/[svn]/libgig/trunk/src/gig.cpp
ViewVC logotype

Contents of /libgig/trunk/src/gig.cpp

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3731 - (show annotations) (download)
Sat Feb 1 15:35:07 2020 UTC (4 years, 2 months ago) by schoenebeck
File size: 322256 byte(s)
GIG FORMAT EXTENSION: Introducing support for 'patch' script variables.

* gig.cpp/.h: Added 5 new API methods to class gig::Instrument:
  IsScriptPatchVariableSet(), GetScriptPatchVariables(),
  GetScriptPatchVariable(), SetScriptPatchVariable(),
  UnsetScriptPatchVariable().

* gig.cpp: Store/restore values for those 'patch' variables persistently
  to/from a separate new 'SCPV' RIFF chunk as child of our own '3LS '
  RIFF list chunk (which we use for our own gig format extensions on
  Instrument level).

* Bumped version (4.2.0.svn8).


1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file access library *
4 * *
5 * Copyright (C) 2003-2020 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #include "gig.h"
25
26 #include "helper.h"
27 #include "Serialization.h"
28
29 #include <algorithm>
30 #include <math.h>
31 #include <iostream>
32 #include <assert.h>
33
34 /// libgig's current file format version (for extending the original Giga file
35 /// format with libgig's own custom data / custom features).
36 #define GIG_FILE_EXT_VERSION 2
37
38 /// Initial size of the sample buffer which is used for decompression of
39 /// compressed sample wave streams - this value should always be bigger than
40 /// the biggest sample piece expected to be read by the sampler engine,
41 /// otherwise the buffer size will be raised at runtime and thus the buffer
42 /// reallocated which is time consuming and unefficient.
43 #define INITIAL_SAMPLE_BUFFER_SIZE 512000 // 512 kB
44
45 /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */
46 #define GIG_EXP_DECODE(x) (pow(1.000000008813822, x))
47 #define GIG_EXP_ENCODE(x) (log(x) / log(1.000000008813822))
48 #define GIG_PITCH_TRACK_EXTRACT(x) (!(x & 0x01))
49 #define GIG_PITCH_TRACK_ENCODE(x) ((x) ? 0x00 : 0x01)
50 #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x) ((x >> 4) & 0x03)
51 #define GIG_VCF_RESONANCE_CTRL_ENCODE(x) ((x & 0x03) << 4)
52 #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x) ((x >> 1) & 0x03)
53 #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x) ((x >> 3) & 0x03)
54 #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)
55 #define GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(x) ((x & 0x03) << 1)
56 #define GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(x) ((x & 0x03) << 3)
57 #define GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(x) ((x & 0x03) << 5)
58
59 #define SRLZ(member) \
60 archive->serializeMember(*this, member, #member);
61
62 namespace gig {
63
64 // *************** Internal functions for sample decompression ***************
65 // *
66
67 namespace {
68
69 inline int get12lo(const unsigned char* pSrc)
70 {
71 const int x = pSrc[0] | (pSrc[1] & 0x0f) << 8;
72 return x & 0x800 ? x - 0x1000 : x;
73 }
74
75 inline int get12hi(const unsigned char* pSrc)
76 {
77 const int x = pSrc[1] >> 4 | pSrc[2] << 4;
78 return x & 0x800 ? x - 0x1000 : x;
79 }
80
81 inline int16_t get16(const unsigned char* pSrc)
82 {
83 return int16_t(pSrc[0] | pSrc[1] << 8);
84 }
85
86 inline int get24(const unsigned char* pSrc)
87 {
88 const int x = pSrc[0] | pSrc[1] << 8 | pSrc[2] << 16;
89 return x & 0x800000 ? x - 0x1000000 : x;
90 }
91
92 inline void store24(unsigned char* pDst, int x)
93 {
94 pDst[0] = x;
95 pDst[1] = x >> 8;
96 pDst[2] = x >> 16;
97 }
98
99 void Decompress16(int compressionmode, const unsigned char* params,
100 int srcStep, int dstStep,
101 const unsigned char* pSrc, int16_t* pDst,
102 file_offset_t currentframeoffset,
103 file_offset_t copysamples)
104 {
105 switch (compressionmode) {
106 case 0: // 16 bit uncompressed
107 pSrc += currentframeoffset * srcStep;
108 while (copysamples) {
109 *pDst = get16(pSrc);
110 pDst += dstStep;
111 pSrc += srcStep;
112 copysamples--;
113 }
114 break;
115
116 case 1: // 16 bit compressed to 8 bit
117 int y = get16(params);
118 int dy = get16(params + 2);
119 while (currentframeoffset) {
120 dy -= int8_t(*pSrc);
121 y -= dy;
122 pSrc += srcStep;
123 currentframeoffset--;
124 }
125 while (copysamples) {
126 dy -= int8_t(*pSrc);
127 y -= dy;
128 *pDst = y;
129 pDst += dstStep;
130 pSrc += srcStep;
131 copysamples--;
132 }
133 break;
134 }
135 }
136
137 void Decompress24(int compressionmode, const unsigned char* params,
138 int dstStep, const unsigned char* pSrc, uint8_t* pDst,
139 file_offset_t currentframeoffset,
140 file_offset_t copysamples, int truncatedBits)
141 {
142 int y, dy, ddy, dddy;
143
144 #define GET_PARAMS(params) \
145 y = get24(params); \
146 dy = y - get24((params) + 3); \
147 ddy = get24((params) + 6); \
148 dddy = get24((params) + 9)
149
150 #define SKIP_ONE(x) \
151 dddy -= (x); \
152 ddy -= dddy; \
153 dy = -dy - ddy; \
154 y += dy
155
156 #define COPY_ONE(x) \
157 SKIP_ONE(x); \
158 store24(pDst, y << truncatedBits); \
159 pDst += dstStep
160
161 switch (compressionmode) {
162 case 2: // 24 bit uncompressed
163 pSrc += currentframeoffset * 3;
164 while (copysamples) {
165 store24(pDst, get24(pSrc) << truncatedBits);
166 pDst += dstStep;
167 pSrc += 3;
168 copysamples--;
169 }
170 break;
171
172 case 3: // 24 bit compressed to 16 bit
173 GET_PARAMS(params);
174 while (currentframeoffset) {
175 SKIP_ONE(get16(pSrc));
176 pSrc += 2;
177 currentframeoffset--;
178 }
179 while (copysamples) {
180 COPY_ONE(get16(pSrc));
181 pSrc += 2;
182 copysamples--;
183 }
184 break;
185
186 case 4: // 24 bit compressed to 12 bit
187 GET_PARAMS(params);
188 while (currentframeoffset > 1) {
189 SKIP_ONE(get12lo(pSrc));
190 SKIP_ONE(get12hi(pSrc));
191 pSrc += 3;
192 currentframeoffset -= 2;
193 }
194 if (currentframeoffset) {
195 SKIP_ONE(get12lo(pSrc));
196 currentframeoffset--;
197 if (copysamples) {
198 COPY_ONE(get12hi(pSrc));
199 pSrc += 3;
200 copysamples--;
201 }
202 }
203 while (copysamples > 1) {
204 COPY_ONE(get12lo(pSrc));
205 COPY_ONE(get12hi(pSrc));
206 pSrc += 3;
207 copysamples -= 2;
208 }
209 if (copysamples) {
210 COPY_ONE(get12lo(pSrc));
211 }
212 break;
213
214 case 5: // 24 bit compressed to 8 bit
215 GET_PARAMS(params);
216 while (currentframeoffset) {
217 SKIP_ONE(int8_t(*pSrc++));
218 currentframeoffset--;
219 }
220 while (copysamples) {
221 COPY_ONE(int8_t(*pSrc++));
222 copysamples--;
223 }
224 break;
225 }
226 }
227
228 const int bytesPerFrame[] = { 4096, 2052, 768, 524, 396, 268 };
229 const int bytesPerFrameNoHdr[] = { 4096, 2048, 768, 512, 384, 256 };
230 const int headerSize[] = { 0, 4, 0, 12, 12, 12 };
231 const int bitsPerSample[] = { 16, 8, 24, 16, 12, 8 };
232 }
233
234
235
236 // *************** Internal CRC-32 (Cyclic Redundancy Check) functions ***************
237 // *
238
239 static uint32_t* __initCRCTable() {
240 static uint32_t res[256];
241
242 for (int i = 0 ; i < 256 ; i++) {
243 uint32_t c = i;
244 for (int j = 0 ; j < 8 ; j++) {
245 c = (c & 1) ? 0xedb88320 ^ (c >> 1) : c >> 1;
246 }
247 res[i] = c;
248 }
249 return res;
250 }
251
252 static const uint32_t* __CRCTable = __initCRCTable();
253
254 /**
255 * Initialize a CRC variable.
256 *
257 * @param crc - variable to be initialized
258 */
259 inline static void __resetCRC(uint32_t& crc) {
260 crc = 0xffffffff;
261 }
262
263 /**
264 * Used to calculate checksums of the sample data in a gig file. The
265 * checksums are stored in the 3crc chunk of the gig file and
266 * automatically updated when a sample is written with Sample::Write().
267 *
268 * One should call __resetCRC() to initialize the CRC variable to be
269 * used before calling this function the first time.
270 *
271 * After initializing the CRC variable one can call this function
272 * arbitrary times, i.e. to split the overall CRC calculation into
273 * steps.
274 *
275 * Once the whole data was processed by __calculateCRC(), one should
276 * call __finalizeCRC() to get the final CRC result.
277 *
278 * @param buf - pointer to data the CRC shall be calculated of
279 * @param bufSize - size of the data to be processed
280 * @param crc - variable the CRC sum shall be stored to
281 */
282 static void __calculateCRC(unsigned char* buf, size_t bufSize, uint32_t& crc) {
283 for (size_t i = 0 ; i < bufSize ; i++) {
284 crc = __CRCTable[(crc ^ buf[i]) & 0xff] ^ (crc >> 8);
285 }
286 }
287
288 /**
289 * Returns the final CRC result.
290 *
291 * @param crc - variable previously passed to __calculateCRC()
292 */
293 inline static void __finalizeCRC(uint32_t& crc) {
294 crc ^= 0xffffffff;
295 }
296
297
298
299 // *************** Other Internal functions ***************
300 // *
301
302 static split_type_t __resolveSplitType(dimension_t dimension) {
303 return (
304 dimension == dimension_layer ||
305 dimension == dimension_samplechannel ||
306 dimension == dimension_releasetrigger ||
307 dimension == dimension_keyboard ||
308 dimension == dimension_roundrobin ||
309 dimension == dimension_random ||
310 dimension == dimension_smartmidi ||
311 dimension == dimension_roundrobinkeyboard
312 ) ? split_type_bit : split_type_normal;
313 }
314
315 static int __resolveZoneSize(dimension_def_t& dimension_definition) {
316 return (dimension_definition.split_type == split_type_normal)
317 ? int(128.0 / dimension_definition.zones) : 0;
318 }
319
320
321
322 // *************** leverage_ctrl_t ***************
323 // *
324
325 void leverage_ctrl_t::serialize(Serialization::Archive* archive) {
326 SRLZ(type);
327 SRLZ(controller_number);
328 }
329
330
331
332 // *************** crossfade_t ***************
333 // *
334
335 void crossfade_t::serialize(Serialization::Archive* archive) {
336 SRLZ(in_start);
337 SRLZ(in_end);
338 SRLZ(out_start);
339 SRLZ(out_end);
340 }
341
342
343
344 // *************** eg_opt_t ***************
345 // *
346
347 eg_opt_t::eg_opt_t() {
348 AttackCancel = true;
349 AttackHoldCancel = true;
350 Decay1Cancel = true;
351 Decay2Cancel = true;
352 ReleaseCancel = true;
353 }
354
355 void eg_opt_t::serialize(Serialization::Archive* archive) {
356 SRLZ(AttackCancel);
357 SRLZ(AttackHoldCancel);
358 SRLZ(Decay1Cancel);
359 SRLZ(Decay2Cancel);
360 SRLZ(ReleaseCancel);
361 }
362
363
364
365 // *************** Sample ***************
366 // *
367
368 size_t Sample::Instances = 0;
369 buffer_t Sample::InternalDecompressionBuffer;
370
371 /** @brief Constructor.
372 *
373 * Load an existing sample or create a new one. A 'wave' list chunk must
374 * be given to this constructor. In case the given 'wave' list chunk
375 * contains a 'fmt', 'data' (and optionally a '3gix', 'smpl') chunk, the
376 * format and sample data will be loaded from there, otherwise default
377 * values will be used and those chunks will be created when
378 * File::Save() will be called later on.
379 *
380 * @param pFile - pointer to gig::File where this sample is
381 * located (or will be located)
382 * @param waveList - pointer to 'wave' list chunk which is (or
383 * will be) associated with this sample
384 * @param WavePoolOffset - offset of this sample data from wave pool
385 * ('wvpl') list chunk
386 * @param fileNo - number of an extension file where this sample
387 * is located, 0 otherwise
388 * @param index - wave pool index of sample (may be -1 on new sample)
389 */
390 Sample::Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo, int index)
391 : DLS::Sample((DLS::File*) pFile, waveList, WavePoolOffset)
392 {
393 static const DLS::Info::string_length_t fixedStringLengths[] = {
394 { CHUNK_ID_INAM, 64 },
395 { 0, 0 }
396 };
397 pInfo->SetFixedStringLengths(fixedStringLengths);
398 Instances++;
399 FileNo = fileNo;
400
401 __resetCRC(crc);
402 // if this is not a new sample, try to get the sample's already existing
403 // CRC32 checksum from disk, this checksum will reflect the sample's CRC32
404 // checksum of the time when the sample was consciously modified by the
405 // user for the last time (by calling Sample::Write() that is).
406 if (index >= 0) { // not a new file ...
407 try {
408 uint32_t crc = pFile->GetSampleChecksumByIndex(index);
409 this->crc = crc;
410 } catch (...) {}
411 }
412
413 pCk3gix = waveList->GetSubChunk(CHUNK_ID_3GIX);
414 if (pCk3gix) {
415 pCk3gix->SetPos(0);
416
417 uint16_t iSampleGroup = pCk3gix->ReadInt16();
418 pGroup = pFile->GetGroup(iSampleGroup);
419 } else { // '3gix' chunk missing
420 // by default assigned to that mandatory "Default Group"
421 pGroup = pFile->GetGroup(0);
422 }
423
424 pCkSmpl = waveList->GetSubChunk(CHUNK_ID_SMPL);
425 if (pCkSmpl) {
426 pCkSmpl->SetPos(0);
427
428 Manufacturer = pCkSmpl->ReadInt32();
429 Product = pCkSmpl->ReadInt32();
430 SamplePeriod = pCkSmpl->ReadInt32();
431 MIDIUnityNote = pCkSmpl->ReadInt32();
432 FineTune = pCkSmpl->ReadInt32();
433 pCkSmpl->Read(&SMPTEFormat, 1, 4);
434 SMPTEOffset = pCkSmpl->ReadInt32();
435 Loops = pCkSmpl->ReadInt32();
436 pCkSmpl->ReadInt32(); // manufByt
437 LoopID = pCkSmpl->ReadInt32();
438 pCkSmpl->Read(&LoopType, 1, 4);
439 LoopStart = pCkSmpl->ReadInt32();
440 LoopEnd = pCkSmpl->ReadInt32();
441 LoopFraction = pCkSmpl->ReadInt32();
442 LoopPlayCount = pCkSmpl->ReadInt32();
443 } else { // 'smpl' chunk missing
444 // use default values
445 Manufacturer = 0;
446 Product = 0;
447 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
448 MIDIUnityNote = 60;
449 FineTune = 0;
450 SMPTEFormat = smpte_format_no_offset;
451 SMPTEOffset = 0;
452 Loops = 0;
453 LoopID = 0;
454 LoopType = loop_type_normal;
455 LoopStart = 0;
456 LoopEnd = 0;
457 LoopFraction = 0;
458 LoopPlayCount = 0;
459 }
460
461 FrameTable = NULL;
462 SamplePos = 0;
463 RAMCache.Size = 0;
464 RAMCache.pStart = NULL;
465 RAMCache.NullExtensionSize = 0;
466
467 if (BitDepth > 24) throw gig::Exception("Only samples up to 24 bit supported");
468
469 RIFF::Chunk* ewav = waveList->GetSubChunk(CHUNK_ID_EWAV);
470 Compressed = ewav;
471 Dithered = false;
472 TruncatedBits = 0;
473 if (Compressed) {
474 ewav->SetPos(0);
475
476 uint32_t version = ewav->ReadInt32();
477 if (version > 2 && BitDepth == 24) {
478 Dithered = ewav->ReadInt32();
479 ewav->SetPos(Channels == 2 ? 84 : 64);
480 TruncatedBits = ewav->ReadInt32();
481 }
482 ScanCompressedSample();
483 }
484
485 // we use a buffer for decompression and for truncating 24 bit samples to 16 bit
486 if ((Compressed || BitDepth == 24) && !InternalDecompressionBuffer.Size) {
487 InternalDecompressionBuffer.pStart = new unsigned char[INITIAL_SAMPLE_BUFFER_SIZE];
488 InternalDecompressionBuffer.Size = INITIAL_SAMPLE_BUFFER_SIZE;
489 }
490 FrameOffset = 0; // just for streaming compressed samples
491
492 LoopSize = LoopEnd - LoopStart + 1;
493 }
494
495 /**
496 * Make a (semi) deep copy of the Sample object given by @a orig (without
497 * the actual waveform data) and assign it to this object.
498 *
499 * Discussion: copying .gig samples is a bit tricky. It requires three
500 * steps:
501 * 1. Copy sample's meta informations (done by CopyAssignMeta()) including
502 * its new sample waveform data size.
503 * 2. Saving the file (done by File::Save()) so that it gains correct size
504 * and layout for writing the actual wave form data directly to disc
505 * in next step.
506 * 3. Copy the waveform data with disk streaming (done by CopyAssignWave()).
507 *
508 * @param orig - original Sample object to be copied from
509 */
510 void Sample::CopyAssignMeta(const Sample* orig) {
511 // handle base classes
512 DLS::Sample::CopyAssignCore(orig);
513
514 // handle actual own attributes of this class
515 Manufacturer = orig->Manufacturer;
516 Product = orig->Product;
517 SamplePeriod = orig->SamplePeriod;
518 MIDIUnityNote = orig->MIDIUnityNote;
519 FineTune = orig->FineTune;
520 SMPTEFormat = orig->SMPTEFormat;
521 SMPTEOffset = orig->SMPTEOffset;
522 Loops = orig->Loops;
523 LoopID = orig->LoopID;
524 LoopType = orig->LoopType;
525 LoopStart = orig->LoopStart;
526 LoopEnd = orig->LoopEnd;
527 LoopSize = orig->LoopSize;
528 LoopFraction = orig->LoopFraction;
529 LoopPlayCount = orig->LoopPlayCount;
530
531 // schedule resizing this sample to the given sample's size
532 Resize(orig->GetSize());
533 }
534
535 /**
536 * Should be called after CopyAssignMeta() and File::Save() sequence.
537 * Read more about it in the discussion of CopyAssignMeta(). This method
538 * copies the actual waveform data by disk streaming.
539 *
540 * @e CAUTION: this method is currently not thread safe! During this
541 * operation the sample must not be used for other purposes by other
542 * threads!
543 *
544 * @param orig - original Sample object to be copied from
545 */
546 void Sample::CopyAssignWave(const Sample* orig) {
547 const int iReadAtOnce = 32*1024;
548 char* buf = new char[iReadAtOnce * orig->FrameSize];
549 Sample* pOrig = (Sample*) orig; //HACK: remove constness for now
550 file_offset_t restorePos = pOrig->GetPos();
551 pOrig->SetPos(0);
552 SetPos(0);
553 for (file_offset_t n = pOrig->Read(buf, iReadAtOnce); n;
554 n = pOrig->Read(buf, iReadAtOnce))
555 {
556 Write(buf, n);
557 }
558 pOrig->SetPos(restorePos);
559 delete [] buf;
560 }
561
562 /**
563 * Apply sample and its settings to the respective RIFF chunks. You have
564 * to call File::Save() to make changes persistent.
565 *
566 * Usually there is absolutely no need to call this method explicitly.
567 * It will be called automatically when File::Save() was called.
568 *
569 * @param pProgress - callback function for progress notification
570 * @throws DLS::Exception if FormatTag != DLS_WAVE_FORMAT_PCM or no sample data
571 * was provided yet
572 * @throws gig::Exception if there is any invalid sample setting
573 */
574 void Sample::UpdateChunks(progress_t* pProgress) {
575 // first update base class's chunks
576 DLS::Sample::UpdateChunks(pProgress);
577
578 // make sure 'smpl' chunk exists
579 pCkSmpl = pWaveList->GetSubChunk(CHUNK_ID_SMPL);
580 if (!pCkSmpl) {
581 pCkSmpl = pWaveList->AddSubChunk(CHUNK_ID_SMPL, 60);
582 memset(pCkSmpl->LoadChunkData(), 0, 60);
583 }
584 // update 'smpl' chunk
585 uint8_t* pData = (uint8_t*) pCkSmpl->LoadChunkData();
586 SamplePeriod = uint32_t(1000000000.0 / SamplesPerSecond + 0.5);
587 store32(&pData[0], Manufacturer);
588 store32(&pData[4], Product);
589 store32(&pData[8], SamplePeriod);
590 store32(&pData[12], MIDIUnityNote);
591 store32(&pData[16], FineTune);
592 store32(&pData[20], SMPTEFormat);
593 store32(&pData[24], SMPTEOffset);
594 store32(&pData[28], Loops);
595
596 // we skip 'manufByt' for now (4 bytes)
597
598 store32(&pData[36], LoopID);
599 store32(&pData[40], LoopType);
600 store32(&pData[44], LoopStart);
601 store32(&pData[48], LoopEnd);
602 store32(&pData[52], LoopFraction);
603 store32(&pData[56], LoopPlayCount);
604
605 // make sure '3gix' chunk exists
606 pCk3gix = pWaveList->GetSubChunk(CHUNK_ID_3GIX);
607 if (!pCk3gix) pCk3gix = pWaveList->AddSubChunk(CHUNK_ID_3GIX, 4);
608 // determine appropriate sample group index (to be stored in chunk)
609 uint16_t iSampleGroup = 0; // 0 refers to default sample group
610 File* pFile = static_cast<File*>(pParent);
611 if (pFile->pGroups) {
612 std::list<Group*>::iterator iter = pFile->pGroups->begin();
613 std::list<Group*>::iterator end = pFile->pGroups->end();
614 for (int i = 0; iter != end; i++, iter++) {
615 if (*iter == pGroup) {
616 iSampleGroup = i;
617 break; // found
618 }
619 }
620 }
621 // update '3gix' chunk
622 pData = (uint8_t*) pCk3gix->LoadChunkData();
623 store16(&pData[0], iSampleGroup);
624
625 // if the library user toggled the "Compressed" attribute from true to
626 // false, then the EWAV chunk associated with compressed samples needs
627 // to be deleted
628 RIFF::Chunk* ewav = pWaveList->GetSubChunk(CHUNK_ID_EWAV);
629 if (ewav && !Compressed) {
630 pWaveList->DeleteSubChunk(ewav);
631 }
632 }
633
634 /// Scans compressed samples for mandatory informations (e.g. actual number of total sample points).
635 void Sample::ScanCompressedSample() {
636 //TODO: we have to add some more scans here (e.g. determine compression rate)
637 this->SamplesTotal = 0;
638 std::list<file_offset_t> frameOffsets;
639
640 SamplesPerFrame = BitDepth == 24 ? 256 : 2048;
641 WorstCaseFrameSize = SamplesPerFrame * FrameSize + Channels; // +Channels for compression flag
642
643 // Scanning
644 pCkData->SetPos(0);
645 if (Channels == 2) { // Stereo
646 for (int i = 0 ; ; i++) {
647 // for 24 bit samples every 8:th frame offset is
648 // stored, to save some memory
649 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
650
651 const int mode_l = pCkData->ReadUint8();
652 const int mode_r = pCkData->ReadUint8();
653 if (mode_l > 5 || mode_r > 5) throw gig::Exception("Unknown compression mode");
654 const file_offset_t frameSize = bytesPerFrame[mode_l] + bytesPerFrame[mode_r];
655
656 if (pCkData->RemainingBytes() <= frameSize) {
657 SamplesInLastFrame =
658 ((pCkData->RemainingBytes() - headerSize[mode_l] - headerSize[mode_r]) << 3) /
659 (bitsPerSample[mode_l] + bitsPerSample[mode_r]);
660 SamplesTotal += SamplesInLastFrame;
661 break;
662 }
663 SamplesTotal += SamplesPerFrame;
664 pCkData->SetPos(frameSize, RIFF::stream_curpos);
665 }
666 }
667 else { // Mono
668 for (int i = 0 ; ; i++) {
669 if (BitDepth != 24 || (i & 7) == 0) frameOffsets.push_back(pCkData->GetPos());
670
671 const int mode = pCkData->ReadUint8();
672 if (mode > 5) throw gig::Exception("Unknown compression mode");
673 const file_offset_t frameSize = bytesPerFrame[mode];
674
675 if (pCkData->RemainingBytes() <= frameSize) {
676 SamplesInLastFrame =
677 ((pCkData->RemainingBytes() - headerSize[mode]) << 3) / bitsPerSample[mode];
678 SamplesTotal += SamplesInLastFrame;
679 break;
680 }
681 SamplesTotal += SamplesPerFrame;
682 pCkData->SetPos(frameSize, RIFF::stream_curpos);
683 }
684 }
685 pCkData->SetPos(0);
686
687 // Build the frames table (which is used for fast resolving of a frame's chunk offset)
688 if (FrameTable) delete[] FrameTable;
689 FrameTable = new file_offset_t[frameOffsets.size()];
690 std::list<file_offset_t>::iterator end = frameOffsets.end();
691 std::list<file_offset_t>::iterator iter = frameOffsets.begin();
692 for (int i = 0; iter != end; i++, iter++) {
693 FrameTable[i] = *iter;
694 }
695 }
696
697 /**
698 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
699 * ReleaseSampleData() to free the memory if you don't need the cached
700 * sample data anymore.
701 *
702 * @returns buffer_t structure with start address and size of the buffer
703 * in bytes
704 * @see ReleaseSampleData(), Read(), SetPos()
705 */
706 buffer_t Sample::LoadSampleData() {
707 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, 0); // 0 amount of NullSamples
708 }
709
710 /**
711 * Reads (uncompresses if needed) and caches the first \a SampleCount
712 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
713 * memory space if you don't need the cached samples anymore. There is no
714 * guarantee that exactly \a SampleCount samples will be cached; this is
715 * not an error. The size will be eventually truncated e.g. to the
716 * beginning of a frame of a compressed sample. This is done for
717 * efficiency reasons while streaming the wave by your sampler engine
718 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
719 * that will be returned to determine the actual cached samples, but note
720 * that the size is given in bytes! You get the number of actually cached
721 * samples by dividing it by the frame size of the sample:
722 * @code
723 * buffer_t buf = pSample->LoadSampleData(acquired_samples);
724 * long cachedsamples = buf.Size / pSample->FrameSize;
725 * @endcode
726 *
727 * @param SampleCount - number of sample points to load into RAM
728 * @returns buffer_t structure with start address and size of
729 * the cached sample data in bytes
730 * @see ReleaseSampleData(), Read(), SetPos()
731 */
732 buffer_t Sample::LoadSampleData(file_offset_t SampleCount) {
733 return LoadSampleDataWithNullSamplesExtension(SampleCount, 0); // 0 amount of NullSamples
734 }
735
736 /**
737 * Loads (and uncompresses if needed) the whole sample wave into RAM. Use
738 * ReleaseSampleData() to free the memory if you don't need the cached
739 * sample data anymore.
740 * The method will add \a NullSamplesCount silence samples past the
741 * official buffer end (this won't affect the 'Size' member of the
742 * buffer_t structure, that means 'Size' always reflects the size of the
743 * actual sample data, the buffer might be bigger though). Silence
744 * samples past the official buffer are needed for differential
745 * algorithms that always have to take subsequent samples into account
746 * (resampling/interpolation would be an important example) and avoids
747 * memory access faults in such cases.
748 *
749 * @param NullSamplesCount - number of silence samples the buffer should
750 * be extended past it's data end
751 * @returns buffer_t structure with start address and
752 * size of the buffer in bytes
753 * @see ReleaseSampleData(), Read(), SetPos()
754 */
755 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount) {
756 return LoadSampleDataWithNullSamplesExtension(this->SamplesTotal, NullSamplesCount);
757 }
758
759 /**
760 * Reads (uncompresses if needed) and caches the first \a SampleCount
761 * numbers of SamplePoints in RAM. Use ReleaseSampleData() to free the
762 * memory space if you don't need the cached samples anymore. There is no
763 * guarantee that exactly \a SampleCount samples will be cached; this is
764 * not an error. The size will be eventually truncated e.g. to the
765 * beginning of a frame of a compressed sample. This is done for
766 * efficiency reasons while streaming the wave by your sampler engine
767 * later. Read the <i>Size</i> member of the <i>buffer_t</i> structure
768 * that will be returned to determine the actual cached samples, but note
769 * that the size is given in bytes! You get the number of actually cached
770 * samples by dividing it by the frame size of the sample:
771 * @code
772 * buffer_t buf = pSample->LoadSampleDataWithNullSamplesExtension(acquired_samples, null_samples);
773 * long cachedsamples = buf.Size / pSample->FrameSize;
774 * @endcode
775 * The method will add \a NullSamplesCount silence samples past the
776 * official buffer end (this won't affect the 'Size' member of the
777 * buffer_t structure, that means 'Size' always reflects the size of the
778 * actual sample data, the buffer might be bigger though). Silence
779 * samples past the official buffer are needed for differential
780 * algorithms that always have to take subsequent samples into account
781 * (resampling/interpolation would be an important example) and avoids
782 * memory access faults in such cases.
783 *
784 * @param SampleCount - number of sample points to load into RAM
785 * @param NullSamplesCount - number of silence samples the buffer should
786 * be extended past it's data end
787 * @returns buffer_t structure with start address and
788 * size of the cached sample data in bytes
789 * @see ReleaseSampleData(), Read(), SetPos()
790 */
791 buffer_t Sample::LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount) {
792 if (SampleCount > this->SamplesTotal) SampleCount = this->SamplesTotal;
793 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
794 file_offset_t allocationsize = (SampleCount + NullSamplesCount) * this->FrameSize;
795 SetPos(0); // reset read position to begin of sample
796 RAMCache.pStart = new int8_t[allocationsize];
797 RAMCache.Size = Read(RAMCache.pStart, SampleCount) * this->FrameSize;
798 RAMCache.NullExtensionSize = allocationsize - RAMCache.Size;
799 // fill the remaining buffer space with silence samples
800 memset((int8_t*)RAMCache.pStart + RAMCache.Size, 0, RAMCache.NullExtensionSize);
801 return GetCache();
802 }
803
804 /**
805 * Returns current cached sample points. A buffer_t structure will be
806 * returned which contains address pointer to the begin of the cache and
807 * the size of the cached sample data in bytes. Use
808 * <i>LoadSampleData()</i> to cache a specific amount of sample points in
809 * RAM.
810 *
811 * @returns buffer_t structure with current cached sample points
812 * @see LoadSampleData();
813 */
814 buffer_t Sample::GetCache() {
815 // return a copy of the buffer_t structure
816 buffer_t result;
817 result.Size = this->RAMCache.Size;
818 result.pStart = this->RAMCache.pStart;
819 result.NullExtensionSize = this->RAMCache.NullExtensionSize;
820 return result;
821 }
822
823 /**
824 * Frees the cached sample from RAM if loaded with
825 * <i>LoadSampleData()</i> previously.
826 *
827 * @see LoadSampleData();
828 */
829 void Sample::ReleaseSampleData() {
830 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
831 RAMCache.pStart = NULL;
832 RAMCache.Size = 0;
833 RAMCache.NullExtensionSize = 0;
834 }
835
836 /** @brief Resize sample.
837 *
838 * Resizes the sample's wave form data, that is the actual size of
839 * sample wave data possible to be written for this sample. This call
840 * will return immediately and just schedule the resize operation. You
841 * should call File::Save() to actually perform the resize operation(s)
842 * "physically" to the file. As this can take a while on large files, it
843 * is recommended to call Resize() first on all samples which have to be
844 * resized and finally to call File::Save() to perform all those resize
845 * operations in one rush.
846 *
847 * The actual size (in bytes) is dependant to the current FrameSize
848 * value. You may want to set FrameSize before calling Resize().
849 *
850 * <b>Caution:</b> You cannot directly write (i.e. with Write()) to
851 * enlarged samples before calling File::Save() as this might exceed the
852 * current sample's boundary!
853 *
854 * Also note: only DLS_WAVE_FORMAT_PCM is currently supported, that is
855 * FormatTag must be DLS_WAVE_FORMAT_PCM. Trying to resize samples with
856 * other formats will fail!
857 *
858 * @param NewSize - new sample wave data size in sample points (must be
859 * greater than zero)
860 * @throws DLS::Excecption if FormatTag != DLS_WAVE_FORMAT_PCM
861 * @throws DLS::Exception if \a NewSize is less than 1 or unrealistic large
862 * @throws gig::Exception if existing sample is compressed
863 * @see DLS::Sample::GetSize(), DLS::Sample::FrameSize,
864 * DLS::Sample::FormatTag, File::Save()
865 */
866 void Sample::Resize(file_offset_t NewSize) {
867 if (Compressed) throw gig::Exception("There is no support for modifying compressed samples (yet)");
868 DLS::Sample::Resize(NewSize);
869 }
870
871 /**
872 * Sets the position within the sample (in sample points, not in
873 * bytes). Use this method and <i>Read()</i> if you don't want to load
874 * the sample into RAM, thus for disk streaming.
875 *
876 * Although the original Gigasampler engine doesn't allow positioning
877 * within compressed samples, I decided to implement it. Even though
878 * the Gigasampler format doesn't allow to define loops for compressed
879 * samples at the moment, positioning within compressed samples might be
880 * interesting for some sampler engines though. The only drawback about
881 * my decision is that it takes longer to load compressed gig Files on
882 * startup, because it's neccessary to scan the samples for some
883 * mandatory informations. But I think as it doesn't affect the runtime
884 * efficiency, nobody will have a problem with that.
885 *
886 * @param SampleCount number of sample points to jump
887 * @param Whence optional: to which relation \a SampleCount refers
888 * to, if omited <i>RIFF::stream_start</i> is assumed
889 * @returns the new sample position
890 * @see Read()
891 */
892 file_offset_t Sample::SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence) {
893 if (Compressed) {
894 switch (Whence) {
895 case RIFF::stream_curpos:
896 this->SamplePos += SampleCount;
897 break;
898 case RIFF::stream_end:
899 this->SamplePos = this->SamplesTotal - 1 - SampleCount;
900 break;
901 case RIFF::stream_backward:
902 this->SamplePos -= SampleCount;
903 break;
904 case RIFF::stream_start: default:
905 this->SamplePos = SampleCount;
906 break;
907 }
908 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
909
910 file_offset_t frame = this->SamplePos / 2048; // to which frame to jump
911 this->FrameOffset = this->SamplePos % 2048; // offset (in sample points) within that frame
912 pCkData->SetPos(FrameTable[frame]); // set chunk pointer to the start of sought frame
913 return this->SamplePos;
914 }
915 else { // not compressed
916 file_offset_t orderedBytes = SampleCount * this->FrameSize;
917 file_offset_t result = pCkData->SetPos(orderedBytes, Whence);
918 return (result == orderedBytes) ? SampleCount
919 : result / this->FrameSize;
920 }
921 }
922
923 /**
924 * Returns the current position in the sample (in sample points).
925 */
926 file_offset_t Sample::GetPos() const {
927 if (Compressed) return SamplePos;
928 else return pCkData->GetPos() / FrameSize;
929 }
930
931 /**
932 * Reads \a SampleCount number of sample points from the position stored
933 * in \a pPlaybackState into the buffer pointed by \a pBuffer and moves
934 * the position within the sample respectively, this method honors the
935 * looping informations of the sample (if any). The sample wave stream
936 * will be decompressed on the fly if using a compressed sample. Use this
937 * method if you don't want to load the sample into RAM, thus for disk
938 * streaming. All this methods needs to know to proceed with streaming
939 * for the next time you call this method is stored in \a pPlaybackState.
940 * You have to allocate and initialize the playback_state_t structure by
941 * yourself before you use it to stream a sample:
942 * @code
943 * gig::playback_state_t playbackstate;
944 * playbackstate.position = 0;
945 * playbackstate.reverse = false;
946 * playbackstate.loop_cycles_left = pSample->LoopPlayCount;
947 * @endcode
948 * You don't have to take care of things like if there is actually a loop
949 * defined or if the current read position is located within a loop area.
950 * The method already handles such cases by itself.
951 *
952 * <b>Caution:</b> If you are using more than one streaming thread, you
953 * have to use an external decompression buffer for <b>EACH</b>
954 * streaming thread to avoid race conditions and crashes!
955 *
956 * @param pBuffer destination buffer
957 * @param SampleCount number of sample points to read
958 * @param pPlaybackState will be used to store and reload the playback
959 * state for the next ReadAndLoop() call
960 * @param pDimRgn dimension region with looping information
961 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
962 * @returns number of successfully read sample points
963 * @see CreateDecompressionBuffer()
964 */
965 file_offset_t Sample::ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState,
966 DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer) {
967 file_offset_t samplestoread = SampleCount, totalreadsamples = 0, readsamples, samplestoloopend;
968 uint8_t* pDst = (uint8_t*) pBuffer;
969
970 SetPos(pPlaybackState->position); // recover position from the last time
971
972 if (pDimRgn->SampleLoops) { // honor looping if there are loop points defined
973
974 const DLS::sample_loop_t& loop = pDimRgn->pSampleLoops[0];
975 const uint32_t loopEnd = loop.LoopStart + loop.LoopLength;
976
977 if (GetPos() <= loopEnd) {
978 switch (loop.LoopType) {
979
980 case loop_type_bidirectional: { //TODO: not tested yet!
981 do {
982 // if not endless loop check if max. number of loop cycles have been passed
983 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
984
985 if (!pPlaybackState->reverse) { // forward playback
986 do {
987 samplestoloopend = loopEnd - GetPos();
988 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
989 samplestoread -= readsamples;
990 totalreadsamples += readsamples;
991 if (readsamples == samplestoloopend) {
992 pPlaybackState->reverse = true;
993 break;
994 }
995 } while (samplestoread && readsamples);
996 }
997 else { // backward playback
998
999 // as we can only read forward from disk, we have to
1000 // determine the end position within the loop first,
1001 // read forward from that 'end' and finally after
1002 // reading, swap all sample frames so it reflects
1003 // backward playback
1004
1005 file_offset_t swapareastart = totalreadsamples;
1006 file_offset_t loopoffset = GetPos() - loop.LoopStart;
1007 file_offset_t samplestoreadinloop = Min(samplestoread, loopoffset);
1008 file_offset_t reverseplaybackend = GetPos() - samplestoreadinloop;
1009
1010 SetPos(reverseplaybackend);
1011
1012 // read samples for backward playback
1013 do {
1014 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoreadinloop, pExternalDecompressionBuffer);
1015 samplestoreadinloop -= readsamples;
1016 samplestoread -= readsamples;
1017 totalreadsamples += readsamples;
1018 } while (samplestoreadinloop && readsamples);
1019
1020 SetPos(reverseplaybackend); // pretend we really read backwards
1021
1022 if (reverseplaybackend == loop.LoopStart) {
1023 pPlaybackState->loop_cycles_left--;
1024 pPlaybackState->reverse = false;
1025 }
1026
1027 // reverse the sample frames for backward playback
1028 if (totalreadsamples > swapareastart) //FIXME: this if() is just a crash workaround for now (#102), but totalreadsamples <= swapareastart should never be the case, so there's probably still a bug above!
1029 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1030 }
1031 } while (samplestoread && readsamples);
1032 break;
1033 }
1034
1035 case loop_type_backward: { // TODO: not tested yet!
1036 // forward playback (not entered the loop yet)
1037 if (!pPlaybackState->reverse) do {
1038 samplestoloopend = loopEnd - GetPos();
1039 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1040 samplestoread -= readsamples;
1041 totalreadsamples += readsamples;
1042 if (readsamples == samplestoloopend) {
1043 pPlaybackState->reverse = true;
1044 break;
1045 }
1046 } while (samplestoread && readsamples);
1047
1048 if (!samplestoread) break;
1049
1050 // as we can only read forward from disk, we have to
1051 // determine the end position within the loop first,
1052 // read forward from that 'end' and finally after
1053 // reading, swap all sample frames so it reflects
1054 // backward playback
1055
1056 file_offset_t swapareastart = totalreadsamples;
1057 file_offset_t loopoffset = GetPos() - loop.LoopStart;
1058 file_offset_t samplestoreadinloop = (this->LoopPlayCount) ? Min(samplestoread, pPlaybackState->loop_cycles_left * loop.LoopLength - loopoffset)
1059 : samplestoread;
1060 file_offset_t reverseplaybackend = loop.LoopStart + Abs((loopoffset - samplestoreadinloop) % loop.LoopLength);
1061
1062 SetPos(reverseplaybackend);
1063
1064 // read samples for backward playback
1065 do {
1066 // if not endless loop check if max. number of loop cycles have been passed
1067 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1068 samplestoloopend = loopEnd - GetPos();
1069 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoreadinloop, samplestoloopend), pExternalDecompressionBuffer);
1070 samplestoreadinloop -= readsamples;
1071 samplestoread -= readsamples;
1072 totalreadsamples += readsamples;
1073 if (readsamples == samplestoloopend) {
1074 pPlaybackState->loop_cycles_left--;
1075 SetPos(loop.LoopStart);
1076 }
1077 } while (samplestoreadinloop && readsamples);
1078
1079 SetPos(reverseplaybackend); // pretend we really read backwards
1080
1081 // reverse the sample frames for backward playback
1082 SwapMemoryArea(&pDst[swapareastart * this->FrameSize], (totalreadsamples - swapareastart) * this->FrameSize, this->FrameSize);
1083 break;
1084 }
1085
1086 default: case loop_type_normal: {
1087 do {
1088 // if not endless loop check if max. number of loop cycles have been passed
1089 if (this->LoopPlayCount && !pPlaybackState->loop_cycles_left) break;
1090 samplestoloopend = loopEnd - GetPos();
1091 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], Min(samplestoread, samplestoloopend), pExternalDecompressionBuffer);
1092 samplestoread -= readsamples;
1093 totalreadsamples += readsamples;
1094 if (readsamples == samplestoloopend) {
1095 pPlaybackState->loop_cycles_left--;
1096 SetPos(loop.LoopStart);
1097 }
1098 } while (samplestoread && readsamples);
1099 break;
1100 }
1101 }
1102 }
1103 }
1104
1105 // read on without looping
1106 if (samplestoread) do {
1107 readsamples = Read(&pDst[totalreadsamples * this->FrameSize], samplestoread, pExternalDecompressionBuffer);
1108 samplestoread -= readsamples;
1109 totalreadsamples += readsamples;
1110 } while (readsamples && samplestoread);
1111
1112 // store current position
1113 pPlaybackState->position = GetPos();
1114
1115 return totalreadsamples;
1116 }
1117
1118 /**
1119 * Reads \a SampleCount number of sample points from the current
1120 * position into the buffer pointed by \a pBuffer and increments the
1121 * position within the sample. The sample wave stream will be
1122 * decompressed on the fly if using a compressed sample. Use this method
1123 * and <i>SetPos()</i> if you don't want to load the sample into RAM,
1124 * thus for disk streaming.
1125 *
1126 * <b>Caution:</b> If you are using more than one streaming thread, you
1127 * have to use an external decompression buffer for <b>EACH</b>
1128 * streaming thread to avoid race conditions and crashes!
1129 *
1130 * For 16 bit samples, the data in the buffer will be int16_t
1131 * (using native endianness). For 24 bit, the buffer will
1132 * contain three bytes per sample, little-endian.
1133 *
1134 * @param pBuffer destination buffer
1135 * @param SampleCount number of sample points to read
1136 * @param pExternalDecompressionBuffer (optional) external buffer to use for decompression
1137 * @returns number of successfully read sample points
1138 * @see SetPos(), CreateDecompressionBuffer()
1139 */
1140 file_offset_t Sample::Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer) {
1141 if (SampleCount == 0) return 0;
1142 if (!Compressed) {
1143 if (BitDepth == 24) {
1144 return pCkData->Read(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1145 }
1146 else { // 16 bit
1147 // (pCkData->Read does endian correction)
1148 return Channels == 2 ? pCkData->Read(pBuffer, SampleCount << 1, 2) >> 1
1149 : pCkData->Read(pBuffer, SampleCount, 2);
1150 }
1151 }
1152 else {
1153 if (this->SamplePos >= this->SamplesTotal) return 0;
1154 //TODO: efficiency: maybe we should test for an average compression rate
1155 file_offset_t assumedsize = GuessSize(SampleCount),
1156 remainingbytes = 0, // remaining bytes in the local buffer
1157 remainingsamples = SampleCount,
1158 copysamples, skipsamples,
1159 currentframeoffset = this->FrameOffset; // offset in current sample frame since last Read()
1160 this->FrameOffset = 0;
1161
1162 buffer_t* pDecompressionBuffer = (pExternalDecompressionBuffer) ? pExternalDecompressionBuffer : &InternalDecompressionBuffer;
1163
1164 // if decompression buffer too small, then reduce amount of samples to read
1165 if (pDecompressionBuffer->Size < assumedsize) {
1166 std::cerr << "gig::Read(): WARNING - decompression buffer size too small!" << std::endl;
1167 SampleCount = WorstCaseMaxSamples(pDecompressionBuffer);
1168 remainingsamples = SampleCount;
1169 assumedsize = GuessSize(SampleCount);
1170 }
1171
1172 unsigned char* pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1173 int16_t* pDst = static_cast<int16_t*>(pBuffer);
1174 uint8_t* pDst24 = static_cast<uint8_t*>(pBuffer);
1175 remainingbytes = pCkData->Read(pSrc, assumedsize, 1);
1176
1177 while (remainingsamples && remainingbytes) {
1178 file_offset_t framesamples = SamplesPerFrame;
1179 file_offset_t framebytes, rightChannelOffset = 0, nextFrameOffset;
1180
1181 int mode_l = *pSrc++, mode_r = 0;
1182
1183 if (Channels == 2) {
1184 mode_r = *pSrc++;
1185 framebytes = bytesPerFrame[mode_l] + bytesPerFrame[mode_r] + 2;
1186 rightChannelOffset = bytesPerFrameNoHdr[mode_l];
1187 nextFrameOffset = rightChannelOffset + bytesPerFrameNoHdr[mode_r];
1188 if (remainingbytes < framebytes) { // last frame in sample
1189 framesamples = SamplesInLastFrame;
1190 if (mode_l == 4 && (framesamples & 1)) {
1191 rightChannelOffset = ((framesamples + 1) * bitsPerSample[mode_l]) >> 3;
1192 }
1193 else {
1194 rightChannelOffset = (framesamples * bitsPerSample[mode_l]) >> 3;
1195 }
1196 }
1197 }
1198 else {
1199 framebytes = bytesPerFrame[mode_l] + 1;
1200 nextFrameOffset = bytesPerFrameNoHdr[mode_l];
1201 if (remainingbytes < framebytes) {
1202 framesamples = SamplesInLastFrame;
1203 }
1204 }
1205
1206 // determine how many samples in this frame to skip and read
1207 if (currentframeoffset + remainingsamples >= framesamples) {
1208 if (currentframeoffset <= framesamples) {
1209 copysamples = framesamples - currentframeoffset;
1210 skipsamples = currentframeoffset;
1211 }
1212 else {
1213 copysamples = 0;
1214 skipsamples = framesamples;
1215 }
1216 }
1217 else {
1218 // This frame has enough data for pBuffer, but not
1219 // all of the frame is needed. Set file position
1220 // to start of this frame for next call to Read.
1221 copysamples = remainingsamples;
1222 skipsamples = currentframeoffset;
1223 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1224 this->FrameOffset = currentframeoffset + copysamples;
1225 }
1226 remainingsamples -= copysamples;
1227
1228 if (remainingbytes > framebytes) {
1229 remainingbytes -= framebytes;
1230 if (remainingsamples == 0 &&
1231 currentframeoffset + copysamples == framesamples) {
1232 // This frame has enough data for pBuffer, and
1233 // all of the frame is needed. Set file
1234 // position to start of next frame for next
1235 // call to Read. FrameOffset is 0.
1236 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1237 }
1238 }
1239 else remainingbytes = 0;
1240
1241 currentframeoffset -= skipsamples;
1242
1243 if (copysamples == 0) {
1244 // skip this frame
1245 pSrc += framebytes - Channels;
1246 }
1247 else {
1248 const unsigned char* const param_l = pSrc;
1249 if (BitDepth == 24) {
1250 if (mode_l != 2) pSrc += 12;
1251
1252 if (Channels == 2) { // Stereo
1253 const unsigned char* const param_r = pSrc;
1254 if (mode_r != 2) pSrc += 12;
1255
1256 Decompress24(mode_l, param_l, 6, pSrc, pDst24,
1257 skipsamples, copysamples, TruncatedBits);
1258 Decompress24(mode_r, param_r, 6, pSrc + rightChannelOffset, pDst24 + 3,
1259 skipsamples, copysamples, TruncatedBits);
1260 pDst24 += copysamples * 6;
1261 }
1262 else { // Mono
1263 Decompress24(mode_l, param_l, 3, pSrc, pDst24,
1264 skipsamples, copysamples, TruncatedBits);
1265 pDst24 += copysamples * 3;
1266 }
1267 }
1268 else { // 16 bit
1269 if (mode_l) pSrc += 4;
1270
1271 int step;
1272 if (Channels == 2) { // Stereo
1273 const unsigned char* const param_r = pSrc;
1274 if (mode_r) pSrc += 4;
1275
1276 step = (2 - mode_l) + (2 - mode_r);
1277 Decompress16(mode_l, param_l, step, 2, pSrc, pDst, skipsamples, copysamples);
1278 Decompress16(mode_r, param_r, step, 2, pSrc + (2 - mode_l), pDst + 1,
1279 skipsamples, copysamples);
1280 pDst += copysamples << 1;
1281 }
1282 else { // Mono
1283 step = 2 - mode_l;
1284 Decompress16(mode_l, param_l, step, 1, pSrc, pDst, skipsamples, copysamples);
1285 pDst += copysamples;
1286 }
1287 }
1288 pSrc += nextFrameOffset;
1289 }
1290
1291 // reload from disk to local buffer if needed
1292 if (remainingsamples && remainingbytes < WorstCaseFrameSize && pCkData->GetState() == RIFF::stream_ready) {
1293 assumedsize = GuessSize(remainingsamples);
1294 pCkData->SetPos(remainingbytes, RIFF::stream_backward);
1295 if (pCkData->RemainingBytes() < assumedsize) assumedsize = pCkData->RemainingBytes();
1296 remainingbytes = pCkData->Read(pDecompressionBuffer->pStart, assumedsize, 1);
1297 pSrc = (unsigned char*) pDecompressionBuffer->pStart;
1298 }
1299 } // while
1300
1301 this->SamplePos += (SampleCount - remainingsamples);
1302 if (this->SamplePos > this->SamplesTotal) this->SamplePos = this->SamplesTotal;
1303 return (SampleCount - remainingsamples);
1304 }
1305 }
1306
1307 /** @brief Write sample wave data.
1308 *
1309 * Writes \a SampleCount number of sample points from the buffer pointed
1310 * by \a pBuffer and increments the position within the sample. Use this
1311 * method to directly write the sample data to disk, i.e. if you don't
1312 * want or cannot load the whole sample data into RAM.
1313 *
1314 * You have to Resize() the sample to the desired size and call
1315 * File::Save() <b>before</b> using Write().
1316 *
1317 * Note: there is currently no support for writing compressed samples.
1318 *
1319 * For 16 bit samples, the data in the source buffer should be
1320 * int16_t (using native endianness). For 24 bit, the buffer
1321 * should contain three bytes per sample, little-endian.
1322 *
1323 * @param pBuffer - source buffer
1324 * @param SampleCount - number of sample points to write
1325 * @throws DLS::Exception if current sample size is too small
1326 * @throws gig::Exception if sample is compressed
1327 * @see DLS::LoadSampleData()
1328 */
1329 file_offset_t Sample::Write(void* pBuffer, file_offset_t SampleCount) {
1330 if (Compressed) throw gig::Exception("There is no support for writing compressed gig samples (yet)");
1331
1332 // if this is the first write in this sample, reset the
1333 // checksum calculator
1334 if (pCkData->GetPos() == 0) {
1335 __resetCRC(crc);
1336 }
1337 if (GetSize() < SampleCount) throw Exception("Could not write sample data, current sample size to small");
1338 file_offset_t res;
1339 if (BitDepth == 24) {
1340 res = pCkData->Write(pBuffer, SampleCount * FrameSize, 1) / FrameSize;
1341 } else { // 16 bit
1342 res = Channels == 2 ? pCkData->Write(pBuffer, SampleCount << 1, 2) >> 1
1343 : pCkData->Write(pBuffer, SampleCount, 2);
1344 }
1345 __calculateCRC((unsigned char *)pBuffer, SampleCount * FrameSize, crc);
1346
1347 // if this is the last write, update the checksum chunk in the
1348 // file
1349 if (pCkData->GetPos() == pCkData->GetSize()) {
1350 __finalizeCRC(crc);
1351 File* pFile = static_cast<File*>(GetParent());
1352 pFile->SetSampleChecksum(this, crc);
1353 }
1354 return res;
1355 }
1356
1357 /**
1358 * Allocates a decompression buffer for streaming (compressed) samples
1359 * with Sample::Read(). If you are using more than one streaming thread
1360 * in your application you <b>HAVE</b> to create a decompression buffer
1361 * for <b>EACH</b> of your streaming threads and provide it with the
1362 * Sample::Read() call in order to avoid race conditions and crashes.
1363 *
1364 * You should free the memory occupied by the allocated buffer(s) once
1365 * you don't need one of your streaming threads anymore by calling
1366 * DestroyDecompressionBuffer().
1367 *
1368 * @param MaxReadSize - the maximum size (in sample points) you ever
1369 * expect to read with one Read() call
1370 * @returns allocated decompression buffer
1371 * @see DestroyDecompressionBuffer()
1372 */
1373 buffer_t Sample::CreateDecompressionBuffer(file_offset_t MaxReadSize) {
1374 buffer_t result;
1375 const double worstCaseHeaderOverhead =
1376 (256.0 /*frame size*/ + 12.0 /*header*/ + 2.0 /*compression type flag (stereo)*/) / 256.0;
1377 result.Size = (file_offset_t) (double(MaxReadSize) * 3.0 /*(24 Bit)*/ * 2.0 /*stereo*/ * worstCaseHeaderOverhead);
1378 result.pStart = new int8_t[result.Size];
1379 result.NullExtensionSize = 0;
1380 return result;
1381 }
1382
1383 /**
1384 * Free decompression buffer, previously created with
1385 * CreateDecompressionBuffer().
1386 *
1387 * @param DecompressionBuffer - previously allocated decompression
1388 * buffer to free
1389 */
1390 void Sample::DestroyDecompressionBuffer(buffer_t& DecompressionBuffer) {
1391 if (DecompressionBuffer.Size && DecompressionBuffer.pStart) {
1392 delete[] (int8_t*) DecompressionBuffer.pStart;
1393 DecompressionBuffer.pStart = NULL;
1394 DecompressionBuffer.Size = 0;
1395 DecompressionBuffer.NullExtensionSize = 0;
1396 }
1397 }
1398
1399 /**
1400 * Returns pointer to the Group this Sample belongs to. In the .gig
1401 * format a sample always belongs to one group. If it wasn't explicitly
1402 * assigned to a certain group, it will be automatically assigned to a
1403 * default group.
1404 *
1405 * @returns Sample's Group (never NULL)
1406 */
1407 Group* Sample::GetGroup() const {
1408 return pGroup;
1409 }
1410
1411 /**
1412 * Returns the CRC-32 checksum of the sample's raw wave form data at the
1413 * time when this sample's wave form data was modified for the last time
1414 * by calling Write(). This checksum only covers the raw wave form data,
1415 * not any meta informations like i.e. bit depth or loop points. Since
1416 * this method just returns the checksum stored for this sample i.e. when
1417 * the gig file was loaded, this method returns immediately. So it does no
1418 * recalcuation of the checksum with the currently available sample wave
1419 * form data.
1420 *
1421 * @see VerifyWaveData()
1422 */
1423 uint32_t Sample::GetWaveDataCRC32Checksum() {
1424 return crc;
1425 }
1426
1427 /**
1428 * Checks the integrity of this sample's raw audio wave data. Whenever a
1429 * Sample's raw wave data is intentionally modified (i.e. by calling
1430 * Write() and supplying the new raw audio wave form data) a CRC32 checksum
1431 * is calculated and stored/updated for this sample, along to the sample's
1432 * meta informations.
1433 *
1434 * Now by calling this method the current raw audio wave data is checked
1435 * against the already stored CRC32 check sum in order to check whether the
1436 * sample data had been damaged unintentionally for some reason. Since by
1437 * calling this method always the entire raw audio wave data has to be
1438 * read, verifying all samples this way may take a long time accordingly.
1439 * And that's also the reason why the sample integrity is not checked by
1440 * default whenever a gig file is loaded. So this method must be called
1441 * explicitly to fulfill this task.
1442 *
1443 * @param pActually - (optional) if provided, will be set to the actually
1444 * calculated checksum of the current raw wave form data,
1445 * you can get the expected checksum instead by calling
1446 * GetWaveDataCRC32Checksum()
1447 * @returns true if sample is OK or false if the sample is damaged
1448 * @throws Exception if no checksum had been stored to disk for this
1449 * sample yet, or on I/O issues
1450 * @see GetWaveDataCRC32Checksum()
1451 */
1452 bool Sample::VerifyWaveData(uint32_t* pActually) {
1453 //File* pFile = static_cast<File*>(GetParent());
1454 uint32_t crc = CalculateWaveDataChecksum();
1455 if (pActually) *pActually = crc;
1456 return crc == this->crc;
1457 }
1458
1459 uint32_t Sample::CalculateWaveDataChecksum() {
1460 const size_t sz = 20*1024; // 20kB buffer size
1461 std::vector<uint8_t> buffer(sz);
1462 buffer.resize(sz);
1463
1464 const size_t n = sz / FrameSize;
1465 SetPos(0);
1466 uint32_t crc = 0;
1467 __resetCRC(crc);
1468 while (true) {
1469 file_offset_t nRead = Read(&buffer[0], n);
1470 if (nRead <= 0) break;
1471 __calculateCRC(&buffer[0], nRead * FrameSize, crc);
1472 }
1473 __finalizeCRC(crc);
1474 return crc;
1475 }
1476
1477 Sample::~Sample() {
1478 Instances--;
1479 if (!Instances && InternalDecompressionBuffer.Size) {
1480 delete[] (unsigned char*) InternalDecompressionBuffer.pStart;
1481 InternalDecompressionBuffer.pStart = NULL;
1482 InternalDecompressionBuffer.Size = 0;
1483 }
1484 if (FrameTable) delete[] FrameTable;
1485 if (RAMCache.pStart) delete[] (int8_t*) RAMCache.pStart;
1486 }
1487
1488
1489
1490 // *************** DimensionRegion ***************
1491 // *
1492
1493 size_t DimensionRegion::Instances = 0;
1494 DimensionRegion::VelocityTableMap* DimensionRegion::pVelocityTables = NULL;
1495
1496 DimensionRegion::DimensionRegion(Region* pParent, RIFF::List* _3ewl) : DLS::Sampler(_3ewl) {
1497 Instances++;
1498
1499 pSample = NULL;
1500 pRegion = pParent;
1501
1502 if (_3ewl->GetSubChunk(CHUNK_ID_WSMP)) memcpy(&Crossfade, &SamplerOptions, 4);
1503 else memset(&Crossfade, 0, 4);
1504
1505 if (!pVelocityTables) pVelocityTables = new VelocityTableMap;
1506
1507 RIFF::Chunk* _3ewa = _3ewl->GetSubChunk(CHUNK_ID_3EWA);
1508 if (_3ewa) { // if '3ewa' chunk exists
1509 _3ewa->SetPos(0);
1510
1511 _3ewa->ReadInt32(); // unknown, always == chunk size ?
1512 LFO3Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1513 EG3Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1514 _3ewa->ReadInt16(); // unknown
1515 LFO1InternalDepth = _3ewa->ReadUint16();
1516 _3ewa->ReadInt16(); // unknown
1517 LFO3InternalDepth = _3ewa->ReadInt16();
1518 _3ewa->ReadInt16(); // unknown
1519 LFO1ControlDepth = _3ewa->ReadUint16();
1520 _3ewa->ReadInt16(); // unknown
1521 LFO3ControlDepth = _3ewa->ReadInt16();
1522 EG1Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1523 EG1Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1524 _3ewa->ReadInt16(); // unknown
1525 EG1Sustain = _3ewa->ReadUint16();
1526 EG1Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1527 EG1Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1528 uint8_t eg1ctrloptions = _3ewa->ReadUint8();
1529 EG1ControllerInvert = eg1ctrloptions & 0x01;
1530 EG1ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg1ctrloptions);
1531 EG1ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg1ctrloptions);
1532 EG1ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg1ctrloptions);
1533 EG2Controller = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1534 uint8_t eg2ctrloptions = _3ewa->ReadUint8();
1535 EG2ControllerInvert = eg2ctrloptions & 0x01;
1536 EG2ControllerAttackInfluence = GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(eg2ctrloptions);
1537 EG2ControllerDecayInfluence = GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(eg2ctrloptions);
1538 EG2ControllerReleaseInfluence = GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(eg2ctrloptions);
1539 LFO1Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1540 EG2Attack = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1541 EG2Decay1 = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1542 _3ewa->ReadInt16(); // unknown
1543 EG2Sustain = _3ewa->ReadUint16();
1544 EG2Release = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1545 _3ewa->ReadInt16(); // unknown
1546 LFO2ControlDepth = _3ewa->ReadUint16();
1547 LFO2Frequency = (double) GIG_EXP_DECODE(_3ewa->ReadInt32());
1548 _3ewa->ReadInt16(); // unknown
1549 LFO2InternalDepth = _3ewa->ReadUint16();
1550 int32_t eg1decay2 = _3ewa->ReadInt32();
1551 EG1Decay2 = (double) GIG_EXP_DECODE(eg1decay2);
1552 EG1InfiniteSustain = (eg1decay2 == 0x7fffffff);
1553 _3ewa->ReadInt16(); // unknown
1554 EG1PreAttack = _3ewa->ReadUint16();
1555 int32_t eg2decay2 = _3ewa->ReadInt32();
1556 EG2Decay2 = (double) GIG_EXP_DECODE(eg2decay2);
1557 EG2InfiniteSustain = (eg2decay2 == 0x7fffffff);
1558 _3ewa->ReadInt16(); // unknown
1559 EG2PreAttack = _3ewa->ReadUint16();
1560 uint8_t velocityresponse = _3ewa->ReadUint8();
1561 if (velocityresponse < 5) {
1562 VelocityResponseCurve = curve_type_nonlinear;
1563 VelocityResponseDepth = velocityresponse;
1564 } else if (velocityresponse < 10) {
1565 VelocityResponseCurve = curve_type_linear;
1566 VelocityResponseDepth = velocityresponse - 5;
1567 } else if (velocityresponse < 15) {
1568 VelocityResponseCurve = curve_type_special;
1569 VelocityResponseDepth = velocityresponse - 10;
1570 } else {
1571 VelocityResponseCurve = curve_type_unknown;
1572 VelocityResponseDepth = 0;
1573 }
1574 uint8_t releasevelocityresponse = _3ewa->ReadUint8();
1575 if (releasevelocityresponse < 5) {
1576 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1577 ReleaseVelocityResponseDepth = releasevelocityresponse;
1578 } else if (releasevelocityresponse < 10) {
1579 ReleaseVelocityResponseCurve = curve_type_linear;
1580 ReleaseVelocityResponseDepth = releasevelocityresponse - 5;
1581 } else if (releasevelocityresponse < 15) {
1582 ReleaseVelocityResponseCurve = curve_type_special;
1583 ReleaseVelocityResponseDepth = releasevelocityresponse - 10;
1584 } else {
1585 ReleaseVelocityResponseCurve = curve_type_unknown;
1586 ReleaseVelocityResponseDepth = 0;
1587 }
1588 VelocityResponseCurveScaling = _3ewa->ReadUint8();
1589 AttenuationControllerThreshold = _3ewa->ReadInt8();
1590 _3ewa->ReadInt32(); // unknown
1591 SampleStartOffset = (uint16_t) _3ewa->ReadInt16();
1592 _3ewa->ReadInt16(); // unknown
1593 uint8_t pitchTrackDimensionBypass = _3ewa->ReadInt8();
1594 PitchTrack = GIG_PITCH_TRACK_EXTRACT(pitchTrackDimensionBypass);
1595 if (pitchTrackDimensionBypass & 0x10) DimensionBypass = dim_bypass_ctrl_94;
1596 else if (pitchTrackDimensionBypass & 0x20) DimensionBypass = dim_bypass_ctrl_95;
1597 else DimensionBypass = dim_bypass_ctrl_none;
1598 uint8_t pan = _3ewa->ReadUint8();
1599 Pan = (pan < 64) ? pan : -((int)pan - 63); // signed 7 bit -> signed 8 bit
1600 SelfMask = _3ewa->ReadInt8() & 0x01;
1601 _3ewa->ReadInt8(); // unknown
1602 uint8_t lfo3ctrl = _3ewa->ReadUint8();
1603 LFO3Controller = static_cast<lfo3_ctrl_t>(lfo3ctrl & 0x07); // lower 3 bits
1604 LFO3Sync = lfo3ctrl & 0x20; // bit 5
1605 InvertAttenuationController = lfo3ctrl & 0x80; // bit 7
1606 AttenuationController = DecodeLeverageController(static_cast<_lev_ctrl_t>(_3ewa->ReadUint8()));
1607 uint8_t lfo2ctrl = _3ewa->ReadUint8();
1608 LFO2Controller = static_cast<lfo2_ctrl_t>(lfo2ctrl & 0x07); // lower 3 bits
1609 LFO2FlipPhase = lfo2ctrl & 0x80; // bit 7
1610 LFO2Sync = lfo2ctrl & 0x20; // bit 5
1611 bool extResonanceCtrl = lfo2ctrl & 0x40; // bit 6
1612 uint8_t lfo1ctrl = _3ewa->ReadUint8();
1613 LFO1Controller = static_cast<lfo1_ctrl_t>(lfo1ctrl & 0x07); // lower 3 bits
1614 LFO1FlipPhase = lfo1ctrl & 0x80; // bit 7
1615 LFO1Sync = lfo1ctrl & 0x40; // bit 6
1616 VCFResonanceController = (extResonanceCtrl) ? static_cast<vcf_res_ctrl_t>(GIG_VCF_RESONANCE_CTRL_EXTRACT(lfo1ctrl))
1617 : vcf_res_ctrl_none;
1618 uint16_t eg3depth = _3ewa->ReadUint16();
1619 EG3Depth = (eg3depth <= 1200) ? eg3depth /* positives */
1620 : (-1) * (int16_t) ((eg3depth ^ 0xfff) + 1); /* binary complementary for negatives */
1621 _3ewa->ReadInt16(); // unknown
1622 ChannelOffset = _3ewa->ReadUint8() / 4;
1623 uint8_t regoptions = _3ewa->ReadUint8();
1624 MSDecode = regoptions & 0x01; // bit 0
1625 SustainDefeat = regoptions & 0x02; // bit 1
1626 _3ewa->ReadInt16(); // unknown
1627 VelocityUpperLimit = _3ewa->ReadInt8();
1628 _3ewa->ReadInt8(); // unknown
1629 _3ewa->ReadInt16(); // unknown
1630 ReleaseTriggerDecay = _3ewa->ReadUint8(); // release trigger decay
1631 _3ewa->ReadInt8(); // unknown
1632 _3ewa->ReadInt8(); // unknown
1633 EG1Hold = _3ewa->ReadUint8() & 0x80; // bit 7
1634 uint8_t vcfcutoff = _3ewa->ReadUint8();
1635 VCFEnabled = vcfcutoff & 0x80; // bit 7
1636 VCFCutoff = vcfcutoff & 0x7f; // lower 7 bits
1637 VCFCutoffController = static_cast<vcf_cutoff_ctrl_t>(_3ewa->ReadUint8());
1638 uint8_t vcfvelscale = _3ewa->ReadUint8();
1639 VCFCutoffControllerInvert = vcfvelscale & 0x80; // bit 7
1640 VCFVelocityScale = vcfvelscale & 0x7f; // lower 7 bits
1641 _3ewa->ReadInt8(); // unknown
1642 uint8_t vcfresonance = _3ewa->ReadUint8();
1643 VCFResonance = vcfresonance & 0x7f; // lower 7 bits
1644 VCFResonanceDynamic = !(vcfresonance & 0x80); // bit 7
1645 uint8_t vcfbreakpoint = _3ewa->ReadUint8();
1646 VCFKeyboardTracking = vcfbreakpoint & 0x80; // bit 7
1647 VCFKeyboardTrackingBreakpoint = vcfbreakpoint & 0x7f; // lower 7 bits
1648 uint8_t vcfvelocity = _3ewa->ReadUint8();
1649 VCFVelocityDynamicRange = vcfvelocity % 5;
1650 VCFVelocityCurve = static_cast<curve_type_t>(vcfvelocity / 5);
1651 VCFType = static_cast<vcf_type_t>(_3ewa->ReadUint8());
1652 if (VCFType == vcf_type_lowpass) {
1653 if (lfo3ctrl & 0x40) // bit 6
1654 VCFType = vcf_type_lowpassturbo;
1655 }
1656 if (_3ewa->RemainingBytes() >= 8) {
1657 _3ewa->Read(DimensionUpperLimits, 1, 8);
1658 } else {
1659 memset(DimensionUpperLimits, 0, 8);
1660 }
1661 } else { // '3ewa' chunk does not exist yet
1662 // use default values
1663 LFO3Frequency = 1.0;
1664 EG3Attack = 0.0;
1665 LFO1InternalDepth = 0;
1666 LFO3InternalDepth = 0;
1667 LFO1ControlDepth = 0;
1668 LFO3ControlDepth = 0;
1669 EG1Attack = 0.0;
1670 EG1Decay1 = 0.005;
1671 EG1Sustain = 1000;
1672 EG1Release = 0.3;
1673 EG1Controller.type = eg1_ctrl_t::type_none;
1674 EG1Controller.controller_number = 0;
1675 EG1ControllerInvert = false;
1676 EG1ControllerAttackInfluence = 0;
1677 EG1ControllerDecayInfluence = 0;
1678 EG1ControllerReleaseInfluence = 0;
1679 EG2Controller.type = eg2_ctrl_t::type_none;
1680 EG2Controller.controller_number = 0;
1681 EG2ControllerInvert = false;
1682 EG2ControllerAttackInfluence = 0;
1683 EG2ControllerDecayInfluence = 0;
1684 EG2ControllerReleaseInfluence = 0;
1685 LFO1Frequency = 1.0;
1686 EG2Attack = 0.0;
1687 EG2Decay1 = 0.005;
1688 EG2Sustain = 1000;
1689 EG2Release = 60;
1690 LFO2ControlDepth = 0;
1691 LFO2Frequency = 1.0;
1692 LFO2InternalDepth = 0;
1693 EG1Decay2 = 0.0;
1694 EG1InfiniteSustain = true;
1695 EG1PreAttack = 0;
1696 EG2Decay2 = 0.0;
1697 EG2InfiniteSustain = true;
1698 EG2PreAttack = 0;
1699 VelocityResponseCurve = curve_type_nonlinear;
1700 VelocityResponseDepth = 3;
1701 ReleaseVelocityResponseCurve = curve_type_nonlinear;
1702 ReleaseVelocityResponseDepth = 3;
1703 VelocityResponseCurveScaling = 32;
1704 AttenuationControllerThreshold = 0;
1705 SampleStartOffset = 0;
1706 PitchTrack = true;
1707 DimensionBypass = dim_bypass_ctrl_none;
1708 Pan = 0;
1709 SelfMask = true;
1710 LFO3Controller = lfo3_ctrl_modwheel;
1711 LFO3Sync = false;
1712 InvertAttenuationController = false;
1713 AttenuationController.type = attenuation_ctrl_t::type_none;
1714 AttenuationController.controller_number = 0;
1715 LFO2Controller = lfo2_ctrl_internal;
1716 LFO2FlipPhase = false;
1717 LFO2Sync = false;
1718 LFO1Controller = lfo1_ctrl_internal;
1719 LFO1FlipPhase = false;
1720 LFO1Sync = false;
1721 VCFResonanceController = vcf_res_ctrl_none;
1722 EG3Depth = 0;
1723 ChannelOffset = 0;
1724 MSDecode = false;
1725 SustainDefeat = false;
1726 VelocityUpperLimit = 0;
1727 ReleaseTriggerDecay = 0;
1728 EG1Hold = false;
1729 VCFEnabled = false;
1730 VCFCutoff = 0;
1731 VCFCutoffController = vcf_cutoff_ctrl_none;
1732 VCFCutoffControllerInvert = false;
1733 VCFVelocityScale = 0;
1734 VCFResonance = 0;
1735 VCFResonanceDynamic = false;
1736 VCFKeyboardTracking = false;
1737 VCFKeyboardTrackingBreakpoint = 0;
1738 VCFVelocityDynamicRange = 0x04;
1739 VCFVelocityCurve = curve_type_linear;
1740 VCFType = vcf_type_lowpass;
1741 memset(DimensionUpperLimits, 127, 8);
1742 }
1743
1744 // chunk for own format extensions, these will *NOT* work with Gigasampler/GigaStudio !
1745 RIFF::Chunk* lsde = _3ewl->GetSubChunk(CHUNK_ID_LSDE);
1746 if (lsde) { // format extension for EG behavior options
1747 lsde->SetPos(0);
1748
1749 eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
1750 for (int i = 0; i < 2; ++i) { // NOTE: we reserved a 3rd byte for a potential future EG3 option
1751 unsigned char byte = lsde->ReadUint8();
1752 pEGOpts[i]->AttackCancel = byte & 1;
1753 pEGOpts[i]->AttackHoldCancel = byte & (1 << 1);
1754 pEGOpts[i]->Decay1Cancel = byte & (1 << 2);
1755 pEGOpts[i]->Decay2Cancel = byte & (1 << 3);
1756 pEGOpts[i]->ReleaseCancel = byte & (1 << 4);
1757 }
1758 }
1759 // format extension for sustain pedal up effect on release trigger samples
1760 if (lsde && lsde->GetSize() > 3) { // NOTE: we reserved the 3rd byte for a potential future EG3 option
1761 lsde->SetPos(3);
1762 uint8_t byte = lsde->ReadUint8();
1763 SustainReleaseTrigger = static_cast<sust_rel_trg_t>(byte & 0x03);
1764 NoNoteOffReleaseTrigger = byte >> 7;
1765 } else {
1766 SustainReleaseTrigger = sust_rel_trg_none;
1767 NoNoteOffReleaseTrigger = false;
1768 }
1769 // format extension for LFOs' wave form, phase displacement and for
1770 // LFO3's flip phase
1771 if (lsde && lsde->GetSize() > 4) {
1772 lsde->SetPos(4);
1773 LFO1WaveForm = static_cast<lfo_wave_t>( lsde->ReadUint16() );
1774 LFO2WaveForm = static_cast<lfo_wave_t>( lsde->ReadUint16() );
1775 LFO3WaveForm = static_cast<lfo_wave_t>( lsde->ReadUint16() );
1776 lsde->ReadUint16(); // unused 16 bits, reserved for potential future use
1777 LFO1Phase = (double) GIG_EXP_DECODE( lsde->ReadInt32() );
1778 LFO2Phase = (double) GIG_EXP_DECODE( lsde->ReadInt32() );
1779 LFO3Phase = (double) GIG_EXP_DECODE( lsde->ReadInt32() );
1780 const uint32_t flags = lsde->ReadInt32();
1781 LFO3FlipPhase = flags & 1;
1782 } else {
1783 LFO1WaveForm = lfo_wave_sine;
1784 LFO2WaveForm = lfo_wave_sine;
1785 LFO3WaveForm = lfo_wave_sine;
1786 LFO1Phase = 0.0;
1787 LFO2Phase = 0.0;
1788 LFO3Phase = 0.0;
1789 LFO3FlipPhase = false;
1790 }
1791
1792 pVelocityAttenuationTable = GetVelocityTable(VelocityResponseCurve,
1793 VelocityResponseDepth,
1794 VelocityResponseCurveScaling);
1795
1796 pVelocityReleaseTable = GetReleaseVelocityTable(
1797 ReleaseVelocityResponseCurve,
1798 ReleaseVelocityResponseDepth
1799 );
1800
1801 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve,
1802 VCFVelocityDynamicRange,
1803 VCFVelocityScale,
1804 VCFCutoffController);
1805
1806 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
1807 VelocityTable = 0;
1808 }
1809
1810 /*
1811 * Constructs a DimensionRegion by copying all parameters from
1812 * another DimensionRegion
1813 */
1814 DimensionRegion::DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src) : DLS::Sampler(_3ewl) {
1815 Instances++;
1816 //NOTE: I think we cannot call CopyAssign() here (in a constructor) as long as its a virtual method
1817 *this = src; // default memberwise shallow copy of all parameters
1818 pParentList = _3ewl; // restore the chunk pointer
1819
1820 // deep copy of owned structures
1821 if (src.VelocityTable) {
1822 VelocityTable = new uint8_t[128];
1823 for (int k = 0 ; k < 128 ; k++)
1824 VelocityTable[k] = src.VelocityTable[k];
1825 }
1826 if (src.pSampleLoops) {
1827 pSampleLoops = new DLS::sample_loop_t[src.SampleLoops];
1828 for (int k = 0 ; k < src.SampleLoops ; k++)
1829 pSampleLoops[k] = src.pSampleLoops[k];
1830 }
1831 }
1832
1833 /**
1834 * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1835 * and assign it to this object.
1836 *
1837 * Note that all sample pointers referenced by @a orig are simply copied as
1838 * memory address. Thus the respective samples are shared, not duplicated!
1839 *
1840 * @param orig - original DimensionRegion object to be copied from
1841 */
1842 void DimensionRegion::CopyAssign(const DimensionRegion* orig) {
1843 CopyAssign(orig, NULL);
1844 }
1845
1846 /**
1847 * Make a (semi) deep copy of the DimensionRegion object given by @a orig
1848 * and assign it to this object.
1849 *
1850 * @param orig - original DimensionRegion object to be copied from
1851 * @param mSamples - crosslink map between the foreign file's samples and
1852 * this file's samples
1853 */
1854 void DimensionRegion::CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples) {
1855 // delete all allocated data first
1856 if (VelocityTable) delete [] VelocityTable;
1857 if (pSampleLoops) delete [] pSampleLoops;
1858
1859 // backup parent list pointer
1860 RIFF::List* p = pParentList;
1861
1862 gig::Sample* pOriginalSample = pSample;
1863 gig::Region* pOriginalRegion = pRegion;
1864
1865 //NOTE: copy code copied from assignment constructor above, see comment there as well
1866
1867 *this = *orig; // default memberwise shallow copy of all parameters
1868
1869 // restore members that shall not be altered
1870 pParentList = p; // restore the chunk pointer
1871 pRegion = pOriginalRegion;
1872
1873 // only take the raw sample reference reference if the
1874 // two DimensionRegion objects are part of the same file
1875 if (pOriginalRegion->GetParent()->GetParent() != orig->pRegion->GetParent()->GetParent()) {
1876 pSample = pOriginalSample;
1877 }
1878
1879 if (mSamples && mSamples->count(orig->pSample)) {
1880 pSample = mSamples->find(orig->pSample)->second;
1881 }
1882
1883 // deep copy of owned structures
1884 if (orig->VelocityTable) {
1885 VelocityTable = new uint8_t[128];
1886 for (int k = 0 ; k < 128 ; k++)
1887 VelocityTable[k] = orig->VelocityTable[k];
1888 }
1889 if (orig->pSampleLoops) {
1890 pSampleLoops = new DLS::sample_loop_t[orig->SampleLoops];
1891 for (int k = 0 ; k < orig->SampleLoops ; k++)
1892 pSampleLoops[k] = orig->pSampleLoops[k];
1893 }
1894 }
1895
1896 void DimensionRegion::serialize(Serialization::Archive* archive) {
1897 // in case this class will become backward incompatible one day,
1898 // then set a version and minimum version for this class like:
1899 //archive->setVersion(*this, 2);
1900 //archive->setMinVersion(*this, 1);
1901
1902 SRLZ(VelocityUpperLimit);
1903 SRLZ(EG1PreAttack);
1904 SRLZ(EG1Attack);
1905 SRLZ(EG1Decay1);
1906 SRLZ(EG1Decay2);
1907 SRLZ(EG1InfiniteSustain);
1908 SRLZ(EG1Sustain);
1909 SRLZ(EG1Release);
1910 SRLZ(EG1Hold);
1911 SRLZ(EG1Controller);
1912 SRLZ(EG1ControllerInvert);
1913 SRLZ(EG1ControllerAttackInfluence);
1914 SRLZ(EG1ControllerDecayInfluence);
1915 SRLZ(EG1ControllerReleaseInfluence);
1916 SRLZ(LFO1WaveForm);
1917 SRLZ(LFO1Frequency);
1918 SRLZ(LFO1Phase);
1919 SRLZ(LFO1InternalDepth);
1920 SRLZ(LFO1ControlDepth);
1921 SRLZ(LFO1Controller);
1922 SRLZ(LFO1FlipPhase);
1923 SRLZ(LFO1Sync);
1924 SRLZ(EG2PreAttack);
1925 SRLZ(EG2Attack);
1926 SRLZ(EG2Decay1);
1927 SRLZ(EG2Decay2);
1928 SRLZ(EG2InfiniteSustain);
1929 SRLZ(EG2Sustain);
1930 SRLZ(EG2Release);
1931 SRLZ(EG2Controller);
1932 SRLZ(EG2ControllerInvert);
1933 SRLZ(EG2ControllerAttackInfluence);
1934 SRLZ(EG2ControllerDecayInfluence);
1935 SRLZ(EG2ControllerReleaseInfluence);
1936 SRLZ(LFO2WaveForm);
1937 SRLZ(LFO2Frequency);
1938 SRLZ(LFO2Phase);
1939 SRLZ(LFO2InternalDepth);
1940 SRLZ(LFO2ControlDepth);
1941 SRLZ(LFO2Controller);
1942 SRLZ(LFO2FlipPhase);
1943 SRLZ(LFO2Sync);
1944 SRLZ(EG3Attack);
1945 SRLZ(EG3Depth);
1946 SRLZ(LFO3WaveForm);
1947 SRLZ(LFO3Frequency);
1948 SRLZ(LFO3Phase);
1949 SRLZ(LFO3InternalDepth);
1950 SRLZ(LFO3ControlDepth);
1951 SRLZ(LFO3Controller);
1952 SRLZ(LFO3FlipPhase);
1953 SRLZ(LFO3Sync);
1954 SRLZ(VCFEnabled);
1955 SRLZ(VCFType);
1956 SRLZ(VCFCutoffController);
1957 SRLZ(VCFCutoffControllerInvert);
1958 SRLZ(VCFCutoff);
1959 SRLZ(VCFVelocityCurve);
1960 SRLZ(VCFVelocityScale);
1961 SRLZ(VCFVelocityDynamicRange);
1962 SRLZ(VCFResonance);
1963 SRLZ(VCFResonanceDynamic);
1964 SRLZ(VCFResonanceController);
1965 SRLZ(VCFKeyboardTracking);
1966 SRLZ(VCFKeyboardTrackingBreakpoint);
1967 SRLZ(VelocityResponseCurve);
1968 SRLZ(VelocityResponseDepth);
1969 SRLZ(VelocityResponseCurveScaling);
1970 SRLZ(ReleaseVelocityResponseCurve);
1971 SRLZ(ReleaseVelocityResponseDepth);
1972 SRLZ(ReleaseTriggerDecay);
1973 SRLZ(Crossfade);
1974 SRLZ(PitchTrack);
1975 SRLZ(DimensionBypass);
1976 SRLZ(Pan);
1977 SRLZ(SelfMask);
1978 SRLZ(AttenuationController);
1979 SRLZ(InvertAttenuationController);
1980 SRLZ(AttenuationControllerThreshold);
1981 SRLZ(ChannelOffset);
1982 SRLZ(SustainDefeat);
1983 SRLZ(MSDecode);
1984 //SRLZ(SampleStartOffset);
1985 SRLZ(SampleAttenuation);
1986 SRLZ(EG1Options);
1987 SRLZ(EG2Options);
1988 SRLZ(SustainReleaseTrigger);
1989 SRLZ(NoNoteOffReleaseTrigger);
1990
1991 // derived attributes from DLS::Sampler
1992 SRLZ(FineTune);
1993 SRLZ(Gain);
1994 }
1995
1996 /**
1997 * Updates the respective member variable and updates @c SampleAttenuation
1998 * which depends on this value.
1999 */
2000 void DimensionRegion::SetGain(int32_t gain) {
2001 DLS::Sampler::SetGain(gain);
2002 SampleAttenuation = pow(10.0, -Gain / (20.0 * 655360));
2003 }
2004
2005 /**
2006 * Apply dimension region settings to the respective RIFF chunks. You
2007 * have to call File::Save() to make changes persistent.
2008 *
2009 * Usually there is absolutely no need to call this method explicitly.
2010 * It will be called automatically when File::Save() was called.
2011 *
2012 * @param pProgress - callback function for progress notification
2013 */
2014 void DimensionRegion::UpdateChunks(progress_t* pProgress) {
2015 // first update base class's chunk
2016 DLS::Sampler::UpdateChunks(pProgress);
2017
2018 RIFF::Chunk* wsmp = pParentList->GetSubChunk(CHUNK_ID_WSMP);
2019 uint8_t* pData = (uint8_t*) wsmp->LoadChunkData();
2020 pData[12] = Crossfade.in_start;
2021 pData[13] = Crossfade.in_end;
2022 pData[14] = Crossfade.out_start;
2023 pData[15] = Crossfade.out_end;
2024
2025 // make sure '3ewa' chunk exists
2026 RIFF::Chunk* _3ewa = pParentList->GetSubChunk(CHUNK_ID_3EWA);
2027 if (!_3ewa) {
2028 File* pFile = (File*) GetParent()->GetParent()->GetParent();
2029 bool versiongt2 = pFile->pVersion && pFile->pVersion->major > 2;
2030 _3ewa = pParentList->AddSubChunk(CHUNK_ID_3EWA, versiongt2 ? 148 : 140);
2031 }
2032 pData = (uint8_t*) _3ewa->LoadChunkData();
2033
2034 // update '3ewa' chunk with DimensionRegion's current settings
2035
2036 const uint32_t chunksize = (uint32_t) _3ewa->GetNewSize();
2037 store32(&pData[0], chunksize); // unknown, always chunk size?
2038
2039 const int32_t lfo3freq = (int32_t) GIG_EXP_ENCODE(LFO3Frequency);
2040 store32(&pData[4], lfo3freq);
2041
2042 const int32_t eg3attack = (int32_t) GIG_EXP_ENCODE(EG3Attack);
2043 store32(&pData[8], eg3attack);
2044
2045 // next 2 bytes unknown
2046
2047 store16(&pData[14], LFO1InternalDepth);
2048
2049 // next 2 bytes unknown
2050
2051 store16(&pData[18], LFO3InternalDepth);
2052
2053 // next 2 bytes unknown
2054
2055 store16(&pData[22], LFO1ControlDepth);
2056
2057 // next 2 bytes unknown
2058
2059 store16(&pData[26], LFO3ControlDepth);
2060
2061 const int32_t eg1attack = (int32_t) GIG_EXP_ENCODE(EG1Attack);
2062 store32(&pData[28], eg1attack);
2063
2064 const int32_t eg1decay1 = (int32_t) GIG_EXP_ENCODE(EG1Decay1);
2065 store32(&pData[32], eg1decay1);
2066
2067 // next 2 bytes unknown
2068
2069 store16(&pData[38], EG1Sustain);
2070
2071 const int32_t eg1release = (int32_t) GIG_EXP_ENCODE(EG1Release);
2072 store32(&pData[40], eg1release);
2073
2074 const uint8_t eg1ctl = (uint8_t) EncodeLeverageController(EG1Controller);
2075 pData[44] = eg1ctl;
2076
2077 const uint8_t eg1ctrloptions =
2078 (EG1ControllerInvert ? 0x01 : 0x00) |
2079 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG1ControllerAttackInfluence) |
2080 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG1ControllerDecayInfluence) |
2081 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG1ControllerReleaseInfluence);
2082 pData[45] = eg1ctrloptions;
2083
2084 const uint8_t eg2ctl = (uint8_t) EncodeLeverageController(EG2Controller);
2085 pData[46] = eg2ctl;
2086
2087 const uint8_t eg2ctrloptions =
2088 (EG2ControllerInvert ? 0x01 : 0x00) |
2089 GIG_EG_CTR_ATTACK_INFLUENCE_ENCODE(EG2ControllerAttackInfluence) |
2090 GIG_EG_CTR_DECAY_INFLUENCE_ENCODE(EG2ControllerDecayInfluence) |
2091 GIG_EG_CTR_RELEASE_INFLUENCE_ENCODE(EG2ControllerReleaseInfluence);
2092 pData[47] = eg2ctrloptions;
2093
2094 const int32_t lfo1freq = (int32_t) GIG_EXP_ENCODE(LFO1Frequency);
2095 store32(&pData[48], lfo1freq);
2096
2097 const int32_t eg2attack = (int32_t) GIG_EXP_ENCODE(EG2Attack);
2098 store32(&pData[52], eg2attack);
2099
2100 const int32_t eg2decay1 = (int32_t) GIG_EXP_ENCODE(EG2Decay1);
2101 store32(&pData[56], eg2decay1);
2102
2103 // next 2 bytes unknown
2104
2105 store16(&pData[62], EG2Sustain);
2106
2107 const int32_t eg2release = (int32_t) GIG_EXP_ENCODE(EG2Release);
2108 store32(&pData[64], eg2release);
2109
2110 // next 2 bytes unknown
2111
2112 store16(&pData[70], LFO2ControlDepth);
2113
2114 const int32_t lfo2freq = (int32_t) GIG_EXP_ENCODE(LFO2Frequency);
2115 store32(&pData[72], lfo2freq);
2116
2117 // next 2 bytes unknown
2118
2119 store16(&pData[78], LFO2InternalDepth);
2120
2121 const int32_t eg1decay2 = (int32_t) (EG1InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG1Decay2);
2122 store32(&pData[80], eg1decay2);
2123
2124 // next 2 bytes unknown
2125
2126 store16(&pData[86], EG1PreAttack);
2127
2128 const int32_t eg2decay2 = (int32_t) (EG2InfiniteSustain) ? 0x7fffffff : (int32_t) GIG_EXP_ENCODE(EG2Decay2);
2129 store32(&pData[88], eg2decay2);
2130
2131 // next 2 bytes unknown
2132
2133 store16(&pData[94], EG2PreAttack);
2134
2135 {
2136 if (VelocityResponseDepth > 4) throw Exception("VelocityResponseDepth must be between 0 and 4");
2137 uint8_t velocityresponse = VelocityResponseDepth;
2138 switch (VelocityResponseCurve) {
2139 case curve_type_nonlinear:
2140 break;
2141 case curve_type_linear:
2142 velocityresponse += 5;
2143 break;
2144 case curve_type_special:
2145 velocityresponse += 10;
2146 break;
2147 case curve_type_unknown:
2148 default:
2149 throw Exception("Could not update DimensionRegion's chunk, unknown VelocityResponseCurve selected");
2150 }
2151 pData[96] = velocityresponse;
2152 }
2153
2154 {
2155 if (ReleaseVelocityResponseDepth > 4) throw Exception("ReleaseVelocityResponseDepth must be between 0 and 4");
2156 uint8_t releasevelocityresponse = ReleaseVelocityResponseDepth;
2157 switch (ReleaseVelocityResponseCurve) {
2158 case curve_type_nonlinear:
2159 break;
2160 case curve_type_linear:
2161 releasevelocityresponse += 5;
2162 break;
2163 case curve_type_special:
2164 releasevelocityresponse += 10;
2165 break;
2166 case curve_type_unknown:
2167 default:
2168 throw Exception("Could not update DimensionRegion's chunk, unknown ReleaseVelocityResponseCurve selected");
2169 }
2170 pData[97] = releasevelocityresponse;
2171 }
2172
2173 pData[98] = VelocityResponseCurveScaling;
2174
2175 pData[99] = AttenuationControllerThreshold;
2176
2177 // next 4 bytes unknown
2178
2179 store16(&pData[104], SampleStartOffset);
2180
2181 // next 2 bytes unknown
2182
2183 {
2184 uint8_t pitchTrackDimensionBypass = GIG_PITCH_TRACK_ENCODE(PitchTrack);
2185 switch (DimensionBypass) {
2186 case dim_bypass_ctrl_94:
2187 pitchTrackDimensionBypass |= 0x10;
2188 break;
2189 case dim_bypass_ctrl_95:
2190 pitchTrackDimensionBypass |= 0x20;
2191 break;
2192 case dim_bypass_ctrl_none:
2193 //FIXME: should we set anything here?
2194 break;
2195 default:
2196 throw Exception("Could not update DimensionRegion's chunk, unknown DimensionBypass selected");
2197 }
2198 pData[108] = pitchTrackDimensionBypass;
2199 }
2200
2201 const uint8_t pan = (Pan >= 0) ? Pan : ((-Pan) + 63); // signed 8 bit -> signed 7 bit
2202 pData[109] = pan;
2203
2204 const uint8_t selfmask = (SelfMask) ? 0x01 : 0x00;
2205 pData[110] = selfmask;
2206
2207 // next byte unknown
2208
2209 {
2210 uint8_t lfo3ctrl = LFO3Controller & 0x07; // lower 3 bits
2211 if (LFO3Sync) lfo3ctrl |= 0x20; // bit 5
2212 if (InvertAttenuationController) lfo3ctrl |= 0x80; // bit 7
2213 if (VCFType == vcf_type_lowpassturbo) lfo3ctrl |= 0x40; // bit 6
2214 pData[112] = lfo3ctrl;
2215 }
2216
2217 const uint8_t attenctl = EncodeLeverageController(AttenuationController);
2218 pData[113] = attenctl;
2219
2220 {
2221 uint8_t lfo2ctrl = LFO2Controller & 0x07; // lower 3 bits
2222 if (LFO2FlipPhase) lfo2ctrl |= 0x80; // bit 7
2223 if (LFO2Sync) lfo2ctrl |= 0x20; // bit 5
2224 if (VCFResonanceController != vcf_res_ctrl_none) lfo2ctrl |= 0x40; // bit 6
2225 pData[114] = lfo2ctrl;
2226 }
2227
2228 {
2229 uint8_t lfo1ctrl = LFO1Controller & 0x07; // lower 3 bits
2230 if (LFO1FlipPhase) lfo1ctrl |= 0x80; // bit 7
2231 if (LFO1Sync) lfo1ctrl |= 0x40; // bit 6
2232 if (VCFResonanceController != vcf_res_ctrl_none)
2233 lfo1ctrl |= GIG_VCF_RESONANCE_CTRL_ENCODE(VCFResonanceController);
2234 pData[115] = lfo1ctrl;
2235 }
2236
2237 const uint16_t eg3depth = (EG3Depth >= 0) ? EG3Depth
2238 : uint16_t(((-EG3Depth) - 1) ^ 0xfff); /* binary complementary for negatives */
2239 store16(&pData[116], eg3depth);
2240
2241 // next 2 bytes unknown
2242
2243 const uint8_t channeloffset = ChannelOffset * 4;
2244 pData[120] = channeloffset;
2245
2246 {
2247 uint8_t regoptions = 0;
2248 if (MSDecode) regoptions |= 0x01; // bit 0
2249 if (SustainDefeat) regoptions |= 0x02; // bit 1
2250 pData[121] = regoptions;
2251 }
2252
2253 // next 2 bytes unknown
2254
2255 pData[124] = VelocityUpperLimit;
2256
2257 // next 3 bytes unknown
2258
2259 pData[128] = ReleaseTriggerDecay;
2260
2261 // next 2 bytes unknown
2262
2263 const uint8_t eg1hold = (EG1Hold) ? 0x80 : 0x00; // bit 7
2264 pData[131] = eg1hold;
2265
2266 const uint8_t vcfcutoff = (VCFEnabled ? 0x80 : 0x00) | /* bit 7 */
2267 (VCFCutoff & 0x7f); /* lower 7 bits */
2268 pData[132] = vcfcutoff;
2269
2270 pData[133] = VCFCutoffController;
2271
2272 const uint8_t vcfvelscale = (VCFCutoffControllerInvert ? 0x80 : 0x00) | /* bit 7 */
2273 (VCFVelocityScale & 0x7f); /* lower 7 bits */
2274 pData[134] = vcfvelscale;
2275
2276 // next byte unknown
2277
2278 const uint8_t vcfresonance = (VCFResonanceDynamic ? 0x00 : 0x80) | /* bit 7 */
2279 (VCFResonance & 0x7f); /* lower 7 bits */
2280 pData[136] = vcfresonance;
2281
2282 const uint8_t vcfbreakpoint = (VCFKeyboardTracking ? 0x80 : 0x00) | /* bit 7 */
2283 (VCFKeyboardTrackingBreakpoint & 0x7f); /* lower 7 bits */
2284 pData[137] = vcfbreakpoint;
2285
2286 const uint8_t vcfvelocity = VCFVelocityDynamicRange % 5 +
2287 VCFVelocityCurve * 5;
2288 pData[138] = vcfvelocity;
2289
2290 const uint8_t vcftype = (VCFType == vcf_type_lowpassturbo) ? vcf_type_lowpass : VCFType;
2291 pData[139] = vcftype;
2292
2293 if (chunksize >= 148) {
2294 memcpy(&pData[140], DimensionUpperLimits, 8);
2295 }
2296
2297 // chunk for own format extensions, these will *NOT* work with
2298 // Gigasampler/GigaStudio !
2299 RIFF::Chunk* lsde = pParentList->GetSubChunk(CHUNK_ID_LSDE);
2300 const int lsdeSize =
2301 3 /* EG cancel options */ +
2302 1 /* sustain pedal up on release trigger option */ +
2303 8 /* LFOs' wave forms */ + 12 /* LFOs' phase */ + 4 /* flags (LFO3FlipPhase) */;
2304 if (!lsde && UsesAnyGigFormatExtension()) {
2305 // only add this "LSDE" chunk if there is some (format extension)
2306 // setting effective that would require our "LSDE" format extension
2307 // chunk to be stored
2308 lsde = pParentList->AddSubChunk(CHUNK_ID_LSDE, lsdeSize);
2309 // move LSDE chunk to the end of parent list
2310 pParentList->MoveSubChunk(lsde, (RIFF::Chunk*)NULL);
2311 }
2312 if (lsde) {
2313 if (lsde->GetNewSize() < lsdeSize)
2314 lsde->Resize(lsdeSize);
2315 // format extension for EG behavior options
2316 unsigned char* pData = (unsigned char*) lsde->LoadChunkData();
2317 eg_opt_t* pEGOpts[2] = { &EG1Options, &EG2Options };
2318 for (int i = 0; i < 2; ++i) { // NOTE: we reserved the 3rd byte for a potential future EG3 option
2319 pData[i] =
2320 (pEGOpts[i]->AttackCancel ? 1 : 0) |
2321 (pEGOpts[i]->AttackHoldCancel ? (1<<1) : 0) |
2322 (pEGOpts[i]->Decay1Cancel ? (1<<2) : 0) |
2323 (pEGOpts[i]->Decay2Cancel ? (1<<3) : 0) |
2324 (pEGOpts[i]->ReleaseCancel ? (1<<4) : 0);
2325 }
2326 // format extension for release trigger options
2327 pData[3] = static_cast<uint8_t>(SustainReleaseTrigger) | (NoNoteOffReleaseTrigger ? (1<<7) : 0);
2328 // format extension for LFOs' wave form, phase displacement and for
2329 // LFO3's flip phase
2330 store16(&pData[4], LFO1WaveForm);
2331 store16(&pData[6], LFO2WaveForm);
2332 store16(&pData[8], LFO3WaveForm);
2333 //NOTE: 16 bits reserved here for potential future use !
2334 const int32_t lfo1Phase = (int32_t) GIG_EXP_ENCODE(LFO1Phase);
2335 const int32_t lfo2Phase = (int32_t) GIG_EXP_ENCODE(LFO2Phase);
2336 const int32_t lfo3Phase = (int32_t) GIG_EXP_ENCODE(LFO3Phase);
2337 store32(&pData[12], lfo1Phase);
2338 store32(&pData[16], lfo2Phase);
2339 store32(&pData[20], lfo3Phase);
2340 const int32_t flags = LFO3FlipPhase ? 1 : 0;
2341 store32(&pData[24], flags);
2342
2343 // compile time sanity check: is our last store access here
2344 // consistent with the initial lsdeSize value assignment?
2345 static_assert(lsdeSize == 28, "Inconsistency in assumed 'LSDE' RIFF chunk size");
2346 }
2347 }
2348
2349 /**
2350 * Returns @c true in case this DimensionRegion object uses any gig format
2351 * extension, that is whether this DimensionRegion object currently has any
2352 * setting effective that would require our "LSDE" RIFF chunk to be stored
2353 * to the gig file.
2354 *
2355 * Right now this is a private method. It is considerable though this method
2356 * to become (in slightly modified form) a public API method in future, i.e.
2357 * to allow instrument editors to visualize and/or warn the user of any
2358 * format extension being used. Right now this method really just serves to
2359 * answer the question whether an LSDE chunk is required, for the public API
2360 * purpose this method would also need to check whether any other setting
2361 * stored to the regular value '3ewa' chunk, is actually a format extension
2362 * as well.
2363 */
2364 bool DimensionRegion::UsesAnyGigFormatExtension() const {
2365 eg_opt_t defaultOpt;
2366 return memcmp(&EG1Options, &defaultOpt, sizeof(eg_opt_t)) ||
2367 memcmp(&EG2Options, &defaultOpt, sizeof(eg_opt_t)) ||
2368 SustainReleaseTrigger || NoNoteOffReleaseTrigger ||
2369 LFO1WaveForm || LFO2WaveForm || LFO3WaveForm ||
2370 LFO1Phase || LFO2Phase || LFO3Phase ||
2371 LFO3FlipPhase;
2372 }
2373
2374 double* DimensionRegion::GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth) {
2375 curve_type_t curveType = releaseVelocityResponseCurve;
2376 uint8_t depth = releaseVelocityResponseDepth;
2377 // this models a strange behaviour or bug in GSt: two of the
2378 // velocity response curves for release time are not used even
2379 // if specified, instead another curve is chosen.
2380 if ((curveType == curve_type_nonlinear && depth == 0) ||
2381 (curveType == curve_type_special && depth == 4)) {
2382 curveType = curve_type_nonlinear;
2383 depth = 3;
2384 }
2385 return GetVelocityTable(curveType, depth, 0);
2386 }
2387
2388 double* DimensionRegion::GetCutoffVelocityTable(curve_type_t vcfVelocityCurve,
2389 uint8_t vcfVelocityDynamicRange,
2390 uint8_t vcfVelocityScale,
2391 vcf_cutoff_ctrl_t vcfCutoffController)
2392 {
2393 curve_type_t curveType = vcfVelocityCurve;
2394 uint8_t depth = vcfVelocityDynamicRange;
2395 // even stranger GSt: two of the velocity response curves for
2396 // filter cutoff are not used, instead another special curve
2397 // is chosen. This curve is not used anywhere else.
2398 if ((curveType == curve_type_nonlinear && depth == 0) ||
2399 (curveType == curve_type_special && depth == 4)) {
2400 curveType = curve_type_special;
2401 depth = 5;
2402 }
2403 return GetVelocityTable(curveType, depth,
2404 (vcfCutoffController <= vcf_cutoff_ctrl_none2)
2405 ? vcfVelocityScale : 0);
2406 }
2407
2408 // get the corresponding velocity table from the table map or create & calculate that table if it doesn't exist yet
2409 double* DimensionRegion::GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling)
2410 {
2411 // sanity check input parameters
2412 // (fallback to some default parameters on ill input)
2413 switch (curveType) {
2414 case curve_type_nonlinear:
2415 case curve_type_linear:
2416 if (depth > 4) {
2417 printf("Warning: Invalid depth (0x%x) for velocity curve type (0x%x).\n", depth, curveType);
2418 depth = 0;
2419 scaling = 0;
2420 }
2421 break;
2422 case curve_type_special:
2423 if (depth > 5) {
2424 printf("Warning: Invalid depth (0x%x) for velocity curve type 'special'.\n", depth);
2425 depth = 0;
2426 scaling = 0;
2427 }
2428 break;
2429 case curve_type_unknown:
2430 default:
2431 printf("Warning: Unknown velocity curve type (0x%x).\n", curveType);
2432 curveType = curve_type_linear;
2433 depth = 0;
2434 scaling = 0;
2435 break;
2436 }
2437
2438 double* table;
2439 uint32_t tableKey = (curveType<<16) | (depth<<8) | scaling;
2440 if (pVelocityTables->count(tableKey)) { // if key exists
2441 table = (*pVelocityTables)[tableKey];
2442 }
2443 else {
2444 table = CreateVelocityTable(curveType, depth, scaling);
2445 (*pVelocityTables)[tableKey] = table; // put the new table into the tables map
2446 }
2447 return table;
2448 }
2449
2450 Region* DimensionRegion::GetParent() const {
2451 return pRegion;
2452 }
2453
2454 // show error if some _lev_ctrl_* enum entry is not listed in the following function
2455 // (commented out for now, because "diagnostic push" not supported prior GCC 4.6)
2456 // TODO: uncomment and add a GCC version check (see also commented "#pragma GCC diagnostic pop" below)
2457 //#pragma GCC diagnostic push
2458 //#pragma GCC diagnostic error "-Wswitch"
2459
2460 leverage_ctrl_t DimensionRegion::DecodeLeverageController(_lev_ctrl_t EncodedController) {
2461 leverage_ctrl_t decodedcontroller;
2462 switch (EncodedController) {
2463 // special controller
2464 case _lev_ctrl_none:
2465 decodedcontroller.type = leverage_ctrl_t::type_none;
2466 decodedcontroller.controller_number = 0;
2467 break;
2468 case _lev_ctrl_velocity:
2469 decodedcontroller.type = leverage_ctrl_t::type_velocity;
2470 decodedcontroller.controller_number = 0;
2471 break;
2472 case _lev_ctrl_channelaftertouch:
2473 decodedcontroller.type = leverage_ctrl_t::type_channelaftertouch;
2474 decodedcontroller.controller_number = 0;
2475 break;
2476
2477 // ordinary MIDI control change controller
2478 case _lev_ctrl_modwheel:
2479 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2480 decodedcontroller.controller_number = 1;
2481 break;
2482 case _lev_ctrl_breath:
2483 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2484 decodedcontroller.controller_number = 2;
2485 break;
2486 case _lev_ctrl_foot:
2487 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2488 decodedcontroller.controller_number = 4;
2489 break;
2490 case _lev_ctrl_effect1:
2491 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2492 decodedcontroller.controller_number = 12;
2493 break;
2494 case _lev_ctrl_effect2:
2495 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2496 decodedcontroller.controller_number = 13;
2497 break;
2498 case _lev_ctrl_genpurpose1:
2499 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2500 decodedcontroller.controller_number = 16;
2501 break;
2502 case _lev_ctrl_genpurpose2:
2503 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2504 decodedcontroller.controller_number = 17;
2505 break;
2506 case _lev_ctrl_genpurpose3:
2507 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2508 decodedcontroller.controller_number = 18;
2509 break;
2510 case _lev_ctrl_genpurpose4:
2511 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2512 decodedcontroller.controller_number = 19;
2513 break;
2514 case _lev_ctrl_portamentotime:
2515 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2516 decodedcontroller.controller_number = 5;
2517 break;
2518 case _lev_ctrl_sustainpedal:
2519 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2520 decodedcontroller.controller_number = 64;
2521 break;
2522 case _lev_ctrl_portamento:
2523 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2524 decodedcontroller.controller_number = 65;
2525 break;
2526 case _lev_ctrl_sostenutopedal:
2527 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2528 decodedcontroller.controller_number = 66;
2529 break;
2530 case _lev_ctrl_softpedal:
2531 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2532 decodedcontroller.controller_number = 67;
2533 break;
2534 case _lev_ctrl_genpurpose5:
2535 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2536 decodedcontroller.controller_number = 80;
2537 break;
2538 case _lev_ctrl_genpurpose6:
2539 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2540 decodedcontroller.controller_number = 81;
2541 break;
2542 case _lev_ctrl_genpurpose7:
2543 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2544 decodedcontroller.controller_number = 82;
2545 break;
2546 case _lev_ctrl_genpurpose8:
2547 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2548 decodedcontroller.controller_number = 83;
2549 break;
2550 case _lev_ctrl_effect1depth:
2551 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2552 decodedcontroller.controller_number = 91;
2553 break;
2554 case _lev_ctrl_effect2depth:
2555 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2556 decodedcontroller.controller_number = 92;
2557 break;
2558 case _lev_ctrl_effect3depth:
2559 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2560 decodedcontroller.controller_number = 93;
2561 break;
2562 case _lev_ctrl_effect4depth:
2563 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2564 decodedcontroller.controller_number = 94;
2565 break;
2566 case _lev_ctrl_effect5depth:
2567 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2568 decodedcontroller.controller_number = 95;
2569 break;
2570
2571 // format extension (these controllers are so far only supported by
2572 // LinuxSampler & gigedit) they will *NOT* work with
2573 // Gigasampler/GigaStudio !
2574 case _lev_ctrl_CC3_EXT:
2575 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2576 decodedcontroller.controller_number = 3;
2577 break;
2578 case _lev_ctrl_CC6_EXT:
2579 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2580 decodedcontroller.controller_number = 6;
2581 break;
2582 case _lev_ctrl_CC7_EXT:
2583 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2584 decodedcontroller.controller_number = 7;
2585 break;
2586 case _lev_ctrl_CC8_EXT:
2587 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2588 decodedcontroller.controller_number = 8;
2589 break;
2590 case _lev_ctrl_CC9_EXT:
2591 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2592 decodedcontroller.controller_number = 9;
2593 break;
2594 case _lev_ctrl_CC10_EXT:
2595 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2596 decodedcontroller.controller_number = 10;
2597 break;
2598 case _lev_ctrl_CC11_EXT:
2599 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2600 decodedcontroller.controller_number = 11;
2601 break;
2602 case _lev_ctrl_CC14_EXT:
2603 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2604 decodedcontroller.controller_number = 14;
2605 break;
2606 case _lev_ctrl_CC15_EXT:
2607 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2608 decodedcontroller.controller_number = 15;
2609 break;
2610 case _lev_ctrl_CC20_EXT:
2611 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2612 decodedcontroller.controller_number = 20;
2613 break;
2614 case _lev_ctrl_CC21_EXT:
2615 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2616 decodedcontroller.controller_number = 21;
2617 break;
2618 case _lev_ctrl_CC22_EXT:
2619 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2620 decodedcontroller.controller_number = 22;
2621 break;
2622 case _lev_ctrl_CC23_EXT:
2623 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2624 decodedcontroller.controller_number = 23;
2625 break;
2626 case _lev_ctrl_CC24_EXT:
2627 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2628 decodedcontroller.controller_number = 24;
2629 break;
2630 case _lev_ctrl_CC25_EXT:
2631 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2632 decodedcontroller.controller_number = 25;
2633 break;
2634 case _lev_ctrl_CC26_EXT:
2635 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2636 decodedcontroller.controller_number = 26;
2637 break;
2638 case _lev_ctrl_CC27_EXT:
2639 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2640 decodedcontroller.controller_number = 27;
2641 break;
2642 case _lev_ctrl_CC28_EXT:
2643 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2644 decodedcontroller.controller_number = 28;
2645 break;
2646 case _lev_ctrl_CC29_EXT:
2647 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2648 decodedcontroller.controller_number = 29;
2649 break;
2650 case _lev_ctrl_CC30_EXT:
2651 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2652 decodedcontroller.controller_number = 30;
2653 break;
2654 case _lev_ctrl_CC31_EXT:
2655 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2656 decodedcontroller.controller_number = 31;
2657 break;
2658 case _lev_ctrl_CC68_EXT:
2659 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2660 decodedcontroller.controller_number = 68;
2661 break;
2662 case _lev_ctrl_CC69_EXT:
2663 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2664 decodedcontroller.controller_number = 69;
2665 break;
2666 case _lev_ctrl_CC70_EXT:
2667 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2668 decodedcontroller.controller_number = 70;
2669 break;
2670 case _lev_ctrl_CC71_EXT:
2671 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2672 decodedcontroller.controller_number = 71;
2673 break;
2674 case _lev_ctrl_CC72_EXT:
2675 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2676 decodedcontroller.controller_number = 72;
2677 break;
2678 case _lev_ctrl_CC73_EXT:
2679 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2680 decodedcontroller.controller_number = 73;
2681 break;
2682 case _lev_ctrl_CC74_EXT:
2683 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2684 decodedcontroller.controller_number = 74;
2685 break;
2686 case _lev_ctrl_CC75_EXT:
2687 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2688 decodedcontroller.controller_number = 75;
2689 break;
2690 case _lev_ctrl_CC76_EXT:
2691 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2692 decodedcontroller.controller_number = 76;
2693 break;
2694 case _lev_ctrl_CC77_EXT:
2695 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2696 decodedcontroller.controller_number = 77;
2697 break;
2698 case _lev_ctrl_CC78_EXT:
2699 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2700 decodedcontroller.controller_number = 78;
2701 break;
2702 case _lev_ctrl_CC79_EXT:
2703 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2704 decodedcontroller.controller_number = 79;
2705 break;
2706 case _lev_ctrl_CC84_EXT:
2707 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2708 decodedcontroller.controller_number = 84;
2709 break;
2710 case _lev_ctrl_CC85_EXT:
2711 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2712 decodedcontroller.controller_number = 85;
2713 break;
2714 case _lev_ctrl_CC86_EXT:
2715 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2716 decodedcontroller.controller_number = 86;
2717 break;
2718 case _lev_ctrl_CC87_EXT:
2719 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2720 decodedcontroller.controller_number = 87;
2721 break;
2722 case _lev_ctrl_CC89_EXT:
2723 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2724 decodedcontroller.controller_number = 89;
2725 break;
2726 case _lev_ctrl_CC90_EXT:
2727 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2728 decodedcontroller.controller_number = 90;
2729 break;
2730 case _lev_ctrl_CC96_EXT:
2731 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2732 decodedcontroller.controller_number = 96;
2733 break;
2734 case _lev_ctrl_CC97_EXT:
2735 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2736 decodedcontroller.controller_number = 97;
2737 break;
2738 case _lev_ctrl_CC102_EXT:
2739 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2740 decodedcontroller.controller_number = 102;
2741 break;
2742 case _lev_ctrl_CC103_EXT:
2743 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2744 decodedcontroller.controller_number = 103;
2745 break;
2746 case _lev_ctrl_CC104_EXT:
2747 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2748 decodedcontroller.controller_number = 104;
2749 break;
2750 case _lev_ctrl_CC105_EXT:
2751 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2752 decodedcontroller.controller_number = 105;
2753 break;
2754 case _lev_ctrl_CC106_EXT:
2755 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2756 decodedcontroller.controller_number = 106;
2757 break;
2758 case _lev_ctrl_CC107_EXT:
2759 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2760 decodedcontroller.controller_number = 107;
2761 break;
2762 case _lev_ctrl_CC108_EXT:
2763 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2764 decodedcontroller.controller_number = 108;
2765 break;
2766 case _lev_ctrl_CC109_EXT:
2767 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2768 decodedcontroller.controller_number = 109;
2769 break;
2770 case _lev_ctrl_CC110_EXT:
2771 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2772 decodedcontroller.controller_number = 110;
2773 break;
2774 case _lev_ctrl_CC111_EXT:
2775 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2776 decodedcontroller.controller_number = 111;
2777 break;
2778 case _lev_ctrl_CC112_EXT:
2779 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2780 decodedcontroller.controller_number = 112;
2781 break;
2782 case _lev_ctrl_CC113_EXT:
2783 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2784 decodedcontroller.controller_number = 113;
2785 break;
2786 case _lev_ctrl_CC114_EXT:
2787 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2788 decodedcontroller.controller_number = 114;
2789 break;
2790 case _lev_ctrl_CC115_EXT:
2791 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2792 decodedcontroller.controller_number = 115;
2793 break;
2794 case _lev_ctrl_CC116_EXT:
2795 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2796 decodedcontroller.controller_number = 116;
2797 break;
2798 case _lev_ctrl_CC117_EXT:
2799 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2800 decodedcontroller.controller_number = 117;
2801 break;
2802 case _lev_ctrl_CC118_EXT:
2803 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2804 decodedcontroller.controller_number = 118;
2805 break;
2806 case _lev_ctrl_CC119_EXT:
2807 decodedcontroller.type = leverage_ctrl_t::type_controlchange;
2808 decodedcontroller.controller_number = 119;
2809 break;
2810
2811 // unknown controller type
2812 default:
2813 decodedcontroller.type = leverage_ctrl_t::type_none;
2814 decodedcontroller.controller_number = 0;
2815 printf("Warning: Unknown leverage controller type (0x%x).\n", EncodedController);
2816 break;
2817 }
2818 return decodedcontroller;
2819 }
2820
2821 // see above (diagnostic push not supported prior GCC 4.6)
2822 //#pragma GCC diagnostic pop
2823
2824 DimensionRegion::_lev_ctrl_t DimensionRegion::EncodeLeverageController(leverage_ctrl_t DecodedController) {
2825 _lev_ctrl_t encodedcontroller;
2826 switch (DecodedController.type) {
2827 // special controller
2828 case leverage_ctrl_t::type_none:
2829 encodedcontroller = _lev_ctrl_none;
2830 break;
2831 case leverage_ctrl_t::type_velocity:
2832 encodedcontroller = _lev_ctrl_velocity;
2833 break;
2834 case leverage_ctrl_t::type_channelaftertouch:
2835 encodedcontroller = _lev_ctrl_channelaftertouch;
2836 break;
2837
2838 // ordinary MIDI control change controller
2839 case leverage_ctrl_t::type_controlchange:
2840 switch (DecodedController.controller_number) {
2841 case 1:
2842 encodedcontroller = _lev_ctrl_modwheel;
2843 break;
2844 case 2:
2845 encodedcontroller = _lev_ctrl_breath;
2846 break;
2847 case 4:
2848 encodedcontroller = _lev_ctrl_foot;
2849 break;
2850 case 12:
2851 encodedcontroller = _lev_ctrl_effect1;
2852 break;
2853 case 13:
2854 encodedcontroller = _lev_ctrl_effect2;
2855 break;
2856 case 16:
2857 encodedcontroller = _lev_ctrl_genpurpose1;
2858 break;
2859 case 17:
2860 encodedcontroller = _lev_ctrl_genpurpose2;
2861 break;
2862 case 18:
2863 encodedcontroller = _lev_ctrl_genpurpose3;
2864 break;
2865 case 19:
2866 encodedcontroller = _lev_ctrl_genpurpose4;
2867 break;
2868 case 5:
2869 encodedcontroller = _lev_ctrl_portamentotime;
2870 break;
2871 case 64:
2872 encodedcontroller = _lev_ctrl_sustainpedal;
2873 break;
2874 case 65:
2875 encodedcontroller = _lev_ctrl_portamento;
2876 break;
2877 case 66:
2878 encodedcontroller = _lev_ctrl_sostenutopedal;
2879 break;
2880 case 67:
2881 encodedcontroller = _lev_ctrl_softpedal;
2882 break;
2883 case 80:
2884 encodedcontroller = _lev_ctrl_genpurpose5;
2885 break;
2886 case 81:
2887 encodedcontroller = _lev_ctrl_genpurpose6;
2888 break;
2889 case 82:
2890 encodedcontroller = _lev_ctrl_genpurpose7;
2891 break;
2892 case 83:
2893 encodedcontroller = _lev_ctrl_genpurpose8;
2894 break;
2895 case 91:
2896 encodedcontroller = _lev_ctrl_effect1depth;
2897 break;
2898 case 92:
2899 encodedcontroller = _lev_ctrl_effect2depth;
2900 break;
2901 case 93:
2902 encodedcontroller = _lev_ctrl_effect3depth;
2903 break;
2904 case 94:
2905 encodedcontroller = _lev_ctrl_effect4depth;
2906 break;
2907 case 95:
2908 encodedcontroller = _lev_ctrl_effect5depth;
2909 break;
2910
2911 // format extension (these controllers are so far only
2912 // supported by LinuxSampler & gigedit) they will *NOT*
2913 // work with Gigasampler/GigaStudio !
2914 case 3:
2915 encodedcontroller = _lev_ctrl_CC3_EXT;
2916 break;
2917 case 6:
2918 encodedcontroller = _lev_ctrl_CC6_EXT;
2919 break;
2920 case 7:
2921 encodedcontroller = _lev_ctrl_CC7_EXT;
2922 break;
2923 case 8:
2924 encodedcontroller = _lev_ctrl_CC8_EXT;
2925 break;
2926 case 9:
2927 encodedcontroller = _lev_ctrl_CC9_EXT;
2928 break;
2929 case 10:
2930 encodedcontroller = _lev_ctrl_CC10_EXT;
2931 break;
2932 case 11:
2933 encodedcontroller = _lev_ctrl_CC11_EXT;
2934 break;
2935 case 14:
2936 encodedcontroller = _lev_ctrl_CC14_EXT;
2937 break;
2938 case 15:
2939 encodedcontroller = _lev_ctrl_CC15_EXT;
2940 break;
2941 case 20:
2942 encodedcontroller = _lev_ctrl_CC20_EXT;
2943 break;
2944 case 21:
2945 encodedcontroller = _lev_ctrl_CC21_EXT;
2946 break;
2947 case 22:
2948 encodedcontroller = _lev_ctrl_CC22_EXT;
2949 break;
2950 case 23:
2951 encodedcontroller = _lev_ctrl_CC23_EXT;
2952 break;
2953 case 24:
2954 encodedcontroller = _lev_ctrl_CC24_EXT;
2955 break;
2956 case 25:
2957 encodedcontroller = _lev_ctrl_CC25_EXT;
2958 break;
2959 case 26:
2960 encodedcontroller = _lev_ctrl_CC26_EXT;
2961 break;
2962 case 27:
2963 encodedcontroller = _lev_ctrl_CC27_EXT;
2964 break;
2965 case 28:
2966 encodedcontroller = _lev_ctrl_CC28_EXT;
2967 break;
2968 case 29:
2969 encodedcontroller = _lev_ctrl_CC29_EXT;
2970 break;
2971 case 30:
2972 encodedcontroller = _lev_ctrl_CC30_EXT;
2973 break;
2974 case 31:
2975 encodedcontroller = _lev_ctrl_CC31_EXT;
2976 break;
2977 case 68:
2978 encodedcontroller = _lev_ctrl_CC68_EXT;
2979 break;
2980 case 69:
2981 encodedcontroller = _lev_ctrl_CC69_EXT;
2982 break;
2983 case 70:
2984 encodedcontroller = _lev_ctrl_CC70_EXT;
2985 break;
2986 case 71:
2987 encodedcontroller = _lev_ctrl_CC71_EXT;
2988 break;
2989 case 72:
2990 encodedcontroller = _lev_ctrl_CC72_EXT;
2991 break;
2992 case 73:
2993 encodedcontroller = _lev_ctrl_CC73_EXT;
2994 break;
2995 case 74:
2996 encodedcontroller = _lev_ctrl_CC74_EXT;
2997 break;
2998 case 75:
2999 encodedcontroller = _lev_ctrl_CC75_EXT;
3000 break;
3001 case 76:
3002 encodedcontroller = _lev_ctrl_CC76_EXT;
3003 break;
3004 case 77:
3005 encodedcontroller = _lev_ctrl_CC77_EXT;
3006 break;
3007 case 78:
3008 encodedcontroller = _lev_ctrl_CC78_EXT;
3009 break;
3010 case 79:
3011 encodedcontroller = _lev_ctrl_CC79_EXT;
3012 break;
3013 case 84:
3014 encodedcontroller = _lev_ctrl_CC84_EXT;
3015 break;
3016 case 85:
3017 encodedcontroller = _lev_ctrl_CC85_EXT;
3018 break;
3019 case 86:
3020 encodedcontroller = _lev_ctrl_CC86_EXT;
3021 break;
3022 case 87:
3023 encodedcontroller = _lev_ctrl_CC87_EXT;
3024 break;
3025 case 89:
3026 encodedcontroller = _lev_ctrl_CC89_EXT;
3027 break;
3028 case 90:
3029 encodedcontroller = _lev_ctrl_CC90_EXT;
3030 break;
3031 case 96:
3032 encodedcontroller = _lev_ctrl_CC96_EXT;
3033 break;
3034 case 97:
3035 encodedcontroller = _lev_ctrl_CC97_EXT;
3036 break;
3037 case 102:
3038 encodedcontroller = _lev_ctrl_CC102_EXT;
3039 break;
3040 case 103:
3041 encodedcontroller = _lev_ctrl_CC103_EXT;
3042 break;
3043 case 104:
3044 encodedcontroller = _lev_ctrl_CC104_EXT;
3045 break;
3046 case 105:
3047 encodedcontroller = _lev_ctrl_CC105_EXT;
3048 break;
3049 case 106:
3050 encodedcontroller = _lev_ctrl_CC106_EXT;
3051 break;
3052 case 107:
3053 encodedcontroller = _lev_ctrl_CC107_EXT;
3054 break;
3055 case 108:
3056 encodedcontroller = _lev_ctrl_CC108_EXT;
3057 break;
3058 case 109:
3059 encodedcontroller = _lev_ctrl_CC109_EXT;
3060 break;
3061 case 110:
3062 encodedcontroller = _lev_ctrl_CC110_EXT;
3063 break;
3064 case 111:
3065 encodedcontroller = _lev_ctrl_CC111_EXT;
3066 break;
3067 case 112:
3068 encodedcontroller = _lev_ctrl_CC112_EXT;
3069 break;
3070 case 113:
3071 encodedcontroller = _lev_ctrl_CC113_EXT;
3072 break;
3073 case 114:
3074 encodedcontroller = _lev_ctrl_CC114_EXT;
3075 break;
3076 case 115:
3077 encodedcontroller = _lev_ctrl_CC115_EXT;
3078 break;
3079 case 116:
3080 encodedcontroller = _lev_ctrl_CC116_EXT;
3081 break;
3082 case 117:
3083 encodedcontroller = _lev_ctrl_CC117_EXT;
3084 break;
3085 case 118:
3086 encodedcontroller = _lev_ctrl_CC118_EXT;
3087 break;
3088 case 119:
3089 encodedcontroller = _lev_ctrl_CC119_EXT;
3090 break;
3091
3092 default:
3093 throw gig::Exception("leverage controller number is not supported by the gig format");
3094 }
3095 break;
3096 default:
3097 throw gig::Exception("Unknown leverage controller type.");
3098 }
3099 return encodedcontroller;
3100 }
3101
3102 DimensionRegion::~DimensionRegion() {
3103 Instances--;
3104 if (!Instances) {
3105 // delete the velocity->volume tables
3106 VelocityTableMap::iterator iter;
3107 for (iter = pVelocityTables->begin(); iter != pVelocityTables->end(); iter++) {
3108 double* pTable = iter->second;
3109 if (pTable) delete[] pTable;
3110 }
3111 pVelocityTables->clear();
3112 delete pVelocityTables;
3113 pVelocityTables = NULL;
3114 }
3115 if (VelocityTable) delete[] VelocityTable;
3116 }
3117
3118 /**
3119 * Returns the correct amplitude factor for the given \a MIDIKeyVelocity.
3120 * All involved parameters (VelocityResponseCurve, VelocityResponseDepth
3121 * and VelocityResponseCurveScaling) involved are taken into account to
3122 * calculate the amplitude factor. Use this method when a key was
3123 * triggered to get the volume with which the sample should be played
3124 * back.
3125 *
3126 * @param MIDIKeyVelocity MIDI velocity value of the triggered key (between 0 and 127)
3127 * @returns amplitude factor (between 0.0 and 1.0)
3128 */
3129 double DimensionRegion::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
3130 return pVelocityAttenuationTable[MIDIKeyVelocity];
3131 }
3132
3133 double DimensionRegion::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
3134 return pVelocityReleaseTable[MIDIKeyVelocity];
3135 }
3136
3137 double DimensionRegion::GetVelocityCutoff(uint8_t MIDIKeyVelocity) {
3138 return pVelocityCutoffTable[MIDIKeyVelocity];
3139 }
3140
3141 /**
3142 * Updates the respective member variable and the lookup table / cache
3143 * that depends on this value.
3144 */
3145 void DimensionRegion::SetVelocityResponseCurve(curve_type_t curve) {
3146 pVelocityAttenuationTable =
3147 GetVelocityTable(
3148 curve, VelocityResponseDepth, VelocityResponseCurveScaling
3149 );
3150 VelocityResponseCurve = curve;
3151 }
3152
3153 /**
3154 * Updates the respective member variable and the lookup table / cache
3155 * that depends on this value.
3156 */
3157 void DimensionRegion::SetVelocityResponseDepth(uint8_t depth) {
3158 pVelocityAttenuationTable =
3159 GetVelocityTable(
3160 VelocityResponseCurve, depth, VelocityResponseCurveScaling
3161 );
3162 VelocityResponseDepth = depth;
3163 }
3164
3165 /**
3166 * Updates the respective member variable and the lookup table / cache
3167 * that depends on this value.
3168 */
3169 void DimensionRegion::SetVelocityResponseCurveScaling(uint8_t scaling) {
3170 pVelocityAttenuationTable =
3171 GetVelocityTable(
3172 VelocityResponseCurve, VelocityResponseDepth, scaling
3173 );
3174 VelocityResponseCurveScaling = scaling;
3175 }
3176
3177 /**
3178 * Updates the respective member variable and the lookup table / cache
3179 * that depends on this value.
3180 */
3181 void DimensionRegion::SetReleaseVelocityResponseCurve(curve_type_t curve) {
3182 pVelocityReleaseTable = GetReleaseVelocityTable(curve, ReleaseVelocityResponseDepth);
3183 ReleaseVelocityResponseCurve = curve;
3184 }
3185
3186 /**
3187 * Updates the respective member variable and the lookup table / cache
3188 * that depends on this value.
3189 */
3190 void DimensionRegion::SetReleaseVelocityResponseDepth(uint8_t depth) {
3191 pVelocityReleaseTable = GetReleaseVelocityTable(ReleaseVelocityResponseCurve, depth);
3192 ReleaseVelocityResponseDepth = depth;
3193 }
3194
3195 /**
3196 * Updates the respective member variable and the lookup table / cache
3197 * that depends on this value.
3198 */
3199 void DimensionRegion::SetVCFCutoffController(vcf_cutoff_ctrl_t controller) {
3200 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, VCFVelocityScale, controller);
3201 VCFCutoffController = controller;
3202 }
3203
3204 /**
3205 * Updates the respective member variable and the lookup table / cache
3206 * that depends on this value.
3207 */
3208 void DimensionRegion::SetVCFVelocityCurve(curve_type_t curve) {
3209 pVelocityCutoffTable = GetCutoffVelocityTable(curve, VCFVelocityDynamicRange, VCFVelocityScale, VCFCutoffController);
3210 VCFVelocityCurve = curve;
3211 }
3212
3213 /**
3214 * Updates the respective member variable and the lookup table / cache
3215 * that depends on this value.
3216 */
3217 void DimensionRegion::SetVCFVelocityDynamicRange(uint8_t range) {
3218 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, range, VCFVelocityScale, VCFCutoffController);
3219 VCFVelocityDynamicRange = range;
3220 }
3221
3222 /**
3223 * Updates the respective member variable and the lookup table / cache
3224 * that depends on this value.
3225 */
3226 void DimensionRegion::SetVCFVelocityScale(uint8_t scaling) {
3227 pVelocityCutoffTable = GetCutoffVelocityTable(VCFVelocityCurve, VCFVelocityDynamicRange, scaling, VCFCutoffController);
3228 VCFVelocityScale = scaling;
3229 }
3230
3231 double* DimensionRegion::CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling) {
3232
3233 // line-segment approximations of the 15 velocity curves
3234
3235 // linear
3236 const int lin0[] = { 1, 1, 127, 127 };
3237 const int lin1[] = { 1, 21, 127, 127 };
3238 const int lin2[] = { 1, 45, 127, 127 };
3239 const int lin3[] = { 1, 74, 127, 127 };
3240 const int lin4[] = { 1, 127, 127, 127 };
3241
3242 // non-linear
3243 const int non0[] = { 1, 4, 24, 5, 57, 17, 92, 57, 122, 127, 127, 127 };
3244 const int non1[] = { 1, 4, 46, 9, 93, 56, 118, 106, 123, 127,
3245 127, 127 };
3246 const int non2[] = { 1, 4, 46, 9, 57, 20, 102, 107, 107, 127,
3247 127, 127 };
3248 const int non3[] = { 1, 15, 10, 19, 67, 73, 80, 80, 90, 98, 98, 127,
3249 127, 127 };
3250 const int non4[] = { 1, 25, 33, 57, 82, 81, 92, 127, 127, 127 };
3251
3252 // special
3253 const int spe0[] = { 1, 2, 76, 10, 90, 15, 95, 20, 99, 28, 103, 44,
3254 113, 127, 127, 127 };
3255 const int spe1[] = { 1, 2, 27, 5, 67, 18, 89, 29, 95, 35, 107, 67,
3256 118, 127, 127, 127 };
3257 const int spe2[] = { 1, 1, 33, 1, 53, 5, 61, 13, 69, 32, 79, 74,
3258 85, 90, 91, 127, 127, 127 };
3259 const int spe3[] = { 1, 32, 28, 35, 66, 48, 89, 59, 95, 65, 99, 73,
3260 117, 127, 127, 127 };
3261 const int spe4[] = { 1, 4, 23, 5, 49, 13, 57, 17, 92, 57, 122, 127,
3262 127, 127 };
3263
3264 // this is only used by the VCF velocity curve
3265 const int spe5[] = { 1, 2, 30, 5, 60, 19, 77, 70, 83, 85, 88, 106,
3266 91, 127, 127, 127 };
3267
3268 const int* const curves[] = { non0, non1, non2, non3, non4,
3269 lin0, lin1, lin2, lin3, lin4,
3270 spe0, spe1, spe2, spe3, spe4, spe5 };
3271
3272 double* const table = new double[128];
3273
3274 const int* curve = curves[curveType * 5 + depth];
3275 const int s = scaling == 0 ? 20 : scaling; // 0 or 20 means no scaling
3276
3277 table[0] = 0;
3278 for (int x = 1 ; x < 128 ; x++) {
3279
3280 if (x > curve[2]) curve += 2;
3281 double y = curve[1] + (x - curve[0]) *
3282 (double(curve[3] - curve[1]) / (curve[2] - curve[0]));
3283 y = y / 127;
3284
3285 // Scale up for s > 20, down for s < 20. When
3286 // down-scaling, the curve still ends at 1.0.
3287 if (s < 20 && y >= 0.5)
3288 y = y / ((2 - 40.0 / s) * y + 40.0 / s - 1);
3289 else
3290 y = y * (s / 20.0);
3291 if (y > 1) y = 1;
3292
3293 table[x] = y;
3294 }
3295 return table;
3296 }
3297
3298
3299 // *************** Region ***************
3300 // *
3301
3302 Region::Region(Instrument* pInstrument, RIFF::List* rgnList) : DLS::Region((DLS::Instrument*) pInstrument, rgnList) {
3303 // Initialization
3304 Dimensions = 0;
3305 for (int i = 0; i < 256; i++) {
3306 pDimensionRegions[i] = NULL;
3307 }
3308 Layers = 1;
3309 File* file = (File*) GetParent()->GetParent();
3310 int dimensionBits = (file->pVersion && file->pVersion->major > 2) ? 8 : 5;
3311
3312 // Actual Loading
3313
3314 if (!file->GetAutoLoad()) return;
3315
3316 LoadDimensionRegions(rgnList);
3317
3318 RIFF::Chunk* _3lnk = rgnList->GetSubChunk(CHUNK_ID_3LNK);
3319 if (_3lnk) {
3320 _3lnk->SetPos(0);
3321
3322 DimensionRegions = _3lnk->ReadUint32();
3323 for (int i = 0; i < dimensionBits; i++) {
3324 dimension_t dimension = static_cast<dimension_t>(_3lnk->ReadUint8());
3325 uint8_t bits = _3lnk->ReadUint8();
3326 _3lnk->ReadUint8(); // bit position of the dimension (bits[0] + bits[1] + ... + bits[i-1])
3327 _3lnk->ReadUint8(); // (1 << bit position of next dimension) - (1 << bit position of this dimension)
3328 uint8_t zones = _3lnk->ReadUint8(); // new for v3: number of zones doesn't have to be == pow(2,bits)
3329 if (dimension == dimension_none) { // inactive dimension
3330 pDimensionDefinitions[i].dimension = dimension_none;
3331 pDimensionDefinitions[i].bits = 0;
3332 pDimensionDefinitions[i].zones = 0;
3333 pDimensionDefinitions[i].split_type = split_type_bit;
3334 pDimensionDefinitions[i].zone_size = 0;
3335 }
3336 else { // active dimension
3337 pDimensionDefinitions[i].dimension = dimension;
3338 pDimensionDefinitions[i].bits = bits;
3339 pDimensionDefinitions[i].zones = zones ? zones : 0x01 << bits; // = pow(2,bits)
3340 pDimensionDefinitions[i].split_type = __resolveSplitType(dimension);
3341 pDimensionDefinitions[i].zone_size = __resolveZoneSize(pDimensionDefinitions[i]);
3342 Dimensions++;
3343
3344 // if this is a layer dimension, remember the amount of layers
3345 if (dimension == dimension_layer) Layers = pDimensionDefinitions[i].zones;
3346 }
3347 _3lnk->SetPos(3, RIFF::stream_curpos); // jump forward to next dimension definition
3348 }
3349 for (int i = dimensionBits ; i < 8 ; i++) pDimensionDefinitions[i].bits = 0;
3350
3351 // if there's a velocity dimension and custom velocity zone splits are used,
3352 // update the VelocityTables in the dimension regions
3353 UpdateVelocityTable();
3354
3355 // jump to start of the wave pool indices (if not already there)
3356 if (file->pVersion && file->pVersion->major > 2)
3357 _3lnk->SetPos(68); // version 3 has a different 3lnk structure
3358 else
3359 _3lnk->SetPos(44);
3360
3361 // load sample references (if auto loading is enabled)
3362 if (file->GetAutoLoad()) {
3363 for (uint i = 0; i < DimensionRegions; i++) {
3364 uint32_t wavepoolindex = _3lnk->ReadUint32();
3365 if (file->pWavePoolTable && pDimensionRegions[i])
3366 pDimensionRegions[i]->pSample = GetSampleFromWavePool(wavepoolindex);
3367 }
3368 GetSample(); // load global region sample reference
3369 }
3370 } else {
3371 DimensionRegions = 0;
3372 for (int i = 0 ; i < 8 ; i++) {
3373 pDimensionDefinitions[i].dimension = dimension_none;
3374 pDimensionDefinitions[i].bits = 0;
3375 pDimensionDefinitions[i].zones = 0;
3376 }
3377 }
3378
3379 // make sure there is at least one dimension region
3380 if (!DimensionRegions) {
3381 RIFF::List* _3prg = rgnList->GetSubList(LIST_TYPE_3PRG);
3382 if (!_3prg) _3prg = rgnList->AddSubList(LIST_TYPE_3PRG);
3383 RIFF::List* _3ewl = _3prg->AddSubList(LIST_TYPE_3EWL);
3384 pDimensionRegions[0] = new DimensionRegion(this, _3ewl);
3385 DimensionRegions = 1;
3386 }
3387 }
3388
3389 /**
3390 * Apply Region settings and all its DimensionRegions to the respective
3391 * RIFF chunks. You have to call File::Save() to make changes persistent.
3392 *
3393 * Usually there is absolutely no need to call this method explicitly.
3394 * It will be called automatically when File::Save() was called.
3395 *
3396 * @param pProgress - callback function for progress notification
3397 * @throws gig::Exception if samples cannot be dereferenced
3398 */
3399 void Region::UpdateChunks(progress_t* pProgress) {
3400 // in the gig format we don't care about the Region's sample reference
3401 // but we still have to provide some existing one to not corrupt the
3402 // file, so to avoid the latter we simply always assign the sample of
3403 // the first dimension region of this region
3404 pSample = pDimensionRegions[0]->pSample;
3405
3406 // first update base class's chunks
3407 DLS::Region::UpdateChunks(pProgress);
3408
3409 // update dimension region's chunks
3410 for (int i = 0; i < DimensionRegions; i++) {
3411 pDimensionRegions[i]->UpdateChunks(pProgress);
3412 }
3413
3414 File* pFile = (File*) GetParent()->GetParent();
3415 const bool versiongt2 = pFile->pVersion && pFile->pVersion->major > 2;
3416 const int iMaxDimensions = versiongt2 ? 8 : 5;
3417 const int iMaxDimensionRegions = versiongt2 ? 256 : 32;
3418
3419 // make sure '3lnk' chunk exists
3420 RIFF::Chunk* _3lnk = pCkRegion->GetSubChunk(CHUNK_ID_3LNK);
3421 if (!_3lnk) {
3422 const int _3lnkChunkSize = versiongt2 ? 1092 : 172;
3423 _3lnk = pCkRegion->AddSubChunk(CHUNK_ID_3LNK, _3lnkChunkSize);
3424 memset(_3lnk->LoadChunkData(), 0, _3lnkChunkSize);
3425
3426 // move 3prg to last position
3427 pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3PRG), (RIFF::Chunk*)NULL);
3428 }
3429
3430 // update dimension definitions in '3lnk' chunk
3431 uint8_t* pData = (uint8_t*) _3lnk->LoadChunkData();
3432 store32(&pData[0], DimensionRegions);
3433 int shift = 0;
3434 for (int i = 0; i < iMaxDimensions; i++) {
3435 pData[4 + i * 8] = (uint8_t) pDimensionDefinitions[i].dimension;
3436 pData[5 + i * 8] = pDimensionDefinitions[i].bits;
3437 pData[6 + i * 8] = pDimensionDefinitions[i].dimension == dimension_none ? 0 : shift;
3438 pData[7 + i * 8] = (1 << (shift + pDimensionDefinitions[i].bits)) - (1 << shift);
3439 pData[8 + i * 8] = pDimensionDefinitions[i].zones;
3440 // next 3 bytes unknown, always zero?
3441
3442 shift += pDimensionDefinitions[i].bits;
3443 }
3444
3445 // update wave pool table in '3lnk' chunk
3446 const int iWavePoolOffset = versiongt2 ? 68 : 44;
3447 for (uint i = 0; i < iMaxDimensionRegions; i++) {
3448 int iWaveIndex = -1;
3449 if (i < DimensionRegions) {
3450 if (!pFile->pSamples || !pFile->pSamples->size()) throw gig::Exception("Could not update gig::Region, there are no samples");
3451 File::SampleList::iterator iter = pFile->pSamples->begin();
3452 File::SampleList::iterator end = pFile->pSamples->end();
3453 for (int index = 0; iter != end; ++iter, ++index) {
3454 if (*iter == pDimensionRegions[i]->pSample) {
3455 iWaveIndex = index;
3456 break;
3457 }
3458 }
3459 }
3460 store32(&pData[iWavePoolOffset + i * 4], iWaveIndex);
3461 }
3462
3463 // The following chunks are just added for compatibility with the
3464 // GigaStudio software, which would show a warning if these were
3465 // missing. However currently these chunks don't cover any useful
3466 // data. So if this gig file uses any of our own gig format
3467 // extensions which would cause this gig file to be unloadable
3468 // with GSt software anyway, then just skip these GSt compatibility
3469 // chunks here as well.
3470 if (versiongt2 && !UsesAnyGigFormatExtension()) {
3471 // add 3dnm list which always seems to be empty
3472 RIFF::List* _3dnm = pCkRegion->GetSubList(LIST_TYPE_3DNM);
3473 if (!_3dnm) _3dnm = pCkRegion->AddSubList(LIST_TYPE_3DNM);
3474
3475 // add 3ddp chunk which always seems to have 16 bytes of 0xFF
3476 RIFF::Chunk* _3ddp = pCkRegion->GetSubChunk(CHUNK_ID_3DDP);
3477 if (!_3ddp) _3ddp = pCkRegion->AddSubChunk(CHUNK_ID_3DDP, 16);
3478 uint8_t* pData = (uint8_t*) _3ddp->LoadChunkData();
3479 for (int i = 0; i < 16; i += 4) {
3480 store32(&pData[i], 0xFFFFFFFF);
3481 }
3482
3483 // move 3dnm and 3ddp to the end of the region list
3484 pCkRegion->MoveSubChunk(pCkRegion->GetSubList(LIST_TYPE_3DNM), (RIFF::Chunk*)NULL);
3485 pCkRegion->MoveSubChunk(pCkRegion->GetSubChunk(CHUNK_ID_3DDP), (RIFF::Chunk*)NULL);
3486 } else {
3487 // this is intended for the user switching from GSt >= 3 version
3488 // back to an older format version, delete GSt3 chunks ...
3489 RIFF::List* _3dnm = pCkRegion->GetSubList(LIST_TYPE_3DNM);
3490 if (_3dnm) pCkRegion->DeleteSubChunk(_3dnm);
3491
3492 RIFF::Chunk* _3ddp = pCkRegion->GetSubChunk(CHUNK_ID_3DDP);
3493 if (_3ddp) pCkRegion->DeleteSubChunk(_3ddp);
3494 }
3495 }
3496
3497 void Region::LoadDimensionRegions(RIFF::List* rgn) {
3498 RIFF::List* _3prg = rgn->GetSubList(LIST_TYPE_3PRG);
3499 if (_3prg) {
3500 int dimensionRegionNr = 0;
3501 RIFF::List* _3ewl = _3prg->GetFirstSubList();
3502 while (_3ewl) {
3503 if (_3ewl->GetListType() == LIST_TYPE_3EWL) {
3504 pDimensionRegions[dimensionRegionNr] = new DimensionRegion(this, _3ewl);
3505 dimensionRegionNr++;
3506 }
3507 _3ewl = _3prg->GetNextSubList();
3508 }
3509 if (dimensionRegionNr == 0) throw gig::Exception("No dimension region found.");
3510 }
3511 }
3512
3513 void Region::SetKeyRange(uint16_t Low, uint16_t High) {
3514 // update KeyRange struct and make sure regions are in correct order
3515 DLS::Region::SetKeyRange(Low, High);
3516 // update Region key table for fast lookup
3517 ((gig::Instrument*)GetParent())->UpdateRegionKeyTable();
3518 }
3519
3520 void Region::UpdateVelocityTable() {
3521 // get velocity dimension's index
3522 int veldim = -1;
3523 for (int i = 0 ; i < Dimensions ; i++) {
3524 if (pDimensionDefinitions[i].dimension == gig::dimension_velocity) {
3525 veldim = i;
3526 break;
3527 }
3528 }
3529 if (veldim == -1) return;
3530
3531 int step = 1;
3532 for (int i = 0 ; i < veldim ; i++) step <<= pDimensionDefinitions[i].bits;
3533 int skipveldim = (step << pDimensionDefinitions[veldim].bits) - step;
3534
3535 // loop through all dimension regions for all dimensions except the velocity dimension
3536 int dim[8] = { 0 };
3537 for (int i = 0 ; i < DimensionRegions ; i++) {
3538 const int end = i + step * pDimensionDefinitions[veldim].zones;
3539
3540 // create a velocity table for all cases where the velocity zone is zero
3541 if (pDimensionRegions[i]->DimensionUpperLimits[veldim] ||
3542 pDimensionRegions[i]->VelocityUpperLimit) {
3543 // create the velocity table
3544 uint8_t* table = pDimensionRegions[i]->VelocityTable;
3545 if (!table) {
3546 table = new uint8_t[128];
3547 pDimensionRegions[i]->VelocityTable = table;
3548 }
3549 int tableidx = 0;
3550 int velocityZone = 0;
3551 if (pDimensionRegions[i]->DimensionUpperLimits[veldim]) { // gig3
3552 for (int k = i ; k < end ; k += step) {
3553 DimensionRegion *d = pDimensionRegions[k];
3554 for (; tableidx <= d->DimensionUpperLimits[veldim] ; tableidx++) table[tableidx] = velocityZone;
3555 velocityZone++;
3556 }
3557 } else { // gig2
3558 for (int k = i ; k < end ; k += step) {
3559 DimensionRegion *d = pDimensionRegions[k];
3560 for (; tableidx <= d->VelocityUpperLimit ; tableidx++) table[tableidx] = velocityZone;
3561 velocityZone++;
3562 }
3563 }
3564 } else {
3565 if (pDimensionRegions[i]->VelocityTable) {
3566 delete[] pDimensionRegions[i]->VelocityTable;
3567 pDimensionRegions[i]->VelocityTable = 0;
3568 }
3569 }
3570
3571 // jump to the next case where the velocity zone is zero
3572 int j;
3573 int shift = 0;
3574 for (j = 0 ; j < Dimensions ; j++) {
3575 if (j == veldim) i += skipveldim; // skip velocity dimension
3576 else {
3577 dim[j]++;
3578 if (dim[j] < pDimensionDefinitions[j].zones) break;
3579 else {
3580 // skip unused dimension regions
3581 dim[j] = 0;
3582 i += ((1 << pDimensionDefinitions[j].bits) -
3583 pDimensionDefinitions[j].zones) << shift;
3584 }
3585 }
3586 shift += pDimensionDefinitions[j].bits;
3587 }
3588 if (j == Dimensions) break;
3589 }
3590 }
3591
3592 /** @brief Einstein would have dreamed of it - create a new dimension.
3593 *
3594 * Creates a new dimension with the dimension definition given by
3595 * \a pDimDef. The appropriate amount of DimensionRegions will be created.
3596 * There is a hard limit of dimensions and total amount of "bits" all
3597 * dimensions can have. This limit is dependant to what gig file format
3598 * version this file refers to. The gig v2 (and lower) format has a
3599 * dimension limit and total amount of bits limit of 5, whereas the gig v3
3600 * format has a limit of 8.
3601 *
3602 * @param pDimDef - defintion of the new dimension
3603 * @throws gig::Exception if dimension of the same type exists already
3604 * @throws gig::Exception if amount of dimensions or total amount of
3605 * dimension bits limit is violated
3606 */
3607 void Region::AddDimension(dimension_def_t* pDimDef) {
3608 // some initial sanity checks of the given dimension definition
3609 if (pDimDef->zones < 2)
3610 throw gig::Exception("Could not add new dimension, amount of requested zones must always be at least two");
3611 if (pDimDef->bits < 1)
3612 throw gig::Exception("Could not add new dimension, amount of requested requested zone bits must always be at least one");
3613 if (pDimDef->dimension == dimension_samplechannel) {
3614 if (pDimDef->zones != 2)
3615 throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zones must always be 2 for this dimension type");
3616 if (pDimDef->bits != 1)
3617 throw gig::Exception("Could not add new 'sample channel' dimensions, the requested amount of zone bits must always be 1 for this dimension type");
3618 }
3619
3620 // check if max. amount of dimensions reached
3621 File* file = (File*) GetParent()->GetParent();
3622 const int iMaxDimensions = (file->pVersion && file->pVersion->major > 2) ? 8 : 5;
3623 if (Dimensions >= iMaxDimensions)
3624 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimensions already reached");
3625 // check if max. amount of dimension bits reached
3626 int iCurrentBits = 0;
3627 for (int i = 0; i < Dimensions; i++)
3628 iCurrentBits += pDimensionDefinitions[i].bits;
3629 if (iCurrentBits >= iMaxDimensions)
3630 throw gig::Exception("Could not add new dimension, max. amount of " + ToString(iMaxDimensions) + " dimension bits already reached");
3631 const int iNewBits = iCurrentBits + pDimDef->bits;
3632 if (iNewBits > iMaxDimensions)
3633 throw gig::Exception("Could not add new dimension, new dimension would exceed max. amount of " + ToString(iMaxDimensions) + " dimension bits");
3634 // check if there's already a dimensions of the same type
3635 for (int i = 0; i < Dimensions; i++)
3636 if (pDimensionDefinitions[i].dimension == pDimDef->dimension)
3637 throw gig::Exception("Could not add new dimension, there is already a dimension of the same type");
3638
3639 // pos is where the new dimension should be placed, normally
3640 // last in list, except for the samplechannel dimension which
3641 // has to be first in list
3642 int pos = pDimDef->dimension == dimension_samplechannel ? 0 : Dimensions;
3643 int bitpos = 0;
3644 for (int i = 0 ; i < pos ; i++)
3645 bitpos += pDimensionDefinitions[i].bits;
3646
3647 // make room for the new dimension
3648 for (int i = Dimensions ; i > pos ; i--) pDimensionDefinitions[i] = pDimensionDefinitions[i - 1];
3649 for (int i = 0 ; i < (1 << iCurrentBits) ; i++) {
3650 for (int j = Dimensions ; j > pos ; j--) {
3651 pDimensionRegions[i]->DimensionUpperLimits[j] =
3652 pDimensionRegions[i]->DimensionUpperLimits[j - 1];
3653 }
3654 }
3655
3656 // assign definition of new dimension
3657 pDimensionDefinitions[pos] = *pDimDef;
3658
3659 // auto correct certain dimension definition fields (where possible)
3660 pDimensionDefinitions[pos].split_type =
3661 __resolveSplitType(pDimensionDefinitions[pos].dimension);
3662 pDimensionDefinitions[pos].zone_size =
3663 __resolveZoneSize(pDimensionDefinitions[pos]);
3664
3665 // create new dimension region(s) for this new dimension, and make
3666 // sure that the dimension regions are placed correctly in both the
3667 // RIFF list and the pDimensionRegions array
3668 RIFF::Chunk* moveTo = NULL;
3669 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3670 for (int i = (1 << iCurrentBits) - (1 << bitpos) ; i >= 0 ; i -= (1 << bitpos)) {
3671 for (int k = 0 ; k < (1 << bitpos) ; k++) {
3672 pDimensionRegions[(i << pDimDef->bits) + k] = pDimensionRegions[i + k];
3673 }
3674 for (int j = 1 ; j < (1 << pDimDef->bits) ; j++) {
3675 for (int k = 0 ; k < (1 << bitpos) ; k++) {
3676 RIFF::List* pNewDimRgnListChunk = _3prg->AddSubList(LIST_TYPE_3EWL);
3677 if (moveTo) _3prg->MoveSubChunk(pNewDimRgnListChunk, moveTo);
3678 // create a new dimension region and copy all parameter values from
3679 // an existing dimension region
3680 pDimensionRegions[(i << pDimDef->bits) + (j << bitpos) + k] =
3681 new DimensionRegion(pNewDimRgnListChunk, *pDimensionRegions[i + k]);
3682
3683 DimensionRegions++;
3684 }
3685 }
3686 moveTo = pDimensionRegions[i]->pParentList;
3687 }
3688
3689 // initialize the upper limits for this dimension
3690 int mask = (1 << bitpos) - 1;
3691 for (int z = 0 ; z < pDimDef->zones ; z++) {
3692 uint8_t upperLimit = uint8_t((z + 1) * 128.0 / pDimDef->zones - 1);
3693 for (int i = 0 ; i < 1 << iCurrentBits ; i++) {
3694 pDimensionRegions[((i & ~mask) << pDimDef->bits) |
3695 (z << bitpos) |
3696 (i & mask)]->DimensionUpperLimits[pos] = upperLimit;
3697 }
3698 }
3699
3700 Dimensions++;
3701
3702 // if this is a layer dimension, update 'Layers' attribute
3703 if (pDimDef->dimension == dimension_layer) Layers = pDimDef->zones;
3704
3705 UpdateVelocityTable();
3706 }
3707
3708 /** @brief Delete an existing dimension.
3709 *
3710 * Deletes the dimension given by \a pDimDef and deletes all respective
3711 * dimension regions, that is all dimension regions where the dimension's
3712 * bit(s) part is greater than 0. In case of a 'sustain pedal' dimension
3713 * for example this would delete all dimension regions for the case(s)
3714 * where the sustain pedal is pressed down.
3715 *
3716 * @param pDimDef - dimension to delete
3717 * @throws gig::Exception if given dimension cannot be found
3718 */
3719 void Region::DeleteDimension(dimension_def_t* pDimDef) {
3720 // get dimension's index
3721 int iDimensionNr = -1;
3722 for (int i = 0; i < Dimensions; i++) {
3723 if (&pDimensionDefinitions[i] == pDimDef) {
3724 iDimensionNr = i;
3725 break;
3726 }
3727 }
3728 if (iDimensionNr < 0) throw gig::Exception("Invalid dimension_def_t pointer");
3729
3730 // get amount of bits below the dimension to delete
3731 int iLowerBits = 0;
3732 for (int i = 0; i < iDimensionNr; i++)
3733 iLowerBits += pDimensionDefinitions[i].bits;
3734
3735 // get amount ot bits above the dimension to delete
3736 int iUpperBits = 0;
3737 for (int i = iDimensionNr + 1; i < Dimensions; i++)
3738 iUpperBits += pDimensionDefinitions[i].bits;
3739
3740 RIFF::List* _3prg = pCkRegion->GetSubList(LIST_TYPE_3PRG);
3741
3742 // delete dimension regions which belong to the given dimension
3743 // (that is where the dimension's bit > 0)
3744 for (int iUpperBit = 0; iUpperBit < 1 << iUpperBits; iUpperBit++) {
3745 for (int iObsoleteBit = 1; iObsoleteBit < 1 << pDimensionDefinitions[iDimensionNr].bits; iObsoleteBit++) {
3746 for (int iLowerBit = 0; iLowerBit < 1 << iLowerBits; iLowerBit++) {
3747 int iToDelete = iUpperBit << (pDimensionDefinitions[iDimensionNr].bits + iLowerBits) |
3748 iObsoleteBit << iLowerBits |
3749 iLowerBit;
3750
3751 _3prg->DeleteSubChunk(pDimensionRegions[iToDelete]->pParentList);
3752 delete pDimensionRegions[iToDelete];
3753 pDimensionRegions[iToDelete] = NULL;
3754 DimensionRegions--;
3755 }
3756 }
3757 }
3758
3759 // defrag pDimensionRegions array
3760 // (that is remove the NULL spaces within the pDimensionRegions array)
3761 for (int iFrom = 2, iTo = 1; iFrom < 256 && iTo < 256 - 1; iTo++) {
3762 if (!pDimensionRegions[iTo]) {
3763 if (iFrom <= iTo) iFrom = iTo + 1;
3764 while (!pDimensionRegions[iFrom] && iFrom < 256) iFrom++;
3765 if (iFrom < 256 && pDimensionRegions[iFrom]) {
3766 pDimensionRegions[iTo] = pDimensionRegions[iFrom];
3767 pDimensionRegions[iFrom] = NULL;
3768 }
3769 }
3770 }
3771
3772 // remove the this dimension from the upper limits arrays
3773 for (int j = 0 ; j < 256 && pDimensionRegions[j] ; j++) {
3774 DimensionRegion* d = pDimensionRegions[j];
3775 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3776 d->DimensionUpperLimits[i - 1] = d->DimensionUpperLimits[i];
3777 }
3778 d->DimensionUpperLimits[Dimensions - 1] = 127;
3779 }
3780
3781 // 'remove' dimension definition
3782 for (int i = iDimensionNr + 1; i < Dimensions; i++) {
3783 pDimensionDefinitions[i - 1] = pDimensionDefinitions[i];
3784 }
3785 pDimensionDefinitions[Dimensions - 1].dimension = dimension_none;
3786 pDimensionDefinitions[Dimensions - 1].bits = 0;
3787 pDimensionDefinitions[Dimensions - 1].zones = 0;
3788
3789 Dimensions--;
3790
3791 // if this was a layer dimension, update 'Layers' attribute
3792 if (pDimDef->dimension == dimension_layer) Layers = 1;
3793 }
3794
3795 /** @brief Delete one split zone of a dimension (decrement zone amount).
3796 *
3797 * Instead of deleting an entire dimensions, this method will only delete
3798 * one particular split zone given by @a zone of the Region's dimension
3799 * given by @a type. So this method will simply decrement the amount of
3800 * zones by one of the dimension in question. To be able to do that, the
3801 * respective dimension must exist on this Region and it must have at least
3802 * 3 zones. All DimensionRegion objects associated with the zone will be
3803 * deleted.
3804 *
3805 * @param type - identifies the dimension where a zone shall be deleted
3806 * @param zone - index of the dimension split zone that shall be deleted
3807 * @throws gig::Exception if requested zone could not be deleted
3808 */
3809 void Region::DeleteDimensionZone(dimension_t type, int zone) {
3810 dimension_def_t* oldDef = GetDimensionDefinition(type);
3811 if (!oldDef)
3812 throw gig::Exception("Could not delete dimension zone, no such dimension of given type");
3813 if (oldDef->zones <= 2)
3814 throw gig::Exception("Could not delete dimension zone, because it would end up with only one zone.");
3815 if (zone < 0 || zone >= oldDef->zones)
3816 throw gig::Exception("Could not delete dimension zone, requested zone index out of bounds.");
3817
3818 const int newZoneSize = oldDef->zones - 1;
3819
3820 // create a temporary Region which just acts as a temporary copy
3821 // container and will be deleted at the end of this function and will
3822 // also not be visible through the API during this process
3823 gig::Region* tempRgn = NULL;
3824 {
3825 // adding these temporary chunks is probably not even necessary
3826 Instrument* instr = static_cast<Instrument*>(GetParent());
3827 RIFF::List* pCkInstrument = instr->pCkInstrument;
3828 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3829 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3830 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3831 tempRgn = new Region(instr, rgn);
3832 }
3833
3834 // copy this region's dimensions (with already the dimension split size
3835 // requested by the arguments of this method call) to the temporary
3836 // region, and don't use Region::CopyAssign() here for this task, since
3837 // it would also alter fast lookup helper variables here and there
3838 dimension_def_t newDef;
3839 for (int i = 0; i < Dimensions; ++i) {
3840 dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3841 // is this the dimension requested by the method arguments? ...
3842 if (def.dimension == type) { // ... if yes, decrement zone amount by one
3843 def.zones = newZoneSize;
3844 if ((1 << (def.bits - 1)) == def.zones) def.bits--;
3845 newDef = def;
3846 }
3847 tempRgn->AddDimension(&def);
3848 }
3849
3850 // find the dimension index in the tempRegion which is the dimension
3851 // type passed to this method (paranoidly expecting different order)
3852 int tempReducedDimensionIndex = -1;
3853 for (int d = 0; d < tempRgn->Dimensions; ++d) {
3854 if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3855 tempReducedDimensionIndex = d;
3856 break;
3857 }
3858 }
3859
3860 // copy dimension regions from this region to the temporary region
3861 for (int iDst = 0; iDst < 256; ++iDst) {
3862 DimensionRegion* dstDimRgn = tempRgn->pDimensionRegions[iDst];
3863 if (!dstDimRgn) continue;
3864 std::map<dimension_t,int> dimCase;
3865 bool isValidZone = true;
3866 for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3867 const int dstBits = tempRgn->pDimensionDefinitions[d].bits;
3868 dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3869 (iDst >> baseBits) & ((1 << dstBits) - 1);
3870 baseBits += dstBits;
3871 // there are also DimensionRegion objects of unused zones, skip them
3872 if (dimCase[tempRgn->pDimensionDefinitions[d].dimension] >= tempRgn->pDimensionDefinitions[d].zones) {
3873 isValidZone = false;
3874 break;
3875 }
3876 }
3877 if (!isValidZone) continue;
3878 // a bit paranoid: cope with the chance that the dimensions would
3879 // have different order in source and destination regions
3880 const bool isLastZone = (dimCase[type] == newZoneSize - 1);
3881 if (dimCase[type] >= zone) dimCase[type]++;
3882 DimensionRegion* srcDimRgn = GetDimensionRegionByBit(dimCase);
3883 dstDimRgn->CopyAssign(srcDimRgn);
3884 // if this is the upper most zone of the dimension passed to this
3885 // method, then correct (raise) its upper limit to 127
3886 if (newDef.split_type == split_type_normal && isLastZone)
3887 dstDimRgn->DimensionUpperLimits[tempReducedDimensionIndex] = 127;
3888 }
3889
3890 // now tempRegion's dimensions and DimensionRegions basically reflect
3891 // what we wanted to get for this actual Region here, so we now just
3892 // delete and recreate the dimension in question with the new amount
3893 // zones and then copy back from tempRegion. we're actually deleting and
3894 // recreating all dimensions here, to avoid altering the precise order
3895 // of the dimensions (which would not be an error per se, but it would
3896 // cause usability issues with instrument editors)
3897 {
3898 std::vector<dimension_def_t> oldDefs;
3899 for (int i = 0; i < Dimensions; ++i)
3900 oldDefs.push_back(pDimensionDefinitions[i]); // copy, don't reference
3901 for (int i = Dimensions - 1; i >= 0; --i)
3902 DeleteDimension(&pDimensionDefinitions[i]);
3903 for (int i = 0; i < oldDefs.size(); ++i) {
3904 dimension_def_t& def = oldDefs[i];
3905 AddDimension(
3906 (def.dimension == newDef.dimension) ? &newDef : &def
3907 );
3908 }
3909 }
3910 for (int iSrc = 0; iSrc < 256; ++iSrc) {
3911 DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
3912 if (!srcDimRgn) continue;
3913 std::map<dimension_t,int> dimCase;
3914 for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
3915 const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
3916 dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
3917 (iSrc >> baseBits) & ((1 << srcBits) - 1);
3918 baseBits += srcBits;
3919 }
3920 // a bit paranoid: cope with the chance that the dimensions would
3921 // have different order in source and destination regions
3922 DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
3923 if (!dstDimRgn) continue;
3924 dstDimRgn->CopyAssign(srcDimRgn);
3925 }
3926
3927 // delete temporary region
3928 tempRgn->DeleteChunks();
3929 delete tempRgn;
3930
3931 UpdateVelocityTable();
3932 }
3933
3934 /** @brief Divide split zone of a dimension in two (increment zone amount).
3935 *
3936 * This will increment the amount of zones for the dimension (given by
3937 * @a type) by one. It will do so by dividing the zone (given by @a zone)
3938 * in the middle of its zone range in two. So the two zones resulting from
3939 * the zone being splitted, will be an equivalent copy regarding all their
3940 * articulation informations and sample reference. The two zones will only
3941 * differ in their zone's upper limit
3942 * (DimensionRegion::DimensionUpperLimits).
3943 *
3944 * @param type - identifies the dimension where a zone shall be splitted
3945 * @param zone - index of the dimension split zone that shall be splitted
3946 * @throws gig::Exception if requested zone could not be splitted
3947 */
3948 void Region::SplitDimensionZone(dimension_t type, int zone) {
3949 dimension_def_t* oldDef = GetDimensionDefinition(type);
3950 if (!oldDef)
3951 throw gig::Exception("Could not split dimension zone, no such dimension of given type");
3952 if (zone < 0 || zone >= oldDef->zones)
3953 throw gig::Exception("Could not split dimension zone, requested zone index out of bounds.");
3954
3955 const int newZoneSize = oldDef->zones + 1;
3956
3957 // create a temporary Region which just acts as a temporary copy
3958 // container and will be deleted at the end of this function and will
3959 // also not be visible through the API during this process
3960 gig::Region* tempRgn = NULL;
3961 {
3962 // adding these temporary chunks is probably not even necessary
3963 Instrument* instr = static_cast<Instrument*>(GetParent());
3964 RIFF::List* pCkInstrument = instr->pCkInstrument;
3965 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
3966 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
3967 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
3968 tempRgn = new Region(instr, rgn);
3969 }
3970
3971 // copy this region's dimensions (with already the dimension split size
3972 // requested by the arguments of this method call) to the temporary
3973 // region, and don't use Region::CopyAssign() here for this task, since
3974 // it would also alter fast lookup helper variables here and there
3975 dimension_def_t newDef;
3976 for (int i = 0; i < Dimensions; ++i) {
3977 dimension_def_t def = pDimensionDefinitions[i]; // copy, don't reference
3978 // is this the dimension requested by the method arguments? ...
3979 if (def.dimension == type) { // ... if yes, increment zone amount by one
3980 def.zones = newZoneSize;
3981 if ((1 << oldDef->bits) < newZoneSize) def.bits++;
3982 newDef = def;
3983 }
3984 tempRgn->AddDimension(&def);
3985 }
3986
3987 // find the dimension index in the tempRegion which is the dimension
3988 // type passed to this method (paranoidly expecting different order)
3989 int tempIncreasedDimensionIndex = -1;
3990 for (int d = 0; d < tempRgn->Dimensions; ++d) {
3991 if (tempRgn->pDimensionDefinitions[d].dimension == type) {
3992 tempIncreasedDimensionIndex = d;
3993 break;
3994 }
3995 }
3996
3997 // copy dimension regions from this region to the temporary region
3998 for (int iSrc = 0; iSrc < 256; ++iSrc) {
3999 DimensionRegion* srcDimRgn = pDimensionRegions[iSrc];
4000 if (!srcDimRgn) continue;
4001 std::map<dimension_t,int> dimCase;
4002 bool isValidZone = true;
4003 for (int d = 0, baseBits = 0; d < Dimensions; ++d) {
4004 const int srcBits = pDimensionDefinitions[d].bits;
4005 dimCase[pDimensionDefinitions[d].dimension] =
4006 (iSrc >> baseBits) & ((1 << srcBits) - 1);
4007 // there are also DimensionRegion objects for unused zones, skip them
4008 if (dimCase[pDimensionDefinitions[d].dimension] >= pDimensionDefinitions[d].zones) {
4009 isValidZone = false;
4010 break;
4011 }
4012 baseBits += srcBits;
4013 }
4014 if (!isValidZone) continue;
4015 // a bit paranoid: cope with the chance that the dimensions would
4016 // have different order in source and destination regions
4017 if (dimCase[type] > zone) dimCase[type]++;
4018 DimensionRegion* dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
4019 dstDimRgn->CopyAssign(srcDimRgn);
4020 // if this is the requested zone to be splitted, then also copy
4021 // the source DimensionRegion to the newly created target zone
4022 // and set the old zones upper limit lower
4023 if (dimCase[type] == zone) {
4024 // lower old zones upper limit
4025 if (newDef.split_type == split_type_normal) {
4026 const int high =
4027 dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex];
4028 int low = 0;
4029 if (zone > 0) {
4030 std::map<dimension_t,int> lowerCase = dimCase;
4031 lowerCase[type]--;
4032 DimensionRegion* dstDimRgnLow = tempRgn->GetDimensionRegionByBit(lowerCase);
4033 low = dstDimRgnLow->DimensionUpperLimits[tempIncreasedDimensionIndex];
4034 }
4035 dstDimRgn->DimensionUpperLimits[tempIncreasedDimensionIndex] = low + (high - low) / 2;
4036 }
4037 // fill the newly created zone of the divided zone as well
4038 dimCase[type]++;
4039 dstDimRgn = tempRgn->GetDimensionRegionByBit(dimCase);
4040 dstDimRgn->CopyAssign(srcDimRgn);
4041 }
4042 }
4043
4044 // now tempRegion's dimensions and DimensionRegions basically reflect
4045 // what we wanted to get for this actual Region here, so we now just
4046 // delete and recreate the dimension in question with the new amount
4047 // zones and then copy back from tempRegion. we're actually deleting and
4048 // recreating all dimensions here, to avoid altering the precise order
4049 // of the dimensions (which would not be an error per se, but it would
4050 // cause usability issues with instrument editors)
4051 {
4052 std::vector<dimension_def_t> oldDefs;
4053 for (int i = 0; i < Dimensions; ++i)
4054 oldDefs.push_back(pDimensionDefinitions[i]); // copy, don't reference
4055 for (int i = Dimensions - 1; i >= 0; --i)
4056 DeleteDimension(&pDimensionDefinitions[i]);
4057 for (int i = 0; i < oldDefs.size(); ++i) {
4058 dimension_def_t& def = oldDefs[i];
4059 AddDimension(
4060 (def.dimension == newDef.dimension) ? &newDef : &def
4061 );
4062 }
4063 }
4064 for (int iSrc = 0; iSrc < 256; ++iSrc) {
4065 DimensionRegion* srcDimRgn = tempRgn->pDimensionRegions[iSrc];
4066 if (!srcDimRgn) continue;
4067 std::map<dimension_t,int> dimCase;
4068 for (int d = 0, baseBits = 0; d < tempRgn->Dimensions; ++d) {
4069 const int srcBits = tempRgn->pDimensionDefinitions[d].bits;
4070 dimCase[tempRgn->pDimensionDefinitions[d].dimension] =
4071 (iSrc >> baseBits) & ((1 << srcBits) - 1);
4072 baseBits += srcBits;
4073 }
4074 // a bit paranoid: cope with the chance that the dimensions would
4075 // have different order in source and destination regions
4076 DimensionRegion* dstDimRgn = GetDimensionRegionByBit(dimCase);
4077 if (!dstDimRgn) continue;
4078 dstDimRgn->CopyAssign(srcDimRgn);
4079 }
4080
4081 // delete temporary region
4082 tempRgn->DeleteChunks();
4083 delete tempRgn;
4084
4085 UpdateVelocityTable();
4086 }
4087
4088 /** @brief Change type of an existing dimension.
4089 *
4090 * Alters the dimension type of a dimension already existing on this
4091 * region. If there is currently no dimension on this Region with type
4092 * @a oldType, then this call with throw an Exception. Likewise there are
4093 * cases where the requested dimension type cannot be performed. For example
4094 * if the new dimension type shall be gig::dimension_samplechannel, and the
4095 * current dimension has more than 2 zones. In such cases an Exception is
4096 * thrown as well.
4097 *
4098 * @param oldType - identifies the existing dimension to be changed
4099 * @param newType - to which dimension type it should be changed to
4100 * @throws gig::Exception if requested change cannot be performed
4101 */
4102 void Region::SetDimensionType(dimension_t oldType, dimension_t newType) {
4103 if (oldType == newType) return;
4104 dimension_def_t* def = GetDimensionDefinition(oldType);
4105 if (!def)
4106 throw gig::Exception("No dimension with provided old dimension type exists on this region");
4107 if (newType == dimension_samplechannel && def->zones != 2)
4108 throw gig::Exception("Cannot change to dimension type 'sample channel', because existing dimension does not have 2 zones");
4109 if (GetDimensionDefinition(newType))
4110 throw gig::Exception("There is already a dimension with requested new dimension type on this region");
4111 def->dimension = newType;
4112 def->split_type = __resolveSplitType(newType);
4113 }
4114
4115 DimensionRegion* Region::GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase) {
4116 uint8_t bits[8] = {};
4117 for (std::map<dimension_t,int>::const_iterator it = DimCase.begin();
4118 it != DimCase.end(); ++it)
4119 {
4120 for (int d = 0; d < Dimensions; ++d) {
4121 if (pDimensionDefinitions[d].dimension == it->first) {
4122 bits[d] = it->second;
4123 goto nextDimCaseSlice;
4124 }
4125 }
4126 assert(false); // do crash ... too harsh maybe ? ignore it instead ?
4127 nextDimCaseSlice:
4128 ; // noop
4129 }
4130 return GetDimensionRegionByBit(bits);
4131 }
4132
4133 /**
4134 * Searches in the current Region for a dimension of the given dimension
4135 * type and returns the precise configuration of that dimension in this
4136 * Region.
4137 *
4138 * @param type - dimension type of the sought dimension
4139 * @returns dimension definition or NULL if there is no dimension with
4140 * sought type in this Region.
4141 */
4142 dimension_def_t* Region::GetDimensionDefinition(dimension_t type) {
4143 for (int i = 0; i < Dimensions; ++i)
4144 if (pDimensionDefinitions[i].dimension == type)
4145 return &pDimensionDefinitions[i];
4146 return NULL;
4147 }
4148
4149 Region::~Region() {
4150 for (int i = 0; i < 256; i++) {
4151 if (pDimensionRegions[i]) delete pDimensionRegions[i];
4152 }
4153 }
4154
4155 /**
4156 * Use this method in your audio engine to get the appropriate dimension
4157 * region with it's articulation data for the current situation. Just
4158 * call the method with the current MIDI controller values and you'll get
4159 * the DimensionRegion with the appropriate articulation data for the
4160 * current situation (for this Region of course only). To do that you'll
4161 * first have to look which dimensions with which controllers and in
4162 * which order are defined for this Region when you load the .gig file.
4163 * Special cases are e.g. layer or channel dimensions where you just put
4164 * in the index numbers instead of a MIDI controller value (means 0 for
4165 * left channel, 1 for right channel or 0 for layer 0, 1 for layer 1,
4166 * etc.).
4167 *
4168 * @param DimValues MIDI controller values (0-127) for dimension 0 to 7
4169 * @returns adress to the DimensionRegion for the given situation
4170 * @see pDimensionDefinitions
4171 * @see Dimensions
4172 */
4173 DimensionRegion* Region::GetDimensionRegionByValue(const uint DimValues[8]) {
4174 uint8_t bits;
4175 int veldim = -1;
4176 int velbitpos = 0;
4177 int bitpos = 0;
4178 int dimregidx = 0;
4179 for (uint i = 0; i < Dimensions; i++) {
4180 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
4181 // the velocity dimension must be handled after the other dimensions
4182 veldim = i;
4183 velbitpos = bitpos;
4184 } else {
4185 switch (pDimensionDefinitions[i].split_type) {
4186 case split_type_normal:
4187 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
4188 // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
4189 for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
4190 if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
4191 }
4192 } else {
4193 // gig2: evenly sized zones
4194 bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
4195 }
4196 break;
4197 case split_type_bit: // the value is already the sought dimension bit number
4198 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
4199 bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
4200 break;
4201 }
4202 dimregidx |= bits << bitpos;
4203 }
4204 bitpos += pDimensionDefinitions[i].bits;
4205 }
4206 DimensionRegion* dimreg = pDimensionRegions[dimregidx & 255];
4207 if (!dimreg) return NULL;
4208 if (veldim != -1) {
4209 // (dimreg is now the dimension region for the lowest velocity)
4210 if (dimreg->VelocityTable) // custom defined zone ranges
4211 bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4212 else // normal split type
4213 bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4214
4215 const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4216 dimregidx |= (bits & limiter_mask) << velbitpos;
4217 dimreg = pDimensionRegions[dimregidx & 255];
4218 }
4219 return dimreg;
4220 }
4221
4222 int Region::GetDimensionRegionIndexByValue(const uint DimValues[8]) {
4223 uint8_t bits;
4224 int veldim = -1;
4225 int velbitpos = 0;
4226 int bitpos = 0;
4227 int dimregidx = 0;
4228 for (uint i = 0; i < Dimensions; i++) {
4229 if (pDimensionDefinitions[i].dimension == dimension_velocity) {
4230 // the velocity dimension must be handled after the other dimensions
4231 veldim = i;
4232 velbitpos = bitpos;
4233 } else {
4234 switch (pDimensionDefinitions[i].split_type) {
4235 case split_type_normal:
4236 if (pDimensionRegions[0]->DimensionUpperLimits[i]) {
4237 // gig3: all normal dimensions (not just the velocity dimension) have custom zone ranges
4238 for (bits = 0 ; bits < pDimensionDefinitions[i].zones ; bits++) {
4239 if (DimValues[i] <= pDimensionRegions[bits << bitpos]->DimensionUpperLimits[i]) break;
4240 }
4241 } else {
4242 // gig2: evenly sized zones
4243 bits = uint8_t(DimValues[i] / pDimensionDefinitions[i].zone_size);
4244 }
4245 break;
4246 case split_type_bit: // the value is already the sought dimension bit number
4247 const uint8_t limiter_mask = (0xff << pDimensionDefinitions[i].bits) ^ 0xff;
4248 bits = DimValues[i] & limiter_mask; // just make sure the value doesn't use more bits than allowed
4249 break;
4250 }
4251 dimregidx |= bits << bitpos;
4252 }
4253 bitpos += pDimensionDefinitions[i].bits;
4254 }
4255 dimregidx &= 255;
4256 DimensionRegion* dimreg = pDimensionRegions[dimregidx];
4257 if (!dimreg) return -1;
4258 if (veldim != -1) {
4259 // (dimreg is now the dimension region for the lowest velocity)
4260 if (dimreg->VelocityTable) // custom defined zone ranges
4261 bits = dimreg->VelocityTable[DimValues[veldim] & 127];
4262 else // normal split type
4263 bits = uint8_t((DimValues[veldim] & 127) / pDimensionDefinitions[veldim].zone_size);
4264
4265 const uint8_t limiter_mask = (1 << pDimensionDefinitions[veldim].bits) - 1;
4266 dimregidx |= (bits & limiter_mask) << velbitpos;
4267 dimregidx &= 255;
4268 }
4269 return dimregidx;
4270 }
4271
4272 /**
4273 * Returns the appropriate DimensionRegion for the given dimension bit
4274 * numbers (zone index). You usually use <i>GetDimensionRegionByValue</i>
4275 * instead of calling this method directly!
4276 *
4277 * @param DimBits Bit numbers for dimension 0 to 7
4278 * @returns adress to the DimensionRegion for the given dimension
4279 * bit numbers
4280 * @see GetDimensionRegionByValue()
4281 */
4282 DimensionRegion* Region::GetDimensionRegionByBit(const uint8_t DimBits[8]) {
4283 return pDimensionRegions[((((((DimBits[7] << pDimensionDefinitions[6].bits | DimBits[6])
4284 << pDimensionDefinitions[5].bits | DimBits[5])
4285 << pDimensionDefinitions[4].bits | DimBits[4])
4286 << pDimensionDefinitions[3].bits | DimBits[3])
4287 << pDimensionDefinitions[2].bits | DimBits[2])
4288 << pDimensionDefinitions[1].bits | DimBits[1])
4289 << pDimensionDefinitions[0].bits | DimBits[0]];
4290 }
4291
4292 /**
4293 * Returns pointer address to the Sample referenced with this region.
4294 * This is the global Sample for the entire Region (not sure if this is
4295 * actually used by the Gigasampler engine - I would only use the Sample
4296 * referenced by the appropriate DimensionRegion instead of this sample).
4297 *
4298 * @returns address to Sample or NULL if there is no reference to a
4299 * sample saved in the .gig file
4300 */
4301 Sample* Region::GetSample() {
4302 if (pSample) return static_cast<gig::Sample*>(pSample);
4303 else return static_cast<gig::Sample*>(pSample = GetSampleFromWavePool(WavePoolTableIndex));
4304 }
4305
4306 Sample* Region::GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress) {
4307 if ((int32_t)WavePoolTableIndex == -1) return NULL;
4308 File* file = (File*) GetParent()->GetParent();
4309 if (!file->pWavePoolTable) return NULL;
4310 if (WavePoolTableIndex + 1 > file->WavePoolCount) return NULL;
4311 // for new files or files >= 2 GB use 64 bit wave pool offsets
4312 if (file->pRIFF->IsNew() || (file->pRIFF->GetCurrentFileSize() >> 31)) {
4313 // use 64 bit wave pool offsets (treating this as large file)
4314 uint64_t soughtoffset =
4315 uint64_t(file->pWavePoolTable[WavePoolTableIndex]) |
4316 uint64_t(file->pWavePoolTableHi[WavePoolTableIndex]) << 32;
4317 Sample* sample = file->GetFirstSample(pProgress);
4318 while (sample) {
4319 if (sample->ullWavePoolOffset == soughtoffset)
4320 return static_cast<gig::Sample*>(sample);
4321 sample = file->GetNextSample();
4322 }
4323 } else {
4324 // use extension files and 32 bit wave pool offsets
4325 file_offset_t soughtoffset = file->pWavePoolTable[WavePoolTableIndex];
4326 file_offset_t soughtfileno = file->pWavePoolTableHi[WavePoolTableIndex];
4327 Sample* sample = file->GetFirstSample(pProgress);
4328 while (sample) {
4329 if (sample->ullWavePoolOffset == soughtoffset &&
4330 sample->FileNo == soughtfileno) return static_cast<gig::Sample*>(sample);
4331 sample = file->GetNextSample();
4332 }
4333 }
4334 return NULL;
4335 }
4336
4337 /**
4338 * Make a (semi) deep copy of the Region object given by @a orig
4339 * and assign it to this object.
4340 *
4341 * Note that all sample pointers referenced by @a orig are simply copied as
4342 * memory address. Thus the respective samples are shared, not duplicated!
4343 *
4344 * @param orig - original Region object to be copied from
4345 */
4346 void Region::CopyAssign(const Region* orig) {
4347 CopyAssign(orig, NULL);
4348 }
4349
4350 /**
4351 * Make a (semi) deep copy of the Region object given by @a orig and
4352 * assign it to this object
4353 *
4354 * @param mSamples - crosslink map between the foreign file's samples and
4355 * this file's samples
4356 */
4357 void Region::CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples) {
4358 // handle base classes
4359 DLS::Region::CopyAssign(orig);
4360
4361 if (mSamples && mSamples->count((gig::Sample*)orig->pSample)) {
4362 pSample = mSamples->find((gig::Sample*)orig->pSample)->second;
4363 }
4364
4365 // handle own member variables
4366 for (int i = Dimensions - 1; i >= 0; --i) {
4367 DeleteDimension(&pDimensionDefinitions[i]);
4368 }
4369 Layers = 0; // just to be sure
4370 for (int i = 0; i < orig->Dimensions; i++) {
4371 // we need to copy the dim definition here, to avoid the compiler
4372 // complaining about const-ness issue
4373 dimension_def_t def = orig->pDimensionDefinitions[i];
4374 AddDimension(&def);
4375 }
4376 for (int i = 0; i < 256; i++) {
4377 if (pDimensionRegions[i] && orig->pDimensionRegions[i]) {
4378 pDimensionRegions[i]->CopyAssign(
4379 orig->pDimensionRegions[i],
4380 mSamples
4381 );
4382 }
4383 }
4384 Layers = orig->Layers;
4385 }
4386
4387 /**
4388 * Returns @c true in case this Region object uses any gig format
4389 * extension, that is e.g. whether any DimensionRegion object currently
4390 * has any setting effective that would require our "LSDE" RIFF chunk to
4391 * be stored to the gig file.
4392 *
4393 * Right now this is a private method. It is considerable though this method
4394 * to become (in slightly modified form) a public API method in future, i.e.
4395 * to allow instrument editors to visualize and/or warn the user of any gig
4396 * format extension being used. See also comments on
4397 * DimensionRegion::UsesAnyGigFormatExtension() for details about such a
4398 * potential public API change in future.
4399 */
4400 bool Region::UsesAnyGigFormatExtension() const {
4401 for (int i = 0; i < 256; i++) {
4402 if (pDimensionRegions[i]) {
4403 if (pDimensionRegions[i]->UsesAnyGigFormatExtension())
4404 return true;
4405 }
4406 }
4407 return false;
4408 }
4409
4410
4411 // *************** MidiRule ***************
4412 // *
4413
4414 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg) {
4415 _3ewg->SetPos(36);
4416 Triggers = _3ewg->ReadUint8();
4417 _3ewg->SetPos(40);
4418 ControllerNumber = _3ewg->ReadUint8();
4419 _3ewg->SetPos(46);
4420 for (int i = 0 ; i < Triggers ; i++) {
4421 pTriggers[i].TriggerPoint = _3ewg->ReadUint8();
4422 pTriggers[i].Descending = _3ewg->ReadUint8();
4423 pTriggers[i].VelSensitivity = _3ewg->ReadUint8();
4424 pTriggers[i].Key = _3ewg->ReadUint8();
4425 pTriggers[i].NoteOff = _3ewg->ReadUint8();
4426 pTriggers[i].Velocity = _3ewg->ReadUint8();
4427 pTriggers[i].OverridePedal = _3ewg->ReadUint8();
4428 _3ewg->ReadUint8();
4429 }
4430 }
4431
4432 MidiRuleCtrlTrigger::MidiRuleCtrlTrigger() :
4433 ControllerNumber(0),
4434 Triggers(0) {
4435 }
4436
4437 void MidiRuleCtrlTrigger::UpdateChunks(uint8_t* pData) const {
4438 pData[32] = 4;
4439 pData[33] = 16;
4440 pData[36] = Triggers;
4441 pData[40] = ControllerNumber;
4442 for (int i = 0 ; i < Triggers ; i++) {
4443 pData[46 + i * 8] = pTriggers[i].TriggerPoint;
4444 pData[47 + i * 8] = pTriggers[i].Descending;
4445 pData[48 + i * 8] = pTriggers[i].VelSensitivity;
4446 pData[49 + i * 8] = pTriggers[i].Key;
4447 pData[50 + i * 8] = pTriggers[i].NoteOff;
4448 pData[51 + i * 8] = pTriggers[i].Velocity;
4449 pData[52 + i * 8] = pTriggers[i].OverridePedal;
4450 }
4451 }
4452
4453 MidiRuleLegato::MidiRuleLegato(RIFF::Chunk* _3ewg) {
4454 _3ewg->SetPos(36);
4455 LegatoSamples = _3ewg->ReadUint8(); // always 12
4456 _3ewg->SetPos(40);
4457 BypassUseController = _3ewg->ReadUint8();
4458 BypassKey = _3ewg->ReadUint8();
4459 BypassController = _3ewg->ReadUint8();
4460 ThresholdTime = _3ewg->ReadUint16();
4461 _3ewg->ReadInt16();
4462 ReleaseTime = _3ewg->ReadUint16();
4463 _3ewg->ReadInt16();
4464 KeyRange.low = _3ewg->ReadUint8();
4465 KeyRange.high = _3ewg->ReadUint8();
4466 _3ewg->SetPos(64);
4467 ReleaseTriggerKey = _3ewg->ReadUint8();
4468 AltSustain1Key = _3ewg->ReadUint8();
4469 AltSustain2Key = _3ewg->ReadUint8();
4470 }
4471
4472 MidiRuleLegato::MidiRuleLegato() :
4473 LegatoSamples(12),
4474 BypassUseController(false),
4475 BypassKey(0),
4476 BypassController(1),
4477 ThresholdTime(20),
4478 ReleaseTime(20),
4479 ReleaseTriggerKey(0),
4480 AltSustain1Key(0),
4481 AltSustain2Key(0)
4482 {
4483 KeyRange.low = KeyRange.high = 0;
4484 }
4485
4486 void MidiRuleLegato::UpdateChunks(uint8_t* pData) const {
4487 pData[32] = 0;
4488 pData[33] = 16;
4489 pData[36] = LegatoSamples;
4490 pData[40] = BypassUseController;
4491 pData[41] = BypassKey;
4492 pData[42] = BypassController;
4493 store16(&pData[43], ThresholdTime);
4494 store16(&pData[47], ReleaseTime);
4495 pData[51] = KeyRange.low;
4496 pData[52] = KeyRange.high;
4497 pData[64] = ReleaseTriggerKey;
4498 pData[65] = AltSustain1Key;
4499 pData[66] = AltSustain2Key;
4500 }
4501
4502 MidiRuleAlternator::MidiRuleAlternator(RIFF::Chunk* _3ewg) {
4503 _3ewg->SetPos(36);
4504 Articulations = _3ewg->ReadUint8();
4505 int flags = _3ewg->ReadUint8();
4506 Polyphonic = flags & 8;
4507 Chained = flags & 4;
4508 Selector = (flags & 2) ? selector_controller :
4509 (flags & 1) ? selector_key_switch : selector_none;
4510 Patterns = _3ewg->ReadUint8();
4511 _3ewg->ReadUint8(); // chosen row
4512 _3ewg->ReadUint8(); // unknown
4513 _3ewg->ReadUint8(); // unknown
4514 _3ewg->ReadUint8(); // unknown
4515 KeySwitchRange.low = _3ewg->ReadUint8();
4516 KeySwitchRange.high = _3ewg->ReadUint8();
4517 Controller = _3ewg->ReadUint8();
4518 PlayRange.low = _3ewg->ReadUint8();
4519 PlayRange.high = _3ewg->ReadUint8();
4520
4521 int n = std::min(int(Articulations), 32);
4522 for (int i = 0 ; i < n ; i++) {
4523 _3ewg->ReadString(pArticulations[i], 32);
4524 }
4525 _3ewg->SetPos(1072);
4526 n = std::min(int(Patterns), 32);
4527 for (int i = 0 ; i < n ; i++) {
4528 _3ewg->ReadString(pPatterns[i].Name, 16);
4529 pPatterns[i].Size = _3ewg->ReadUint8();
4530 _3ewg->Read(&pPatterns[i][0], 1, 32);
4531 }
4532 }
4533
4534 MidiRuleAlternator::MidiRuleAlternator() :
4535 Articulations(0),
4536 Patterns(0),
4537 Selector(selector_none),
4538 Controller(0),
4539 Polyphonic(false),
4540 Chained(false)
4541 {
4542 PlayRange.low = PlayRange.high = 0;
4543 KeySwitchRange.low = KeySwitchRange.high = 0;
4544 }
4545
4546 void MidiRuleAlternator::UpdateChunks(uint8_t* pData) const {
4547 pData[32] = 3;
4548 pData[33] = 16;
4549 pData[36] = Articulations;
4550 pData[37] = (Polyphonic ? 8 : 0) | (Chained ? 4 : 0) |
4551 (Selector == selector_controller ? 2 :
4552 (Selector == selector_key_switch ? 1 : 0));
4553 pData[38] = Patterns;
4554
4555 pData[43] = KeySwitchRange.low;
4556 pData[44] = KeySwitchRange.high;
4557 pData[45] = Controller;
4558 pData[46] = PlayRange.low;
4559 pData[47] = PlayRange.high;
4560
4561 char* str = reinterpret_cast<char*>(pData);
4562 int pos = 48;
4563 int n = std::min(int(Articulations), 32);
4564 for (int i = 0 ; i < n ; i++, pos += 32) {
4565 strncpy(&str[pos], pArticulations[i].c_str(), 32);
4566 }
4567
4568 pos = 1072;
4569 n = std::min(int(Patterns), 32);
4570 for (int i = 0 ; i < n ; i++, pos += 49) {
4571 strncpy(&str[pos], pPatterns[i].Name.c_str(), 16);
4572 pData[pos + 16] = pPatterns[i].Size;
4573 memcpy(&pData[pos + 16], &(pPatterns[i][0]), 32);
4574 }
4575 }
4576
4577 // *************** Script ***************
4578 // *
4579
4580 Script::Script(ScriptGroup* group, RIFF::Chunk* ckScri) {
4581 pGroup = group;
4582 pChunk = ckScri;
4583 if (ckScri) { // object is loaded from file ...
4584 ckScri->SetPos(0);
4585
4586 // read header
4587 uint32_t headerSize = ckScri->ReadUint32();
4588 Compression = (Compression_t) ckScri->ReadUint32();
4589 Encoding = (Encoding_t) ckScri->ReadUint32();
4590 Language = (Language_t) ckScri->ReadUint32();
4591 Bypass = ckScri->ReadUint32() & 1;
4592 crc = ckScri->ReadUint32();
4593 uint32_t nameSize = ckScri->ReadUint32();
4594 Name.resize(nameSize, ' ');
4595 for (int i = 0; i < nameSize; ++i)
4596 Name[i] = ckScri->ReadUint8();
4597 // check if an uuid was already stored along with this script
4598 if (headerSize >= 6*sizeof(int32_t) + nameSize + 16) { // yes ...
4599 for (uint i = 0; i < 16; ++i) {
4600 Uuid[i] = ckScri->ReadUint8();
4601 }
4602 } else { // no uuid yet, generate one now ...
4603 GenerateUuid();
4604 }
4605 // to handle potential future extensions of the header
4606 ckScri->SetPos(sizeof(int32_t) + headerSize);
4607 // read actual script data
4608 uint32_t scriptSize = uint32_t(ckScri->GetSize() - ckScri->GetPos());
4609 data.resize(scriptSize);
4610 for (int i = 0; i < scriptSize; ++i)
4611 data[i] = ckScri->ReadUint8();
4612 } else { // this is a new script object, so just initialize it as such ...
4613 Compression = COMPRESSION_NONE;
4614 Encoding = ENCODING_ASCII;
4615 Language = LANGUAGE_NKSP;
4616 Bypass = false;
4617 crc = 0;
4618 Name = "Unnamed Script";
4619 GenerateUuid();
4620 }
4621 }
4622
4623 Script::~Script() {
4624 }
4625
4626 /**
4627 * Returns the current script (i.e. as source code) in text format.
4628 */
4629 String Script::GetScriptAsText() {
4630 String s;
4631 s.resize(data.size(), ' ');
4632 memcpy(&s[0], &data[0], data.size());
4633 return s;
4634 }
4635
4636 /**
4637 * Replaces the current script with the new script source code text given
4638 * by @a text.
4639 *
4640 * @param text - new script source code
4641 */
4642 void Script::SetScriptAsText(const String& text) {
4643 data.resize(text.size());
4644 memcpy(&data[0], &text[0], text.size());
4645 }
4646
4647 /** @brief Remove all RIFF chunks associated with this Script object.
4648 *
4649 * At the moment Script::DeleteChunks() does nothing. It is
4650 * recommended to call this method explicitly though from deriving classes's
4651 * own overridden implementation of this method to avoid potential future
4652 * compatiblity issues.
4653 *
4654 * See DLS::Storage::DeleteChunks() for details.
4655 */
4656 void Script::DeleteChunks() {
4657 }
4658
4659 /**
4660 * Apply this script to the respective RIFF chunks. You have to call
4661 * File::Save() to make changes persistent.
4662 *
4663 * Usually there is absolutely no need to call this method explicitly.
4664 * It will be called automatically when File::Save() was called.
4665 *
4666 * @param pProgress - callback function for progress notification
4667 */
4668 void Script::UpdateChunks(progress_t* pProgress) {
4669 // recalculate CRC32 check sum
4670 __resetCRC(crc);
4671 __calculateCRC(&data[0], data.size(), crc);
4672 __finalizeCRC(crc);
4673 // make sure chunk exists and has the required size
4674 const file_offset_t chunkSize =
4675 (file_offset_t) 7*sizeof(int32_t) + Name.size() + 16 + data.size();
4676 if (!pChunk) pChunk = pGroup->pList->AddSubChunk(CHUNK_ID_SCRI, chunkSize);
4677 else pChunk->Resize(chunkSize);
4678 // fill the chunk data to be written to disk
4679 uint8_t* pData = (uint8_t*) pChunk->LoadChunkData();
4680 int pos = 0;
4681 store32(&pData[pos], uint32_t(6*sizeof(int32_t) + Name.size() + 16)); // total header size
4682 pos += sizeof(int32_t);
4683 store32(&pData[pos], Compression);
4684 pos += sizeof(int32_t);
4685 store32(&pData[pos], Encoding);
4686 pos += sizeof(int32_t);
4687 store32(&pData[pos], Language);
4688 pos += sizeof(int32_t);
4689 store32(&pData[pos], Bypass ? 1 : 0);
4690 pos += sizeof(int32_t);
4691 store32(&pData[pos], crc);
4692 pos += sizeof(int32_t);
4693 store32(&pData[pos], (uint32_t) Name.size());
4694 pos += sizeof(int32_t);
4695 for (int i = 0; i < Name.size(); ++i, ++pos)
4696 pData[pos] = Name[i];
4697 for (int i = 0; i < 16; ++i, ++pos)
4698 pData[pos] = Uuid[i];
4699 for (int i = 0; i < data.size(); ++i, ++pos)
4700 pData[pos] = data[i];
4701 }
4702
4703 /**
4704 * Generate a new Universally Unique Identifier (UUID) for this script.
4705 */
4706 void Script::GenerateUuid() {
4707 DLS::dlsid_t dlsid;
4708 DLS::Resource::GenerateDLSID(&dlsid);
4709 Uuid[0] = dlsid.ulData1 & 0xff;
4710 Uuid[1] = dlsid.ulData1 >> 8 & 0xff;
4711 Uuid[2] = dlsid.ulData1 >> 16 & 0xff;
4712 Uuid[3] = dlsid.ulData1 >> 24 & 0xff;
4713 Uuid[4] = dlsid.usData2 & 0xff;
4714 Uuid[5] = dlsid.usData2 >> 8 & 0xff;
4715 Uuid[6] = dlsid.usData3 & 0xff;
4716 Uuid[7] = dlsid.usData3 >> 8 & 0xff;
4717 Uuid[8] = dlsid.abData[0];
4718 Uuid[9] = dlsid.abData[1];
4719 Uuid[10] = dlsid.abData[2];
4720 Uuid[11] = dlsid.abData[3];
4721 Uuid[12] = dlsid.abData[4];
4722 Uuid[13] = dlsid.abData[5];
4723 Uuid[14] = dlsid.abData[6];
4724 Uuid[15] = dlsid.abData[7];
4725 }
4726
4727 /**
4728 * Move this script from its current ScriptGroup to another ScriptGroup
4729 * given by @a pGroup.
4730 *
4731 * @param pGroup - script's new group
4732 */
4733 void Script::SetGroup(ScriptGroup* pGroup) {
4734 if (this->pGroup == pGroup) return;
4735 if (pChunk)
4736 pChunk->GetParent()->MoveSubChunk(pChunk, pGroup->pList);
4737 this->pGroup = pGroup;
4738 }
4739
4740 /**
4741 * Returns the script group this script currently belongs to. Each script
4742 * is a member of exactly one ScriptGroup.
4743 *
4744 * @returns current script group
4745 */
4746 ScriptGroup* Script::GetGroup() const {
4747 return pGroup;
4748 }
4749
4750 /**
4751 * Make a (semi) deep copy of the Script object given by @a orig
4752 * and assign it to this object. Note: the ScriptGroup this Script
4753 * object belongs to remains untouched by this call.
4754 *
4755 * @param orig - original Script object to be copied from
4756 */
4757 void Script::CopyAssign(const Script* orig) {
4758 Name = orig->Name;
4759 Compression = orig->Compression;
4760 Encoding = orig->Encoding;
4761 Language = orig->Language;
4762 Bypass = orig->Bypass;
4763 data = orig->data;
4764 }
4765
4766 void Script::RemoveAllScriptReferences() {
4767 File* pFile = pGroup->pFile;
4768 for (int i = 0; pFile->GetInstrument(i); ++i) {
4769 Instrument* instr = pFile->GetInstrument(i);
4770 instr->RemoveScript(this);
4771 }
4772 }
4773
4774 // *************** ScriptGroup ***************
4775 // *
4776
4777 ScriptGroup::ScriptGroup(File* file, RIFF::List* lstRTIS) {
4778 pFile = file;
4779 pList = lstRTIS;
4780 pScripts = NULL;
4781 if (lstRTIS) {
4782 RIFF::Chunk* ckName = lstRTIS->GetSubChunk(CHUNK_ID_LSNM);
4783 ::LoadString(ckName, Name);
4784 } else {
4785 Name = "Default Group";
4786 }
4787 }
4788
4789 ScriptGroup::~ScriptGroup() {
4790 if (pScripts) {
4791 std::list<Script*>::iterator iter = pScripts->begin();
4792 std::list<Script*>::iterator end = pScripts->end();
4793 while (iter != end) {
4794 delete *iter;
4795 ++iter;
4796 }
4797 delete pScripts;
4798 }
4799 }
4800
4801 /** @brief Remove all RIFF chunks associated with this ScriptGroup object.
4802 *
4803 * At the moment ScriptGroup::DeleteChunks() does nothing. It is
4804 * recommended to call this method explicitly though from deriving classes's
4805 * own overridden implementation of this method to avoid potential future
4806 * compatiblity issues.
4807 *
4808 * See DLS::Storage::DeleteChunks() for details.
4809 */
4810 void ScriptGroup::DeleteChunks() {
4811 }
4812
4813 /**
4814 * Apply this script group to the respective RIFF chunks. You have to call
4815 * File::Save() to make changes persistent.
4816 *
4817 * Usually there is absolutely no need to call this method explicitly.
4818 * It will be called automatically when File::Save() was called.
4819 *
4820 * @param pProgress - callback function for progress notification
4821 */
4822 void ScriptGroup::UpdateChunks(progress_t* pProgress) {
4823 if (pScripts) {
4824 if (!pList)
4825 pList = pFile->pRIFF->GetSubList(LIST_TYPE_3LS)->AddSubList(LIST_TYPE_RTIS);
4826
4827 // now store the name of this group as <LSNM> chunk as subchunk of the <RTIS> list chunk
4828 ::SaveString(CHUNK_ID_LSNM, NULL, pList, Name, String("Unnamed Group"), true, 64);
4829
4830 for (std::list<Script*>::iterator it = pScripts->begin();
4831 it != pScripts->end(); ++it)
4832 {
4833 (*it)->UpdateChunks(pProgress);
4834 }
4835 }
4836 }
4837
4838 /** @brief Get instrument script.
4839 *
4840 * Returns the real-time instrument script with the given index.
4841 *
4842 * @param index - number of the sought script (0..n)
4843 * @returns sought script or NULL if there's no such script
4844 */
4845 Script* ScriptGroup::GetScript(uint index) {
4846 if (!pScripts) LoadScripts();
4847 std::list<Script*>::iterator it = pScripts->begin();
4848 for (uint i = 0; it != pScripts->end(); ++i, ++it)
4849 if (i == index) return *it;
4850 return NULL;
4851 }
4852
4853 /** @brief Add new instrument script.
4854 *
4855 * Adds a new real-time instrument script to the file. The script is not
4856 * actually used / executed unless it is referenced by an instrument to be
4857 * used. This is similar to samples, which you can add to a file, without
4858 * an instrument necessarily actually using it.
4859 *
4860 * You have to call Save() to make this persistent to the file.
4861 *
4862 * @return new empty script object
4863 */
4864 Script* ScriptGroup::AddScript() {
4865 if (!pScripts) LoadScripts();
4866 Script* pScript = new Script(this, NULL);
4867 pScripts->push_back(pScript);
4868 return pScript;
4869 }
4870
4871 /** @brief Delete an instrument script.
4872 *
4873 * This will delete the given real-time instrument script. References of
4874 * instruments that are using that script will be removed accordingly.
4875 *
4876 * You have to call Save() to make this persistent to the file.
4877 *
4878 * @param pScript - script to delete
4879 * @throws gig::Exception if given script could not be found
4880 */
4881 void ScriptGroup::DeleteScript(Script* pScript) {
4882 if (!pScripts) LoadScripts();
4883 std::list<Script*>::iterator iter =
4884 find(pScripts->begin(), pScripts->end(), pScript);
4885 if (iter == pScripts->end())
4886 throw gig::Exception("Could not delete script, could not find given script");
4887 pScripts->erase(iter);
4888 pScript->RemoveAllScriptReferences();
4889 if (pScript->pChunk)
4890 pScript->pChunk->GetParent()->DeleteSubChunk(pScript->pChunk);
4891 delete pScript;
4892 }
4893
4894 void ScriptGroup::LoadScripts() {
4895 if (pScripts) return;
4896 pScripts = new std::list<Script*>;
4897 if (!pList) return;
4898
4899 for (RIFF::Chunk* ck = pList->GetFirstSubChunk(); ck;
4900 ck = pList->GetNextSubChunk())
4901 {
4902 if (ck->GetChunkID() == CHUNK_ID_SCRI) {
4903 pScripts->push_back(new Script(this, ck));
4904 }
4905 }
4906 }
4907
4908 // *************** Instrument ***************
4909 // *
4910
4911 Instrument::Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress) : DLS::Instrument((DLS::File*)pFile, insList) {
4912 static const DLS::Info::string_length_t fixedStringLengths[] = {
4913 { CHUNK_ID_INAM, 64 },
4914 { CHUNK_ID_ISFT, 12 },
4915 { 0, 0 }
4916 };
4917 pInfo->SetFixedStringLengths(fixedStringLengths);
4918
4919 // Initialization
4920 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
4921 EffectSend = 0;
4922 Attenuation = 0;
4923 FineTune = 0;
4924 PitchbendRange = 2;
4925 PianoReleaseMode = false;
4926 DimensionKeyRange.low = 0;
4927 DimensionKeyRange.high = 0;
4928 pMidiRules = new MidiRule*[3];
4929 pMidiRules[0] = NULL;
4930 pScriptRefs = NULL;
4931
4932 // Loading
4933 RIFF::List* lart = insList->GetSubList(LIST_TYPE_LART);
4934 if (lart) {
4935 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
4936 if (_3ewg) {
4937 _3ewg->SetPos(0);
4938
4939 EffectSend = _3ewg->ReadUint16();
4940 Attenuation = _3ewg->ReadInt32();
4941 FineTune = _3ewg->ReadInt16();
4942 PitchbendRange = _3ewg->ReadInt16();
4943 uint8_t dimkeystart = _3ewg->ReadUint8();
4944 PianoReleaseMode = dimkeystart & 0x01;
4945 DimensionKeyRange.low = dimkeystart >> 1;
4946 DimensionKeyRange.high = _3ewg->ReadUint8();
4947
4948 if (_3ewg->GetSize() > 32) {
4949 // read MIDI rules
4950 int i = 0;
4951 _3ewg->SetPos(32);
4952 uint8_t id1 = _3ewg->ReadUint8();
4953 uint8_t id2 = _3ewg->ReadUint8();
4954
4955 if (id2 == 16) {
4956 if (id1 == 4) {
4957 pMidiRules[i++] = new MidiRuleCtrlTrigger(_3ewg);
4958 } else if (id1 == 0) {
4959 pMidiRules[i++] = new MidiRuleLegato(_3ewg);
4960 } else if (id1 == 3) {
4961 pMidiRules[i++] = new MidiRuleAlternator(_3ewg);
4962 } else {
4963 pMidiRules[i++] = new MidiRuleUnknown;
4964 }
4965 }
4966 else if (id1 != 0 || id2 != 0) {
4967 pMidiRules[i++] = new MidiRuleUnknown;
4968 }
4969 //TODO: all the other types of rules
4970
4971 pMidiRules[i] = NULL;
4972 }
4973 }
4974 }
4975
4976 if (pFile->GetAutoLoad()) {
4977 if (!pRegions) pRegions = new RegionList;
4978 RIFF::List* lrgn = insList->GetSubList(LIST_TYPE_LRGN);
4979 if (lrgn) {
4980 RIFF::List* rgn = lrgn->GetFirstSubList();
4981 while (rgn) {
4982 if (rgn->GetListType() == LIST_TYPE_RGN) {
4983 if (pProgress)
4984 __notify_progress(pProgress, (float) pRegions->size() / (float) Regions);
4985 pRegions->push_back(new Region(this, rgn));
4986 }
4987 rgn = lrgn->GetNextSubList();
4988 }
4989 // Creating Region Key Table for fast lookup
4990 UpdateRegionKeyTable();
4991 }
4992 }
4993
4994 // own gig format extensions
4995 RIFF::List* lst3LS = insList->GetSubList(LIST_TYPE_3LS);
4996 if (lst3LS) {
4997 // script slots (that is references to instrument scripts)
4998 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
4999 if (ckSCSL) {
5000 ckSCSL->SetPos(0);
5001
5002 int headerSize = ckSCSL->ReadUint32();
5003 int slotCount = ckSCSL->ReadUint32();
5004 if (slotCount) {
5005 int slotSize = ckSCSL->ReadUint32();
5006 ckSCSL->SetPos(headerSize); // in case of future header extensions
5007 int unknownSpace = slotSize - 2*sizeof(uint32_t); // in case of future slot extensions
5008 for (int i = 0; i < slotCount; ++i) {
5009 _ScriptPooolEntry e;
5010 e.fileOffset = ckSCSL->ReadUint32();
5011 e.bypass = ckSCSL->ReadUint32() & 1;
5012 if (unknownSpace) ckSCSL->SetPos(unknownSpace, RIFF::stream_curpos); // in case of future extensions
5013 scriptPoolFileOffsets.push_back(e);
5014 }
5015 }
5016 }
5017
5018 // overridden script 'patch' variables
5019 RIFF::Chunk* ckSCPV = lst3LS->GetSubChunk(CHUNK_ID_SCPV);
5020 if (ckSCPV) {
5021 ckSCPV->SetPos(0);
5022
5023 int nScripts = ckSCPV->ReadUint32();
5024 for (int iScript = 0; iScript < nScripts; ++iScript) {
5025 _UUID uuid;
5026 for (int i = 0; i < 16; ++i)
5027 uuid[i] = ckSCPV->ReadUint8();
5028 uint slot = ckSCPV->ReadUint32();
5029 ckSCPV->ReadUint32(); // unused, reserved 32 bit
5030 int nVars = ckSCPV->ReadUint32();
5031 for (int iVar = 0; iVar < nVars; ++iVar) {
5032 uint8_t type = ckSCPV->ReadUint8();
5033 ckSCPV->ReadUint8(); // unused, reserved byte
5034 int blobSize = ckSCPV->ReadUint16();
5035 RIFF::file_offset_t pos = ckSCPV->GetPos();
5036 // assuming 1st bit is set in 'type', otherwise blob not
5037 // supported for decoding
5038 if (type & 1) {
5039 String name, value;
5040 int len = ckSCPV->ReadUint16();
5041 for (int i = 0; i < len; ++i)
5042 name += (char) ckSCPV->ReadUint8();
5043 len = ckSCPV->ReadUint16();
5044 for (int i = 0; i < len; ++i)
5045 value += (char) ckSCPV->ReadUint8();
5046 if (!name.empty()) // 'name' should never be empty, but just to be sure
5047 scriptVars[uuid][slot][name] = value;
5048 }
5049 // also for potential future extensions: seek forward
5050 // according to blob size
5051 ckSCPV->SetPos(pos + blobSize);
5052 }
5053 }
5054 }
5055 }
5056
5057 if (pProgress)
5058 __notify_progress(pProgress, 1.0f); // notify done
5059 }
5060
5061 void Instrument::UpdateRegionKeyTable() {
5062 for (int i = 0; i < 128; i++) RegionKeyTable[i] = NULL;
5063 RegionList::iterator iter = pRegions->begin();
5064 RegionList::iterator end = pRegions->end();
5065 for (; iter != end; ++iter) {
5066 gig::Region* pRegion = static_cast<gig::Region*>(*iter);
5067 const int low = std::max(int(pRegion->KeyRange.low), 0);
5068 const int high = std::min(int(pRegion->KeyRange.high), 127);
5069 for (int iKey = low; iKey <= high; iKey++) {
5070 RegionKeyTable[iKey] = pRegion;
5071 }
5072 }
5073 }
5074
5075 Instrument::~Instrument() {
5076 for (int i = 0 ; pMidiRules[i] ; i++) {
5077 delete pMidiRules[i];
5078 }
5079 delete[] pMidiRules;
5080 if (pScriptRefs) delete pScriptRefs;
5081 }
5082
5083 /**
5084 * Apply Instrument with all its Regions to the respective RIFF chunks.
5085 * You have to call File::Save() to make changes persistent.
5086 *
5087 * Usually there is absolutely no need to call this method explicitly.
5088 * It will be called automatically when File::Save() was called.
5089 *
5090 * @param pProgress - callback function for progress notification
5091 * @throws gig::Exception if samples cannot be dereferenced
5092 */
5093 void Instrument::UpdateChunks(progress_t* pProgress) {
5094 // first update base classes' chunks
5095 DLS::Instrument::UpdateChunks(pProgress);
5096
5097 // update Regions' chunks
5098 {
5099 RegionList::iterator iter = pRegions->begin();
5100 RegionList::iterator end = pRegions->end();
5101 for (; iter != end; ++iter)
5102 (*iter)->UpdateChunks(pProgress);
5103 }
5104
5105 // make sure 'lart' RIFF list chunk exists
5106 RIFF::List* lart = pCkInstrument->GetSubList(LIST_TYPE_LART);
5107 if (!lart) lart = pCkInstrument->AddSubList(LIST_TYPE_LART);
5108 // make sure '3ewg' RIFF chunk exists
5109 RIFF::Chunk* _3ewg = lart->GetSubChunk(CHUNK_ID_3EWG);
5110 if (!_3ewg) {
5111 File* pFile = (File*) GetParent();
5112
5113 // 3ewg is bigger in gig3, as it includes the iMIDI rules
5114 int size = (pFile->pVersion && pFile->pVersion->major > 2) ? 16416 : 12;
5115 _3ewg = lart->AddSubChunk(CHUNK_ID_3EWG, size);
5116 memset(_3ewg->LoadChunkData(), 0, size);
5117 }
5118 // update '3ewg' RIFF chunk
5119 uint8_t* pData = (uint8_t*) _3ewg->LoadChunkData();
5120 store16(&pData[0], EffectSend);
5121 store32(&pData[2], Attenuation);
5122 store16(&pData[6], FineTune);
5123 store16(&pData[8], PitchbendRange);
5124 const uint8_t dimkeystart = (PianoReleaseMode ? 0x01 : 0x00) |
5125 DimensionKeyRange.low << 1;
5126 pData[10] = dimkeystart;
5127 pData[11] = DimensionKeyRange.high;
5128
5129 if (pMidiRules[0] == 0 && _3ewg->GetSize() >= 34) {
5130 pData[32] = 0;
5131 pData[33] = 0;
5132 } else {
5133 for (int i = 0 ; pMidiRules[i] ; i++) {
5134 pMidiRules[i]->UpdateChunks(pData);
5135 }
5136 }
5137
5138 // own gig format extensions
5139 if (ScriptSlotCount()) {
5140 // make sure we have converted the original loaded script file
5141 // offsets into valid Script object pointers
5142 LoadScripts();
5143
5144 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
5145 if (!lst3LS) lst3LS = pCkInstrument->AddSubList(LIST_TYPE_3LS);
5146
5147 // save script slots (that is references to instrument scripts)
5148 const int slotCount = (int) pScriptRefs->size();
5149 const int headerSize = 3 * sizeof(uint32_t);
5150 const int slotSize = 2 * sizeof(uint32_t);
5151 const int totalChunkSize = headerSize + slotCount * slotSize;
5152 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
5153 if (!ckSCSL) ckSCSL = lst3LS->AddSubChunk(CHUNK_ID_SCSL, totalChunkSize);
5154 else ckSCSL->Resize(totalChunkSize);
5155 uint8_t* pData = (uint8_t*) ckSCSL->LoadChunkData();
5156 int pos = 0;
5157 store32(&pData[pos], headerSize);
5158 pos += sizeof(uint32_t);
5159 store32(&pData[pos], slotCount);
5160 pos += sizeof(uint32_t);
5161 store32(&pData[pos], slotSize);
5162 pos += sizeof(uint32_t);
5163 for (int i = 0; i < slotCount; ++i) {
5164 // arbitrary value, the actual file offset will be updated in
5165 // UpdateScriptFileOffsets() after the file has been resized
5166 int bogusFileOffset = 0;
5167 store32(&pData[pos], bogusFileOffset);
5168 pos += sizeof(uint32_t);
5169 store32(&pData[pos], (*pScriptRefs)[i].bypass ? 1 : 0);
5170 pos += sizeof(uint32_t);
5171 }
5172
5173 // save overridden script 'patch' variables ...
5174
5175 // the actual 'scriptVars' member variable might contain variables of
5176 // scripts which are currently no longer assigned to any script slot
5177 // of this instrument, we need to get rid of these variables here to
5178 // prevent saving those persistently, however instead of touching the
5179 // member variable 'scriptVars' directly, rather strip a separate
5180 // copy such that the overridden values are not lost during an
5181 // instrument editor session (i.e. if script might be re-assigned)
5182 _VarsByScript vars = stripScriptVars();
5183 if (!vars.empty()) {
5184 // determine total size required for 'SCPV' RIFF chunk, and the
5185 // total amount of scripts being overridden (the latter is
5186 // required because a script might be used on several script
5187 // slots, hence vars.size() could then not be used here instead)
5188 size_t totalChunkSize = 4;
5189 size_t totalScriptsOverridden = 0;
5190 for (const auto& script : vars) {
5191 for (const auto& slot : script.second) {
5192 totalScriptsOverridden++;
5193 totalChunkSize += 16 + 4 + 4 + 4;
5194 for (const auto& var : slot.second) {
5195 totalChunkSize += 4 + 2 + var.first.length() +
5196 2 + var.second.length();
5197 }
5198 }
5199 }
5200
5201 // ensure 'SCPV' RIFF chunk exists (with required size)
5202 RIFF::Chunk* ckSCPV = lst3LS->GetSubChunk(CHUNK_ID_SCPV);
5203 if (!ckSCPV) ckSCPV = lst3LS->AddSubChunk(CHUNK_ID_SCPV, totalChunkSize);
5204 else ckSCPV->Resize(totalChunkSize);
5205
5206 // store the actual data to 'SCPV' RIFF chunk
5207 uint8_t* pData = (uint8_t*) ckSCPV->LoadChunkData();
5208 int pos = 0;
5209 store32(&pData[pos], (uint32_t) totalScriptsOverridden); // scripts count
5210 pos += 4;
5211 for (const auto& script : vars) {
5212 for (const auto& slot : script.second) {
5213 for (int i = 0; i < 16; ++i)
5214 pData[pos+i] = script.first[i]; // uuid
5215 pos += 16;
5216 store32(&pData[pos], (uint32_t) slot.first); // slot index
5217 pos += 4;
5218 store32(&pData[pos], (uint32_t) 0); // unused, reserved 32 bit
5219 pos += 4;
5220 store32(&pData[pos], (uint32_t) slot.second.size()); // variables count
5221 pos += 4;
5222 for (const auto& var : slot.second) {
5223 pData[pos++] = 1; // type
5224 pData[pos++] = 0; // reserved byte
5225 store16(&pData[pos], 2 + var.first.size() + 2 + var.second.size()); // blob size
5226 pos += 2;
5227 store16(&pData[pos], var.first.size()); // variable name length
5228 pos += 2;
5229 for (int i = 0; i < var.first.size(); ++i)
5230 pData[pos++] = var.first[i];
5231 store16(&pData[pos], var.second.size()); // variable value length
5232 pos += 2;
5233 for (int i = 0; i < var.second.size(); ++i)
5234 pData[pos++] = var.second[i];
5235 }
5236 }
5237 }
5238 } else {
5239 // no script variable overridden by this instrument, so get rid
5240 // of 'SCPV' RIFF chunk (if any)
5241 RIFF::Chunk* ckSCPV = lst3LS->GetSubChunk(CHUNK_ID_SCPV);
5242 if (ckSCPV) lst3LS->DeleteSubChunk(ckSCPV);
5243 }
5244 } else {
5245 // no script slots, so get rid of any LS custom RIFF chunks (if any)
5246 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
5247 if (lst3LS) pCkInstrument->DeleteSubChunk(lst3LS);
5248 }
5249 }
5250
5251 void Instrument::UpdateScriptFileOffsets() {
5252 // own gig format extensions
5253 if (pScriptRefs && pScriptRefs->size() > 0) {
5254 RIFF::List* lst3LS = pCkInstrument->GetSubList(LIST_TYPE_3LS);
5255 RIFF::Chunk* ckSCSL = lst3LS->GetSubChunk(CHUNK_ID_SCSL);
5256 const int slotCount = (int) pScriptRefs->size();
5257 const int headerSize = 3 * sizeof(uint32_t);
5258 ckSCSL->SetPos(headerSize);
5259 for (int i = 0; i < slotCount; ++i) {
5260 uint32_t fileOffset = uint32_t(
5261 (*pScriptRefs)[i].script->pChunk->GetFilePos() -
5262 (*pScriptRefs)[i].script->pChunk->GetPos() -
5263 CHUNK_HEADER_SIZE(ckSCSL->GetFile()->GetFileOffsetSize())
5264 );
5265 ckSCSL->WriteUint32(&fileOffset);
5266 // jump over flags entry (containing the bypass flag)
5267 ckSCSL->SetPos(sizeof(uint32_t), RIFF::stream_curpos);
5268 }
5269 }
5270 }
5271
5272 /**
5273 * Returns the appropriate Region for a triggered note.
5274 *
5275 * @param Key MIDI Key number of triggered note / key (0 - 127)
5276 * @returns pointer adress to the appropriate Region or NULL if there
5277 * there is no Region defined for the given \a Key
5278 */
5279 Region* Instrument::GetRegion(unsigned int Key) {
5280 if (!pRegions || pRegions->empty() || Key > 127) return NULL;
5281 return RegionKeyTable[Key];
5282
5283 /*for (int i = 0; i < Regions; i++) {
5284 if (Key <= pRegions[i]->KeyRange.high &&
5285 Key >= pRegions[i]->KeyRange.low) return pRegions[i];
5286 }
5287 return NULL;*/
5288 }
5289
5290 /**
5291 * Returns the first Region of the instrument. You have to call this
5292 * method once before you use GetNextRegion().
5293 *
5294 * @returns pointer address to first region or NULL if there is none
5295 * @see GetNextRegion()
5296 */
5297 Region* Instrument::GetFirstRegion() {
5298 if (!pRegions) return NULL;
5299 RegionsIterator = pRegions->begin();
5300 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
5301 }
5302
5303 /**
5304 * Returns the next Region of the instrument. You have to call
5305 * GetFirstRegion() once before you can use this method. By calling this
5306 * method multiple times it iterates through the available Regions.
5307 *
5308 * @returns pointer address to the next region or NULL if end reached
5309 * @see GetFirstRegion()
5310 */
5311 Region* Instrument::GetNextRegion() {
5312 if (!pRegions) return NULL;
5313 RegionsIterator++;
5314 return static_cast<gig::Region*>( (RegionsIterator != pRegions->end()) ? *RegionsIterator : NULL );
5315 }
5316
5317 Region* Instrument::AddRegion() {
5318 // create new Region object (and its RIFF chunks)
5319 RIFF::List* lrgn = pCkInstrument->GetSubList(LIST_TYPE_LRGN);
5320 if (!lrgn) lrgn = pCkInstrument->AddSubList(LIST_TYPE_LRGN);
5321 RIFF::List* rgn = lrgn->AddSubList(LIST_TYPE_RGN);
5322 Region* pNewRegion = new Region(this, rgn);
5323 pRegions->push_back(pNewRegion);
5324 Regions = (uint32_t) pRegions->size();
5325 // update Region key table for fast lookup
5326 UpdateRegionKeyTable();
5327 // done
5328 return pNewRegion;
5329 }
5330
5331 void Instrument::DeleteRegion(Region* pRegion) {
5332 if (!pRegions) return;
5333 DLS::Instrument::DeleteRegion((DLS::Region*) pRegion);
5334 // update Region key table for fast lookup
5335 UpdateRegionKeyTable();
5336 }
5337
5338 /**
5339 * Move this instrument at the position before @arg dst.
5340 *
5341 * This method can be used to reorder the sequence of instruments in a
5342 * .gig file. This might be helpful especially on large .gig files which
5343 * contain a large number of instruments within the same .gig file. So
5344 * grouping such instruments to similar ones, can help to keep track of them
5345 * when working with such complex .gig files.
5346 *
5347 * When calling this method, this instrument will be removed from in its
5348 * current position in the instruments list and moved to the requested
5349 * target position provided by @param dst. You may also pass NULL as
5350 * argument to this method, in that case this intrument will be moved to the
5351 * very end of the .gig file's instrument list.
5352 *
5353 * You have to call Save() to make the order change persistent to the .gig
5354 * file.
5355 *
5356 * Currently this method is limited to moving the instrument within the same
5357 * .gig file. Trying to move it to another .gig file by calling this method
5358 * will throw an exception.
5359 *
5360 * @param dst - destination instrument at which this instrument will be
5361 * moved to, or pass NULL for moving to end of list
5362 * @throw gig::Exception if this instrument and target instrument are not
5363 * part of the same file
5364 */
5365 void Instrument::MoveTo(Instrument* dst) {
5366 if (dst && GetParent() != dst->GetParent())
5367 throw Exception(
5368 "gig::Instrument::MoveTo() can only be used for moving within "
5369 "the same gig file."
5370 );
5371
5372 File* pFile = (File*) GetParent();
5373
5374 // move this instrument within the instrument list
5375 {
5376 File::InstrumentList& list = *pFile->pInstruments;
5377
5378 File::InstrumentList::iterator itFrom =
5379 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(this));
5380
5381 File::InstrumentList::iterator itTo =
5382 std::find(list.begin(), list.end(), static_cast<DLS::Instrument*>(dst));
5383
5384 list.splice(itTo, list, itFrom);
5385 }
5386
5387 // move the instrument's actual list RIFF chunk appropriately
5388 RIFF::List* lstCkInstruments = pFile->pRIFF->GetSubList(LIST_TYPE_LINS);
5389 lstCkInstruments->MoveSubChunk(
5390 this->pCkInstrument,
5391 (RIFF::Chunk*) ((dst) ? dst->pCkInstrument : NULL)
5392 );
5393 }
5394
5395 /**
5396 * Returns a MIDI rule of the instrument.
5397 *
5398 * The list of MIDI rules, at least in gig v3, always contains at
5399 * most two rules. The second rule can only be the DEF filter
5400 * (which currently isn't supported by libgig).
5401 *
5402 * @param i - MIDI rule number
5403 * @returns pointer address to MIDI rule number i or NULL if there is none
5404 */
5405 MidiRule* Instrument::GetMidiRule(int i) {
5406 return pMidiRules[i];
5407 }
5408
5409 /**
5410 * Adds the "controller trigger" MIDI rule to the instrument.
5411 *
5412 * @returns the new MIDI rule
5413 */
5414 MidiRuleCtrlTrigger* Instrument::AddMidiRuleCtrlTrigger() {
5415 delete pMidiRules[0];
5416 MidiRuleCtrlTrigger* r = new MidiRuleCtrlTrigger;
5417 pMidiRules[0] = r;
5418 pMidiRules[1] = 0;
5419 return r;
5420 }
5421
5422 /**
5423 * Adds the legato MIDI rule to the instrument.
5424 *
5425 * @returns the new MIDI rule
5426 */
5427 MidiRuleLegato* Instrument::AddMidiRuleLegato() {
5428 delete pMidiRules[0];
5429 MidiRuleLegato* r = new MidiRuleLegato;
5430 pMidiRules[0] = r;
5431 pMidiRules[1] = 0;
5432 return r;
5433 }
5434
5435 /**
5436 * Adds the alternator MIDI rule to the instrument.
5437 *
5438 * @returns the new MIDI rule
5439 */
5440 MidiRuleAlternator* Instrument::AddMidiRuleAlternator() {
5441 delete pMidiRules[0];
5442 MidiRuleAlternator* r = new MidiRuleAlternator;
5443 pMidiRules[0] = r;
5444 pMidiRules[1] = 0;
5445 return r;
5446 }
5447
5448 /**
5449 * Deletes a MIDI rule from the instrument.
5450 *
5451 * @param i - MIDI rule number
5452 */
5453 void Instrument::DeleteMidiRule(int i) {
5454 delete pMidiRules[i];
5455 pMidiRules[i] = 0;
5456 }
5457
5458 void Instrument::LoadScripts() {
5459 if (pScriptRefs) return;
5460 pScriptRefs = new std::vector<_ScriptPooolRef>;
5461 if (scriptPoolFileOffsets.empty()) return;
5462 File* pFile = (File*) GetParent();
5463 for (uint k = 0; k < scriptPoolFileOffsets.size(); ++k) {
5464 uint32_t soughtOffset = scriptPoolFileOffsets[k].fileOffset;
5465 for (uint i = 0; pFile->GetScriptGroup(i); ++i) {
5466 ScriptGroup* group = pFile->GetScriptGroup(i);
5467 for (uint s = 0; group->GetScript(s); ++s) {
5468 Script* script = group->GetScript(s);
5469 if (script->pChunk) {
5470 uint32_t offset = uint32_t(
5471 script->pChunk->GetFilePos() -
5472 script->pChunk->GetPos() -
5473 CHUNK_HEADER_SIZE(script->pChunk->GetFile()->GetFileOffsetSize())
5474 );
5475 if (offset == soughtOffset)
5476 {
5477 _ScriptPooolRef ref;
5478 ref.script = script;
5479 ref.bypass = scriptPoolFileOffsets[k].bypass;
5480 pScriptRefs->push_back(ref);
5481 break;
5482 }
5483 }
5484 }
5485 }
5486 }
5487 // we don't need that anymore
5488 scriptPoolFileOffsets.clear();
5489 }
5490
5491 /** @brief Get instrument script (gig format extension).
5492 *
5493 * Returns the real-time instrument script of instrument script slot
5494 * @a index.
5495 *
5496 * @note This is an own format extension which did not exist i.e. in the
5497 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5498 * gigedit.
5499 *
5500 * @param index - instrument script slot index
5501 * @returns script or NULL if index is out of bounds
5502 */
5503 Script* Instrument::GetScriptOfSlot(uint index) {
5504 LoadScripts();
5505 if (index >= pScriptRefs->size()) return NULL;
5506 return pScriptRefs->at(index).script;
5507 }
5508
5509 /** @brief Add new instrument script slot (gig format extension).
5510 *
5511 * Add the given real-time instrument script reference to this instrument,
5512 * which shall be executed by the sampler for for this instrument. The
5513 * script will be added to the end of the script list of this instrument.
5514 * The positions of the scripts in the Instrument's Script list are
5515 * relevant, because they define in which order they shall be executed by
5516 * the sampler. For this reason it is also legal to add the same script
5517 * twice to an instrument, for example you might have a script called
5518 * "MyFilter" which performs an event filter task, and you might have
5519 * another script called "MyNoteTrigger" which triggers new notes, then you
5520 * might for example have the following list of scripts on the instrument:
5521 *
5522 * 1. Script "MyFilter"
5523 * 2. Script "MyNoteTrigger"
5524 * 3. Script "MyFilter"
5525 *
5526 * Which would make sense, because the 2nd script launched new events, which
5527 * you might need to filter as well.
5528 *
5529 * There are two ways to disable / "bypass" scripts. You can either disable
5530 * a script locally for the respective script slot on an instrument (i.e. by
5531 * passing @c false to the 2nd argument of this method, or by calling
5532 * SetScriptBypassed()). Or you can disable a script globally for all slots
5533 * and all instruments by setting Script::Bypass.
5534 *
5535 * @note This is an own format extension which did not exist i.e. in the
5536 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5537 * gigedit.
5538 *
5539 * @param pScript - script that shall be executed for this instrument
5540 * @param bypass - if enabled, the sampler shall skip executing this
5541 * script (in the respective list position)
5542 * @see SetScriptBypassed()
5543 */
5544 void Instrument::AddScriptSlot(Script* pScript, bool bypass) {
5545 LoadScripts();
5546 _ScriptPooolRef ref = { pScript, bypass };
5547 pScriptRefs->push_back(ref);
5548 }
5549
5550 /** @brief Flip two script slots with each other (gig format extension).
5551 *
5552 * Swaps the position of the two given scripts in the Instrument's Script
5553 * list. The positions of the scripts in the Instrument's Script list are
5554 * relevant, because they define in which order they shall be executed by
5555 * the sampler.
5556 *
5557 * @note This is an own format extension which did not exist i.e. in the
5558 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5559 * gigedit.
5560 *
5561 * @param index1 - index of the first script slot to swap
5562 * @param index2 - index of the second script slot to swap
5563 */
5564 void Instrument::SwapScriptSlots(uint index1, uint index2) {
5565 LoadScripts();
5566 if (index1 >= pScriptRefs->size() || index2 >= pScriptRefs->size())
5567 return;
5568 _ScriptPooolRef tmp = (*pScriptRefs)[index1];
5569 (*pScriptRefs)[index1] = (*pScriptRefs)[index2];
5570 (*pScriptRefs)[index2] = tmp;
5571 }
5572
5573 /** @brief Remove script slot.
5574 *
5575 * Removes the script slot with the given slot index.
5576 *
5577 * @param index - index of script slot to remove
5578 */
5579 void Instrument::RemoveScriptSlot(uint index) {
5580 LoadScripts();
5581 if (index >= pScriptRefs->size()) return;
5582 pScriptRefs->erase( pScriptRefs->begin() + index );
5583 }
5584
5585 /** @brief Remove reference to given Script (gig format extension).
5586 *
5587 * This will remove all script slots on the instrument which are referencing
5588 * the given script.
5589 *
5590 * @note This is an own format extension which did not exist i.e. in the
5591 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5592 * gigedit.
5593 *
5594 * @param pScript - script reference to remove from this instrument
5595 * @see RemoveScriptSlot()
5596 */
5597 void Instrument::RemoveScript(Script* pScript) {
5598 LoadScripts();
5599 for (ssize_t i = pScriptRefs->size() - 1; i >= 0; --i) {
5600 if ((*pScriptRefs)[i].script == pScript) {
5601 pScriptRefs->erase( pScriptRefs->begin() + i );
5602 }
5603 }
5604 }
5605
5606 /** @brief Instrument's amount of script slots.
5607 *
5608 * This method returns the amount of script slots this instrument currently
5609 * uses.
5610 *
5611 * A script slot is a reference of a real-time instrument script to be
5612 * executed by the sampler. The scripts will be executed by the sampler in
5613 * sequence of the slots. One (same) script may be referenced multiple
5614 * times in different slots.
5615 *
5616 * @note This is an own format extension which did not exist i.e. in the
5617 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5618 * gigedit.
5619 */
5620 uint Instrument::ScriptSlotCount() const {
5621 return uint(pScriptRefs ? pScriptRefs->size() : scriptPoolFileOffsets.size());
5622 }
5623
5624 /** @brief Whether script execution shall be skipped.
5625 *
5626 * Defines locally for the Script reference slot in the Instrument's Script
5627 * list, whether the script shall be skipped by the sampler regarding
5628 * execution.
5629 *
5630 * It is also possible to ignore exeuction of the script globally, for all
5631 * slots and for all instruments by setting Script::Bypass.
5632 *
5633 * @note This is an own format extension which did not exist i.e. in the
5634 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5635 * gigedit.
5636 *
5637 * @param index - index of the script slot on this instrument
5638 * @see Script::Bypass
5639 */
5640 bool Instrument::IsScriptSlotBypassed(uint index) {
5641 if (index >= ScriptSlotCount()) return false;
5642 return pScriptRefs ? pScriptRefs->at(index).bypass
5643 : scriptPoolFileOffsets.at(index).bypass;
5644
5645 }
5646
5647 /** @brief Defines whether execution shall be skipped.
5648 *
5649 * You can call this method to define locally whether or whether not the
5650 * given script slot shall be executed by the sampler.
5651 *
5652 * @note This is an own format extension which did not exist i.e. in the
5653 * GigaStudio 4 software. It will currently only work with LinuxSampler and
5654 * gigedit.
5655 *
5656 * @param index - script slot index on this instrument
5657 * @param bBypass - if true, the script slot will be skipped by the sampler
5658 * @see Script::Bypass
5659 */
5660 void Instrument::SetScriptSlotBypassed(uint index, bool bBypass) {
5661 if (index >= ScriptSlotCount()) return;
5662 if (pScriptRefs)
5663 pScriptRefs->at(index).bypass = bBypass;
5664 else
5665 scriptPoolFileOffsets.at(index).bypass = bBypass;
5666 }
5667
5668 /// type cast (by copy) uint8_t[16] -> std::array<uint8_t,16>
5669 inline std::array<uint8_t,16> _UUIDFromCArray(const uint8_t* pData) {
5670 std::array<uint8_t,16> uuid;
5671 memcpy(&uuid[0], pData, 16);
5672 return uuid;
5673 }
5674
5675 /**
5676 * Returns true if this @c Instrument has any script slot which references
5677 * the @c Script identified by passed @p uuid.
5678 */
5679 bool Instrument::ReferencesScriptWithUuid(const _UUID& uuid) {
5680 const uint nSlots = ScriptSlotCount();
5681 for (uint iSlot = 0; iSlot < nSlots; ++iSlot)
5682 if (_UUIDFromCArray(&GetScriptOfSlot(iSlot)->Uuid[0]) == uuid)
5683 return true;
5684 return false;
5685 }
5686
5687 /** @brief Checks whether a certain script 'patch' variable value is set.
5688 *
5689 * Returns @c true if the initial value for the requested script variable is
5690 * currently overridden by this instrument.
5691 *
5692 * @remarks Real-time instrument scripts allow to declare special 'patch'
5693 * variables, which essentially behave like regular variables of their data
5694 * type, however their initial value may optionally be overridden on a per
5695 * instrument basis. That allows to share scripts between instruments while
5696 * still being able to fine tune certain aspects of the script for each
5697 * instrument individually.
5698 *
5699 * @param slot - script slot index of the variable to be retrieved
5700 * @param variable - name of the 'patch' variable in that script
5701 */
5702 bool Instrument::IsScriptPatchVariableSet(int slot, String variable) {
5703 if (variable.empty()) return false;
5704 Script* script = GetScriptOfSlot(slot);
5705 if (!script) return false;
5706 const _UUID uuid = _UUIDFromCArray(&script->Uuid[0]);
5707 if (!scriptVars.count(uuid)) return false;
5708 const _VarsBySlot& slots = scriptVars.find(uuid)->second;
5709 if (slots.empty()) return false;
5710 if (slots.count(slot))
5711 return slots.find(slot)->second.count(variable);
5712 else
5713 return slots.begin()->second.count(variable);
5714 }
5715
5716 /** @brief Get all overridden script 'patch' variables.
5717 *
5718 * Returns map of key-value pairs reflecting all patch variables currently
5719 * being overridden by this instrument for the given script @p slot, where
5720 * key is the variable name and value is the hereby currently overridden
5721 * value for that variable.
5722 *
5723 * @remarks Real-time instrument scripts allow to declare special 'patch'
5724 * variables, which essentially behave like regular variables of their data
5725 * type, however their initial value may optionally be overridden on a per
5726 * instrument basis. That allows to share scripts between instruments while
5727 * still being able to fine tune certain aspects of the script for each
5728 * instrument individually.
5729 *
5730 * @param slot - script slot index of the variable to be retrieved
5731 */
5732 std::map<String,String> Instrument::GetScriptPatchVariables(int slot) {
5733 Script* script = GetScriptOfSlot(slot);
5734 if (!script) return std::map<String,String>();
5735 const _UUID uuid = _UUIDFromCArray(&script->Uuid[0]);
5736 if (!scriptVars.count(uuid)) return std::map<String,String>();
5737 const _VarsBySlot& slots = scriptVars.find(uuid)->second;
5738 if (slots.empty()) return std::map<String,String>();
5739 const _PatchVars& vars =
5740 (slots.count(slot)) ?
5741 slots.find(slot)->second : slots.begin()->second;
5742 return vars;
5743 }
5744
5745 /** @brief Get overridden initial value for 'patch' variable.
5746 *
5747 * Returns current initial value for the requested script variable being
5748 * overridden by this instrument.
5749 *
5750 * @remarks Real-time instrument scripts allow to declare special 'patch'
5751 * variables, which essentially behave like regular variables of their data
5752 * type, however their initial value may optionally be overridden on a per
5753 * instrument basis. That allows to share scripts between instruments while
5754 * still being able to fine tune certain aspects of the script for each
5755 * instrument individually.
5756 *
5757 * @param slot - script slot index of the variable to be retrieved
5758 * @param variable - name of the 'patch' variable in that script
5759 */
5760 String Instrument::GetScriptPatchVariable(int slot, String variable) {
5761 std::map<String,String> vars = GetScriptPatchVariables(slot);
5762 return (vars.count(variable)) ? vars.find(variable)->second : "";
5763 }
5764
5765 /** @brief Override initial value for 'patch' variable.
5766 *
5767 * Overrides initial value for the requested script variable for this
5768 * instrument with the passed value.
5769 *
5770 * @remarks Real-time instrument scripts allow to declare special 'patch'
5771 * variables, which essentially behave like regular variables of their data
5772 * type, however their initial value may optionally be overridden on a per
5773 * instrument basis. That allows to share scripts between instruments while
5774 * still being able to fine tune certain aspects of the script for each
5775 * instrument individually.
5776 *
5777 * @param slot - script slot index of the variable to be set
5778 * @param variable - name of the 'patch' variable in that script
5779 * @param value - overridden initial value for that script variable
5780 * @throws gig::Exception if given script @p slot index is invalid or given
5781 * @p variable name is empty
5782 */
5783 void Instrument::SetScriptPatchVariable(int slot, String variable, String value) {
5784 if (variable.empty())
5785 throw Exception("Variable name must not be empty");
5786 Script* script = GetScriptOfSlot(slot);
5787 if (!script)
5788 throw Exception("No script slot with index " + ToString(slot));
5789 const _UUID uuid = _UUIDFromCArray(&script->Uuid[0]);
5790 scriptVars[uuid][slot][variable] = value;
5791 }
5792
5793 /** @brief Drop overridden initial value(s) for 'patch' variable(s).
5794 *
5795 * Reverts initial value(s) for requested script variable(s) back to their
5796 * default initial value(s) defined in the script itself.
5797 *
5798 * Both arguments of this method are optional. The most obvious use case of
5799 * this method would be passing a valid script @p slot index and a
5800 * (non-emtpy string as) @p variable name to this method, which would cause
5801 * that single variable to be unset for that specific script slot (on this
5802 * @c Instrument level).
5803 *
5804 * Not passing a value (or @c -1 for @p slot and/or empty string for
5805 * @p variable) means 'wildcard'. So accordingly absence of argument(s) will
5806 * cause all variables and/or for all script slots being unset. Hence this
5807 * method serves 2^2 = 4 possible use cases in total and accordingly covers
5808 * 4 different behaviours in one method.
5809 *
5810 * @remarks Real-time instrument scripts allow to declare special 'patch'
5811 * variables, which essentially behave like regular variables of their data
5812 * type, however their initial value may optionally be overridden on a per
5813 * instrument basis. That allows to share scripts between instruments while
5814 * still being able to fine tune certain aspects of the script for each
5815 * instrument individually.
5816 *
5817 * @param slot - script slot index of the variable to be unset
5818 * @param variable - name of the 'patch' variable in that script
5819 */
5820 void Instrument::UnsetScriptPatchVariable(int slot, String variable) {
5821 Script* script = GetScriptOfSlot(slot);
5822
5823 // option 1: unset a particular variable of one particular script slot
5824 if (slot != -1 && !variable.empty()) {
5825 if (!script) return;
5826 const _UUID uuid = _UUIDFromCArray(&script->Uuid[0]);
5827 if (!scriptVars.count(uuid)) return;
5828 if (!scriptVars[uuid].count(slot)) return;
5829 if (scriptVars[uuid][slot].count(variable))
5830 scriptVars[uuid][slot].erase(
5831 scriptVars[uuid][slot].find(variable)
5832 );
5833 if (scriptVars[uuid][slot].empty())
5834 scriptVars[uuid].erase( scriptVars[uuid].find(slot) );
5835 if (scriptVars[uuid].empty())
5836 scriptVars.erase( scriptVars.find(uuid) );
5837 return;
5838 }
5839
5840 // option 2: unset all variables of all script slots
5841 if (slot == -1 && variable.empty()) {
5842 scriptVars.clear();
5843 return;
5844 }
5845
5846 // option 3: unset all variables of one particular script slot only
5847 if (slot != -1) {
5848 if (!script) return;
5849 const _UUID uuid = _UUIDFromCArray(&script->Uuid[0]);
5850 if (scriptVars.count(uuid))
5851 scriptVars.erase( scriptVars.find(uuid) );
5852 return;
5853 }
5854
5855 // option 4: unset a particular variable of all script slots
5856 _VarsByScript::iterator itScript = scriptVars.begin();
5857 _VarsByScript::iterator endScript = scriptVars.end();
5858 while (itScript != endScript) {
5859 _VarsBySlot& slots = itScript->second;
5860 _VarsBySlot::iterator itSlot = slots.begin();
5861 _VarsBySlot::iterator endSlot = slots.end();
5862 while (itSlot != endSlot) {
5863 _PatchVars& vars = itSlot->second;
5864 if (vars.count(variable))
5865 vars.erase( vars.find(variable) );
5866 if (vars.empty())
5867 slots.erase(itSlot++); // postfix increment to avoid iterator invalidation
5868 else
5869 ++itSlot;
5870 }
5871 if (slots.empty())
5872 scriptVars.erase(itScript++); // postfix increment to avoid iterator invalidation
5873 else
5874 ++itScript;
5875 }
5876 }
5877
5878 /**
5879 * Returns stripped version of member variable @c scriptVars, where scripts
5880 * no longer referenced by this @c Instrument are filtered out, and so are
5881 * variables of meanwhile obsolete slots (i.e. a script still being
5882 * referenced, but previously overridden on a script slot which either no
5883 * longer exists or is hosting another script now).
5884 */
5885 Instrument::_VarsByScript Instrument::stripScriptVars() {
5886 _VarsByScript vars;
5887 _VarsByScript::const_iterator itScript = scriptVars.begin();
5888 _VarsByScript::const_iterator endScript = scriptVars.end();
5889 for (; itScript != endScript; ++itScript) {
5890 const _UUID& uuid = itScript->first;
5891 if (!ReferencesScriptWithUuid(uuid))
5892 continue;
5893 const _VarsBySlot& slots = itScript->second;
5894 _VarsBySlot::const_iterator itSlot = slots.begin();
5895 _VarsBySlot::const_iterator endSlot = slots.end();
5896 for (; itSlot != endSlot; ++itSlot) {
5897 Script* script = GetScriptOfSlot(itSlot->first);
5898 if (!script) continue;
5899 if (_UUIDFromCArray(&script->Uuid[0]) != uuid) continue;
5900 if (itSlot->second.empty()) continue;
5901 vars[uuid][itSlot->first] = itSlot->second;
5902 }
5903 }
5904 return vars;
5905 }
5906
5907 /**
5908 * Make a (semi) deep copy of the Instrument object given by @a orig
5909 * and assign it to this object.
5910 *
5911 * Note that all sample pointers referenced by @a orig are simply copied as
5912 * memory address. Thus the respective samples are shared, not duplicated!
5913 *
5914 * @param orig - original Instrument object to be copied from
5915 */
5916 void Instrument::CopyAssign(const Instrument* orig) {
5917 CopyAssign(orig, NULL);
5918 }
5919
5920 /**
5921 * Make a (semi) deep copy of the Instrument object given by @a orig
5922 * and assign it to this object.
5923 *
5924 * @param orig - original Instrument object to be copied from
5925 * @param mSamples - crosslink map between the foreign file's samples and
5926 * this file's samples
5927 */
5928 void Instrument::CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples) {
5929 // handle base class
5930 // (without copying DLS region stuff)
5931 DLS::Instrument::CopyAssignCore(orig);
5932
5933 // handle own member variables
5934 Attenuation = orig->Attenuation;
5935 EffectSend = orig->EffectSend;
5936 FineTune = orig->FineTune;
5937 PitchbendRange = orig->PitchbendRange;
5938 PianoReleaseMode = orig->PianoReleaseMode;
5939 DimensionKeyRange = orig->DimensionKeyRange;
5940 scriptPoolFileOffsets = orig->scriptPoolFileOffsets;
5941 pScriptRefs = orig->pScriptRefs;
5942 scriptVars = orig->scriptVars;
5943
5944 // free old midi rules
5945 for (int i = 0 ; pMidiRules[i] ; i++) {
5946 delete pMidiRules[i];
5947 }
5948 //TODO: MIDI rule copying
5949 pMidiRules[0] = NULL;
5950
5951 // delete all old regions
5952 while (Regions) DeleteRegion(GetFirstRegion());
5953 // create new regions and copy them from original
5954 {
5955 RegionList::const_iterator it = orig->pRegions->begin();
5956 for (int i = 0; i < orig->Regions; ++i, ++it) {
5957 Region* dstRgn = AddRegion();
5958 //NOTE: Region does semi-deep copy !
5959 dstRgn->CopyAssign(
5960 static_cast<gig::Region*>(*it),
5961 mSamples
5962 );
5963 }
5964 }
5965
5966 UpdateRegionKeyTable();
5967 }
5968
5969 /**
5970 * Returns @c true in case this Instrument object uses any gig format
5971 * extension, that is e.g. whether any DimensionRegion object currently
5972 * has any setting effective that would require our "LSDE" RIFF chunk to
5973 * be stored to the gig file.
5974 *
5975 * Right now this is a private method. It is considerable though this method
5976 * to become (in slightly modified form) a public API method in future, i.e.
5977 * to allow instrument editors to visualize and/or warn the user of any gig
5978 * format extension being used. See also comments on
5979 * DimensionRegion::UsesAnyGigFormatExtension() for details about such a
5980 * potential public API change in future.
5981 */
5982 bool Instrument::UsesAnyGigFormatExtension() const {
5983 if (!pRegions) return false;
5984 if (!scriptVars.empty()) return true;
5985 RegionList::const_iterator iter = pRegions->begin();
5986 RegionList::const_iterator end = pRegions->end();
5987 for (; iter != end; ++iter) {
5988 gig::Region* rgn = static_cast<gig::Region*>(*iter);
5989 if (rgn->UsesAnyGigFormatExtension())
5990 return true;
5991 }
5992 return false;
5993 }
5994
5995
5996 // *************** Group ***************
5997 // *
5998
5999 /** @brief Constructor.
6000 *
6001 * @param file - pointer to the gig::File object
6002 * @param ck3gnm - pointer to 3gnm chunk associated with this group or
6003 * NULL if this is a new Group
6004 */
6005 Group::Group(File* file, RIFF::Chunk* ck3gnm) {
6006 pFile = file;
6007 pNameChunk = ck3gnm;
6008 ::LoadString(pNameChunk, Name);
6009 }
6010
6011 /** @brief Destructor.
6012 *
6013 * Currently this destructor implementation does nothing.
6014 */
6015 Group::~Group() {
6016 }
6017
6018 /** @brief Remove all RIFF chunks associated with this Group object.
6019 *
6020 * See DLS::Storage::DeleteChunks() for details.
6021 */
6022 void Group::DeleteChunks() {
6023 // handle own RIFF chunks
6024 if (pNameChunk) {
6025 pNameChunk->GetParent()->DeleteSubChunk(pNameChunk);
6026 pNameChunk = NULL;
6027 }
6028 }
6029
6030 /** @brief Update chunks with current group settings.
6031 *
6032 * Apply current Group field values to the respective chunks. You have
6033 * to call File::Save() to make changes persistent.
6034 *
6035 * Usually there is absolutely no need to call this method explicitly.
6036 * It will be called automatically when File::Save() was called.
6037 *
6038 * @param pProgress - callback function for progress notification
6039 */
6040 void Group::UpdateChunks(progress_t* pProgress) {
6041 // make sure <3gri> and <3gnl> list chunks exist
6042 RIFF::List* _3gri = pFile->pRIFF->GetSubList(LIST_TYPE_3GRI);
6043 if (!_3gri) {
6044 _3gri = pFile->pRIFF->AddSubList(LIST_TYPE_3GRI);
6045 pFile->pRIFF->MoveSubChunk(_3gri, pFile->pRIFF->GetSubChunk(CHUNK_ID_PTBL));
6046 }
6047 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
6048 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
6049
6050 if (!pNameChunk && pFile->pVersion && pFile->pVersion->major > 2) {
6051 // v3 has a fixed list of 128 strings, find a free one
6052 for (RIFF::Chunk* ck = _3gnl->GetFirstSubChunk() ; ck ; ck = _3gnl->GetNextSubChunk()) {
6053 if (strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) {
6054 pNameChunk = ck;
6055 break;
6056 }
6057 }
6058 }
6059
6060 // now store the name of this group as <3gnm> chunk as subchunk of the <3gnl> list chunk
6061 ::SaveString(CHUNK_ID_3GNM, pNameChunk, _3gnl, Name, String("Unnamed Group"), true, 64);
6062 }
6063
6064 /**
6065 * Returns the first Sample of this Group. You have to call this method
6066 * once before you use GetNextSample().
6067 *
6068 * <b>Notice:</b> this method might block for a long time, in case the
6069 * samples of this .gig file were not scanned yet
6070 *
6071 * @returns pointer address to first Sample or NULL if there is none
6072 * applied to this Group
6073 * @see GetNextSample()
6074 */
6075 Sample* Group::GetFirstSample() {
6076 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
6077 for (Sample* pSample = pFile->GetFirstSample(); pSample; pSample = pFile->GetNextSample()) {
6078 if (pSample->GetGroup() == this) return pSample;
6079 }
6080 return NULL;
6081 }
6082
6083 /**
6084 * Returns the next Sample of the Group. You have to call
6085 * GetFirstSample() once before you can use this method. By calling this
6086 * method multiple times it iterates through the Samples assigned to
6087 * this Group.
6088 *
6089 * @returns pointer address to the next Sample of this Group or NULL if
6090 * end reached
6091 * @see GetFirstSample()
6092 */
6093 Sample* Group::GetNextSample() {
6094 // FIXME: lazy und unsafe implementation, should be an autonomous iterator
6095 for (Sample* pSample = pFile->GetNextSample(); pSample; pSample = pFile->GetNextSample()) {
6096 if (pSample->GetGroup() == this) return pSample;
6097 }
6098 return NULL;
6099 }
6100
6101 /**
6102 * Move Sample given by \a pSample from another Group to this Group.
6103 */
6104 void Group::AddSample(Sample* pSample) {
6105 pSample->pGroup = this;
6106 }
6107
6108 /**
6109 * Move all members of this group to another group (preferably the 1st
6110 * one except this). This method is called explicitly by
6111 * File::DeleteGroup() thus when a Group was deleted. This code was
6112 * intentionally not placed in the destructor!
6113 */
6114 void Group::MoveAll() {
6115 // get "that" other group first
6116 Group* pOtherGroup = NULL;
6117 for (pOtherGroup = pFile->GetFirstGroup(); pOtherGroup; pOtherGroup = pFile->GetNextGroup()) {
6118 if (pOtherGroup != this) break;
6119 }
6120 if (!pOtherGroup) throw Exception(
6121 "Could not move samples to another group, since there is no "
6122 "other Group. This is a bug, report it!"
6123 );
6124 // now move all samples of this group to the other group
6125 for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
6126 pOtherGroup->AddSample(pSample);
6127 }
6128 }
6129
6130
6131
6132 // *************** File ***************
6133 // *
6134
6135 /// Reflects Gigasampler file format version 2.0 (1998-06-28).
6136 const DLS::version_t File::VERSION_2 = {
6137 0, 2, 19980628 & 0xffff, 19980628 >> 16
6138 };
6139
6140 /// Reflects Gigasampler file format version 3.0 (2003-03-31).
6141 const DLS::version_t File::VERSION_3 = {
6142 0, 3, 20030331 & 0xffff, 20030331 >> 16
6143 };
6144
6145 /// Reflects Gigasampler file format version 4.0 (2007-10-12).
6146 const DLS::version_t File::VERSION_4 = {
6147 0, 4, 20071012 & 0xffff, 20071012 >> 16
6148 };
6149
6150 static const DLS::Info::string_length_t _FileFixedStringLengths[] = {
6151 { CHUNK_ID_IARL, 256 },
6152 { CHUNK_ID_IART, 128 },
6153 { CHUNK_ID_ICMS, 128 },
6154 { CHUNK_ID_ICMT, 1024 },
6155 { CHUNK_ID_ICOP, 128 },
6156 { CHUNK_ID_ICRD, 128 },
6157 { CHUNK_ID_IENG, 128 },
6158 { CHUNK_ID_IGNR, 128 },
6159 { CHUNK_ID_IKEY, 128 },
6160 { CHUNK_ID_IMED, 128 },
6161 { CHUNK_ID_INAM, 128 },
6162 { CHUNK_ID_IPRD, 128 },
6163 { CHUNK_ID_ISBJ, 128 },
6164 { CHUNK_ID_ISFT, 128 },
6165 { CHUNK_ID_ISRC, 128 },
6166 { CHUNK_ID_ISRF, 128 },
6167 { CHUNK_ID_ITCH, 128 },
6168 { 0, 0 }
6169 };
6170
6171 File::File() : DLS::File() {
6172 bAutoLoad = true;
6173 *pVersion = VERSION_3;
6174 pGroups = NULL;
6175 pScriptGroups = NULL;
6176 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
6177 pInfo->ArchivalLocation = String(256, ' ');
6178
6179 // add some mandatory chunks to get the file chunks in right
6180 // order (INFO chunk will be moved to first position later)
6181 pRIFF->AddSubChunk(CHUNK_ID_VERS, 8);
6182 pRIFF->AddSubChunk(CHUNK_ID_COLH, 4);
6183 pRIFF->AddSubChunk(CHUNK_ID_DLID, 16);
6184
6185 GenerateDLSID();
6186 }
6187
6188 File::File(RIFF::File* pRIFF) : DLS::File(pRIFF) {
6189 bAutoLoad = true;
6190 pGroups = NULL;
6191 pScriptGroups = NULL;
6192 pInfo->SetFixedStringLengths(_FileFixedStringLengths);
6193 }
6194
6195 File::~File() {
6196 if (pGroups) {
6197 std::list<Group*>::iterator iter = pGroups->begin();
6198 std::list<Group*>::iterator end = pGroups->end();
6199 while (iter != end) {
6200 delete *iter;
6201 ++iter;
6202 }
6203 delete pGroups;
6204 }
6205 if (pScriptGroups) {
6206 std::list<ScriptGroup*>::iterator iter = pScriptGroups->begin();
6207 std::list<ScriptGroup*>::iterator end = pScriptGroups->end();
6208 while (iter != end) {
6209 delete *iter;
6210 ++iter;
6211 }
6212 delete pScriptGroups;
6213 }
6214 }
6215
6216 Sample* File::GetFirstSample(progress_t* pProgress) {
6217 if (!pSamples) LoadSamples(pProgress);
6218 if (!pSamples) return NULL;
6219 SamplesIterator = pSamples->begin();
6220 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
6221 }
6222
6223 Sample* File::GetNextSample() {
6224 if (!pSamples) return NULL;
6225 SamplesIterator++;
6226 return static_cast<gig::Sample*>( (SamplesIterator != pSamples->end()) ? *SamplesIterator : NULL );
6227 }
6228
6229 /**
6230 * Returns Sample object of @a index.
6231 *
6232 * @returns sample object or NULL if index is out of bounds
6233 */
6234 Sample* File::GetSample(uint index) {
6235 if (!pSamples) LoadSamples();
6236 if (!pSamples) return NULL;
6237 DLS::File::SampleList::iterator it = pSamples->begin();
6238 for (int i = 0; i < index; ++i) {
6239 ++it;
6240 if (it == pSamples->end()) return NULL;
6241 }
6242 if (it == pSamples->end()) return NULL;
6243 return static_cast<gig::Sample*>( *it );
6244 }
6245
6246 /**
6247 * Returns the total amount of samples of this gig file.
6248 *
6249 * Note that this method might block for a long time in case it is required
6250 * to load the sample info for the first time.
6251 *
6252 * @returns total amount of samples
6253 */
6254 size_t File::CountSamples() {
6255 if (!pSamples) LoadSamples();
6256 if (!pSamples) return 0;
6257 return pSamples->size();
6258 }
6259
6260 /** @brief Add a new sample.
6261 *
6262 * This will create a new Sample object for the gig file. You have to
6263 * call Save() to make this persistent to the file.
6264 *
6265 * @returns pointer to new Sample object
6266 */
6267 Sample* File::AddSample() {
6268 if (!pSamples) LoadSamples();
6269 __ensureMandatoryChunksExist();
6270 RIFF::List* wvpl = pRIFF->GetSubList(LIST_TYPE_WVPL);
6271 // create new Sample object and its respective 'wave' list chunk
6272 RIFF::List* wave = wvpl->AddSubList(LIST_TYPE_WAVE);
6273 Sample* pSample = new Sample(this, wave, 0 /*arbitrary value, we update offsets when we save*/);
6274
6275 // add mandatory chunks to get the chunks in right order
6276 wave->AddSubChunk(CHUNK_ID_FMT, 16);
6277 wave->AddSubList(LIST_TYPE_INFO);
6278
6279 pSamples->push_back(pSample);
6280 return pSample;
6281 }
6282
6283 /** @brief Delete a sample.
6284 *
6285 * This will delete the given Sample object from the gig file. Any
6286 * references to this sample from Regions and DimensionRegions will be
6287 * removed. You have to call Save() to make this persistent to the file.
6288 *
6289 * @param pSample - sample to delete
6290 * @throws gig::Exception if given sample could not be found
6291 */
6292 void File::DeleteSample(Sample* pSample) {
6293 if (!pSamples || !pSamples->size()) throw gig::Exception("Could not delete sample as there are no samples");
6294 SampleList::iterator iter = find(pSamples->begin(), pSamples->end(), (DLS::Sample*) pSample);
6295 if (iter == pSamples->end()) throw gig::Exception("Could not delete sample, could not find given sample");
6296 if (SamplesIterator != pSamples->end() && *SamplesIterator == pSample) ++SamplesIterator; // avoid iterator invalidation
6297 pSamples->erase(iter);
6298 pSample->DeleteChunks();
6299 delete pSample;
6300
6301 SampleList::iterator tmp = SamplesIterator;
6302 // remove all references to the sample
6303 for (Instrument* instrument = GetFirstInstrument() ; instrument ;
6304 instrument = GetNextInstrument()) {
6305 for (Region* region = instrument->GetFirstRegion() ; region ;
6306 region = instrument->GetNextRegion()) {
6307
6308 if (region->GetSample() == pSample) region->SetSample(NULL);
6309
6310 for (int i = 0 ; i < region->DimensionRegions ; i++) {
6311 gig::DimensionRegion *d = region->pDimensionRegions[i];
6312 if (d->pSample == pSample) d->pSample = NULL;
6313 }
6314 }
6315 }
6316 SamplesIterator = tmp; // restore iterator
6317 }
6318
6319 void File::LoadSamples() {
6320 LoadSamples(NULL);
6321 }
6322
6323 void File::LoadSamples(progress_t* pProgress) {
6324 // Groups must be loaded before samples, because samples will try
6325 // to resolve the group they belong to
6326 if (!pGroups) LoadGroups();
6327
6328 if (!pSamples) pSamples = new SampleList;
6329
6330 RIFF::File* file = pRIFF;
6331
6332 // just for progress calculation
6333 int iSampleIndex = 0;
6334 int iTotalSamples = WavePoolCount;
6335
6336 // just for assembling path of optional extension files to be read
6337 const std::string folder = parentPath(pRIFF->GetFileName());
6338 const std::string baseName = pathWithoutExtension(pRIFF->GetFileName());
6339
6340 // the main gig file and the extension files (.gx01, ... , .gx98) may
6341 // contain wave data (wave pool)
6342 std::vector<RIFF::File*> poolFiles;
6343 poolFiles.push_back(pRIFF);
6344
6345 // get info about all extension files
6346 RIFF::Chunk* ckXfil = pRIFF->GetSubChunk(CHUNK_ID_XFIL);
6347 if (ckXfil) { // there are extension files (.gx01, ... , .gx98) ...
6348 const uint32_t n = ckXfil->ReadInt32();
6349 for (int i = 0; i < n; i++) {
6350 // read the filename and load the extension file
6351 std::string name;
6352 ckXfil->ReadString(name, 128);
6353 std::string path = concatPath(folder, name);
6354 RIFF::File* pExtFile = new RIFF::File(path);
6355 // check that the dlsids match
6356 RIFF::Chunk* ckDLSID = pExtFile->GetSubChunk(CHUNK_ID_DLID);
6357 if (ckDLSID) {
6358 ::DLS::dlsid_t idExpected;
6359 idExpected.ulData1 = ckXfil->ReadInt32();
6360 idExpected.usData2 = ckXfil->ReadInt16();
6361 idExpected.usData3 = ckXfil->ReadInt16();
6362 ckXfil->Read(idExpected.abData, 8, 1);
6363 ::DLS::dlsid_t idFound;
6364 ckDLSID->Read(&idFound.ulData1, 1, 4);
6365 ckDLSID->Read(&idFound.usData2, 1, 2);
6366 ckDLSID->Read(&idFound.usData3, 1, 2);
6367 ckDLSID->Read(idFound.abData, 8, 1);
6368 if (memcmp(&idExpected, &idFound, 16) != 0)
6369 throw gig::Exception("dlsid mismatch for extension file: %s", path.c_str());
6370 }
6371 poolFiles.push_back(pExtFile);
6372 ExtensionFiles.push_back(pExtFile);
6373 }
6374 }
6375
6376 // check if a .gx99 (GigaPulse) file exists
6377 RIFF::Chunk* ckDoxf = pRIFF->GetSubChunk(CHUNK_ID_DOXF);
6378 if (ckDoxf) { // there is a .gx99 (GigaPulse) file ...
6379 std::string path = baseName + ".gx99";
6380 RIFF::File* pExtFile = new RIFF::File(path);
6381
6382 // skip unused int and filename
6383 ckDoxf->SetPos(132, RIFF::stream_curpos);
6384
6385 // check that the dlsids match
6386 RIFF::Chunk* ckDLSID = pExtFile->GetSubChunk(CHUNK_ID_DLID);
6387 if (ckDLSID) {
6388 ::DLS::dlsid_t idExpected;
6389 idExpected.ulData1 = ckDoxf->ReadInt32();
6390 idExpected.usData2 = ckDoxf->ReadInt16();
6391 idExpected.usData3 = ckDoxf->ReadInt16();
6392 ckDoxf->Read(idExpected.abData, 8, 1);
6393 ::DLS::dlsid_t idFound;
6394 ckDLSID->Read(&idFound.ulData1, 1, 4);
6395 ckDLSID->Read(&idFound.usData2, 1, 2);
6396 ckDLSID->Read(&idFound.usData3, 1, 2);
6397 ckDLSID->Read(idFound.abData, 8, 1);
6398 if (memcmp(&idExpected, &idFound, 16) != 0)
6399 throw gig::Exception("dlsid mismatch for GigaPulse file: %s", path.c_str());
6400 }
6401 poolFiles.push_back(pExtFile);
6402 ExtensionFiles.push_back(pExtFile);
6403 }
6404
6405 // load samples from extension files (if required)
6406 for (int i = 0; i < poolFiles.size(); i++) {
6407 RIFF::File* file = poolFiles[i];
6408 RIFF::List* wvpl = file->GetSubList(LIST_TYPE_WVPL);
6409 if (wvpl) {
6410 file_offset_t wvplFileOffset = wvpl->GetFilePos() -
6411 wvpl->GetPos(); // should be zero, but just to be sure
6412 RIFF::List* wave = wvpl->GetFirstSubList();
6413 while (wave) {
6414 if (wave->GetListType() == LIST_TYPE_WAVE) {
6415 // notify current progress
6416 if (pProgress) {
6417 const float subprogress = (float) iSampleIndex / (float) iTotalSamples;
6418 __notify_progress(pProgress, subprogress);
6419 }
6420
6421 file_offset_t waveFileOffset = wave->GetFilePos();
6422 pSamples->push_back(new Sample(this, wave, waveFileOffset - wvplFileOffset, i, iSampleIndex));
6423
6424 iSampleIndex++;
6425 }
6426 wave = wvpl->GetNextSubList();
6427 }
6428 }
6429 }
6430
6431 if (pProgress)
6432 __notify_progress(pProgress, 1.0); // notify done
6433 }
6434
6435 Instrument* File::GetFirstInstrument() {
6436 if (!pInstruments) LoadInstruments();
6437 if (!pInstruments) return NULL;
6438 InstrumentsIterator = pInstruments->begin();
6439 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
6440 }
6441
6442 Instrument* File::GetNextInstrument() {
6443 if (!pInstruments) return NULL;
6444 InstrumentsIterator++;
6445 return static_cast<gig::Instrument*>( (InstrumentsIterator != pInstruments->end()) ? *InstrumentsIterator : NULL );
6446 }
6447
6448 /**
6449 * Returns the total amount of instruments of this gig file.
6450 *
6451 * Note that this method might block for a long time in case it is required
6452 * to load the instruments info for the first time.
6453 *
6454 * @returns total amount of instruments
6455 */
6456 size_t File::CountInstruments() {
6457 if (!pInstruments) LoadInstruments();
6458 if (!pInstruments) return 0;
6459 return pInstruments->size();
6460 }
6461
6462 /**
6463 * Returns the instrument with the given index.
6464 *
6465 * @param index - number of the sought instrument (0..n)
6466 * @param pProgress - optional: callback function for progress notification
6467 * @returns sought instrument or NULL if there's no such instrument
6468 */
6469 Instrument* File::GetInstrument(uint index, progress_t* pProgress) {
6470 if (!pInstruments) {
6471 // TODO: hack - we simply load ALL samples here, it would have been done in the Region constructor anyway (ATM)
6472
6473 if (pProgress) {
6474 // sample loading subtask
6475 progress_t subprogress;
6476 __divide_progress(pProgress, &subprogress, 3.0f, 0.0f); // randomly schedule 33% for this subtask
6477 __notify_progress(&subprogress, 0.0f);
6478 if (GetAutoLoad())
6479 GetFirstSample(&subprogress); // now force all samples to be loaded
6480 __notify_progress(&subprogress, 1.0f);
6481
6482 // instrument loading subtask
6483 if (pProgress->callback) {
6484 subprogress.__range_min = subprogress.__range_max;
6485 subprogress.__range_max = pProgress->__range_max; // schedule remaining percentage for this subtask
6486 }
6487 __notify_progress(&subprogress, 0.0f);
6488 LoadInstruments(&subprogress);
6489 __notify_progress(&subprogress, 1.0f);
6490 } else {
6491 // sample loading subtask
6492 if (GetAutoLoad())
6493 GetFirstSample(); // now force all samples to be loaded
6494
6495 // instrument loading subtask
6496 LoadInstruments();
6497 }
6498 }
6499 if (!pInstruments) return NULL;
6500 InstrumentsIterator = pInstruments->begin();
6501 for (uint i = 0; InstrumentsIterator != pInstruments->end(); i++) {
6502 if (i == index) return static_cast<gig::Instrument*>( *InstrumentsIterator );
6503 InstrumentsIterator++;
6504 }
6505 return NULL;
6506 }
6507
6508 /** @brief Add a new instrument definition.
6509 *
6510 * This will create a new Instrument object for the gig file. You have
6511 * to call Save() to make this persistent to the file.
6512 *
6513 * @returns pointer to new Instrument object
6514 */
6515 Instrument* File::AddInstrument() {
6516 if (!pInstruments) LoadInstruments();
6517 __ensureMandatoryChunksExist();
6518 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
6519 RIFF::List* lstInstr = lstInstruments->AddSubList(LIST_TYPE_INS);
6520
6521 // add mandatory chunks to get the chunks in right order
6522 lstInstr->AddSubList(LIST_TYPE_INFO);
6523 lstInstr->AddSubChunk(CHUNK_ID_DLID, 16);
6524
6525 Instrument* pInstrument = new Instrument(this, lstInstr);
6526 pInstrument->GenerateDLSID();
6527
6528 lstInstr->AddSubChunk(CHUNK_ID_INSH, 12);
6529
6530 // this string is needed for the gig to be loadable in GSt:
6531 pInstrument->pInfo->Software = "Endless Wave";
6532
6533 pInstruments->push_back(pInstrument);
6534 return pInstrument;
6535 }
6536
6537 /** @brief Add a duplicate of an existing instrument.
6538 *
6539 * Duplicates the instrument definition given by @a orig and adds it
6540 * to this file. This allows in an instrument editor application to
6541 * easily create variations of an instrument, which will be stored in
6542 * the same .gig file, sharing i.e. the same samples.
6543 *
6544 * Note that all sample pointers referenced by @a orig are simply copied as
6545 * memory address. Thus the respective samples are shared, not duplicated!
6546 *
6547 * You have to call Save() to make this persistent to the file.
6548 *
6549 * @param orig - original instrument to be copied
6550 * @returns duplicated copy of the given instrument
6551 */
6552 Instrument* File::AddDuplicateInstrument(const Instrument* orig) {
6553 Instrument* instr = AddInstrument();
6554 instr->CopyAssign(orig);
6555 return instr;
6556 }
6557
6558 /** @brief Add content of another existing file.
6559 *
6560 * Duplicates the samples, groups and instruments of the original file
6561 * given by @a pFile and adds them to @c this File. In case @c this File is
6562 * a new one that you haven't saved before, then you have to call
6563 * SetFileName() before calling AddContentOf(), because this method will
6564 * automatically save this file during operation, which is required for
6565 * writing the sample waveform data by disk streaming.
6566 *
6567 * @param pFile - original file whose's content shall be copied from
6568 */
6569 void File::AddContentOf(File* pFile) {
6570 static int iCallCount = -1;
6571 iCallCount++;
6572 std::map<Group*,Group*> mGroups;
6573 std::map<Sample*,Sample*> mSamples;
6574
6575 // clone sample groups
6576 for (int i = 0; pFile->GetGroup(i); ++i) {
6577 Group* g = AddGroup();
6578 g->Name =
6579 "COPY" + ToString(iCallCount) + "_" + pFile->GetGroup(i)->Name;
6580 mGroups[pFile->GetGroup(i)] = g;
6581 }
6582
6583 // clone samples (not waveform data here yet)
6584 for (int i = 0; pFile->GetSample(i); ++i) {
6585 Sample* s = AddSample();
6586 s->CopyAssignMeta(pFile->GetSample(i));
6587 mGroups[pFile->GetSample(i)->GetGroup()]->AddSample(s);
6588 mSamples[pFile->GetSample(i)] = s;
6589 }
6590
6591 // clone script groups and their scripts
6592 for (int iGroup = 0; pFile->GetScriptGroup(iGroup); ++iGroup) {
6593 ScriptGroup* sg = pFile->GetScriptGroup(iGroup);
6594 ScriptGroup* dg = AddScriptGroup();
6595 dg->Name = "COPY" + ToString(iCallCount) + "_" + sg->Name;
6596 for (int iScript = 0; sg->GetScript(iScript); ++iScript) {
6597 Script* ss = sg->GetScript(iScript);
6598 Script* ds = dg->AddScript();
6599 ds->CopyAssign(ss);
6600 }
6601 }
6602
6603 //BUG: For some reason this method only works with this additional
6604 // Save() call in between here.
6605 //
6606 // Important: The correct one of the 2 Save() methods has to be called
6607 // here, depending on whether the file is completely new or has been
6608 // saved to disk already, otherwise it will result in data corruption.
6609 if (pRIFF->IsNew())
6610 Save(GetFileName());
6611 else
6612 Save();
6613
6614 // clone instruments
6615 // (passing the crosslink table here for the cloned samples)
6616 for (int i = 0; pFile->GetInstrument(i); ++i) {
6617 Instrument* instr = AddInstrument();
6618 instr->CopyAssign(pFile->GetInstrument(i), &mSamples);
6619 }
6620
6621 // Mandatory: file needs to be saved to disk at this point, so this
6622 // file has the correct size and data layout for writing the samples'
6623 // waveform data to disk.
6624 Save();
6625
6626 // clone samples' waveform data
6627 // (using direct read & write disk streaming)
6628 for (int i = 0; pFile->GetSample(i); ++i) {
6629 mSamples[pFile->GetSample(i)]->CopyAssignWave(pFile->GetSample(i));
6630 }
6631 }
6632
6633 /** @brief Delete an instrument.
6634 *
6635 * This will delete the given Instrument object from the gig file. You
6636 * have to call Save() to make this persistent to the file.
6637 *
6638 * @param pInstrument - instrument to delete
6639 * @throws gig::Exception if given instrument could not be found
6640 */
6641 void File::DeleteInstrument(Instrument* pInstrument) {
6642 if (!pInstruments) throw gig::Exception("Could not delete instrument as there are no instruments");
6643 InstrumentList::iterator iter = find(pInstruments->begin(), pInstruments->end(), (DLS::Instrument*) pInstrument);
6644 if (iter == pInstruments->end()) throw gig::Exception("Could not delete instrument, could not find given instrument");
6645 pInstruments->erase(iter);
6646 pInstrument->DeleteChunks();
6647 delete pInstrument;
6648 }
6649
6650 void File::LoadInstruments() {
6651 LoadInstruments(NULL);
6652 }
6653
6654 void File::LoadInstruments(progress_t* pProgress) {
6655 if (!pInstruments) pInstruments = new InstrumentList;
6656 RIFF::List* lstInstruments = pRIFF->GetSubList(LIST_TYPE_LINS);
6657 if (lstInstruments) {
6658 int iInstrumentIndex = 0;
6659 RIFF::List* lstInstr = lstInstruments->GetFirstSubList();
6660 while (lstInstr) {
6661 if (lstInstr->GetListType() == LIST_TYPE_INS) {
6662 if (pProgress) {
6663 // notify current progress
6664 const float localProgress = (float) iInstrumentIndex / (float) Instruments;
6665 __notify_progress(pProgress, localProgress);
6666
6667 // divide local progress into subprogress for loading current Instrument
6668 progress_t subprogress;
6669 __divide_progress(pProgress, &subprogress, Instruments, iInstrumentIndex);
6670
6671 pInstruments->push_back(new Instrument(this, lstInstr, &subprogress));
6672 } else {
6673 pInstruments->push_back(new Instrument(this, lstInstr));
6674 }
6675
6676 iInstrumentIndex++;
6677 }
6678 lstInstr = lstInstruments->GetNextSubList();
6679 }
6680 if (pProgress)
6681 __notify_progress(pProgress, 1.0); // notify done
6682 }
6683 }
6684
6685 /// Updates the 3crc chunk with the checksum of a sample. The
6686 /// update is done directly to disk, as this method is called
6687 /// after File::Save()
6688 void File::SetSampleChecksum(Sample* pSample, uint32_t crc) {
6689 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6690 if (!_3crc) return;
6691
6692 // get the index of the sample
6693 int iWaveIndex = GetWaveTableIndexOf(pSample);
6694 if (iWaveIndex < 0) throw gig::Exception("Could not update crc, could not find sample");
6695
6696 // write the CRC-32 checksum to disk
6697 _3crc->SetPos(iWaveIndex * 8);
6698 uint32_t one = 1;
6699 _3crc->WriteUint32(&one); // always 1
6700 _3crc->WriteUint32(&crc);
6701 }
6702
6703 uint32_t File::GetSampleChecksum(Sample* pSample) {
6704 // get the index of the sample
6705 int iWaveIndex = GetWaveTableIndexOf(pSample);
6706 if (iWaveIndex < 0) throw gig::Exception("Could not retrieve reference crc of sample, could not resolve sample's wave table index");
6707
6708 return GetSampleChecksumByIndex(iWaveIndex);
6709 }
6710
6711 uint32_t File::GetSampleChecksumByIndex(int index) {
6712 if (index < 0) throw gig::Exception("Could not retrieve reference crc of sample, invalid wave pool index of sample");
6713
6714 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6715 if (!_3crc) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
6716 uint8_t* pData = (uint8_t*) _3crc->LoadChunkData();
6717 if (!pData) throw gig::Exception("Could not retrieve reference crc of sample, no checksums stored for this file yet");
6718
6719 // read the CRC-32 checksum directly from disk
6720 size_t pos = index * 8;
6721 if (pos + 8 > _3crc->GetNewSize())
6722 throw gig::Exception("Could not retrieve reference crc of sample, could not seek to required position in crc chunk");
6723
6724 uint32_t one = load32(&pData[pos]); // always 1
6725 if (one != 1)
6726 throw gig::Exception("Could not retrieve reference crc of sample, because reference checksum table is damaged");
6727
6728 return load32(&pData[pos+4]);
6729 }
6730
6731 int File::GetWaveTableIndexOf(gig::Sample* pSample) {
6732 if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
6733 File::SampleList::iterator iter = pSamples->begin();
6734 File::SampleList::iterator end = pSamples->end();
6735 for (int index = 0; iter != end; ++iter, ++index)
6736 if (*iter == pSample)
6737 return index;
6738 return -1;
6739 }
6740
6741 /**
6742 * Checks whether the file's "3CRC" chunk was damaged. This chunk contains
6743 * the CRC32 check sums of all samples' raw wave data.
6744 *
6745 * @return true if 3CRC chunk is OK, or false if 3CRC chunk is damaged
6746 */
6747 bool File::VerifySampleChecksumTable() {
6748 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6749 if (!_3crc) return false;
6750 if (_3crc->GetNewSize() <= 0) return false;
6751 if (_3crc->GetNewSize() % 8) return false;
6752 if (!pSamples) GetFirstSample(); // make sure sample chunks were scanned
6753 if (_3crc->GetNewSize() != pSamples->size() * 8) return false;
6754
6755 const file_offset_t n = _3crc->GetNewSize() / 8;
6756
6757 uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6758 if (!pData) return false;
6759
6760 for (file_offset_t i = 0; i < n; ++i) {
6761 uint32_t one = pData[i*2];
6762 if (one != 1) return false;
6763 }
6764
6765 return true;
6766 }
6767
6768 /**
6769 * Recalculates CRC32 checksums for all samples and rebuilds this gig
6770 * file's checksum table with those new checksums. This might usually
6771 * just be necessary if the checksum table was damaged.
6772 *
6773 * @e IMPORTANT: The current implementation of this method only works
6774 * with files that have not been modified since it was loaded, because
6775 * it expects that no externally caused file structure changes are
6776 * required!
6777 *
6778 * Due to the expectation above, this method is currently protected
6779 * and actually only used by the command line tool "gigdump" yet.
6780 *
6781 * @returns true if Save() is required to be called after this call,
6782 * false if no further action is required
6783 */
6784 bool File::RebuildSampleChecksumTable() {
6785 // make sure sample chunks were scanned
6786 if (!pSamples) GetFirstSample();
6787
6788 bool bRequiresSave = false;
6789
6790 // make sure "3CRC" chunk exists with required size
6791 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
6792 if (!_3crc) {
6793 _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
6794 // the order of einf and 3crc is not the same in v2 and v3
6795 RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
6796 if (einf && pVersion && pVersion->major > 2) pRIFF->MoveSubChunk(_3crc, einf);
6797 bRequiresSave = true;
6798 } else if (_3crc->GetNewSize() != pSamples->size() * 8) {
6799 _3crc->Resize(pSamples->size() * 8);
6800 bRequiresSave = true;
6801 }
6802
6803 if (bRequiresSave) { // refill CRC table for all samples in RAM ...
6804 uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
6805 {
6806 File::SampleList::iterator iter = pSamples->begin();
6807 File::SampleList::iterator end = pSamples->end();
6808 for (; iter != end; ++iter) {
6809 gig::Sample* pSample = (gig::Sample*) *iter;
6810 int index = GetWaveTableIndexOf(pSample);
6811 if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6812 pData[index*2] = 1; // always 1
6813 pData[index*2+1] = pSample->CalculateWaveDataChecksum();
6814 }
6815 }
6816 } else { // no file structure changes necessary, so directly write to disk and we are done ...
6817 // make sure file is in write mode
6818 pRIFF->SetMode(RIFF::stream_mode_read_write);
6819 {
6820 File::SampleList::iterator iter = pSamples->begin();
6821 File::SampleList::iterator end = pSamples->end();
6822 for (; iter != end; ++iter) {
6823 gig::Sample* pSample = (gig::Sample*) *iter;
6824 int index = GetWaveTableIndexOf(pSample);
6825 if (index < 0) throw gig::Exception("Could not rebuild crc table for samples, wave table index of a sample could not be resolved");
6826 pSample->crc = pSample->CalculateWaveDataChecksum();
6827 SetSampleChecksum(pSample, pSample->crc);
6828 }
6829 }
6830 }
6831
6832 return bRequiresSave;
6833 }
6834
6835 Group* File::GetFirstGroup() {
6836 if (!pGroups) LoadGroups();
6837 // there must always be at least one group
6838 GroupsIterator = pGroups->begin();
6839 return *GroupsIterator;
6840 }
6841
6842 Group* File::GetNextGroup() {
6843 if (!pGroups) return NULL;
6844 ++GroupsIterator;
6845 return (GroupsIterator == pGroups->end()) ? NULL : *GroupsIterator;
6846 }
6847
6848 /**
6849 * Returns the group with the given index.
6850 *
6851 * @param index - number of the sought group (0..n)
6852 * @returns sought group or NULL if there's no such group
6853 */
6854 Group* File::GetGroup(uint index) {
6855 if (!pGroups) LoadGroups();
6856 GroupsIterator = pGroups->begin();
6857 for (uint i = 0; GroupsIterator != pGroups->end(); i++) {
6858 if (i == index) return *GroupsIterator;
6859 ++GroupsIterator;
6860 }
6861 return NULL;
6862 }
6863
6864 /**
6865 * Returns the group with the given group name.
6866 *
6867 * Note: group names don't have to be unique in the gig format! So there
6868 * can be multiple groups with the same name. This method will simply
6869 * return the first group found with the given name.
6870 *
6871 * @param name - name of the sought group
6872 * @returns sought group or NULL if there's no group with that name
6873 */
6874 Group* File::GetGroup(String name) {
6875 if (!pGroups) LoadGroups();
6876 GroupsIterator = pGroups->begin();
6877 for (uint i = 0; GroupsIterator != pGroups->end(); ++GroupsIterator, ++i)
6878 if ((*GroupsIterator)->Name == name) return *GroupsIterator;
6879 return NULL;
6880 }
6881
6882 Group* File::AddGroup() {
6883 if (!pGroups) LoadGroups();
6884 // there must always be at least one group
6885 __ensureMandatoryChunksExist();
6886 Group* pGroup = new Group(this, NULL);
6887 pGroups->push_back(pGroup);
6888 return pGroup;
6889 }
6890
6891 /** @brief Delete a group and its samples.
6892 *
6893 * This will delete the given Group object and all the samples that
6894 * belong to this group from the gig file. You have to call Save() to
6895 * make this persistent to the file.
6896 *
6897 * @param pGroup - group to delete
6898 * @throws gig::Exception if given group could not be found
6899 */
6900 void File::DeleteGroup(Group* pGroup) {
6901 if (!pGroups) LoadGroups();
6902 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6903 if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6904 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6905 // delete all members of this group
6906 for (Sample* pSample = pGroup->GetFirstSample(); pSample; pSample = pGroup->GetNextSample()) {
6907 DeleteSample(pSample);
6908 }
6909 // now delete this group object
6910 pGroups->erase(iter);
6911 pGroup->DeleteChunks();
6912 delete pGroup;
6913 }
6914
6915 /** @brief Delete a group.
6916 *
6917 * This will delete the given Group object from the gig file. All the
6918 * samples that belong to this group will not be deleted, but instead
6919 * be moved to another group. You have to call Save() to make this
6920 * persistent to the file.
6921 *
6922 * @param pGroup - group to delete
6923 * @throws gig::Exception if given group could not be found
6924 */
6925 void File::DeleteGroupOnly(Group* pGroup) {
6926 if (!pGroups) LoadGroups();
6927 std::list<Group*>::iterator iter = find(pGroups->begin(), pGroups->end(), pGroup);
6928 if (iter == pGroups->end()) throw gig::Exception("Could not delete group, could not find given group");
6929 if (pGroups->size() == 1) throw gig::Exception("Cannot delete group, there must be at least one default group!");
6930 // move all members of this group to another group
6931 pGroup->MoveAll();
6932 pGroups->erase(iter);
6933 pGroup->DeleteChunks();
6934 delete pGroup;
6935 }
6936
6937 void File::LoadGroups() {
6938 if (!pGroups) pGroups = new std::list<Group*>;
6939 // try to read defined groups from file
6940 RIFF::List* lst3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
6941 if (lst3gri) {
6942 RIFF::List* lst3gnl = lst3gri->GetSubList(LIST_TYPE_3GNL);
6943 if (lst3gnl) {
6944 RIFF::Chunk* ck = lst3gnl->GetFirstSubChunk();
6945 while (ck) {
6946 if (ck->GetChunkID() == CHUNK_ID_3GNM) {
6947 if (pVersion && pVersion->major > 2 &&
6948 strcmp(static_cast<char*>(ck->LoadChunkData()), "") == 0) break;
6949
6950 pGroups->push_back(new Group(this, ck));
6951 }
6952 ck = lst3gnl->GetNextSubChunk();
6953 }
6954 }
6955 }
6956 // if there were no group(s), create at least the mandatory default group
6957 if (!pGroups->size()) {
6958 Group* pGroup = new Group(this, NULL);
6959 pGroup->Name = "Default Group";
6960 pGroups->push_back(pGroup);
6961 }
6962 }
6963
6964 /** @brief Get instrument script group (by index).
6965 *
6966 * Returns the real-time instrument script group with the given index.
6967 *
6968 * @param index - number of the sought group (0..n)
6969 * @returns sought script group or NULL if there's no such group
6970 */
6971 ScriptGroup* File::GetScriptGroup(uint index) {
6972 if (!pScriptGroups) LoadScriptGroups();
6973 std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6974 for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6975 if (i == index) return *it;
6976 return NULL;
6977 }
6978
6979 /** @brief Get instrument script group (by name).
6980 *
6981 * Returns the first real-time instrument script group found with the given
6982 * group name. Note that group names may not necessarily be unique.
6983 *
6984 * @param name - name of the sought script group
6985 * @returns sought script group or NULL if there's no such group
6986 */
6987 ScriptGroup* File::GetScriptGroup(const String& name) {
6988 if (!pScriptGroups) LoadScriptGroups();
6989 std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
6990 for (uint i = 0; it != pScriptGroups->end(); ++i, ++it)
6991 if ((*it)->Name == name) return *it;
6992 return NULL;
6993 }
6994
6995 /** @brief Add new instrument script group.
6996 *
6997 * Adds a new, empty real-time instrument script group to the file.
6998 *
6999 * You have to call Save() to make this persistent to the file.
7000 *
7001 * @return new empty script group
7002 */
7003 ScriptGroup* File::AddScriptGroup() {
7004 if (!pScriptGroups) LoadScriptGroups();
7005 ScriptGroup* pScriptGroup = new ScriptGroup(this, NULL);
7006 pScriptGroups->push_back(pScriptGroup);
7007 return pScriptGroup;
7008 }
7009
7010 /** @brief Delete an instrument script group.
7011 *
7012 * This will delete the given real-time instrument script group and all its
7013 * instrument scripts it contains. References inside instruments that are
7014 * using the deleted scripts will be removed from the respective instruments
7015 * accordingly.
7016 *
7017 * You have to call Save() to make this persistent to the file.
7018 *
7019 * @param pScriptGroup - script group to delete
7020 * @throws gig::Exception if given script group could not be found
7021 */
7022 void File::DeleteScriptGroup(ScriptGroup* pScriptGroup) {
7023 if (!pScriptGroups) LoadScriptGroups();
7024 std::list<ScriptGroup*>::iterator iter =
7025 find(pScriptGroups->begin(), pScriptGroups->end(), pScriptGroup);
7026 if (iter == pScriptGroups->end())
7027 throw gig::Exception("Could not delete script group, could not find given script group");
7028 pScriptGroups->erase(iter);
7029 for (int i = 0; pScriptGroup->GetScript(i); ++i)
7030 pScriptGroup->DeleteScript(pScriptGroup->GetScript(i));
7031 if (pScriptGroup->pList)
7032 pScriptGroup->pList->GetParent()->DeleteSubChunk(pScriptGroup->pList);
7033 pScriptGroup->DeleteChunks();
7034 delete pScriptGroup;
7035 }
7036
7037 void File::LoadScriptGroups() {
7038 if (pScriptGroups) return;
7039 pScriptGroups = new std::list<ScriptGroup*>;
7040 RIFF::List* lstLS = pRIFF->GetSubList(LIST_TYPE_3LS);
7041 if (lstLS) {
7042 for (RIFF::List* lst = lstLS->GetFirstSubList(); lst;
7043 lst = lstLS->GetNextSubList())
7044 {
7045 if (lst->GetListType() == LIST_TYPE_RTIS) {
7046 pScriptGroups->push_back(new ScriptGroup(this, lst));
7047 }
7048 }
7049 }
7050 }
7051
7052 /**
7053 * Apply all the gig file's current instruments, samples, groups and settings
7054 * to the respective RIFF chunks. You have to call Save() to make changes
7055 * persistent.
7056 *
7057 * Usually there is absolutely no need to call this method explicitly.
7058 * It will be called automatically when File::Save() was called.
7059 *
7060 * @param pProgress - callback function for progress notification
7061 * @throws Exception - on errors
7062 */
7063 void File::UpdateChunks(progress_t* pProgress) {
7064 bool newFile = pRIFF->GetSubList(LIST_TYPE_INFO) == NULL;
7065
7066 // update own gig format extension chunks
7067 // (not part of the GigaStudio 4 format)
7068 RIFF::List* lst3LS = pRIFF->GetSubList(LIST_TYPE_3LS);
7069 if (!lst3LS) {
7070 lst3LS = pRIFF->AddSubList(LIST_TYPE_3LS);
7071 }
7072 // Make sure <3LS > chunk is placed before <ptbl> chunk. The precise
7073 // location of <3LS > is irrelevant, however it should be located
7074 // before the actual wave data
7075 RIFF::Chunk* ckPTBL = pRIFF->GetSubChunk(CHUNK_ID_PTBL);
7076 pRIFF->MoveSubChunk(lst3LS, ckPTBL);
7077
7078 // This must be performed before writing the chunks for instruments,
7079 // because the instruments' script slots will write the file offsets
7080 // of the respective instrument script chunk as reference.
7081 if (pScriptGroups) {
7082 // Update instrument script (group) chunks.
7083 for (std::list<ScriptGroup*>::iterator it = pScriptGroups->begin();
7084 it != pScriptGroups->end(); ++it)
7085 {
7086 (*it)->UpdateChunks(pProgress);
7087 }
7088 }
7089
7090 // in case no libgig custom format data was added, then remove the
7091 // custom "3LS " chunk again
7092 if (!lst3LS->CountSubChunks()) {
7093 pRIFF->DeleteSubChunk(lst3LS);
7094 lst3LS = NULL;
7095 }
7096
7097 // first update base class's chunks
7098 DLS::File::UpdateChunks(pProgress);
7099
7100 if (newFile) {
7101 // INFO was added by Resource::UpdateChunks - make sure it
7102 // is placed first in file
7103 RIFF::Chunk* info = pRIFF->GetSubList(LIST_TYPE_INFO);
7104 RIFF::Chunk* first = pRIFF->GetFirstSubChunk();
7105 if (first != info) {
7106 pRIFF->MoveSubChunk(info, first);
7107 }
7108 }
7109
7110 // update group's chunks
7111 if (pGroups) {
7112 // make sure '3gri' and '3gnl' list chunks exist
7113 // (before updating the Group chunks)
7114 RIFF::List* _3gri = pRIFF->GetSubList(LIST_TYPE_3GRI);
7115 if (!_3gri) {
7116 _3gri = pRIFF->AddSubList(LIST_TYPE_3GRI);
7117 pRIFF->MoveSubChunk(_3gri, pRIFF->GetSubChunk(CHUNK_ID_PTBL));
7118 }
7119 RIFF::List* _3gnl = _3gri->GetSubList(LIST_TYPE_3GNL);
7120 if (!_3gnl) _3gnl = _3gri->AddSubList(LIST_TYPE_3GNL);
7121
7122 // v3: make sure the file has 128 3gnm chunks
7123 // (before updating the Group chunks)
7124 if (pVersion && pVersion->major > 2) {
7125 RIFF::Chunk* _3gnm = _3gnl->GetFirstSubChunk();
7126 for (int i = 0 ; i < 128 ; i++) {
7127 // create 128 empty placeholder strings which will either
7128 // be filled by Group::UpdateChunks below or left empty.
7129 ::SaveString(CHUNK_ID_3GNM, _3gnm, _3gnl, "", "", true, 64);
7130 if (_3gnm) _3gnm = _3gnl->GetNextSubChunk();
7131 }
7132 }
7133
7134 std::list<Group*>::iterator iter = pGroups->begin();
7135 std::list<Group*>::iterator end = pGroups->end();
7136 for (; iter != end; ++iter) {
7137 (*iter)->UpdateChunks(pProgress);
7138 }
7139 }
7140
7141 // update einf chunk
7142
7143 // The einf chunk contains statistics about the gig file, such
7144 // as the number of regions and samples used by each
7145 // instrument. It is divided in equally sized parts, where the
7146 // first part contains information about the whole gig file,
7147 // and the rest of the parts map to each instrument in the
7148 // file.
7149 //
7150 // At the end of each part there is a bit map of each sample
7151 // in the file, where a set bit means that the sample is used
7152 // by the file/instrument.
7153 //
7154 // Note that there are several fields with unknown use. These
7155 // are set to zero.
7156
7157 int sublen = int(pSamples->size() / 8 + 49);
7158 int einfSize = (Instruments + 1) * sublen;
7159
7160 RIFF::Chunk* einf = pRIFF->GetSubChunk(CHUNK_ID_EINF);
7161 if (einf) {
7162 if (einf->GetSize() != einfSize) {
7163 einf->Resize(einfSize);
7164 memset(einf->LoadChunkData(), 0, einfSize);
7165 }
7166 } else if (newFile) {
7167 einf = pRIFF->AddSubChunk(CHUNK_ID_EINF, einfSize);
7168 }
7169 if (einf) {
7170 uint8_t* pData = (uint8_t*) einf->LoadChunkData();
7171
7172 std::map<gig::Sample*,int> sampleMap;
7173 int sampleIdx = 0;
7174 for (Sample* pSample = GetFirstSample(); pSample; pSample = GetNextSample()) {
7175 sampleMap[pSample] = sampleIdx++;
7176 }
7177
7178 int totnbusedsamples = 0;
7179 int totnbusedchannels = 0;
7180 int totnbregions = 0;
7181 int totnbdimregions = 0;
7182 int totnbloops = 0;
7183 int instrumentIdx = 0;
7184
7185 memset(&pData[48], 0, sublen - 48);
7186
7187 for (Instrument* instrument = GetFirstInstrument() ; instrument ;
7188 instrument = GetNextInstrument()) {
7189 int nbusedsamples = 0;
7190 int nbusedchannels = 0;
7191 int nbdimregions = 0;
7192 int nbloops = 0;
7193
7194 memset(&pData[(instrumentIdx + 1) * sublen + 48], 0, sublen - 48);
7195
7196 for (Region* region = instrument->GetFirstRegion() ; region ;
7197 region = instrument->GetNextRegion()) {
7198 for (int i = 0 ; i < region->DimensionRegions ; i++) {
7199 gig::DimensionRegion *d = region->pDimensionRegions[i];
7200 if (d->pSample) {
7201 int sampleIdx = sampleMap[d->pSample];
7202 int byte = 48 + sampleIdx / 8;
7203 int bit = 1 << (sampleIdx & 7);
7204 if ((pData[(instrumentIdx + 1) * sublen + byte] & bit) == 0) {
7205 pData[(instrumentIdx + 1) * sublen + byte] |= bit;
7206 nbusedsamples++;
7207 nbusedchannels += d->pSample->Channels;
7208
7209 if ((pData[byte] & bit) == 0) {
7210 pData[byte] |= bit;
7211 totnbusedsamples++;
7212 totnbusedchannels += d->pSample->Channels;
7213 }
7214 }
7215 }
7216 if (d->SampleLoops) nbloops++;
7217 }
7218 nbdimregions += region->DimensionRegions;
7219 }
7220 // first 4 bytes unknown - sometimes 0, sometimes length of einf part
7221 // store32(&pData[(instrumentIdx + 1) * sublen], sublen);
7222 store32(&pData[(instrumentIdx + 1) * sublen + 4], nbusedchannels);
7223 store32(&pData[(instrumentIdx + 1) * sublen + 8], nbusedsamples);
7224 store32(&pData[(instrumentIdx + 1) * sublen + 12], 1);
7225 store32(&pData[(instrumentIdx + 1) * sublen + 16], instrument->Regions);
7226 store32(&pData[(instrumentIdx + 1) * sublen + 20], nbdimregions);
7227 store32(&pData[(instrumentIdx + 1) * sublen + 24], nbloops);
7228 // next 8 bytes unknown
7229 store32(&pData[(instrumentIdx + 1) * sublen + 36], instrumentIdx);
7230 store32(&pData[(instrumentIdx + 1) * sublen + 40], (uint32_t) pSamples->size());
7231 // next 4 bytes unknown
7232
7233 totnbregions += instrument->Regions;
7234 totnbdimregions += nbdimregions;
7235 totnbloops += nbloops;
7236 instrumentIdx++;
7237 }
7238 // first 4 bytes unknown - sometimes 0, sometimes length of einf part
7239 // store32(&pData[0], sublen);
7240 store32(&pData[4], totnbusedchannels);
7241 store32(&pData[8], totnbusedsamples);
7242 store32(&pData[12], Instruments);
7243 store32(&pData[16], totnbregions);
7244 store32(&pData[20], totnbdimregions);
7245 store32(&pData[24], totnbloops);
7246 // next 8 bytes unknown
7247 // next 4 bytes unknown, not always 0
7248 store32(&pData[40], (uint32_t) pSamples->size());
7249 // next 4 bytes unknown
7250 }
7251
7252 // update 3crc chunk
7253
7254 // The 3crc chunk contains CRC-32 checksums for the
7255 // samples. When saving a gig file to disk, we first update the 3CRC
7256 // chunk here (in RAM) with the old crc values which we read from the
7257 // 3CRC chunk when we opened the file (available with gig::Sample::crc
7258 // member variable). This step is required, because samples might have
7259 // been deleted by the user since the file was opened, which in turn
7260 // changes the order of the (i.e. old) checksums within the 3crc chunk.
7261 // If a sample was conciously modified by the user (that is if
7262 // Sample::Write() was called later on) then Sample::Write() will just
7263 // update the respective individual checksum(s) directly on disk and
7264 // leaves all other sample checksums untouched.
7265
7266 RIFF::Chunk* _3crc = pRIFF->GetSubChunk(CHUNK_ID_3CRC);
7267 if (_3crc) {
7268 _3crc->Resize(pSamples->size() * 8);
7269 } else /*if (newFile)*/ {
7270 _3crc = pRIFF->AddSubChunk(CHUNK_ID_3CRC, pSamples->size() * 8);
7271 // the order of einf and 3crc is not the same in v2 and v3
7272 if (einf && pVersion && pVersion->major > 2) pRIFF->MoveSubChunk(_3crc, einf);
7273 }
7274 { // must be performed in RAM here ...
7275 uint32_t* pData = (uint32_t*) _3crc->LoadChunkData();
7276 if (pData) {
7277 File::SampleList::iterator iter = pSamples->begin();
7278 File::SampleList::iterator end = pSamples->end();
7279 for (int index = 0; iter != end; ++iter, ++index) {
7280 gig::Sample* pSample = (gig::Sample*) *iter;
7281 pData[index*2] = 1; // always 1
7282 pData[index*2+1] = pSample->crc;
7283 }
7284 }
7285 }
7286 }
7287
7288 void File::UpdateFileOffsets() {
7289 DLS::File::UpdateFileOffsets();
7290
7291 for (Instrument* instrument = GetFirstInstrument(); instrument;
7292 instrument = GetNextInstrument())
7293 {
7294 instrument->UpdateScriptFileOffsets();
7295 }
7296 }
7297
7298 /**
7299 * Enable / disable automatic loading. By default this property is
7300 * enabled and every information is loaded automatically. However
7301 * loading all Regions, DimensionRegions and especially samples might
7302 * take a long time for large .gig files, and sometimes one might only
7303 * be interested in retrieving very superficial informations like the
7304 * amount of instruments and their names. In this case one might disable
7305 * automatic loading to avoid very slow response times.
7306 *
7307 * @e CAUTION: by disabling this property many pointers (i.e. sample
7308 * references) and attributes will have invalid or even undefined
7309 * data! This feature is currently only intended for retrieving very
7310 * superficial information in a very fast way. Don't use it to retrieve
7311 * details like synthesis information or even to modify .gig files!
7312 */
7313 void File::SetAutoLoad(bool b) {
7314 bAutoLoad = b;
7315 }
7316
7317 /**
7318 * Returns whether automatic loading is enabled.
7319 * @see SetAutoLoad()
7320 */
7321 bool File::GetAutoLoad() {
7322 return bAutoLoad;
7323 }
7324
7325 /**
7326 * Returns @c true in case this gig File object uses any gig format
7327 * extension, that is e.g. whether any DimensionRegion object currently
7328 * has any setting effective that would require our "LSDE" RIFF chunk to
7329 * be stored to the gig file.
7330 *
7331 * Right now this is a private method. It is considerable though this method
7332 * to become (in slightly modified form) a public API method in future, i.e.
7333 * to allow instrument editors to visualize and/or warn the user of any gig
7334 * format extension being used. See also comments on
7335 * DimensionRegion::UsesAnyGigFormatExtension() for details about such a
7336 * potential public API change in future.
7337 */
7338 bool File::UsesAnyGigFormatExtension() const {
7339 if (!pInstruments) return false;
7340 InstrumentList::iterator iter = pInstruments->begin();
7341 InstrumentList::iterator end = pInstruments->end();
7342 for (; iter != end; ++iter) {
7343 Instrument* pInstrument = static_cast<gig::Instrument*>(*iter);
7344 if (pInstrument->UsesAnyGigFormatExtension())
7345 return true;
7346 }
7347 return false;
7348 }
7349
7350
7351 // *************** Exception ***************
7352 // *
7353
7354 Exception::Exception() : DLS::Exception() {
7355 }
7356
7357 Exception::Exception(String format, ...) : DLS::Exception() {
7358 va_list arg;
7359 va_start(arg, format);
7360 Message = assemble(format, arg);
7361 va_end(arg);
7362 }
7363
7364 Exception::Exception(String format, va_list arg) : DLS::Exception() {
7365 Message = assemble(format, arg);
7366 }
7367
7368 void Exception::PrintMessage() {
7369 std::cout << "gig::Exception: " << Message << std::endl;
7370 }
7371
7372
7373 // *************** functions ***************
7374 // *
7375
7376 /**
7377 * Returns the name of this C++ library. This is usually "libgig" of
7378 * course. This call is equivalent to RIFF::libraryName() and
7379 * DLS::libraryName().
7380 */
7381 String libraryName() {
7382 return PACKAGE;
7383 }
7384
7385 /**
7386 * Returns version of this C++ library. This call is equivalent to
7387 * RIFF::libraryVersion() and DLS::libraryVersion().
7388 */
7389 String libraryVersion() {
7390 return VERSION;
7391 }
7392
7393 } // namespace gig

  ViewVC Help
Powered by ViewVC