Parent Directory
|
Revision Log
* Compatibility fix (gig.cpp): GigaStudio always expects 128 '3gnm' RIFF chunks (patch by Ivan Maguidhir).
1 | /*************************************************************************** |
2 | * * |
3 | * libgig - C++ cross-platform Gigasampler format file access library * |
4 | * * |
5 | * Copyright (C) 2003-2019 by Christian Schoenebeck * |
6 | * <cuse@users.sourceforge.net> * |
7 | * * |
8 | * This library is free software; you can redistribute it and/or modify * |
9 | * it under the terms of the GNU General Public License as published by * |
10 | * the Free Software Foundation; either version 2 of the License, or * |
11 | * (at your option) any later version. * |
12 | * * |
13 | * This library is distributed in the hope that it will be useful, * |
14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of * |
15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * |
16 | * GNU General Public License for more details. * |
17 | * * |
18 | * You should have received a copy of the GNU General Public License * |
19 | * along with this library; if not, write to the Free Software * |
20 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * |
21 | * MA 02111-1307 USA * |
22 | ***************************************************************************/ |
23 | |
24 | #include "gig.h" |
25 | |
26 | #include "helper.h" |
27 | #include "Serialization.h" |
28 | |
29 | #include <algorithm> |
30 | #include <math.h> |
31 | #include <iostream> |
32 | #include <assert.h> |
33 | |
34 | /// libgig's current file format version (for extending the original Giga file |
35 | /// format with libgig's own custom data / custom features). |
36 | #define GIG_FILE_EXT_VERSION 2 |
37 | |
38 | /// Initial size of the sample buffer which is used for decompression of |
39 | /// compressed sample wave streams - this value should always be bigger than |
40 | /// the biggest sample piece expected to be read by the sampler engine, |
41 | /// otherwise the buffer size will be raised at runtime and thus the buffer |
42 | /// reallocated which is time consuming and unefficient. |
43 | #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB |
44 | |
45 | /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */ |
46 | #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x)) |
47 | #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822)) |
48 | #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01)) |
49 | #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01) |
50 | #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03) |
51 | #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4) |
52 | #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03) |
53 | #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03) |
54 | #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03) |
55 | #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1) |
56 | #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3) |
57 | #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5) |
58 | |
59 | #define SRLZ(member) \ |
60 | archive->serializeMember(*this, member, #member); |
61 | |
62 | namespace gig { |
63 | |
64 | // *************** Internal functions for sample decompression *************** |
65 | // * |
66 | |
67 | namespace { |
68 | |
69 | inline int get12lo(const unsigned char* pSrc) |
70 | { |
71 | const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8; |
72 | return x & 0x800 ? x - 0x1000 : x; |
73 | } |
74 | |
75 | inline int get12hi(const unsigned char* pSrc) |
76 | { |
77 | const int x = pSrc[1] >> 4 | pSrc[2] << 4; |
78 | return x & 0x800 ? x - 0x1000 : x; |
79 | } |
80 | |
81 | inline int16_t get16(const unsigned char* pSrc) |
82 | { |
83 | return int16_t(pSrc[0] | pSrc[1] << 8); |
84 | } |
85 | |
86 | inline int get24(const unsigned char* pSrc) |
87 | { |
88 | const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16; |
89 | return x & 0x800000 ? x - 0x1000000 : x; |
90 | } |
91 | |
92 | inline void store24(unsigned char* pDst, int x) |
93 | { |
94 | pDst[0] = x; |
95 | pDst[1] = x >> 8; |
96 | pDst[2] = x >> 16; |
97 | } |
98 | |
99 | void Decompress16(int compressionmode, const unsigned char* params, |
100 | int srcStep, int dstStep, |
101 | const unsigned char* pSrc, int16_t* pDst, |
102 | file_offset_t currentframeoffset, |
103 | file_offset_t copysamples) |
104 | { |
105 | switch (compressionmode) { |
106 | case 0: // 16 bit uncompressed |
107 | pSrc += currentframeoffset * srcStep; |
108 | while (copysamples) { |
109 | *pDst = get16(pSrc); |
110 | pDst += dstStep; |
111 | pSrc += srcStep; |
112 | copysamples--; |
113 | } |
114 | break; |
115 | |
116 | case 1: // 16 bit compressed to 8 bit |
117 | int y = get16(params); |
118 | int dy = get16(params + 2); |
119 | while (currentframeoffset) { |
120 | dy -= int8_t(*pSrc); |
121 | y -= dy; |
122 | pSrc += srcStep; |
123 | currentframeoffset--; |
124 | } |
125 | while (copysamples) { |
126 | dy -= int8_t(*pSrc); |
127 | y -= dy; |
128 | *pDst = y; |
129 | pDst += dstStep; |
130 | pSrc += srcStep; |
131 | copysamples--; |
132 | } |
133 | break; |
134 | } |
135 | } |
136 | |
137 | void Decompress24(int compressionmode, const unsigned char* params, |
138 | int dstStep, const unsigned char* pSrc, uint8_t* pDst, |
139 | file_offset_t currentframeoffset, |
140 | file_offset_t copysamples, int truncatedBits) |
141 | { |
142 | int y, dy, ddy, dddy; |
143 | |
144 | #define GET_PARAMS(params) \ |
145 | y = get24(params); \ |
146 | dy = y - get24((params) + 3); \ |
147 | ddy = get24((params) + 6); \ |
148 | dddy = get24((params) + 9) |
149 | |
150 | #define SKIP_ONE(x) \ |
151 | dddy -= (x); \ |
152 | ddy -= dddy; \ |
153 | dy = -dy - ddy; \ |
154 | y += dy |
155 | |
156 | #define COPY_ONE(x) \ |
157 | SKIP_ONE(x); \ |
158 | store24(pDst, y << truncatedBits); \ |
159 | pDst += dstStep |
160 | |
161 | switch (compressionmode) { |
162 | case 2: // 24 bit uncompressed |
163 | pSrc += currentframeoffset * 3; |
164 | while (copysamples) { |
165 | store24(pDst, get24(pSrc) << truncatedBits); |
166 | pDst += dstStep; |
167 | pSrc += 3; |
168 | copysamples--; |
169 | } |
170 | break; |
171 | |
172 | case 3: // 24 bit compressed to 16 bit |
173 | GET_PARAMS(params); |
174 | while (currentframeoffset) { |
175 | SKIP_ONE(get16(pSrc)); |
176 | pSrc += 2; |
177 | currentframeoffset--; |
178 | } |
179 | while (copysamples) { |
180 | COPY_ONE(get16(pSrc)); |
181 | pSrc += 2; |
182 | copysamples--; |
183 | } |
184 | break; |
185 | |
186 | case 4: // 24 bit compressed to 12 bit |
187 | GET_PARAMS(params); |
188 | while (currentframeoffset > 1) { |
189 | SKIP_ONE(get12lo(pSrc)); |
190 | SKIP_ONE(get12hi(pSrc)); |
191 | pSrc += 3; |
192 | currentframeoffset -= 2; |
193 | } |
194 | if (currentframeoffset) { |
195 | SKIP_ONE(get12lo(pSrc)); |
196 | currentframeoffset--; |
197 | if (copysamples) { |
198 | COPY_ONE(get12hi(pSrc)); |
199 | pSrc += 3; |
200 | copysamples--; |
201 | } |
202 | } |
203 | while (copysamples > 1) { |
204 | COPY_ONE(get12lo(pSrc)); |
205 | COPY_ONE(get12hi(pSrc)); |
206 | pSrc += 3; |
207 | copysamples -= 2; |
208 | } |
209 | if (copysamples) { |
210 | COPY_ONE(get12lo(pSrc)); |
211 | } |
212 | break; |
213 | |
214 | case 5: // 24 bit compressed to 8 bit |
215 | GET_PARAMS(params); |
216 | while (currentframeoffset) { |
217 | SKIP_ONE(int8_t(*pSrc++)); |
218 | currentframeoffset--; |
219 | } |
220 | while (copysamples) { |
221 | COPY_ONE(int8_t(*pSrc++)); |
222 | copysamples--; |
223 | } |
224 | break; |
225 | } |
226 | } |
227 | |
228 | const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 }; |
229 | const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 }; |
230 | const int headerSize[] = { 0, 4, 0, 12, 12, 12 }; |
231 | const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 }; |
232 | } |
233 | |
234 | |
235 | |
236 | // *************** Internal CRC-32 (Cyclic Redundancy Check) functions *************** |
237 | // * |
238 | |
239 | static uint32_t* __initCRCTable() { |
240 | static uint32_t res[256]; |
241 | |
242 | for (int i = 0 ; i < 256 ; i++) { |
243 | uint32_t c = i; |
244 | for (int j = 0 ; j < 8 ; j++) { |
245 | c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1; |
246 | } |
247 | res[i] = c; |
248 | } |
249 | return res; |
250 | } |
251 | |
252 | static const uint32_t* __CRCTable = __initCRCTable(); |
253 | |
254 | /** |
255 | * Initialize a CRC variable. |
256 | * |
257 | * @param crc - variable to be initialized |
258 | */ |
259 | inline static void __resetCRC(uint32_t& crc) { |
260 | crc = 0xffffffff; |
261 | } |
262 | |
263 | /** |
264 | * Used to calculate checksums of the sample data in a gig file. The |
265 | * checksums are stored in the 3crc chunk of the gig file and |
266 | * automatically updated when a sample is written with Sample::Write(). |
267 | * |
268 | * One should call __resetCRC() to initialize the CRC variable to be |
269 | * used before calling this function the first time. |
270 | * |
271 | * After initializing the CRC variable one can call this function |
272 | * arbitrary times, i.e. to split the overall CRC calculation into |
273 | * steps. |
274 | * |
275 | * Once the whole data was processed by __calculateCRC(), one should |
276 | * call __finalizeCRC() to get the final CRC result. |
277 | * |
278 | * @param buf - pointer to data the CRC shall be calculated of |
279 | * @param bufSize - size of the data to be processed |
280 | * @param crc - variable the CRC sum shall be stored to |
281 | */ |
282 | static void __calculateCRC(unsigned char* buf, size_t bufSize, uint32_t& crc) { |
283 | for (size_t i = 0 ; i < bufSize ; i++) { |
284 | crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8); |
285 | } |
286 | } |
287 | |
288 | /** |
289 | * Returns the final CRC result. |
290 | * |
291 | * @param crc - variable previously passed to __calculateCRC() |
292 | */ |
293 | inline static void __finalizeCRC(uint32_t& crc) { |
294 | crc ^= 0xffffffff; |
295 | } |
296 | |
297 | |
298 | |
299 | // *************** Other Internal functions *************** |
300 | // * |
301 | |
302 | static split_type_t __resolveSplitType(dimension_t dimension) { |
303 | return ( |
304 | dimension == dimension_layer || |
305 | dimension == dimension_samplechannel || |
306 | dimension == dimension_releasetrigger || |
307 | dimension == dimension_keyboard || |
308 | dimension == dimension_roundrobin || |
309 | dimension == dimension_random || |
310 | dimension == dimension_smartmidi || |
311 | dimension == dimension_roundrobinkeyboard |
312 | ) ? split_type_bit : split_type_normal; |
313 | } |
314 | |
315 | static int __resolveZoneSize(dimension_def_t& dimension_definition) { |
316 | return (dimension_definition.split_type == split_type_normal) |
317 | ? int(128.0 / dimension_definition.zones) : 0; |
318 | } |
319 | |
320 | |
321 | |
322 | // *************** leverage_ctrl_t *************** |
323 | // * |
324 | |
325 | void leverage_ctrl_t::serialize(Serialization::Archive* archive) { |
326 | SRLZ(type); |
327 | SRLZ(controller_number); |
328 | } |
329 | |
330 | |
331 | |
332 | // *************** crossfade_t *************** |
333 | // * |
334 | |
335 | void crossfade_t::serialize(Serialization::Archive* archive) { |
336 | SRLZ(in_start); |
337 | SRLZ(in_end); |
338 | SRLZ(out_start); |
339 | SRLZ(out_end); |
340 | } |
341 | |
342 | |
343 | |
344 | // *************** eg_opt_t *************** |
345 | // * |
346 | |
347 | eg_opt_t::eg_opt_t() { |
348 | AttackCancel = true; |
349 | AttackHoldCancel = true; |
350 | Decay1Cancel = true; |
351 | Decay2Cancel = true; |
352 | ReleaseCancel = true; |
353 | } |
354 | |
355 | void eg_opt_t::serialize(Serialization::Archive* archive) { |
356 | SRLZ(AttackCancel); |
357 | SRLZ(AttackHoldCancel); |
358 | SRLZ(Decay1Cancel); |
359 | SRLZ(Decay2Cancel); |
360 | SRLZ(ReleaseCancel); |
361 | } |
362 | |
363 | |
364 | |
365 | // *************** Sample *************** |
366 | // * |
367 | |
368 | size_t Sample::Instances = 0; |
369 | buffer_t Sample::InternalDecompressionBuffer; |
370 | |
371 | /** @brief Constructor. |
372 | * |
373 | * Load an existing sample or create a new one. A 'wave' list chunk must |
374 | * be given to this constructor. In case the given 'wave' list chunk |
375 | * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the |
376 | * format and sample data will be loaded from there, otherwise default |
377 | * values will be used and those chunks will be created when |
378 | * File::Save() will be called later on. |
379 | * |
380 | * @param pFile - pointer to gig::File where this sample is |
381 | * located (or will be located) |
382 | * @param waveList - pointer to 'wave' list chunk which is (or |
383 | * will be) associated with this sample |
384 | * @param WavePoolOffset - offset of this sample data from wave pool |
385 | * ('wvpl') list chunk |
386 | * @param fileNo - number of an extension file where this sample |
387 | * is located, 0 otherwise |
388 | * @param index - wave pool index of sample (may be -1 on new sample) |
389 | */ |
390 | Sample::Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo, int index) |
391 | : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset) |
392 | { |
393 | static const DLS::Info::string_length_t fixedStringLengths[] = { |
394 | { CHUNK_ID_INAM, 64 }, |
395 | { 0, 0 } |
396 | }; |
397 | pInfo->SetFixedStringLengths(fixedStringLengths); |
398 | Instances++; |
399 | FileNo = fileNo; |
400 | |
401 | __resetCRC(crc); |
402 | // if this is not a new sample, try to get the sample's already existing |
403 | // CRC32 checksum from disk, this checksum will reflect the sample's CRC32 |
404 | // checksum of the time when the sample was consciously modified by the |
405 | // user for the last time (by calling Sample::Write() that is). |
406 | if (index >= 0) { // not a new file ... |
407 | try { |
408 | uint32_t crc = pFile->GetSampleChecksumByIndex(index); |
409 | this->crc = crc; |
410 | } catch (...) {} |
411 | } |
412 | |
413 | pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX); |
414 | if (pCk3gix) { |
415 | pCk3gix->SetPos(0); |
416 | |
417 | uint16_t iSampleGroup = pCk3gix->ReadInt16(); |
418 | pGroup = pFile->GetGroup(iSampleGroup); |
419 | } else { // '3gix' chunk missing |
420 | // by default assigned to that mandatory "Default Group" |
421 | pGroup = pFile->GetGroup(0); |
422 | } |
423 | |
424 | pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL); |
425 | if (pCkSmpl) { |
426 | pCkSmpl->SetPos(0); |
427 | |
428 | Manufacturer = pCkSmpl->ReadInt32(); |
429 | Product = pCkSmpl->ReadInt32(); |
430 | SamplePeriod = pCkSmpl->ReadInt32(); |
431 | MIDIUnityNote = pCkSmpl->ReadInt32(); |
432 | FineTune = pCkSmpl->ReadInt32(); |
433 | pCkSmpl->Read(&SMPTEFormat, 1, 4); |
434 | SMPTEOffset = pCkSmpl->ReadInt32(); |
435 | Loops = pCkSmpl->ReadInt32(); |
436 | pCkSmpl->ReadInt32(); // manufByt |
437 | LoopID = pCkSmpl->ReadInt32(); |
438 | pCkSmpl->Read(&LoopType, 1, 4); |
439 | LoopStart = pCkSmpl->ReadInt32(); |
440 | LoopEnd = pCkSmpl->ReadInt32(); |
441 | LoopFraction = pCkSmpl->ReadInt32(); |
442 | LoopPlayCount = pCkSmpl->ReadInt32(); |
443 | } else { // 'smpl' chunk missing |
444 | // use default values |
445 | Manufacturer = 0; |
446 | Product = 0; |
447 | SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5); |
448 | MIDIUnityNote = 60; |
449 | FineTune = 0; |
450 | SMPTEFormat = smpte_format_no_offset; |
451 | SMPTEOffset = 0; |
452 | Loops = 0; |
453 | LoopID = 0; |
454 | LoopType = loop_type_normal; |
455 | LoopStart = 0; |
456 | LoopEnd = 0; |
457 | LoopFraction = 0; |
458 | LoopPlayCount = 0; |
459 | } |
460 | |
461 | FrameTable = NULL; |
462 | SamplePos = 0; |
463 | RAMCache.Size = 0; |
464 | RAMCache.pStart = NULL; |
465 | RAMCache.NullExtensionSize = 0; |
466 | |
467 | if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported"); |
468 | |
469 | RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV); |
470 | Compressed = ewav; |
471 | Dithered = false; |
472 | TruncatedBits = 0; |
473 | if (Compressed) { |
474 | ewav->SetPos(0); |
475 | |
476 | uint32_t version = ewav->ReadInt32(); |
477 | if (version > 2 && BitDepth == 24) { |
478 | Dithered = ewav->ReadInt32(); |
479 | ewav->SetPos(Channels == 2 ? 84 : 64); |
480 | TruncatedBits = ewav->ReadInt32(); |
481 | } |
482 | ScanCompressedSample(); |
483 | } |
484 | |
485 | // we use a buffer for decompression and for truncating 24 bit samples to 16 bit |
486 | if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) { |
487 | InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE]; |
488 | InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE; |
489 | } |
490 | FrameOffset = 0; // just for streaming compressed samples |
491 | |
492 | LoopSize = LoopEnd - LoopStart + 1; |
493 | } |
494 | |
495 | /** |
496 | * Make a (semi) deep copy of the Sample object given by @a orig (without |
497 | * the actual waveform data) and assign it to this object. |
498 | * |
499 | * Discussion: copying .gig samples is a bit tricky. It requires three |
500 | * steps: |
501 | * 1. Copy sample's meta informations (done by CopyAssignMeta()) including |
502 | * its new sample waveform data size. |
503 | * 2. Saving the file (done by File::Save()) so that it gains correct size |
504 | * and layout for writing the actual wave form data directly to disc |
505 | * in next step. |
506 | * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()). |
507 | * |
508 | * @param orig - original Sample object to be copied from |
509 | */ |
510 | void Sample::CopyAssignMeta(const Sample* orig) { |
511 | // handle base classes |
512 | DLS::Sample::CopyAssignCore(orig); |
513 | |
514 | // handle actual own attributes of this class |
515 | Manufacturer = orig->Manufacturer; |
516 | Product = orig->Product; |
517 | SamplePeriod = orig->SamplePeriod; |
518 | MIDIUnityNote = orig->MIDIUnityNote; |
519 | FineTune = orig->FineTune; |
520 | SMPTEFormat = orig->SMPTEFormat; |
521 | SMPTEOffset = orig->SMPTEOffset; |
522 | Loops = orig->Loops; |
523 | LoopID = orig->LoopID; |
524 | LoopType = orig->LoopType; |
525 | LoopStart = orig->LoopStart; |
526 | LoopEnd = orig->LoopEnd; |
527 | LoopSize = orig->LoopSize; |
528 | LoopFraction = orig->LoopFraction; |
529 | LoopPlayCount = orig->LoopPlayCount; |
530 | |
531 | // schedule resizing this sample to the given sample's size |
532 | Resize(orig->GetSize()); |
533 | } |
534 | |
535 | /** |
536 | * Should be called after CopyAssignMeta() and File::Save() sequence. |
537 | * Read more about it in the discussion of CopyAssignMeta(). This method |
538 | * copies the actual waveform data by disk streaming. |
539 | * |
540 | * @e CAUTION: this method is currently not thread safe! During this |
541 | * operation the sample must not be used for other purposes by other |
542 | * threads! |
543 | * |
544 | * @param orig - original Sample object to be copied from |
545 | */ |
546 | void Sample::CopyAssignWave(const Sample* orig) { |
547 | const int iReadAtOnce = 32*1024; |
548 | char* buf = new char[iReadAtOnce * orig->FrameSize]; |
549 | Sample* pOrig = (Sample*) orig; //HACK: remove constness for now |
550 | file_offset_t restorePos = pOrig->GetPos(); |
551 | pOrig->SetPos(0); |
552 | SetPos(0); |
553 | for (file_offset_t n = pOrig->Read(buf, iReadAtOnce); n; |
554 | n = pOrig->Read(buf, iReadAtOnce)) |
555 | { |
556 | Write(buf, n); |
557 | } |
558 | pOrig->SetPos(restorePos); |
559 | delete [] buf; |
560 | } |
561 | |
562 | /** |
563 | * Apply sample and its settings to the respective RIFF chunks. You have |
564 | * to call File::Save() to make changes persistent. |
565 | * |
566 | * Usually there is absolutely no need to call this method explicitly. |
567 | * It will be called automatically when File::Save() was called. |
568 | * |
569 | * @param pProgress - callback function for progress notification |
570 | * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data |
571 | * was provided yet |
572 | * @throws gig::Exception if there is any invalid sample setting |
573 | */ |
574 | void Sample::UpdateChunks(progress_t* pProgress) { |
575 | // first update base class's chunks |
576 | DLS::Sample::UpdateChunks(pProgress); |
577 | |
578 | // make sure 'smpl' chunk exists |
579 | pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL); |
580 | if (!pCkSmpl) { |
581 | pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60); |
582 | memset(pCkSmpl->LoadChunkData(), 0, 60); |
583 | } |
584 | // update 'smpl' chunk |
585 | uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData(); |
586 | SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5); |
587 | store32(&pData[0], Manufacturer); |
588 | store32(&pData[4], Product); |
589 | store32(&pData[8], SamplePeriod); |
590 | store32(&pData[12], MIDIUnityNote); |
591 | store32(&pData[16], FineTune); |
592 | store32(&pData[20], SMPTEFormat); |
593 | store32(&pData[24], SMPTEOffset); |
594 | store32(&pData[28], Loops); |
595 | |
596 | // we skip 'manufByt' for now (4 bytes) |
597 | |
598 | store32(&pData[36], LoopID); |
599 | store32(&pData[40], LoopType); |
600 | store32(&pData[44], LoopStart); |
601 | store32(&pData[48], LoopEnd); |
602 | store32(&pData[52], LoopFraction); |
603 | store32(&pData[56], LoopPlayCount); |
604 | |
605 | // make sure '3gix' chunk exists |
606 | pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX); |
607 | if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4); |
608 | // determine appropriate sample group index (to be stored in chunk) |
609 | uint16_t iSampleGroup = 0; // 0 refers to default sample group |
610 | File* pFile = static_cast<File*>(pParent); |
611 | if (pFile->pGroups) { |
612 | std::list<Group*>::iterator iter = pFile->pGroups->begin(); |
613 | std::list<Group*>::iterator end = pFile->pGroups->end(); |
614 | for (int i = 0; iter != end; i++, iter++) { |
615 | if (*iter == pGroup) { |
616 | iSampleGroup = i; |
617 | break; // found |
618 | } |
619 | } |
620 | } |
621 | // update '3gix' chunk |
622 | pData = (uint8_t*) pCk3gix->LoadChunkData(); |
623 | store16(&pData[0], iSampleGroup); |
624 | |
625 | // if the library user toggled the "Compressed" attribute from true to |
626 | // false, then the EWAV chunk associated with compressed samples needs |
627 | // to be deleted |
628 | RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV); |
629 | if (ewav && !Compressed) { |
630 | pWaveList->DeleteSubChunk(ewav); |
631 | } |
632 | } |
633 | |
634 | /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points). |
635 | void Sample::ScanCompressedSample() { |
636 | //TODO: we have to add some more scans here (e.g. determine compression rate) |
637 | this->SamplesTotal = 0; |
638 | std::list<file_offset_t> frameOffsets; |
639 | |
640 | SamplesPerFrame = BitDepth == 24 ? 256 : 2048; |
641 | WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag |
642 | |
643 | // Scanning |
644 | pCkData->SetPos(0); |
645 | if (Channels == 2) { // Stereo |
646 | for (int i = 0 ; ; i++) { |
647 | // for 24 bit samples every 8:th frame offset is |
648 | // stored, to save some memory |
649 | if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos()); |
650 | |
651 | const int mode_l = pCkData->ReadUint8(); |
652 | const int mode_r = pCkData->ReadUint8(); |
653 | if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode"); |
654 | const file_offset_t frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r]; |
655 | |
656 | if (pCkData->RemainingBytes() <= frameSize) { |
657 | SamplesInLastFrame = |
658 | ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) / |
659 | (bitsPerSample[mode_l] + bitsPerSample[mode_r]); |
660 | SamplesTotal += SamplesInLastFrame; |
661 | break; |
662 | } |
663 | SamplesTotal += SamplesPerFrame; |
664 | pCkData->SetPos(frameSize, RIFF::stream_curpos); |
665 | } |
666 | } |
667 | else { // Mono |
668 | for (int i = 0 ; ; i++) { |
669 | if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos()); |
670 | |
671 | const int mode = pCkData->ReadUint8(); |
672 | if (mode > 5) throw gig::Exception("Unknown compression mode"); |
673 | const file_offset_t frameSize = bytesPerFrame[mode]; |
674 | |
675 | if (pCkData->RemainingBytes() <= frameSize) { |
676 | SamplesInLastFrame = |
677 | ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode]; |
678 | SamplesTotal += SamplesInLastFrame; |
679 | break; |
680 | } |
681 | SamplesTotal += SamplesPerFrame; |
682 | pCkData->SetPos(frameSize, RIFF::stream_curpos); |
683 | } |
684 | } |
685 | pCkData->SetPos(0); |
686 | |
687 | // Build the frames table (which is used for fast resolving of a frame's chunk offset) |
688 | if (FrameTable) delete[] FrameTable; |
689 | FrameTable = new file_offset_t[frameOffsets.size()]; |
690 | std::list<file_offset_t>::iterator end = frameOffsets.end(); |
691 | std::list<file_offset_t>::iterator iter = frameOffsets.begin(); |
692 | for (int i = 0; iter != end; i++, iter++) { |
693 | FrameTable[i] = *iter; |
694 | } |
695 | } |
696 | |
697 | /** |
698 | * Loads (and uncompresses if needed) the whole sample wave into RAM. Use |
699 | * ReleaseSampleData() to free the memory if you don't need the cached |
700 | * sample data anymore. |
701 | * |
702 | * @returns buffer_t structure with start address and size of the buffer |
703 | * in bytes |
704 | * @see ReleaseSampleData(), Read(), SetPos() |
705 | */ |
706 | buffer_t Sample::LoadSampleData() { |
707 | return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples |
708 | } |
709 | |
710 | /** |
711 | * Reads (uncompresses if needed) and caches the first \a SampleCount |
712 | * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the |
713 | * memory space if you don't need the cached samples anymore. There is no |
714 | * guarantee that exactly \a SampleCount samples will be cached; this is |
715 | * not an error. The size will be eventually truncated e.g. to the |
716 | * beginning of a frame of a compressed sample. This is done for |
717 | * efficiency reasons while streaming the wave by your sampler engine |
718 | * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure |
719 | * that will be returned to determine the actual cached samples, but note |
720 | * that the size is given in bytes! You get the number of actually cached |
721 | * samples by dividing it by the frame size of the sample: |
722 | * @code |
723 | * buffer_t buf = pSample->LoadSampleData(acquired_samples); |
724 | * long cachedsamples = buf.Size / pSample->FrameSize; |
725 | * @endcode |
726 | * |
727 | * @param SampleCount - number of sample points to load into RAM |
728 | * @returns buffer_t structure with start address and size of |
729 | * the cached sample data in bytes |
730 | * @see ReleaseSampleData(), Read(), SetPos() |
731 | */ |
732 | buffer_t Sample::LoadSampleData(file_offset_t SampleCount) { |
733 | return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples |
734 | } |
735 | |
736 | /** |
737 | * Loads (and uncompresses if needed) the whole sample wave into RAM. Use |
738 | * ReleaseSampleData() to free the memory if you don't need the cached |
739 | * sample data anymore. |
740 | * The method will add \a NullSamplesCount silence samples past the |
741 | * official buffer end (this won't affect the 'Size' member of the |
742 | * buffer_t structure, that means 'Size' always reflects the size of the |
743 | * actual sample data, the buffer might be bigger though). Silence |
744 | * samples past the official buffer are needed for differential |
745 | * algorithms that always have to take subsequent samples into account |
746 | * (resampling/interpolation would be an important example) and avoids |
747 | * memory access faults in such cases. |
748 | * |
749 | * @param NullSamplesCount - number of silence samples the buffer should |
750 | * be extended past it's data end |
751 | * @returns buffer_t structure with start address and |
752 | * size of the buffer in bytes |
753 | * @see ReleaseSampleData(), Read(), SetPos() |
754 | */ |
755 | buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) { |
756 | return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount); |
757 | } |
758 | |
759 | /** |
760 | * Reads (uncompresses if needed) and caches the first \a SampleCount |
761 | * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the |
762 | * memory space if you don't need the cached samples anymore. There is no |
763 | * guarantee that exactly \a SampleCount samples will be cached; this is |
764 | * not an error. The size will be eventually truncated e.g. to the |
765 | * beginning of a frame of a compressed sample. This is done for |
766 | * efficiency reasons while streaming the wave by your sampler engine |
767 | * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure |
768 | * that will be returned to determine the actual cached samples, but note |
769 | * that the size is given in bytes! You get the number of actually cached |
770 | * samples by dividing it by the frame size of the sample: |
771 | * @code |
772 | * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples); |
773 | * long cachedsamples = buf.Size / pSample->FrameSize; |
774 | * @endcode |
775 | * The method will add \a NullSamplesCount silence samples past the |
776 | * official buffer end (this won't affect the 'Size' member of the |
777 | * buffer_t structure, that means 'Size' always reflects the size of the |
778 | * actual sample data, the buffer might be bigger though). Silence |
779 | * samples past the official buffer are needed for differential |
780 | * algorithms that always have to take subsequent samples into account |
781 | * (resampling/interpolation would be an important example) and avoids |
782 | * memory access faults in such cases. |
783 | * |
784 | * @param SampleCount - number of sample points to load into RAM |
785 | * @param NullSamplesCount - number of silence samples the buffer should |
786 | * be extended past it's data end |
787 | * @returns buffer_t structure with start address and |
788 | * size of the cached sample data in bytes |
789 | * @see ReleaseSampleData(), Read(), SetPos() |
790 | */ |
791 | buffer_t Sample::LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount) { |
792 | if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal; |
793 | if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart; |
794 | file_offset_t allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize; |
795 | SetPos(0); // reset read position to begin of sample |
796 | RAMCache.pStart = new int8_t[allocationsize]; |
797 | RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize; |
798 | RAMCache.NullExtensionSize = allocationsize - RAMCache.Size; |
799 | // fill the remaining buffer space with silence samples |
800 | memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize); |
801 | return GetCache(); |
802 | } |
803 | |
804 | /** |
805 | * Returns current cached sample points. A buffer_t structure will be |
806 | * returned which contains address pointer to the begin of the cache and |
807 | * the size of the cached sample data in bytes. Use |
808 | * <i>LoadSampleData()</i> to cache a specific amount of sample points in |
809 | * RAM. |
810 | * |
811 | * @returns buffer_t structure with current cached sample points |
812 | * @see LoadSampleData(); |
813 | */ |
814 | buffer_t Sample::GetCache() { |
815 | // return a copy of the buffer_t structure |
816 | buffer_t result; |
817 | result.Size = this->RAMCache.Size; |
818 | result.pStart = this->RAMCache.pStart; |
819 | result.NullExtensionSize = this->RAMCache.NullExtensionSize; |
820 | return result; |
821 | } |
822 | |
823 | /** |
824 | * Frees the cached sample from RAM if loaded with |
825 | * <i>LoadSampleData()</i> previously. |
826 | * |
827 | * @see LoadSampleData(); |
828 | */ |
829 | void Sample::ReleaseSampleData() { |
830 | if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart; |
831 | RAMCache.pStart = NULL; |
832 | RAMCache.Size = 0; |
833 | RAMCache.NullExtensionSize = 0; |
834 | } |
835 | |
836 | /** @brief Resize sample. |
837 | * |
838 | * Resizes the sample's wave form data, that is the actual size of |
839 | * sample wave data possible to be written for this sample. This call |
840 | * will return immediately and just schedule the resize operation. You |
841 | * should call File::Save() to actually perform the resize operation(s) |
842 | * "physically" to the file. As this can take a while on large files, it |
843 | * is recommended to call Resize() first on all samples which have to be |
844 | * resized and finally to call File::Save() to perform all those resize |
845 | * operations in one rush. |
846 | * |
847 | * The actual size (in bytes) is dependant to the current FrameSize |
848 | * value. You may want to set FrameSize before calling Resize(). |
849 | * |
850 | * <b>Caution:</b> You cannot directly write (i.e. with Write()) to |
851 | * enlarged samples before calling File::Save() as this might exceed the |
852 | * current sample's boundary! |
853 | * |
854 | * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is |
855 | * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with |
856 | * other formats will fail! |
857 | * |
858 | * @param NewSize - new sample wave data size in sample points (must be |
859 | * greater than zero) |
860 | * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM |
861 | * @throws DLS::Exception if \a NewSize is less than 1 or unrealistic large |
862 | * @throws gig::Exception if existing sample is compressed |
863 | * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize, |
864 | * DLS::Sample::FormatTag, File::Save() |
865 | */ |
866 | void Sample::Resize(file_offset_t NewSize) { |
867 | if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)"); |
868 | DLS::Sample::Resize(NewSize); |
869 | } |
870 | |
871 | /** |
872 | * Sets the position within the sample (in sample points, not in |
873 | * bytes). Use this method and <i>Read()</i> if you don't want to load |
874 | * the sample into RAM, thus for disk streaming. |
875 | * |
876 | * Although the original Gigasampler engine doesn't allow positioning |
877 | * within compressed samples, I decided to implement it. Even though |
878 | * the Gigasampler format doesn't allow to define loops for compressed |
879 | * samples at the moment, positioning within compressed samples might be |
880 | * interesting for some sampler engines though. The only drawback about |
881 | * my decision is that it takes longer to load compressed gig Files on |
882 | * startup, because it's neccessary to scan the samples for some |
883 | * mandatory informations. But I think as it doesn't affect the runtime |
884 | * efficiency, nobody will have a problem with that. |
885 | * |
886 | * @param SampleCount number of sample points to jump |
887 | * @param Whence optional: to which relation \a SampleCount refers |
888 | * to, if omited <i>RIFF::stream_start</i> is assumed |
889 | * @returns the new sample position |
890 | * @see Read() |
891 | */ |
892 | file_offset_t Sample::SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence) { |
893 | if (Compressed) { |
894 | switch (Whence) { |
895 | case RIFF::stream_curpos: |
896 | this->SamplePos += SampleCount; |
897 | break; |
898 | case RIFF::stream_end: |
899 | this->SamplePos = this->SamplesTotal - 1 - SampleCount; |
900 | break; |
901 | case RIFF::stream_backward: |
902 | this->SamplePos -= SampleCount; |
903 | break; |
904 | case RIFF::stream_start: default: |
905 | this->SamplePos = SampleCount; |
906 | break; |
907 | } |
908 | if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal; |
909 | |
910 | file_offset_t frame = this->SamplePos / 2048; // to which frame to jump |
911 | this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame |
912 | pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame |
913 | return this->SamplePos; |
914 | } |
915 | else { // not compressed |
916 | file_offset_t orderedBytes = SampleCount * this->FrameSize; |
917 | file_offset_t result = pCkData->SetPos(orderedBytes, Whence); |
918 | return (result == orderedBytes) ? SampleCount |
919 | : result / this->FrameSize; |
920 | } |
921 | } |
922 | |
923 | /** |
924 | * Returns the current position in the sample (in sample points). |
925 | */ |
926 | file_offset_t Sample::GetPos() const { |
927 | if (Compressed) return SamplePos; |
928 | else return pCkData->GetPos() / FrameSize; |
929 | } |
930 | |
931 | /** |
932 | * Reads \a SampleCount number of sample points from the position stored |
933 | * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves |
934 | * the position within the sample respectively, this method honors the |
935 | * looping informations of the sample (if any). The sample wave stream |
936 | * will be decompressed on the fly if using a compressed sample. Use this |
937 | * method if you don't want to load the sample into RAM, thus for disk |
938 | * streaming. All this methods needs to know to proceed with streaming |
939 | * for the next time you call this method is stored in \a pPlaybackState. |
940 | * You have to allocate and initialize the playback_state_t structure by |
941 | * yourself before you use it to stream a sample: |
942 | * @code |
943 | * gig::playback_state_t playbackstate; |
944 | * playbackstate.position = 0; |
945 | * playbackstate.reverse = false; |
946 | * playbackstate.loop_cycles_left = pSample->LoopPlayCount; |
947 | * @endcode |
948 | * You don't have to take care of things like if there is actually a loop |
949 | * defined or if the current read position is located within a loop area. |
950 | * The method already handles such cases by itself. |
951 | * |
952 | * <b>Caution:</b> If you are using more than one streaming thread, you |
953 | * have to use an external decompression buffer for <b>EACH</b> |
954 | * streaming thread to avoid race conditions and crashes! |
955 | * |
956 | * @param pBuffer destination buffer |
957 | * @param SampleCount number of sample points to read |
958 | * @param pPlaybackState will be used to store and reload the playback |
959 | * state for the next ReadAndLoop() call |
960 | * @param pDimRgn dimension region with looping information |
961 | * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression |
962 | * @returns number of successfully read sample points |
963 | * @see CreateDecompressionBuffer() |
964 | */ |
965 | file_offset_t Sample::ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState, |
966 | DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) { |
967 | file_offset_t samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend; |
968 | uint8_t* pDst = (uint8_t*) pBuffer; |
969 | |
970 | SetPos(pPlaybackState->position); // recover position from the last time |
971 | |
972 | if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined |
973 | |
974 | const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0]; |
975 | const uint32_t loopEnd = loop.LoopStart + loop.LoopLength; |
976 | |
977 | if (GetPos() <= loopEnd) { |
978 | switch (loop.LoopType) { |
979 | |
980 | case loop_type_bidirectional: { //TODO: not tested yet! |
981 | do { |
982 | // if not endless loop check if max. number of loop cycles have been passed |
983 | if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break; |
984 | |
985 | if (!pPlaybackState->reverse) { // forward playback |
986 | do { |
987 | samplestoloopend = loopEnd - GetPos(); |
988 | readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer); |
989 | samplestoread -= readsamples; |
990 | totalreadsamples += readsamples; |
991 | if (readsamples == samplestoloopend) { |
992 | pPlaybackState->reverse = true; |
993 | break; |
994 | } |
995 | } while (samplestoread && readsamples); |
996 | } |
997 | else { // backward playback |
998 | |
999 | // as we can only read forward from disk, we have to |
1000 | // determine the end position within the loop first, |
1001 | // read forward from that 'end' and finally after |
1002 | // reading, swap all sample frames so it reflects |
1003 | // backward playback |
1004 | |
1005 | file_offset_t swapareastart = totalreadsamples; |
1006 | file_offset_t loopoffset = GetPos() - loop.LoopStart; |
1007 | file_offset_t samplestoreadinloop = Min(samplestoread, loopoffset); |
1008 | file_offset_t reverseplaybackend = GetPos() - samplestoreadinloop; |
1009 | |
1010 | SetPos(reverseplaybackend); |
1011 | |
1012 | // read samples for backward playback |
1013 | do { |
1014 | readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer); |
1015 | samplestoreadinloop -= readsamples; |
1016 | samplestoread -= readsamples; |
1017 | totalreadsamples += readsamples; |
1018 | } while (samplestoreadinloop && readsamples); |
1019 | |
1020 | SetPos(reverseplaybackend); // pretend we really read backwards |
1021 | |
1022 | if (reverseplaybackend == loop.LoopStart) { |
1023 | pPlaybackState->loop_cycles_left--; |
1024 | pPlaybackState->reverse = false; |
1025 | } |
1026 | |
1027 | // reverse the sample frames for backward playback |
1028 | if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above! |
1029 | SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize); |
1030 | } |
1031 | } while (samplestoread && readsamples); |
1032 | break; |
1033 | } |
1034 | |
1035 | case loop_type_backward: { // TODO: not tested yet! |
1036 | // forward playback (not entered the loop yet) |
1037 | if (!pPlaybackState->reverse) do { |
1038 | samplestoloopend = loopEnd - GetPos(); |
1039 | readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer); |
1040 | samplestoread -= readsamples; |
1041 | totalreadsamples += readsamples; |
1042 | if (readsamples == samplestoloopend) { |
1043 | pPlaybackState->reverse = true; |
1044 | break; |
1045 | } |
1046 | } while (samplestoread && readsamples); |
1047 | |
1048 | if (!samplestoread) break; |
1049 | |
1050 | // as we can only read forward from disk, we have to |
1051 | // determine the end position within the loop first, |
1052 | // read forward from that 'end' and finally after |
1053 | // reading, swap all sample frames so it reflects |
1054 | // backward playback |
1055 | |
1056 | file_offset_t swapareastart = totalreadsamples; |
1057 | file_offset_t loopoffset = GetPos() - loop.LoopStart; |
1058 | file_offset_t samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset) |
1059 | : samplestoread; |
1060 | file_offset_t reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength); |
1061 | |
1062 | SetPos(reverseplaybackend); |
1063 | |
1064 | // read samples for backward playback |
1065 | do { |
1066 | // if not endless loop check if max. number of loop cycles have been passed |
1067 | if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break; |
1068 | samplestoloopend = loopEnd - GetPos(); |
1069 | readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer); |
1070 | samplestoreadinloop -= readsamples; |
1071 | samplestoread -= readsamples; |
1072 | totalreadsamples += readsamples; |
1073 | if (readsamples == samplestoloopend) { |
1074 | pPlaybackState->loop_cycles_left--; |
1075 | SetPos(loop.LoopStart); |
1076 | } |
1077 | } while (samplestoreadinloop && readsamples); |
1078 | |
1079 | SetPos(reverseplaybackend); // pretend we really read backwards |
1080 | |
1081 | // reverse the sample frames for backward playback |
1082 | SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize); |
1083 | break; |
1084 | } |
1085 | |
1086 | default: case loop_type_normal: { |
1087 | do { |
1088 | // if not endless loop check if max. number of loop cycles have been passed |
1089 | if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break; |
1090 | samplestoloopend = loopEnd - GetPos(); |
1091 | readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer); |
1092 | samplestoread -= readsamples; |
1093 | totalreadsamples += readsamples; |
1094 | if (readsamples == samplestoloopend) { |
1095 | pPlaybackState->loop_cycles_left--; |
1096 | SetPos(loop.LoopStart); |
1097 | } |
1098 | } while (samplestoread && readsamples); |
1099 | break; |
1100 | } |
1101 | } |
1102 | } |
1103 | } |
1104 | |
1105 | // read on without looping |
1106 | if (samplestoread) do { |
1107 | readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer); |
1108 | samplestoread -= readsamples; |
1109 | totalreadsamples += readsamples; |
1110 | } while (readsamples && samplestoread); |
1111 | |
1112 | // store current position |
1113 | pPlaybackState->position = GetPos(); |
1114 | |
1115 | return totalreadsamples; |
1116 | } |
1117 | |
1118 | /** |
1119 | * Reads \a SampleCount number of sample points from the current |
1120 | * position into the buffer pointed by \a pBuffer and increments the |
1121 | * position within the sample. The sample wave stream will be |
1122 | * decompressed on the fly if using a compressed sample. Use this method |
1123 | * and <i>SetPos()</i> if you don't want to load the sample into RAM, |
1124 | * thus for disk streaming. |
1125 | * |
1126 | * <b>Caution:</b> If you are using more than one streaming thread, you |
1127 | * have to use an external decompression buffer for <b>EACH</b> |
1128 | * streaming thread to avoid race conditions and crashes! |
1129 | * |
1130 | * For 16 bit samples, the data in the buffer will be int16_t |
1131 | * (using native endianness). For 24 bit, the buffer will |
1132 | * contain three bytes per sample, little-endian. |
1133 | * |
1134 | * @param pBuffer destination buffer |
1135 | * @param SampleCount number of sample points to read |
1136 | * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression |
1137 | * @returns number of successfully read sample points |
1138 | * @see SetPos(), CreateDecompressionBuffer() |
1139 | */ |
1140 | file_offset_t Sample::Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer) { |
1141 | if (SampleCount == 0) return 0; |
1142 | if (!Compressed) { |
1143 | if (BitDepth == 24) { |
1144 | return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize; |
1145 | } |
1146 | else { // 16 bit |
1147 | // (pCkData->Read does endian correction) |
1148 | return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1 |
1149 | : pCkData->Read(pBuffer, SampleCount, 2); |
1150 | } |
1151 | } |
1152 | else { |
1153 | if (this->SamplePos >= this->SamplesTotal) return 0; |
1154 | //TODO: efficiency: maybe we should test for an average compression rate |
1155 | file_offset_t assumedsize = GuessSize(SampleCount), |
1156 | remainingbytes = 0, // remaining bytes in the local buffer |
1157 | remainingsamples = SampleCount, |
1158 | copysamples, skipsamples, |
1159 | currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read() |
1160 | this->FrameOffset = 0; |
1161 | |
1162 | buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer; |
1163 | |
1164 | // if decompression buffer too small, then reduce amount of samples to read |
1165 | if (pDecompressionBuffer->Size < assumedsize) { |
1166 | std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl; |
1167 | SampleCount = WorstCaseMaxSamples(pDecompressionBuffer); |
1168 | remainingsamples = SampleCount; |
1169 | assumedsize = GuessSize(SampleCount); |
1170 | } |
1171 | |
1172 | unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart; |
1173 | int16_t* pDst = static_cast<int16_t*>(pBuffer); |
1174 | uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer); |
1175 | remainingbytes = pCkData->Read(pSrc, assumedsize, 1); |
1176 | |
1177 | while (remainingsamples && remainingbytes) { |
1178 | file_offset_t framesamples = SamplesPerFrame; |
1179 | file_offset_t framebytes, rightChannelOffset = 0, nextFrameOffset; |
1180 | |
1181 | int mode_l = *pSrc++, mode_r = 0; |
1182 | |
1183 | if (Channels == 2) { |
1184 | mode_r = *pSrc++; |
1185 | framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2; |
1186 | rightChannelOffset = bytesPerFrameNoHdr[mode_l]; |
1187 | nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r]; |
1188 | if (remainingbytes < framebytes) { // last frame in sample |
1189 | framesamples = SamplesInLastFrame; |
1190 | if (mode_l == 4 && (framesamples & 1)) { |
1191 | rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3; |
1192 | } |
1193 | else { |
1194 | rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3; |
1195 | } |
1196 | } |
1197 | } |
1198 | else { |
1199 | framebytes = bytesPerFrame[mode_l] + 1; |
1200 | nextFrameOffset = bytesPerFrameNoHdr[mode_l]; |
1201 | if (remainingbytes < framebytes) { |
1202 | framesamples = SamplesInLastFrame; |
1203 | } |
1204 | } |
1205 | |
1206 | // determine how many samples in this frame to skip and read |
1207 | if (currentframeoffset + remainingsamples >= framesamples) { |
1208 | if (currentframeoffset <= framesamples) { |
1209 | copysamples = framesamples - currentframeoffset; |
1210 | skipsamples = currentframeoffset; |
1211 | } |
1212 | else { |
1213 | copysamples = 0; |
1214 | skipsamples = framesamples; |
1215 | } |
1216 | } |
1217 | else { |
1218 | // This frame has enough data for pBuffer, but not |
1219 | // all of the frame is needed. Set file position |
1220 | // to start of this frame for next call to Read. |
1221 | copysamples = remainingsamples; |
1222 | skipsamples = currentframeoffset; |
1223 | pCkData->SetPos(remainingbytes, RIFF::stream_backward); |
1224 | this->FrameOffset = currentframeoffset + copysamples; |
1225 | } |
1226 | remainingsamples -= copysamples; |
1227 | |
1228 | if (remainingbytes > framebytes) { |
1229 | remainingbytes -= framebytes; |
1230 | if (remainingsamples == 0 && |
1231 | currentframeoffset + copysamples == framesamples) { |
1232 | // This frame has enough data for pBuffer, and |
1233 | // all of the frame is needed. Set file |
1234 | // position to start of next frame for next |
1235 | // call to Read. FrameOffset is 0. |
1236 | pCkData->SetPos(remainingbytes, RIFF::stream_backward); |
1237 | } |
1238 | } |
1239 | else remainingbytes = 0; |
1240 | |
1241 | currentframeoffset -= skipsamples; |
1242 | |
1243 | if (copysamples == 0) { |
1244 | // skip this frame |
1245 | pSrc += framebytes - Channels; |
1246 | } |
1247 | else { |
1248 | const unsigned char* const param_l = pSrc; |
1249 | if (BitDepth == 24) { |
1250 | if (mode_l != 2) pSrc += 12; |
1251 | |
1252 | if (Channels == 2) { // Stereo |
1253 | const unsigned char* const param_r = pSrc; |
1254 | if (mode_r != 2) pSrc += 12; |
1255 | |
1256 | Decompress24(mode_l, param_l, 6, pSrc, pDst24, |
1257 | skipsamples, copysamples, TruncatedBits); |
1258 | Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3, |
1259 | skipsamples, copysamples, TruncatedBits); |
1260 | pDst24 += copysamples * 6; |
1261 | } |
1262 | else { // Mono |
1263 | Decompress24(mode_l, param_l, 3, pSrc, pDst24, |
1264 | skipsamples, copysamples, TruncatedBits); |
1265 | pDst24 += copysamples * 3; |
1266 | } |
1267 | } |
1268 | else { // 16 bit |
1269 | if (mode_l) pSrc += 4; |
1270 | |
1271 | int step; |
1272 | if (Channels == 2) { // Stereo |
1273 | const unsigned char* const param_r = pSrc; |
1274 | if (mode_r) pSrc += 4; |
1275 | |
1276 | step = (2 - mode_l) + (2 - mode_r); |
1277 | Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples); |
1278 | Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1, |
1279 | skipsamples, copysamples); |
1280 | pDst += copysamples << 1; |
1281 | } |
1282 | else { // Mono |
1283 | step = 2 - mode_l; |
1284 | Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples); |
1285 | pDst += copysamples; |
1286 | } |
1287 | } |
1288 | pSrc += nextFrameOffset; |
1289 | } |
1290 | |
1291 | // reload from disk to local buffer if needed |
1292 | if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) { |
1293 | assumedsize = GuessSize(remainingsamples); |
1294 | pCkData->SetPos(remainingbytes, RIFF::stream_backward); |
1295 | if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes(); |
1296 | remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1); |
1297 | pSrc = (unsigned char*) pDecompressionBuffer->pStart; |
1298 | } |
1299 | } // while |
1300 | |
1301 | this->SamplePos += (SampleCount - remainingsamples); |
1302 | if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal; |
1303 | return (SampleCount - remainingsamples); |
1304 | } |
1305 | } |
1306 | |
1307 | /** @brief Write sample wave data. |
1308 | * |
1309 | * Writes \a SampleCount number of sample points from the buffer pointed |
1310 | * by \a pBuffer and increments the position within the sample. Use this |
1311 | * method to directly write the sample data to disk, i.e. if you don't |
1312 | * want or cannot load the whole sample data into RAM. |
1313 | * |
1314 | * You have to Resize() the sample to the desired size and call |
1315 | * File::Save() <b>before</b> using Write(). |
1316 | * |
1317 | * Note: there is currently no support for writing compressed samples. |
1318 | * |
1319 | * For 16 bit samples, the data in the source buffer should be |
1320 | * int16_t (using native endianness). For 24 bit, the buffer |
1321 | * should contain three bytes per sample, little-endian. |
1322 | * |
1323 | * @param pBuffer - source buffer |
1324 | * @param SampleCount - number of sample points to write |
1325 | * @throws DLS::Exception if current sample size is too small |
1326 | * @throws gig::Exception if sample is compressed |
1327 | * @see DLS::LoadSampleData() |
1328 | */ |
1329 | file_offset_t Sample::Write(void* pBuffer, file_offset_t SampleCount) { |
1330 | if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)"); |
1331 | |
1332 | // if this is the first write in this sample, reset the |
1333 | // checksum calculator |
1334 | if (pCkData->GetPos() == 0) { |
1335 | __resetCRC(crc); |
1336 | } |
1337 | if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small"); |
1338 | file_offset_t res; |
1339 | if (BitDepth == 24) { |
1340 | res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize; |
1341 | } else { // 16 bit |
1342 | res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1 |
1343 | : pCkData->Write(pBuffer, SampleCount, 2); |
1344 | } |
1345 | __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc); |
1346 | |
1347 | // if this is the last write, update the checksum chunk in the |
1348 | // file |
1349 | if (pCkData->GetPos() == pCkData->GetSize()) { |
1350 | __finalizeCRC(crc); |
1351 | File* pFile = static_cast<File*>(GetParent()); |
1352 | pFile->SetSampleChecksum(this, crc); |
1353 | } |
1354 | return res; |
1355 | } |
1356 | |
1357 | /** |
1358 | * Allocates a decompression buffer for streaming (compressed) samples |
1359 | * with Sample::Read(). If you are using more than one streaming thread |
1360 | * in your application you <b>HAVE</b> to create a decompression buffer |
1361 | * for <b>EACH</b> of your streaming threads and provide it with the |
1362 | * Sample::Read() call in order to avoid race conditions and crashes. |
1363 | * |
1364 | * You should free the memory occupied by the allocated buffer(s) once |
1365 | * you don't need one of your streaming threads anymore by calling |
1366 | * DestroyDecompressionBuffer(). |
1367 | * |
1368 | * @param MaxReadSize - the maximum size (in sample points) you ever |
1369 | * expect to read with one Read() call |
1370 | * @returns allocated decompression buffer |
1371 | * @see DestroyDecompressionBuffer() |
1372 | */ |
1373 | buffer_t Sample::CreateDecompressionBuffer(file_offset_t MaxReadSize) { |
1374 | buffer_t result; |
1375 | const double worstCaseHeaderOverhead = |
1376 | (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0; |
1377 | result.Size = (file_offset_t) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead); |
1378 | result.pStart = new int8_t[result.Size]; |
1379 | result.NullExtensionSize = 0; |
1380 | return result; |
1381 | } |
1382 | |
1383 | /** |
1384 | * Free decompression buffer, previously created with |
1385 | * CreateDecompressionBuffer(). |
1386 | * |
1387 | * @param DecompressionBuffer - previously allocated decompression |
1388 | * buffer to free |
1389 | */ |
1390 | void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) { |
1391 | if (DecompressionBuffer.Size && DecompressionBuffer.pStart) { |
1392 | delete[] (int8_t*) DecompressionBuffer.pStart; |
1393 | DecompressionBuffer.pStart = NULL; |
1394 | DecompressionBuffer.Size = 0; |
1395 | DecompressionBuffer.NullExtensionSize = 0; |
1396 | } |
1397 | } |
1398 | |
1399 | /** |
1400 | * Returns pointer to the Group this Sample belongs to. In the .gig |
1401 | * format a sample always belongs to one group. If it wasn't explicitly |
1402 | * assigned to a certain group, it will be automatically assigned to a |
1403 | * default group. |
1404 | * |
1405 | * @returns Sample's Group (never NULL) |
1406 | */ |
1407 | Group* Sample::GetGroup() const { |
1408 | return pGroup; |
1409 | } |
1410 | |
1411 | /** |
1412 | * Returns the CRC-32 checksum of the sample's raw wave form data at the |
1413 | * time when this sample's wave form data was modified for the last time |
1414 | * by calling Write(). This checksum only covers the raw wave form data, |
1415 | * not any meta informations like i.e. bit depth or loop points. Since |
1416 | * this method just returns the checksum stored for this sample i.e. when |
1417 | * the gig file was loaded, this method returns immediately. So it does no |
1418 | * recalcuation of the checksum with the currently available sample wave |
1419 | * form data. |
1420 | * |
1421 | * @see VerifyWaveData() |
1422 | */ |
1423 | uint32_t Sample::GetWaveDataCRC32Checksum() { |
1424 | return crc; |
1425 | } |
1426 | |
1427 | /** |
1428 | * Checks the integrity of this sample's raw audio wave data. Whenever a |
1429 | * Sample's raw wave data is intentionally modified (i.e. by calling |
1430 | * Write() and supplying the new raw audio wave form data) a CRC32 checksum |
1431 | * is calculated and stored/updated for this sample, along to the sample's |
1432 | * meta informations. |
1433 | * |
1434 | * Now by calling this method the current raw audio wave data is checked |
1435 | * against the already stored CRC32 check sum in order to check whether the |
1436 | * sample data had been damaged unintentionally for some reason. Since by |
1437 | * calling this method always the entire raw audio wave data has to be |
1438 | * read, verifying all samples this way may take a long time accordingly. |
1439 | * And that's also the reason why the sample integrity is not checked by |
1440 | * default whenever a gig file is loaded. So this method must be called |
1441 | * explicitly to fulfill this task. |
1442 | * |
1443 | * @param pActually - (optional) if provided, will be set to the actually |
1444 | * calculated checksum of the current raw wave form data, |
1445 | * you can get the expected checksum instead by calling |
1446 | * GetWaveDataCRC32Checksum() |
1447 | * @returns true if sample is OK or false if the sample is damaged |
1448 | * @throws Exception if no checksum had been stored to disk for this |
1449 | * sample yet, or on I/O issues |
1450 | * @see GetWaveDataCRC32Checksum() |
1451 | */ |
1452 | bool Sample::VerifyWaveData(uint32_t* pActually) { |
1453 | //File* pFile = static_cast<File*>(GetParent()); |
1454 | uint32_t crc = CalculateWaveDataChecksum(); |
1455 | if (pActually) *pActually = crc; |
1456 | return crc == this->crc; |
1457 | } |
1458 | |
1459 | uint32_t Sample::CalculateWaveDataChecksum() { |
1460 | const size_t sz = 20*1024; // 20kB buffer size |
1461 | std::vector<uint8_t> buffer(sz); |
1462 | buffer.resize(sz); |
1463 | |
1464 | const size_t n = sz / FrameSize; |
1465 | SetPos(0); |
1466 | uint32_t crc = 0; |
1467 | __resetCRC(crc); |
1468 | while (true) { |
1469 | file_offset_t nRead = Read(&buffer[0], n); |
1470 | if (nRead <= 0) break; |
1471 | __calculateCRC(&buffer[0], nRead * FrameSize, crc); |
1472 | } |
1473 | __finalizeCRC(crc); |
1474 | return crc; |
1475 | } |
1476 | |
1477 | Sample::~Sample() { |
1478 | Instances--; |
1479 | if (!Instances && InternalDecompressionBuffer.Size) { |
1480 | delete[] (unsigned char*) InternalDecompressionBuffer.pStart; |
1481 | InternalDecompressionBuffer.pStart = NULL; |
1482 | InternalDecompressionBuffer.Size = 0; |
1483 | } |
1484 | if (FrameTable) delete[] FrameTable; |
1485 | if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart; |
1486 | } |
1487 | |
1488 | |
1489 | |
1490 | // *************** DimensionRegion *************** |
1491 | // * |
1492 | |
1493 | size_t DimensionRegion::Instances = 0; |
1494 | DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL; |
1495 | |
1496 | DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) { |
1497 | Instances++; |
1498 | |
1499 | pSample = NULL; |
1500 | pRegion = pParent; |
1501 | |
1502 | if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4); |
1503 | else memset(&Crossfade, 0, 4); |
1504 | |
1505 | if (!pVelocityTables) pVelocityTables = new VelocityTableMap; |
1506 | |
1507 | RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA); |
1508 | if (_3ewa) { // if '3ewa' chunk exists |
1509 | _3ewa->SetPos(0); |
1510 | |
1511 | _3ewa->ReadInt32(); // unknown, always == chunk size ? |
1512 | LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32()); |
1513 | EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32()); |
1514 | _3ewa->ReadInt16(); // unknown |
1515 | LFO1InternalDepth = _3ewa->ReadUint16(); |
1516 | _3ewa->ReadInt16(); // unknown |
1517 | LFO3InternalDepth = _3ewa->ReadInt16(); |
1518 | _3ewa->ReadInt16(); // unknown |
1519 | LFO1ControlDepth = _3ewa->ReadUint16(); |
1520 | _3ewa->ReadInt16(); // unknown |
1521 | LFO3ControlDepth = _3ewa->ReadInt16(); |
1522 | EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32()); |
1523 | EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32()); |
1524 | _3ewa->ReadInt16(); // unknown |
1525 | EG1Sustain = _3ewa->ReadUint16(); |
1526 | EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32()); |
1527 | EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8())); |
1528 | uint8_t eg1ctrloptions = _3ewa->ReadUint8(); |
1529 | EG1ControllerInvert = eg1ctrloptions & 0x01; |
1530 | EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions); |
1531 | EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions); |
1532 | EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions); |
1533 | EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8())); |
1534 | uint8_t eg2ctrloptions = _3ewa->ReadUint8(); |
1535 | EG2ControllerInvert = eg2ctrloptions & 0x01; |
1536 | EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions); |
1537 | EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions); |
1538 | EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions); |
1539 | LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32()); |
1540 | EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32()); |
1541 | EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32()); |
1542 | _3ewa->ReadInt16(); // unknown |
1543 | EG2Sustain = _3ewa->ReadUint16(); |
1544 | EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32()); |
1545 | _3ewa->ReadInt16(); // unknown |
1546 | LFO2ControlDepth = _3ewa->ReadUint16(); |
1547 | LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32()); |
1548 | _3ewa->ReadInt16(); // unknown |
1549 | LFO2InternalDepth = _3ewa->ReadUint16(); |
1550 | int32_t eg1decay2 = _3ewa->ReadInt32(); |
1551 | EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2); |
1552 | EG1InfiniteSustain = (eg1decay2 == 0x7fffffff); |
1553 | _3ewa->ReadInt16(); // unknown |
1554 | EG1PreAttack = _3ewa->ReadUint16(); |
1555 | int32_t eg2decay2 = _3ewa->ReadInt32(); |
1556 | EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2); |
1557 | EG2InfiniteSustain = (eg2decay2 == 0x7fffffff); |
1558 | _3ewa->ReadInt16(); // unknown |
1559 | EG2PreAttack = _3ewa->ReadUint16(); |
1560 | uint8_t velocityresponse = _3ewa->ReadUint8(); |
1561 | if (velocityresponse < 5) { |
1562 | VelocityResponseCurve = curve_type_nonlinear; |
1563 | VelocityResponseDepth = velocityresponse; |
1564 | } else if (velocityresponse < 10) { |
1565 | VelocityResponseCurve = curve_type_linear; |
1566 | VelocityResponseDepth = velocityresponse - 5; |
1567 | } else if (velocityresponse < 15) { |
1568 | VelocityResponseCurve = curve_type_special; |
1569 | VelocityResponseDepth = velocityresponse - 10; |
1570 | } else { |
1571 | VelocityResponseCurve = curve_type_unknown; |
1572 | VelocityResponseDepth = 0; |
1573 | } |
1574 | uint8_t releasevelocityresponse = _3ewa->ReadUint8(); |
1575 | if (releasevelocityresponse < 5) { |
1576 | ReleaseVelocityResponseCurve = curve_type_nonlinear; |
1577 | ReleaseVelocityResponseDepth = releasevelocityresponse; |
1578 | } else if (releasevelocityresponse < 10) { |
1579 | ReleaseVelocityResponseCurve = curve_type_linear; |
1580 | ReleaseVelocityResponseDepth = releasevelocityresponse - 5; |
1581 | } else if (releasevelocityresponse < 15) { |
1582 | ReleaseVelocityResponseCurve = curve_type_special; |
1583 | ReleaseVelocityResponseDepth = releasevelocityresponse - 10; |
1584 | } else { |
1585 | ReleaseVelocityResponseCurve = curve_type_unknown; |
1586 | ReleaseVelocityResponseDepth = 0; |
1587 | } |
1588 | VelocityResponseCurveScaling = _3ewa->ReadUint8(); |
1589 | AttenuationControllerThreshold = _3ewa->ReadInt8(); |
1590 | _3ewa->ReadInt32(); // unknown |
1591 | SampleStartOffset = (uint16_t) _3ewa->ReadInt16(); |
1592 | _3ewa->ReadInt16(); // unknown |
1593 | uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8(); |
1594 | PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass); |
1595 | if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94; |
1596 | else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95; |
1597 | else DimensionBypass = dim_bypass_ctrl_none; |
1598 | uint8_t pan = _3ewa->ReadUint8(); |
1599 | Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit |
1600 | SelfMask = _3ewa->ReadInt8() & 0x01; |
1601 | _3ewa->ReadInt8(); // unknown |
1602 | uint8_t lfo3ctrl = _3ewa->ReadUint8(); |
1603 | LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits |
1604 | LFO3Sync = lfo3ctrl & 0x20; // bit 5 |
1605 | InvertAttenuationController = lfo3ctrl & 0x80; // bit 7 |
1606 | AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8())); |
1607 | uint8_t lfo2ctrl = _3ewa->ReadUint8(); |
1608 | LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits |
1609 | LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7 |
1610 | LFO2Sync = lfo2ctrl & 0x20; // bit 5 |
1611 | bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6 |
1612 | uint8_t lfo1ctrl = _3ewa->ReadUint8(); |
1613 | LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits |
1614 | LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7 |
1615 | LFO1Sync = lfo1ctrl & 0x40; // bit 6 |
1616 | VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl)) |
1617 | : vcf_res_ctrl_none; |
1618 | uint16_t eg3depth = _3ewa->ReadUint16(); |
1619 | EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */ |
1620 | : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */ |
1621 | _3ewa->ReadInt16(); // unknown |
1622 | ChannelOffset = _3ewa->ReadUint8() / 4; |
1623 | uint8_t regoptions = _3ewa->ReadUint8(); |
1624 | MSDecode = regoptions & 0x01; // bit 0 |
1625 | SustainDefeat = regoptions & 0x02; // bit 1 |
1626 | _3ewa->ReadInt16(); // unknown |
1627 | VelocityUpperLimit = _3ewa->ReadInt8(); |
1628 | _3ewa->ReadInt8(); // unknown |
1629 | _3ewa->ReadInt16(); // unknown |
1630 | ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay |
1631 | _3ewa->ReadInt8(); // unknown |
1632 | _3ewa->ReadInt8(); // unknown |
1633 | EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7 |
1634 | uint8_t vcfcutoff = _3ewa->ReadUint8(); |
1635 | VCFEnabled = vcfcutoff & 0x80; // bit 7 |
1636 | VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits |
1637 | VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8()); |
1638 | uint8_t vcfvelscale = _3ewa->ReadUint8(); |
1639 | VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7 |
1640 | VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits |
1641 | _3ewa->ReadInt8(); // unknown |
1642 | uint8_t vcfresonance = _3ewa->ReadUint8(); |
1643 | VCFResonance = vcfresonance & 0x7f; // lower 7 bits |
1644 | VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7 |
1645 | uint8_t vcfbreakpoint = _3ewa->ReadUint8(); |
1646 | VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7 |
1647 | VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits |
1648 | uint8_t vcfvelocity = _3ewa->ReadUint8(); |
1649 | VCFVelocityDynamicRange = vcfvelocity % 5; |
1650 | VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5); |
1651 | VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8()); |
1652 | if (VCFType == vcf_type_lowpass) { |
1653 | if (lfo3ctrl & 0x40) // bit 6 |
1654 | VCFType = vcf_type_lowpassturbo; |
1655 | } |
1656 | if (_3ewa->RemainingBytes() >= 8) { |
1657 | _3ewa->Read(DimensionUpperLimits, 1, 8); |
1658 | } else { |
1659 | memset(DimensionUpperLimits, 0, 8); |
1660 | } |
1661 | } else { // '3ewa' chunk does not exist yet |
1662 | // use default values |
1663 | LFO3Frequency = 1.0; |
1664 | EG3Attack = 0.0; |
1665 | LFO1InternalDepth = 0; |
1666 | LFO3InternalDepth = 0; |
1667 | LFO1ControlDepth = 0; |
1668 | LFO3ControlDepth = 0; |
1669 | EG1Attack = 0.0; |
1670 | EG1Decay1 = 0.005; |
1671 | EG1Sustain = 1000; |
1672 | EG1Release = 0.3; |
1673 | EG1Controller.type = eg1_ctrl_t::type_none; |
1674 | EG1Controller.controller_number = 0; |
1675 | EG1ControllerInvert = false; |
1676 | EG1ControllerAttackInfluence = 0; |
1677 | EG1ControllerDecayInfluence = 0; |
1678 | EG1ControllerReleaseInfluence = 0; |
1679 | EG2Controller.type = eg2_ctrl_t::type_none; |
1680 | EG2Controller.controller_number = 0; |
1681 | EG2ControllerInvert = false; |
1682 | EG2ControllerAttackInfluence = 0; |
1683 | EG2ControllerDecayInfluence = 0; |
1684 | EG2ControllerReleaseInfluence = 0; |
1685 | LFO1Frequency = 1.0; |
1686 | EG2Attack = 0.0; |
1687 | EG2Decay1 = 0.005; |
1688 | EG2Sustain = 1000; |
1689 | EG2Release = 60; |
1690 | LFO2ControlDepth = 0; |
1691 | LFO2Frequency = 1.0; |
1692 | LFO2InternalDepth = 0; |
1693 | EG1Decay2 = 0.0; |
1694 | EG1InfiniteSustain = true; |
1695 | EG1PreAttack = 0; |
1696 | EG2Decay2 = 0.0; |
1697 | EG2InfiniteSustain = true; |
1698 | EG2PreAttack = 0; |
1699 | VelocityResponseCurve = curve_type_nonlinear; |
1700 | VelocityResponseDepth = 3; |
1701 | ReleaseVelocityResponseCurve = curve_type_nonlinear; |
1702 | ReleaseVelocityResponseDepth = 3; |
1703 | VelocityResponseCurveScaling = 32; |
1704 | AttenuationControllerThreshold = 0; |
1705 | SampleStartOffset = 0; |
1706 | PitchTrack = true; |
1707 | DimensionBypass = dim_bypass_ctrl_none; |
1708 | Pan = 0; |
1709 | SelfMask = true; |
1710 | LFO3Controller = lfo3_ctrl_modwheel; |
1711 | LFO3Sync = false; |
1712 | InvertAttenuationController = false; |
1713 | AttenuationController.type = attenuation_ctrl_t::type_none; |
1714 | AttenuationController.controller_number = 0; |
1715 | LFO2Controller = lfo2_ctrl_internal; |
1716 | LFO2FlipPhase = false; |
1717 | LFO2Sync = false; |
1718 | LFO1Controller = lfo1_ctrl_internal; |
1719 | LFO1FlipPhase = false; |
1720 | LFO1Sync = false; |
1721 | VCFResonanceController = vcf_res_ctrl_none; |
1722 | EG3Depth = 0; |
1723 | ChannelOffset = 0; |
1724 | MSDecode = false; |
1725 | SustainDefeat = false; |
1726 | VelocityUpperLimit = 0; |
1727 | ReleaseTriggerDecay = 0; |
1728 | EG1Hold = false; |
1729 | VCFEnabled = false; |
1730 | VCFCutoff = 0; |
1731 | VCFCutoffController = vcf_cutoff_ctrl_none; |
1732 | VCFCutoffControllerInvert = false; |
1733 | VCFVelocityScale = 0; |
1734 | VCFResonance = 0; |
1735 | VCFResonanceDynamic = false; |
1736 | VCFKeyboardTracking = false; |
1737 | VCFKeyboardTrackingBreakpoint = 0; |
1738 | VCFVelocityDynamicRange = 0x04; |
1739 | VCFVelocityCurve = curve_type_linear; |
1740 | VCFType = vcf_type_lowpass; |
1741 | memset(DimensionUpperLimits, 127, 8); |
1742 | } |
1743 | |
1744 | // chunk for own format extensions, these will *NOT* work with Gigasampler/GigaStudio ! |
1745 | RIFF::Chunk* lsde = _3ewl->GetSubChunk(CHUNK_ID_LSDE); |
1746 | if (lsde) { // format extension for EG behavior options |
1747 | lsde->SetPos(0); |
1748 | |
1749 | eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options }; |
1750 | for (int i = 0; i < 2; ++i) { // NOTE: we reserved a 3rd byte for a potential future EG3 option |
1751 | unsigned char byte = lsde->ReadUint8(); |
1752 | pEGOpts[i]->AttackCancel = byte & 1; |
1753 | pEGOpts[i]->AttackHoldCancel = byte & (1 << 1); |
1754 | pEGOpts[i]->Decay1Cancel = byte & (1 << 2); |
1755 | pEGOpts[i]->Decay2Cancel = byte & (1 << 3); |
1756 | pEGOpts[i]->ReleaseCancel = byte & (1 << 4); |
1757 | } |
1758 | } |
1759 | // format extension for sustain pedal up effect on release trigger samples |
1760 | if (lsde && lsde->GetSize() > 3) { // NOTE: we reserved the 3rd byte for a potential future EG3 option |
1761 | lsde->SetPos(3); |
1762 | uint8_t byte = lsde->ReadUint8(); |
1763 | SustainReleaseTrigger = static_cast<sust_rel_trg_t>(byte & 0x03); |
1764 | NoNoteOffReleaseTrigger = byte >> 7; |
1765 | } else { |
1766 | SustainReleaseTrigger = sust_rel_trg_none; |
1767 | NoNoteOffReleaseTrigger = false; |
1768 | } |
1769 | // format extension for LFOs' wave form, phase displacement and for |
1770 | // LFO3's flip phase |
1771 | if (lsde && lsde->GetSize() > 4) { |
1772 | lsde->SetPos(4); |
1773 | LFO1WaveForm = static_cast<lfo_wave_t>( lsde->ReadUint16() ); |
1774 | LFO2WaveForm = static_cast<lfo_wave_t>( lsde->ReadUint16() ); |
1775 | LFO3WaveForm = static_cast<lfo_wave_t>( lsde->ReadUint16() ); |
1776 | lsde->ReadUint16(); // unused 16 bits, reserved for potential future use |
1777 | LFO1Phase = (double) GIG_EXP_DECODE( lsde->ReadInt32() ); |
1778 | LFO2Phase = (double) GIG_EXP_DECODE( lsde->ReadInt32() ); |
1779 | LFO3Phase = (double) GIG_EXP_DECODE( lsde->ReadInt32() ); |
1780 | const uint32_t flags = lsde->ReadInt32(); |
1781 | LFO3FlipPhase = flags & 1; |
1782 | } else { |
1783 | LFO1WaveForm = lfo_wave_sine; |
1784 | LFO2WaveForm = lfo_wave_sine; |
1785 | LFO3WaveForm = lfo_wave_sine; |
1786 | LFO1Phase = 0.0; |
1787 | LFO2Phase = 0.0; |
1788 | LFO3Phase = 0.0; |
1789 | LFO3FlipPhase = false; |
1790 | } |
1791 | |
1792 | pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve, |
1793 | VelocityResponseDepth, |
1794 | VelocityResponseCurveScaling); |
1795 | |
1796 | pVelocityReleaseTable = GetReleaseVelocityTable( |
1797 | ReleaseVelocityResponseCurve, |
1798 | ReleaseVelocityResponseDepth |
1799 | ); |
1800 | |
1801 | pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, |
1802 | VCFVelocityDynamicRange, |
1803 | VCFVelocityScale, |
1804 | VCFCutoffController); |
1805 | |
1806 | SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360)); |
1807 | VelocityTable = 0; |
1808 | } |
1809 | |
1810 | /* |
1811 | * Constructs a DimensionRegion by copying all parameters from |
1812 | * another DimensionRegion |
1813 | */ |
1814 | DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) { |
1815 | Instances++; |
1816 | //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method |
1817 | *this = src; // default memberwise shallow copy of all parameters |
1818 | pParentList = _3ewl; // restore the chunk pointer |
1819 | |
1820 | // deep copy of owned structures |
1821 | if (src.VelocityTable) { |
1822 | VelocityTable = new uint8_t[128]; |
1823 | for (int k = 0 ; k < 128 ; k++) |
1824 | VelocityTable[k] = src.VelocityTable[k]; |
1825 | } |
1826 | if (src.pSampleLoops) { |
1827 | pSampleLoops = new DLS::sample_loop_t[src.SampleLoops]; |
1828 | for (int k = 0 ; k < src.SampleLoops ; k++) |
1829 | pSampleLoops[k] = src.pSampleLoops[k]; |
1830 | } |
1831 | } |
1832 | |
1833 | /** |
1834 | * Make a (semi) deep copy of the DimensionRegion object given by @a orig |
1835 | * and assign it to this object. |
1836 | * |
1837 | * Note that all sample pointers referenced by @a orig are simply copied as |
1838 | * memory address. Thus the respective samples are shared, not duplicated! |
1839 | * |
1840 | * @param orig - original DimensionRegion object to be copied from |
1841 | */ |
1842 | void DimensionRegion::CopyAssign(const DimensionRegion* orig) { |
1843 | CopyAssign(orig, NULL); |
1844 | } |
1845 | |
1846 | /** |
1847 | * Make a (semi) deep copy of the DimensionRegion object given by @a orig |
1848 | * and assign it to this object. |
1849 | * |
1850 | * @param orig - original DimensionRegion object to be copied from |
1851 | * @param mSamples - crosslink map between the foreign file's samples and |
1852 | * this file's samples |
1853 | */ |
1854 | void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) { |
1855 | // delete all allocated data first |
1856 | if (VelocityTable) delete [] VelocityTable; |
1857 | if (pSampleLoops) delete [] pSampleLoops; |
1858 | |
1859 | // backup parent list pointer |
1860 | RIFF::List* p = pParentList; |
1861 | |
1862 | gig::Sample* pOriginalSample = pSample; |
1863 | gig::Region* pOriginalRegion = pRegion; |
1864 | |
1865 | //NOTE: copy code copied from assignment constructor above, see comment there as well |
1866 | |
1867 | *this = *orig; // default memberwise shallow copy of all parameters |
1868 | |
1869 | // restore members that shall not be altered |
1870 | pParentList = p; // restore the chunk pointer |
1871 | pRegion = pOriginalRegion; |
1872 | |
1873 | // only take the raw sample reference reference if the |
1874 | // two DimensionRegion objects are part of the same file |
1875 | if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) { |
1876 | pSample = pOriginalSample; |
1877 | } |
1878 | |
1879 | if (mSamples && mSamples->count(orig->pSample)) { |
1880 | pSample = mSamples->find(orig->pSample)->second; |
1881 | } |
1882 | |
1883 | // deep copy of owned structures |
1884 | if (orig->VelocityTable) { |
1885 | VelocityTable = new uint8_t[128]; |
1886 | for (int k = 0 ; k < 128 ; k++) |
1887 | VelocityTable[k] = orig->VelocityTable[k]; |
1888 | } |
1889 | if (orig->pSampleLoops) { |
1890 | pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops]; |
1891 | for (int k = 0 ; k < orig->SampleLoops ; k++) |
1892 | pSampleLoops[k] = orig->pSampleLoops[k]; |
1893 | } |
1894 | } |
1895 | |
1896 | void DimensionRegion::serialize(Serialization::Archive* archive) { |
1897 | // in case this class will become backward incompatible one day, |
1898 | // then set a version and minimum version for this class like: |
1899 | //archive->setVersion(*this, 2); |
1900 | //archive->setMinVersion(*this, 1); |
1901 | |
1902 | SRLZ(VelocityUpperLimit); |
1903 | SRLZ(EG1PreAttack); |
1904 | SRLZ(EG1Attack); |
1905 | SRLZ(EG1Decay1); |
1906 | SRLZ(EG1Decay2); |
1907 | SRLZ(EG1InfiniteSustain); |
1908 | SRLZ(EG1Sustain); |
1909 | SRLZ(EG1Release); |
1910 | SRLZ(EG1Hold); |
1911 | SRLZ(EG1Controller); |
1912 | SRLZ(EG1ControllerInvert); |
1913 | SRLZ(EG1ControllerAttackInfluence); |
1914 | SRLZ(EG1ControllerDecayInfluence); |
1915 | SRLZ(EG1ControllerReleaseInfluence); |
1916 | SRLZ(LFO1WaveForm); |
1917 | SRLZ(LFO1Frequency); |
1918 | SRLZ(LFO1Phase); |
1919 | SRLZ(LFO1InternalDepth); |
1920 | SRLZ(LFO1ControlDepth); |
1921 | SRLZ(LFO1Controller); |
1922 | SRLZ(LFO1FlipPhase); |
1923 | SRLZ(LFO1Sync); |
1924 | SRLZ(EG2PreAttack); |
1925 | SRLZ(EG2Attack); |
1926 | SRLZ(EG2Decay1); |
1927 | SRLZ(EG2Decay2); |
1928 | SRLZ(EG2InfiniteSustain); |
1929 | SRLZ(EG2Sustain); |
1930 | SRLZ(EG2Release); |
1931 | SRLZ(EG2Controller); |
1932 | SRLZ(EG2ControllerInvert); |
1933 | SRLZ(EG2ControllerAttackInfluence); |
1934 | SRLZ(EG2ControllerDecayInfluence); |
1935 | SRLZ(EG2ControllerReleaseInfluence); |
1936 | SRLZ(LFO2WaveForm); |
1937 | SRLZ(LFO2Frequency); |
1938 | SRLZ(LFO2Phase); |
1939 | SRLZ(LFO2InternalDepth); |
1940 | SRLZ(LFO2ControlDepth); |
1941 | SRLZ(LFO2Controller); |
1942 | SRLZ(LFO2FlipPhase); |
1943 | SRLZ(LFO2Sync); |
1944 | SRLZ(EG3Attack); |
1945 | SRLZ(EG3Depth); |
1946 | SRLZ(LFO3WaveForm); |
1947 | SRLZ(LFO3Frequency); |
1948 | SRLZ(LFO3Phase); |
1949 | SRLZ(LFO3InternalDepth); |
1950 | SRLZ(LFO3ControlDepth); |
1951 | SRLZ(LFO3Controller); |
1952 | SRLZ(LFO3FlipPhase); |
1953 | SRLZ(LFO3Sync); |
1954 | SRLZ(VCFEnabled); |
1955 | SRLZ(VCFType); |
1956 | SRLZ(VCFCutoffController); |
1957 | SRLZ(VCFCutoffControllerInvert); |
1958 | SRLZ(VCFCutoff); |
1959 | SRLZ(VCFVelocityCurve); |
1960 | SRLZ(VCFVelocityScale); |
1961 | SRLZ(VCFVelocityDynamicRange); |
1962 | SRLZ(VCFResonance); |
1963 | SRLZ(VCFResonanceDynamic); |
1964 | SRLZ(VCFResonanceController); |
1965 | SRLZ(VCFKeyboardTracking); |
1966 | SRLZ(VCFKeyboardTrackingBreakpoint); |
1967 | SRLZ(VelocityResponseCurve); |
1968 | SRLZ(VelocityResponseDepth); |
1969 | SRLZ(VelocityResponseCurveScaling); |
1970 | SRLZ(ReleaseVelocityResponseCurve); |
1971 | SRLZ(ReleaseVelocityResponseDepth); |
1972 | SRLZ(ReleaseTriggerDecay); |
1973 | SRLZ(Crossfade); |
1974 | SRLZ(PitchTrack); |
1975 | SRLZ(DimensionBypass); |
1976 | SRLZ(Pan); |
1977 | SRLZ(SelfMask); |
1978 | SRLZ(AttenuationController); |
1979 | SRLZ(InvertAttenuationController); |
1980 | SRLZ(AttenuationControllerThreshold); |
1981 | SRLZ(ChannelOffset); |
1982 | SRLZ(SustainDefeat); |
1983 | SRLZ(MSDecode); |
1984 | //SRLZ(SampleStartOffset); |
1985 | SRLZ(SampleAttenuation); |
1986 | SRLZ(EG1Options); |
1987 | SRLZ(EG2Options); |
1988 | SRLZ(SustainReleaseTrigger); |
1989 | SRLZ(NoNoteOffReleaseTrigger); |
1990 | |
1991 | // derived attributes from DLS::Sampler |
1992 | SRLZ(FineTune); |
1993 | SRLZ(Gain); |
1994 | } |
1995 | |
1996 | /** |
1997 | * Updates the respective member variable and updates @c SampleAttenuation |
1998 | * which depends on this value. |
1999 | */ |
2000 | void DimensionRegion::SetGain(int32_t gain) { |
2001 | DLS::Sampler::SetGain(gain); |
2002 | SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360)); |
2003 | } |
2004 | |
2005 | /** |
2006 | * Apply dimension region settings to the respective RIFF chunks. You |
2007 | * have to call File::Save() to make changes persistent. |
2008 | * |
2009 | * Usually there is absolutely no need to call this method explicitly. |
2010 | * It will be called automatically when File::Save() was called. |
2011 | * |
2012 | * @param pProgress - callback function for progress notification |
2013 | */ |
2014 | void DimensionRegion::UpdateChunks(progress_t* pProgress) { |
2015 | // first update base class's chunk |
2016 | DLS::Sampler::UpdateChunks(pProgress); |
2017 | |
2018 | RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP); |
2019 | uint8_t* pData = (uint8_t*) wsmp->LoadChunkData(); |
2020 | pData[12] = Crossfade.in_start; |
2021 | pData[13] = Crossfade.in_end; |
2022 | pData[14] = Crossfade.out_start; |
2023 | pData[15] = Crossfade.out_end; |
2024 | |
2025 | // make sure '3ewa' chunk exists |
2026 | RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA); |
2027 | if (!_3ewa) { |
2028 | File* pFile = (File*) GetParent()->GetParent()->GetParent(); |
2029 | bool versiongt2 = pFile->pVersion && pFile->pVersion->major > 2; |
2030 | _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, versiongt2 ? 148 : 140); |
2031 | } |
2032 | pData = (uint8_t*) _3ewa->LoadChunkData(); |
2033 | |
2034 | // update '3ewa' chunk with DimensionRegion's current settings |
2035 | |
2036 | const uint32_t chunksize = (uint32_t) _3ewa->GetNewSize(); |
2037 | store32(&pData[0], chunksize); // unknown, always chunk size? |
2038 | |
2039 | const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency); |
2040 | store32(&pData[4], lfo3freq); |
2041 | |
2042 | const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack); |
2043 | store32(&pData[8], eg3attack); |
2044 | |
2045 | // next 2 bytes unknown |
2046 | |
2047 | store16(&pData[14], LFO1InternalDepth); |
2048 | |
2049 | // next 2 bytes unknown |
2050 | |
2051 | store16(&pData[18], LFO3InternalDepth); |
2052 | |
2053 | // next 2 bytes unknown |
2054 | |
2055 | store16(&pData[22], LFO1ControlDepth); |
2056 | |
2057 | // next 2 bytes unknown |
2058 | |
2059 | store16(&pData[26], LFO3ControlDepth); |
2060 | |
2061 | const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack); |
2062 | store32(&pData[28], eg1attack); |
2063 | |
2064 | const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1); |
2065 | store32(&pData[32], eg1decay1); |
2066 | |
2067 | // next 2 bytes unknown |
2068 | |
2069 | store16(&pData[38], EG1Sustain); |
2070 | |
2071 | const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release); |
2072 | store32(&pData[40], eg1release); |
2073 | |
2074 | const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller); |
2075 | pData[44] = eg1ctl; |
2076 | |
2077 | const uint8_t eg1ctrloptions = |
2078 | (EG1ControllerInvert ? 0x01 : 0x00) | |
2079 | GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) | |
2080 | GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) | |
2081 | GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence); |
2082 | pData[45] = eg1ctrloptions; |
2083 | |
2084 | const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller); |
2085 | pData[46] = eg2ctl; |
2086 | |
2087 | const uint8_t eg2ctrloptions = |
2088 | (EG2ControllerInvert ? 0x01 : 0x00) | |
2089 | GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) | |
2090 | GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) | |
2091 | GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence); |
2092 | pData[47] = eg2ctrloptions; |
2093 | |
2094 | const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency); |
2095 | store32(&pData[48], lfo1freq); |
2096 | |
2097 | const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack); |
2098 | store32(&pData[52], eg2attack); |
2099 | |
2100 | const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1); |
2101 | store32(&pData[56], eg2decay1); |
2102 | |
2103 | // next 2 bytes unknown |
2104 | |
2105 | store16(&pData[62], EG2Sustain); |
2106 | |
2107 | const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release); |
2108 | store32(&pData[64], eg2release); |
2109 | |
2110 | // next 2 bytes unknown |
2111 | |
2112 | store16(&pData[70], LFO2ControlDepth); |
2113 | |
2114 | const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency); |
2115 | store32(&pData[72], lfo2freq); |
2116 | |
2117 | // next 2 bytes unknown |
2118 | |
2119 | store16(&pData[78], LFO2InternalDepth); |
2120 | |
2121 | const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2); |
2122 | store32(&pData[80], eg1decay2); |
2123 | |
2124 | // next 2 bytes unknown |
2125 | |
2126 | store16(&pData[86], EG1PreAttack); |
2127 | |
2128 | const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2); |
2129 | store32(&pData[88], eg2decay2); |
2130 | |
2131 | // next 2 bytes unknown |
2132 | |
2133 | store16(&pData[94], EG2PreAttack); |
2134 | |
2135 | { |
2136 | if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4"); |
2137 | uint8_t velocityresponse = VelocityResponseDepth; |
2138 | switch (VelocityResponseCurve) { |
2139 | case curve_type_nonlinear: |
2140 | break; |
2141 | case curve_type_linear: |
2142 | velocityresponse += 5; |
2143 | break; |
2144 | case curve_type_special: |
2145 | velocityresponse += 10; |
2146 | break; |
2147 | case curve_type_unknown: |
2148 | default: |
2149 | throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected"); |
2150 | } |
2151 | pData[96] = velocityresponse; |
2152 | } |
2153 | |
2154 | { |
2155 | if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4"); |
2156 | uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth; |
2157 | switch (ReleaseVelocityResponseCurve) { |
2158 | case curve_type_nonlinear: |
2159 | break; |
2160 | case curve_type_linear: |
2161 | releasevelocityresponse += 5; |
2162 | break; |
2163 | case curve_type_special: |
2164 | releasevelocityresponse += 10; |
2165 | break; |
2166 | case curve_type_unknown: |
2167 | default: |
2168 | throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected"); |
2169 | } |
2170 | pData[97] = releasevelocityresponse; |
2171 | } |
2172 | |
2173 | pData[98] = VelocityResponseCurveScaling; |
2174 | |
2175 | pData[99] = AttenuationControllerThreshold; |
2176 | |
2177 | // next 4 bytes unknown |
2178 | |
2179 | store16(&pData[104], SampleStartOffset); |
2180 | |
2181 | // next 2 bytes unknown |
2182 | |
2183 | { |
2184 | uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack); |
2185 | switch (DimensionBypass) { |
2186 | case dim_bypass_ctrl_94: |
2187 | pitchTrackDimensionBypass |= 0x10; |
2188 | break; |
2189 | case dim_bypass_ctrl_95: |
2190 | pitchTrackDimensionBypass |= 0x20; |
2191 | break; |
2192 | case dim_bypass_ctrl_none: |
2193 | //FIXME: should we set anything here? |
2194 | break; |
2195 | default: |
2196 | throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected"); |
2197 | } |
2198 | pData[108] = pitchTrackDimensionBypass; |
2199 | } |
2200 | |
2201 | const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit |
2202 | pData[109] = pan; |
2203 | |
2204 | const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00; |
2205 | pData[110] = selfmask; |
2206 | |
2207 | // next byte unknown |
2208 | |
2209 | { |
2210 | uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits |
2211 | if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5 |
2212 | if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7 |
2213 | if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6 |
2214 | pData[112] = lfo3ctrl; |
2215 | } |
2216 | |
2217 | const uint8_t attenctl = EncodeLeverageController(AttenuationController); |
2218 | pData[113] = attenctl; |
2219 | |
2220 | { |
2221 | uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits |
2222 | if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7 |
2223 | if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5 |
2224 | if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6 |
2225 | pData[114] = lfo2ctrl; |
2226 | } |
2227 | |
2228 | { |
2229 | uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits |
2230 | if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7 |
2231 | if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6 |
2232 | if (VCFResonanceController != vcf_res_ctrl_none) |
2233 | lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController); |
2234 | pData[115] = lfo1ctrl; |
2235 | } |
2236 | |
2237 | const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth |
2238 | : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */ |
2239 | store16(&pData[116], eg3depth); |
2240 | |
2241 | // next 2 bytes unknown |
2242 | |
2243 | const uint8_t channeloffset = ChannelOffset * 4; |
2244 | pData[120] = channeloffset; |
2245 | |
2246 | { |
2247 | uint8_t regoptions = 0; |
2248 | if (MSDecode) regoptions |= 0x01; // bit 0 |
2249 | if (SustainDefeat) regoptions |= 0x02; // bit 1 |
2250 | pData[121] = regoptions; |
2251 | } |
2252 | |
2253 | // next 2 bytes unknown |
2254 | |
2255 | pData[124] = VelocityUpperLimit; |
2256 | |
2257 | // next 3 bytes unknown |
2258 | |
2259 | pData[128] = ReleaseTriggerDecay; |
2260 | |
2261 | // next 2 bytes unknown |
2262 | |
2263 | const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7 |
2264 | pData[131] = eg1hold; |
2265 | |
2266 | const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */ |
2267 | (VCFCutoff & 0x7f); /* lower 7 bits */ |
2268 | pData[132] = vcfcutoff; |
2269 | |
2270 | pData[133] = VCFCutoffController; |
2271 | |
2272 | const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */ |
2273 | (VCFVelocityScale & 0x7f); /* lower 7 bits */ |
2274 | pData[134] = vcfvelscale; |
2275 | |
2276 | // next byte unknown |
2277 | |
2278 | const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */ |
2279 | (VCFResonance & 0x7f); /* lower 7 bits */ |
2280 | pData[136] = vcfresonance; |
2281 | |
2282 | const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */ |
2283 | (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */ |
2284 | pData[137] = vcfbreakpoint; |
2285 | |
2286 | const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 + |
2287 | VCFVelocityCurve * 5; |
2288 | pData[138] = vcfvelocity; |
2289 | |
2290 | const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType; |
2291 | pData[139] = vcftype; |
2292 | |
2293 | if (chunksize >= 148) { |
2294 | memcpy(&pData[140], DimensionUpperLimits, 8); |
2295 | } |
2296 | |
2297 | // chunk for own format extensions, these will *NOT* work with |
2298 | // Gigasampler/GigaStudio ! |
2299 | RIFF::Chunk* lsde = pParentList->GetSubChunk(CHUNK_ID_LSDE); |
2300 | const int lsdeSize = |
2301 | 3 /* EG cancel options */ + |
2302 | 1 /* sustain pedal up on release trigger option */ + |
2303 | 8 /* LFOs' wave forms */ + 12 /* LFOs' phase */ + 4 /* flags (LFO3FlipPhase) */; |
2304 | if (!lsde && UsesAnyGigFormatExtension()) { |
2305 | // only add this "LSDE" chunk if there is some (format extension) |
2306 | // setting effective that would require our "LSDE" format extension |
2307 | // chunk to be stored |
2308 | lsde = pParentList->AddSubChunk(CHUNK_ID_LSDE, lsdeSize); |
2309 | // move LSDE chunk to the end of parent list |
2310 | pParentList->MoveSubChunk(lsde, (RIFF::Chunk*)NULL); |
2311 | } |
2312 | if (lsde) { |
2313 | if (lsde->GetNewSize() < lsdeSize) |
2314 | lsde->Resize(lsdeSize); |
2315 | // format extension for EG behavior options |
2316 | unsigned char* pData = (unsigned char*) lsde->LoadChunkData(); |
2317 | eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options }; |
2318 | for (int i = 0; i < 2; ++i) { // NOTE: we reserved the 3rd byte for a potential future EG3 option |
2319 | pData[i] = |
2320 | (pEGOpts[i]->AttackCancel ? 1 : 0) | |
2321 | (pEGOpts[i]->AttackHoldCancel ? (1<<1) : 0) | |
2322 | (pEGOpts[i]->Decay1Cancel ? (1<<2) : 0) | |
2323 | (pEGOpts[i]->Decay2Cancel ? (1<<3) : 0) | |
2324 | (pEGOpts[i]->ReleaseCancel ? (1<<4) : 0); |
2325 | } |
2326 | // format extension for release trigger options |
2327 | pData[3] = static_cast<uint8_t>(SustainReleaseTrigger) | (NoNoteOffReleaseTrigger ? (1<<7) : 0); |
2328 | // format extension for LFOs' wave form, phase displacement and for |
2329 | // LFO3's flip phase |
2330 | store16(&pData[4], LFO1WaveForm); |
2331 | store16(&pData[6], LFO2WaveForm); |
2332 | store16(&pData[8], LFO3WaveForm); |
2333 | //NOTE: 16 bits reserved here for potential future use ! |
2334 | const int32_t lfo1Phase = (int32_t) GIG_EXP_ENCODE(LFO1Phase); |
2335 | const int32_t lfo2Phase = (int32_t) GIG_EXP_ENCODE(LFO2Phase); |
2336 | const int32_t lfo3Phase = (int32_t) GIG_EXP_ENCODE(LFO3Phase); |
2337 | store32(&pData[12], lfo1Phase); |
2338 | store32(&pData[16], lfo2Phase); |
2339 | store32(&pData[20], lfo3Phase); |
2340 | const int32_t flags = LFO3FlipPhase ? 1 : 0; |
2341 | store32(&pData[24], flags); |
2342 | |
2343 | // compile time sanity check: is our last store access here |
2344 | // consistent with the initial lsdeSize value assignment? |
2345 | static_assert(lsdeSize == 28, "Inconsistency in assumed 'LSDE' RIFF chunk size"); |
2346 | } |
2347 | } |
2348 | |
2349 | /** |
2350 | * Returns @c true in case this DimensionRegion object uses any gig format |
2351 | * extension, that is whether this DimensionRegion object currently has any |
2352 | * setting effective that would require our "LSDE" RIFF chunk to be stored |
2353 | * to the gig file. |
2354 | * |
2355 | * Right now this is a private method. It is considerable though this method |
2356 | * to become (in slightly modified form) a public API method in future, i.e. |
2357 | * to allow instrument editors to visualize and/or warn the user of any |
2358 | * format extension being used. Right now this method really just serves to |
2359 | * answer the question whether an LSDE chunk is required, for the public API |
2360 | * purpose this method would also need to check whether any other setting |
2361 | * stored to the regular value '3ewa' chunk, is actually a format extension |
2362 | * as well. |
2363 | */ |
2364 | bool DimensionRegion::UsesAnyGigFormatExtension() const { |
2365 | eg_opt_t defaultOpt; |
2366 | return memcmp(&EG1Options, &defaultOpt, sizeof(eg_opt_t)) || |
2367 | memcmp(&EG2Options, &defaultOpt, sizeof(eg_opt_t)) || |
2368 | SustainReleaseTrigger || NoNoteOffReleaseTrigger || |
2369 | LFO1WaveForm || LFO2WaveForm || LFO3WaveForm || |
2370 | LFO1Phase || LFO2Phase || LFO3Phase || |
2371 | LFO3FlipPhase; |
2372 | } |
2373 | |
2374 | double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) { |
2375 | curve_type_t curveType = releaseVelocityResponseCurve; |
2376 | uint8_t depth = releaseVelocityResponseDepth; |
2377 | // this models a strange behaviour or bug in GSt: two of the |
2378 | // velocity response curves for release time are not used even |
2379 | // if specified, instead another curve is chosen. |
2380 | if ((curveType == curve_type_nonlinear && depth == 0) || |
2381 | (curveType == curve_type_special && depth == 4)) { |
2382 | curveType = curve_type_nonlinear; |
2383 | depth = 3; |
2384 | } |
2385 | return GetVelocityTable(curveType, depth, 0); |
2386 | } |
2387 | |
2388 | double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve, |
2389 | uint8_t vcfVelocityDynamicRange, |
2390 | uint8_t vcfVelocityScale, |
2391 | vcf_cutoff_ctrl_t vcfCutoffController) |
2392 | { |
2393 | curve_type_t curveType = vcfVelocityCurve; |
2394 | uint8_t depth = vcfVelocityDynamicRange; |
2395 | // even stranger GSt: two of the velocity response curves for |
2396 | // filter cutoff are not used, instead another special curve |
2397 | // is chosen. This curve is not used anywhere else. |
2398 | if ((curveType == curve_type_nonlinear && depth == 0) || |
2399 | (curveType == curve_type_special && depth == 4)) { |
2400 | curveType = curve_type_special; |
2401 | depth = 5; |
2402 | } |
2403 | return GetVelocityTable(curveType, depth, |
2404 | (vcfCutoffController <= vcf_cutoff_ctrl_none2) |
2405 | ? vcfVelocityScale : 0); |
2406 | } |
2407 | |
2408 | // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet |
2409 | double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) |
2410 | { |
2411 | // sanity check input parameters |
2412 | // (fallback to some default parameters on ill input) |
2413 | switch (curveType) { |
2414 | case curve_type_nonlinear: |
2415 | case curve_type_linear: |
2416 | if (depth > 4) { |
2417 | printf("Warning: Invalid depth (0x%x) for velocity curve type (0x%x).\n", depth, curveType); |
2418 | depth = 0; |
2419 | scaling = 0; |
2420 | } |
2421 | break; |
2422 | case curve_type_special: |
2423 | if (depth > 5) { |
2424 | printf("Warning: Invalid depth (0x%x) for velocity curve type 'special'.\n", depth); |
2425 | depth = 0; |
2426 | scaling = 0; |
2427 | } |
2428 | break; |
2429 | case curve_type_unknown: |
2430 | default: |
2431 | printf("Warning: Unknown velocity curve type (0x%x).\n", curveType); |
2432 | curveType = curve_type_linear; |
2433 | depth = 0; |
2434 | scaling = 0; |
2435 | break; |
2436 | } |
2437 | |
2438 | double* table; |
2439 | uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling; |
2440 | if (pVelocityTables->count(tableKey)) { // if key exists |
2441 | table = (*pVelocityTables)[tableKey]; |
2442 | } |
2443 | else { |
2444 | table = CreateVelocityTable(curveType, depth, scaling); |
2445 | (*pVelocityTables)[tableKey] = table; // put the new table into the tables map |
2446 | } |
2447 | return table; |
2448 | } |
2449 | |
2450 | Region* DimensionRegion::GetParent() const { |
2451 | return pRegion; |
2452 | } |
2453 | |
2454 | // show error if some _lev_ctrl_* enum entry is not listed in the following function |
2455 | // (commented out for now, because "diagnostic push" not supported prior GCC 4.6) |
2456 | // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below) |
2457 | //#pragma GCC diagnostic push |
2458 | //#pragma GCC diagnostic error "-Wswitch" |
2459 | |
2460 | leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) { |
2461 | leverage_ctrl_t decodedcontroller; |
2462 | switch (EncodedController) { |
2463 | // special controller |
2464 | case _lev_ctrl_none: |
2465 | decodedcontroller.type = leverage_ctrl_t::type_none; |
2466 | decodedcontroller.controller_number = 0; |
2467 | break; |
2468 | case _lev_ctrl_velocity: |
2469 | decodedcontroller.type = leverage_ctrl_t::type_velocity; |
2470 | decodedcontroller.controller_number = 0; |
2471 | break; |
2472 | case _lev_ctrl_channelaftertouch: |
2473 | decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch; |
2474 | decodedcontroller.controller_number = 0; |
2475 | break; |
2476 | |
2477 | // ordinary MIDI control change controller |
2478 | case _lev_ctrl_modwheel: |
2479 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2480 | decodedcontroller.controller_number = 1; |
2481 | break; |
2482 | case _lev_ctrl_breath: |
2483 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2484 | decodedcontroller.controller_number = 2; |
2485 | break; |
2486 | case _lev_ctrl_foot: |
2487 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2488 | decodedcontroller.controller_number = 4; |
2489 | break; |
2490 | case _lev_ctrl_effect1: |
2491 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2492 | decodedcontroller.controller_number = 12; |
2493 | break; |
2494 | case _lev_ctrl_effect2: |
2495 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2496 | decodedcontroller.controller_number = 13; |
2497 | break; |
2498 | case _lev_ctrl_genpurpose1: |
2499 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2500 | decodedcontroller.controller_number = 16; |
2501 | break; |
2502 | case _lev_ctrl_genpurpose2: |
2503 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2504 | decodedcontroller.controller_number = 17; |
2505 | break; |
2506 | case _lev_ctrl_genpurpose3: |
2507 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2508 | decodedcontroller.controller_number = 18; |
2509 | break; |
2510 | case _lev_ctrl_genpurpose4: |
2511 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2512 | decodedcontroller.controller_number = 19; |
2513 | break; |
2514 | case _lev_ctrl_portamentotime: |
2515 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2516 | decodedcontroller.controller_number = 5; |
2517 | break; |
2518 | case _lev_ctrl_sustainpedal: |
2519 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2520 | decodedcontroller.controller_number = 64; |
2521 | break; |
2522 | case _lev_ctrl_portamento: |
2523 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2524 | decodedcontroller.controller_number = 65; |
2525 | break; |
2526 | case _lev_ctrl_sostenutopedal: |
2527 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2528 | decodedcontroller.controller_number = 66; |
2529 | break; |
2530 | case _lev_ctrl_softpedal: |
2531 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2532 | decodedcontroller.controller_number = 67; |
2533 | break; |
2534 | case _lev_ctrl_genpurpose5: |
2535 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2536 | decodedcontroller.controller_number = 80; |
2537 | break; |
2538 | case _lev_ctrl_genpurpose6: |
2539 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2540 | decodedcontroller.controller_number = 81; |
2541 | break; |
2542 | case _lev_ctrl_genpurpose7: |
2543 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2544 | decodedcontroller.controller_number = 82; |
2545 | break; |
2546 | case _lev_ctrl_genpurpose8: |
2547 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2548 | decodedcontroller.controller_number = 83; |
2549 | break; |
2550 | case _lev_ctrl_effect1depth: |
2551 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2552 | decodedcontroller.controller_number = 91; |
2553 | break; |
2554 | case _lev_ctrl_effect2depth: |
2555 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2556 | decodedcontroller.controller_number = 92; |
2557 | break; |
2558 | case _lev_ctrl_effect3depth: |
2559 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2560 | decodedcontroller.controller_number = 93; |
2561 | break; |
2562 | case _lev_ctrl_effect4depth: |
2563 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2564 | decodedcontroller.controller_number = 94; |
2565 | break; |
2566 | case _lev_ctrl_effect5depth: |
2567 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2568 | decodedcontroller.controller_number = 95; |
2569 | break; |
2570 | |
2571 | // format extension (these controllers are so far only supported by |
2572 | // LinuxSampler & gigedit) they will *NOT* work with |
2573 | // Gigasampler/GigaStudio ! |
2574 | case _lev_ctrl_CC3_EXT: |
2575 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2576 | decodedcontroller.controller_number = 3; |
2577 | break; |
2578 | case _lev_ctrl_CC6_EXT: |
2579 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2580 | decodedcontroller.controller_number = 6; |
2581 | break; |
2582 | case _lev_ctrl_CC7_EXT: |
2583 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2584 | decodedcontroller.controller_number = 7; |
2585 | break; |
2586 | case _lev_ctrl_CC8_EXT: |
2587 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2588 | decodedcontroller.controller_number = 8; |
2589 | break; |
2590 | case _lev_ctrl_CC9_EXT: |
2591 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2592 | decodedcontroller.controller_number = 9; |
2593 | break; |
2594 | case _lev_ctrl_CC10_EXT: |
2595 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2596 | decodedcontroller.controller_number = 10; |
2597 | break; |
2598 | case _lev_ctrl_CC11_EXT: |
2599 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2600 | decodedcontroller.controller_number = 11; |
2601 | break; |
2602 | case _lev_ctrl_CC14_EXT: |
2603 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2604 | decodedcontroller.controller_number = 14; |
2605 | break; |
2606 | case _lev_ctrl_CC15_EXT: |
2607 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2608 | decodedcontroller.controller_number = 15; |
2609 | break; |
2610 | case _lev_ctrl_CC20_EXT: |
2611 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2612 | decodedcontroller.controller_number = 20; |
2613 | break; |
2614 | case _lev_ctrl_CC21_EXT: |
2615 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2616 | decodedcontroller.controller_number = 21; |
2617 | break; |
2618 | case _lev_ctrl_CC22_EXT: |
2619 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2620 | decodedcontroller.controller_number = 22; |
2621 | break; |
2622 | case _lev_ctrl_CC23_EXT: |
2623 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2624 | decodedcontroller.controller_number = 23; |
2625 | break; |
2626 | case _lev_ctrl_CC24_EXT: |
2627 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2628 | decodedcontroller.controller_number = 24; |
2629 | break; |
2630 | case _lev_ctrl_CC25_EXT: |
2631 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2632 | decodedcontroller.controller_number = 25; |
2633 | break; |
2634 | case _lev_ctrl_CC26_EXT: |
2635 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2636 | decodedcontroller.controller_number = 26; |
2637 | break; |
2638 | case _lev_ctrl_CC27_EXT: |
2639 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2640 | decodedcontroller.controller_number = 27; |
2641 | break; |
2642 | case _lev_ctrl_CC28_EXT: |
2643 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2644 | decodedcontroller.controller_number = 28; |
2645 | break; |
2646 | case _lev_ctrl_CC29_EXT: |
2647 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2648 | decodedcontroller.controller_number = 29; |
2649 | break; |
2650 | case _lev_ctrl_CC30_EXT: |
2651 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2652 | decodedcontroller.controller_number = 30; |
2653 | break; |
2654 | case _lev_ctrl_CC31_EXT: |
2655 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2656 | decodedcontroller.controller_number = 31; |
2657 | break; |
2658 | case _lev_ctrl_CC68_EXT: |
2659 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2660 | decodedcontroller.controller_number = 68; |
2661 | break; |
2662 | case _lev_ctrl_CC69_EXT: |
2663 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2664 | decodedcontroller.controller_number = 69; |
2665 | break; |
2666 | case _lev_ctrl_CC70_EXT: |
2667 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2668 | decodedcontroller.controller_number = 70; |
2669 | break; |
2670 | case _lev_ctrl_CC71_EXT: |
2671 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2672 | decodedcontroller.controller_number = 71; |
2673 | break; |
2674 | case _lev_ctrl_CC72_EXT: |
2675 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2676 | decodedcontroller.controller_number = 72; |
2677 | break; |
2678 | case _lev_ctrl_CC73_EXT: |
2679 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2680 | decodedcontroller.controller_number = 73; |
2681 | break; |
2682 | case _lev_ctrl_CC74_EXT: |
2683 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2684 | decodedcontroller.controller_number = 74; |
2685 | break; |
2686 | case _lev_ctrl_CC75_EXT: |
2687 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2688 | decodedcontroller.controller_number = 75; |
2689 | break; |
2690 | case _lev_ctrl_CC76_EXT: |
2691 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2692 | decodedcontroller.controller_number = 76; |
2693 | break; |
2694 | case _lev_ctrl_CC77_EXT: |
2695 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2696 | decodedcontroller.controller_number = 77; |
2697 | break; |
2698 | case _lev_ctrl_CC78_EXT: |
2699 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2700 | decodedcontroller.controller_number = 78; |
2701 | break; |
2702 | case _lev_ctrl_CC79_EXT: |
2703 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2704 | decodedcontroller.controller_number = 79; |
2705 | break; |
2706 | case _lev_ctrl_CC84_EXT: |
2707 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2708 | decodedcontroller.controller_number = 84; |
2709 | break; |
2710 | case _lev_ctrl_CC85_EXT: |
2711 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2712 | decodedcontroller.controller_number = 85; |
2713 | break; |
2714 | case _lev_ctrl_CC86_EXT: |
2715 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2716 | decodedcontroller.controller_number = 86; |
2717 | break; |
2718 | case _lev_ctrl_CC87_EXT: |
2719 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2720 | decodedcontroller.controller_number = 87; |
2721 | break; |
2722 | case _lev_ctrl_CC89_EXT: |
2723 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2724 | decodedcontroller.controller_number = 89; |
2725 | break; |
2726 | case _lev_ctrl_CC90_EXT: |
2727 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2728 | decodedcontroller.controller_number = 90; |
2729 | break; |
2730 | case _lev_ctrl_CC96_EXT: |
2731 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2732 | decodedcontroller.controller_number = 96; |
2733 | break; |
2734 | case _lev_ctrl_CC97_EXT: |
2735 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2736 | decodedcontroller.controller_number = 97; |
2737 | break; |
2738 | case _lev_ctrl_CC102_EXT: |
2739 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2740 | decodedcontroller.controller_number = 102; |
2741 | break; |
2742 | case _lev_ctrl_CC103_EXT: |
2743 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2744 | decodedcontroller.controller_number = 103; |
2745 | break; |
2746 | case _lev_ctrl_CC104_EXT: |
2747 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2748 | decodedcontroller.controller_number = 104; |
2749 | break; |
2750 | case _lev_ctrl_CC105_EXT: |
2751 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2752 | decodedcontroller.controller_number = 105; |
2753 | break; |
2754 | case _lev_ctrl_CC106_EXT: |
2755 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2756 | decodedcontroller.controller_number = 106; |
2757 | break; |
2758 | case _lev_ctrl_CC107_EXT: |
2759 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2760 | decodedcontroller.controller_number = 107; |
2761 | break; |
2762 | case _lev_ctrl_CC108_EXT: |
2763 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2764 | decodedcontroller.controller_number = 108; |
2765 | break; |
2766 | case _lev_ctrl_CC109_EXT: |
2767 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2768 | decodedcontroller.controller_number = 109; |
2769 | break; |
2770 | case _lev_ctrl_CC110_EXT: |
2771 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2772 | decodedcontroller.controller_number = 110; |
2773 | break; |
2774 | case _lev_ctrl_CC111_EXT: |
2775 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2776 | decodedcontroller.controller_number = 111; |
2777 | break; |
2778 | case _lev_ctrl_CC112_EXT: |
2779 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2780 | decodedcontroller.controller_number = 112; |
2781 | break; |
2782 | case _lev_ctrl_CC113_EXT: |
2783 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2784 | decodedcontroller.controller_number = 113; |
2785 | break; |
2786 | case _lev_ctrl_CC114_EXT: |
2787 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2788 | decodedcontroller.controller_number = 114; |
2789 | break; |
2790 | case _lev_ctrl_CC115_EXT: |
2791 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2792 | decodedcontroller.controller_number = 115; |
2793 | break; |
2794 | case _lev_ctrl_CC116_EXT: |
2795 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2796 | decodedcontroller.controller_number = 116; |
2797 | break; |
2798 | case _lev_ctrl_CC117_EXT: |
2799 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2800 | decodedcontroller.controller_number = 117; |
2801 | break; |
2802 | case _lev_ctrl_CC118_EXT: |
2803 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2804 | decodedcontroller.controller_number = 118; |
2805 | break; |
2806 | case _lev_ctrl_CC119_EXT: |
2807 | decodedcontroller.type = leverage_ctrl_t::type_controlchange; |
2808 | decodedcontroller.controller_number = 119; |
2809 | break; |
2810 | |
2811 | // unknown controller type |
2812 | default: |
2813 | decodedcontroller.type = leverage_ctrl_t::type_none; |
2814 | decodedcontroller.controller_number = 0; |
2815 | printf("Warning: Unknown leverage controller type (0x%x).\n", EncodedController); |
2816 | break; |
2817 | } |
2818 | return decodedcontroller; |
2819 | } |
2820 | |
2821 | // see above (diagnostic push not supported prior GCC 4.6) |
2822 | //#pragma GCC diagnostic pop |
2823 | |
2824 | DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) { |
2825 | _lev_ctrl_t encodedcontroller; |
2826 | switch (DecodedController.type) { |
2827 | // special controller |
2828 | case leverage_ctrl_t::type_none: |
2829 | encodedcontroller = _lev_ctrl_none; |
2830 | break; |
2831 | case leverage_ctrl_t::type_velocity: |
2832 | encodedcontroller = _lev_ctrl_velocity; |
2833 | break; |
2834 | case leverage_ctrl_t::type_channelaftertouch: |
2835 | encodedcontroller = _lev_ctrl_channelaftertouch; |
2836 | break; |
2837 | |
2838 | // ordinary MIDI control change controller |
2839 | case leverage_ctrl_t::type_controlchange: |
2840 | switch (DecodedController.controller_number) { |
2841 | case 1: |
2842 | encodedcontroller = _lev_ctrl_modwheel; |
2843 | break; |
2844 | case 2: |
2845 | encodedcontroller = _lev_ctrl_breath; |
2846 | break; |
2847 | case 4: |
2848 | encodedcontroller = _lev_ctrl_foot; |
2849 | break; |
2850 | case 12: |
2851 | encodedcontroller = _lev_ctrl_effect1; |
2852 | break; |
2853 | case 13: |
2854 | encodedcontroller = _lev_ctrl_effect2; |
2855 | break; |
2856 | case 16: |
2857 | encodedcontroller = _lev_ctrl_genpurpose1; |
2858 | break; |
2859 | case 17: |
2860 | encodedcontroller = _lev_ctrl_genpurpose2; |
2861 | break; |
2862 | case 18: |
2863 | encodedcontroller = _lev_ctrl_genpurpose3; |
2864 | break; |
2865 | case 19: |
2866 | encodedcontroller = _lev_ctrl_genpurpose4; |
2867 | break; |
2868 | case 5: |
2869 | encodedcontroller = _lev_ctrl_portamentotime; |
2870 | break; |
2871 | case 64: |
2872 | encodedcontroller = _lev_ctrl_sustainpedal; |
2873 | break; |
2874 | case 65: |
2875 | encodedcontroller = _lev_ctrl_portamento; |
2876 | break; |
2877 | case 66: |
2878 | encodedcontroller = _lev_ctrl_sostenutopedal; |
2879 | break; |
2880 | case 67: |
2881 | encodedcontroller = _lev_ctrl_softpedal; |
2882 | break; |
2883 | case 80: |
2884 | encodedcontroller = _lev_ctrl_genpurpose5; |
2885 | break; |
2886 | case 81: |
2887 | encodedcontroller = _lev_ctrl_genpurpose6; |
2888 | break; |
2889 | case 82: |
2890 | encodedcontroller = _lev_ctrl_genpurpose7; |
2891 | break; |
2892 | case 83: |
2893 | encodedcontroller = _lev_ctrl_genpurpose8; |
2894 | break; |
2895 | case 91: |
2896 | encodedcontroller = _lev_ctrl_effect1depth; |
2897 | break; |
2898 | case 92: |
2899 | encodedcontroller = _lev_ctrl_effect2depth; |
2900 | break; |
2901 | case 93: |
2902 | encodedcontroller = _lev_ctrl_effect3depth; |
2903 | break; |
2904 | case 94: |
2905 | encodedcontroller = _lev_ctrl_effect4depth; |
2906 | break; |
2907 | case 95: |
2908 | encodedcontroller = _lev_ctrl_effect5depth; |
2909 | break; |
2910 | |
2911 | // format extension (these controllers are so far only |
2912 | // supported by LinuxSampler & gigedit) they will *NOT* |
2913 | // work with Gigasampler/GigaStudio ! |
2914 | case 3: |
2915 | encodedcontroller = _lev_ctrl_CC3_EXT; |
2916 | break; |
2917 | case 6: |
2918 | encodedcontroller = _lev_ctrl_CC6_EXT; |
2919 | break; |
2920 | case 7: |
2921 | encodedcontroller = _lev_ctrl_CC7_EXT; |
2922 | break; |
2923 | case 8: |
2924 | encodedcontroller = _lev_ctrl_CC8_EXT; |
2925 | break; |
2926 | case 9: |
2927 | encodedcontroller = _lev_ctrl_CC9_EXT; |
2928 | break; |
2929 | case 10: |
2930 | encodedcontroller = _lev_ctrl_CC10_EXT; |
2931 | break; |
2932 | case 11: |
2933 | encodedcontroller = _lev_ctrl_CC11_EXT; |
2934 | break; |
2935 | case 14: |
2936 | encodedcontroller = _lev_ctrl_CC14_EXT; |
2937 | break; |
2938 | case 15: |
2939 | encodedcontroller = _lev_ctrl_CC15_EXT; |
2940 | break; |
2941 | case 20: |
2942 | encodedcontroller = _lev_ctrl_CC20_EXT; |
2943 | break; |
2944 | case 21: |
2945 | encodedcontroller = _lev_ctrl_CC21_EXT; |
2946 | break; |
2947 | case 22: |
2948 | encodedcontroller = _lev_ctrl_CC22_EXT; |
2949 | break; |
2950 | case 23: |
2951 | encodedcontroller = _lev_ctrl_CC23_EXT; |
2952 | break; |
2953 | case 24: |
2954 | encodedcontroller = _lev_ctrl_CC24_EXT; |
2955 | break; |
2956 | case 25: |
2957 | encodedcontroller = _lev_ctrl_CC25_EXT; |
2958 | break; |
2959 | case 26: |
2960 | encodedcontroller = _lev_ctrl_CC26_EXT; |
2961 | break; |
2962 | case 27: |
2963 | encodedcontroller = _lev_ctrl_CC27_EXT; |
2964 | break; |
2965 | case 28: |
2966 | encodedcontroller = _lev_ctrl_CC28_EXT; |
2967 | break; |
2968 | case 29: |
2969 | encodedcontroller = _lev_ctrl_CC29_EXT; |
2970 | break; |
2971 | case 30: |
2972 | encodedcontroller = _lev_ctrl_CC30_EXT; |
2973 | break; |
2974 | case 31: |
2975 | encodedcontroller = _lev_ctrl_CC31_EXT; |
2976 | break; |
2977 | case 68: |
2978 | encodedcontroller = _lev_ctrl_CC68_EXT; |
2979 | break; |
2980 | case 69: |
2981 | encodedcontroller = _lev_ctrl_CC69_EXT; |
2982 | break; |
2983 | case 70: |
2984 | encodedcontroller = _lev_ctrl_CC70_EXT; |
2985 | break; |
2986 | case 71: |
2987 | encodedcontroller = _lev_ctrl_CC71_EXT; |
2988 | break; |
2989 | case 72: |
2990 | encodedcontroller = _lev_ctrl_CC72_EXT; |
2991 | break; |
2992 | case 73: |
2993 | encodedcontroller = _lev_ctrl_CC73_EXT; |
2994 | break; |
2995 | case 74: |
2996 | encodedcontroller = _lev_ctrl_CC74_EXT; |
2997 | break; |
2998 | case 75: |
2999 | encodedcontroller = _lev_ctrl_CC75_EXT; |
3000 | break; |
3001 | case 76: |
3002 | encodedcontroller = _lev_ctrl_CC76_EXT; |
3003 | break; |
3004 | case 77: |
3005 | encodedcontroller = _lev_ctrl_CC77_EXT; |
3006 | break; |
3007 | case 78: |
3008 | encodedcontroller = _lev_ctrl_CC78_EXT; |
3009 | break; |
3010 | case 79: |
3011 | encodedcontroller = _lev_ctrl_CC79_EXT; |
3012 | break; |
3013 | case 84: |
3014 | encodedcontroller = _lev_ctrl_CC84_EXT; |
3015 | break; |
3016 | case 85: |
3017 | encodedcontroller = _lev_ctrl_CC85_EXT; |
3018 | break; |
3019 | case 86: |
3020 | encodedcontroller = _lev_ctrl_CC86_EXT; |
3021 | break; |
3022 | case 87: |
3023 | encodedcontroller = _lev_ctrl_CC87_EXT; |
3024 | break; |
3025 | case 89: |
3026 | encodedcontroller = _lev_ctrl_CC89_EXT; |
3027 | break; |
3028 | case 90: |
3029 | encodedcontroller = _lev_ctrl_CC90_EXT; |
3030 | break; |
3031 | case 96: |
3032 | encodedcontroller = _lev_ctrl_CC96_EXT; |
3033 | break; |
3034 | case 97: |
3035 | encodedcontroller = _lev_ctrl_CC97_EXT; |
3036 | break; |
3037 | case 102: |
3038 | encodedcontroller = _lev_ctrl_CC102_EXT; |
3039 | break; |
3040 | case 103: |
3041 | encodedcontroller = _lev_ctrl_CC103_EXT; |
3042 | break; |
3043 | case 104: |
3044 | encodedcontroller = _lev_ctrl_CC104_EXT; |
3045 | break; |
3046 | case 105: |
3047 | encodedcontroller = _lev_ctrl_CC105_EXT; |
3048 | break; |
3049 | case 106: |
3050 | encodedcontroller = _lev_ctrl_CC106_EXT; |
3051 | break; |
3052 | case 107: |
3053 | encodedcontroller = _lev_ctrl_CC107_EXT; |
3054 | break; |
3055 | case 108: |
3056 | encodedcontroller = _lev_ctrl_CC108_EXT; |
3057 | break; |
3058 | case 109: |
3059 | encodedcontroller = _lev_ctrl_CC109_EXT; |
3060 | break; |
3061 | case 110: |
3062 | encodedcontroller = _lev_ctrl_CC110_EXT; |
3063 | break; |
3064 | case 111: |
3065 | encodedcontroller = _lev_ctrl_CC111_EXT; |
3066 | break; |
3067 | case 112: |
3068 | encodedcontroller = _lev_ctrl_CC112_EXT; |
3069 | break; |
3070 | case 113: |
3071 | encodedcontroller = _lev_ctrl_CC113_EXT; |
3072 | break; |
3073 | case 114: |
3074 | encodedcontroller = _lev_ctrl_CC114_EXT; |
3075 | break; |
3076 | case 115: |
3077 | encodedcontroller = _lev_ctrl_CC115_EXT; |
3078 | break; |
3079 | case 116: |
3080 | encodedcontroller = _lev_ctrl_CC116_EXT; |
3081 | break; |
3082 | case 117: |
3083 | encodedcontroller = _lev_ctrl_CC117_EXT; |
3084 | break; |
3085 | case 118: |
3086 | encodedcontroller = _lev_ctrl_CC118_EXT; |
3087 | break; |
3088 | case 119: |
3089 | encodedcontroller = _lev_ctrl_CC119_EXT; |
3090 | break; |
3091 | |
3092 | default: |
3093 | throw gig::Exception("leverage controller number is not supported by the gig format"); |
3094 | } |
3095 | break; |
3096 | default: |
3097 | throw gig::Exception("Unknown leverage controller type."); |
3098 | } |
3099 | return encodedcontroller; |
3100 | } |
3101 | |
3102 | DimensionRegion::~DimensionRegion() { |
3103 | Instances--; |
3104 | if (!Instances) { |
3105 | // delete the velocity->volume tables |
3106 | VelocityTableMap::iterator iter; |
3107 | for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) { |
3108 | double* pTable = iter->second; |
3109 | if (pTable) delete[] pTable; |
3110 | } |
3111 | pVelocityTables->clear(); |
3112 | delete pVelocityTables; |
3113 | pVelocityTables = NULL; |
3114 | } |
3115 | if (VelocityTable) delete[] VelocityTable; |
3116 | } |
3117 | |
3118 | /** |
3119 | * Returns the correct amplitude factor for the given \a MIDIKeyVelocity. |
3120 | * All involved parameters (VelocityResponseCurve, VelocityResponseDepth |
3121 | * and VelocityResponseCurveScaling) involved are taken into account to |
3122 | * calculate the amplitude factor. Use this method when a key was |
3123 | * triggered to get the volume with which the sample should be played |
3124 | * back. |
3125 | * |
3126 | * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127) |
3127 | * @returns amplitude factor (between 0.0 and 1.0) |
3128 | */ |
3129 | double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) { |
3130 | return pVelocityAttenuationTable[MIDIKeyVelocity]; |
3131 | } |
3132 | |
3133 | double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) { |
3134 | return pVelocityReleaseTable[MIDIKeyVelocity]; |
3135 | } |
3136 | |
3137 | double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) { |
3138 | return pVelocityCutoffTable[MIDIKeyVelocity]; |
3139 | } |
3140 | |
3141 | /** |
3142 | * Updates the respective member variable and the lookup table / cache |
3143 | * that depends on this value. |
3144 | */ |
3145 | void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) { |
3146 | pVelocityAttenuationTable = |
3147 | GetVelocityTable( |
3148 | curve, VelocityResponseDepth, VelocityResponseCurveScaling |
3149 | ); |
3150 | VelocityResponseCurve = curve; |
3151 | } |
3152 | |
3153 | /** |
3154 | * Updates the respective member variable and the lookup table / cache |
3155 | * that depends on this value. |
3156 | */ |
3157 | void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) { |
3158 | pVelocityAttenuationTable = |
3159 | GetVelocityTable( |
3160 | VelocityResponseCurve, depth, VelocityResponseCurveScaling |
3161 | ); |
3162 | VelocityResponseDepth = depth; |
3163 | } |
3164 | |
3165 | /** |
3166 | * Updates the respective member variable and the lookup table / cache |
3167 | * that depends on this value. |
3168 | */ |
3169 | void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) { |
3170 | pVelocityAttenuationTable = |
3171 | GetVelocityTable( |
3172 | VelocityResponseCurve, VelocityResponseDepth, scaling |
3173 | ); |
3174 | VelocityResponseCurveScaling = scaling; |
3175 | } |
3176 | |
3177 | /** |
3178 | * Updates the respective member variable and the lookup table / cache |
3179 | * that depends on this value. |
3180 | */ |
3181 | void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) { |
3182 | pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth); |
3183 | ReleaseVelocityResponseCurve = curve; |
3184 | } |
3185 | |
3186 | /** |
3187 | * Updates the respective member variable and the lookup table / cache |
3188 | * that depends on this value. |
3189 | */ |
3190 | void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) { |
3191 | pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth); |
3192 | ReleaseVelocityResponseDepth = depth; |
3193 | } |
3194 | |
3195 | /** |
3196 | * Updates the respective member variable and the lookup table / cache |
3197 | * that depends on this value. |
3198 | */ |
3199 | void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) { |
3200 | pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller); |
3201 | VCFCutoffController = controller; |
3202 | } |
3203 | |
3204 | /** |
3205 | * Updates the respective member variable and the lookup table / cache |
3206 | * that depends on this value. |
3207 | */ |
3208 | void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) { |
3209 | pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController); |
3210 | VCFVelocityCurve = curve; |
3211 | } |
3212 | |
3213 | /** |
3214 | * Updates the respective member variable and the lookup table / cache |
3215 | * that depends on this value. |
3216 | */ |
3217 | void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) { |
3218 | pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController); |
3219 | VCFVelocityDynamicRange = range; |
3220 | } |
3221 | |
3222 | /** |
3223 | * Updates the respective member variable and the lookup table / cache |
3224 | * that depends on this value. |
3225 | */ |
3226 | void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) { |
3227 | pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController); |
3228 | VCFVelocityScale = scaling; |
3229 | } |
3230 | |
3231 | double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) { |
3232 | |
3233 | // line-segment approximations of the 15 velocity curves |
3234 | |
3235 | // linear |
3236 | const int lin0[] = { 1, 1, 127, 127 }; |
3237 | const int lin1[] = { 1, 21, 127, 127 }; |
3238 | const int lin2[] = { 1, 45 |