
1457 }
1458
1459 uint32_t Sample::CalculateWaveDataChecksum() {
1460 const size_t sz = 20*1024; // 20kB buffer size
1461 std::vector<uint8_t> buffer(sz);
1462 buffer.resize(sz);
1463
1464 const size_t n = sz / FrameSize;
1465 SetPos(0);
1466 uint32_t crc = 0;
1467 __resetCRC(crc);
1468 while (true) {
1469 file_offset_t nRead = Read(&buffer[0], n);
1470 if (nRead <= 0) break;
1471 __calculateCRC(&buffer[0], nRead * FrameSize, crc);
1472 }
1473 __finalizeCRC(crc);
1474 return crc;
1475 }
1476
1477 Sample::~Sample() {
1478 Instances--;
1479 if (!Instances && InternalDecompressionBuffer.Size) {
1480 delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1481 InternalDecompressionBuffer.pStart = NULL;
1482 InternalDecompressionBuffer.Size = 0;
1483 }
1484 if (FrameTable) delete[] FrameTable;
1485 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1486 }
1487
1488
1489
1490 // *************** DimensionRegion ***************
1491 // *
1492
1493 size_t DimensionRegion::Instances = 0;
1494 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1495
1496 DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1497 Instances++;
1498
1499 pSample = NULL;
1500 pRegion = pParent;
1501
1502 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1503 else memset(&Crossfade, 0, 4);
1504
1505 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1506
1507 RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1508 if (_3ewa) { // if '3ewa' chunk exists
1509 _3ewa->SetPos(0);
1510
1511 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1512 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1513 EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1514 _3ewa->ReadInt16(); // unknown
1515 LFO1InternalDepth = _3ewa->ReadUint16();
1516 _3ewa->ReadInt16(); // unknown
1517 LFO3InternalDepth = _3ewa->ReadInt16();
1518 _3ewa->ReadInt16(); // unknown
1519 LFO1ControlDepth = _3ewa->ReadUint16();
1520 _3ewa->ReadInt16(); // unknown
1521 LFO3ControlDepth = _3ewa->ReadInt16();
1522 EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1523 EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1524 _3ewa->ReadInt16(); // unknown
1525 EG1Sustain = _3ewa->ReadUint16();
1526 EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1527 EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1528 uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1529 EG1ControllerInvert = eg1ctrloptions & 0x01;
1530 EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1531 EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1532 EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1533 EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1534 uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1535 EG2ControllerInvert = eg2ctrloptions & 0x01;
1536 EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1537 EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1538 EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1539 LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1540 EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1541 EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1542 _3ewa->ReadInt16(); // unknown
1543 EG2Sustain = _3ewa->ReadUint16();
1544 EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1545 _3ewa->ReadInt16(); // unknown
1546 LFO2ControlDepth = _3ewa->ReadUint16();
1547 LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1548 _3ewa->ReadInt16(); // unknown
1549 LFO2InternalDepth = _3ewa->ReadUint16();
1550 int32_t eg1decay2 = _3ewa->ReadInt32();
1551 EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1552 EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1553 _3ewa->ReadInt16(); // unknown
1554 EG1PreAttack = _3ewa->ReadUint16();
1555 int32_t eg2decay2 = _3ewa->ReadInt32();
1556 EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1557 EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1558 _3ewa->ReadInt16(); // unknown
1559 EG2PreAttack = _3ewa->ReadUint16();
1560 uint8_t velocityresponse = _3ewa->ReadUint8();
1561 if (velocityresponse < 5) {
1562 VelocityResponseCurve = curve_type_nonlinear;
1563 VelocityResponseDepth = velocityresponse;
1564 } else if (velocityresponse < 10) {
1565 VelocityResponseCurve = curve_type_linear;
1566 VelocityResponseDepth = velocityresponse - 5;
1567 } else if (velocityresponse < 15) {
1568 VelocityResponseCurve = curve_type_special;
1569 VelocityResponseDepth = velocityresponse - 10;
1570 } else {
1571 VelocityResponseCurve = curve_type_unknown;
1572 VelocityResponseDepth = 0;
1573 }
1574 uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1575 if (releasevelocityresponse < 5) {
1576 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1577 ReleaseVelocityResponseDepth = releasevelocityresponse;
1578 } else if (releasevelocityresponse < 10) {
1579 ReleaseVelocityResponseCurve = curve_type_linear;
1580 ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1581 } else if (releasevelocityresponse < 15) {
1582 ReleaseVelocityResponseCurve = curve_type_special;
1583 ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1584 } else {
1585 ReleaseVelocityResponseCurve = curve_type_unknown;
1586 ReleaseVelocityResponseDepth = 0;
1587 }
1588 VelocityResponseCurveScaling = _3ewa->ReadUint8();
1589 AttenuationControllerThreshold = _3ewa->ReadInt8();
1590 _3ewa->ReadInt32(); // unknown
1591 SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1592 _3ewa->ReadInt16(); // unknown
1593 uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1594 PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1595 if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1596 else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1597 else DimensionBypass = dim_bypass_ctrl_none;
1598 uint8_t pan = _3ewa->ReadUint8();
1599 Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1600 SelfMask = _3ewa->ReadInt8() & 0x01;
1601 _3ewa->ReadInt8(); // unknown
1602 uint8_t lfo3ctrl = _3ewa->ReadUint8();
1603 LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1604 LFO3Sync = lfo3ctrl & 0x20; // bit 5
1605 InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1606 AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1607 uint8_t lfo2ctrl = _3ewa->ReadUint8();
1608 LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1609 LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1610 LFO2Sync = lfo2ctrl & 0x20; // bit 5
1611 bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1612 uint8_t lfo1ctrl = _3ewa->ReadUint8();
1613 LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1614 LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1615 LFO1Sync = lfo1ctrl & 0x40; // bit 6
1616 VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1617 : vcf_res_ctrl_none;
1618 uint16_t eg3depth = _3ewa->ReadUint16();
1619 EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1620 : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1621 _3ewa->ReadInt16(); // unknown
1622 ChannelOffset = _3ewa->ReadUint8() / 4;
1623 uint8_t regoptions = _3ewa->ReadUint8();
1624 MSDecode = regoptions & 0x01; // bit 0
1625 SustainDefeat = regoptions & 0x02; // bit 1
1626 _3ewa->ReadInt16(); // unknown
1627 VelocityUpperLimit = _3ewa->ReadInt8();
1628 _3ewa->ReadInt8(); // unknown
1629 _3ewa->ReadInt16(); // unknown
1630 ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1631 _3ewa->ReadInt8(); // unknown
1632 _3ewa->ReadInt8(); // unknown
1633 EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1634 uint8_t vcfcutoff = _3ewa->ReadUint8();
1635 VCFEnabled = vcfcutoff & 0x80; // bit 7
1636 VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1637 VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1638 uint8_t vcfvelscale = _3ewa->ReadUint8();
1639 VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1640 VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1641 _3ewa->ReadInt8(); // unknown
1642 uint8_t vcfresonance = _3ewa->ReadUint8();
1643 VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1644 VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1645 uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1646 VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1647 VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1648 uint8_t vcfvelocity = _3ewa->ReadUint8();
1649 VCFVelocityDynamicRange = vcfvelocity % 5;
1650 VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1651 VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1652 if (VCFType == vcf_type_lowpass) {
1653 if (lfo3ctrl & 0x40) // bit 6
1654 VCFType = vcf_type_lowpassturbo;
1655 }
1656 if (_3ewa->RemainingBytes() >= 8) {
1657 _3ewa->Read(DimensionUpperLimits, 1, 8);
1658 } else {
1659 memset(DimensionUpperLimits, 0, 8);
1660 }
1661 } else { // '3ewa' chunk does not exist yet
1662 // use default values
1663 LFO3Frequency = 1.0;
1664 EG3Attack = 0.0;
1665 LFO1InternalDepth = 0;
1666 LFO3InternalDepth = 0;
1667 LFO1ControlDepth = 0;
1668 LFO3ControlDepth = 0;
1669 EG1Attack = 0.0;
1670 EG1Decay1 = 0.005;
1671 EG1Sustain = 1000;
1672 EG1Release = 0.3;
1673 EG1Controller.type = eg1_ctrl_t::type_none;
1674 EG1Controller.controller_number = 0;
1675 EG1ControllerInvert = false;
1676 EG1ControllerAttackInfluence = 0;
1677 EG1ControllerDecayInfluence = 0;
1678 EG1ControllerReleaseInfluence = 0;
1679 EG2Controller.type = eg2_ctrl_t::type_none;
1680 EG2Controller.controller_number = 0;
1681 EG2ControllerInvert = false;
1682 EG2ControllerAttackInfluence = 0;
1683 EG2ControllerDecayInfluence = 0;
1684 EG2ControllerReleaseInfluence = 0;
1685 LFO1Frequency = 1.0;
1686 EG2Attack = 0.0;
1687 EG2Decay1 = 0.005;
1688 EG2Sustain = 1000;
1689 EG2Release = 60;
1690 LFO2ControlDepth = 0;
1691 LFO2Frequency = 1.0;
1692 LFO2InternalDepth = 0;
1693 EG1Decay2 = 0.0;
1694 EG1InfiniteSustain = true;
1695 EG1PreAttack = 0;
1696 EG2Decay2 = 0.0;
1697 EG2InfiniteSustain = true;
1698 EG2PreAttack = 0;
1699 VelocityResponseCurve = curve_type_nonlinear;
1700 VelocityResponseDepth = 3;
1701 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1702 ReleaseVelocityResponseDepth = 3;
1703 VelocityResponseCurveScaling = 32;
1704 AttenuationControllerThreshold = 0;
1705 SampleStartOffset = 0;
1706 PitchTrack = true;
1707 DimensionBypass = dim_bypass_ctrl_none;
1708 Pan = 0;
1709 SelfMask = true;
1710 LFO3Controller = lfo3_ctrl_modwheel;
1711 LFO3Sync = false;
1712 InvertAttenuationController = false;
1713 AttenuationController.type = attenuation_ctrl_t::type_none;
1714 AttenuationController.controller_number = 0;
1715 LFO2Controller = lfo2_ctrl_internal;
1716 LFO2FlipPhase = false;
1717 LFO2Sync = false;
1718 LFO1Controller = lfo1_ctrl_internal;
1719 LFO1FlipPhase = false;
1720 LFO1Sync = false;
1721 VCFResonanceController = vcf_res_ctrl_none;
1722 EG3Depth = 0;
1723 ChannelOffset = 0;
1724 MSDecode = false;
1725 SustainDefeat = false;
1726 VelocityUpperLimit = 0;
1727 ReleaseTriggerDecay = 0;
1728 EG1Hold = false;
1729 VCFEnabled = false;
1730 VCFCutoff = 0;
1731 VCFCutoffController = vcf_cutoff_ctrl_none;
1732 VCFCutoffControllerInvert = false;
1733 VCFVelocityScale = 0;
1734 VCFResonance = 0;
1735 VCFResonanceDynamic = false;
1736 VCFKeyboardTracking = false;
1737 VCFKeyboardTrackingBreakpoint = 0;
1738 VCFVelocityDynamicRange = 0x04;
1739 VCFVelocityCurve = curve_type_linear;
1740 VCFType = vcf_type_lowpass;
1741 memset(DimensionUpperLimits, 127, 8);
1742 }
1743
1744 // chunk for own format extensions, these will *NOT* work with Gigasampler/GigaStudio !
1745 RIFF::Chunk* lsde = _3ewl->GetSubChunk(CHUNK_ID_LSDE);
1746 if (lsde) { // format extension for EG behavior options
1747 lsde->SetPos(0);
1748
1749 eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
1750 for (int i = 0; i < 2; ++i) { // NOTE: we reserved a 3rd byte for a potential future EG3 option
1751 unsigned char byte = lsde->ReadUint8();
1752 pEGOpts[i]->AttackCancel = byte & 1;
1753 pEGOpts[i]->AttackHoldCancel = byte & (1 << 1);
1754 pEGOpts[i]->Decay1Cancel = byte & (1 << 2);
1755 pEGOpts[i]->Decay2Cancel = byte & (1 << 3);
1756 pEGOpts[i]->ReleaseCancel = byte & (1 << 4);
1757 }
1758 }
1759 // format extension for sustain pedal up effect on release trigger samples
1760 if (lsde && lsde->GetSize() > 3) { // NOTE: we reserved the 3rd byte for a potential future EG3 option
1761 lsde->SetPos(3);
1762 uint8_t byte = lsde->ReadUint8();
1763 SustainReleaseTrigger = static_cast<sust_rel_trg_t>(byte & 0x03);
1764 NoNoteOffReleaseTrigger = byte >> 7;
1765 } else {
1766 SustainReleaseTrigger = sust_rel_trg_none;
1767 NoNoteOffReleaseTrigger = false;
1768 }
1769 // format extension for LFOs' wave form, phase displacement and for
1770 // LFO3's flip phase
1771 if (lsde && lsde->GetSize() > 4) {
1772 lsde->SetPos(4);
1773 LFO1WaveForm = static_cast<lfo_wave_t>( lsde->ReadUint16() );
1774 LFO2WaveForm = static_cast<lfo_wave_t>( lsde->ReadUint16() );
1775 LFO3WaveForm = static_cast<lfo_wave_t>( lsde->ReadUint16() );
1776 lsde->ReadUint16(); // unused 16 bits, reserved for potential future use
1777 LFO1Phase = (double) GIG_EXP_DECODE( lsde->ReadInt32() );
1778 LFO2Phase = (double) GIG_EXP_DECODE( lsde->ReadInt32() );
1779 LFO3Phase = (double) GIG_EXP_DECODE( lsde->ReadInt32() );
1780 const uint32_t flags = lsde->ReadInt32();
1781 LFO3FlipPhase = flags & 1;
1782 } else {
1783 LFO1WaveForm = lfo_wave_sine;
1784 LFO2WaveForm = lfo_wave_sine;
1785 LFO3WaveForm = lfo_wave_sine;
1786 LFO1Phase = 0.0;
1787 LFO2Phase = 0.0;
1788 LFO3Phase = 0.0;
1789 LFO3FlipPhase = false;
1790 }
1791
1792 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1793 VelocityResponseDepth,
1794 VelocityResponseCurveScaling);
1795
1796 pVelocityReleaseTable = GetReleaseVelocityTable(
1797 ReleaseVelocityResponseCurve,
1798 ReleaseVelocityResponseDepth
1799 );
1800
1801 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1802 VCFVelocityDynamicRange,
1803 VCFVelocityScale,
1804 VCFCutoffController);
1805
1806 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1807 VelocityTable = 0;
1808 }
1809
1810 /*
1811 * Constructs a DimensionRegion by copying all parameters from
1812 * another DimensionRegion
1813 */
1814 DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1815 Instances++;
1816 //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1817 *this = src; // default memberwise shallow copy of all parameters
1818 pParentList = _3ewl; // restore the chunk pointer
1819
1820 // deep copy of owned structures
1821 if (src.VelocityTable) {
1822 VelocityTable = new uint8_t[128];
1823 for (int k = 0 ; k < 128 ; k++)
1824 VelocityTable[k] = src.VelocityTable[k];
1825 }
1826 if (src.pSampleLoops) {
1827 pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1828 for (int k = 0 ; k < src.SampleLoops ; k++)
1829 pSampleLoops[k] = src.pSampleLoops[k];
1830 }
1831 }
1832
1833 /**
1834 * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1835 * and assign it to this object.
1836 *
1837 * Note that all sample pointers referenced by @a orig are simply copied as
1838 * memory address. Thus the respective samples are shared, not duplicated!
1839 *
1840 * @param orig - original DimensionRegion object to be copied from
1841 */
1842 void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1843 CopyAssign(orig, NULL);
1844 }
1845
1846 /**
1847 * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1848 * and assign it to this object.
1849 *
1850 * @param orig - original DimensionRegion object to be copied from
1851 * @param mSamples - crosslink map between the foreign file's samples and
1852 * this file's samples
1853 */
1854 void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1855 // delete all allocated data first
1856 if (VelocityTable) delete [] VelocityTable;
1857 if (pSampleLoops) delete [] pSampleLoops;
1858
1859 // backup parent list pointer
1860 RIFF::List* p = pParentList;
1861
1862 gig::Sample* pOriginalSample = pSample;
1863 gig::Region* pOriginalRegion = pRegion;
1864
1865 //NOTE: copy code copied from assignment constructor above, see comment there as well
1866
1867 *this = *orig; // default memberwise shallow copy of all parameters
1868
1869 // restore members that shall not be altered
1870 pParentList = p; // restore the chunk pointer
1871 pRegion = pOriginalRegion;
1872
1873 // only take the raw sample reference reference if the
1874 // two DimensionRegion objects are part of the same file
1875 if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1876 pSample = pOriginalSample;
1877 }
1878
1879 if (mSamples && mSamples->count(orig->pSample)) {
1880 pSample = mSamples->find(orig->pSample)->second;
1881 }
1882
1883 // deep copy of owned structures
1884 if (orig->VelocityTable) {
1885 VelocityTable = new uint8_t[128];
1886 for (int k = 0 ; k < 128 ; k++)
1887 VelocityTable[k] = orig->VelocityTable[k];
1888 }
1889 if (orig->pSampleLoops) {
1890 pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1891 for (int k = 0 ; k < orig->SampleLoops ; k++)
1892 pSampleLoops[k] = orig->pSampleLoops[k];
1893 }
1894 }
1895
1896 void DimensionRegion::serialize(Serialization::Archive* archive) {
1897 // in case this class will become backward incompatible one day,
1898 // then set a version and minimum version for this class like:
1899 //archive->setVersion(*this, 2);
1900 //archive->setMinVersion(*this, 1);
1901
1902 SRLZ(VelocityUpperLimit);
1903 SRLZ(EG1PreAttack);
1904 SRLZ(EG1Attack);
1905 SRLZ(EG1Decay1);
1906 SRLZ(EG1Decay2);
1907 SRLZ(EG1InfiniteSustain);
1908 SRLZ(EG1Sustain);
1909 SRLZ(EG1Release);
1910 SRLZ(EG1Hold);
1911 SRLZ(EG1Controller);
1912 SRLZ(EG1ControllerInvert);
1913 SRLZ(EG1ControllerAttackInfluence);
1914 SRLZ(EG1ControllerDecayInfluence);
1915 SRLZ(EG1ControllerReleaseInfluence);
1916 SRLZ(LFO1WaveForm);
1917 SRLZ(LFO1Frequency);
1918 SRLZ(LFO1Phase);
1919 SRLZ(LFO1InternalDepth);
1920 SRLZ(LFO1ControlDepth);
1921 SRLZ(LFO1Controller);
1922 SRLZ(LFO1FlipPhase);
1923 SRLZ(LFO1Sync);
1924 SRLZ(EG2PreAttack);
1925 SRLZ(EG2Attack);
1926 SRLZ(EG2Decay1);
1927 SRLZ(EG2Decay2);
1928 SRLZ(EG2InfiniteSustain);
1929 SRLZ(EG2Sustain);
1930 SRLZ(EG2Release);
1931 SRLZ(EG2Controller);
1932 SRLZ(EG2ControllerInvert);
1933 SRLZ(EG2ControllerAttackInfluence);
1934 SRLZ(EG2ControllerDecayInfluence);
1935 SRLZ(EG2ControllerReleaseInfluence);
1936 SRLZ(LFO2WaveForm);
1937 SRLZ(LFO2Frequency);
1938 SRLZ(LFO2Phase);
1939 SRLZ(LFO2InternalDepth);
1940 SRLZ(LFO2ControlDepth);
1941 SRLZ(LFO2Controller);
1942 SRLZ(LFO2FlipPhase);
1943 SRLZ(LFO2Sync);
1944 SRLZ(EG3Attack);
1945 SRLZ(EG3Depth);
1946 SRLZ(LFO3WaveForm);
1947 SRLZ(LFO3Frequency);
1948 SRLZ(LFO3Phase);
1949 SRLZ(LFO3InternalDepth);
1950 SRLZ(LFO3ControlDepth);
1951 SRLZ(LFO3Controller);
1952 SRLZ(LFO3FlipPhase);
1953 SRLZ(LFO3Sync);
1954 SRLZ(VCFEnabled);
1955 SRLZ(VCFType);
1956 SRLZ(VCFCutoffController);
1957 SRLZ(VCFCutoffControllerInvert);
1958 SRLZ(VCFCutoff);
1959 SRLZ(VCFVelocityCurve);
1960 SRLZ(VCFVelocityScale);
1961 SRLZ(VCFVelocityDynamicRange);
1962 SRLZ(VCFResonance);
1963 SRLZ(VCFResonanceDynamic);
1964 SRLZ(VCFResonanceController);
1965 SRLZ(VCFKeyboardTracking);
1966 SRLZ(VCFKeyboardTrackingBreakpoint);
1967 SRLZ(VelocityResponseCurve);
1968 SRLZ(VelocityResponseDepth);
1969 SRLZ(VelocityResponseCurveScaling);
1970 SRLZ(ReleaseVelocityResponseCurve);
1971 SRLZ(ReleaseVelocityResponseDepth);
1972 SRLZ(ReleaseTriggerDecay);
1973 SRLZ(Crossfade);
1974 SRLZ(PitchTrack);
1975 SRLZ(DimensionBypass);
1976 SRLZ(Pan);
1977 SRLZ(SelfMask);
1978 SRLZ(AttenuationController);
1979 SRLZ(InvertAttenuationController);
1980 SRLZ(AttenuationControllerThreshold);
1981 SRLZ(ChannelOffset);
1982 SRLZ(SustainDefeat);
1983 SRLZ(MSDecode);
1984 //SRLZ(SampleStartOffset);
1985 SRLZ(SampleAttenuation);
1986 SRLZ(EG1Options);
1987 SRLZ(EG2Options);
1988 SRLZ(SustainReleaseTrigger);
1989 SRLZ(NoNoteOffReleaseTrigger);
1990
1991 // derived attributes from DLS::Sampler
1992 SRLZ(FineTune);
1993 SRLZ(Gain);
1994 }
1995
1996 /**
1997 * Updates the respective member variable and updates @c SampleAttenuation
1998 * which depends on this value.
1999 */
2000 void DimensionRegion::SetGain(int32_t gain) {
2001 DLS::Sampler::SetGain(gain);
2002 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
2003 }
2004
2005 /**
2006 * Apply dimension region settings to the respective RIFF chunks. You
2007 * have to call File::Save() to make changes persistent.
2008 *
2009 * Usually there is absolutely no need to call this method explicitly.
2010 * It will be called automatically when File::Save() was called.
2011 *
2012 * @param pProgress - callback function for progress notification
2013 */
2014 void DimensionRegion::UpdateChunks(progress_t* pProgress) {
2015 // first update base class's chunk
2016 DLS::Sampler::UpdateChunks(pProgress);
2017
2018 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
2019 uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
2020 pData[12] = Crossfade.in_start;
2021 pData[13] = Crossfade.in_end;
2022 pData[14] = Crossfade.out_start;
2023 pData[15] = Crossfade.out_end;
2024
2025 // make sure '3ewa' chunk exists
2026 RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
2027 if (!_3ewa) {
2028 File* pFile = (File*) GetParent()->GetParent()->GetParent();
2029 bool versiongt2 = pFile->pVersion && pFile->pVersion->major > 2;
2030 _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, versiongt2 ? 148 : 140);
2031 }
2032 pData = (uint8_t*) _3ewa->LoadChunkData();
2033
2034 // update '3ewa' chunk with DimensionRegion's current settings
2035
2036 const uint32_t chunksize = (uint32_t) _3ewa->GetNewSize();
2037 store32(&pData[0], chunksize); // unknown, always chunk size?
2038
2039 const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
2040 store32(&pData[4], lfo3freq);
2041
2042 const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
2043 store32(&pData[8], eg3attack);
2044
2045 // next 2 bytes unknown
2046
2047 store16(&pData[14], LFO1InternalDepth);
2048
2049 // next 2 bytes unknown
2050
2051 store16(&pData[18], LFO3InternalDepth);
2052
2053 // next 2 bytes unknown
2054
2055 store16(&pData[22], LFO1ControlDepth);
2056
2057 // next 2 bytes unknown
2058
2059 store16(&pData[26], LFO3ControlDepth);
2060
2061 const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
2062 store32(&pData[28], eg1attack);
2063
2064 const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
2065 store32(&pData[32], eg1decay1);
2066
2067 // next 2 bytes unknown
2068
2069 store16(&pData[38], EG1Sustain);
2070
2071 const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
2072 store32(&pData[40], eg1release);
2073
2074 const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
2075 pData[44] = eg1ctl;
2076
2077 const uint8_t eg1ctrloptions =
2078 (EG1ControllerInvert ? 0x01 : 0x00) |
2079 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
2080 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
2081 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
2082 pData[45] = eg1ctrloptions;
2083
2084 const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
2085 pData[46] = eg2ctl;
2086
2087 const uint8_t eg2ctrloptions =
2088 (EG2ControllerInvert ? 0x01 : 0x00) |
2089 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
2090 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
2091 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
2092 pData[47] = eg2ctrloptions;
2093
2094 const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
2095 store32(&pData[48], lfo1freq);
2096
2097 const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
2098 store32(&pData[52], eg2attack);
2099
2100 const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
2101 store32(&pData[56], eg2decay1);
2102
2103 // next 2 bytes unknown
2104
2105 store16(&pData[62], EG2Sustain);
2106
2107 const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
2108 store32(&pData[64], eg2release);
2109
2110 // next 2 bytes unknown
2111
2112 store16(&pData[70], LFO2ControlDepth);
2113
2114 const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
2115 store32(&pData[72], lfo2freq);
2116
2117 // next 2 bytes unknown
2118
2119 store16(&pData[78], LFO2InternalDepth);
2120
2121 const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
2122 store32(&pData[80], eg1decay2);
2123
2124 // next 2 bytes unknown
2125
2126 store16(&pData[86], EG1PreAttack);
2127
2128 const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
2129 store32(&pData[88], eg2decay2);
2130
2131 // next 2 bytes unknown
2132
2133 store16(&pData[94], EG2PreAttack);
2134
2135 {
2136 if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
2137 uint8_t velocityresponse = VelocityResponseDepth;
2138 switch (VelocityResponseCurve) {
2139 case curve_type_nonlinear:
2140 break;
2141 case curve_type_linear:
2142 velocityresponse += 5;
2143 break;
2144 case curve_type_special:
2145 velocityresponse += 10;
2146 break;
2147 case curve_type_unknown:
2148 default:
2149 throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
2150 }
2151 pData[96] = velocityresponse;
2152 }
2153
2154 {
2155 if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
2156 uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
2157 switch (ReleaseVelocityResponseCurve) {
2158 case curve_type_nonlinear:
2159 break;
2160 case curve_type_linear:
2161 releasevelocityresponse += 5;
2162 break;
2163 case curve_type_special:
2164 releasevelocityresponse += 10;
2165 break;
2166 case curve_type_unknown:
2167 default:
2168 throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
2169 }
2170 pData[97] = releasevelocityresponse;
2171 }
2172
2173 pData[98] = VelocityResponseCurveScaling;
2174
2175 pData[99] = AttenuationControllerThreshold;
2176
2177 // next 4 bytes unknown
2178
2179 store16(&pData[104], SampleStartOffset);
2180
2181 // next 2 bytes unknown
2182
2183 {
2184 uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
2185 switch (DimensionBypass) {
2186 case dim_bypass_ctrl_94:
2187 pitchTrackDimensionBypass |= 0x10;
2188 break;
2189 case dim_bypass_ctrl_95:
2190 pitchTrackDimensionBypass |= 0x20;
2191 break;
2192 case dim_bypass_ctrl_none:
2193 //FIXME: should we set anything here?
2194 break;
2195 default:
2196 throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
2197 }
2198 pData[108] = pitchTrackDimensionBypass;
2199 }
2200
2201 const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
2202 pData[109] = pan;
2203
2204 const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
2205 pData[110] = selfmask;
2206
2207 // next byte unknown
2208
2209 {
2210 uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
2211 if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
2212 if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
2213 if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
2214 pData[112] = lfo3ctrl;
2215 }
2216
2217 const uint8_t attenctl = EncodeLeverageController(AttenuationController);
2218 pData[113] = attenctl;
2219
2220 {
2221 uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
2222 if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
2223 if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
2224 if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
2225 pData[114] = lfo2ctrl;
2226 }
2227
2228 {
2229 uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
2230 if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
2231 if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
2232 if (VCFResonanceController != vcf_res_ctrl_none)
2233 lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
2234 pData[115] = lfo1ctrl;
2235 }
2236
2237 const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
2238 : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
2239 store16(&pData[116], eg3depth);
2240
2241 // next 2 bytes unknown
2242
2243 const uint8_t channeloffset = ChannelOffset * 4;
2244 pData[120] = channeloffset;
2245
2246 {
2247 uint8_t regoptions = 0;
2248 if (MSDecode) regoptions |= 0x01; // bit 0
2249 if (SustainDefeat) regoptions |= 0x02; // bit 1
2250 pData[121] = regoptions;
2251 }
2252
2253 // next 2 bytes unknown
2254
2255 pData[124] = VelocityUpperLimit;
2256
2257 // next 3 bytes unknown
2258
2259 pData[128] = ReleaseTriggerDecay;
2260
2261 // next 2 bytes unknown
2262
2263 const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2264 pData[131] = eg1hold;
2265
2266 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
2267 (VCFCutoff & 0x7f); /* lower 7 bits */
2268 pData[132] = vcfcutoff;
2269
2270 pData[133] = VCFCutoffController;
2271
2272 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2273 (VCFVelocityScale & 0x7f); /* lower 7 bits */
2274 pData[134] = vcfvelscale;
2275
2276 // next byte unknown
2277
2278 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2279 (VCFResonance & 0x7f); /* lower 7 bits */
2280 pData[136] = vcfresonance;
2281
2282 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2283 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2284 pData[137] = vcfbreakpoint;
2285
2286 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2287 VCFVelocityCurve * 5;
2288 pData[138] = vcfvelocity;
2289
2290 const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2291 pData[139] = vcftype;
2292
2293 if (chunksize >= 148) {
2294 memcpy(&pData[140], DimensionUpperLimits, 8);
2295 }
2296
2297 // chunk for own format extensions, these will *NOT* work with
2298 // Gigasampler/GigaStudio !
2299 RIFF::Chunk* lsde = pParentList->GetSubChunk(CHUNK_ID_LSDE);
2300 const int lsdeSize =
2301 3 /* EG cancel options */ +
2302 1 /* sustain pedal up on release trigger option */ +
2303 8 /* LFOs' wave forms */ + 12 /* LFOs' phase */ + 4 /* flags (LFO3FlipPhase) */;
2304 if (!lsde && UsesAnyGigFormatExtension()) {
2305 // only add this "LSDE" chunk if there is some (format extension)
2306 // setting effective that would require our "LSDE" format extension
2307 // chunk to be stored
2308 lsde = pParentList->AddSubChunk(CHUNK_ID_LSDE, lsdeSize);
2309 // move LSDE chunk to the end of parent list
2310 pParentList->MoveSubChunk(lsde, (RIFF::Chunk*)NULL);
2311 }
2312 if (lsde) {
2313 if (lsde->GetNewSize() < lsdeSize)
2314 lsde->Resize(lsdeSize);
2315 // format extension for EG behavior options
2316 unsigned char* pData = (unsigned char*) lsde->LoadChunkData();
2317 eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
2318 for (int i = 0; i < 2; ++i) { // NOTE: we reserved the 3rd byte for a potential future EG3 option
2319 pData[i] =
2320 (pEGOpts[i]->AttackCancel ? 1 : 0) |
2321 (pEGOpts[i]->AttackHoldCancel ? (1<<1) : 0) |
2322 (pEGOpts[i]->Decay1Cancel ? (1<<2) : 0) |
2323 (pEGOpts[i]->Decay2Cancel ? (1<<3) : 0) |
2324 (pEGOpts[i]->ReleaseCancel ? (1<<4) : 0);
2325 }
2326 // format extension for release trigger options
2327 pData[3] = static_cast<uint8_t>(SustainReleaseTrigger) | (NoNoteOffReleaseTrigger ? (1<<7) : 0);
2328 // format extension for LFOs' wave form, phase displacement and for
2329 // LFO3's flip phase
2330 store16(&pData[4], LFO1WaveForm);
2331 store16(&pData[6], LFO2WaveForm);
2332 store16(&pData[8], LFO3WaveForm);
2333 //NOTE: 16 bits reserved here for potential future use !
2334 const int32_t lfo1Phase = (int32_t) GIG_EXP_ENCODE(LFO1Phase);
2335 const int32_t lfo2Phase = (int32_t) GIG_EXP_ENCODE(LFO2Phase);
2336 const int32_t lfo3Phase = (int32_t) GIG_EXP_ENCODE(LFO3Phase);
2337 store32(&pData[12], lfo1Phase);
2338 store32(&pData[16], lfo2Phase);
2339 store32(&pData[20], lfo3Phase);
2340 const int32_t flags = LFO3FlipPhase ? 1 : 0;
2341 store32(&pData[24], flags);
2342
2343 // compile time sanity check: is our last store access here
2344 // consistent with the initial lsdeSize value assignment?
2345 static_assert(lsdeSize == 28, "Inconsistency in assumed 'LSDE' RIFF chunk size");
2346 }
2347 }
2348
2349 /**
2350 * Returns @c true in case this DimensionRegion object uses any gig format
2351 * extension, that is whether this DimensionRegion object currently has any
2352 * setting effective that would require our "LSDE" RIFF chunk to be stored
2353 * to the gig file.
2354 *
2355 * Right now this is a private method. It is considerable though this method
2356 * to become (in slightly modified form) a public API method in future, i.e.
2357 * to allow instrument editors to visualize and/or warn the user of any
2358 * format extension being used. Right now this method really just serves to
2359 * answer the question whether an LSDE chunk is required, for the public API
2360 * purpose this method would also need to check whether any other setting
2361 * stored to the regular value '3ewa' chunk, is actually a format extension
2362 * as well.
2363 */
2364 bool DimensionRegion::UsesAnyGigFormatExtension() const {
2365 eg_opt_t defaultOpt;
2366 return memcmp(&EG1Options, &defaultOpt, sizeof(eg_opt_t)) ||
2367 memcmp(&EG2Options, &defaultOpt, sizeof(eg_opt_t)) ||
2368 SustainReleaseTrigger || NoNoteOffReleaseTrigger ||
2369 LFO1WaveForm || LFO2WaveForm || LFO3WaveForm ||
2370 LFO1Phase || LFO2Phase || LFO3Phase ||
2371 LFO3FlipPhase;
2372 }
2373
2374 double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2375 curve_type_t curveType = releaseVelocityResponseCurve;
2376 uint8_t depth = releaseVelocityResponseDepth;
2377 // this models a strange behaviour or bug in GSt: two of the
2378 // velocity response curves for release time are not used even
2379 // if specified, instead another curve is chosen.
2380 if ((curveType == curve_type_nonlinear && depth == 0) ||
2381 (curveType == curve_type_special && depth == 4)) {
2382 curveType = curve_type_nonlinear;
2383 depth = 3;
2384 }
2385 return GetVelocityTable(curveType, depth, 0);
2386 }
2387
2388 double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2389 uint8_t vcfVelocityDynamicRange,
2390 uint8_t vcfVelocityScale,
2391 vcf_cutoff_ctrl_t vcfCutoffController)
2392 {
2393 curve_type_t curveType = vcfVelocityCurve;
2394 uint8_t depth = vcfVelocityDynamicRange;
2395 // even stranger GSt: two of the velocity response curves for
2396 // filter cutoff are not used, instead another special curve
2397 // is chosen. This curve is not used anywhere else.
2398 if ((curveType == curve_type_nonlinear && depth == 0) ||
2399 (curveType == curve_type_special && depth == 4)) {
2400 curveType = curve_type_special;
2401 depth = 5;
2402 }
2403 return GetVelocityTable(curveType, depth,
2404 (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2405 ? vcfVelocityScale : 0);
2406 }
2407
2408 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2409 double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2410 {
2411 // sanity check input parameters
2412 // (fallback to some default parameters on ill input)
2413 switch (curveType) {
2414 case curve_type_nonlinear:
2415 case curve_type_linear:
2416 if (depth > 4) {
2417 printf("Warning: Invalid depth (0x%x) for velocity curve type (0x%x).\n", depth, curveType);
2418 depth = 0;
2419 scaling = 0;
2420 }
2421 break;
2422 case curve_type_special:
2423 if (depth > 5) {
2424 printf("Warning: Invalid depth (0x%x) for velocity curve type 'special'.\n", depth);
2425 depth = 0;
2426 scaling = 0;
2427 }
2428 break;
2429 case curve_type_unknown:
2430 default:
2431 printf("Warning: Unknown velocity curve type (0x%x).\n", curveType);
2432 curveType = curve_type_linear;
2433 depth = 0;
2434 scaling = 0;
2435 break;
2436 }
2437
2438 double* table;
2439 uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2440 if (pVelocityTables->count(tableKey)) { // if key exists
2441 table = (*pVelocityTables)[tableKey];
2442 }
2443 else {
2444 table = CreateVelocityTable(curveType, depth, scaling);
2445 (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
2446 }
2447 return table;
2448 }
2449
2450 Region* DimensionRegion::GetParent() const {
2451 return pRegion;
2452 }
2453
2454 // show error if some _lev_ctrl_* enum entry is not listed in the following function
2455 // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2456 // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2457 //#pragma GCC diagnostic push
2458 //#pragma GCC diagnostic error "-Wswitch"
2459
2460 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2461 leverage_ctrl_t decodedcontroller;
2462 switch (EncodedController) {
2463 // special controller
2464 case _lev_ctrl_none:
2465 decodedcontroller.type = leverage_ctrl_t::type_none;
2466 decodedcontroller.controller_number = 0;
2467 break;
2468 case _lev_ctrl_velocity:
2469 decodedcontroller.type = leverage_ctrl_t::type_velocity;
2470 decodedcontroller.controller_number = 0;
2471 break;
2472 case _lev_ctrl_channelaftertouch:
2473 decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
2474 decodedcontroller.controller_number = 0;
2475 break;
2476
2477 // ordinary MIDI control change controller
2478 case _lev_ctrl_modwheel:
2479 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2480 decodedcontroller.controller_number = 1;
2481 break;
2482 case _lev_ctrl_breath:
2483 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2484 decodedcontroller.controller_number = 2;
2485 break;
2486 case _lev_ctrl_foot:
2487 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2488 decodedcontroller.controller_number = 4;
2489 break;
2490 case _lev_ctrl_effect1:
2491 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2492 decodedcontroller.controller_number = 12;
2493 break;
2494 case _lev_ctrl_effect2:
2495 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2496 decodedcontroller.controller_number = 13;
2497 break;
2498 case _lev_ctrl_genpurpose1:
2499 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2500 decodedcontroller.controller_number = 16;
2501 break;
2502 case _lev_ctrl_genpurpose2:
2503 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2504 decodedcontroller.controller_number = 17;
2505 break;
2506 case _lev_ctrl_genpurpose3:
2507 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2508 decodedcontroller.controller_number = 18;
2509 break;
2510 case _lev_ctrl_genpurpose4:
2511 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2512 decodedcontroller.controller_number = 19;
2513 break;
2514 case _lev_ctrl_portamentotime:
2515 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2516 decodedcontroller.controller_number = 5;
2517 break;
2518 case _lev_ctrl_sustainpedal:
2519 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2520 decodedcontroller.controller_number = 64;
2521 break;
2522 case _lev_ctrl_portamento:
2523 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2524 decodedcontroller.controller_number = 65;
2525 break;
2526 case _lev_ctrl_sostenutopedal:
2527 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2528 decodedcontroller.controller_number = 66;
2529 break;
2530 case _lev_ctrl_softpedal:
2531 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2532 decodedcontroller.controller_number = 67;
2533 break;
2534 case _lev_ctrl_genpurpose5:
2535 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2536 decodedcontroller.controller_number = 80;
2537 break;
2538 case _lev_ctrl_genpurpose6:
2539 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2540 decodedcontroller.controller_number = 81;
2541 break;
2542 case _lev_ctrl_genpurpose7:
2543 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2544 decodedcontroller.controller_number = 82;
2545 break;
2546 case _lev_ctrl_genpurpose8:
2547 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2548 decodedcontroller.controller_number = 83;
2549 break;
2550 case _lev_ctrl_effect1depth:
2551 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2552 decodedcontroller.controller_number = 91;
2553 break;
2554 case _lev_ctrl_effect2depth:
2555 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2556 decodedcontroller.controller_number = 92;
2557 break;
2558 case _lev_ctrl_effect3depth:
2559 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2560 decodedcontroller.controller_number = 93;
2561 break;
2562 case _lev_ctrl_effect4depth:
2563 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2564 decodedcontroller.controller_number = 94;
2565 break;
2566 case _lev_ctrl_effect5depth:
2567 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2568 decodedcontroller.controller_number = 95;
2569 break;
2570
2571 // format extension (these controllers are so far only supported by
2572 // LinuxSampler & gigedit) they will *NOT* work with
2573 // Gigasampler/GigaStudio !
2574 case _lev_ctrl_CC3_EXT:
2575 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2576 decodedcontroller.controller_number = 3;
2577 break;
2578 case _lev_ctrl_CC6_EXT:
2579 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2580 decodedcontroller.controller_number = 6;
2581 break;
2582 case _lev_ctrl_CC7_EXT:
2583 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2584 decodedcontroller.controller_number = 7;
2585 break;
2586 case _lev_ctrl_CC8_EXT:
2587 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2588 decodedcontroller.controller_number = 8;
2589 break;
2590 case _lev_ctrl_CC9_EXT:
2591 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2592 decodedcontroller.controller_number = 9;
2593 break;
2594 case _lev_ctrl_CC10_EXT:
2595 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2596 decodedcontroller.controller_number = 10;
2597 break;
2598 case _lev_ctrl_CC11_EXT:
2599 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2600 decodedcontroller.controller_number = 11;
2601 break;
2602 case _lev_ctrl_CC14_EXT:
2603 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2604 decodedcontroller.controller_number = 14;
2605 break;
2606 case _lev_ctrl_CC15_EXT:
2607 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2608 decodedcontroller.controller_number = 15;
2609 break;
2610 case _lev_ctrl_CC20_EXT:
2611 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2612 decodedcontroller.controller_number = 20;
2613 break;
2614 case _lev_ctrl_CC21_EXT:
2615 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2616 decodedcontroller.controller_number = 21;
2617 break;
2618 case _lev_ctrl_CC22_EXT:
2619 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2620 decodedcontroller.controller_number = 22;
2621 break;
2622 case _lev_ctrl_CC23_EXT:
2623 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2624 decodedcontroller.controller_number = 23;
2625 break;
2626 case _lev_ctrl_CC24_EXT:
2627 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2628 decodedcontroller.controller_number = 24;
2629 break;
2630 case _lev_ctrl_CC25_EXT:
2631 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2632 decodedcontroller.controller_number = 25;
2633 break;
2634 case _lev_ctrl_CC26_EXT:
2635 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2636 decodedcontroller.controller_number = 26;
2637 break;
2638 case _lev_ctrl_CC27_EXT:
2639 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2640 decodedcontroller.controller_number = 27;
2641 break;
2642 case _lev_ctrl_CC28_EXT:
2643 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2644 decodedcontroller.controller_number = 28;
2645 break;
2646 case _lev_ctrl_CC29_EXT:
2647 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2648 decodedcontroller.controller_number = 29;
2649 break;
2650 case _lev_ctrl_CC30_EXT:
2651 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2652 decodedcontroller.controller_number = 30;
2653 break;
2654 case _lev_ctrl_CC31_EXT:
2655 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2656 decodedcontroller.controller_number = 31;
2657 break;
2658 case _lev_ctrl_CC68_EXT:
2659 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2660 decodedcontroller.controller_number = 68;
2661 break;
2662 case _lev_ctrl_CC69_EXT:
2663 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2664 decodedcontroller.controller_number = 69;
2665 break;
2666 case _lev_ctrl_CC70_EXT:
2667 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2668 decodedcontroller.controller_number = 70;
2669 break;
2670 case _lev_ctrl_CC71_EXT:
2671 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2672 decodedcontroller.controller_number = 71;
2673 break;
2674 case _lev_ctrl_CC72_EXT:
2675 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2676 decodedcontroller.controller_number = 72;
2677 break;
2678 case _lev_ctrl_CC73_EXT:
2679 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2680 decodedcontroller.controller_number = 73;
2681 break;
2682 case _lev_ctrl_CC74_EXT:
2683 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2684 decodedcontroller.controller_number = 74;
2685 break;
2686 case _lev_ctrl_CC75_EXT:
2687 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2688 decodedcontroller.controller_number = 75;
2689 break;
2690 case _lev_ctrl_CC76_EXT:
2691 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2692 decodedcontroller.controller_number = 76;
2693 break;
2694 case _lev_ctrl_CC77_EXT:
2695 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2696 decodedcontroller.controller_number = 77;
2697 break;
2698 case _lev_ctrl_CC78_EXT:
2699 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2700 decodedcontroller.controller_number = 78;
2701 break;
2702 case _lev_ctrl_CC79_EXT:
2703 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2704 decodedcontroller.controller_number = 79;
2705 break;
2706 case _lev_ctrl_CC84_EXT:
2707 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2708 decodedcontroller.controller_number = 84;
2709 break;
2710 case _lev_ctrl_CC85_EXT:
2711 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2712 decodedcontroller.controller_number = 85;
2713 break;
2714 case _lev_ctrl_CC86_EXT:
2715 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2716 decodedcontroller.controller_number = 86;
2717 break;
2718 case _lev_ctrl_CC87_EXT:
2719 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2720 decodedcontroller.controller_number = 87;
2721 break;
2722 case _lev_ctrl_CC89_EXT:
2723 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2724 decodedcontroller.controller_number = 89;
2725 break;
2726 case _lev_ctrl_CC90_EXT:
2727 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2728 decodedcontroller.controller_number = 90;
2729 break;
2730 case _lev_ctrl_CC96_EXT:
2731 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2732 decodedcontroller.controller_number = 96;
2733 break;
2734 case _lev_ctrl_CC97_EXT:
2735 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2736 decodedcontroller.controller_number = 97;
2737 break;
2738 case _lev_ctrl_CC102_EXT:
2739 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2740 decodedcontroller.controller_number = 102;
2741 break;
2742 case _lev_ctrl_CC103_EXT:
2743 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2744 decodedcontroller.controller_number = 103;
2745 break;
2746 case _lev_ctrl_CC104_EXT:
2747 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2748 decodedcontroller.controller_number = 104;
2749 break;
2750 case _lev_ctrl_CC105_EXT:
2751 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2752 decodedcontroller.controller_number = 105;
2753 break;
2754 case _lev_ctrl_CC106_EXT:
2755 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2756 decodedcontroller.controller_number = 106;
2757 break;
2758 case _lev_ctrl_CC107_EXT:
2759 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2760 decodedcontroller.controller_number = 107;
2761 break;
2762 case _lev_ctrl_CC108_EXT:
2763 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2764 decodedcontroller.controller_number = 108;
2765 break;
2766 case _lev_ctrl_CC109_EXT:
2767 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2768 decodedcontroller.controller_number = 109;
2769 break;
2770 case _lev_ctrl_CC110_EXT:
2771 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2772 decodedcontroller.controller_number = 110;
2773 break;
2774 case _lev_ctrl_CC111_EXT:
2775 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2776 decodedcontroller.controller_number = 111;
2777 break;
2778 case _lev_ctrl_CC112_EXT:
2779 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2780 decodedcontroller.controller_number = 112;
2781 break;
2782 case _lev_ctrl_CC113_EXT:
2783 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2784 decodedcontroller.controller_number = 113;
2785 break;
2786 case _lev_ctrl_CC114_EXT:
2787 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2788 decodedcontroller.controller_number = 114;
2789 break;
2790 case _lev_ctrl_CC115_EXT:
2791 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2792 decodedcontroller.controller_number = 115;
2793 break;
2794 case _lev_ctrl_CC116_EXT:
2795 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2796 decodedcontroller.controller_number = 116;
2797 break;
2798 case _lev_ctrl_CC117_EXT:
2799 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2800 decodedcontroller.controller_number = 117;
2801 break;
2802 case _lev_ctrl_CC118_EXT:
2803 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2804 decodedcontroller.controller_number = 118;
2805 break;
2806 case _lev_ctrl_CC119_EXT:
2807 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2808 decodedcontroller.controller_number = 119;
2809 break;
2810
2811 // unknown controller type
2812 default:
2813 decodedcontroller.type = leverage_ctrl_t::type_none;
2814 decodedcontroller.controller_number = 0;
2815 printf("Warning: Unknown leverage controller type (0x%x).\n", EncodedController);
2816 break;
2817 }
2818 return decodedcontroller;
2819 }
2820
2821 // see above (diagnostic push not supported prior GCC 4.6)
2822 //#pragma GCC diagnostic pop
2823
2824 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2825 _lev_ctrl_t encodedcontroller;
2826 switch (DecodedController.type) {
2827 // special controller
2828 case leverage_ctrl_t::type_none:
2829 encodedcontroller = _lev_ctrl_none;
2830 break;
2831 case leverage_ctrl_t::type_velocity:
2832 encodedcontroller = _lev_ctrl_velocity;
2833 break;
2834 case leverage_ctrl_t::type_channelaftertouch:
2835 encodedcontroller = _lev_ctrl_channelaftertouch;
2836 break;
2837
2838 // ordinary MIDI control change controller
2839 case leverage_ctrl_t::type_controlchange:
2840 switch (DecodedController.controller_number) {
2841 case 1:
2842 encodedcontroller = _lev_ctrl_modwheel;
2843 break;
2844 case 2:
2845 encodedcontroller = _lev_ctrl_breath;
2846 break;
2847 case 4:
2848 encodedcontroller = _lev_ctrl_foot;
2849 break;
2850 case 12:
2851 encodedcontroller = _lev_ctrl_effect1;
2852 break;
2853 case 13:
2854 encodedcontroller = _lev_ctrl_effect2;
2855 break;
2856 case 16:
2857 encodedcontroller = _lev_ctrl_genpurpose1;
2858 break;
2859 case 17:
2860 encodedcontroller = _lev_ctrl_genpurpose2;
2861 break;
2862 case 18:
2863 encodedcontroller = _lev_ctrl_genpurpose3;
2864 break;
2865 case 19:
2866 encodedcontroller = _lev_ctrl_genpurpose4;
2867 break;
2868 case 5:
2869 encodedcontroller = _lev_ctrl_portamentotime;
2870 break;
2871 case 64:
2872 encodedcontroller = _lev_ctrl_sustainpedal;
2873 break;
2874 case 65:
2875 encodedcontroller = _lev_ctrl_portamento;
2876 break;
2877 case 66:
2878 encodedcontroller = _lev_ctrl_sostenutopedal;
2879 break;
2880 case 67:
2881 encodedcontroller = _lev_ctrl_softpedal;
2882 break;
2883 case 80:
2884 encodedcontroller = _lev_ctrl_genpurpose5;
2885 break;
2886 case 81:
2887 encodedcontroller = _lev_ctrl_genpurpose6;
2888 break;
2889 case 82:
2890 encodedcontroller = _lev_ctrl_genpurpose7;
2891 break;
2892 case 83:
2893 encodedcontroller = _lev_ctrl_genpurpose8;
2894 break;
2895 case 91:
2896 encodedcontroller = _lev_ctrl_effect1depth;
2897 break;
2898 case 92:
2899 encodedcontroller = _lev_ctrl_effect2depth;
2900 break;
2901 case 93:
2902 encodedcontroller = _lev_ctrl_effect3depth;
2903 break;
2904 case 94:
2905 encodedcontroller = _lev_ctrl_effect4depth;
2906 break;
2907 case 95:
2908 encodedcontroller = _lev_ctrl_effect5depth;
2909 break;
2910
2911 // format extension (these controllers are so far only
2912 // supported by LinuxSampler & gigedit) they will *NOT*
2913 // work with Gigasampler/GigaStudio !
2914 case 3:
2915 encodedcontroller = _lev_ctrl_CC3_EXT;
2916 break;
2917 case 6:
2918 encodedcontroller = _lev_ctrl_CC6_EXT;
2919 break;
2920 case 7:
2921 encodedcontroller = _lev_ctrl_CC7_EXT;
2922 break;
2923 case 8:
2924 encodedcontroller = _lev_ctrl_CC8_EXT;
2925 break;
2926 case 9:
2927 encodedcontroller = _lev_ctrl_CC9_EXT;
2928 break;
2929 case 10:
2930 encodedcontroller = _lev_ctrl_CC10_EXT;
2931 break;
2932 case 11:
2933 encodedcontroller = _lev_ctrl_CC11_EXT;
2934 break;
2935 case 14:
2936 encodedcontroller = _lev_ctrl_CC14_EXT;
2937 break;
2938 case 15:
2939 encodedcontroller = _lev_ctrl_CC15_EXT;
2940 break;
2941 case 20:
2942 encodedcontroller = _lev_ctrl_CC20_EXT;
2943 break;
2944 case 21:
2945 encodedcontroller = _lev_ctrl_CC21_EXT;
2946 break;
2947 case 22:
2948 encodedcontroller = _lev_ctrl_CC22_EXT;
2949 break;
2950 case 23:
2951 encodedcontroller = _lev_ctrl_CC23_EXT;
2952 break;
2953 case 24:
2954 encodedcontroller = _lev_ctrl_CC24_EXT;
2955 break;
2956 case 25:
2957 encodedcontroller = _lev_ctrl_CC25_EXT;
2958 break;
2959 case 26:
2960 encodedcontroller = _lev_ctrl_CC26_EXT;
2961 break;
2962 case 27:
2963 encodedcontroller = _lev_ctrl_CC27_EXT;
2964 break;
2965 case 28:
2966 encodedcontroller = _lev_ctrl_CC28_EXT;
2967 break;
2968 case 29:
2969 encodedcontroller = _lev_ctrl_CC29_EXT;
2970 break;
2971 case 30:
2972 encodedcontroller = _lev_ctrl_CC30_EXT;
2973 break;
2974 case 31:
2975 encodedcontroller = _lev_ctrl_CC31_EXT;
2976 break;
2977 case 68:
2978 encodedcontroller = _lev_ctrl_CC68_EXT;
2979 break;
2980 case 69:
2981 encodedcontroller = _lev_ctrl_CC69_EXT;
2982 break;
2983 case 70:
2984 encodedcontroller = _lev_ctrl_CC70_EXT;
2985 break;
2986 case 71:
2987 encodedcontroller = _lev_ctrl_CC71_EXT;
2988 break;
2989 case 72:
2990 encodedcontroller = _lev_ctrl_CC72_EXT;
2991 break;
2992 case 73:
2993 encodedcontroller = _lev_ctrl_CC73_EXT;
2994 break;
2995 case 74:
2996 encodedcontroller = _lev_ctrl_CC74_EXT;
2997 break;
2998 case 75:
2999 encodedcontroller = _lev_ctrl_CC75_EXT;
3000 break;
3001 case 76:
3002 encodedcontroller = _lev_ctrl_CC76_EXT;
3003 break;
3004 case 77:
3005 encodedcontroller = _lev_ctrl_CC77_EXT;
3006 break;
3007 case 78:
3008 encodedcontroller = _lev_ctrl_CC78_EXT;
3009 break;
3010 case 79:
3011 encodedcontroller = _lev_ctrl_CC79_EXT;
3012 break;
3013 case 84:
3014 encodedcontroller = _lev_ctrl_CC84_EXT;
3015 break;
3016 case 85:
3017 encodedcontroller = _lev_ctrl_CC85_EXT;
3018 break;
3019 case 86:
3020 encodedcontroller = _lev_ctrl_CC86_EXT;
3021 break;
3022 case 87:
3023 encodedcontroller = _lev_ctrl_CC87_EXT;
3024 break;
3025 case 89:
3026 encodedcontroller = _lev_ctrl_CC89_EXT;
3027 break;
3028 case 90:
3029 encodedcontroller = _lev_ctrl_CC90_EXT;
3030 break;
3031 case 96:
3032 encodedcontroller = _lev_ctrl_CC96_EXT;
3033 break;
3034 case 97:
3035 encodedcontroller = _lev_ctrl_CC97_EXT;
3036 break;
3037 case 102:
3038 encodedcontroller = _lev_ctrl_CC102_EXT;
3039 break;
3040 case 103:
3041 encodedcontroller = _lev_ctrl_CC103_EXT;
3042 break;
3043 case 104:
3044 encodedcontroller = _lev_ctrl_CC104_EXT;
3045 break;
3046 case 105:
3047 encodedcontroller = _lev_ctrl_CC105_EXT;
3048 break;
3049 case 106:
3050 encodedcontroller = _lev_ctrl_CC106_EXT;
3051 break;
3052 case 107:
3053 encodedcontroller = _lev_ctrl_CC107_EXT;
3054 break;
3055 case 108:
3056 encodedcontroller = _lev_ctrl_CC108_EXT;
3057 break;
3058 case 109:
3059 encodedcontroller = _lev_ctrl_CC109_EXT;
3060 break;
3061 case 110:
3062 encodedcontroller = _lev_ctrl_CC110_EXT;
3063 break;
3064 case 111:
3065 encodedcontroller = _lev_ctrl_CC111_EXT;
3066 break;
3067 case 112:
3068 encodedcontroller = _lev_ctrl_CC112_EXT;
3069 break;
3070 case 113:
3071 encodedcontroller = _lev_ctrl_CC113_EXT;
3072 break;
3073 case 114:
3074 encodedcontroller = _lev_ctrl_CC114_EXT;
3075 break;
3076 case 115:
3077 encodedcontroller = _lev_ctrl_CC115_EXT;
3078 break;
3079 case 116:
3080 encodedcontroller = _lev_ctrl_CC116_EXT;
3081 break;
3082 case 117:
3083 encodedcontroller = _lev_ctrl_CC117_EXT;
3084 break;
3085 case 118:
3086 encodedcontroller = _lev_ctrl_CC118_EXT;
3087 break;
3088 case 119:
3089 encodedcontroller = _lev_ctrl_CC119_EXT;
3090 break;
3091
3092 default:
3093 throw gig::Exception("leverage controller number is not supported by the gig format");
3094 }
3095 break;
3096 default:
3097 throw gig::Exception("Unknown leverage controller type.");
3098 }
3099 return encodedcontroller;
3100 }
3101
3102 DimensionRegion::~DimensionRegion() {
3103 Instances--;
3104 if (!Instances) {
3105 // delete the velocity->volume tables
3106 VelocityTableMap::iterator iter;
3107 for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
3108 double* pTable = iter->second;
3109 if (pTable) delete[] pTable;
3110 }
3111 pVelocityTables->clear();
3112 delete pVelocityTables;
3113 pVelocityTables = NULL;
3114 }
3115 if (VelocityTable) delete[] VelocityTable;
3116 }
3117
3118 /**
3119 * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
3120 * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
3121 * and VelocityResponseCurveScaling) involved are taken into account to
3122 * calculate the amplitude factor. Use this method when a key was
3123 * triggered to get the volume with which the sample should be played
3124 * back.
3125 *
3126 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
3127 * @returns amplitude factor (between 0.0 and 1.0)
3128 */
3129 double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
3130 return pVelocityAttenuationTable[MIDIKeyVelocity];
3131 }
3132
3133 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
3134 return pVelocityReleaseTable[MIDIKeyVelocity];
3135 }
3136
3137 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
3138 return pVelocityCutoffTable[MIDIKeyVelocity];
3139 }
3140
3141 /**
3142 * Updates the respective member variable and the lookup table / cache
3143 * that depends on this value.
3144 */
3145 void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
3146 pVelocityAttenuationTable =
3147 GetVelocityTable(
3148 curve, VelocityResponseDepth, VelocityResponseCurveScaling
3149 );
3150 VelocityResponseCurve = curve;
3151 }
3152
3153 /**
3154 * Updates the respective member variable and the lookup table / cache
3155 * that depends on this value.
3156 */
3157 void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
3158 pVelocityAttenuationTable =
3159 GetVelocityTable(
3160 VelocityResponseCurve, depth, VelocityResponseCurveScaling
3161 );
3162 VelocityResponseDepth = depth;
3163 }
3164
3165 /**
3166 * Updates the respective member variable and the lookup table / cache
3167 * that depends on this value.
3168 */
3169 void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
3170 pVelocityAttenuationTable =
3171 GetVelocityTable(
3172 VelocityResponseCurve, VelocityResponseDepth, scaling
3173 );
3174 VelocityResponseCurveScaling = scaling;
3175 }
3176
3177 /**
3178 * Updates the respective member variable and the lookup table / cache
3179 * that depends on this value.
3180 */
3181 void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
3182 pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
3183 ReleaseVelocityResponseCurve = curve;
3184 }
3185
3186 /**
3187 * Updates the respective member variable and the lookup table / cache
3188 * that depends on this value.
3189 */
3190 void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
3191 pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
3192 ReleaseVelocityResponseDepth = depth;
3193 }
3194
3195 /**
3196 * Updates the respective member variable and the lookup table / cache
3197 * that depends on this value.
3198 */
3199 void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
3200 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
3201 VCFCutoffController = controller;
3202 }
3203
3204 /**
3205 * Updates the respective member variable and the lookup table / cache
3206 * that depends on this value.
3207 */
3208 void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
3209 pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
3210 VCFVelocityCurve = curve;
3211 }
3212
3213 /**
3214 * Updates the respective member variable and the lookup table / cache
3215 * that depends on this value.
3216 */
3217 void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
3218 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
3219 VCFVelocityDynamicRange = range;
3220 }
3221
3222 /**
3223 * Updates the respective member variable and the lookup table / cache
3224 * that depends on this value.
3225 */
3226 void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
3227 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
3228 VCFVelocityScale = scaling;
3229 }
3230
3231 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
3232
3233 // line-segment approximations of the 15 velocity curves
3234
3235 // linear
3236 const int lin0[] = { 1, 1, 127, 127 };
3237 const int lin1[] = { 1, 21, 127, 127 };
3238 const int lin2[] = { 1, 45