/[svn]/libgig/trunk/src/gig.h
ViewVC logotype

Annotation of /libgig/trunk/src/gig.h

Parent Directory Parent Directory | Revision Log Revision Log


Revision 2922 - (hide annotations) (download) (as text)
Wed May 18 18:04:49 2016 UTC (7 years, 10 months ago) by schoenebeck
File MIME type: text/x-c++hdr
File size: 86432 byte(s)
* Using now native integer size where appropriate.
* Bumped version (4.0.0.svn5).

1 schoenebeck 2 /***************************************************************************
2     * *
3 schoenebeck 933 * libgig - C++ cross-platform Gigasampler format file access library *
4 schoenebeck 2 * *
5 schoenebeck 2912 * Copyright (C) 2003-2016 by Christian Schoenebeck *
6 schoenebeck 384 * <cuse@users.sourceforge.net> *
7 schoenebeck 2 * *
8     * This library is free software; you can redistribute it and/or modify *
9     * it under the terms of the GNU General Public License as published by *
10     * the Free Software Foundation; either version 2 of the License, or *
11     * (at your option) any later version. *
12     * *
13     * This library is distributed in the hope that it will be useful, *
14     * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16     * GNU General Public License for more details. *
17     * *
18     * You should have received a copy of the GNU General Public License *
19     * along with this library; if not, write to the Free Software *
20     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21     * MA 02111-1307 USA *
22     ***************************************************************************/
23    
24     #ifndef __GIG_H__
25     #define __GIG_H__
26    
27     #include "DLS.h"
28 schoenebeck 2584 #include <vector>
29 schoenebeck 2
30 schoenebeck 11 #if WORDS_BIGENDIAN
31 schoenebeck 2 # define LIST_TYPE_3PRG 0x33707267
32     # define LIST_TYPE_3EWL 0x3365776C
33 schoenebeck 929 # define LIST_TYPE_3GRI 0x33677269
34     # define LIST_TYPE_3GNL 0x33676E6C
35 schoenebeck 2584 # define LIST_TYPE_3LS 0x334c5320 // own gig format extension
36     # define LIST_TYPE_RTIS 0x52544953 // own gig format extension
37 schoenebeck 2 # define CHUNK_ID_3GIX 0x33676978
38     # define CHUNK_ID_3EWA 0x33657761
39     # define CHUNK_ID_3LNK 0x336C6E6B
40     # define CHUNK_ID_3EWG 0x33657767
41     # define CHUNK_ID_EWAV 0x65776176
42 schoenebeck 929 # define CHUNK_ID_3GNM 0x33676E6D
43 persson 1199 # define CHUNK_ID_EINF 0x65696E66
44     # define CHUNK_ID_3CRC 0x33637263
45 schoenebeck 2584 # define CHUNK_ID_SCRI 0x53637269 // own gig format extension
46     # define CHUNK_ID_LSNM 0x4c534e4d // own gig format extension
47     # define CHUNK_ID_SCSL 0x5343534c // own gig format extension
48 schoenebeck 2 #else // little endian
49     # define LIST_TYPE_3PRG 0x67727033
50     # define LIST_TYPE_3EWL 0x6C776533
51 schoenebeck 929 # define LIST_TYPE_3GRI 0x69726733
52     # define LIST_TYPE_3GNL 0x6C6E6733
53 schoenebeck 2584 # define LIST_TYPE_3LS 0x20534c33 // own gig format extension
54     # define LIST_TYPE_RTIS 0x53495452 // own gig format extension
55 schoenebeck 2 # define CHUNK_ID_3GIX 0x78696733
56     # define CHUNK_ID_3EWA 0x61776533
57     # define CHUNK_ID_3LNK 0x6B6E6C33
58     # define CHUNK_ID_3EWG 0x67776533
59     # define CHUNK_ID_EWAV 0x76617765
60 schoenebeck 929 # define CHUNK_ID_3GNM 0x6D6E6733
61 persson 1199 # define CHUNK_ID_EINF 0x666E6965
62     # define CHUNK_ID_3CRC 0x63726333
63 schoenebeck 2584 # define CHUNK_ID_SCRI 0x69726353 // own gig format extension
64     # define CHUNK_ID_LSNM 0x4d4e534c // own gig format extension
65     # define CHUNK_ID_SCSL 0x4c534353 // own gig format extension
66 schoenebeck 2 #endif // WORDS_BIGENDIAN
67    
68 schoenebeck 2699 /** Gigasampler/GigaStudio specific classes and definitions */
69 schoenebeck 2 namespace gig {
70    
71     typedef std::string String;
72 schoenebeck 2682 typedef RIFF::progress_t progress_t;
73 schoenebeck 2912 typedef RIFF::file_offset_t file_offset_t;
74 schoenebeck 2
75     /** Lower and upper limit of a range. */
76     struct range_t {
77     uint8_t low; ///< Low value of range.
78     uint8_t high; ///< High value of range.
79     };
80    
81     /** Pointer address and size of a buffer. */
82     struct buffer_t {
83     void* pStart; ///< Points to the beginning of the buffer.
84 schoenebeck 2912 file_offset_t Size; ///< Size of the actual data in the buffer in bytes.
85     file_offset_t NullExtensionSize; ///< The buffer might be bigger than the actual data, if that's the case that unused space at the end of the buffer is filled with NULLs and NullExtensionSize reflects that unused buffer space in bytes. Those NULL extensions are mandatory for differential algorithms that have to take the following data words into account, thus have to access past the buffer's boundary. If you don't know what I'm talking about, just forget this variable. :)
86 schoenebeck 384 buffer_t() {
87     pStart = NULL;
88     Size = 0;
89     NullExtensionSize = 0;
90     }
91 schoenebeck 2 };
92    
93     /** Standard types of sample loops. */
94     typedef enum {
95     loop_type_normal = 0x00000000, ///< Loop forward (normal)
96     loop_type_bidirectional = 0x00000001, ///< Alternating loop (forward/backward, also known as Ping Pong)
97     loop_type_backward = 0x00000002 ///< Loop backward (reverse)
98     } loop_type_t;
99    
100     /** Society of Motion Pictures and Television E time format. */
101     typedef enum {
102     smpte_format_no_offset = 0x00000000, ///< no SMPTE offset
103     smpte_format_24_frames = 0x00000018, ///< 24 frames per second
104     smpte_format_25_frames = 0x00000019, ///< 25 frames per second
105     smpte_format_30_frames_dropping = 0x0000001D, ///< 30 frames per second with frame dropping (30 drop)
106     smpte_format_30_frames = 0x0000001E ///< 30 frames per second
107     } smpte_format_t;
108    
109     /** Defines the shape of a function graph. */
110     typedef enum {
111     curve_type_nonlinear = 0,
112     curve_type_linear = 1,
113     curve_type_special = 2,
114     curve_type_unknown = 0xffffffff
115     } curve_type_t;
116    
117     /** Dimensions allow to bypass one of the following controllers. */
118     typedef enum {
119     dim_bypass_ctrl_none,
120     dim_bypass_ctrl_94, ///< Effect 4 Depth (MIDI Controller 94)
121     dim_bypass_ctrl_95 ///< Effect 5 Depth (MIDI Controller 95)
122     } dim_bypass_ctrl_t;
123    
124     /** Defines how LFO3 is controlled by. */
125     typedef enum {
126     lfo3_ctrl_internal = 0x00, ///< Only internally controlled.
127     lfo3_ctrl_modwheel = 0x01, ///< Only controlled by external modulation wheel.
128     lfo3_ctrl_aftertouch = 0x02, ///< Only controlled by aftertouch controller.
129     lfo3_ctrl_internal_modwheel = 0x03, ///< Controlled internally and by external modulation wheel.
130     lfo3_ctrl_internal_aftertouch = 0x04 ///< Controlled internally and by aftertouch controller.
131     } lfo3_ctrl_t;
132    
133     /** Defines how LFO2 is controlled by. */
134     typedef enum {
135     lfo2_ctrl_internal = 0x00, ///< Only internally controlled.
136     lfo2_ctrl_modwheel = 0x01, ///< Only controlled by external modulation wheel.
137     lfo2_ctrl_foot = 0x02, ///< Only controlled by external foot controller.
138     lfo2_ctrl_internal_modwheel = 0x03, ///< Controlled internally and by external modulation wheel.
139     lfo2_ctrl_internal_foot = 0x04 ///< Controlled internally and by external foot controller.
140     } lfo2_ctrl_t;
141    
142     /** Defines how LFO1 is controlled by. */
143     typedef enum {
144     lfo1_ctrl_internal = 0x00, ///< Only internally controlled.
145     lfo1_ctrl_modwheel = 0x01, ///< Only controlled by external modulation wheel.
146     lfo1_ctrl_breath = 0x02, ///< Only controlled by external breath controller.
147     lfo1_ctrl_internal_modwheel = 0x03, ///< Controlled internally and by external modulation wheel.
148     lfo1_ctrl_internal_breath = 0x04 ///< Controlled internally and by external breath controller.
149     } lfo1_ctrl_t;
150    
151     /** Defines how the filter cutoff frequency is controlled by. */
152     typedef enum {
153     vcf_cutoff_ctrl_none = 0x00,
154 persson 834 vcf_cutoff_ctrl_none2 = 0x01, ///< The difference between none and none2 is unknown
155 schoenebeck 2 vcf_cutoff_ctrl_modwheel = 0x81, ///< Modulation Wheel (MIDI Controller 1)
156     vcf_cutoff_ctrl_effect1 = 0x8c, ///< Effect Controller 1 (Coarse, MIDI Controller 12)
157     vcf_cutoff_ctrl_effect2 = 0x8d, ///< Effect Controller 2 (Coarse, MIDI Controller 13)
158     vcf_cutoff_ctrl_breath = 0x82, ///< Breath Controller (Coarse, MIDI Controller 2)
159     vcf_cutoff_ctrl_foot = 0x84, ///< Foot Pedal (Coarse, MIDI Controller 4)
160     vcf_cutoff_ctrl_sustainpedal = 0xc0, ///< Sustain Pedal (MIDI Controller 64)
161     vcf_cutoff_ctrl_softpedal = 0xc3, ///< Soft Pedal (MIDI Controller 67)
162     vcf_cutoff_ctrl_genpurpose7 = 0xd2, ///< General Purpose Controller 7 (Button, MIDI Controller 82)
163     vcf_cutoff_ctrl_genpurpose8 = 0xd3, ///< General Purpose Controller 8 (Button, MIDI Controller 83)
164     vcf_cutoff_ctrl_aftertouch = 0x80 ///< Key Pressure
165     } vcf_cutoff_ctrl_t;
166    
167     /** Defines how the filter resonance is controlled by. */
168     typedef enum {
169     vcf_res_ctrl_none = 0xffffffff,
170     vcf_res_ctrl_genpurpose3 = 0, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
171     vcf_res_ctrl_genpurpose4 = 1, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
172     vcf_res_ctrl_genpurpose5 = 2, ///< General Purpose Controller 5 (Button, MIDI Controller 80)
173     vcf_res_ctrl_genpurpose6 = 3 ///< General Purpose Controller 6 (Button, MIDI Controller 81)
174     } vcf_res_ctrl_t;
175 schoenebeck 55
176 schoenebeck 36 /**
177     * Defines a controller that has a certain contrained influence on a
178     * particular synthesis parameter (used to define attenuation controller,
179     * EG1 controller and EG2 controller).
180     *
181     * You should use the respective <i>typedef</i> (means either
182     * attenuation_ctrl_t, eg1_ctrl_t or eg2_ctrl_t) in your code!
183     */
184     struct leverage_ctrl_t {
185     typedef enum {
186     type_none = 0x00, ///< No controller defined
187     type_channelaftertouch = 0x2f, ///< Channel Key Pressure
188     type_velocity = 0xff, ///< Key Velocity
189     type_controlchange = 0xfe ///< Ordinary MIDI control change controller, see field 'controller_number'
190     } type_t;
191 schoenebeck 55
192 schoenebeck 36 type_t type; ///< Controller type
193     uint controller_number; ///< MIDI controller number if this controller is a control change controller, 0 otherwise
194     };
195 schoenebeck 55
196 schoenebeck 36 /**
197     * Defines controller influencing attenuation.
198     *
199     * @see leverage_ctrl_t
200     */
201     typedef leverage_ctrl_t attenuation_ctrl_t;
202 schoenebeck 55
203 schoenebeck 36 /**
204     * Defines controller influencing envelope generator 1.
205     *
206     * @see leverage_ctrl_t
207     */
208     typedef leverage_ctrl_t eg1_ctrl_t;
209 schoenebeck 55
210 schoenebeck 36 /**
211     * Defines controller influencing envelope generator 2.
212     *
213     * @see leverage_ctrl_t
214     */
215     typedef leverage_ctrl_t eg2_ctrl_t;
216 schoenebeck 2
217     /**
218     * Defines the type of dimension, that is how the dimension zones (and
219     * thus how the dimension regions are selected by. The number of
220     * dimension zones is always a power of two. All dimensions can have up
221     * to 32 zones (except the layer dimension with only up to 8 zones and
222     * the samplechannel dimension which currently allows only 2 zones).
223     */
224     typedef enum {
225     dimension_none = 0x00, ///< Dimension not in use.
226     dimension_samplechannel = 0x80, ///< If used sample has more than one channel (thus is not mono).
227     dimension_layer = 0x81, ///< For layering of up to 8 instruments (and eventually crossfading of 2 or 4 layers).
228 persson 1076 dimension_velocity = 0x82, ///< Key Velocity (this is the only dimension in gig2 where the ranges can exactly be defined).
229 schoenebeck 2 dimension_channelaftertouch = 0x83, ///< Channel Key Pressure
230     dimension_releasetrigger = 0x84, ///< Special dimension for triggering samples on releasing a key.
231 schoenebeck 353 dimension_keyboard = 0x85, ///< Dimension for keyswitching
232 persson 437 dimension_roundrobin = 0x86, ///< Different samples triggered each time a note is played, dimension regions selected in sequence
233     dimension_random = 0x87, ///< Different samples triggered each time a note is played, random order
234 persson 1076 dimension_smartmidi = 0x88, ///< For MIDI tools like legato and repetition mode
235     dimension_roundrobinkeyboard = 0x89, ///< Different samples triggered each time a note is played, any key advances the counter
236 schoenebeck 2 dimension_modwheel = 0x01, ///< Modulation Wheel (MIDI Controller 1)
237     dimension_breath = 0x02, ///< Breath Controller (Coarse, MIDI Controller 2)
238     dimension_foot = 0x04, ///< Foot Pedal (Coarse, MIDI Controller 4)
239     dimension_portamentotime = 0x05, ///< Portamento Time (Coarse, MIDI Controller 5)
240     dimension_effect1 = 0x0c, ///< Effect Controller 1 (Coarse, MIDI Controller 12)
241     dimension_effect2 = 0x0d, ///< Effect Controller 2 (Coarse, MIDI Controller 13)
242     dimension_genpurpose1 = 0x10, ///< General Purpose Controller 1 (Slider, MIDI Controller 16)
243     dimension_genpurpose2 = 0x11, ///< General Purpose Controller 2 (Slider, MIDI Controller 17)
244     dimension_genpurpose3 = 0x12, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
245     dimension_genpurpose4 = 0x13, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
246     dimension_sustainpedal = 0x40, ///< Sustain Pedal (MIDI Controller 64)
247     dimension_portamento = 0x41, ///< Portamento (MIDI Controller 65)
248     dimension_sostenutopedal = 0x42, ///< Sostenuto Pedal (MIDI Controller 66)
249     dimension_softpedal = 0x43, ///< Soft Pedal (MIDI Controller 67)
250     dimension_genpurpose5 = 0x30, ///< General Purpose Controller 5 (Button, MIDI Controller 80)
251     dimension_genpurpose6 = 0x31, ///< General Purpose Controller 6 (Button, MIDI Controller 81)
252     dimension_genpurpose7 = 0x32, ///< General Purpose Controller 7 (Button, MIDI Controller 82)
253     dimension_genpurpose8 = 0x33, ///< General Purpose Controller 8 (Button, MIDI Controller 83)
254     dimension_effect1depth = 0x5b, ///< Effect 1 Depth (MIDI Controller 91)
255     dimension_effect2depth = 0x5c, ///< Effect 2 Depth (MIDI Controller 92)
256     dimension_effect3depth = 0x5d, ///< Effect 3 Depth (MIDI Controller 93)
257     dimension_effect4depth = 0x5e, ///< Effect 4 Depth (MIDI Controller 94)
258     dimension_effect5depth = 0x5f ///< Effect 5 Depth (MIDI Controller 95)
259     } dimension_t;
260    
261     /**
262     * Intended for internal usage: will be used to convert a dimension value
263     * into the corresponding dimension bit number.
264     */
265     typedef enum {
266 persson 858 split_type_normal, ///< dimension value between 0-127
267 schoenebeck 2 split_type_bit ///< dimension values are already the sought bit number
268     } split_type_t;
269    
270     /** General dimension definition. */
271     struct dimension_def_t {
272     dimension_t dimension; ///< Specifies which source (usually a MIDI controller) is associated with the dimension.
273     uint8_t bits; ///< Number of "bits" (1 bit = 2 splits/zones, 2 bit = 4 splits/zones, 3 bit = 8 splits/zones,...).
274     uint8_t zones; ///< Number of zones the dimension has.
275     split_type_t split_type; ///< Intended for internal usage: will be used to convert a dimension value into the corresponding dimension bit number.
276 persson 774 float zone_size; ///< Intended for internal usage: reflects the size of each zone (128/zones) for normal split types only, 0 otherwise.
277 schoenebeck 2 };
278    
279     /** Defines which frequencies are filtered by the VCF. */
280     typedef enum {
281     vcf_type_lowpass = 0x00,
282     vcf_type_lowpassturbo = 0xff, ///< More poles than normal lowpass
283     vcf_type_bandpass = 0x01,
284     vcf_type_highpass = 0x02,
285     vcf_type_bandreject = 0x03
286     } vcf_type_t;
287    
288 schoenebeck 345 /**
289     * Defines the envelope of a crossfade.
290     *
291     * Note: The default value for crossfade points is 0,0,0,0. Layers with
292     * such a default value should be treated as if they would not have a
293 schoenebeck 353 * crossfade.
294 schoenebeck 345 */
295 schoenebeck 2 struct crossfade_t {
296     #if WORDS_BIGENDIAN
297 schoenebeck 345 uint8_t out_end; ///< End postition of fade out.
298     uint8_t out_start; ///< Start position of fade out.
299     uint8_t in_end; ///< End position of fade in.
300 schoenebeck 2 uint8_t in_start; ///< Start position of fade in.
301 schoenebeck 345 #else // little endian
302     uint8_t in_start; ///< Start position of fade in.
303 schoenebeck 2 uint8_t in_end; ///< End position of fade in.
304     uint8_t out_start; ///< Start position of fade out.
305     uint8_t out_end; ///< End postition of fade out.
306     #endif // WORDS_BIGENDIAN
307     };
308    
309 schoenebeck 24 /** Reflects the current playback state for a sample. */
310     struct playback_state_t {
311 schoenebeck 2912 file_offset_t position; ///< Current position within the sample.
312 schoenebeck 24 bool reverse; ///< If playback direction is currently backwards (in case there is a pingpong or reverse loop defined).
313 schoenebeck 2912 file_offset_t loop_cycles_left; ///< How many times the loop has still to be passed, this value will be decremented with each loop cycle.
314 schoenebeck 24 };
315    
316 schoenebeck 2 // just symbol prototyping
317     class File;
318     class Instrument;
319     class Sample;
320 capela 310 class Region;
321 schoenebeck 929 class Group;
322 schoenebeck 2584 class Script;
323     class ScriptGroup;
324 schoenebeck 2
325 schoenebeck 2699 /** @brief Encapsulates articulation informations of a dimension region.
326 schoenebeck 2 *
327 schoenebeck 2699 * This is the most important data object of the Gigasampler / GigaStudio
328     * format. A DimensionRegion provides the link to the sample to be played
329     * and all required articulation informations to be interpreted for playing
330     * back the sample and processing it appropriately by the sampler software.
331     * Every Region of a Gigasampler Instrument has at least one dimension
332     * region (exactly then when the Region has no dimension defined). Many
333     * Regions though provide more than one DimensionRegion, which reflect
334     * different playing "cases". For example a different sample might be played
335     * if a certain pedal is pressed down, or if the note was triggered with
336     * different velocity.
337 schoenebeck 2 *
338 schoenebeck 2699 * One instance of a DimensionRegion reflects exactly one particular case
339     * while playing an instrument (for instance "note between C3 and E3 was
340     * triggered AND note on velocity was between 20 and 42 AND modulation wheel
341     * controller is between 80 and 127). The DimensionRegion defines what to do
342     * under that one particular case, that is which sample to play back and how
343     * to play that sample back exactly and how to process it. So a
344     * DimensionRegion object is always linked to exactly one sample. It may
345     * however also link to no sample at all, for defining a "silence" case
346     * where nothing shall be played (for example when note on velocity was
347     * below 6).
348 schoenebeck 2 *
349 schoenebeck 2699 * Note that a DimensionRegion object only defines "what to do", but it does
350     * not define "when to do it". To actually resolve which DimensionRegion to
351     * pick under which situation, you need to refer to the DimensionRegions'
352     * parent Region object. The Region object contains the necessary
353     * "Dimension" definitions, which in turn define which DimensionRegion is
354     * associated with which playing case exactly.
355     *
356     * The Gigasampler/GigaStudio format defines 3 Envelope Generators and 3
357     * Low Frequency Oscillators:
358     *
359 schoenebeck 2 * - EG1 and LFO1, both controlling sample amplitude
360     * - EG2 and LFO2, both controlling filter cutoff frequency
361     * - EG3 and LFO3, both controlling sample pitch
362 schoenebeck 2699 *
363     * Since the gig format was designed as extension to the DLS file format,
364     * this class is derived from the DLS::Sampler class. So also refer to
365     * DLS::Sampler for additional informations, class attributes and methods.
366 schoenebeck 2 */
367     class DimensionRegion : protected DLS::Sampler {
368     public:
369 schoenebeck 2543 uint8_t VelocityUpperLimit; ///< Defines the upper velocity value limit of a velocity split (only if an user defined limit was set, thus a value not equal to 128/NumberOfSplits, else this value is 0). Only for gig2, for gig3 and above the DimensionUpperLimits are used instead.
370 schoenebeck 2 Sample* pSample; ///< Points to the Sample which is assigned to the dimension region.
371     // Sample Amplitude EG/LFO
372     uint16_t EG1PreAttack; ///< Preattack value of the sample amplitude EG (0 - 1000 permille).
373     double EG1Attack; ///< Attack time of the sample amplitude EG (0.000 - 60.000s).
374     double EG1Decay1; ///< Decay time of the sample amplitude EG (0.000 - 60.000s).
375     double EG1Decay2; ///< Only if <i>EG1InfiniteSustain == false</i>: 2nd decay stage time of the sample amplitude EG (0.000 - 60.000s).
376     bool EG1InfiniteSustain; ///< If <i>true</i>, instead of going into Decay2 phase, Decay1 level will be hold until note will be released.
377     uint16_t EG1Sustain; ///< Sustain value of the sample amplitude EG (0 - 1000 permille).
378     double EG1Release; ///< Release time of the sample amplitude EG (0.000 - 60.000s).
379     bool EG1Hold; ///< If <i>true</i>, Decay1 stage should be postponed until the sample reached the sample loop start.
380     eg1_ctrl_t EG1Controller; ///< MIDI Controller which has influence on sample amplitude EG parameters (attack, decay, release).
381     bool EG1ControllerInvert; ///< Invert values coming from defined EG1 controller.
382 schoenebeck 36 uint8_t EG1ControllerAttackInfluence; ///< Amount EG1 Controller has influence on the EG1 Attack time (0 - 3, where 0 means off).
383     uint8_t EG1ControllerDecayInfluence; ///< Amount EG1 Controller has influence on the EG1 Decay time (0 - 3, where 0 means off).
384     uint8_t EG1ControllerReleaseInfluence; ///< Amount EG1 Controller has influence on the EG1 Release time (0 - 3, where 0 means off).
385 schoenebeck 2 double LFO1Frequency; ///< Frequency of the sample amplitude LFO (0.10 - 10.00 Hz).
386     uint16_t LFO1InternalDepth; ///< Firm pitch of the sample amplitude LFO (0 - 1200 cents).
387     uint16_t LFO1ControlDepth; ///< Controller depth influencing sample amplitude LFO pitch (0 - 1200 cents).
388     lfo1_ctrl_t LFO1Controller; ///< MIDI Controller which controls sample amplitude LFO.
389     bool LFO1FlipPhase; ///< Inverts phase of the sample amplitude LFO wave.
390     bool LFO1Sync; ///< If set to <i>true</i> only one LFO should be used for all voices.
391     // Filter Cutoff Frequency EG/LFO
392     uint16_t EG2PreAttack; ///< Preattack value of the filter cutoff EG (0 - 1000 permille).
393     double EG2Attack; ///< Attack time of the filter cutoff EG (0.000 - 60.000s).
394     double EG2Decay1; ///< Decay time of the filter cutoff EG (0.000 - 60.000s).
395     double EG2Decay2; ///< Only if <i>EG2InfiniteSustain == false</i>: 2nd stage decay time of the filter cutoff EG (0.000 - 60.000s).
396     bool EG2InfiniteSustain; ///< If <i>true</i>, instead of going into Decay2 phase, Decay1 level will be hold until note will be released.
397     uint16_t EG2Sustain; ///< Sustain value of the filter cutoff EG (0 - 1000 permille).
398     double EG2Release; ///< Release time of the filter cutoff EG (0.000 - 60.000s).
399     eg2_ctrl_t EG2Controller; ///< MIDI Controller which has influence on filter cutoff EG parameters (attack, decay, release).
400     bool EG2ControllerInvert; ///< Invert values coming from defined EG2 controller.
401 schoenebeck 36 uint8_t EG2ControllerAttackInfluence; ///< Amount EG2 Controller has influence on the EG2 Attack time (0 - 3, where 0 means off).
402     uint8_t EG2ControllerDecayInfluence; ///< Amount EG2 Controller has influence on the EG2 Decay time (0 - 3, where 0 means off).
403     uint8_t EG2ControllerReleaseInfluence; ///< Amount EG2 Controller has influence on the EG2 Release time (0 - 3, where 0 means off).
404 schoenebeck 2 double LFO2Frequency; ///< Frequency of the filter cutoff LFO (0.10 - 10.00 Hz).
405     uint16_t LFO2InternalDepth; ///< Firm pitch of the filter cutoff LFO (0 - 1200 cents).
406     uint16_t LFO2ControlDepth; ///< Controller depth influencing filter cutoff LFO pitch (0 - 1200).
407     lfo2_ctrl_t LFO2Controller; ///< MIDI Controlle which controls the filter cutoff LFO.
408     bool LFO2FlipPhase; ///< Inverts phase of the filter cutoff LFO wave.
409     bool LFO2Sync; ///< If set to <i>true</i> only one LFO should be used for all voices.
410     // Sample Pitch EG/LFO
411     double EG3Attack; ///< Attack time of the sample pitch EG (0.000 - 10.000s).
412     int16_t EG3Depth; ///< Depth of the sample pitch EG (-1200 - +1200).
413     double LFO3Frequency; ///< Frequency of the sample pitch LFO (0.10 - 10.00 Hz).
414     int16_t LFO3InternalDepth; ///< Firm depth of the sample pitch LFO (-1200 - +1200 cents).
415     int16_t LFO3ControlDepth; ///< Controller depth of the sample pitch LFO (-1200 - +1200 cents).
416     lfo3_ctrl_t LFO3Controller; ///< MIDI Controller which controls the sample pitch LFO.
417     bool LFO3Sync; ///< If set to <i>true</i> only one LFO should be used for all voices.
418     // Filter
419     bool VCFEnabled; ///< If filter should be used.
420     vcf_type_t VCFType; ///< Defines the general filter characteristic (lowpass, highpass, bandpass, etc.).
421 schoenebeck 1358 vcf_cutoff_ctrl_t VCFCutoffController; ///< Specifies which external controller has influence on the filter cutoff frequency. @deprecated Don't alter directly, use SetVCFCutoffController() instead!
422 persson 728 bool VCFCutoffControllerInvert; ///< Inverts values coming from the defined cutoff controller
423 schoenebeck 2 uint8_t VCFCutoff; ///< Max. cutoff frequency.
424 schoenebeck 1358 curve_type_t VCFVelocityCurve; ///< Defines a transformation curve for the incoming velocity values, affecting the VCF. @deprecated Don't alter directly, use SetVCFVelocityCurve() instead!
425     uint8_t VCFVelocityScale; ///< (0-127) Amount velocity controls VCF cutoff frequency (only if no other VCF cutoff controller is defined, otherwise this is the minimum cutoff). @deprecated Don't alter directly, use SetVCFVelocityScale() instead!
426     uint8_t VCFVelocityDynamicRange; ///< 0x04 = lowest, 0x00 = highest . @deprecated Don't alter directly, use SetVCFVelocityDynamicRange() instead!
427 schoenebeck 2 uint8_t VCFResonance; ///< Firm internal filter resonance weight.
428     bool VCFResonanceDynamic; ///< If <i>true</i>: Increases the resonance Q according to changes of controllers that actually control the VCF cutoff frequency (EG2, ext. VCF MIDI controller).
429     vcf_res_ctrl_t VCFResonanceController; ///< Specifies which external controller has influence on the filter resonance Q.
430     bool VCFKeyboardTracking; ///< If <i>true</i>: VCF cutoff frequence will be dependend to the note key position relative to the defined breakpoint value.
431     uint8_t VCFKeyboardTrackingBreakpoint; ///< See VCFKeyboardTracking (0 - 127).
432     // Key Velocity Transformations
433 schoenebeck 1358 curve_type_t VelocityResponseCurve; ///< Defines a transformation curve to the incoming velocity values affecting amplitude (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseCurve() instead!
434     uint8_t VelocityResponseDepth; ///< Dynamic range of velocity affecting amplitude (0 - 4) (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseDepth() instead!
435     uint8_t VelocityResponseCurveScaling; ///< 0 - 127 (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseCurveScaling() instead!
436     curve_type_t ReleaseVelocityResponseCurve; ///< Defines a transformation curve to the incoming release veloctiy values affecting envelope times. @deprecated Don't alter directly, use SetReleaseVelocityResponseCurve() instead!
437     uint8_t ReleaseVelocityResponseDepth; ///< Dynamic range of release velocity affecting envelope time (0 - 4). @deprecated Don't alter directly, use SetReleaseVelocityResponseDepth() instead!
438 schoenebeck 2 uint8_t ReleaseTriggerDecay; ///< 0 - 8
439     // Mix / Layer
440     crossfade_t Crossfade;
441     bool PitchTrack; ///< If <i>true</i>: sample will be pitched according to the key position (this will be disabled for drums for example).
442     dim_bypass_ctrl_t DimensionBypass; ///< If defined, the MIDI controller can switch on/off the dimension in realtime.
443     int8_t Pan; ///< Panorama / Balance (-64..0..63 <-> left..middle..right)
444     bool SelfMask; ///< If <i>true</i>: high velocity notes will stop low velocity notes at the same note, with that you can save voices that wouldn't be audible anyway.
445 schoenebeck 36 attenuation_ctrl_t AttenuationController; ///< MIDI Controller which has influence on the volume level of the sample (or entire sample group).
446     bool InvertAttenuationController; ///< Inverts the values coming from the defined Attenuation Controller.
447     uint8_t AttenuationControllerThreshold;///< 0-127
448 schoenebeck 2 uint8_t ChannelOffset; ///< Audio output where the audio signal of the dimension region should be routed to (0 - 9).
449     bool SustainDefeat; ///< If <i>true</i>: Sustain pedal will not hold a note.
450     bool MSDecode; ///< Gigastudio flag: defines if Mid Side Recordings should be decoded.
451     uint16_t SampleStartOffset; ///< Number of samples the sample start should be moved (0 - 2000).
452 persson 406 double SampleAttenuation; ///< Sample volume (calculated from DLS::Sampler::Gain)
453 schoenebeck 2547 uint8_t DimensionUpperLimits[8]; ///< gig3: defines the upper limit of the dimension values for this dimension region. In case you wondered why this is defined on DimensionRegion level and not on Region level: the zone sizes (upper limits) of the velocity dimension can indeed differ in the individual dimension regions, depending on which zones of the other dimension types are currently selected. So this is exceptional for the velocity dimension only. All other dimension types have the same dimension zone sizes for every single DimensionRegion (of the sample Region).
454 persson 406
455 schoenebeck 2 // derived attributes from DLS::Sampler
456 persson 2334 using DLS::Sampler::UnityNote;
457     using DLS::Sampler::FineTune;
458     using DLS::Sampler::Gain;
459     using DLS::Sampler::SampleLoops;
460     using DLS::Sampler::pSampleLoops;
461 schoenebeck 2
462 schoenebeck 809 // own methods
463 schoenebeck 16 double GetVelocityAttenuation(uint8_t MIDIKeyVelocity);
464 persson 613 double GetVelocityRelease(uint8_t MIDIKeyVelocity);
465 persson 728 double GetVelocityCutoff(uint8_t MIDIKeyVelocity);
466 schoenebeck 1358 void SetVelocityResponseCurve(curve_type_t curve);
467     void SetVelocityResponseDepth(uint8_t depth);
468     void SetVelocityResponseCurveScaling(uint8_t scaling);
469     void SetReleaseVelocityResponseCurve(curve_type_t curve);
470     void SetReleaseVelocityResponseDepth(uint8_t depth);
471     void SetVCFCutoffController(vcf_cutoff_ctrl_t controller);
472     void SetVCFVelocityCurve(curve_type_t curve);
473     void SetVCFVelocityDynamicRange(uint8_t range);
474     void SetVCFVelocityScale(uint8_t scaling);
475 schoenebeck 1316 Region* GetParent() const;
476 schoenebeck 1155 // derived methods
477 persson 2334 using DLS::Sampler::AddSampleLoop;
478     using DLS::Sampler::DeleteSampleLoop;
479 schoenebeck 809 // overridden methods
480 schoenebeck 1358 virtual void SetGain(int32_t gain);
481 schoenebeck 2682 virtual void UpdateChunks(progress_t* pProgress);
482 schoenebeck 2394 virtual void CopyAssign(const DimensionRegion* orig);
483 schoenebeck 16 protected:
484 persson 858 uint8_t* VelocityTable; ///< For velocity dimensions with custom defined zone ranges only: used for fast converting from velocity MIDI value to dimension bit number.
485 schoenebeck 1316 DimensionRegion(Region* pParent, RIFF::List* _3ewl);
486 persson 1301 DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src);
487 schoenebeck 16 ~DimensionRegion();
488 schoenebeck 2482 void CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples);
489 schoenebeck 16 friend class Region;
490     private:
491 schoenebeck 36 typedef enum { ///< Used to decode attenuation, EG1 and EG2 controller
492 schoenebeck 2540 // official leverage controllers as they were defined in the original Gigasampler/GigaStudio format:
493 schoenebeck 36 _lev_ctrl_none = 0x00,
494     _lev_ctrl_modwheel = 0x03, ///< Modulation Wheel (MIDI Controller 1)
495     _lev_ctrl_breath = 0x05, ///< Breath Controller (Coarse, MIDI Controller 2)
496     _lev_ctrl_foot = 0x07, ///< Foot Pedal (Coarse, MIDI Controller 4)
497     _lev_ctrl_effect1 = 0x0d, ///< Effect Controller 1 (Coarse, MIDI Controller 12)
498     _lev_ctrl_effect2 = 0x0f, ///< Effect Controller 2 (Coarse, MIDI Controller 13)
499     _lev_ctrl_genpurpose1 = 0x11, ///< General Purpose Controller 1 (Slider, MIDI Controller 16)
500     _lev_ctrl_genpurpose2 = 0x13, ///< General Purpose Controller 2 (Slider, MIDI Controller 17)
501     _lev_ctrl_genpurpose3 = 0x15, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
502     _lev_ctrl_genpurpose4 = 0x17, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
503     _lev_ctrl_portamentotime = 0x0b, ///< Portamento Time (Coarse, MIDI Controller 5)
504     _lev_ctrl_sustainpedal = 0x01, ///< Sustain Pedal (MIDI Controller 64)
505     _lev_ctrl_portamento = 0x19, ///< Portamento (MIDI Controller 65)
506     _lev_ctrl_sostenutopedal = 0x1b, ///< Sostenuto Pedal (MIDI Controller 66)
507     _lev_ctrl_softpedal = 0x09, ///< Soft Pedal (MIDI Controller 67)
508     _lev_ctrl_genpurpose5 = 0x1d, ///< General Purpose Controller 5 (Button, MIDI Controller 80)
509     _lev_ctrl_genpurpose6 = 0x1f, ///< General Purpose Controller 6 (Button, MIDI Controller 81)
510     _lev_ctrl_genpurpose7 = 0x21, ///< General Purpose Controller 7 (Button, MIDI Controller 82)
511     _lev_ctrl_genpurpose8 = 0x23, ///< General Purpose Controller 8 (Button, MIDI Controller 83)
512     _lev_ctrl_effect1depth = 0x25, ///< Effect 1 Depth (MIDI Controller 91)
513     _lev_ctrl_effect2depth = 0x27, ///< Effect 2 Depth (MIDI Controller 92)
514     _lev_ctrl_effect3depth = 0x29, ///< Effect 3 Depth (MIDI Controller 93)
515     _lev_ctrl_effect4depth = 0x2b, ///< Effect 4 Depth (MIDI Controller 94)
516     _lev_ctrl_effect5depth = 0x2d, ///< Effect 5 Depth (MIDI Controller 95)
517     _lev_ctrl_channelaftertouch = 0x2f, ///< Channel Key Pressure
518 schoenebeck 2540 _lev_ctrl_velocity = 0xff, ///< Key Velocity
519    
520     // format extension (these controllers are so far only supported by LinuxSampler & gigedit) they will *NOT* work with Gigasampler/GigaStudio !
521     // (the assigned values here are their official MIDI CC number plus the highest bit set):
522     _lev_ctrl_CC3_EXT = 0x83, ///< MIDI Controller 3 [gig format extension]
523    
524     _lev_ctrl_CC6_EXT = 0x86, ///< Data Entry MSB (MIDI Controller 6) [gig format extension]
525     _lev_ctrl_CC7_EXT = 0x87, ///< Channel Volume (MIDI Controller 7) [gig format extension]
526     _lev_ctrl_CC8_EXT = 0x88, ///< Balance (MIDI Controller 8) [gig format extension]
527     _lev_ctrl_CC9_EXT = 0x89, ///< MIDI Controller 9 [gig format extension]
528     _lev_ctrl_CC10_EXT = 0x8a, ///< Pan (MIDI Controller 10) [gig format extension]
529     _lev_ctrl_CC11_EXT = 0x8b, ///< Expression Controller (MIDI Controller 11) [gig format extension]
530    
531     _lev_ctrl_CC14_EXT = 0x8e, ///< MIDI Controller 14 [gig format extension]
532     _lev_ctrl_CC15_EXT = 0x8f, ///< MIDI Controller 15 [gig format extension]
533    
534     _lev_ctrl_CC20_EXT = 0x94, ///< MIDI Controller 20 [gig format extension]
535     _lev_ctrl_CC21_EXT = 0x95, ///< MIDI Controller 21 [gig format extension]
536     _lev_ctrl_CC22_EXT = 0x96, ///< MIDI Controller 22 [gig format extension]
537     _lev_ctrl_CC23_EXT = 0x97, ///< MIDI Controller 23 [gig format extension]
538     _lev_ctrl_CC24_EXT = 0x98, ///< MIDI Controller 24 [gig format extension]
539     _lev_ctrl_CC25_EXT = 0x99, ///< MIDI Controller 25 [gig format extension]
540     _lev_ctrl_CC26_EXT = 0x9a, ///< MIDI Controller 26 [gig format extension]
541     _lev_ctrl_CC27_EXT = 0x9b, ///< MIDI Controller 27 [gig format extension]
542     _lev_ctrl_CC28_EXT = 0x9c, ///< MIDI Controller 28 [gig format extension]
543     _lev_ctrl_CC29_EXT = 0x9d, ///< MIDI Controller 29 [gig format extension]
544     _lev_ctrl_CC30_EXT = 0x9e, ///< MIDI Controller 30 [gig format extension]
545     _lev_ctrl_CC31_EXT = 0x9f, ///< MIDI Controller 31 [gig format extension]
546    
547     _lev_ctrl_CC68_EXT = 0xc4, ///< Legato Footswitch (MIDI Controller 68) [gig format extension]
548     _lev_ctrl_CC69_EXT = 0xc5, ///< Hold 2 (MIDI Controller 69) [gig format extension]
549     _lev_ctrl_CC70_EXT = 0xc6, ///< Sound Ctrl. 1 - Sound Variation (MIDI Controller 70) [gig format extension]
550     _lev_ctrl_CC71_EXT = 0xc7, ///< Sound Ctrl. 2 - Timbre (MIDI Controller 71) [gig format extension]
551     _lev_ctrl_CC72_EXT = 0xc8, ///< Sound Ctrl. 3 - Release Time (MIDI Controller 72) [gig format extension]
552     _lev_ctrl_CC73_EXT = 0xc9, ///< Sound Ctrl. 4 - Attack Time (MIDI Controller 73) [gig format extension]
553     _lev_ctrl_CC74_EXT = 0xca, ///< Sound Ctrl. 5 - Brightness (MIDI Controller 74) [gig format extension]
554     _lev_ctrl_CC75_EXT = 0xcb, ///< Sound Ctrl. 6 - Decay Time (MIDI Controller 75) [gig format extension]
555     _lev_ctrl_CC76_EXT = 0xcc, ///< Sound Ctrl. 7 - Vibrato Rate (MIDI Controller 76) [gig format extension]
556     _lev_ctrl_CC77_EXT = 0xcd, ///< Sound Ctrl. 8 - Vibrato Depth (MIDI Controller 77) [gig format extension]
557     _lev_ctrl_CC78_EXT = 0xce, ///< Sound Ctrl. 9 - Vibrato Delay (MIDI Controller 78) [gig format extension]
558     _lev_ctrl_CC79_EXT = 0xcf, ///< Sound Ctrl. 10 (MIDI Controller 79) [gig format extension]
559    
560     _lev_ctrl_CC84_EXT = 0xd4, ///< Portamento Control (MIDI Controller 84) [gig format extension]
561     _lev_ctrl_CC85_EXT = 0xd5, ///< MIDI Controller 85 [gig format extension]
562     _lev_ctrl_CC86_EXT = 0xd6, ///< MIDI Controller 86 [gig format extension]
563     _lev_ctrl_CC87_EXT = 0xd7, ///< MIDI Controller 87 [gig format extension]
564    
565     _lev_ctrl_CC89_EXT = 0xd9, ///< MIDI Controller 89 [gig format extension]
566     _lev_ctrl_CC90_EXT = 0xda, ///< MIDI Controller 90 [gig format extension]
567    
568     _lev_ctrl_CC96_EXT = 0xe0, ///< Data Increment (MIDI Controller 96) [gig format extension]
569     _lev_ctrl_CC97_EXT = 0xe1, ///< Data Decrement (MIDI Controller 97) [gig format extension]
570    
571     _lev_ctrl_CC102_EXT = 0xe6, ///< MIDI Controller 102 [gig format extension]
572     _lev_ctrl_CC103_EXT = 0xe7, ///< MIDI Controller 103 [gig format extension]
573     _lev_ctrl_CC104_EXT = 0xe8, ///< MIDI Controller 104 [gig format extension]
574     _lev_ctrl_CC105_EXT = 0xe9, ///< MIDI Controller 105 [gig format extension]
575     _lev_ctrl_CC106_EXT = 0xea, ///< MIDI Controller 106 [gig format extension]
576     _lev_ctrl_CC107_EXT = 0xeb, ///< MIDI Controller 107 [gig format extension]
577     _lev_ctrl_CC108_EXT = 0xec, ///< MIDI Controller 108 [gig format extension]
578     _lev_ctrl_CC109_EXT = 0xed, ///< MIDI Controller 109 [gig format extension]
579     _lev_ctrl_CC110_EXT = 0xee, ///< MIDI Controller 110 [gig format extension]
580     _lev_ctrl_CC111_EXT = 0xef, ///< MIDI Controller 111 [gig format extension]
581     _lev_ctrl_CC112_EXT = 0xf0, ///< MIDI Controller 112 [gig format extension]
582     _lev_ctrl_CC113_EXT = 0xf1, ///< MIDI Controller 113 [gig format extension]
583     _lev_ctrl_CC114_EXT = 0xf2, ///< MIDI Controller 114 [gig format extension]
584     _lev_ctrl_CC115_EXT = 0xf3, ///< MIDI Controller 115 [gig format extension]
585     _lev_ctrl_CC116_EXT = 0xf4, ///< MIDI Controller 116 [gig format extension]
586     _lev_ctrl_CC117_EXT = 0xf5, ///< MIDI Controller 117 [gig format extension]
587     _lev_ctrl_CC118_EXT = 0xf6, ///< MIDI Controller 118 [gig format extension]
588     _lev_ctrl_CC119_EXT = 0xf7 ///< MIDI Controller 119 [gig format extension]
589 schoenebeck 55 } _lev_ctrl_t;
590 schoenebeck 16 typedef std::map<uint32_t, double*> VelocityTableMap;
591    
592 schoenebeck 2922 static size_t Instances; ///< Number of DimensionRegion instances.
593 schoenebeck 16 static VelocityTableMap* pVelocityTables; ///< Contains the tables corresponding to the various velocity parameters (VelocityResponseCurve and VelocityResponseDepth).
594     double* pVelocityAttenuationTable; ///< Points to the velocity table corresponding to the velocity parameters of this DimensionRegion.
595 persson 613 double* pVelocityReleaseTable; ///< Points to the velocity table corresponding to the release velocity parameters of this DimensionRegion
596 persson 728 double* pVelocityCutoffTable; ///< Points to the velocity table corresponding to the filter velocity parameters of this DimensionRegion
597 schoenebeck 1316 Region* pRegion;
598 schoenebeck 55
599 schoenebeck 36 leverage_ctrl_t DecodeLeverageController(_lev_ctrl_t EncodedController);
600 schoenebeck 809 _lev_ctrl_t EncodeLeverageController(leverage_ctrl_t DecodedController);
601 schoenebeck 1358 double* GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth);
602     double* GetCutoffVelocityTable(curve_type_t vcfVelocityCurve, uint8_t vcfVelocityDynamicRange, uint8_t vcfVelocityScale, vcf_cutoff_ctrl_t vcfCutoffController);
603 persson 613 double* GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);
604 schoenebeck 308 double* CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);
605 schoenebeck 2 };
606    
607 schoenebeck 2699 /** @brief Encapsulates sample waves of Gigasampler/GigaStudio files used for playback.
608 schoenebeck 809 *
609 schoenebeck 2699 * This class provides access to the actual audio sample data of a
610     * Gigasampler/GigaStudio file. Along to the actual sample data, it also
611     * provides access to the sample's meta informations like bit depth,
612     * sample rate, encoding type, but also loop informations. The latter may be
613     * used by instruments for resembling sounds with arbitary note lengths.
614     *
615 schoenebeck 809 * In case you created a new sample with File::AddSample(), you should
616     * first update all attributes with the desired meta informations
617     * (amount of channels, bit depth, sample rate, etc.), then call
618     * Resize() with the desired sample size, followed by File::Save(), this
619     * will create the mandatory RIFF chunk which will hold the sample wave
620     * data and / or resize the file so you will be able to Write() the
621     * sample data directly to disk.
622 schoenebeck 1154 *
623     * @e Caution: for gig synthesis, most looping relevant information are
624     * retrieved from the respective DimensionRegon instead from the Sample
625     * itself. This was made for allowing different loop definitions for the
626     * same sample under different conditions.
627 schoenebeck 2699 *
628     * Since the gig format was designed as extension to the DLS file format,
629     * this class is derived from the DLS::Sample class. So also refer to
630     * DLS::Sample for additional informations, class attributes and methods.
631 schoenebeck 809 */
632 schoenebeck 2 class Sample : public DLS::Sample {
633     public:
634     uint32_t Manufacturer; ///< Specifies the MIDI Manufacturer's Association (MMA) Manufacturer code for the sampler intended to receive this file's waveform. If no particular manufacturer is to be specified, a value of 0 should be used.
635     uint32_t Product; ///< Specifies the MIDI model ID defined by the manufacturer corresponding to the Manufacturer field. If no particular manufacturer's product is to be specified, a value of 0 should be used.
636 schoenebeck 809 uint32_t SamplePeriod; ///< Specifies the duration of time that passes during the playback of one sample in nanoseconds (normally equal to 1 / Samples Per Second, where Samples Per Second is the value found in the format chunk), don't bother to update this attribute, it won't be saved.
637 schoenebeck 2 uint32_t MIDIUnityNote; ///< Specifies the musical note at which the sample will be played at it's original sample rate.
638 schoenebeck 21 uint32_t FineTune; ///< Specifies the fraction of a semitone up from the specified MIDI unity note field. A value of 0x80000000 means 1/2 semitone (50 cents) and a value of 0x00000000 means no fine tuning between semitones.
639 schoenebeck 2 smpte_format_t SMPTEFormat; ///< Specifies the Society of Motion Pictures and Television E time format used in the following <i>SMPTEOffset</i> field. If a value of 0 is set, <i>SMPTEOffset</i> should also be set to 0.
640     uint32_t SMPTEOffset; ///< The SMPTE Offset value specifies the time offset to be used for the synchronization / calibration to the first sample in the waveform. This value uses a format of 0xhhmmssff where hh is a signed value that specifies the number of hours (-23 to 23), mm is an unsigned value that specifies the number of minutes (0 to 59), ss is an unsigned value that specifies the number of seconds (0 to 59) and ff is an unsigned value that specifies the number of frames (0 to -1).
641 schoenebeck 1154 uint32_t Loops; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: Number of defined sample loops. So far only seen single loops in gig files - please report if you encounter more!)
642 schoenebeck 21 uint32_t LoopID; ///< Specifies the unique ID that corresponds to one of the defined cue points in the cue point list (only if Loops > 0), as the Gigasampler format only allows one loop definition at the moment, this attribute isn't really useful for anything.
643 schoenebeck 1154 loop_type_t LoopType; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The type field defines how the waveform samples will be looped.)
644     uint32_t LoopStart; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The start value specifies the offset [in sample points] in the waveform data of the first sample to be played in the loop [only if Loops > 0].)
645     uint32_t LoopEnd; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The end value specifies the offset [in sample points] in the waveform data which represents the end of the loop [only if Loops > 0].)
646     uint32_t LoopSize; ///< @e Caution: Use the respective fields in the DimensionRegion instead of this one! (Intended purpose: Length of the looping area [in sample points] which is equivalent to @code LoopEnd - LoopStart @endcode.)
647     uint32_t LoopFraction; ///< The fractional value specifies a fraction of a sample at which to loop. This allows a loop to be fine tuned at a resolution greater than one sample. A value of 0 means no fraction, a value of 0x80000000 means 1/2 of a sample length. 0xFFFFFFFF is the smallest fraction of a sample that can be represented.
648     uint32_t LoopPlayCount; ///< Number of times the loop should be played (a value of 0 = infinite).
649 schoenebeck 2 bool Compressed; ///< If the sample wave is compressed (probably just interesting for instrument and sample editors, as this library already handles the decompression in it's sample access methods anyway).
650 persson 437 uint32_t TruncatedBits; ///< For 24-bit compressed samples only: number of bits truncated during compression (0, 4 or 6)
651     bool Dithered; ///< For 24-bit compressed samples only: if dithering was used during compression with bit reduction
652 schoenebeck 2
653     // own methods
654     buffer_t LoadSampleData();
655 schoenebeck 2912 buffer_t LoadSampleData(file_offset_t SampleCount);
656 schoenebeck 2 buffer_t LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount);
657 schoenebeck 2912 buffer_t LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount);
658 schoenebeck 2 buffer_t GetCache();
659 schoenebeck 384 // own static methods
660 schoenebeck 2912 static buffer_t CreateDecompressionBuffer(file_offset_t MaxReadSize);
661 schoenebeck 384 static void DestroyDecompressionBuffer(buffer_t& DecompressionBuffer);
662 schoenebeck 2 // overridden methods
663     void ReleaseSampleData();
664 schoenebeck 2922 void Resize(file_offset_t NewSize);
665 schoenebeck 2912 file_offset_t SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence = RIFF::stream_start);
666     file_offset_t GetPos() const;
667     file_offset_t Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer = NULL);
668     file_offset_t ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState, DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer = NULL);
669     file_offset_t Write(void* pBuffer, file_offset_t SampleCount);
670 schoenebeck 930 Group* GetGroup() const;
671 schoenebeck 2682 virtual void UpdateChunks(progress_t* pProgress);
672 schoenebeck 2482 void CopyAssignMeta(const Sample* orig);
673     void CopyAssignWave(const Sample* orig);
674 schoenebeck 2 protected:
675 schoenebeck 2922 static size_t Instances; ///< Number of instances of class Sample.
676 schoenebeck 384 static buffer_t InternalDecompressionBuffer; ///< Buffer used for decompression as well as for truncation of 24 Bit -> 16 Bit samples.
677 schoenebeck 930 Group* pGroup; ///< pointer to the Group this sample belongs to (always not-NULL)
678 schoenebeck 2912 file_offset_t FrameOffset; ///< Current offset (sample points) in current sample frame (for decompression only).
679     file_offset_t* FrameTable; ///< For positioning within compressed samples only: stores the offset values for each frame.
680     file_offset_t SamplePos; ///< For compressed samples only: stores the current position (in sample points).
681     file_offset_t SamplesInLastFrame; ///< For compressed samples only: length of the last sample frame.
682     file_offset_t WorstCaseFrameSize; ///< For compressed samples only: size (in bytes) of the largest possible sample frame.
683     file_offset_t SamplesPerFrame; ///< For compressed samples only: number of samples in a full sample frame.
684 schoenebeck 2 buffer_t RAMCache; ///< Buffers samples (already uncompressed) in RAM.
685 persson 666 unsigned long FileNo; ///< File number (> 0 when sample is stored in an extension file, 0 when it's in the gig)
686 schoenebeck 809 RIFF::Chunk* pCk3gix;
687     RIFF::Chunk* pCkSmpl;
688 schoenebeck 1381 uint32_t crc; ///< CRC-32 checksum of the raw sample data
689 schoenebeck 2
690 schoenebeck 2912 Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo = 0);
691 schoenebeck 2 ~Sample();
692 persson 365
693     // Guess size (in bytes) of a compressed sample
694 schoenebeck 2912 inline file_offset_t GuessSize(file_offset_t samples) {
695 persson 365 // 16 bit: assume all frames are compressed - 1 byte
696     // per sample and 5 bytes header per 2048 samples
697    
698     // 24 bit: assume next best compression rate - 1.5
699     // bytes per sample and 13 bytes header per 256
700     // samples
701 schoenebeck 2912 const file_offset_t size =
702 persson 365 BitDepth == 24 ? samples + (samples >> 1) + (samples >> 8) * 13
703     : samples + (samples >> 10) * 5;
704     // Double for stereo and add one worst case sample
705     // frame
706     return (Channels == 2 ? size << 1 : size) + WorstCaseFrameSize;
707     }
708 schoenebeck 384
709     // Worst case amount of sample points that can be read with the
710     // given decompression buffer.
711 schoenebeck 2912 inline file_offset_t WorstCaseMaxSamples(buffer_t* pDecompressionBuffer) {
712     return (file_offset_t) ((float)pDecompressionBuffer->Size / (float)WorstCaseFrameSize * (float)SamplesPerFrame);
713 schoenebeck 384 }
714 schoenebeck 2 private:
715     void ScanCompressedSample();
716     friend class File;
717     friend class Region;
718 schoenebeck 930 friend class Group; // allow to modify protected member pGroup
719 schoenebeck 2 };
720    
721     // TODO: <3dnl> list not used yet - not important though (just contains optional descriptions for the dimensions)
722 schoenebeck 2699 /** @brief Defines Region information of a Gigasampler/GigaStudio instrument.
723 schoenebeck 2547 *
724 schoenebeck 2699 * A Region reflects a consecutive area (key range) on the keyboard. The
725     * individual regions in the gig format may not overlap with other regions
726     * (of the same instrument that is). Further, in the gig format a Region is
727     * merely a container for DimensionRegions (a.k.a. "Cases"). The Region
728     * itself does not provide the sample mapping or articulation informations
729     * used, even though the data structures of regions indeed provide such
730     * informations. The latter is however just of historical nature, because
731     * the gig file format was derived from the DLS file format.
732 schoenebeck 2547 *
733     * Each Region consists of at least one or more DimensionRegions. The actual
734     * amount of DimensionRegions depends on which kind of "dimensions" are
735     * defined for this region, and on the split / zone amount for each of those
736     * dimensions.
737 schoenebeck 2699 *
738     * Since the gig format was designed as extension to the DLS file format,
739     * this class is derived from the DLS::Region class. So also refer to
740     * DLS::Region for additional informations, class attributes and methods.
741 schoenebeck 2547 */
742 schoenebeck 2 class Region : public DLS::Region {
743     public:
744 schoenebeck 809 unsigned int Dimensions; ///< Number of defined dimensions, do not alter!
745 schoenebeck 926 dimension_def_t pDimensionDefinitions[8]; ///< Defines the five (gig2) or eight (gig3) possible dimensions (the dimension's controller and number of bits/splits). Use AddDimension() and DeleteDimension() to create a new dimension or delete an existing one.
746 schoenebeck 809 uint32_t DimensionRegions; ///< Total number of DimensionRegions this Region contains, do not alter!
747 schoenebeck 926 DimensionRegion* pDimensionRegions[256]; ///< Pointer array to the 32 (gig2) or 256 (gig3) possible dimension regions (reflects NULL for dimension regions not in use). Avoid to access the array directly and better use GetDimensionRegionByValue() instead, but of course in some cases it makes sense to use the array (e.g. iterating through all DimensionRegions). Use AddDimension() and DeleteDimension() to create a new dimension or delete an existing one (which will create or delete the respective dimension region(s) automatically).
748 schoenebeck 809 unsigned int Layers; ///< Amount of defined layers (1 - 32). A value of 1 actually means no layering, a value > 1 means there is Layer dimension. The same information can of course also be obtained by accessing pDimensionDefinitions. Do not alter this value!
749 schoenebeck 2
750 schoenebeck 1335 // own methods
751 schoenebeck 347 DimensionRegion* GetDimensionRegionByValue(const uint DimValues[8]);
752     DimensionRegion* GetDimensionRegionByBit(const uint8_t DimBits[8]);
753 schoenebeck 2599 int GetDimensionRegionIndexByValue(const uint DimValues[8]);
754 schoenebeck 2 Sample* GetSample();
755 schoenebeck 809 void AddDimension(dimension_def_t* pDimDef);
756     void DeleteDimension(dimension_def_t* pDimDef);
757 schoenebeck 2547 dimension_def_t* GetDimensionDefinition(dimension_t type);
758 schoenebeck 2555 void DeleteDimensionZone(dimension_t type, int zone);
759     void SplitDimensionZone(dimension_t type, int zone);
760 schoenebeck 2639 void SetDimensionType(dimension_t oldType, dimension_t newType);
761 schoenebeck 1335 // overridden methods
762     virtual void SetKeyRange(uint16_t Low, uint16_t High);
763 schoenebeck 2682 virtual void UpdateChunks(progress_t* pProgress);
764 schoenebeck 2394 virtual void CopyAssign(const Region* orig);
765 schoenebeck 2 protected:
766     Region(Instrument* pInstrument, RIFF::List* rgnList);
767     void LoadDimensionRegions(RIFF::List* rgn);
768 persson 858 void UpdateVelocityTable();
769 schoenebeck 515 Sample* GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress = NULL);
770 schoenebeck 2482 void CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples);
771 schoenebeck 2555 DimensionRegion* GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase);
772 schoenebeck 2 ~Region();
773     friend class Instrument;
774     };
775    
776 schoenebeck 2699 /** @brief Abstract base class for all MIDI rules.
777     *
778     * Note: Instead of using MIDI rules, we recommend you using real-time
779     * instrument scripts instead. Read about the reasons below.
780     *
781     * MIDI Rules (also called "iMIDI rules" or "intelligent MIDI rules") were
782     * introduced with GigaStudio 4 as an attempt to increase the power of
783     * potential user controls over sounds. At that point other samplers already
784     * supported certain powerful user control features, which were not possible
785     * with GigaStudio yet. For example triggering new notes by MIDI CC
786     * controller.
787     *
788     * Such extended features however were usually implemented by other samplers
789     * by requiring the sound designer to write an instrument script which the
790     * designer would then bundle with the respective instrument file. Such
791     * scripts are essentially text files, using a very specific programming
792     * language for the purpose of controlling the sampler in real-time. Since
793     * however musicians are not typically keen to writing such cumbersome
794     * script files, the GigaStudio designers decided to implement such extended
795     * features completely without instrument scripts. Instead they created a
796     * set of rules, which could be defined and altered conveniently by mouse
797     * clicks in GSt's instrument editor application. The downside of this
798     * overall approach however, was that those MIDI rules were very limited in
799     * practice. As sound designer you easily came across the possiblities such
800     * MIDI rules were able to offer.
801     *
802     * Due to such severe use case constraints, support for MIDI rules is quite
803     * limited in libgig. At the moment only the "Control Trigger", "Alternator"
804     * and the "Legato" MIDI rules are supported by libgig. Consequently the
805     * graphical instrument editor application gigedit just supports the
806     * "Control Trigger" and "Legato" MIDI rules, and LinuxSampler even does not
807     * support any MIDI rule type at all and LinuxSampler probably will not
808     * support MIDI rules in future either.
809     *
810     * Instead of using MIDI rules, we introduced real-time instrument scripts
811     * as extension to the original GigaStudio file format. This script based
812     * solution is much more powerful than MIDI rules and is already supported
813     * by libgig, gigedit and LinuxSampler.
814     *
815     * @deprecated Just provided for backward compatiblity, use Script for new
816     * instruments instead.
817     */
818 persson 1627 class MidiRule {
819     public:
820     virtual ~MidiRule() { }
821 persson 2450 protected:
822     virtual void UpdateChunks(uint8_t* pData) const = 0;
823     friend class Instrument;
824 persson 1627 };
825    
826 schoenebeck 2699 /** @brief MIDI rule for triggering notes by control change events.
827     *
828     * A "Control Trigger MIDI rule" allows to trigger new notes by sending MIDI
829     * control change events to the sampler.
830     *
831     * Note: "Control Trigger" MIDI rules are only supported by gigedit, but not
832     * by LinuxSampler. We recommend you using real-time instrument scripts
833     * instead. Read more about the details and reasons for this in the
834     * description of the MidiRule base class.
835     *
836     * @deprecated Just provided for backward compatiblity, use Script for new
837     * instruments instead. See description of MidiRule for details.
838     */
839 persson 1627 class MidiRuleCtrlTrigger : public MidiRule {
840     public:
841     uint8_t ControllerNumber; ///< MIDI controller number.
842     uint8_t Triggers; ///< Number of triggers.
843     struct trigger_t {
844     uint8_t TriggerPoint; ///< The CC value to pass for the note to be triggered.
845     bool Descending; ///< If the change in CC value should be downwards.
846     uint8_t VelSensitivity; ///< How sensitive the velocity should be to the speed of the controller change.
847     uint8_t Key; ///< Key to trigger.
848     bool NoteOff; ///< If a note off should be triggered instead of a note on.
849     uint8_t Velocity; ///< Velocity of the note to trigger. 255 means that velocity should depend on the speed of the controller change.
850     bool OverridePedal; ///< If a note off should be triggered even if the sustain pedal is down.
851     } pTriggers[32];
852    
853     protected:
854     MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg);
855 persson 2450 MidiRuleCtrlTrigger();
856     void UpdateChunks(uint8_t* pData) const;
857 persson 1627 friend class Instrument;
858     };
859    
860 schoenebeck 2699 /** @brief MIDI rule for instruments with legato samples.
861     *
862     * A "Legato MIDI rule" allows playing instruments resembling the legato
863     * playing technique. In the past such legato articulations were tried to be
864     * simulated by pitching the samples of the instrument. However since
865     * usually a high amount of pitch is needed for legatos, this always sounded
866     * very artificial and unrealistic. The "Legato MIDI rule" thus uses another
867     * approach. Instead of pitching the samples, it allows the sound designer
868     * to bundle separate, additional samples for the individual legato
869     * situations and the legato rules defined which samples to be played in
870     * which situation.
871     *
872     * Note: "Legato MIDI rules" are only supported by gigedit, but not
873     * by LinuxSampler. We recommend you using real-time instrument scripts
874     * instead. Read more about the details and reasons for this in the
875     * description of the MidiRule base class.
876     *
877     * @deprecated Just provided for backward compatiblity, use Script for new
878     * instruments instead. See description of MidiRule for details.
879     */
880 persson 2450 class MidiRuleLegato : public MidiRule {
881     public:
882     uint8_t LegatoSamples; ///< Number of legato samples per key in each direction (always 12)
883     bool BypassUseController; ///< If a controller should be used to bypass the sustain note
884     uint8_t BypassKey; ///< Key to be used to bypass the sustain note
885     uint8_t BypassController; ///< Controller to be used to bypass the sustain note
886     uint16_t ThresholdTime; ///< Maximum time (ms) between two notes that should be played legato
887     uint16_t ReleaseTime; ///< Release time
888     range_t KeyRange; ///< Key range for legato notes
889     uint8_t ReleaseTriggerKey; ///< Key triggering release samples
890     uint8_t AltSustain1Key; ///< Key triggering alternate sustain samples
891     uint8_t AltSustain2Key; ///< Key triggering a second set of alternate sustain samples
892    
893     protected:
894     MidiRuleLegato(RIFF::Chunk* _3ewg);
895     MidiRuleLegato();
896     void UpdateChunks(uint8_t* pData) const;
897     friend class Instrument;
898     };
899    
900 schoenebeck 2699 /** @brief MIDI rule to automatically cycle through specified sequences of different articulations.
901     *
902     * The instrument must be using the smartmidi dimension.
903     *
904     * Note: "Alternator" MIDI rules are neither supported by gigedit nor by
905     * LinuxSampler. We recommend you using real-time instrument scripts
906     * instead. Read more about the details and reasons for this in the
907     * description of the MidiRule base class.
908     *
909     * @deprecated Just provided for backward compatiblity, use Script for new
910     * instruments instead. See description of MidiRule for details.
911     */
912 persson 2450 class MidiRuleAlternator : public MidiRule {
913     public:
914     uint8_t Articulations; ///< Number of articulations in the instrument
915     String pArticulations[32]; ///< Names of the articulations
916    
917     range_t PlayRange; ///< Key range of the playable keys in the instrument
918    
919     uint8_t Patterns; ///< Number of alternator patterns
920     struct pattern_t {
921     String Name; ///< Name of the pattern
922     int Size; ///< Number of steps in the pattern
923     const uint8_t& operator[](int i) const { /// Articulation to play
924     return data[i];
925     }
926     uint8_t& operator[](int i) {
927     return data[i];
928     }
929     private:
930     uint8_t data[32];
931     } pPatterns[32]; ///< A pattern is a sequence of articulation numbers
932    
933     typedef enum {
934     selector_none,
935     selector_key_switch,
936     selector_controller
937     } selector_t;
938     selector_t Selector; ///< Method by which pattern is chosen
939     range_t KeySwitchRange; ///< Key range for key switch selector
940     uint8_t Controller; ///< CC number for controller selector
941    
942     bool Polyphonic; ///< If alternator should step forward only when all notes are off
943     bool Chained; ///< If all patterns should be chained together
944    
945     protected:
946     MidiRuleAlternator(RIFF::Chunk* _3ewg);
947     MidiRuleAlternator();
948     void UpdateChunks(uint8_t* pData) const;
949     friend class Instrument;
950     };
951    
952 schoenebeck 2699 /** @brief A MIDI rule not yet implemented by libgig.
953     *
954     * This class is currently used as a place holder by libgig for MIDI rule
955     * types which are not supported by libgig yet.
956     *
957     * Note: Support for missing MIDI rule types are probably never added to
958     * libgig. We recommend you using real-time instrument scripts instead.
959     * Read more about the details and reasons for this in the description of
960     * the MidiRule base class.
961     *
962     * @deprecated Just provided for backward compatiblity, use Script for new
963     * instruments instead. See description of MidiRule for details.
964     */
965 persson 2450 class MidiRuleUnknown : public MidiRule {
966     protected:
967     MidiRuleUnknown() { }
968     void UpdateChunks(uint8_t* pData) const { }
969     friend class Instrument;
970     };
971    
972 schoenebeck 2584 /** @brief Real-time instrument script (gig format extension).
973     *
974     * Real-time instrument scripts are user supplied small programs which can
975     * be used by instrument designers to create custom behaviors and features
976     * not available in the stock sampler engine. Features which might be very
977     * exotic or specific for the respective instrument.
978     *
979     * This is an extension of the GigaStudio format, thus a feature which was
980     * not available in the GigaStudio 4 software. It is currently only
981 schoenebeck 2699 * supported by LinuxSampler and gigedit. Scripts will not load with the
982     * original GigaStudio software.
983 schoenebeck 2761 *
984     * You find more informations about Instrument Scripts on the LinuxSampler
985     * documentation site:
986     *
987     * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/">About Instrument Scripts in General</a>
988     * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language">Introduction to the NKSP Script Language</a>
989     * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language/Reference/">NKSP Reference Manual</a>
990     * - <a href="http://doc.linuxsampler.org/Gigedit/Managing_Scripts">Using Instrument Scripts with Gigedit</a>
991 schoenebeck 2584 */
992     class Script {
993     public:
994     enum Encoding_t {
995     ENCODING_ASCII = 0 ///< Standard 8 bit US ASCII character encoding (default).
996     };
997     enum Compression_t {
998     COMPRESSION_NONE = 0 ///< Is not compressed at all (default).
999     };
1000     enum Language_t {
1001 schoenebeck 2762 LANGUAGE_NKSP = 0 ///< NKSP stands for "Is Not KSP" (default). Refer to the <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language/Reference/">NKSP Reference Manual</a> for details about this script language.
1002 schoenebeck 2584 };
1003    
1004     String Name; ///< Arbitrary name of the script, which may be displayed i.e. in an instrument editor.
1005     Compression_t Compression; ///< Whether the script was/should be compressed, and if so, which compression algorithm shall be used.
1006     Encoding_t Encoding; ///< Format the script's source code text is encoded with.
1007     Language_t Language; ///< Programming language and dialect the script is written in.
1008     bool Bypass; ///< Global bypass: if enabled, this script shall not be executed by the sampler for any instrument.
1009    
1010     String GetScriptAsText();
1011     void SetScriptAsText(const String& text);
1012     void SetGroup(ScriptGroup* pGroup);
1013 schoenebeck 2601 ScriptGroup* GetGroup() const;
1014 schoenebeck 2584 protected:
1015     Script(ScriptGroup* group, RIFF::Chunk* ckScri);
1016     virtual ~Script();
1017 schoenebeck 2682 void UpdateChunks(progress_t* pProgress);
1018 schoenebeck 2584 void RemoveAllScriptReferences();
1019     friend class ScriptGroup;
1020     friend class Instrument;
1021     private:
1022     ScriptGroup* pGroup;
1023     RIFF::Chunk* pChunk; ///< 'Scri' chunk
1024     std::vector<uint8_t> data;
1025     uint32_t crc; ///< CRC-32 checksum of the raw script data
1026     };
1027    
1028     /** @brief Group of instrument scripts (gig format extension).
1029     *
1030     * This class is simply used to sort a bunch of real-time instrument scripts
1031     * into individual groups. This allows instrument designers and script
1032     * developers to keep scripts in a certain order while working with a larger
1033     * amount of scripts in an instrument editor.
1034     *
1035     * This is an extension of the GigaStudio format, thus a feature which was
1036     * not available in the GigaStudio 4 software. It is currently only
1037     * supported by LinuxSampler and gigedit.
1038     */
1039     class ScriptGroup {
1040     public:
1041     String Name; ///< Name of this script group. For example to be displayed in an instrument editor.
1042    
1043     Script* GetScript(uint index);
1044     Script* AddScript();
1045     void DeleteScript(Script* pScript);
1046     protected:
1047     ScriptGroup(File* file, RIFF::List* lstRTIS);
1048     virtual ~ScriptGroup();
1049     void LoadScripts();
1050 schoenebeck 2682 void UpdateChunks(progress_t* pProgress);
1051 schoenebeck 2584 friend class Script;
1052     friend class File;
1053     private:
1054     File* pFile;
1055     RIFF::List* pList; ///< 'RTIS' list chunk
1056     std::list<Script*>* pScripts;
1057     };
1058    
1059 schoenebeck 2699 /** @brief Provides access to a Gigasampler/GigaStudio instrument.
1060     *
1061     * This class provides access to Gigasampler/GigaStudio instruments
1062     * contained in .gig files. A gig instrument is merely a set of keyboard
1063     * ranges (called Region), plus some additional global informations about
1064     * the instrument. The major part of the actual instrument definition used
1065     * for the synthesis of the instrument is contained in the respective Region
1066     * object (or actually in the respective DimensionRegion object being, see
1067     * description of Region for details).
1068     *
1069     * Since the gig format was designed as extension to the DLS file format,
1070     * this class is derived from the DLS::Instrument class. So also refer to
1071     * DLS::Instrument for additional informations, class attributes and
1072     * methods.
1073     */
1074 schoenebeck 2 class Instrument : protected DLS::Instrument {
1075     public:
1076     // derived attributes from DLS::Resource
1077 persson 2334 using DLS::Resource::pInfo;
1078     using DLS::Resource::pDLSID;
1079 schoenebeck 2 // derived attributes from DLS::Instrument
1080 persson 2334 using DLS::Instrument::IsDrum;
1081     using DLS::Instrument::MIDIBank;
1082     using DLS::Instrument::MIDIBankCoarse;
1083     using DLS::Instrument::MIDIBankFine;
1084     using DLS::Instrument::MIDIProgram;
1085     using DLS::Instrument::Regions;
1086 schoenebeck 2 // own attributes
1087     int32_t Attenuation; ///< in dB
1088     uint16_t EffectSend;
1089     int16_t FineTune; ///< in cents
1090     uint16_t PitchbendRange; ///< Number of semitones pitchbend controller can pitch (default is 2).
1091     bool PianoReleaseMode;
1092     range_t DimensionKeyRange; ///< 0-127 (where 0 means C1 and 127 means G9)
1093    
1094    
1095     // derived methods from DLS::Resource
1096 persson 2334 using DLS::Resource::GetParent;
1097 schoenebeck 2 // overridden methods
1098     Region* GetFirstRegion();
1099     Region* GetNextRegion();
1100 schoenebeck 809 Region* AddRegion();
1101     void DeleteRegion(Region* pRegion);
1102 schoenebeck 2700 void MoveTo(Instrument* dst);
1103 schoenebeck 2682 virtual void UpdateChunks(progress_t* pProgress);
1104 schoenebeck 2394 virtual void CopyAssign(const Instrument* orig);
1105 schoenebeck 2 // own methods
1106     Region* GetRegion(unsigned int Key);
1107 persson 1678 MidiRule* GetMidiRule(int i);
1108 persson 2450 MidiRuleCtrlTrigger* AddMidiRuleCtrlTrigger();
1109     MidiRuleLegato* AddMidiRuleLegato();
1110     MidiRuleAlternator* AddMidiRuleAlternator();
1111     void DeleteMidiRule(int i);
1112 schoenebeck 2584 // real-time instrument script methods
1113     Script* GetScriptOfSlot(uint index);
1114     void AddScriptSlot(Script* pScript, bool bypass = false);
1115     void SwapScriptSlots(uint index1, uint index2);
1116     void RemoveScriptSlot(uint index);
1117     void RemoveScript(Script* pScript);
1118     uint ScriptSlotCount() const;
1119     bool IsScriptSlotBypassed(uint index);
1120     void SetScriptSlotBypassed(uint index, bool bBypass);
1121 schoenebeck 2 protected:
1122     Region* RegionKeyTable[128]; ///< fast lookup for the corresponding Region of a MIDI key
1123    
1124 schoenebeck 515 Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress = NULL);
1125 schoenebeck 2 ~Instrument();
1126 schoenebeck 2482 void CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples);
1127 schoenebeck 809 void UpdateRegionKeyTable();
1128 schoenebeck 2584 void LoadScripts();
1129 schoenebeck 2609 void UpdateScriptFileOffsets();
1130 schoenebeck 2 friend class File;
1131 schoenebeck 1335 friend class Region; // so Region can call UpdateRegionKeyTable()
1132 persson 1627 private:
1133 schoenebeck 2584 struct _ScriptPooolEntry {
1134     uint32_t fileOffset;
1135     bool bypass;
1136     };
1137     struct _ScriptPooolRef {
1138     Script* script;
1139     bool bypass;
1140     };
1141 persson 1678 MidiRule** pMidiRules;
1142 schoenebeck 2584 std::vector<_ScriptPooolEntry> scriptPoolFileOffsets;
1143     std::vector<_ScriptPooolRef>* pScriptRefs;
1144 schoenebeck 2 };
1145    
1146 schoenebeck 2699 /** @brief Group of Gigasampler samples
1147 schoenebeck 929 *
1148 schoenebeck 2699 * Groups help to organize a huge collection of Gigasampler samples.
1149 schoenebeck 929 * Groups are not concerned at all for the synthesis, but they help
1150     * sound library developers when working on complex instruments with an
1151     * instrument editor (as long as that instrument editor supports it ;-).
1152     *
1153 schoenebeck 930 * A sample is always assigned to exactly one Group. This also means
1154     * there is always at least one Group in a .gig file, no matter if you
1155     * created one yet or not.
1156 schoenebeck 929 */
1157     class Group {
1158     public:
1159     String Name; ///< Stores the name of this Group.
1160 schoenebeck 930
1161     Sample* GetFirstSample();
1162     Sample* GetNextSample();
1163     void AddSample(Sample* pSample);
1164 schoenebeck 929 protected:
1165 schoenebeck 930 Group(File* file, RIFF::Chunk* ck3gnm);
1166 schoenebeck 929 virtual ~Group();
1167 schoenebeck 2682 virtual void UpdateChunks(progress_t* pProgress);
1168 schoenebeck 930 void MoveAll();
1169 schoenebeck 929 friend class File;
1170     private:
1171 schoenebeck 930 File* pFile;
1172 schoenebeck 2467 RIFF::Chunk* pNameChunk; ///< '3gnm' chunk
1173 schoenebeck 929 };
1174    
1175 schoenebeck 2699 /** @brief Provides convenient access to Gigasampler/GigaStudio .gig files.
1176     *
1177     * This is the entry class for accesing a Gigasampler/GigaStudio (.gig) file
1178     * with libgig. It allows you to open existing .gig files, modifying them
1179     * and saving them persistently either under the same file name or under a
1180     * different location.
1181     *
1182     * A .gig file is merely a monolithic file. That means samples and the
1183     * defintion of the virtual instruments are contained in the same file. A
1184     * .gig file contains an arbitrary amount of samples, and an arbitrary
1185     * amount of instruments which are referencing those samples. It is also
1186     * possible to store samples in .gig files not being referenced by any
1187     * instrument. This is not an error from the file format's point of view and
1188     * it is actually often used in practice during the design phase of new gig
1189     * instruments.
1190     *
1191     * So on toplevel of the gig file format you have:
1192     *
1193     * - A set of samples (see Sample).
1194     * - A set of virtual instruments (see Instrument).
1195     *
1196     * And as extension to the original GigaStudio format, we added:
1197     *
1198     * - Real-time instrument scripts (see Script).
1199     *
1200     * Note that the latter however is only supported by libgig, gigedit and
1201     * LinuxSampler. Scripts are not supported by the original GigaStudio
1202     * software.
1203     *
1204     * All released Gigasampler/GigaStudio file format versions are supported
1205     * (so from first Gigasampler version up to including GigaStudio 4).
1206     *
1207     * Since the gig format was designed as extension to the DLS file format,
1208     * this class is derived from the DLS::File class. So also refer to
1209     * DLS::File for additional informations, class attributes and methods.
1210     */
1211 schoenebeck 2 class File : protected DLS::File {
1212     public:
1213 persson 1199 static const DLS::version_t VERSION_2;
1214     static const DLS::version_t VERSION_3;
1215    
1216 schoenebeck 2 // derived attributes from DLS::Resource
1217 persson 2334 using DLS::Resource::pInfo;
1218     using DLS::Resource::pDLSID;
1219 schoenebeck 2 // derived attributes from DLS::File
1220 persson 2334 using DLS::File::pVersion;
1221     using DLS::File::Instruments;
1222 schoenebeck 2
1223     // derived methods from DLS::Resource
1224 persson 2334 using DLS::Resource::GetParent;
1225 schoenebeck 809 // derived methods from DLS::File
1226 persson 2334 using DLS::File::Save;
1227     using DLS::File::GetFileName;
1228 schoenebeck 2482 using DLS::File::SetFileName;
1229 schoenebeck 2 // overridden methods
1230 schoenebeck 809 File();
1231 schoenebeck 2 File(RIFF::File* pRIFF);
1232 schoenebeck 515 Sample* GetFirstSample(progress_t* pProgress = NULL); ///< Returns a pointer to the first <i>Sample</i> object of the file, <i>NULL</i> otherwise.
1233 schoenebeck 2 Sample* GetNextSample(); ///< Returns a pointer to the next <i>Sample</i> object of the file, <i>NULL</i> otherwise.
1234 schoenebeck 2482 Sample* GetSample(uint index);
1235 schoenebeck 809 Sample* AddSample();
1236     void DeleteSample(Sample* pSample);
1237 schoenebeck 929 Instrument* GetFirstInstrument(); ///< Returns a pointer to the first <i>Instrument</i> object of the file, <i>NULL</i> otherwise.
1238 schoenebeck 2 Instrument* GetNextInstrument(); ///< Returns a pointer to the next <i>Instrument</i> object of the file, <i>NULL</i> otherwise.
1239 schoenebeck 515 Instrument* GetInstrument(uint index, progress_t* pProgress = NULL);
1240 schoenebeck 809 Instrument* AddInstrument();
1241 schoenebeck 2394 Instrument* AddDuplicateInstrument(const Instrument* orig);
1242 schoenebeck 809 void DeleteInstrument(Instrument* pInstrument);
1243 schoenebeck 929 Group* GetFirstGroup(); ///< Returns a pointer to the first <i>Group</i> object of the file, <i>NULL</i> otherwise.
1244     Group* GetNextGroup(); ///< Returns a pointer to the next <i>Group</i> object of the file, <i>NULL</i> otherwise.
1245     Group* GetGroup(uint index);
1246 schoenebeck 2543 Group* GetGroup(String name);
1247 schoenebeck 929 Group* AddGroup();
1248     void DeleteGroup(Group* pGroup);
1249 schoenebeck 1081 void DeleteGroupOnly(Group* pGroup);
1250 schoenebeck 1524 void SetAutoLoad(bool b);
1251     bool GetAutoLoad();
1252 schoenebeck 2482 void AddContentOf(File* pFile);
1253 schoenebeck 2584 ScriptGroup* GetScriptGroup(uint index);
1254     ScriptGroup* GetScriptGroup(const String& name);
1255     ScriptGroup* AddScriptGroup();
1256     void DeleteScriptGroup(ScriptGroup* pGroup);
1257 schoenebeck 929 virtual ~File();
1258 schoenebeck 2682 virtual void UpdateChunks(progress_t* pProgress);
1259 schoenebeck 2 protected:
1260 schoenebeck 823 // overridden protected methods from DLS::File
1261     virtual void LoadSamples();
1262     virtual void LoadInstruments();
1263 schoenebeck 929 virtual void LoadGroups();
1264 schoenebeck 2609 virtual void UpdateFileOffsets();
1265 schoenebeck 823 // own protected methods
1266     virtual void LoadSamples(progress_t* pProgress);
1267     virtual void LoadInstruments(progress_t* pProgress);
1268 schoenebeck 2584 virtual void LoadScriptGroups();
1269 persson 1199 void SetSampleChecksum(Sample* pSample, uint32_t crc);
1270 schoenebeck 2 friend class Region;
1271 schoenebeck 929 friend class Sample;
1272 schoenebeck 2700 friend class Instrument;
1273 schoenebeck 930 friend class Group; // so Group can access protected member pRIFF
1274 schoenebeck 2584 friend class ScriptGroup; // so ScriptGroup can access protected member pRIFF
1275 schoenebeck 929 private:
1276     std::list<Group*>* pGroups;
1277     std::list<Group*>::iterator GroupsIterator;
1278 schoenebeck 1524 bool bAutoLoad;
1279 schoenebeck 2584 std::list<ScriptGroup*>* pScriptGroups;
1280 schoenebeck 2 };
1281    
1282 schoenebeck 1093 /**
1283     * Will be thrown whenever a gig specific error occurs while trying to
1284     * access a Gigasampler File. Note: In your application you should
1285     * better catch for RIFF::Exception rather than this one, except you
1286     * explicitly want to catch and handle gig::Exception, DLS::Exception
1287     * and RIFF::Exception independently, which usually shouldn't be
1288     * necessary though.
1289     */
1290 schoenebeck 2 class Exception : public DLS::Exception {
1291     public:
1292     Exception(String Message);
1293     void PrintMessage();
1294     };
1295    
1296 schoenebeck 518 String libraryName();
1297     String libraryVersion();
1298    
1299 schoenebeck 2 } // namespace gig
1300    
1301     #endif // __GIG_H__

  ViewVC Help
Powered by ViewVC