/[svn]/libgig/trunk/src/gig.h
ViewVC logotype

Annotation of /libgig/trunk/src/gig.h

Parent Directory Parent Directory | Revision Log Revision Log


Revision 2912 - (hide annotations) (download) (as text)
Tue May 17 14:30:10 2016 UTC (7 years, 10 months ago) by schoenebeck
File MIME type: text/x-c++hdr
File size: 86656 byte(s)
* gig.cpp/.h: GIG FORMAT EXTENSION: Added support for saving gig file
  larger than 4 GB as one single monolithic gig file. A new custom RIFF
  chunk "FFmt" was added to distinguish such monolithic large .gig files
  from old ones which were splitted over several (.gx01, .gx02, ...)
  "extension" files before.
* DLS.cpp/.h: Sample class: wave pool offsets are now 64 bits (to allow
  support for files larger than 4 GB).
* RIFF.cpp/.h: Addded support for RIFF files larger than 4 GB, by default
  the required internal RIFF file offset size is automatically detected
  (that is RIFF files < 4 GB automatically use 32 bit offsets while
  files >= 4 GB automatically use 64 bit offsets), a particular offset
  size can be forced with a new option added to the RIFF File constructor
  though.
* RIFF.cpp/.h: When saving a modified, grown RIFF file, the temporary file
  size during Save() operation will no longer be larger than the final
  grown file size.
* Automake: Set environment variable GCC_COLORS=auto to allow GCC to auto
  detect whether it (sh/c)ould output its messages in color.
* Bumped version (4.0.0.svn3).

1 schoenebeck 2 /***************************************************************************
2     * *
3 schoenebeck 933 * libgig - C++ cross-platform Gigasampler format file access library *
4 schoenebeck 2 * *
5 schoenebeck 2912 * Copyright (C) 2003-2016 by Christian Schoenebeck *
6 schoenebeck 384 * <cuse@users.sourceforge.net> *
7 schoenebeck 2 * *
8     * This library is free software; you can redistribute it and/or modify *
9     * it under the terms of the GNU General Public License as published by *
10     * the Free Software Foundation; either version 2 of the License, or *
11     * (at your option) any later version. *
12     * *
13     * This library is distributed in the hope that it will be useful, *
14     * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16     * GNU General Public License for more details. *
17     * *
18     * You should have received a copy of the GNU General Public License *
19     * along with this library; if not, write to the Free Software *
20     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21     * MA 02111-1307 USA *
22     ***************************************************************************/
23    
24     #ifndef __GIG_H__
25     #define __GIG_H__
26    
27     #include "DLS.h"
28 schoenebeck 2584 #include <vector>
29 schoenebeck 2
30 schoenebeck 11 #if WORDS_BIGENDIAN
31 schoenebeck 2 # define LIST_TYPE_3PRG 0x33707267
32     # define LIST_TYPE_3EWL 0x3365776C
33 schoenebeck 929 # define LIST_TYPE_3GRI 0x33677269
34     # define LIST_TYPE_3GNL 0x33676E6C
35 schoenebeck 2584 # define LIST_TYPE_3LS 0x334c5320 // own gig format extension
36     # define LIST_TYPE_RTIS 0x52544953 // own gig format extension
37 schoenebeck 2 # define CHUNK_ID_3GIX 0x33676978
38     # define CHUNK_ID_3EWA 0x33657761
39     # define CHUNK_ID_3LNK 0x336C6E6B
40     # define CHUNK_ID_3EWG 0x33657767
41     # define CHUNK_ID_EWAV 0x65776176
42 schoenebeck 929 # define CHUNK_ID_3GNM 0x33676E6D
43 persson 1199 # define CHUNK_ID_EINF 0x65696E66
44     # define CHUNK_ID_3CRC 0x33637263
45 schoenebeck 2584 # define CHUNK_ID_SCRI 0x53637269 // own gig format extension
46     # define CHUNK_ID_LSNM 0x4c534e4d // own gig format extension
47     # define CHUNK_ID_SCSL 0x5343534c // own gig format extension
48 schoenebeck 2912 # define CHUNK_ID_FFMT 0x46466D74 // own gig format extension
49 schoenebeck 2 #else // little endian
50     # define LIST_TYPE_3PRG 0x67727033
51     # define LIST_TYPE_3EWL 0x6C776533
52 schoenebeck 929 # define LIST_TYPE_3GRI 0x69726733
53     # define LIST_TYPE_3GNL 0x6C6E6733
54 schoenebeck 2584 # define LIST_TYPE_3LS 0x20534c33 // own gig format extension
55     # define LIST_TYPE_RTIS 0x53495452 // own gig format extension
56 schoenebeck 2 # define CHUNK_ID_3GIX 0x78696733
57     # define CHUNK_ID_3EWA 0x61776533
58     # define CHUNK_ID_3LNK 0x6B6E6C33
59     # define CHUNK_ID_3EWG 0x67776533
60     # define CHUNK_ID_EWAV 0x76617765
61 schoenebeck 929 # define CHUNK_ID_3GNM 0x6D6E6733
62 persson 1199 # define CHUNK_ID_EINF 0x666E6965
63     # define CHUNK_ID_3CRC 0x63726333
64 schoenebeck 2584 # define CHUNK_ID_SCRI 0x69726353 // own gig format extension
65     # define CHUNK_ID_LSNM 0x4d4e534c // own gig format extension
66     # define CHUNK_ID_SCSL 0x4c534353 // own gig format extension
67 schoenebeck 2912 # define CHUNK_ID_FFMT 0x746D4646 // own gig format extension
68 schoenebeck 2 #endif // WORDS_BIGENDIAN
69    
70 schoenebeck 2699 /** Gigasampler/GigaStudio specific classes and definitions */
71 schoenebeck 2 namespace gig {
72    
73     typedef std::string String;
74 schoenebeck 2682 typedef RIFF::progress_t progress_t;
75 schoenebeck 2912 typedef RIFF::file_offset_t file_offset_t;
76 schoenebeck 2
77     /** Lower and upper limit of a range. */
78     struct range_t {
79     uint8_t low; ///< Low value of range.
80     uint8_t high; ///< High value of range.
81     };
82    
83     /** Pointer address and size of a buffer. */
84     struct buffer_t {
85     void* pStart; ///< Points to the beginning of the buffer.
86 schoenebeck 2912 file_offset_t Size; ///< Size of the actual data in the buffer in bytes.
87     file_offset_t NullExtensionSize; ///< The buffer might be bigger than the actual data, if that's the case that unused space at the end of the buffer is filled with NULLs and NullExtensionSize reflects that unused buffer space in bytes. Those NULL extensions are mandatory for differential algorithms that have to take the following data words into account, thus have to access past the buffer's boundary. If you don't know what I'm talking about, just forget this variable. :)
88 schoenebeck 384 buffer_t() {
89     pStart = NULL;
90     Size = 0;
91     NullExtensionSize = 0;
92     }
93 schoenebeck 2 };
94    
95     /** Standard types of sample loops. */
96     typedef enum {
97     loop_type_normal = 0x00000000, ///< Loop forward (normal)
98     loop_type_bidirectional = 0x00000001, ///< Alternating loop (forward/backward, also known as Ping Pong)
99     loop_type_backward = 0x00000002 ///< Loop backward (reverse)
100     } loop_type_t;
101    
102     /** Society of Motion Pictures and Television E time format. */
103     typedef enum {
104     smpte_format_no_offset = 0x00000000, ///< no SMPTE offset
105     smpte_format_24_frames = 0x00000018, ///< 24 frames per second
106     smpte_format_25_frames = 0x00000019, ///< 25 frames per second
107     smpte_format_30_frames_dropping = 0x0000001D, ///< 30 frames per second with frame dropping (30 drop)
108     smpte_format_30_frames = 0x0000001E ///< 30 frames per second
109     } smpte_format_t;
110    
111     /** Defines the shape of a function graph. */
112     typedef enum {
113     curve_type_nonlinear = 0,
114     curve_type_linear = 1,
115     curve_type_special = 2,
116     curve_type_unknown = 0xffffffff
117     } curve_type_t;
118    
119     /** Dimensions allow to bypass one of the following controllers. */
120     typedef enum {
121     dim_bypass_ctrl_none,
122     dim_bypass_ctrl_94, ///< Effect 4 Depth (MIDI Controller 94)
123     dim_bypass_ctrl_95 ///< Effect 5 Depth (MIDI Controller 95)
124     } dim_bypass_ctrl_t;
125    
126     /** Defines how LFO3 is controlled by. */
127     typedef enum {
128     lfo3_ctrl_internal = 0x00, ///< Only internally controlled.
129     lfo3_ctrl_modwheel = 0x01, ///< Only controlled by external modulation wheel.
130     lfo3_ctrl_aftertouch = 0x02, ///< Only controlled by aftertouch controller.
131     lfo3_ctrl_internal_modwheel = 0x03, ///< Controlled internally and by external modulation wheel.
132     lfo3_ctrl_internal_aftertouch = 0x04 ///< Controlled internally and by aftertouch controller.
133     } lfo3_ctrl_t;
134    
135     /** Defines how LFO2 is controlled by. */
136     typedef enum {
137     lfo2_ctrl_internal = 0x00, ///< Only internally controlled.
138     lfo2_ctrl_modwheel = 0x01, ///< Only controlled by external modulation wheel.
139     lfo2_ctrl_foot = 0x02, ///< Only controlled by external foot controller.
140     lfo2_ctrl_internal_modwheel = 0x03, ///< Controlled internally and by external modulation wheel.
141     lfo2_ctrl_internal_foot = 0x04 ///< Controlled internally and by external foot controller.
142     } lfo2_ctrl_t;
143    
144     /** Defines how LFO1 is controlled by. */
145     typedef enum {
146     lfo1_ctrl_internal = 0x00, ///< Only internally controlled.
147     lfo1_ctrl_modwheel = 0x01, ///< Only controlled by external modulation wheel.
148     lfo1_ctrl_breath = 0x02, ///< Only controlled by external breath controller.
149     lfo1_ctrl_internal_modwheel = 0x03, ///< Controlled internally and by external modulation wheel.
150     lfo1_ctrl_internal_breath = 0x04 ///< Controlled internally and by external breath controller.
151     } lfo1_ctrl_t;
152    
153     /** Defines how the filter cutoff frequency is controlled by. */
154     typedef enum {
155     vcf_cutoff_ctrl_none = 0x00,
156 persson 834 vcf_cutoff_ctrl_none2 = 0x01, ///< The difference between none and none2 is unknown
157 schoenebeck 2 vcf_cutoff_ctrl_modwheel = 0x81, ///< Modulation Wheel (MIDI Controller 1)
158     vcf_cutoff_ctrl_effect1 = 0x8c, ///< Effect Controller 1 (Coarse, MIDI Controller 12)
159     vcf_cutoff_ctrl_effect2 = 0x8d, ///< Effect Controller 2 (Coarse, MIDI Controller 13)
160     vcf_cutoff_ctrl_breath = 0x82, ///< Breath Controller (Coarse, MIDI Controller 2)
161     vcf_cutoff_ctrl_foot = 0x84, ///< Foot Pedal (Coarse, MIDI Controller 4)
162     vcf_cutoff_ctrl_sustainpedal = 0xc0, ///< Sustain Pedal (MIDI Controller 64)
163     vcf_cutoff_ctrl_softpedal = 0xc3, ///< Soft Pedal (MIDI Controller 67)
164     vcf_cutoff_ctrl_genpurpose7 = 0xd2, ///< General Purpose Controller 7 (Button, MIDI Controller 82)
165     vcf_cutoff_ctrl_genpurpose8 = 0xd3, ///< General Purpose Controller 8 (Button, MIDI Controller 83)
166     vcf_cutoff_ctrl_aftertouch = 0x80 ///< Key Pressure
167     } vcf_cutoff_ctrl_t;
168    
169     /** Defines how the filter resonance is controlled by. */
170     typedef enum {
171     vcf_res_ctrl_none = 0xffffffff,
172     vcf_res_ctrl_genpurpose3 = 0, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
173     vcf_res_ctrl_genpurpose4 = 1, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
174     vcf_res_ctrl_genpurpose5 = 2, ///< General Purpose Controller 5 (Button, MIDI Controller 80)
175     vcf_res_ctrl_genpurpose6 = 3 ///< General Purpose Controller 6 (Button, MIDI Controller 81)
176     } vcf_res_ctrl_t;
177 schoenebeck 55
178 schoenebeck 36 /**
179     * Defines a controller that has a certain contrained influence on a
180     * particular synthesis parameter (used to define attenuation controller,
181     * EG1 controller and EG2 controller).
182     *
183     * You should use the respective <i>typedef</i> (means either
184     * attenuation_ctrl_t, eg1_ctrl_t or eg2_ctrl_t) in your code!
185     */
186     struct leverage_ctrl_t {
187     typedef enum {
188     type_none = 0x00, ///< No controller defined
189     type_channelaftertouch = 0x2f, ///< Channel Key Pressure
190     type_velocity = 0xff, ///< Key Velocity
191     type_controlchange = 0xfe ///< Ordinary MIDI control change controller, see field 'controller_number'
192     } type_t;
193 schoenebeck 55
194 schoenebeck 36 type_t type; ///< Controller type
195     uint controller_number; ///< MIDI controller number if this controller is a control change controller, 0 otherwise
196     };
197 schoenebeck 55
198 schoenebeck 36 /**
199     * Defines controller influencing attenuation.
200     *
201     * @see leverage_ctrl_t
202     */
203     typedef leverage_ctrl_t attenuation_ctrl_t;
204 schoenebeck 55
205 schoenebeck 36 /**
206     * Defines controller influencing envelope generator 1.
207     *
208     * @see leverage_ctrl_t
209     */
210     typedef leverage_ctrl_t eg1_ctrl_t;
211 schoenebeck 55
212 schoenebeck 36 /**
213     * Defines controller influencing envelope generator 2.
214     *
215     * @see leverage_ctrl_t
216     */
217     typedef leverage_ctrl_t eg2_ctrl_t;
218 schoenebeck 2
219     /**
220     * Defines the type of dimension, that is how the dimension zones (and
221     * thus how the dimension regions are selected by. The number of
222     * dimension zones is always a power of two. All dimensions can have up
223     * to 32 zones (except the layer dimension with only up to 8 zones and
224     * the samplechannel dimension which currently allows only 2 zones).
225     */
226     typedef enum {
227     dimension_none = 0x00, ///< Dimension not in use.
228     dimension_samplechannel = 0x80, ///< If used sample has more than one channel (thus is not mono).
229     dimension_layer = 0x81, ///< For layering of up to 8 instruments (and eventually crossfading of 2 or 4 layers).
230 persson 1076 dimension_velocity = 0x82, ///< Key Velocity (this is the only dimension in gig2 where the ranges can exactly be defined).
231 schoenebeck 2 dimension_channelaftertouch = 0x83, ///< Channel Key Pressure
232     dimension_releasetrigger = 0x84, ///< Special dimension for triggering samples on releasing a key.
233 schoenebeck 353 dimension_keyboard = 0x85, ///< Dimension for keyswitching
234 persson 437 dimension_roundrobin = 0x86, ///< Different samples triggered each time a note is played, dimension regions selected in sequence
235     dimension_random = 0x87, ///< Different samples triggered each time a note is played, random order
236 persson 1076 dimension_smartmidi = 0x88, ///< For MIDI tools like legato and repetition mode
237     dimension_roundrobinkeyboard = 0x89, ///< Different samples triggered each time a note is played, any key advances the counter
238 schoenebeck 2 dimension_modwheel = 0x01, ///< Modulation Wheel (MIDI Controller 1)
239     dimension_breath = 0x02, ///< Breath Controller (Coarse, MIDI Controller 2)
240     dimension_foot = 0x04, ///< Foot Pedal (Coarse, MIDI Controller 4)
241     dimension_portamentotime = 0x05, ///< Portamento Time (Coarse, MIDI Controller 5)
242     dimension_effect1 = 0x0c, ///< Effect Controller 1 (Coarse, MIDI Controller 12)
243     dimension_effect2 = 0x0d, ///< Effect Controller 2 (Coarse, MIDI Controller 13)
244     dimension_genpurpose1 = 0x10, ///< General Purpose Controller 1 (Slider, MIDI Controller 16)
245     dimension_genpurpose2 = 0x11, ///< General Purpose Controller 2 (Slider, MIDI Controller 17)
246     dimension_genpurpose3 = 0x12, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
247     dimension_genpurpose4 = 0x13, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
248     dimension_sustainpedal = 0x40, ///< Sustain Pedal (MIDI Controller 64)
249     dimension_portamento = 0x41, ///< Portamento (MIDI Controller 65)
250     dimension_sostenutopedal = 0x42, ///< Sostenuto Pedal (MIDI Controller 66)
251     dimension_softpedal = 0x43, ///< Soft Pedal (MIDI Controller 67)
252     dimension_genpurpose5 = 0x30, ///< General Purpose Controller 5 (Button, MIDI Controller 80)
253     dimension_genpurpose6 = 0x31, ///< General Purpose Controller 6 (Button, MIDI Controller 81)
254     dimension_genpurpose7 = 0x32, ///< General Purpose Controller 7 (Button, MIDI Controller 82)
255     dimension_genpurpose8 = 0x33, ///< General Purpose Controller 8 (Button, MIDI Controller 83)
256     dimension_effect1depth = 0x5b, ///< Effect 1 Depth (MIDI Controller 91)
257     dimension_effect2depth = 0x5c, ///< Effect 2 Depth (MIDI Controller 92)
258     dimension_effect3depth = 0x5d, ///< Effect 3 Depth (MIDI Controller 93)
259     dimension_effect4depth = 0x5e, ///< Effect 4 Depth (MIDI Controller 94)
260     dimension_effect5depth = 0x5f ///< Effect 5 Depth (MIDI Controller 95)
261     } dimension_t;
262    
263     /**
264     * Intended for internal usage: will be used to convert a dimension value
265     * into the corresponding dimension bit number.
266     */
267     typedef enum {
268 persson 858 split_type_normal, ///< dimension value between 0-127
269 schoenebeck 2 split_type_bit ///< dimension values are already the sought bit number
270     } split_type_t;
271    
272     /** General dimension definition. */
273     struct dimension_def_t {
274     dimension_t dimension; ///< Specifies which source (usually a MIDI controller) is associated with the dimension.
275     uint8_t bits; ///< Number of "bits" (1 bit = 2 splits/zones, 2 bit = 4 splits/zones, 3 bit = 8 splits/zones,...).
276     uint8_t zones; ///< Number of zones the dimension has.
277     split_type_t split_type; ///< Intended for internal usage: will be used to convert a dimension value into the corresponding dimension bit number.
278 persson 774 float zone_size; ///< Intended for internal usage: reflects the size of each zone (128/zones) for normal split types only, 0 otherwise.
279 schoenebeck 2 };
280    
281     /** Defines which frequencies are filtered by the VCF. */
282     typedef enum {
283     vcf_type_lowpass = 0x00,
284     vcf_type_lowpassturbo = 0xff, ///< More poles than normal lowpass
285     vcf_type_bandpass = 0x01,
286     vcf_type_highpass = 0x02,
287     vcf_type_bandreject = 0x03
288     } vcf_type_t;
289    
290 schoenebeck 345 /**
291     * Defines the envelope of a crossfade.
292     *
293     * Note: The default value for crossfade points is 0,0,0,0. Layers with
294     * such a default value should be treated as if they would not have a
295 schoenebeck 353 * crossfade.
296 schoenebeck 345 */
297 schoenebeck 2 struct crossfade_t {
298     #if WORDS_BIGENDIAN
299 schoenebeck 345 uint8_t out_end; ///< End postition of fade out.
300     uint8_t out_start; ///< Start position of fade out.
301     uint8_t in_end; ///< End position of fade in.
302 schoenebeck 2 uint8_t in_start; ///< Start position of fade in.
303 schoenebeck 345 #else // little endian
304     uint8_t in_start; ///< Start position of fade in.
305 schoenebeck 2 uint8_t in_end; ///< End position of fade in.
306     uint8_t out_start; ///< Start position of fade out.
307     uint8_t out_end; ///< End postition of fade out.
308     #endif // WORDS_BIGENDIAN
309     };
310    
311 schoenebeck 24 /** Reflects the current playback state for a sample. */
312     struct playback_state_t {
313 schoenebeck 2912 file_offset_t position; ///< Current position within the sample.
314 schoenebeck 24 bool reverse; ///< If playback direction is currently backwards (in case there is a pingpong or reverse loop defined).
315 schoenebeck 2912 file_offset_t loop_cycles_left; ///< How many times the loop has still to be passed, this value will be decremented with each loop cycle.
316 schoenebeck 24 };
317    
318 schoenebeck 2 // just symbol prototyping
319     class File;
320     class Instrument;
321     class Sample;
322 capela 310 class Region;
323 schoenebeck 929 class Group;
324 schoenebeck 2584 class Script;
325     class ScriptGroup;
326 schoenebeck 2
327 schoenebeck 2699 /** @brief Encapsulates articulation informations of a dimension region.
328 schoenebeck 2 *
329 schoenebeck 2699 * This is the most important data object of the Gigasampler / GigaStudio
330     * format. A DimensionRegion provides the link to the sample to be played
331     * and all required articulation informations to be interpreted for playing
332     * back the sample and processing it appropriately by the sampler software.
333     * Every Region of a Gigasampler Instrument has at least one dimension
334     * region (exactly then when the Region has no dimension defined). Many
335     * Regions though provide more than one DimensionRegion, which reflect
336     * different playing "cases". For example a different sample might be played
337     * if a certain pedal is pressed down, or if the note was triggered with
338     * different velocity.
339 schoenebeck 2 *
340 schoenebeck 2699 * One instance of a DimensionRegion reflects exactly one particular case
341     * while playing an instrument (for instance "note between C3 and E3 was
342     * triggered AND note on velocity was between 20 and 42 AND modulation wheel
343     * controller is between 80 and 127). The DimensionRegion defines what to do
344     * under that one particular case, that is which sample to play back and how
345     * to play that sample back exactly and how to process it. So a
346     * DimensionRegion object is always linked to exactly one sample. It may
347     * however also link to no sample at all, for defining a "silence" case
348     * where nothing shall be played (for example when note on velocity was
349     * below 6).
350 schoenebeck 2 *
351 schoenebeck 2699 * Note that a DimensionRegion object only defines "what to do", but it does
352     * not define "when to do it". To actually resolve which DimensionRegion to
353     * pick under which situation, you need to refer to the DimensionRegions'
354     * parent Region object. The Region object contains the necessary
355     * "Dimension" definitions, which in turn define which DimensionRegion is
356     * associated with which playing case exactly.
357     *
358     * The Gigasampler/GigaStudio format defines 3 Envelope Generators and 3
359     * Low Frequency Oscillators:
360     *
361 schoenebeck 2 * - EG1 and LFO1, both controlling sample amplitude
362     * - EG2 and LFO2, both controlling filter cutoff frequency
363     * - EG3 and LFO3, both controlling sample pitch
364 schoenebeck 2699 *
365     * Since the gig format was designed as extension to the DLS file format,
366     * this class is derived from the DLS::Sampler class. So also refer to
367     * DLS::Sampler for additional informations, class attributes and methods.
368 schoenebeck 2 */
369     class DimensionRegion : protected DLS::Sampler {
370     public:
371 schoenebeck 2543 uint8_t VelocityUpperLimit; ///< Defines the upper velocity value limit of a velocity split (only if an user defined limit was set, thus a value not equal to 128/NumberOfSplits, else this value is 0). Only for gig2, for gig3 and above the DimensionUpperLimits are used instead.
372 schoenebeck 2 Sample* pSample; ///< Points to the Sample which is assigned to the dimension region.
373     // Sample Amplitude EG/LFO
374     uint16_t EG1PreAttack; ///< Preattack value of the sample amplitude EG (0 - 1000 permille).
375     double EG1Attack; ///< Attack time of the sample amplitude EG (0.000 - 60.000s).
376     double EG1Decay1; ///< Decay time of the sample amplitude EG (0.000 - 60.000s).
377     double EG1Decay2; ///< Only if <i>EG1InfiniteSustain == false</i>: 2nd decay stage time of the sample amplitude EG (0.000 - 60.000s).
378     bool EG1InfiniteSustain; ///< If <i>true</i>, instead of going into Decay2 phase, Decay1 level will be hold until note will be released.
379     uint16_t EG1Sustain; ///< Sustain value of the sample amplitude EG (0 - 1000 permille).
380     double EG1Release; ///< Release time of the sample amplitude EG (0.000 - 60.000s).
381     bool EG1Hold; ///< If <i>true</i>, Decay1 stage should be postponed until the sample reached the sample loop start.
382     eg1_ctrl_t EG1Controller; ///< MIDI Controller which has influence on sample amplitude EG parameters (attack, decay, release).
383     bool EG1ControllerInvert; ///< Invert values coming from defined EG1 controller.
384 schoenebeck 36 uint8_t EG1ControllerAttackInfluence; ///< Amount EG1 Controller has influence on the EG1 Attack time (0 - 3, where 0 means off).
385     uint8_t EG1ControllerDecayInfluence; ///< Amount EG1 Controller has influence on the EG1 Decay time (0 - 3, where 0 means off).
386     uint8_t EG1ControllerReleaseInfluence; ///< Amount EG1 Controller has influence on the EG1 Release time (0 - 3, where 0 means off).
387 schoenebeck 2 double LFO1Frequency; ///< Frequency of the sample amplitude LFO (0.10 - 10.00 Hz).
388     uint16_t LFO1InternalDepth; ///< Firm pitch of the sample amplitude LFO (0 - 1200 cents).
389     uint16_t LFO1ControlDepth; ///< Controller depth influencing sample amplitude LFO pitch (0 - 1200 cents).
390     lfo1_ctrl_t LFO1Controller; ///< MIDI Controller which controls sample amplitude LFO.
391     bool LFO1FlipPhase; ///< Inverts phase of the sample amplitude LFO wave.
392     bool LFO1Sync; ///< If set to <i>true</i> only one LFO should be used for all voices.
393     // Filter Cutoff Frequency EG/LFO
394     uint16_t EG2PreAttack; ///< Preattack value of the filter cutoff EG (0 - 1000 permille).
395     double EG2Attack; ///< Attack time of the filter cutoff EG (0.000 - 60.000s).
396     double EG2Decay1; ///< Decay time of the filter cutoff EG (0.000 - 60.000s).
397     double EG2Decay2; ///< Only if <i>EG2InfiniteSustain == false</i>: 2nd stage decay time of the filter cutoff EG (0.000 - 60.000s).
398     bool EG2InfiniteSustain; ///< If <i>true</i>, instead of going into Decay2 phase, Decay1 level will be hold until note will be released.
399     uint16_t EG2Sustain; ///< Sustain value of the filter cutoff EG (0 - 1000 permille).
400     double EG2Release; ///< Release time of the filter cutoff EG (0.000 - 60.000s).
401     eg2_ctrl_t EG2Controller; ///< MIDI Controller which has influence on filter cutoff EG parameters (attack, decay, release).
402     bool EG2ControllerInvert; ///< Invert values coming from defined EG2 controller.
403 schoenebeck 36 uint8_t EG2ControllerAttackInfluence; ///< Amount EG2 Controller has influence on the EG2 Attack time (0 - 3, where 0 means off).
404     uint8_t EG2ControllerDecayInfluence; ///< Amount EG2 Controller has influence on the EG2 Decay time (0 - 3, where 0 means off).
405     uint8_t EG2ControllerReleaseInfluence; ///< Amount EG2 Controller has influence on the EG2 Release time (0 - 3, where 0 means off).
406 schoenebeck 2 double LFO2Frequency; ///< Frequency of the filter cutoff LFO (0.10 - 10.00 Hz).
407     uint16_t LFO2InternalDepth; ///< Firm pitch of the filter cutoff LFO (0 - 1200 cents).
408     uint16_t LFO2ControlDepth; ///< Controller depth influencing filter cutoff LFO pitch (0 - 1200).
409     lfo2_ctrl_t LFO2Controller; ///< MIDI Controlle which controls the filter cutoff LFO.
410     bool LFO2FlipPhase; ///< Inverts phase of the filter cutoff LFO wave.
411     bool LFO2Sync; ///< If set to <i>true</i> only one LFO should be used for all voices.
412     // Sample Pitch EG/LFO
413     double EG3Attack; ///< Attack time of the sample pitch EG (0.000 - 10.000s).
414     int16_t EG3Depth; ///< Depth of the sample pitch EG (-1200 - +1200).
415     double LFO3Frequency; ///< Frequency of the sample pitch LFO (0.10 - 10.00 Hz).
416     int16_t LFO3InternalDepth; ///< Firm depth of the sample pitch LFO (-1200 - +1200 cents).
417     int16_t LFO3ControlDepth; ///< Controller depth of the sample pitch LFO (-1200 - +1200 cents).
418     lfo3_ctrl_t LFO3Controller; ///< MIDI Controller which controls the sample pitch LFO.
419     bool LFO3Sync; ///< If set to <i>true</i> only one LFO should be used for all voices.
420     // Filter
421     bool VCFEnabled; ///< If filter should be used.
422     vcf_type_t VCFType; ///< Defines the general filter characteristic (lowpass, highpass, bandpass, etc.).
423 schoenebeck 1358 vcf_cutoff_ctrl_t VCFCutoffController; ///< Specifies which external controller has influence on the filter cutoff frequency. @deprecated Don't alter directly, use SetVCFCutoffController() instead!
424 persson 728 bool VCFCutoffControllerInvert; ///< Inverts values coming from the defined cutoff controller
425 schoenebeck 2 uint8_t VCFCutoff; ///< Max. cutoff frequency.
426 schoenebeck 1358 curve_type_t VCFVelocityCurve; ///< Defines a transformation curve for the incoming velocity values, affecting the VCF. @deprecated Don't alter directly, use SetVCFVelocityCurve() instead!
427     uint8_t VCFVelocityScale; ///< (0-127) Amount velocity controls VCF cutoff frequency (only if no other VCF cutoff controller is defined, otherwise this is the minimum cutoff). @deprecated Don't alter directly, use SetVCFVelocityScale() instead!
428     uint8_t VCFVelocityDynamicRange; ///< 0x04 = lowest, 0x00 = highest . @deprecated Don't alter directly, use SetVCFVelocityDynamicRange() instead!
429 schoenebeck 2 uint8_t VCFResonance; ///< Firm internal filter resonance weight.
430     bool VCFResonanceDynamic; ///< If <i>true</i>: Increases the resonance Q according to changes of controllers that actually control the VCF cutoff frequency (EG2, ext. VCF MIDI controller).
431     vcf_res_ctrl_t VCFResonanceController; ///< Specifies which external controller has influence on the filter resonance Q.
432     bool VCFKeyboardTracking; ///< If <i>true</i>: VCF cutoff frequence will be dependend to the note key position relative to the defined breakpoint value.
433     uint8_t VCFKeyboardTrackingBreakpoint; ///< See VCFKeyboardTracking (0 - 127).
434     // Key Velocity Transformations
435 schoenebeck 1358 curve_type_t VelocityResponseCurve; ///< Defines a transformation curve to the incoming velocity values affecting amplitude (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseCurve() instead!
436     uint8_t VelocityResponseDepth; ///< Dynamic range of velocity affecting amplitude (0 - 4) (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseDepth() instead!
437     uint8_t VelocityResponseCurveScaling; ///< 0 - 127 (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseCurveScaling() instead!
438     curve_type_t ReleaseVelocityResponseCurve; ///< Defines a transformation curve to the incoming release veloctiy values affecting envelope times. @deprecated Don't alter directly, use SetReleaseVelocityResponseCurve() instead!
439     uint8_t ReleaseVelocityResponseDepth; ///< Dynamic range of release velocity affecting envelope time (0 - 4). @deprecated Don't alter directly, use SetReleaseVelocityResponseDepth() instead!
440 schoenebeck 2 uint8_t ReleaseTriggerDecay; ///< 0 - 8
441     // Mix / Layer
442     crossfade_t Crossfade;
443     bool PitchTrack; ///< If <i>true</i>: sample will be pitched according to the key position (this will be disabled for drums for example).
444     dim_bypass_ctrl_t DimensionBypass; ///< If defined, the MIDI controller can switch on/off the dimension in realtime.
445     int8_t Pan; ///< Panorama / Balance (-64..0..63 <-> left..middle..right)
446     bool SelfMask; ///< If <i>true</i>: high velocity notes will stop low velocity notes at the same note, with that you can save voices that wouldn't be audible anyway.
447 schoenebeck 36 attenuation_ctrl_t AttenuationController; ///< MIDI Controller which has influence on the volume level of the sample (or entire sample group).
448     bool InvertAttenuationController; ///< Inverts the values coming from the defined Attenuation Controller.
449     uint8_t AttenuationControllerThreshold;///< 0-127
450 schoenebeck 2 uint8_t ChannelOffset; ///< Audio output where the audio signal of the dimension region should be routed to (0 - 9).
451     bool SustainDefeat; ///< If <i>true</i>: Sustain pedal will not hold a note.
452     bool MSDecode; ///< Gigastudio flag: defines if Mid Side Recordings should be decoded.
453     uint16_t SampleStartOffset; ///< Number of samples the sample start should be moved (0 - 2000).
454 persson 406 double SampleAttenuation; ///< Sample volume (calculated from DLS::Sampler::Gain)
455 schoenebeck 2547 uint8_t DimensionUpperLimits[8]; ///< gig3: defines the upper limit of the dimension values for this dimension region. In case you wondered why this is defined on DimensionRegion level and not on Region level: the zone sizes (upper limits) of the velocity dimension can indeed differ in the individual dimension regions, depending on which zones of the other dimension types are currently selected. So this is exceptional for the velocity dimension only. All other dimension types have the same dimension zone sizes for every single DimensionRegion (of the sample Region).
456 persson 406
457 schoenebeck 2 // derived attributes from DLS::Sampler
458 persson 2334 using DLS::Sampler::UnityNote;
459     using DLS::Sampler::FineTune;
460     using DLS::Sampler::Gain;
461     using DLS::Sampler::SampleLoops;
462     using DLS::Sampler::pSampleLoops;
463 schoenebeck 2
464 schoenebeck 809 // own methods
465 schoenebeck 16 double GetVelocityAttenuation(uint8_t MIDIKeyVelocity);
466 persson 613 double GetVelocityRelease(uint8_t MIDIKeyVelocity);
467 persson 728 double GetVelocityCutoff(uint8_t MIDIKeyVelocity);
468 schoenebeck 1358 void SetVelocityResponseCurve(curve_type_t curve);
469     void SetVelocityResponseDepth(uint8_t depth);
470     void SetVelocityResponseCurveScaling(uint8_t scaling);
471     void SetReleaseVelocityResponseCurve(curve_type_t curve);
472     void SetReleaseVelocityResponseDepth(uint8_t depth);
473     void SetVCFCutoffController(vcf_cutoff_ctrl_t controller);
474     void SetVCFVelocityCurve(curve_type_t curve);
475     void SetVCFVelocityDynamicRange(uint8_t range);
476     void SetVCFVelocityScale(uint8_t scaling);
477 schoenebeck 1316 Region* GetParent() const;
478 schoenebeck 1155 // derived methods
479 persson 2334 using DLS::Sampler::AddSampleLoop;
480     using DLS::Sampler::DeleteSampleLoop;
481 schoenebeck 809 // overridden methods
482 schoenebeck 1358 virtual void SetGain(int32_t gain);
483 schoenebeck 2682 virtual void UpdateChunks(progress_t* pProgress);
484 schoenebeck 2394 virtual void CopyAssign(const DimensionRegion* orig);
485 schoenebeck 16 protected:
486 persson 858 uint8_t* VelocityTable; ///< For velocity dimensions with custom defined zone ranges only: used for fast converting from velocity MIDI value to dimension bit number.
487 schoenebeck 1316 DimensionRegion(Region* pParent, RIFF::List* _3ewl);
488 persson 1301 DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src);
489 schoenebeck 16 ~DimensionRegion();
490 schoenebeck 2482 void CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples);
491 schoenebeck 16 friend class Region;
492     private:
493 schoenebeck 36 typedef enum { ///< Used to decode attenuation, EG1 and EG2 controller
494 schoenebeck 2540 // official leverage controllers as they were defined in the original Gigasampler/GigaStudio format:
495 schoenebeck 36 _lev_ctrl_none = 0x00,
496     _lev_ctrl_modwheel = 0x03, ///< Modulation Wheel (MIDI Controller 1)
497     _lev_ctrl_breath = 0x05, ///< Breath Controller (Coarse, MIDI Controller 2)
498     _lev_ctrl_foot = 0x07, ///< Foot Pedal (Coarse, MIDI Controller 4)
499     _lev_ctrl_effect1 = 0x0d, ///< Effect Controller 1 (Coarse, MIDI Controller 12)
500     _lev_ctrl_effect2 = 0x0f, ///< Effect Controller 2 (Coarse, MIDI Controller 13)
501     _lev_ctrl_genpurpose1 = 0x11, ///< General Purpose Controller 1 (Slider, MIDI Controller 16)
502     _lev_ctrl_genpurpose2 = 0x13, ///< General Purpose Controller 2 (Slider, MIDI Controller 17)
503     _lev_ctrl_genpurpose3 = 0x15, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
504     _lev_ctrl_genpurpose4 = 0x17, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
505     _lev_ctrl_portamentotime = 0x0b, ///< Portamento Time (Coarse, MIDI Controller 5)
506     _lev_ctrl_sustainpedal = 0x01, ///< Sustain Pedal (MIDI Controller 64)
507     _lev_ctrl_portamento = 0x19, ///< Portamento (MIDI Controller 65)
508     _lev_ctrl_sostenutopedal = 0x1b, ///< Sostenuto Pedal (MIDI Controller 66)
509     _lev_ctrl_softpedal = 0x09, ///< Soft Pedal (MIDI Controller 67)
510     _lev_ctrl_genpurpose5 = 0x1d, ///< General Purpose Controller 5 (Button, MIDI Controller 80)
511     _lev_ctrl_genpurpose6 = 0x1f, ///< General Purpose Controller 6 (Button, MIDI Controller 81)
512     _lev_ctrl_genpurpose7 = 0x21, ///< General Purpose Controller 7 (Button, MIDI Controller 82)
513     _lev_ctrl_genpurpose8 = 0x23, ///< General Purpose Controller 8 (Button, MIDI Controller 83)
514     _lev_ctrl_effect1depth = 0x25, ///< Effect 1 Depth (MIDI Controller 91)
515     _lev_ctrl_effect2depth = 0x27, ///< Effect 2 Depth (MIDI Controller 92)
516     _lev_ctrl_effect3depth = 0x29, ///< Effect 3 Depth (MIDI Controller 93)
517     _lev_ctrl_effect4depth = 0x2b, ///< Effect 4 Depth (MIDI Controller 94)
518     _lev_ctrl_effect5depth = 0x2d, ///< Effect 5 Depth (MIDI Controller 95)
519     _lev_ctrl_channelaftertouch = 0x2f, ///< Channel Key Pressure
520 schoenebeck 2540 _lev_ctrl_velocity = 0xff, ///< Key Velocity
521    
522     // format extension (these controllers are so far only supported by LinuxSampler & gigedit) they will *NOT* work with Gigasampler/GigaStudio !
523     // (the assigned values here are their official MIDI CC number plus the highest bit set):
524     _lev_ctrl_CC3_EXT = 0x83, ///< MIDI Controller 3 [gig format extension]
525    
526     _lev_ctrl_CC6_EXT = 0x86, ///< Data Entry MSB (MIDI Controller 6) [gig format extension]
527     _lev_ctrl_CC7_EXT = 0x87, ///< Channel Volume (MIDI Controller 7) [gig format extension]
528     _lev_ctrl_CC8_EXT = 0x88, ///< Balance (MIDI Controller 8) [gig format extension]
529     _lev_ctrl_CC9_EXT = 0x89, ///< MIDI Controller 9 [gig format extension]
530     _lev_ctrl_CC10_EXT = 0x8a, ///< Pan (MIDI Controller 10) [gig format extension]
531     _lev_ctrl_CC11_EXT = 0x8b, ///< Expression Controller (MIDI Controller 11) [gig format extension]
532    
533     _lev_ctrl_CC14_EXT = 0x8e, ///< MIDI Controller 14 [gig format extension]
534     _lev_ctrl_CC15_EXT = 0x8f, ///< MIDI Controller 15 [gig format extension]
535    
536     _lev_ctrl_CC20_EXT = 0x94, ///< MIDI Controller 20 [gig format extension]
537     _lev_ctrl_CC21_EXT = 0x95, ///< MIDI Controller 21 [gig format extension]
538     _lev_ctrl_CC22_EXT = 0x96, ///< MIDI Controller 22 [gig format extension]
539     _lev_ctrl_CC23_EXT = 0x97, ///< MIDI Controller 23 [gig format extension]
540     _lev_ctrl_CC24_EXT = 0x98, ///< MIDI Controller 24 [gig format extension]
541     _lev_ctrl_CC25_EXT = 0x99, ///< MIDI Controller 25 [gig format extension]
542     _lev_ctrl_CC26_EXT = 0x9a, ///< MIDI Controller 26 [gig format extension]
543     _lev_ctrl_CC27_EXT = 0x9b, ///< MIDI Controller 27 [gig format extension]
544     _lev_ctrl_CC28_EXT = 0x9c, ///< MIDI Controller 28 [gig format extension]
545     _lev_ctrl_CC29_EXT = 0x9d, ///< MIDI Controller 29 [gig format extension]
546     _lev_ctrl_CC30_EXT = 0x9e, ///< MIDI Controller 30 [gig format extension]
547     _lev_ctrl_CC31_EXT = 0x9f, ///< MIDI Controller 31 [gig format extension]
548    
549     _lev_ctrl_CC68_EXT = 0xc4, ///< Legato Footswitch (MIDI Controller 68) [gig format extension]
550     _lev_ctrl_CC69_EXT = 0xc5, ///< Hold 2 (MIDI Controller 69) [gig format extension]
551     _lev_ctrl_CC70_EXT = 0xc6, ///< Sound Ctrl. 1 - Sound Variation (MIDI Controller 70) [gig format extension]
552     _lev_ctrl_CC71_EXT = 0xc7, ///< Sound Ctrl. 2 - Timbre (MIDI Controller 71) [gig format extension]
553     _lev_ctrl_CC72_EXT = 0xc8, ///< Sound Ctrl. 3 - Release Time (MIDI Controller 72) [gig format extension]
554     _lev_ctrl_CC73_EXT = 0xc9, ///< Sound Ctrl. 4 - Attack Time (MIDI Controller 73) [gig format extension]
555     _lev_ctrl_CC74_EXT = 0xca, ///< Sound Ctrl. 5 - Brightness (MIDI Controller 74) [gig format extension]
556     _lev_ctrl_CC75_EXT = 0xcb, ///< Sound Ctrl. 6 - Decay Time (MIDI Controller 75) [gig format extension]
557     _lev_ctrl_CC76_EXT = 0xcc, ///< Sound Ctrl. 7 - Vibrato Rate (MIDI Controller 76) [gig format extension]
558     _lev_ctrl_CC77_EXT = 0xcd, ///< Sound Ctrl. 8 - Vibrato Depth (MIDI Controller 77) [gig format extension]
559     _lev_ctrl_CC78_EXT = 0xce, ///< Sound Ctrl. 9 - Vibrato Delay (MIDI Controller 78) [gig format extension]
560     _lev_ctrl_CC79_EXT = 0xcf, ///< Sound Ctrl. 10 (MIDI Controller 79) [gig format extension]
561    
562     _lev_ctrl_CC84_EXT = 0xd4, ///< Portamento Control (MIDI Controller 84) [gig format extension]
563     _lev_ctrl_CC85_EXT = 0xd5, ///< MIDI Controller 85 [gig format extension]
564     _lev_ctrl_CC86_EXT = 0xd6, ///< MIDI Controller 86 [gig format extension]
565     _lev_ctrl_CC87_EXT = 0xd7, ///< MIDI Controller 87 [gig format extension]
566    
567     _lev_ctrl_CC89_EXT = 0xd9, ///< MIDI Controller 89 [gig format extension]
568     _lev_ctrl_CC90_EXT = 0xda, ///< MIDI Controller 90 [gig format extension]
569    
570     _lev_ctrl_CC96_EXT = 0xe0, ///< Data Increment (MIDI Controller 96) [gig format extension]
571     _lev_ctrl_CC97_EXT = 0xe1, ///< Data Decrement (MIDI Controller 97) [gig format extension]
572    
573     _lev_ctrl_CC102_EXT = 0xe6, ///< MIDI Controller 102 [gig format extension]
574     _lev_ctrl_CC103_EXT = 0xe7, ///< MIDI Controller 103 [gig format extension]
575     _lev_ctrl_CC104_EXT = 0xe8, ///< MIDI Controller 104 [gig format extension]
576     _lev_ctrl_CC105_EXT = 0xe9, ///< MIDI Controller 105 [gig format extension]
577     _lev_ctrl_CC106_EXT = 0xea, ///< MIDI Controller 106 [gig format extension]
578     _lev_ctrl_CC107_EXT = 0xeb, ///< MIDI Controller 107 [gig format extension]
579     _lev_ctrl_CC108_EXT = 0xec, ///< MIDI Controller 108 [gig format extension]
580     _lev_ctrl_CC109_EXT = 0xed, ///< MIDI Controller 109 [gig format extension]
581     _lev_ctrl_CC110_EXT = 0xee, ///< MIDI Controller 110 [gig format extension]
582     _lev_ctrl_CC111_EXT = 0xef, ///< MIDI Controller 111 [gig format extension]
583     _lev_ctrl_CC112_EXT = 0xf0, ///< MIDI Controller 112 [gig format extension]
584     _lev_ctrl_CC113_EXT = 0xf1, ///< MIDI Controller 113 [gig format extension]
585     _lev_ctrl_CC114_EXT = 0xf2, ///< MIDI Controller 114 [gig format extension]
586     _lev_ctrl_CC115_EXT = 0xf3, ///< MIDI Controller 115 [gig format extension]
587     _lev_ctrl_CC116_EXT = 0xf4, ///< MIDI Controller 116 [gig format extension]
588     _lev_ctrl_CC117_EXT = 0xf5, ///< MIDI Controller 117 [gig format extension]
589     _lev_ctrl_CC118_EXT = 0xf6, ///< MIDI Controller 118 [gig format extension]
590     _lev_ctrl_CC119_EXT = 0xf7 ///< MIDI Controller 119 [gig format extension]
591 schoenebeck 55 } _lev_ctrl_t;
592 schoenebeck 16 typedef std::map<uint32_t, double*> VelocityTableMap;
593    
594     static uint Instances; ///< Number of DimensionRegion instances.
595     static VelocityTableMap* pVelocityTables; ///< Contains the tables corresponding to the various velocity parameters (VelocityResponseCurve and VelocityResponseDepth).
596     double* pVelocityAttenuationTable; ///< Points to the velocity table corresponding to the velocity parameters of this DimensionRegion.
597 persson 613 double* pVelocityReleaseTable; ///< Points to the velocity table corresponding to the release velocity parameters of this DimensionRegion
598 persson 728 double* pVelocityCutoffTable; ///< Points to the velocity table corresponding to the filter velocity parameters of this DimensionRegion
599 schoenebeck 1316 Region* pRegion;
600 schoenebeck 55
601 schoenebeck 36 leverage_ctrl_t DecodeLeverageController(_lev_ctrl_t EncodedController);
602 schoenebeck 809 _lev_ctrl_t EncodeLeverageController(leverage_ctrl_t DecodedController);
603 schoenebeck 1358 double* GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth);
604     double* GetCutoffVelocityTable(curve_type_t vcfVelocityCurve, uint8_t vcfVelocityDynamicRange, uint8_t vcfVelocityScale, vcf_cutoff_ctrl_t vcfCutoffController);
605 persson 613 double* GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);
606 schoenebeck 308 double* CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);
607 schoenebeck 2 };
608    
609 schoenebeck 2699 /** @brief Encapsulates sample waves of Gigasampler/GigaStudio files used for playback.
610 schoenebeck 809 *
611 schoenebeck 2699 * This class provides access to the actual audio sample data of a
612     * Gigasampler/GigaStudio file. Along to the actual sample data, it also
613     * provides access to the sample's meta informations like bit depth,
614     * sample rate, encoding type, but also loop informations. The latter may be
615     * used by instruments for resembling sounds with arbitary note lengths.
616     *
617 schoenebeck 809 * In case you created a new sample with File::AddSample(), you should
618     * first update all attributes with the desired meta informations
619     * (amount of channels, bit depth, sample rate, etc.), then call
620     * Resize() with the desired sample size, followed by File::Save(), this
621     * will create the mandatory RIFF chunk which will hold the sample wave
622     * data and / or resize the file so you will be able to Write() the
623     * sample data directly to disk.
624 schoenebeck 1154 *
625     * @e Caution: for gig synthesis, most looping relevant information are
626     * retrieved from the respective DimensionRegon instead from the Sample
627     * itself. This was made for allowing different loop definitions for the
628     * same sample under different conditions.
629 schoenebeck 2699 *
630     * Since the gig format was designed as extension to the DLS file format,
631     * this class is derived from the DLS::Sample class. So also refer to
632     * DLS::Sample for additional informations, class attributes and methods.
633 schoenebeck 809 */
634 schoenebeck 2 class Sample : public DLS::Sample {
635     public:
636     uint32_t Manufacturer; ///< Specifies the MIDI Manufacturer's Association (MMA) Manufacturer code for the sampler intended to receive this file's waveform. If no particular manufacturer is to be specified, a value of 0 should be used.
637     uint32_t Product; ///< Specifies the MIDI model ID defined by the manufacturer corresponding to the Manufacturer field. If no particular manufacturer's product is to be specified, a value of 0 should be used.
638 schoenebeck 809 uint32_t SamplePeriod; ///< Specifies the duration of time that passes during the playback of one sample in nanoseconds (normally equal to 1 / Samples Per Second, where Samples Per Second is the value found in the format chunk), don't bother to update this attribute, it won't be saved.
639 schoenebeck 2 uint32_t MIDIUnityNote; ///< Specifies the musical note at which the sample will be played at it's original sample rate.
640 schoenebeck 21 uint32_t FineTune; ///< Specifies the fraction of a semitone up from the specified MIDI unity note field. A value of 0x80000000 means 1/2 semitone (50 cents) and a value of 0x00000000 means no fine tuning between semitones.
641 schoenebeck 2 smpte_format_t SMPTEFormat; ///< Specifies the Society of Motion Pictures and Television E time format used in the following <i>SMPTEOffset</i> field. If a value of 0 is set, <i>SMPTEOffset</i> should also be set to 0.
642     uint32_t SMPTEOffset; ///< The SMPTE Offset value specifies the time offset to be used for the synchronization / calibration to the first sample in the waveform. This value uses a format of 0xhhmmssff where hh is a signed value that specifies the number of hours (-23 to 23), mm is an unsigned value that specifies the number of minutes (0 to 59), ss is an unsigned value that specifies the number of seconds (0 to 59) and ff is an unsigned value that specifies the number of frames (0 to -1).
643 schoenebeck 1154 uint32_t Loops; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: Number of defined sample loops. So far only seen single loops in gig files - please report if you encounter more!)
644 schoenebeck 21 uint32_t LoopID; ///< Specifies the unique ID that corresponds to one of the defined cue points in the cue point list (only if Loops > 0), as the Gigasampler format only allows one loop definition at the moment, this attribute isn't really useful for anything.
645 schoenebeck 1154 loop_type_t LoopType; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The type field defines how the waveform samples will be looped.)
646     uint32_t LoopStart; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The start value specifies the offset [in sample points] in the waveform data of the first sample to be played in the loop [only if Loops > 0].)
647     uint32_t LoopEnd; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The end value specifies the offset [in sample points] in the waveform data which represents the end of the loop [only if Loops > 0].)
648     uint32_t LoopSize; ///< @e Caution: Use the respective fields in the DimensionRegion instead of this one! (Intended purpose: Length of the looping area [in sample points] which is equivalent to @code LoopEnd - LoopStart @endcode.)
649     uint32_t LoopFraction; ///< The fractional value specifies a fraction of a sample at which to loop. This allows a loop to be fine tuned at a resolution greater than one sample. A value of 0 means no fraction, a value of 0x80000000 means 1/2 of a sample length. 0xFFFFFFFF is the smallest fraction of a sample that can be represented.
650     uint32_t LoopPlayCount; ///< Number of times the loop should be played (a value of 0 = infinite).
651 schoenebeck 2 bool Compressed; ///< If the sample wave is compressed (probably just interesting for instrument and sample editors, as this library already handles the decompression in it's sample access methods anyway).
652 persson 437 uint32_t TruncatedBits; ///< For 24-bit compressed samples only: number of bits truncated during compression (0, 4 or 6)
653     bool Dithered; ///< For 24-bit compressed samples only: if dithering was used during compression with bit reduction
654 schoenebeck 2
655     // own methods
656     buffer_t LoadSampleData();
657 schoenebeck 2912 buffer_t LoadSampleData(file_offset_t SampleCount);
658 schoenebeck 2 buffer_t LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount);
659 schoenebeck 2912 buffer_t LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount);
660 schoenebeck 2 buffer_t GetCache();
661 schoenebeck 384 // own static methods
662 schoenebeck 2912 static buffer_t CreateDecompressionBuffer(file_offset_t MaxReadSize);
663 schoenebeck 384 static void DestroyDecompressionBuffer(buffer_t& DecompressionBuffer);
664 schoenebeck 2 // overridden methods
665     void ReleaseSampleData();
666 schoenebeck 809 void Resize(int iNewSize);
667 schoenebeck 2912 file_offset_t SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence = RIFF::stream_start);
668     file_offset_t GetPos() const;
669     file_offset_t Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer = NULL);
670     file_offset_t ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState, DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer = NULL);
671     file_offset_t Write(void* pBuffer, file_offset_t SampleCount);
672 schoenebeck 930 Group* GetGroup() const;
673 schoenebeck 2682 virtual void UpdateChunks(progress_t* pProgress);
674 schoenebeck 2482 void CopyAssignMeta(const Sample* orig);
675     void CopyAssignWave(const Sample* orig);
676 schoenebeck 2 protected:
677     static unsigned int Instances; ///< Number of instances of class Sample.
678 schoenebeck 384 static buffer_t InternalDecompressionBuffer; ///< Buffer used for decompression as well as for truncation of 24 Bit -> 16 Bit samples.
679 schoenebeck 930 Group* pGroup; ///< pointer to the Group this sample belongs to (always not-NULL)
680 schoenebeck 2912 file_offset_t FrameOffset; ///< Current offset (sample points) in current sample frame (for decompression only).
681     file_offset_t* FrameTable; ///< For positioning within compressed samples only: stores the offset values for each frame.
682     file_offset_t SamplePos; ///< For compressed samples only: stores the current position (in sample points).
683     file_offset_t SamplesInLastFrame; ///< For compressed samples only: length of the last sample frame.
684     file_offset_t WorstCaseFrameSize; ///< For compressed samples only: size (in bytes) of the largest possible sample frame.
685     file_offset_t SamplesPerFrame; ///< For compressed samples only: number of samples in a full sample frame.
686 schoenebeck 2 buffer_t RAMCache; ///< Buffers samples (already uncompressed) in RAM.
687 persson 666 unsigned long FileNo; ///< File number (> 0 when sample is stored in an extension file, 0 when it's in the gig)
688 schoenebeck 809 RIFF::Chunk* pCk3gix;
689     RIFF::Chunk* pCkSmpl;
690 schoenebeck 1381 uint32_t crc; ///< CRC-32 checksum of the raw sample data
691 schoenebeck 2
692 schoenebeck 2912 Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo = 0);
693 schoenebeck 2 ~Sample();
694 persson 365
695     // Guess size (in bytes) of a compressed sample
696 schoenebeck 2912 inline file_offset_t GuessSize(file_offset_t samples) {
697 persson 365 // 16 bit: assume all frames are compressed - 1 byte
698     // per sample and 5 bytes header per 2048 samples
699    
700     // 24 bit: assume next best compression rate - 1.5
701     // bytes per sample and 13 bytes header per 256
702     // samples
703 schoenebeck 2912 const file_offset_t size =
704 persson 365 BitDepth == 24 ? samples + (samples >> 1) + (samples >> 8) * 13
705     : samples + (samples >> 10) * 5;
706     // Double for stereo and add one worst case sample
707     // frame
708     return (Channels == 2 ? size << 1 : size) + WorstCaseFrameSize;
709     }
710 schoenebeck 384
711     // Worst case amount of sample points that can be read with the
712     // given decompression buffer.
713 schoenebeck 2912 inline file_offset_t WorstCaseMaxSamples(buffer_t* pDecompressionBuffer) {
714     return (file_offset_t) ((float)pDecompressionBuffer->Size / (float)WorstCaseFrameSize * (float)SamplesPerFrame);
715 schoenebeck 384 }
716 schoenebeck 2 private:
717     void ScanCompressedSample();
718     friend class File;
719     friend class Region;
720 schoenebeck 930 friend class Group; // allow to modify protected member pGroup
721 schoenebeck 2 };
722    
723     // TODO: <3dnl> list not used yet - not important though (just contains optional descriptions for the dimensions)
724 schoenebeck 2699 /** @brief Defines Region information of a Gigasampler/GigaStudio instrument.
725 schoenebeck 2547 *
726 schoenebeck 2699 * A Region reflects a consecutive area (key range) on the keyboard. The
727     * individual regions in the gig format may not overlap with other regions
728     * (of the same instrument that is). Further, in the gig format a Region is
729     * merely a container for DimensionRegions (a.k.a. "Cases"). The Region
730     * itself does not provide the sample mapping or articulation informations
731     * used, even though the data structures of regions indeed provide such
732     * informations. The latter is however just of historical nature, because
733     * the gig file format was derived from the DLS file format.
734 schoenebeck 2547 *
735     * Each Region consists of at least one or more DimensionRegions. The actual
736     * amount of DimensionRegions depends on which kind of "dimensions" are
737     * defined for this region, and on the split / zone amount for each of those
738     * dimensions.
739 schoenebeck 2699 *
740     * Since the gig format was designed as extension to the DLS file format,
741     * this class is derived from the DLS::Region class. So also refer to
742     * DLS::Region for additional informations, class attributes and methods.
743 schoenebeck 2547 */
744 schoenebeck 2 class Region : public DLS::Region {
745     public:
746 schoenebeck 809 unsigned int Dimensions; ///< Number of defined dimensions, do not alter!
747 schoenebeck 926 dimension_def_t pDimensionDefinitions[8]; ///< Defines the five (gig2) or eight (gig3) possible dimensions (the dimension's controller and number of bits/splits). Use AddDimension() and DeleteDimension() to create a new dimension or delete an existing one.
748 schoenebeck 809 uint32_t DimensionRegions; ///< Total number of DimensionRegions this Region contains, do not alter!
749 schoenebeck 926 DimensionRegion* pDimensionRegions[256]; ///< Pointer array to the 32 (gig2) or 256 (gig3) possible dimension regions (reflects NULL for dimension regions not in use). Avoid to access the array directly and better use GetDimensionRegionByValue() instead, but of course in some cases it makes sense to use the array (e.g. iterating through all DimensionRegions). Use AddDimension() and DeleteDimension() to create a new dimension or delete an existing one (which will create or delete the respective dimension region(s) automatically).
750 schoenebeck 809 unsigned int Layers; ///< Amount of defined layers (1 - 32). A value of 1 actually means no layering, a value > 1 means there is Layer dimension. The same information can of course also be obtained by accessing pDimensionDefinitions. Do not alter this value!
751 schoenebeck 2
752 schoenebeck 1335 // own methods
753 schoenebeck 347 DimensionRegion* GetDimensionRegionByValue(const uint DimValues[8]);
754     DimensionRegion* GetDimensionRegionByBit(const uint8_t DimBits[8]);
755 schoenebeck 2599 int GetDimensionRegionIndexByValue(const uint DimValues[8]);
756 schoenebeck 2 Sample* GetSample();
757 schoenebeck 809 void AddDimension(dimension_def_t* pDimDef);
758     void DeleteDimension(dimension_def_t* pDimDef);
759 schoenebeck 2547 dimension_def_t* GetDimensionDefinition(dimension_t type);
760 schoenebeck 2555 void DeleteDimensionZone(dimension_t type, int zone);
761     void SplitDimensionZone(dimension_t type, int zone);
762 schoenebeck 2639 void SetDimensionType(dimension_t oldType, dimension_t newType);
763 schoenebeck 1335 // overridden methods
764     virtual void SetKeyRange(uint16_t Low, uint16_t High);
765 schoenebeck 2682 virtual void UpdateChunks(progress_t* pProgress);
766 schoenebeck 2394 virtual void CopyAssign(const Region* orig);
767 schoenebeck 2 protected:
768     Region(Instrument* pInstrument, RIFF::List* rgnList);
769     void LoadDimensionRegions(RIFF::List* rgn);
770 persson 858 void UpdateVelocityTable();
771 schoenebeck 515 Sample* GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress = NULL);
772 schoenebeck 2482 void CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples);
773 schoenebeck 2555 DimensionRegion* GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase);
774 schoenebeck 2 ~Region();
775     friend class Instrument;
776     };
777    
778 schoenebeck 2699 /** @brief Abstract base class for all MIDI rules.
779     *
780     * Note: Instead of using MIDI rules, we recommend you using real-time
781     * instrument scripts instead. Read about the reasons below.
782     *
783     * MIDI Rules (also called "iMIDI rules" or "intelligent MIDI rules") were
784     * introduced with GigaStudio 4 as an attempt to increase the power of
785     * potential user controls over sounds. At that point other samplers already
786     * supported certain powerful user control features, which were not possible
787     * with GigaStudio yet. For example triggering new notes by MIDI CC
788     * controller.
789     *
790     * Such extended features however were usually implemented by other samplers
791     * by requiring the sound designer to write an instrument script which the
792     * designer would then bundle with the respective instrument file. Such
793     * scripts are essentially text files, using a very specific programming
794     * language for the purpose of controlling the sampler in real-time. Since
795     * however musicians are not typically keen to writing such cumbersome
796     * script files, the GigaStudio designers decided to implement such extended
797     * features completely without instrument scripts. Instead they created a
798     * set of rules, which could be defined and altered conveniently by mouse
799     * clicks in GSt's instrument editor application. The downside of this
800     * overall approach however, was that those MIDI rules were very limited in
801     * practice. As sound designer you easily came across the possiblities such
802     * MIDI rules were able to offer.
803     *
804     * Due to such severe use case constraints, support for MIDI rules is quite
805     * limited in libgig. At the moment only the "Control Trigger", "Alternator"
806     * and the "Legato" MIDI rules are supported by libgig. Consequently the
807     * graphical instrument editor application gigedit just supports the
808     * "Control Trigger" and "Legato" MIDI rules, and LinuxSampler even does not
809     * support any MIDI rule type at all and LinuxSampler probably will not
810     * support MIDI rules in future either.
811     *
812     * Instead of using MIDI rules, we introduced real-time instrument scripts
813     * as extension to the original GigaStudio file format. This script based
814     * solution is much more powerful than MIDI rules and is already supported
815     * by libgig, gigedit and LinuxSampler.
816     *
817     * @deprecated Just provided for backward compatiblity, use Script for new
818     * instruments instead.
819     */
820 persson 1627 class MidiRule {
821     public:
822     virtual ~MidiRule() { }
823 persson 2450 protected:
824     virtual void UpdateChunks(uint8_t* pData) const = 0;
825     friend class Instrument;
826 persson 1627 };
827    
828 schoenebeck 2699 /** @brief MIDI rule for triggering notes by control change events.
829     *
830     * A "Control Trigger MIDI rule" allows to trigger new notes by sending MIDI
831     * control change events to the sampler.
832     *
833     * Note: "Control Trigger" MIDI rules are only supported by gigedit, but not
834     * by LinuxSampler. We recommend you using real-time instrument scripts
835     * instead. Read more about the details and reasons for this in the
836     * description of the MidiRule base class.
837     *
838     * @deprecated Just provided for backward compatiblity, use Script for new
839     * instruments instead. See description of MidiRule for details.
840     */
841 persson 1627 class MidiRuleCtrlTrigger : public MidiRule {
842     public:
843     uint8_t ControllerNumber; ///< MIDI controller number.
844     uint8_t Triggers; ///< Number of triggers.
845     struct trigger_t {
846     uint8_t TriggerPoint; ///< The CC value to pass for the note to be triggered.
847     bool Descending; ///< If the change in CC value should be downwards.
848     uint8_t VelSensitivity; ///< How sensitive the velocity should be to the speed of the controller change.
849     uint8_t Key; ///< Key to trigger.
850     bool NoteOff; ///< If a note off should be triggered instead of a note on.
851     uint8_t Velocity; ///< Velocity of the note to trigger. 255 means that velocity should depend on the speed of the controller change.
852     bool OverridePedal; ///< If a note off should be triggered even if the sustain pedal is down.
853     } pTriggers[32];
854    
855     protected:
856     MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg);
857 persson 2450 MidiRuleCtrlTrigger();
858     void UpdateChunks(uint8_t* pData) const;
859 persson 1627 friend class Instrument;
860     };
861    
862 schoenebeck 2699 /** @brief MIDI rule for instruments with legato samples.
863     *
864     * A "Legato MIDI rule" allows playing instruments resembling the legato
865     * playing technique. In the past such legato articulations were tried to be
866     * simulated by pitching the samples of the instrument. However since
867     * usually a high amount of pitch is needed for legatos, this always sounded
868     * very artificial and unrealistic. The "Legato MIDI rule" thus uses another
869     * approach. Instead of pitching the samples, it allows the sound designer
870     * to bundle separate, additional samples for the individual legato
871     * situations and the legato rules defined which samples to be played in
872     * which situation.
873     *
874     * Note: "Legato MIDI rules" are only supported by gigedit, but not
875     * by LinuxSampler. We recommend you using real-time instrument scripts
876     * instead. Read more about the details and reasons for this in the
877     * description of the MidiRule base class.
878     *
879     * @deprecated Just provided for backward compatiblity, use Script for new
880     * instruments instead. See description of MidiRule for details.
881     */
882 persson 2450 class MidiRuleLegato : public MidiRule {
883     public:
884     uint8_t LegatoSamples; ///< Number of legato samples per key in each direction (always 12)
885     bool BypassUseController; ///< If a controller should be used to bypass the sustain note
886     uint8_t BypassKey; ///< Key to be used to bypass the sustain note
887     uint8_t BypassController; ///< Controller to be used to bypass the sustain note
888     uint16_t ThresholdTime; ///< Maximum time (ms) between two notes that should be played legato
889     uint16_t ReleaseTime; ///< Release time
890     range_t KeyRange; ///< Key range for legato notes
891     uint8_t ReleaseTriggerKey; ///< Key triggering release samples
892     uint8_t AltSustain1Key; ///< Key triggering alternate sustain samples
893     uint8_t AltSustain2Key; ///< Key triggering a second set of alternate sustain samples
894    
895     protected:
896     MidiRuleLegato(RIFF::Chunk* _3ewg);
897     MidiRuleLegato();
898     void UpdateChunks(uint8_t* pData) const;
899     friend class Instrument;
900     };
901    
902 schoenebeck 2699 /** @brief MIDI rule to automatically cycle through specified sequences of different articulations.
903     *
904     * The instrument must be using the smartmidi dimension.
905     *
906     * Note: "Alternator" MIDI rules are neither supported by gigedit nor by
907     * LinuxSampler. We recommend you using real-time instrument scripts
908     * instead. Read more about the details and reasons for this in the
909     * description of the MidiRule base class.
910     *
911     * @deprecated Just provided for backward compatiblity, use Script for new
912     * instruments instead. See description of MidiRule for details.
913     */
914 persson 2450 class MidiRuleAlternator : public MidiRule {
915     public:
916     uint8_t Articulations; ///< Number of articulations in the instrument
917     String pArticulations[32]; ///< Names of the articulations
918    
919     range_t PlayRange; ///< Key range of the playable keys in the instrument
920    
921     uint8_t Patterns; ///< Number of alternator patterns
922     struct pattern_t {
923     String Name; ///< Name of the pattern
924     int Size; ///< Number of steps in the pattern
925     const uint8_t& operator[](int i) const { /// Articulation to play
926     return data[i];
927     }
928     uint8_t& operator[](int i) {
929     return data[i];
930     }
931     private:
932     uint8_t data[32];
933     } pPatterns[32]; ///< A pattern is a sequence of articulation numbers
934    
935     typedef enum {
936     selector_none,
937     selector_key_switch,
938     selector_controller
939     } selector_t;
940     selector_t Selector; ///< Method by which pattern is chosen
941     range_t KeySwitchRange; ///< Key range for key switch selector
942     uint8_t Controller; ///< CC number for controller selector
943    
944     bool Polyphonic; ///< If alternator should step forward only when all notes are off
945     bool Chained; ///< If all patterns should be chained together
946    
947     protected:
948     MidiRuleAlternator(RIFF::Chunk* _3ewg);
949     MidiRuleAlternator();
950     void UpdateChunks(uint8_t* pData) const;
951     friend class Instrument;
952     };
953    
954 schoenebeck 2699 /** @brief A MIDI rule not yet implemented by libgig.
955     *
956     * This class is currently used as a place holder by libgig for MIDI rule
957     * types which are not supported by libgig yet.
958     *
959     * Note: Support for missing MIDI rule types are probably never added to
960     * libgig. We recommend you using real-time instrument scripts instead.
961     * Read more about the details and reasons for this in the description of
962     * the MidiRule base class.
963     *
964     * @deprecated Just provided for backward compatiblity, use Script for new
965     * instruments instead. See description of MidiRule for details.
966     */
967 persson 2450 class MidiRuleUnknown : public MidiRule {
968     protected:
969     MidiRuleUnknown() { }
970     void UpdateChunks(uint8_t* pData) const { }
971     friend class Instrument;
972     };
973    
974 schoenebeck 2584 /** @brief Real-time instrument script (gig format extension).
975     *
976     * Real-time instrument scripts are user supplied small programs which can
977     * be used by instrument designers to create custom behaviors and features
978     * not available in the stock sampler engine. Features which might be very
979     * exotic or specific for the respective instrument.
980     *
981     * This is an extension of the GigaStudio format, thus a feature which was
982     * not available in the GigaStudio 4 software. It is currently only
983 schoenebeck 2699 * supported by LinuxSampler and gigedit. Scripts will not load with the
984     * original GigaStudio software.
985 schoenebeck 2761 *
986     * You find more informations about Instrument Scripts on the LinuxSampler
987     * documentation site:
988     *
989     * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/">About Instrument Scripts in General</a>
990     * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language">Introduction to the NKSP Script Language</a>
991     * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language/Reference/">NKSP Reference Manual</a>
992     * - <a href="http://doc.linuxsampler.org/Gigedit/Managing_Scripts">Using Instrument Scripts with Gigedit</a>
993 schoenebeck 2584 */
994     class Script {
995     public:
996     enum Encoding_t {
997     ENCODING_ASCII = 0 ///< Standard 8 bit US ASCII character encoding (default).
998     };
999     enum Compression_t {
1000     COMPRESSION_NONE = 0 ///< Is not compressed at all (default).
1001     };
1002     enum Language_t {
1003 schoenebeck 2762 LANGUAGE_NKSP = 0 ///< NKSP stands for "Is Not KSP" (default). Refer to the <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language/Reference/">NKSP Reference Manual</a> for details about this script language.
1004 schoenebeck 2584 };
1005    
1006     String Name; ///< Arbitrary name of the script, which may be displayed i.e. in an instrument editor.
1007     Compression_t Compression; ///< Whether the script was/should be compressed, and if so, which compression algorithm shall be used.
1008     Encoding_t Encoding; ///< Format the script's source code text is encoded with.
1009     Language_t Language; ///< Programming language and dialect the script is written in.
1010     bool Bypass; ///< Global bypass: if enabled, this script shall not be executed by the sampler for any instrument.
1011    
1012     String GetScriptAsText();
1013     void SetScriptAsText(const String& text);
1014     void SetGroup(ScriptGroup* pGroup);
1015 schoenebeck 2601 ScriptGroup* GetGroup() const;
1016 schoenebeck 2584 protected:
1017     Script(ScriptGroup* group, RIFF::Chunk* ckScri);
1018     virtual ~Script();
1019 schoenebeck 2682 void UpdateChunks(progress_t* pProgress);
1020 schoenebeck 2584 void RemoveAllScriptReferences();
1021     friend class ScriptGroup;
1022     friend class Instrument;
1023     private:
1024     ScriptGroup* pGroup;
1025     RIFF::Chunk* pChunk; ///< 'Scri' chunk
1026     std::vector<uint8_t> data;
1027     uint32_t crc; ///< CRC-32 checksum of the raw script data
1028     };
1029    
1030     /** @brief Group of instrument scripts (gig format extension).
1031     *
1032     * This class is simply used to sort a bunch of real-time instrument scripts
1033     * into individual groups. This allows instrument designers and script
1034     * developers to keep scripts in a certain order while working with a larger
1035     * amount of scripts in an instrument editor.
1036     *
1037     * This is an extension of the GigaStudio format, thus a feature which was
1038     * not available in the GigaStudio 4 software. It is currently only
1039     * supported by LinuxSampler and gigedit.
1040     */
1041     class ScriptGroup {
1042     public:
1043     String Name; ///< Name of this script group. For example to be displayed in an instrument editor.
1044    
1045     Script* GetScript(uint index);
1046     Script* AddScript();
1047     void DeleteScript(Script* pScript);
1048     protected:
1049     ScriptGroup(File* file, RIFF::List* lstRTIS);
1050     virtual ~ScriptGroup();
1051     void LoadScripts();
1052 schoenebeck 2682 void UpdateChunks(progress_t* pProgress);
1053 schoenebeck 2584 friend class Script;
1054     friend class File;
1055     private:
1056     File* pFile;
1057     RIFF::List* pList; ///< 'RTIS' list chunk
1058     std::list<Script*>* pScripts;
1059     };
1060    
1061 schoenebeck 2699 /** @brief Provides access to a Gigasampler/GigaStudio instrument.
1062     *
1063     * This class provides access to Gigasampler/GigaStudio instruments
1064     * contained in .gig files. A gig instrument is merely a set of keyboard
1065     * ranges (called Region), plus some additional global informations about
1066     * the instrument. The major part of the actual instrument definition used
1067     * for the synthesis of the instrument is contained in the respective Region
1068     * object (or actually in the respective DimensionRegion object being, see
1069     * description of Region for details).
1070     *
1071     * Since the gig format was designed as extension to the DLS file format,
1072     * this class is derived from the DLS::Instrument class. So also refer to
1073     * DLS::Instrument for additional informations, class attributes and
1074     * methods.
1075     */
1076 schoenebeck 2 class Instrument : protected DLS::Instrument {
1077     public:
1078     // derived attributes from DLS::Resource
1079 persson 2334 using DLS::Resource::pInfo;
1080     using DLS::Resource::pDLSID;
1081 schoenebeck 2 // derived attributes from DLS::Instrument
1082 persson 2334 using DLS::Instrument::IsDrum;
1083     using DLS::Instrument::MIDIBank;
1084     using DLS::Instrument::MIDIBankCoarse;
1085     using DLS::Instrument::MIDIBankFine;
1086     using DLS::Instrument::MIDIProgram;
1087     using DLS::Instrument::Regions;
1088 schoenebeck 2 // own attributes
1089     int32_t Attenuation; ///< in dB
1090     uint16_t EffectSend;
1091     int16_t FineTune; ///< in cents
1092     uint16_t PitchbendRange; ///< Number of semitones pitchbend controller can pitch (default is 2).
1093     bool PianoReleaseMode;
1094     range_t DimensionKeyRange; ///< 0-127 (where 0 means C1 and 127 means G9)
1095    
1096    
1097     // derived methods from DLS::Resource
1098 persson 2334 using DLS::Resource::GetParent;
1099 schoenebeck 2 // overridden methods
1100     Region* GetFirstRegion();
1101     Region* GetNextRegion();
1102 schoenebeck 809 Region* AddRegion();
1103     void DeleteRegion(Region* pRegion);
1104 schoenebeck 2700 void MoveTo(Instrument* dst);
1105 schoenebeck 2682 virtual void UpdateChunks(progress_t* pProgress);
1106 schoenebeck 2394 virtual void CopyAssign(const Instrument* orig);
1107 schoenebeck 2 // own methods
1108     Region* GetRegion(unsigned int Key);
1109 persson 1678 MidiRule* GetMidiRule(int i);
1110 persson 2450 MidiRuleCtrlTrigger* AddMidiRuleCtrlTrigger();
1111     MidiRuleLegato* AddMidiRuleLegato();
1112     MidiRuleAlternator* AddMidiRuleAlternator();
1113     void DeleteMidiRule(int i);
1114 schoenebeck 2584 // real-time instrument script methods
1115     Script* GetScriptOfSlot(uint index);
1116     void AddScriptSlot(Script* pScript, bool bypass = false);
1117     void SwapScriptSlots(uint index1, uint index2);
1118     void RemoveScriptSlot(uint index);
1119     void RemoveScript(Script* pScript);
1120     uint ScriptSlotCount() const;
1121     bool IsScriptSlotBypassed(uint index);
1122     void SetScriptSlotBypassed(uint index, bool bBypass);
1123 schoenebeck 2 protected:
1124     Region* RegionKeyTable[128]; ///< fast lookup for the corresponding Region of a MIDI key
1125    
1126 schoenebeck 515 Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress = NULL);
1127 schoenebeck 2 ~Instrument();
1128 schoenebeck 2482 void CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples);
1129 schoenebeck 809 void UpdateRegionKeyTable();
1130 schoenebeck 2584 void LoadScripts();
1131 schoenebeck 2609 void UpdateScriptFileOffsets();
1132 schoenebeck 2 friend class File;
1133 schoenebeck 1335 friend class Region; // so Region can call UpdateRegionKeyTable()
1134 persson 1627 private:
1135 schoenebeck 2584 struct _ScriptPooolEntry {
1136     uint32_t fileOffset;
1137     bool bypass;
1138     };
1139     struct _ScriptPooolRef {
1140     Script* script;
1141     bool bypass;
1142     };
1143 persson 1678 MidiRule** pMidiRules;
1144 schoenebeck 2584 std::vector<_ScriptPooolEntry> scriptPoolFileOffsets;
1145     std::vector<_ScriptPooolRef>* pScriptRefs;
1146 schoenebeck 2 };
1147    
1148 schoenebeck 2699 /** @brief Group of Gigasampler samples
1149 schoenebeck 929 *
1150 schoenebeck 2699 * Groups help to organize a huge collection of Gigasampler samples.
1151 schoenebeck 929 * Groups are not concerned at all for the synthesis, but they help
1152     * sound library developers when working on complex instruments with an
1153     * instrument editor (as long as that instrument editor supports it ;-).
1154     *
1155 schoenebeck 930 * A sample is always assigned to exactly one Group. This also means
1156     * there is always at least one Group in a .gig file, no matter if you
1157     * created one yet or not.
1158 schoenebeck 929 */
1159     class Group {
1160     public:
1161     String Name; ///< Stores the name of this Group.
1162 schoenebeck 930
1163     Sample* GetFirstSample();
1164     Sample* GetNextSample();
1165     void AddSample(Sample* pSample);
1166 schoenebeck 929 protected:
1167 schoenebeck 930 Group(File* file, RIFF::Chunk* ck3gnm);
1168 schoenebeck 929 virtual ~Group();
1169 schoenebeck 2682 virtual void UpdateChunks(progress_t* pProgress);
1170 schoenebeck 930 void MoveAll();
1171 schoenebeck 929 friend class File;
1172     private:
1173 schoenebeck 930 File* pFile;
1174 schoenebeck 2467 RIFF::Chunk* pNameChunk; ///< '3gnm' chunk
1175 schoenebeck 929 };
1176    
1177 schoenebeck 2699 /** @brief Provides convenient access to Gigasampler/GigaStudio .gig files.
1178     *
1179     * This is the entry class for accesing a Gigasampler/GigaStudio (.gig) file
1180     * with libgig. It allows you to open existing .gig files, modifying them
1181     * and saving them persistently either under the same file name or under a
1182     * different location.
1183     *
1184     * A .gig file is merely a monolithic file. That means samples and the
1185     * defintion of the virtual instruments are contained in the same file. A
1186     * .gig file contains an arbitrary amount of samples, and an arbitrary
1187     * amount of instruments which are referencing those samples. It is also
1188     * possible to store samples in .gig files not being referenced by any
1189     * instrument. This is not an error from the file format's point of view and
1190     * it is actually often used in practice during the design phase of new gig
1191     * instruments.
1192     *
1193     * So on toplevel of the gig file format you have:
1194     *
1195     * - A set of samples (see Sample).
1196     * - A set of virtual instruments (see Instrument).
1197     *
1198     * And as extension to the original GigaStudio format, we added:
1199     *
1200     * - Real-time instrument scripts (see Script).
1201     *
1202     * Note that the latter however is only supported by libgig, gigedit and
1203     * LinuxSampler. Scripts are not supported by the original GigaStudio
1204     * software.
1205     *
1206     * All released Gigasampler/GigaStudio file format versions are supported
1207     * (so from first Gigasampler version up to including GigaStudio 4).
1208     *
1209     * Since the gig format was designed as extension to the DLS file format,
1210     * this class is derived from the DLS::File class. So also refer to
1211     * DLS::File for additional informations, class attributes and methods.
1212     */
1213 schoenebeck 2 class File : protected DLS::File {
1214     public:
1215 persson 1199 static const DLS::version_t VERSION_2;
1216     static const DLS::version_t VERSION_3;
1217    
1218 schoenebeck 2 // derived attributes from DLS::Resource
1219 persson 2334 using DLS::Resource::pInfo;
1220     using DLS::Resource::pDLSID;
1221 schoenebeck 2 // derived attributes from DLS::File
1222 persson 2334 using DLS::File::pVersion;
1223     using DLS::File::Instruments;
1224 schoenebeck 2
1225     // derived methods from DLS::Resource
1226 persson 2334 using DLS::Resource::GetParent;
1227 schoenebeck 809 // derived methods from DLS::File
1228 persson 2334 using DLS::File::Save;
1229     using DLS::File::GetFileName;
1230 schoenebeck 2482 using DLS::File::SetFileName;
1231 schoenebeck 2 // overridden methods
1232 schoenebeck 809 File();
1233 schoenebeck 2 File(RIFF::File* pRIFF);
1234 schoenebeck 515 Sample* GetFirstSample(progress_t* pProgress = NULL); ///< Returns a pointer to the first <i>Sample</i> object of the file, <i>NULL</i> otherwise.
1235 schoenebeck 2 Sample* GetNextSample(); ///< Returns a pointer to the next <i>Sample</i> object of the file, <i>NULL</i> otherwise.
1236 schoenebeck 2482 Sample* GetSample(uint index);
1237 schoenebeck 809 Sample* AddSample();
1238     void DeleteSample(Sample* pSample);
1239 schoenebeck 929 Instrument* GetFirstInstrument(); ///< Returns a pointer to the first <i>Instrument</i> object of the file, <i>NULL</i> otherwise.
1240 schoenebeck 2 Instrument* GetNextInstrument(); ///< Returns a pointer to the next <i>Instrument</i> object of the file, <i>NULL</i> otherwise.
1241 schoenebeck 515 Instrument* GetInstrument(uint index, progress_t* pProgress = NULL);
1242 schoenebeck 809 Instrument* AddInstrument();
1243 schoenebeck 2394 Instrument* AddDuplicateInstrument(const Instrument* orig);
1244 schoenebeck 809 void DeleteInstrument(Instrument* pInstrument);
1245 schoenebeck 929 Group* GetFirstGroup(); ///< Returns a pointer to the first <i>Group</i> object of the file, <i>NULL</i> otherwise.
1246     Group* GetNextGroup(); ///< Returns a pointer to the next <i>Group</i> object of the file, <i>NULL</i> otherwise.
1247     Group* GetGroup(uint index);
1248 schoenebeck 2543 Group* GetGroup(String name);
1249 schoenebeck 929 Group* AddGroup();
1250     void DeleteGroup(Group* pGroup);
1251 schoenebeck 1081 void DeleteGroupOnly(Group* pGroup);
1252 schoenebeck 1524 void SetAutoLoad(bool b);
1253     bool GetAutoLoad();
1254 schoenebeck 2482 void AddContentOf(File* pFile);
1255 schoenebeck 2584 ScriptGroup* GetScriptGroup(uint index);
1256     ScriptGroup* GetScriptGroup(const String& name);
1257     ScriptGroup* AddScriptGroup();
1258     void DeleteScriptGroup(ScriptGroup* pGroup);
1259 schoenebeck 929 virtual ~File();
1260 schoenebeck 2682 virtual void UpdateChunks(progress_t* pProgress);
1261 schoenebeck 2 protected:
1262 schoenebeck 823 // overridden protected methods from DLS::File
1263     virtual void LoadSamples();
1264     virtual void LoadInstruments();
1265 schoenebeck 929 virtual void LoadGroups();
1266 schoenebeck 2609 virtual void UpdateFileOffsets();
1267 schoenebeck 823 // own protected methods
1268     virtual void LoadSamples(progress_t* pProgress);
1269     virtual void LoadInstruments(progress_t* pProgress);
1270 schoenebeck 2584 virtual void LoadScriptGroups();
1271 persson 1199 void SetSampleChecksum(Sample* pSample, uint32_t crc);
1272 schoenebeck 2912 uint GetFormatExtensionVersion() const;
1273     bool HasMonolithicLargeFilePolicy() const;
1274 schoenebeck 2 friend class Region;
1275 schoenebeck 929 friend class Sample;
1276 schoenebeck 2700 friend class Instrument;
1277 schoenebeck 930 friend class Group; // so Group can access protected member pRIFF
1278 schoenebeck 2584 friend class ScriptGroup; // so ScriptGroup can access protected member pRIFF
1279 schoenebeck 929 private:
1280     std::list<Group*>* pGroups;
1281     std::list<Group*>::iterator GroupsIterator;
1282 schoenebeck 1524 bool bAutoLoad;
1283 schoenebeck 2584 std::list<ScriptGroup*>* pScriptGroups;
1284 schoenebeck 2 };
1285    
1286 schoenebeck 1093 /**
1287     * Will be thrown whenever a gig specific error occurs while trying to
1288     * access a Gigasampler File. Note: In your application you should
1289     * better catch for RIFF::Exception rather than this one, except you
1290     * explicitly want to catch and handle gig::Exception, DLS::Exception
1291     * and RIFF::Exception independently, which usually shouldn't be
1292     * necessary though.
1293     */
1294 schoenebeck 2 class Exception : public DLS::Exception {
1295     public:
1296     Exception(String Message);
1297     void PrintMessage();
1298     };
1299    
1300 schoenebeck 518 String libraryName();
1301     String libraryVersion();
1302    
1303 schoenebeck 2 } // namespace gig
1304    
1305     #endif // __GIG_H__

  ViewVC Help
Powered by ViewVC