/[svn]/libgig/trunk/src/gig.h
ViewVC logotype

Annotation of /libgig/trunk/src/gig.h

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3138 - (hide annotations) (download) (as text)
Wed May 3 14:41:58 2017 UTC (6 years, 11 months ago) by schoenebeck
File MIME type: text/x-c++hdr
File size: 87305 byte(s)
* Added new "Serialization" framework (and equally named namespace)
  which allows to serialize and deserialize native C++ objects
  in a portable, easy and flexible way.
* gig.cpp/gig.h: Added support for serializing & deserializing
  DimensionRegion objects (and crossfade_t and leverage_ctrl_t
  objects).
* Bumped version (4.0.0.svn15).

1 schoenebeck 2 /***************************************************************************
2     * *
3 schoenebeck 933 * libgig - C++ cross-platform Gigasampler format file access library *
4 schoenebeck 2 * *
5 schoenebeck 3117 * Copyright (C) 2003-2017 by Christian Schoenebeck *
6 schoenebeck 384 * <cuse@users.sourceforge.net> *
7 schoenebeck 2 * *
8     * This library is free software; you can redistribute it and/or modify *
9     * it under the terms of the GNU General Public License as published by *
10     * the Free Software Foundation; either version 2 of the License, or *
11     * (at your option) any later version. *
12     * *
13     * This library is distributed in the hope that it will be useful, *
14     * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16     * GNU General Public License for more details. *
17     * *
18     * You should have received a copy of the GNU General Public License *
19     * along with this library; if not, write to the Free Software *
20     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21     * MA 02111-1307 USA *
22     ***************************************************************************/
23    
24     #ifndef __GIG_H__
25     #define __GIG_H__
26    
27     #include "DLS.h"
28 schoenebeck 3138 #include "Serialization.h"
29 schoenebeck 2584 #include <vector>
30 schoenebeck 2
31 schoenebeck 11 #if WORDS_BIGENDIAN
32 schoenebeck 2 # define LIST_TYPE_3PRG 0x33707267
33     # define LIST_TYPE_3EWL 0x3365776C
34 schoenebeck 929 # define LIST_TYPE_3GRI 0x33677269
35     # define LIST_TYPE_3GNL 0x33676E6C
36 schoenebeck 2584 # define LIST_TYPE_3LS 0x334c5320 // own gig format extension
37     # define LIST_TYPE_RTIS 0x52544953 // own gig format extension
38 schoenebeck 2 # define CHUNK_ID_3GIX 0x33676978
39     # define CHUNK_ID_3EWA 0x33657761
40     # define CHUNK_ID_3LNK 0x336C6E6B
41     # define CHUNK_ID_3EWG 0x33657767
42     # define CHUNK_ID_EWAV 0x65776176
43 schoenebeck 929 # define CHUNK_ID_3GNM 0x33676E6D
44 persson 1199 # define CHUNK_ID_EINF 0x65696E66
45     # define CHUNK_ID_3CRC 0x33637263
46 schoenebeck 2584 # define CHUNK_ID_SCRI 0x53637269 // own gig format extension
47     # define CHUNK_ID_LSNM 0x4c534e4d // own gig format extension
48     # define CHUNK_ID_SCSL 0x5343534c // own gig format extension
49 schoenebeck 2 #else // little endian
50     # define LIST_TYPE_3PRG 0x67727033
51     # define LIST_TYPE_3EWL 0x6C776533
52 schoenebeck 929 # define LIST_TYPE_3GRI 0x69726733
53     # define LIST_TYPE_3GNL 0x6C6E6733
54 schoenebeck 2584 # define LIST_TYPE_3LS 0x20534c33 // own gig format extension
55     # define LIST_TYPE_RTIS 0x53495452 // own gig format extension
56 schoenebeck 2 # define CHUNK_ID_3GIX 0x78696733
57     # define CHUNK_ID_3EWA 0x61776533
58     # define CHUNK_ID_3LNK 0x6B6E6C33
59     # define CHUNK_ID_3EWG 0x67776533
60     # define CHUNK_ID_EWAV 0x76617765
61 schoenebeck 929 # define CHUNK_ID_3GNM 0x6D6E6733
62 persson 1199 # define CHUNK_ID_EINF 0x666E6965
63     # define CHUNK_ID_3CRC 0x63726333
64 schoenebeck 2584 # define CHUNK_ID_SCRI 0x69726353 // own gig format extension
65     # define CHUNK_ID_LSNM 0x4d4e534c // own gig format extension
66     # define CHUNK_ID_SCSL 0x4c534353 // own gig format extension
67 schoenebeck 2 #endif // WORDS_BIGENDIAN
68    
69 schoenebeck 2699 /** Gigasampler/GigaStudio specific classes and definitions */
70 schoenebeck 2 namespace gig {
71    
72     typedef std::string String;
73 schoenebeck 2682 typedef RIFF::progress_t progress_t;
74 schoenebeck 2912 typedef RIFF::file_offset_t file_offset_t;
75 schoenebeck 2
76     /** Lower and upper limit of a range. */
77     struct range_t {
78     uint8_t low; ///< Low value of range.
79     uint8_t high; ///< High value of range.
80     };
81    
82     /** Pointer address and size of a buffer. */
83     struct buffer_t {
84     void* pStart; ///< Points to the beginning of the buffer.
85 schoenebeck 2912 file_offset_t Size; ///< Size of the actual data in the buffer in bytes.
86     file_offset_t NullExtensionSize; ///< The buffer might be bigger than the actual data, if that's the case that unused space at the end of the buffer is filled with NULLs and NullExtensionSize reflects that unused buffer space in bytes. Those NULL extensions are mandatory for differential algorithms that have to take the following data words into account, thus have to access past the buffer's boundary. If you don't know what I'm talking about, just forget this variable. :)
87 schoenebeck 384 buffer_t() {
88     pStart = NULL;
89     Size = 0;
90     NullExtensionSize = 0;
91     }
92 schoenebeck 2 };
93    
94     /** Standard types of sample loops. */
95     typedef enum {
96     loop_type_normal = 0x00000000, ///< Loop forward (normal)
97     loop_type_bidirectional = 0x00000001, ///< Alternating loop (forward/backward, also known as Ping Pong)
98     loop_type_backward = 0x00000002 ///< Loop backward (reverse)
99     } loop_type_t;
100    
101     /** Society of Motion Pictures and Television E time format. */
102     typedef enum {
103     smpte_format_no_offset = 0x00000000, ///< no SMPTE offset
104     smpte_format_24_frames = 0x00000018, ///< 24 frames per second
105     smpte_format_25_frames = 0x00000019, ///< 25 frames per second
106     smpte_format_30_frames_dropping = 0x0000001D, ///< 30 frames per second with frame dropping (30 drop)
107     smpte_format_30_frames = 0x0000001E ///< 30 frames per second
108     } smpte_format_t;
109    
110     /** Defines the shape of a function graph. */
111     typedef enum {
112     curve_type_nonlinear = 0,
113     curve_type_linear = 1,
114     curve_type_special = 2,
115     curve_type_unknown = 0xffffffff
116     } curve_type_t;
117    
118     /** Dimensions allow to bypass one of the following controllers. */
119     typedef enum {
120     dim_bypass_ctrl_none,
121     dim_bypass_ctrl_94, ///< Effect 4 Depth (MIDI Controller 94)
122     dim_bypass_ctrl_95 ///< Effect 5 Depth (MIDI Controller 95)
123     } dim_bypass_ctrl_t;
124    
125     /** Defines how LFO3 is controlled by. */
126     typedef enum {
127     lfo3_ctrl_internal = 0x00, ///< Only internally controlled.
128     lfo3_ctrl_modwheel = 0x01, ///< Only controlled by external modulation wheel.
129     lfo3_ctrl_aftertouch = 0x02, ///< Only controlled by aftertouch controller.
130     lfo3_ctrl_internal_modwheel = 0x03, ///< Controlled internally and by external modulation wheel.
131     lfo3_ctrl_internal_aftertouch = 0x04 ///< Controlled internally and by aftertouch controller.
132     } lfo3_ctrl_t;
133    
134     /** Defines how LFO2 is controlled by. */
135     typedef enum {
136     lfo2_ctrl_internal = 0x00, ///< Only internally controlled.
137     lfo2_ctrl_modwheel = 0x01, ///< Only controlled by external modulation wheel.
138     lfo2_ctrl_foot = 0x02, ///< Only controlled by external foot controller.
139     lfo2_ctrl_internal_modwheel = 0x03, ///< Controlled internally and by external modulation wheel.
140     lfo2_ctrl_internal_foot = 0x04 ///< Controlled internally and by external foot controller.
141     } lfo2_ctrl_t;
142    
143     /** Defines how LFO1 is controlled by. */
144     typedef enum {
145     lfo1_ctrl_internal = 0x00, ///< Only internally controlled.
146     lfo1_ctrl_modwheel = 0x01, ///< Only controlled by external modulation wheel.
147     lfo1_ctrl_breath = 0x02, ///< Only controlled by external breath controller.
148     lfo1_ctrl_internal_modwheel = 0x03, ///< Controlled internally and by external modulation wheel.
149     lfo1_ctrl_internal_breath = 0x04 ///< Controlled internally and by external breath controller.
150     } lfo1_ctrl_t;
151    
152     /** Defines how the filter cutoff frequency is controlled by. */
153     typedef enum {
154     vcf_cutoff_ctrl_none = 0x00,
155 persson 834 vcf_cutoff_ctrl_none2 = 0x01, ///< The difference between none and none2 is unknown
156 schoenebeck 2 vcf_cutoff_ctrl_modwheel = 0x81, ///< Modulation Wheel (MIDI Controller 1)
157     vcf_cutoff_ctrl_effect1 = 0x8c, ///< Effect Controller 1 (Coarse, MIDI Controller 12)
158     vcf_cutoff_ctrl_effect2 = 0x8d, ///< Effect Controller 2 (Coarse, MIDI Controller 13)
159     vcf_cutoff_ctrl_breath = 0x82, ///< Breath Controller (Coarse, MIDI Controller 2)
160     vcf_cutoff_ctrl_foot = 0x84, ///< Foot Pedal (Coarse, MIDI Controller 4)
161     vcf_cutoff_ctrl_sustainpedal = 0xc0, ///< Sustain Pedal (MIDI Controller 64)
162     vcf_cutoff_ctrl_softpedal = 0xc3, ///< Soft Pedal (MIDI Controller 67)
163     vcf_cutoff_ctrl_genpurpose7 = 0xd2, ///< General Purpose Controller 7 (Button, MIDI Controller 82)
164     vcf_cutoff_ctrl_genpurpose8 = 0xd3, ///< General Purpose Controller 8 (Button, MIDI Controller 83)
165     vcf_cutoff_ctrl_aftertouch = 0x80 ///< Key Pressure
166     } vcf_cutoff_ctrl_t;
167    
168     /** Defines how the filter resonance is controlled by. */
169     typedef enum {
170     vcf_res_ctrl_none = 0xffffffff,
171     vcf_res_ctrl_genpurpose3 = 0, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
172     vcf_res_ctrl_genpurpose4 = 1, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
173     vcf_res_ctrl_genpurpose5 = 2, ///< General Purpose Controller 5 (Button, MIDI Controller 80)
174     vcf_res_ctrl_genpurpose6 = 3 ///< General Purpose Controller 6 (Button, MIDI Controller 81)
175     } vcf_res_ctrl_t;
176 schoenebeck 55
177 schoenebeck 36 /**
178     * Defines a controller that has a certain contrained influence on a
179     * particular synthesis parameter (used to define attenuation controller,
180     * EG1 controller and EG2 controller).
181     *
182     * You should use the respective <i>typedef</i> (means either
183     * attenuation_ctrl_t, eg1_ctrl_t or eg2_ctrl_t) in your code!
184     */
185     struct leverage_ctrl_t {
186     typedef enum {
187     type_none = 0x00, ///< No controller defined
188     type_channelaftertouch = 0x2f, ///< Channel Key Pressure
189     type_velocity = 0xff, ///< Key Velocity
190     type_controlchange = 0xfe ///< Ordinary MIDI control change controller, see field 'controller_number'
191     } type_t;
192 schoenebeck 55
193 schoenebeck 36 type_t type; ///< Controller type
194     uint controller_number; ///< MIDI controller number if this controller is a control change controller, 0 otherwise
195 schoenebeck 3138
196     void serialize(Serialization::Archive* archive);
197 schoenebeck 36 };
198 schoenebeck 55
199 schoenebeck 36 /**
200     * Defines controller influencing attenuation.
201     *
202     * @see leverage_ctrl_t
203     */
204     typedef leverage_ctrl_t attenuation_ctrl_t;
205 schoenebeck 55
206 schoenebeck 36 /**
207     * Defines controller influencing envelope generator 1.
208     *
209     * @see leverage_ctrl_t
210     */
211     typedef leverage_ctrl_t eg1_ctrl_t;
212 schoenebeck 55
213 schoenebeck 36 /**
214     * Defines controller influencing envelope generator 2.
215     *
216     * @see leverage_ctrl_t
217     */
218     typedef leverage_ctrl_t eg2_ctrl_t;
219 schoenebeck 2
220     /**
221     * Defines the type of dimension, that is how the dimension zones (and
222     * thus how the dimension regions are selected by. The number of
223     * dimension zones is always a power of two. All dimensions can have up
224     * to 32 zones (except the layer dimension with only up to 8 zones and
225     * the samplechannel dimension which currently allows only 2 zones).
226     */
227     typedef enum {
228     dimension_none = 0x00, ///< Dimension not in use.
229     dimension_samplechannel = 0x80, ///< If used sample has more than one channel (thus is not mono).
230     dimension_layer = 0x81, ///< For layering of up to 8 instruments (and eventually crossfading of 2 or 4 layers).
231 persson 1076 dimension_velocity = 0x82, ///< Key Velocity (this is the only dimension in gig2 where the ranges can exactly be defined).
232 schoenebeck 2 dimension_channelaftertouch = 0x83, ///< Channel Key Pressure
233     dimension_releasetrigger = 0x84, ///< Special dimension for triggering samples on releasing a key.
234 schoenebeck 353 dimension_keyboard = 0x85, ///< Dimension for keyswitching
235 persson 437 dimension_roundrobin = 0x86, ///< Different samples triggered each time a note is played, dimension regions selected in sequence
236     dimension_random = 0x87, ///< Different samples triggered each time a note is played, random order
237 persson 1076 dimension_smartmidi = 0x88, ///< For MIDI tools like legato and repetition mode
238     dimension_roundrobinkeyboard = 0x89, ///< Different samples triggered each time a note is played, any key advances the counter
239 schoenebeck 2 dimension_modwheel = 0x01, ///< Modulation Wheel (MIDI Controller 1)
240     dimension_breath = 0x02, ///< Breath Controller (Coarse, MIDI Controller 2)
241     dimension_foot = 0x04, ///< Foot Pedal (Coarse, MIDI Controller 4)
242     dimension_portamentotime = 0x05, ///< Portamento Time (Coarse, MIDI Controller 5)
243     dimension_effect1 = 0x0c, ///< Effect Controller 1 (Coarse, MIDI Controller 12)
244     dimension_effect2 = 0x0d, ///< Effect Controller 2 (Coarse, MIDI Controller 13)
245     dimension_genpurpose1 = 0x10, ///< General Purpose Controller 1 (Slider, MIDI Controller 16)
246     dimension_genpurpose2 = 0x11, ///< General Purpose Controller 2 (Slider, MIDI Controller 17)
247     dimension_genpurpose3 = 0x12, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
248     dimension_genpurpose4 = 0x13, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
249     dimension_sustainpedal = 0x40, ///< Sustain Pedal (MIDI Controller 64)
250     dimension_portamento = 0x41, ///< Portamento (MIDI Controller 65)
251     dimension_sostenutopedal = 0x42, ///< Sostenuto Pedal (MIDI Controller 66)
252     dimension_softpedal = 0x43, ///< Soft Pedal (MIDI Controller 67)
253     dimension_genpurpose5 = 0x30, ///< General Purpose Controller 5 (Button, MIDI Controller 80)
254     dimension_genpurpose6 = 0x31, ///< General Purpose Controller 6 (Button, MIDI Controller 81)
255     dimension_genpurpose7 = 0x32, ///< General Purpose Controller 7 (Button, MIDI Controller 82)
256     dimension_genpurpose8 = 0x33, ///< General Purpose Controller 8 (Button, MIDI Controller 83)
257     dimension_effect1depth = 0x5b, ///< Effect 1 Depth (MIDI Controller 91)
258     dimension_effect2depth = 0x5c, ///< Effect 2 Depth (MIDI Controller 92)
259     dimension_effect3depth = 0x5d, ///< Effect 3 Depth (MIDI Controller 93)
260     dimension_effect4depth = 0x5e, ///< Effect 4 Depth (MIDI Controller 94)
261     dimension_effect5depth = 0x5f ///< Effect 5 Depth (MIDI Controller 95)
262     } dimension_t;
263    
264     /**
265     * Intended for internal usage: will be used to convert a dimension value
266     * into the corresponding dimension bit number.
267     */
268     typedef enum {
269 persson 858 split_type_normal, ///< dimension value between 0-127
270 schoenebeck 2 split_type_bit ///< dimension values are already the sought bit number
271     } split_type_t;
272    
273     /** General dimension definition. */
274     struct dimension_def_t {
275     dimension_t dimension; ///< Specifies which source (usually a MIDI controller) is associated with the dimension.
276     uint8_t bits; ///< Number of "bits" (1 bit = 2 splits/zones, 2 bit = 4 splits/zones, 3 bit = 8 splits/zones,...).
277     uint8_t zones; ///< Number of zones the dimension has.
278     split_type_t split_type; ///< Intended for internal usage: will be used to convert a dimension value into the corresponding dimension bit number.
279 persson 774 float zone_size; ///< Intended for internal usage: reflects the size of each zone (128/zones) for normal split types only, 0 otherwise.
280 schoenebeck 2 };
281    
282     /** Defines which frequencies are filtered by the VCF. */
283     typedef enum {
284     vcf_type_lowpass = 0x00,
285     vcf_type_lowpassturbo = 0xff, ///< More poles than normal lowpass
286     vcf_type_bandpass = 0x01,
287     vcf_type_highpass = 0x02,
288     vcf_type_bandreject = 0x03
289     } vcf_type_t;
290    
291 schoenebeck 345 /**
292     * Defines the envelope of a crossfade.
293     *
294     * Note: The default value for crossfade points is 0,0,0,0. Layers with
295     * such a default value should be treated as if they would not have a
296 schoenebeck 353 * crossfade.
297 schoenebeck 345 */
298 schoenebeck 2 struct crossfade_t {
299     #if WORDS_BIGENDIAN
300 schoenebeck 345 uint8_t out_end; ///< End postition of fade out.
301     uint8_t out_start; ///< Start position of fade out.
302     uint8_t in_end; ///< End position of fade in.
303 schoenebeck 2 uint8_t in_start; ///< Start position of fade in.
304 schoenebeck 345 #else // little endian
305     uint8_t in_start; ///< Start position of fade in.
306 schoenebeck 2 uint8_t in_end; ///< End position of fade in.
307     uint8_t out_start; ///< Start position of fade out.
308     uint8_t out_end; ///< End postition of fade out.
309     #endif // WORDS_BIGENDIAN
310 schoenebeck 3138
311     void serialize(Serialization::Archive* archive);
312 schoenebeck 2 };
313    
314 schoenebeck 24 /** Reflects the current playback state for a sample. */
315     struct playback_state_t {
316 schoenebeck 2912 file_offset_t position; ///< Current position within the sample.
317 schoenebeck 24 bool reverse; ///< If playback direction is currently backwards (in case there is a pingpong or reverse loop defined).
318 schoenebeck 2912 file_offset_t loop_cycles_left; ///< How many times the loop has still to be passed, this value will be decremented with each loop cycle.
319 schoenebeck 24 };
320    
321 schoenebeck 2 // just symbol prototyping
322     class File;
323     class Instrument;
324     class Sample;
325 capela 310 class Region;
326 schoenebeck 929 class Group;
327 schoenebeck 2584 class Script;
328     class ScriptGroup;
329 schoenebeck 2
330 schoenebeck 2699 /** @brief Encapsulates articulation informations of a dimension region.
331 schoenebeck 2 *
332 schoenebeck 2699 * This is the most important data object of the Gigasampler / GigaStudio
333     * format. A DimensionRegion provides the link to the sample to be played
334     * and all required articulation informations to be interpreted for playing
335     * back the sample and processing it appropriately by the sampler software.
336     * Every Region of a Gigasampler Instrument has at least one dimension
337     * region (exactly then when the Region has no dimension defined). Many
338     * Regions though provide more than one DimensionRegion, which reflect
339     * different playing "cases". For example a different sample might be played
340     * if a certain pedal is pressed down, or if the note was triggered with
341     * different velocity.
342 schoenebeck 2 *
343 schoenebeck 2699 * One instance of a DimensionRegion reflects exactly one particular case
344     * while playing an instrument (for instance "note between C3 and E3 was
345     * triggered AND note on velocity was between 20 and 42 AND modulation wheel
346     * controller is between 80 and 127). The DimensionRegion defines what to do
347     * under that one particular case, that is which sample to play back and how
348     * to play that sample back exactly and how to process it. So a
349     * DimensionRegion object is always linked to exactly one sample. It may
350     * however also link to no sample at all, for defining a "silence" case
351     * where nothing shall be played (for example when note on velocity was
352     * below 6).
353 schoenebeck 2 *
354 schoenebeck 2699 * Note that a DimensionRegion object only defines "what to do", but it does
355     * not define "when to do it". To actually resolve which DimensionRegion to
356     * pick under which situation, you need to refer to the DimensionRegions'
357     * parent Region object. The Region object contains the necessary
358     * "Dimension" definitions, which in turn define which DimensionRegion is
359     * associated with which playing case exactly.
360     *
361     * The Gigasampler/GigaStudio format defines 3 Envelope Generators and 3
362     * Low Frequency Oscillators:
363     *
364 schoenebeck 2 * - EG1 and LFO1, both controlling sample amplitude
365     * - EG2 and LFO2, both controlling filter cutoff frequency
366     * - EG3 and LFO3, both controlling sample pitch
367 schoenebeck 2699 *
368     * Since the gig format was designed as extension to the DLS file format,
369     * this class is derived from the DLS::Sampler class. So also refer to
370     * DLS::Sampler for additional informations, class attributes and methods.
371 schoenebeck 2 */
372     class DimensionRegion : protected DLS::Sampler {
373     public:
374 schoenebeck 2543 uint8_t VelocityUpperLimit; ///< Defines the upper velocity value limit of a velocity split (only if an user defined limit was set, thus a value not equal to 128/NumberOfSplits, else this value is 0). Only for gig2, for gig3 and above the DimensionUpperLimits are used instead.
375 schoenebeck 2 Sample* pSample; ///< Points to the Sample which is assigned to the dimension region.
376     // Sample Amplitude EG/LFO
377     uint16_t EG1PreAttack; ///< Preattack value of the sample amplitude EG (0 - 1000 permille).
378     double EG1Attack; ///< Attack time of the sample amplitude EG (0.000 - 60.000s).
379     double EG1Decay1; ///< Decay time of the sample amplitude EG (0.000 - 60.000s).
380     double EG1Decay2; ///< Only if <i>EG1InfiniteSustain == false</i>: 2nd decay stage time of the sample amplitude EG (0.000 - 60.000s).
381     bool EG1InfiniteSustain; ///< If <i>true</i>, instead of going into Decay2 phase, Decay1 level will be hold until note will be released.
382     uint16_t EG1Sustain; ///< Sustain value of the sample amplitude EG (0 - 1000 permille).
383     double EG1Release; ///< Release time of the sample amplitude EG (0.000 - 60.000s).
384     bool EG1Hold; ///< If <i>true</i>, Decay1 stage should be postponed until the sample reached the sample loop start.
385     eg1_ctrl_t EG1Controller; ///< MIDI Controller which has influence on sample amplitude EG parameters (attack, decay, release).
386     bool EG1ControllerInvert; ///< Invert values coming from defined EG1 controller.
387 schoenebeck 36 uint8_t EG1ControllerAttackInfluence; ///< Amount EG1 Controller has influence on the EG1 Attack time (0 - 3, where 0 means off).
388     uint8_t EG1ControllerDecayInfluence; ///< Amount EG1 Controller has influence on the EG1 Decay time (0 - 3, where 0 means off).
389     uint8_t EG1ControllerReleaseInfluence; ///< Amount EG1 Controller has influence on the EG1 Release time (0 - 3, where 0 means off).
390 schoenebeck 2 double LFO1Frequency; ///< Frequency of the sample amplitude LFO (0.10 - 10.00 Hz).
391     uint16_t LFO1InternalDepth; ///< Firm pitch of the sample amplitude LFO (0 - 1200 cents).
392     uint16_t LFO1ControlDepth; ///< Controller depth influencing sample amplitude LFO pitch (0 - 1200 cents).
393     lfo1_ctrl_t LFO1Controller; ///< MIDI Controller which controls sample amplitude LFO.
394     bool LFO1FlipPhase; ///< Inverts phase of the sample amplitude LFO wave.
395     bool LFO1Sync; ///< If set to <i>true</i> only one LFO should be used for all voices.
396     // Filter Cutoff Frequency EG/LFO
397     uint16_t EG2PreAttack; ///< Preattack value of the filter cutoff EG (0 - 1000 permille).
398     double EG2Attack; ///< Attack time of the filter cutoff EG (0.000 - 60.000s).
399     double EG2Decay1; ///< Decay time of the filter cutoff EG (0.000 - 60.000s).
400     double EG2Decay2; ///< Only if <i>EG2InfiniteSustain == false</i>: 2nd stage decay time of the filter cutoff EG (0.000 - 60.000s).
401     bool EG2InfiniteSustain; ///< If <i>true</i>, instead of going into Decay2 phase, Decay1 level will be hold until note will be released.
402     uint16_t EG2Sustain; ///< Sustain value of the filter cutoff EG (0 - 1000 permille).
403     double EG2Release; ///< Release time of the filter cutoff EG (0.000 - 60.000s).
404     eg2_ctrl_t EG2Controller; ///< MIDI Controller which has influence on filter cutoff EG parameters (attack, decay, release).
405     bool EG2ControllerInvert; ///< Invert values coming from defined EG2 controller.
406 schoenebeck 36 uint8_t EG2ControllerAttackInfluence; ///< Amount EG2 Controller has influence on the EG2 Attack time (0 - 3, where 0 means off).
407     uint8_t EG2ControllerDecayInfluence; ///< Amount EG2 Controller has influence on the EG2 Decay time (0 - 3, where 0 means off).
408     uint8_t EG2ControllerReleaseInfluence; ///< Amount EG2 Controller has influence on the EG2 Release time (0 - 3, where 0 means off).
409 schoenebeck 2 double LFO2Frequency; ///< Frequency of the filter cutoff LFO (0.10 - 10.00 Hz).
410     uint16_t LFO2InternalDepth; ///< Firm pitch of the filter cutoff LFO (0 - 1200 cents).
411     uint16_t LFO2ControlDepth; ///< Controller depth influencing filter cutoff LFO pitch (0 - 1200).
412     lfo2_ctrl_t LFO2Controller; ///< MIDI Controlle which controls the filter cutoff LFO.
413     bool LFO2FlipPhase; ///< Inverts phase of the filter cutoff LFO wave.
414     bool LFO2Sync; ///< If set to <i>true</i> only one LFO should be used for all voices.
415     // Sample Pitch EG/LFO
416     double EG3Attack; ///< Attack time of the sample pitch EG (0.000 - 10.000s).
417     int16_t EG3Depth; ///< Depth of the sample pitch EG (-1200 - +1200).
418     double LFO3Frequency; ///< Frequency of the sample pitch LFO (0.10 - 10.00 Hz).
419     int16_t LFO3InternalDepth; ///< Firm depth of the sample pitch LFO (-1200 - +1200 cents).
420     int16_t LFO3ControlDepth; ///< Controller depth of the sample pitch LFO (-1200 - +1200 cents).
421     lfo3_ctrl_t LFO3Controller; ///< MIDI Controller which controls the sample pitch LFO.
422     bool LFO3Sync; ///< If set to <i>true</i> only one LFO should be used for all voices.
423     // Filter
424     bool VCFEnabled; ///< If filter should be used.
425     vcf_type_t VCFType; ///< Defines the general filter characteristic (lowpass, highpass, bandpass, etc.).
426 schoenebeck 1358 vcf_cutoff_ctrl_t VCFCutoffController; ///< Specifies which external controller has influence on the filter cutoff frequency. @deprecated Don't alter directly, use SetVCFCutoffController() instead!
427 persson 728 bool VCFCutoffControllerInvert; ///< Inverts values coming from the defined cutoff controller
428 schoenebeck 2 uint8_t VCFCutoff; ///< Max. cutoff frequency.
429 schoenebeck 1358 curve_type_t VCFVelocityCurve; ///< Defines a transformation curve for the incoming velocity values, affecting the VCF. @deprecated Don't alter directly, use SetVCFVelocityCurve() instead!
430     uint8_t VCFVelocityScale; ///< (0-127) Amount velocity controls VCF cutoff frequency (only if no other VCF cutoff controller is defined, otherwise this is the minimum cutoff). @deprecated Don't alter directly, use SetVCFVelocityScale() instead!
431     uint8_t VCFVelocityDynamicRange; ///< 0x04 = lowest, 0x00 = highest . @deprecated Don't alter directly, use SetVCFVelocityDynamicRange() instead!
432 schoenebeck 2 uint8_t VCFResonance; ///< Firm internal filter resonance weight.
433     bool VCFResonanceDynamic; ///< If <i>true</i>: Increases the resonance Q according to changes of controllers that actually control the VCF cutoff frequency (EG2, ext. VCF MIDI controller).
434     vcf_res_ctrl_t VCFResonanceController; ///< Specifies which external controller has influence on the filter resonance Q.
435     bool VCFKeyboardTracking; ///< If <i>true</i>: VCF cutoff frequence will be dependend to the note key position relative to the defined breakpoint value.
436     uint8_t VCFKeyboardTrackingBreakpoint; ///< See VCFKeyboardTracking (0 - 127).
437     // Key Velocity Transformations
438 schoenebeck 1358 curve_type_t VelocityResponseCurve; ///< Defines a transformation curve to the incoming velocity values affecting amplitude (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseCurve() instead!
439     uint8_t VelocityResponseDepth; ///< Dynamic range of velocity affecting amplitude (0 - 4) (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseDepth() instead!
440     uint8_t VelocityResponseCurveScaling; ///< 0 - 127 (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseCurveScaling() instead!
441     curve_type_t ReleaseVelocityResponseCurve; ///< Defines a transformation curve to the incoming release veloctiy values affecting envelope times. @deprecated Don't alter directly, use SetReleaseVelocityResponseCurve() instead!
442     uint8_t ReleaseVelocityResponseDepth; ///< Dynamic range of release velocity affecting envelope time (0 - 4). @deprecated Don't alter directly, use SetReleaseVelocityResponseDepth() instead!
443 schoenebeck 2 uint8_t ReleaseTriggerDecay; ///< 0 - 8
444     // Mix / Layer
445     crossfade_t Crossfade;
446     bool PitchTrack; ///< If <i>true</i>: sample will be pitched according to the key position (this will be disabled for drums for example).
447     dim_bypass_ctrl_t DimensionBypass; ///< If defined, the MIDI controller can switch on/off the dimension in realtime.
448     int8_t Pan; ///< Panorama / Balance (-64..0..63 <-> left..middle..right)
449     bool SelfMask; ///< If <i>true</i>: high velocity notes will stop low velocity notes at the same note, with that you can save voices that wouldn't be audible anyway.
450 schoenebeck 36 attenuation_ctrl_t AttenuationController; ///< MIDI Controller which has influence on the volume level of the sample (or entire sample group).
451     bool InvertAttenuationController; ///< Inverts the values coming from the defined Attenuation Controller.
452     uint8_t AttenuationControllerThreshold;///< 0-127
453 schoenebeck 2 uint8_t ChannelOffset; ///< Audio output where the audio signal of the dimension region should be routed to (0 - 9).
454     bool SustainDefeat; ///< If <i>true</i>: Sustain pedal will not hold a note.
455     bool MSDecode; ///< Gigastudio flag: defines if Mid Side Recordings should be decoded.
456     uint16_t SampleStartOffset; ///< Number of samples the sample start should be moved (0 - 2000).
457 persson 406 double SampleAttenuation; ///< Sample volume (calculated from DLS::Sampler::Gain)
458 schoenebeck 2547 uint8_t DimensionUpperLimits[8]; ///< gig3: defines the upper limit of the dimension values for this dimension region. In case you wondered why this is defined on DimensionRegion level and not on Region level: the zone sizes (upper limits) of the velocity dimension can indeed differ in the individual dimension regions, depending on which zones of the other dimension types are currently selected. So this is exceptional for the velocity dimension only. All other dimension types have the same dimension zone sizes for every single DimensionRegion (of the sample Region).
459 persson 406
460 schoenebeck 2 // derived attributes from DLS::Sampler
461 persson 2334 using DLS::Sampler::UnityNote;
462     using DLS::Sampler::FineTune;
463     using DLS::Sampler::Gain;
464     using DLS::Sampler::SampleLoops;
465     using DLS::Sampler::pSampleLoops;
466 schoenebeck 2
467 schoenebeck 809 // own methods
468 schoenebeck 16 double GetVelocityAttenuation(uint8_t MIDIKeyVelocity);
469 persson 613 double GetVelocityRelease(uint8_t MIDIKeyVelocity);
470 persson 728 double GetVelocityCutoff(uint8_t MIDIKeyVelocity);
471 schoenebeck 1358 void SetVelocityResponseCurve(curve_type_t curve);
472     void SetVelocityResponseDepth(uint8_t depth);
473     void SetVelocityResponseCurveScaling(uint8_t scaling);
474     void SetReleaseVelocityResponseCurve(curve_type_t curve);
475     void SetReleaseVelocityResponseDepth(uint8_t depth);
476     void SetVCFCutoffController(vcf_cutoff_ctrl_t controller);
477     void SetVCFVelocityCurve(curve_type_t curve);
478     void SetVCFVelocityDynamicRange(uint8_t range);
479     void SetVCFVelocityScale(uint8_t scaling);
480 schoenebeck 1316 Region* GetParent() const;
481 schoenebeck 1155 // derived methods
482 persson 2334 using DLS::Sampler::AddSampleLoop;
483     using DLS::Sampler::DeleteSampleLoop;
484 schoenebeck 809 // overridden methods
485 schoenebeck 1358 virtual void SetGain(int32_t gain);
486 schoenebeck 2682 virtual void UpdateChunks(progress_t* pProgress);
487 schoenebeck 2394 virtual void CopyAssign(const DimensionRegion* orig);
488 schoenebeck 16 protected:
489 persson 858 uint8_t* VelocityTable; ///< For velocity dimensions with custom defined zone ranges only: used for fast converting from velocity MIDI value to dimension bit number.
490 schoenebeck 1316 DimensionRegion(Region* pParent, RIFF::List* _3ewl);
491 persson 1301 DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src);
492 schoenebeck 16 ~DimensionRegion();
493 schoenebeck 2482 void CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples);
494 schoenebeck 3138 void serialize(Serialization::Archive* archive);
495 schoenebeck 16 friend class Region;
496 schoenebeck 3138 friend class Serialization::Archive;
497 schoenebeck 16 private:
498 schoenebeck 36 typedef enum { ///< Used to decode attenuation, EG1 and EG2 controller
499 schoenebeck 2540 // official leverage controllers as they were defined in the original Gigasampler/GigaStudio format:
500 schoenebeck 36 _lev_ctrl_none = 0x00,
501     _lev_ctrl_modwheel = 0x03, ///< Modulation Wheel (MIDI Controller 1)
502     _lev_ctrl_breath = 0x05, ///< Breath Controller (Coarse, MIDI Controller 2)
503     _lev_ctrl_foot = 0x07, ///< Foot Pedal (Coarse, MIDI Controller 4)
504     _lev_ctrl_effect1 = 0x0d, ///< Effect Controller 1 (Coarse, MIDI Controller 12)
505     _lev_ctrl_effect2 = 0x0f, ///< Effect Controller 2 (Coarse, MIDI Controller 13)
506     _lev_ctrl_genpurpose1 = 0x11, ///< General Purpose Controller 1 (Slider, MIDI Controller 16)
507     _lev_ctrl_genpurpose2 = 0x13, ///< General Purpose Controller 2 (Slider, MIDI Controller 17)
508     _lev_ctrl_genpurpose3 = 0x15, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
509     _lev_ctrl_genpurpose4 = 0x17, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
510     _lev_ctrl_portamentotime = 0x0b, ///< Portamento Time (Coarse, MIDI Controller 5)
511     _lev_ctrl_sustainpedal = 0x01, ///< Sustain Pedal (MIDI Controller 64)
512     _lev_ctrl_portamento = 0x19, ///< Portamento (MIDI Controller 65)
513     _lev_ctrl_sostenutopedal = 0x1b, ///< Sostenuto Pedal (MIDI Controller 66)
514     _lev_ctrl_softpedal = 0x09, ///< Soft Pedal (MIDI Controller 67)
515     _lev_ctrl_genpurpose5 = 0x1d, ///< General Purpose Controller 5 (Button, MIDI Controller 80)
516     _lev_ctrl_genpurpose6 = 0x1f, ///< General Purpose Controller 6 (Button, MIDI Controller 81)
517     _lev_ctrl_genpurpose7 = 0x21, ///< General Purpose Controller 7 (Button, MIDI Controller 82)
518     _lev_ctrl_genpurpose8 = 0x23, ///< General Purpose Controller 8 (Button, MIDI Controller 83)
519     _lev_ctrl_effect1depth = 0x25, ///< Effect 1 Depth (MIDI Controller 91)
520     _lev_ctrl_effect2depth = 0x27, ///< Effect 2 Depth (MIDI Controller 92)
521     _lev_ctrl_effect3depth = 0x29, ///< Effect 3 Depth (MIDI Controller 93)
522     _lev_ctrl_effect4depth = 0x2b, ///< Effect 4 Depth (MIDI Controller 94)
523     _lev_ctrl_effect5depth = 0x2d, ///< Effect 5 Depth (MIDI Controller 95)
524     _lev_ctrl_channelaftertouch = 0x2f, ///< Channel Key Pressure
525 schoenebeck 2540 _lev_ctrl_velocity = 0xff, ///< Key Velocity
526    
527     // format extension (these controllers are so far only supported by LinuxSampler & gigedit) they will *NOT* work with Gigasampler/GigaStudio !
528     // (the assigned values here are their official MIDI CC number plus the highest bit set):
529     _lev_ctrl_CC3_EXT = 0x83, ///< MIDI Controller 3 [gig format extension]
530    
531     _lev_ctrl_CC6_EXT = 0x86, ///< Data Entry MSB (MIDI Controller 6) [gig format extension]
532     _lev_ctrl_CC7_EXT = 0x87, ///< Channel Volume (MIDI Controller 7) [gig format extension]
533     _lev_ctrl_CC8_EXT = 0x88, ///< Balance (MIDI Controller 8) [gig format extension]
534     _lev_ctrl_CC9_EXT = 0x89, ///< MIDI Controller 9 [gig format extension]
535     _lev_ctrl_CC10_EXT = 0x8a, ///< Pan (MIDI Controller 10) [gig format extension]
536     _lev_ctrl_CC11_EXT = 0x8b, ///< Expression Controller (MIDI Controller 11) [gig format extension]
537    
538     _lev_ctrl_CC14_EXT = 0x8e, ///< MIDI Controller 14 [gig format extension]
539     _lev_ctrl_CC15_EXT = 0x8f, ///< MIDI Controller 15 [gig format extension]
540    
541     _lev_ctrl_CC20_EXT = 0x94, ///< MIDI Controller 20 [gig format extension]
542     _lev_ctrl_CC21_EXT = 0x95, ///< MIDI Controller 21 [gig format extension]
543     _lev_ctrl_CC22_EXT = 0x96, ///< MIDI Controller 22 [gig format extension]
544     _lev_ctrl_CC23_EXT = 0x97, ///< MIDI Controller 23 [gig format extension]
545     _lev_ctrl_CC24_EXT = 0x98, ///< MIDI Controller 24 [gig format extension]
546     _lev_ctrl_CC25_EXT = 0x99, ///< MIDI Controller 25 [gig format extension]
547     _lev_ctrl_CC26_EXT = 0x9a, ///< MIDI Controller 26 [gig format extension]
548     _lev_ctrl_CC27_EXT = 0x9b, ///< MIDI Controller 27 [gig format extension]
549     _lev_ctrl_CC28_EXT = 0x9c, ///< MIDI Controller 28 [gig format extension]
550     _lev_ctrl_CC29_EXT = 0x9d, ///< MIDI Controller 29 [gig format extension]
551     _lev_ctrl_CC30_EXT = 0x9e, ///< MIDI Controller 30 [gig format extension]
552     _lev_ctrl_CC31_EXT = 0x9f, ///< MIDI Controller 31 [gig format extension]
553    
554     _lev_ctrl_CC68_EXT = 0xc4, ///< Legato Footswitch (MIDI Controller 68) [gig format extension]
555     _lev_ctrl_CC69_EXT = 0xc5, ///< Hold 2 (MIDI Controller 69) [gig format extension]
556     _lev_ctrl_CC70_EXT = 0xc6, ///< Sound Ctrl. 1 - Sound Variation (MIDI Controller 70) [gig format extension]
557     _lev_ctrl_CC71_EXT = 0xc7, ///< Sound Ctrl. 2 - Timbre (MIDI Controller 71) [gig format extension]
558     _lev_ctrl_CC72_EXT = 0xc8, ///< Sound Ctrl. 3 - Release Time (MIDI Controller 72) [gig format extension]
559     _lev_ctrl_CC73_EXT = 0xc9, ///< Sound Ctrl. 4 - Attack Time (MIDI Controller 73) [gig format extension]
560     _lev_ctrl_CC74_EXT = 0xca, ///< Sound Ctrl. 5 - Brightness (MIDI Controller 74) [gig format extension]
561     _lev_ctrl_CC75_EXT = 0xcb, ///< Sound Ctrl. 6 - Decay Time (MIDI Controller 75) [gig format extension]
562     _lev_ctrl_CC76_EXT = 0xcc, ///< Sound Ctrl. 7 - Vibrato Rate (MIDI Controller 76) [gig format extension]
563     _lev_ctrl_CC77_EXT = 0xcd, ///< Sound Ctrl. 8 - Vibrato Depth (MIDI Controller 77) [gig format extension]
564     _lev_ctrl_CC78_EXT = 0xce, ///< Sound Ctrl. 9 - Vibrato Delay (MIDI Controller 78) [gig format extension]
565     _lev_ctrl_CC79_EXT = 0xcf, ///< Sound Ctrl. 10 (MIDI Controller 79) [gig format extension]
566    
567     _lev_ctrl_CC84_EXT = 0xd4, ///< Portamento Control (MIDI Controller 84) [gig format extension]
568     _lev_ctrl_CC85_EXT = 0xd5, ///< MIDI Controller 85 [gig format extension]
569     _lev_ctrl_CC86_EXT = 0xd6, ///< MIDI Controller 86 [gig format extension]
570     _lev_ctrl_CC87_EXT = 0xd7, ///< MIDI Controller 87 [gig format extension]
571    
572     _lev_ctrl_CC89_EXT = 0xd9, ///< MIDI Controller 89 [gig format extension]
573     _lev_ctrl_CC90_EXT = 0xda, ///< MIDI Controller 90 [gig format extension]
574    
575     _lev_ctrl_CC96_EXT = 0xe0, ///< Data Increment (MIDI Controller 96) [gig format extension]
576     _lev_ctrl_CC97_EXT = 0xe1, ///< Data Decrement (MIDI Controller 97) [gig format extension]
577    
578     _lev_ctrl_CC102_EXT = 0xe6, ///< MIDI Controller 102 [gig format extension]
579     _lev_ctrl_CC103_EXT = 0xe7, ///< MIDI Controller 103 [gig format extension]
580     _lev_ctrl_CC104_EXT = 0xe8, ///< MIDI Controller 104 [gig format extension]
581     _lev_ctrl_CC105_EXT = 0xe9, ///< MIDI Controller 105 [gig format extension]
582     _lev_ctrl_CC106_EXT = 0xea, ///< MIDI Controller 106 [gig format extension]
583     _lev_ctrl_CC107_EXT = 0xeb, ///< MIDI Controller 107 [gig format extension]
584     _lev_ctrl_CC108_EXT = 0xec, ///< MIDI Controller 108 [gig format extension]
585     _lev_ctrl_CC109_EXT = 0xed, ///< MIDI Controller 109 [gig format extension]
586     _lev_ctrl_CC110_EXT = 0xee, ///< MIDI Controller 110 [gig format extension]
587     _lev_ctrl_CC111_EXT = 0xef, ///< MIDI Controller 111 [gig format extension]
588     _lev_ctrl_CC112_EXT = 0xf0, ///< MIDI Controller 112 [gig format extension]
589     _lev_ctrl_CC113_EXT = 0xf1, ///< MIDI Controller 113 [gig format extension]
590     _lev_ctrl_CC114_EXT = 0xf2, ///< MIDI Controller 114 [gig format extension]
591     _lev_ctrl_CC115_EXT = 0xf3, ///< MIDI Controller 115 [gig format extension]
592     _lev_ctrl_CC116_EXT = 0xf4, ///< MIDI Controller 116 [gig format extension]
593     _lev_ctrl_CC117_EXT = 0xf5, ///< MIDI Controller 117 [gig format extension]
594     _lev_ctrl_CC118_EXT = 0xf6, ///< MIDI Controller 118 [gig format extension]
595     _lev_ctrl_CC119_EXT = 0xf7 ///< MIDI Controller 119 [gig format extension]
596 schoenebeck 55 } _lev_ctrl_t;
597 schoenebeck 16 typedef std::map<uint32_t, double*> VelocityTableMap;
598    
599 schoenebeck 2922 static size_t Instances; ///< Number of DimensionRegion instances.
600 schoenebeck 16 static VelocityTableMap* pVelocityTables; ///< Contains the tables corresponding to the various velocity parameters (VelocityResponseCurve and VelocityResponseDepth).
601     double* pVelocityAttenuationTable; ///< Points to the velocity table corresponding to the velocity parameters of this DimensionRegion.
602 persson 613 double* pVelocityReleaseTable; ///< Points to the velocity table corresponding to the release velocity parameters of this DimensionRegion
603 persson 728 double* pVelocityCutoffTable; ///< Points to the velocity table corresponding to the filter velocity parameters of this DimensionRegion
604 schoenebeck 1316 Region* pRegion;
605 schoenebeck 55
606 schoenebeck 36 leverage_ctrl_t DecodeLeverageController(_lev_ctrl_t EncodedController);
607 schoenebeck 809 _lev_ctrl_t EncodeLeverageController(leverage_ctrl_t DecodedController);
608 schoenebeck 1358 double* GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth);
609     double* GetCutoffVelocityTable(curve_type_t vcfVelocityCurve, uint8_t vcfVelocityDynamicRange, uint8_t vcfVelocityScale, vcf_cutoff_ctrl_t vcfCutoffController);
610 persson 613 double* GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);
611 schoenebeck 308 double* CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);
612 schoenebeck 2 };
613    
614 schoenebeck 2699 /** @brief Encapsulates sample waves of Gigasampler/GigaStudio files used for playback.
615 schoenebeck 809 *
616 schoenebeck 2699 * This class provides access to the actual audio sample data of a
617     * Gigasampler/GigaStudio file. Along to the actual sample data, it also
618     * provides access to the sample's meta informations like bit depth,
619     * sample rate, encoding type, but also loop informations. The latter may be
620     * used by instruments for resembling sounds with arbitary note lengths.
621     *
622 schoenebeck 809 * In case you created a new sample with File::AddSample(), you should
623     * first update all attributes with the desired meta informations
624     * (amount of channels, bit depth, sample rate, etc.), then call
625     * Resize() with the desired sample size, followed by File::Save(), this
626     * will create the mandatory RIFF chunk which will hold the sample wave
627     * data and / or resize the file so you will be able to Write() the
628     * sample data directly to disk.
629 schoenebeck 1154 *
630     * @e Caution: for gig synthesis, most looping relevant information are
631     * retrieved from the respective DimensionRegon instead from the Sample
632     * itself. This was made for allowing different loop definitions for the
633     * same sample under different conditions.
634 schoenebeck 2699 *
635     * Since the gig format was designed as extension to the DLS file format,
636     * this class is derived from the DLS::Sample class. So also refer to
637     * DLS::Sample for additional informations, class attributes and methods.
638 schoenebeck 809 */
639 schoenebeck 2 class Sample : public DLS::Sample {
640     public:
641     uint32_t Manufacturer; ///< Specifies the MIDI Manufacturer's Association (MMA) Manufacturer code for the sampler intended to receive this file's waveform. If no particular manufacturer is to be specified, a value of 0 should be used.
642     uint32_t Product; ///< Specifies the MIDI model ID defined by the manufacturer corresponding to the Manufacturer field. If no particular manufacturer's product is to be specified, a value of 0 should be used.
643 schoenebeck 809 uint32_t SamplePeriod; ///< Specifies the duration of time that passes during the playback of one sample in nanoseconds (normally equal to 1 / Samples Per Second, where Samples Per Second is the value found in the format chunk), don't bother to update this attribute, it won't be saved.
644 schoenebeck 2 uint32_t MIDIUnityNote; ///< Specifies the musical note at which the sample will be played at it's original sample rate.
645 schoenebeck 21 uint32_t FineTune; ///< Specifies the fraction of a semitone up from the specified MIDI unity note field. A value of 0x80000000 means 1/2 semitone (50 cents) and a value of 0x00000000 means no fine tuning between semitones.
646 schoenebeck 2 smpte_format_t SMPTEFormat; ///< Specifies the Society of Motion Pictures and Television E time format used in the following <i>SMPTEOffset</i> field. If a value of 0 is set, <i>SMPTEOffset</i> should also be set to 0.
647     uint32_t SMPTEOffset; ///< The SMPTE Offset value specifies the time offset to be used for the synchronization / calibration to the first sample in the waveform. This value uses a format of 0xhhmmssff where hh is a signed value that specifies the number of hours (-23 to 23), mm is an unsigned value that specifies the number of minutes (0 to 59), ss is an unsigned value that specifies the number of seconds (0 to 59) and ff is an unsigned value that specifies the number of frames (0 to -1).
648 schoenebeck 1154 uint32_t Loops; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: Number of defined sample loops. So far only seen single loops in gig files - please report if you encounter more!)
649 schoenebeck 21 uint32_t LoopID; ///< Specifies the unique ID that corresponds to one of the defined cue points in the cue point list (only if Loops > 0), as the Gigasampler format only allows one loop definition at the moment, this attribute isn't really useful for anything.
650 schoenebeck 1154 loop_type_t LoopType; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The type field defines how the waveform samples will be looped.)
651     uint32_t LoopStart; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The start value specifies the offset [in sample points] in the waveform data of the first sample to be played in the loop [only if Loops > 0].)
652     uint32_t LoopEnd; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The end value specifies the offset [in sample points] in the waveform data which represents the end of the loop [only if Loops > 0].)
653     uint32_t LoopSize; ///< @e Caution: Use the respective fields in the DimensionRegion instead of this one! (Intended purpose: Length of the looping area [in sample points] which is equivalent to @code LoopEnd - LoopStart @endcode.)
654     uint32_t LoopFraction; ///< The fractional value specifies a fraction of a sample at which to loop. This allows a loop to be fine tuned at a resolution greater than one sample. A value of 0 means no fraction, a value of 0x80000000 means 1/2 of a sample length. 0xFFFFFFFF is the smallest fraction of a sample that can be represented.
655     uint32_t LoopPlayCount; ///< Number of times the loop should be played (a value of 0 = infinite).
656 schoenebeck 2 bool Compressed; ///< If the sample wave is compressed (probably just interesting for instrument and sample editors, as this library already handles the decompression in it's sample access methods anyway).
657 persson 437 uint32_t TruncatedBits; ///< For 24-bit compressed samples only: number of bits truncated during compression (0, 4 or 6)
658     bool Dithered; ///< For 24-bit compressed samples only: if dithering was used during compression with bit reduction
659 schoenebeck 2
660     // own methods
661     buffer_t LoadSampleData();
662 schoenebeck 2912 buffer_t LoadSampleData(file_offset_t SampleCount);
663 schoenebeck 2 buffer_t LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount);
664 schoenebeck 2912 buffer_t LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount);
665 schoenebeck 2 buffer_t GetCache();
666 schoenebeck 384 // own static methods
667 schoenebeck 2912 static buffer_t CreateDecompressionBuffer(file_offset_t MaxReadSize);
668 schoenebeck 384 static void DestroyDecompressionBuffer(buffer_t& DecompressionBuffer);
669 schoenebeck 2 // overridden methods
670     void ReleaseSampleData();
671 schoenebeck 2922 void Resize(file_offset_t NewSize);
672 schoenebeck 2912 file_offset_t SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence = RIFF::stream_start);
673     file_offset_t GetPos() const;
674     file_offset_t Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer = NULL);
675     file_offset_t ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState, DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer = NULL);
676     file_offset_t Write(void* pBuffer, file_offset_t SampleCount);
677 schoenebeck 930 Group* GetGroup() const;
678 schoenebeck 2682 virtual void UpdateChunks(progress_t* pProgress);
679 schoenebeck 2482 void CopyAssignMeta(const Sample* orig);
680     void CopyAssignWave(const Sample* orig);
681 schoenebeck 2989 uint32_t GetWaveDataCRC32Checksum();
682     bool VerifyWaveData(uint32_t* pActually = NULL);
683 schoenebeck 2 protected:
684 schoenebeck 2922 static size_t Instances; ///< Number of instances of class Sample.
685 schoenebeck 384 static buffer_t InternalDecompressionBuffer; ///< Buffer used for decompression as well as for truncation of 24 Bit -> 16 Bit samples.
686 schoenebeck 930 Group* pGroup; ///< pointer to the Group this sample belongs to (always not-NULL)
687 schoenebeck 2912 file_offset_t FrameOffset; ///< Current offset (sample points) in current sample frame (for decompression only).
688     file_offset_t* FrameTable; ///< For positioning within compressed samples only: stores the offset values for each frame.
689     file_offset_t SamplePos; ///< For compressed samples only: stores the current position (in sample points).
690     file_offset_t SamplesInLastFrame; ///< For compressed samples only: length of the last sample frame.
691     file_offset_t WorstCaseFrameSize; ///< For compressed samples only: size (in bytes) of the largest possible sample frame.
692     file_offset_t SamplesPerFrame; ///< For compressed samples only: number of samples in a full sample frame.
693 schoenebeck 2 buffer_t RAMCache; ///< Buffers samples (already uncompressed) in RAM.
694 persson 666 unsigned long FileNo; ///< File number (> 0 when sample is stored in an extension file, 0 when it's in the gig)
695 schoenebeck 809 RIFF::Chunk* pCk3gix;
696     RIFF::Chunk* pCkSmpl;
697 schoenebeck 2989 uint32_t crc; ///< Reflects CRC-32 checksum of the raw sample data at the last time when the sample's raw wave form data has been modified consciously by the user by calling Write().
698 schoenebeck 2
699 schoenebeck 2989 Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo = 0, int index = -1);
700 schoenebeck 2 ~Sample();
701 schoenebeck 2985 uint32_t CalculateWaveDataChecksum();
702 persson 365
703     // Guess size (in bytes) of a compressed sample
704 schoenebeck 2912 inline file_offset_t GuessSize(file_offset_t samples) {
705 persson 365 // 16 bit: assume all frames are compressed - 1 byte
706     // per sample and 5 bytes header per 2048 samples
707    
708     // 24 bit: assume next best compression rate - 1.5
709     // bytes per sample and 13 bytes header per 256
710     // samples
711 schoenebeck 2912 const file_offset_t size =
712 persson 365 BitDepth == 24 ? samples + (samples >> 1) + (samples >> 8) * 13
713     : samples + (samples >> 10) * 5;
714     // Double for stereo and add one worst case sample
715     // frame
716     return (Channels == 2 ? size << 1 : size) + WorstCaseFrameSize;
717     }
718 schoenebeck 384
719     // Worst case amount of sample points that can be read with the
720     // given decompression buffer.
721 schoenebeck 2912 inline file_offset_t WorstCaseMaxSamples(buffer_t* pDecompressionBuffer) {
722     return (file_offset_t) ((float)pDecompressionBuffer->Size / (float)WorstCaseFrameSize * (float)SamplesPerFrame);
723 schoenebeck 384 }
724 schoenebeck 2 private:
725     void ScanCompressedSample();
726     friend class File;
727     friend class Region;
728 schoenebeck 930 friend class Group; // allow to modify protected member pGroup
729 schoenebeck 2 };
730    
731     // TODO: <3dnl> list not used yet - not important though (just contains optional descriptions for the dimensions)
732 schoenebeck 2699 /** @brief Defines Region information of a Gigasampler/GigaStudio instrument.
733 schoenebeck 2547 *
734 schoenebeck 2699 * A Region reflects a consecutive area (key range) on the keyboard. The
735     * individual regions in the gig format may not overlap with other regions
736     * (of the same instrument that is). Further, in the gig format a Region is
737     * merely a container for DimensionRegions (a.k.a. "Cases"). The Region
738     * itself does not provide the sample mapping or articulation informations
739     * used, even though the data structures of regions indeed provide such
740     * informations. The latter is however just of historical nature, because
741     * the gig file format was derived from the DLS file format.
742 schoenebeck 2547 *
743     * Each Region consists of at least one or more DimensionRegions. The actual
744     * amount of DimensionRegions depends on which kind of "dimensions" are
745     * defined for this region, and on the split / zone amount for each of those
746     * dimensions.
747 schoenebeck 2699 *
748     * Since the gig format was designed as extension to the DLS file format,
749     * this class is derived from the DLS::Region class. So also refer to
750     * DLS::Region for additional informations, class attributes and methods.
751 schoenebeck 2547 */
752 schoenebeck 2 class Region : public DLS::Region {
753     public:
754 schoenebeck 809 unsigned int Dimensions; ///< Number of defined dimensions, do not alter!
755 schoenebeck 926 dimension_def_t pDimensionDefinitions[8]; ///< Defines the five (gig2) or eight (gig3) possible dimensions (the dimension's controller and number of bits/splits). Use AddDimension() and DeleteDimension() to create a new dimension or delete an existing one.
756 schoenebeck 809 uint32_t DimensionRegions; ///< Total number of DimensionRegions this Region contains, do not alter!
757 schoenebeck 926 DimensionRegion* pDimensionRegions[256]; ///< Pointer array to the 32 (gig2) or 256 (gig3) possible dimension regions (reflects NULL for dimension regions not in use). Avoid to access the array directly and better use GetDimensionRegionByValue() instead, but of course in some cases it makes sense to use the array (e.g. iterating through all DimensionRegions). Use AddDimension() and DeleteDimension() to create a new dimension or delete an existing one (which will create or delete the respective dimension region(s) automatically).
758 schoenebeck 809 unsigned int Layers; ///< Amount of defined layers (1 - 32). A value of 1 actually means no layering, a value > 1 means there is Layer dimension. The same information can of course also be obtained by accessing pDimensionDefinitions. Do not alter this value!
759 schoenebeck 2
760 schoenebeck 1335 // own methods
761 schoenebeck 347 DimensionRegion* GetDimensionRegionByValue(const uint DimValues[8]);
762     DimensionRegion* GetDimensionRegionByBit(const uint8_t DimBits[8]);
763 schoenebeck 2599 int GetDimensionRegionIndexByValue(const uint DimValues[8]);
764 schoenebeck 2 Sample* GetSample();
765 schoenebeck 809 void AddDimension(dimension_def_t* pDimDef);
766     void DeleteDimension(dimension_def_t* pDimDef);
767 schoenebeck 2547 dimension_def_t* GetDimensionDefinition(dimension_t type);
768 schoenebeck 2555 void DeleteDimensionZone(dimension_t type, int zone);
769     void SplitDimensionZone(dimension_t type, int zone);
770 schoenebeck 2639 void SetDimensionType(dimension_t oldType, dimension_t newType);
771 schoenebeck 1335 // overridden methods
772     virtual void SetKeyRange(uint16_t Low, uint16_t High);
773 schoenebeck 2682 virtual void UpdateChunks(progress_t* pProgress);
774 schoenebeck 2394 virtual void CopyAssign(const Region* orig);
775 schoenebeck 2 protected:
776     Region(Instrument* pInstrument, RIFF::List* rgnList);
777     void LoadDimensionRegions(RIFF::List* rgn);
778 persson 858 void UpdateVelocityTable();
779 schoenebeck 515 Sample* GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress = NULL);
780 schoenebeck 2482 void CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples);
781 schoenebeck 2555 DimensionRegion* GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase);
782 schoenebeck 2 ~Region();
783     friend class Instrument;
784     };
785    
786 schoenebeck 2699 /** @brief Abstract base class for all MIDI rules.
787     *
788     * Note: Instead of using MIDI rules, we recommend you using real-time
789     * instrument scripts instead. Read about the reasons below.
790     *
791     * MIDI Rules (also called "iMIDI rules" or "intelligent MIDI rules") were
792     * introduced with GigaStudio 4 as an attempt to increase the power of
793     * potential user controls over sounds. At that point other samplers already
794     * supported certain powerful user control features, which were not possible
795     * with GigaStudio yet. For example triggering new notes by MIDI CC
796     * controller.
797     *
798     * Such extended features however were usually implemented by other samplers
799     * by requiring the sound designer to write an instrument script which the
800     * designer would then bundle with the respective instrument file. Such
801     * scripts are essentially text files, using a very specific programming
802     * language for the purpose of controlling the sampler in real-time. Since
803     * however musicians are not typically keen to writing such cumbersome
804     * script files, the GigaStudio designers decided to implement such extended
805     * features completely without instrument scripts. Instead they created a
806     * set of rules, which could be defined and altered conveniently by mouse
807     * clicks in GSt's instrument editor application. The downside of this
808     * overall approach however, was that those MIDI rules were very limited in
809     * practice. As sound designer you easily came across the possiblities such
810     * MIDI rules were able to offer.
811     *
812     * Due to such severe use case constraints, support for MIDI rules is quite
813     * limited in libgig. At the moment only the "Control Trigger", "Alternator"
814     * and the "Legato" MIDI rules are supported by libgig. Consequently the
815     * graphical instrument editor application gigedit just supports the
816     * "Control Trigger" and "Legato" MIDI rules, and LinuxSampler even does not
817     * support any MIDI rule type at all and LinuxSampler probably will not
818     * support MIDI rules in future either.
819     *
820     * Instead of using MIDI rules, we introduced real-time instrument scripts
821     * as extension to the original GigaStudio file format. This script based
822     * solution is much more powerful than MIDI rules and is already supported
823     * by libgig, gigedit and LinuxSampler.
824     *
825     * @deprecated Just provided for backward compatiblity, use Script for new
826     * instruments instead.
827     */
828 persson 1627 class MidiRule {
829     public:
830     virtual ~MidiRule() { }
831 persson 2450 protected:
832     virtual void UpdateChunks(uint8_t* pData) const = 0;
833     friend class Instrument;
834 persson 1627 };
835    
836 schoenebeck 2699 /** @brief MIDI rule for triggering notes by control change events.
837     *
838     * A "Control Trigger MIDI rule" allows to trigger new notes by sending MIDI
839     * control change events to the sampler.
840     *
841     * Note: "Control Trigger" MIDI rules are only supported by gigedit, but not
842     * by LinuxSampler. We recommend you using real-time instrument scripts
843     * instead. Read more about the details and reasons for this in the
844     * description of the MidiRule base class.
845     *
846     * @deprecated Just provided for backward compatiblity, use Script for new
847     * instruments instead. See description of MidiRule for details.
848     */
849 persson 1627 class MidiRuleCtrlTrigger : public MidiRule {
850     public:
851     uint8_t ControllerNumber; ///< MIDI controller number.
852     uint8_t Triggers; ///< Number of triggers.
853     struct trigger_t {
854     uint8_t TriggerPoint; ///< The CC value to pass for the note to be triggered.
855     bool Descending; ///< If the change in CC value should be downwards.
856     uint8_t VelSensitivity; ///< How sensitive the velocity should be to the speed of the controller change.
857     uint8_t Key; ///< Key to trigger.
858     bool NoteOff; ///< If a note off should be triggered instead of a note on.
859     uint8_t Velocity; ///< Velocity of the note to trigger. 255 means that velocity should depend on the speed of the controller change.
860     bool OverridePedal; ///< If a note off should be triggered even if the sustain pedal is down.
861     } pTriggers[32];
862    
863     protected:
864     MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg);
865 persson 2450 MidiRuleCtrlTrigger();
866     void UpdateChunks(uint8_t* pData) const;
867 persson 1627 friend class Instrument;
868     };
869    
870 schoenebeck 2699 /** @brief MIDI rule for instruments with legato samples.
871     *
872     * A "Legato MIDI rule" allows playing instruments resembling the legato
873     * playing technique. In the past such legato articulations were tried to be
874     * simulated by pitching the samples of the instrument. However since
875     * usually a high amount of pitch is needed for legatos, this always sounded
876     * very artificial and unrealistic. The "Legato MIDI rule" thus uses another
877     * approach. Instead of pitching the samples, it allows the sound designer
878     * to bundle separate, additional samples for the individual legato
879     * situations and the legato rules defined which samples to be played in
880     * which situation.
881     *
882     * Note: "Legato MIDI rules" are only supported by gigedit, but not
883     * by LinuxSampler. We recommend you using real-time instrument scripts
884     * instead. Read more about the details and reasons for this in the
885     * description of the MidiRule base class.
886     *
887     * @deprecated Just provided for backward compatiblity, use Script for new
888     * instruments instead. See description of MidiRule for details.
889     */
890 persson 2450 class MidiRuleLegato : public MidiRule {
891     public:
892     uint8_t LegatoSamples; ///< Number of legato samples per key in each direction (always 12)
893     bool BypassUseController; ///< If a controller should be used to bypass the sustain note
894     uint8_t BypassKey; ///< Key to be used to bypass the sustain note
895     uint8_t BypassController; ///< Controller to be used to bypass the sustain note
896     uint16_t ThresholdTime; ///< Maximum time (ms) between two notes that should be played legato
897     uint16_t ReleaseTime; ///< Release time
898     range_t KeyRange; ///< Key range for legato notes
899     uint8_t ReleaseTriggerKey; ///< Key triggering release samples
900     uint8_t AltSustain1Key; ///< Key triggering alternate sustain samples
901     uint8_t AltSustain2Key; ///< Key triggering a second set of alternate sustain samples
902    
903     protected:
904     MidiRuleLegato(RIFF::Chunk* _3ewg);
905     MidiRuleLegato();
906     void UpdateChunks(uint8_t* pData) const;
907     friend class Instrument;
908     };
909    
910 schoenebeck 2699 /** @brief MIDI rule to automatically cycle through specified sequences of different articulations.
911     *
912     * The instrument must be using the smartmidi dimension.
913     *
914     * Note: "Alternator" MIDI rules are neither supported by gigedit nor by
915     * LinuxSampler. We recommend you using real-time instrument scripts
916     * instead. Read more about the details and reasons for this in the
917     * description of the MidiRule base class.
918     *
919     * @deprecated Just provided for backward compatiblity, use Script for new
920     * instruments instead. See description of MidiRule for details.
921     */
922 persson 2450 class MidiRuleAlternator : public MidiRule {
923     public:
924     uint8_t Articulations; ///< Number of articulations in the instrument
925     String pArticulations[32]; ///< Names of the articulations
926    
927     range_t PlayRange; ///< Key range of the playable keys in the instrument
928    
929     uint8_t Patterns; ///< Number of alternator patterns
930     struct pattern_t {
931     String Name; ///< Name of the pattern
932     int Size; ///< Number of steps in the pattern
933     const uint8_t& operator[](int i) const { /// Articulation to play
934     return data[i];
935     }
936     uint8_t& operator[](int i) {
937     return data[i];
938     }
939     private:
940     uint8_t data[32];
941     } pPatterns[32]; ///< A pattern is a sequence of articulation numbers
942    
943     typedef enum {
944     selector_none,
945     selector_key_switch,
946     selector_controller
947     } selector_t;
948     selector_t Selector; ///< Method by which pattern is chosen
949     range_t KeySwitchRange; ///< Key range for key switch selector
950     uint8_t Controller; ///< CC number for controller selector
951    
952     bool Polyphonic; ///< If alternator should step forward only when all notes are off
953     bool Chained; ///< If all patterns should be chained together
954    
955     protected:
956     MidiRuleAlternator(RIFF::Chunk* _3ewg);
957     MidiRuleAlternator();
958     void UpdateChunks(uint8_t* pData) const;
959     friend class Instrument;
960     };
961    
962 schoenebeck 2699 /** @brief A MIDI rule not yet implemented by libgig.
963     *
964     * This class is currently used as a place holder by libgig for MIDI rule
965     * types which are not supported by libgig yet.
966     *
967     * Note: Support for missing MIDI rule types are probably never added to
968     * libgig. We recommend you using real-time instrument scripts instead.
969     * Read more about the details and reasons for this in the description of
970     * the MidiRule base class.
971     *
972     * @deprecated Just provided for backward compatiblity, use Script for new
973     * instruments instead. See description of MidiRule for details.
974     */
975 persson 2450 class MidiRuleUnknown : public MidiRule {
976     protected:
977     MidiRuleUnknown() { }
978     void UpdateChunks(uint8_t* pData) const { }
979     friend class Instrument;
980     };
981    
982 schoenebeck 2584 /** @brief Real-time instrument script (gig format extension).
983     *
984     * Real-time instrument scripts are user supplied small programs which can
985     * be used by instrument designers to create custom behaviors and features
986     * not available in the stock sampler engine. Features which might be very
987     * exotic or specific for the respective instrument.
988     *
989     * This is an extension of the GigaStudio format, thus a feature which was
990     * not available in the GigaStudio 4 software. It is currently only
991 schoenebeck 2699 * supported by LinuxSampler and gigedit. Scripts will not load with the
992     * original GigaStudio software.
993 schoenebeck 2761 *
994     * You find more informations about Instrument Scripts on the LinuxSampler
995     * documentation site:
996     *
997     * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/">About Instrument Scripts in General</a>
998     * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language">Introduction to the NKSP Script Language</a>
999     * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language/Reference/">NKSP Reference Manual</a>
1000     * - <a href="http://doc.linuxsampler.org/Gigedit/Managing_Scripts">Using Instrument Scripts with Gigedit</a>
1001 schoenebeck 2584 */
1002     class Script {
1003     public:
1004     enum Encoding_t {
1005     ENCODING_ASCII = 0 ///< Standard 8 bit US ASCII character encoding (default).
1006     };
1007     enum Compression_t {
1008     COMPRESSION_NONE = 0 ///< Is not compressed at all (default).
1009     };
1010     enum Language_t {
1011 schoenebeck 2762 LANGUAGE_NKSP = 0 ///< NKSP stands for "Is Not KSP" (default). Refer to the <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language/Reference/">NKSP Reference Manual</a> for details about this script language.
1012 schoenebeck 2584 };
1013    
1014     String Name; ///< Arbitrary name of the script, which may be displayed i.e. in an instrument editor.
1015     Compression_t Compression; ///< Whether the script was/should be compressed, and if so, which compression algorithm shall be used.
1016     Encoding_t Encoding; ///< Format the script's source code text is encoded with.
1017     Language_t Language; ///< Programming language and dialect the script is written in.
1018     bool Bypass; ///< Global bypass: if enabled, this script shall not be executed by the sampler for any instrument.
1019    
1020     String GetScriptAsText();
1021     void SetScriptAsText(const String& text);
1022     void SetGroup(ScriptGroup* pGroup);
1023 schoenebeck 2601 ScriptGroup* GetGroup() const;
1024 schoenebeck 3117 void CopyAssign(const Script* orig);
1025 schoenebeck 2584 protected:
1026     Script(ScriptGroup* group, RIFF::Chunk* ckScri);
1027     virtual ~Script();
1028 schoenebeck 2682 void UpdateChunks(progress_t* pProgress);
1029 schoenebeck 2584 void RemoveAllScriptReferences();
1030     friend class ScriptGroup;
1031     friend class Instrument;
1032     private:
1033     ScriptGroup* pGroup;
1034     RIFF::Chunk* pChunk; ///< 'Scri' chunk
1035     std::vector<uint8_t> data;
1036     uint32_t crc; ///< CRC-32 checksum of the raw script data
1037     };
1038    
1039     /** @brief Group of instrument scripts (gig format extension).
1040     *
1041     * This class is simply used to sort a bunch of real-time instrument scripts
1042     * into individual groups. This allows instrument designers and script
1043     * developers to keep scripts in a certain order while working with a larger
1044     * amount of scripts in an instrument editor.
1045     *
1046     * This is an extension of the GigaStudio format, thus a feature which was
1047     * not available in the GigaStudio 4 software. It is currently only
1048     * supported by LinuxSampler and gigedit.
1049     */
1050     class ScriptGroup {
1051     public:
1052     String Name; ///< Name of this script group. For example to be displayed in an instrument editor.
1053    
1054     Script* GetScript(uint index);
1055     Script* AddScript();
1056     void DeleteScript(Script* pScript);
1057     protected:
1058     ScriptGroup(File* file, RIFF::List* lstRTIS);
1059     virtual ~ScriptGroup();
1060     void LoadScripts();
1061 schoenebeck 2682 void UpdateChunks(progress_t* pProgress);
1062 schoenebeck 2584 friend class Script;
1063     friend class File;
1064     private:
1065     File* pFile;
1066     RIFF::List* pList; ///< 'RTIS' list chunk
1067     std::list<Script*>* pScripts;
1068     };
1069    
1070 schoenebeck 2699 /** @brief Provides access to a Gigasampler/GigaStudio instrument.
1071     *
1072     * This class provides access to Gigasampler/GigaStudio instruments
1073     * contained in .gig files. A gig instrument is merely a set of keyboard
1074     * ranges (called Region), plus some additional global informations about
1075     * the instrument. The major part of the actual instrument definition used
1076     * for the synthesis of the instrument is contained in the respective Region
1077     * object (or actually in the respective DimensionRegion object being, see
1078     * description of Region for details).
1079     *
1080     * Since the gig format was designed as extension to the DLS file format,
1081     * this class is derived from the DLS::Instrument class. So also refer to
1082     * DLS::Instrument for additional informations, class attributes and
1083     * methods.
1084     */
1085 schoenebeck 2 class Instrument : protected DLS::Instrument {
1086     public:
1087     // derived attributes from DLS::Resource
1088 persson 2334 using DLS::Resource::pInfo;
1089     using DLS::Resource::pDLSID;
1090 schoenebeck 2 // derived attributes from DLS::Instrument
1091 persson 2334 using DLS::Instrument::IsDrum;
1092     using DLS::Instrument::MIDIBank;
1093     using DLS::Instrument::MIDIBankCoarse;
1094     using DLS::Instrument::MIDIBankFine;
1095     using DLS::Instrument::MIDIProgram;
1096     using DLS::Instrument::Regions;
1097 schoenebeck 2 // own attributes
1098     int32_t Attenuation; ///< in dB
1099     uint16_t EffectSend;
1100     int16_t FineTune; ///< in cents
1101     uint16_t PitchbendRange; ///< Number of semitones pitchbend controller can pitch (default is 2).
1102     bool PianoReleaseMode;
1103     range_t DimensionKeyRange; ///< 0-127 (where 0 means C1 and 127 means G9)
1104    
1105    
1106     // derived methods from DLS::Resource
1107 persson 2334 using DLS::Resource::GetParent;
1108 schoenebeck 2 // overridden methods
1109     Region* GetFirstRegion();
1110     Region* GetNextRegion();
1111 schoenebeck 809 Region* AddRegion();
1112     void DeleteRegion(Region* pRegion);
1113 schoenebeck 2700 void MoveTo(Instrument* dst);
1114 schoenebeck 2682 virtual void UpdateChunks(progress_t* pProgress);
1115 schoenebeck 2394 virtual void CopyAssign(const Instrument* orig);
1116 schoenebeck 2 // own methods
1117     Region* GetRegion(unsigned int Key);
1118 persson 1678 MidiRule* GetMidiRule(int i);
1119 persson 2450 MidiRuleCtrlTrigger* AddMidiRuleCtrlTrigger();
1120     MidiRuleLegato* AddMidiRuleLegato();
1121     MidiRuleAlternator* AddMidiRuleAlternator();
1122     void DeleteMidiRule(int i);
1123 schoenebeck 2584 // real-time instrument script methods
1124     Script* GetScriptOfSlot(uint index);
1125     void AddScriptSlot(Script* pScript, bool bypass = false);
1126     void SwapScriptSlots(uint index1, uint index2);
1127     void RemoveScriptSlot(uint index);
1128     void RemoveScript(Script* pScript);
1129     uint ScriptSlotCount() const;
1130     bool IsScriptSlotBypassed(uint index);
1131     void SetScriptSlotBypassed(uint index, bool bBypass);
1132 schoenebeck 2 protected:
1133     Region* RegionKeyTable[128]; ///< fast lookup for the corresponding Region of a MIDI key
1134    
1135 schoenebeck 515 Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress = NULL);
1136 schoenebeck 2 ~Instrument();
1137 schoenebeck 2482 void CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples);
1138 schoenebeck 809 void UpdateRegionKeyTable();
1139 schoenebeck 2584 void LoadScripts();
1140 schoenebeck 2609 void UpdateScriptFileOffsets();
1141 schoenebeck 2 friend class File;
1142 schoenebeck 1335 friend class Region; // so Region can call UpdateRegionKeyTable()
1143 persson 1627 private:
1144 schoenebeck 2584 struct _ScriptPooolEntry {
1145     uint32_t fileOffset;
1146     bool bypass;
1147     };
1148     struct _ScriptPooolRef {
1149     Script* script;
1150     bool bypass;
1151     };
1152 persson 1678 MidiRule** pMidiRules;
1153 schoenebeck 2584 std::vector<_ScriptPooolEntry> scriptPoolFileOffsets;
1154     std::vector<_ScriptPooolRef>* pScriptRefs;
1155 schoenebeck 2 };
1156    
1157 schoenebeck 2699 /** @brief Group of Gigasampler samples
1158 schoenebeck 929 *
1159 schoenebeck 2699 * Groups help to organize a huge collection of Gigasampler samples.
1160 schoenebeck 929 * Groups are not concerned at all for the synthesis, but they help
1161     * sound library developers when working on complex instruments with an
1162     * instrument editor (as long as that instrument editor supports it ;-).
1163     *
1164 schoenebeck 930 * A sample is always assigned to exactly one Group. This also means
1165     * there is always at least one Group in a .gig file, no matter if you
1166     * created one yet or not.
1167 schoenebeck 929 */
1168     class Group {
1169     public:
1170     String Name; ///< Stores the name of this Group.
1171 schoenebeck 930
1172     Sample* GetFirstSample();
1173     Sample* GetNextSample();
1174     void AddSample(Sample* pSample);
1175 schoenebeck 929 protected:
1176 schoenebeck 930 Group(File* file, RIFF::Chunk* ck3gnm);
1177 schoenebeck 929 virtual ~Group();
1178 schoenebeck 2682 virtual void UpdateChunks(progress_t* pProgress);
1179 schoenebeck 930 void MoveAll();
1180 schoenebeck 929 friend class File;
1181     private:
1182 schoenebeck 930 File* pFile;
1183 schoenebeck 2467 RIFF::Chunk* pNameChunk; ///< '3gnm' chunk
1184 schoenebeck 929 };
1185    
1186 schoenebeck 2699 /** @brief Provides convenient access to Gigasampler/GigaStudio .gig files.
1187     *
1188     * This is the entry class for accesing a Gigasampler/GigaStudio (.gig) file
1189     * with libgig. It allows you to open existing .gig files, modifying them
1190     * and saving them persistently either under the same file name or under a
1191     * different location.
1192     *
1193     * A .gig file is merely a monolithic file. That means samples and the
1194     * defintion of the virtual instruments are contained in the same file. A
1195     * .gig file contains an arbitrary amount of samples, and an arbitrary
1196     * amount of instruments which are referencing those samples. It is also
1197     * possible to store samples in .gig files not being referenced by any
1198     * instrument. This is not an error from the file format's point of view and
1199     * it is actually often used in practice during the design phase of new gig
1200     * instruments.
1201     *
1202     * So on toplevel of the gig file format you have:
1203     *
1204     * - A set of samples (see Sample).
1205     * - A set of virtual instruments (see Instrument).
1206     *
1207     * And as extension to the original GigaStudio format, we added:
1208     *
1209     * - Real-time instrument scripts (see Script).
1210     *
1211     * Note that the latter however is only supported by libgig, gigedit and
1212     * LinuxSampler. Scripts are not supported by the original GigaStudio
1213     * software.
1214     *
1215     * All released Gigasampler/GigaStudio file format versions are supported
1216     * (so from first Gigasampler version up to including GigaStudio 4).
1217     *
1218     * Since the gig format was designed as extension to the DLS file format,
1219     * this class is derived from the DLS::File class. So also refer to
1220     * DLS::File for additional informations, class attributes and methods.
1221     */
1222 schoenebeck 2 class File : protected DLS::File {
1223     public:
1224 persson 1199 static const DLS::version_t VERSION_2;
1225     static const DLS::version_t VERSION_3;
1226    
1227 schoenebeck 2 // derived attributes from DLS::Resource
1228 persson 2334 using DLS::Resource::pInfo;
1229     using DLS::Resource::pDLSID;
1230 schoenebeck 2 // derived attributes from DLS::File
1231 persson 2334 using DLS::File::pVersion;
1232     using DLS::File::Instruments;
1233 schoenebeck 2
1234     // derived methods from DLS::Resource
1235 persson 2334 using DLS::Resource::GetParent;
1236 schoenebeck 809 // derived methods from DLS::File
1237 persson 2334 using DLS::File::Save;
1238     using DLS::File::GetFileName;
1239 schoenebeck 2482 using DLS::File::SetFileName;
1240 schoenebeck 2 // overridden methods
1241 schoenebeck 809 File();
1242 schoenebeck 2 File(RIFF::File* pRIFF);
1243 schoenebeck 515 Sample* GetFirstSample(progress_t* pProgress = NULL); ///< Returns a pointer to the first <i>Sample</i> object of the file, <i>NULL</i> otherwise.
1244 schoenebeck 2 Sample* GetNextSample(); ///< Returns a pointer to the next <i>Sample</i> object of the file, <i>NULL</i> otherwise.
1245 schoenebeck 2482 Sample* GetSample(uint index);
1246 schoenebeck 809 Sample* AddSample();
1247     void DeleteSample(Sample* pSample);
1248 schoenebeck 929 Instrument* GetFirstInstrument(); ///< Returns a pointer to the first <i>Instrument</i> object of the file, <i>NULL</i> otherwise.
1249 schoenebeck 2 Instrument* GetNextInstrument(); ///< Returns a pointer to the next <i>Instrument</i> object of the file, <i>NULL</i> otherwise.
1250 schoenebeck 515 Instrument* GetInstrument(uint index, progress_t* pProgress = NULL);
1251 schoenebeck 809 Instrument* AddInstrument();
1252 schoenebeck 2394 Instrument* AddDuplicateInstrument(const Instrument* orig);
1253 schoenebeck 809 void DeleteInstrument(Instrument* pInstrument);
1254 schoenebeck 929 Group* GetFirstGroup(); ///< Returns a pointer to the first <i>Group</i> object of the file, <i>NULL</i> otherwise.
1255     Group* GetNextGroup(); ///< Returns a pointer to the next <i>Group</i> object of the file, <i>NULL</i> otherwise.
1256     Group* GetGroup(uint index);
1257 schoenebeck 2543 Group* GetGroup(String name);
1258 schoenebeck 929 Group* AddGroup();
1259     void DeleteGroup(Group* pGroup);
1260 schoenebeck 1081 void DeleteGroupOnly(Group* pGroup);
1261 schoenebeck 1524 void SetAutoLoad(bool b);
1262     bool GetAutoLoad();
1263 schoenebeck 2482 void AddContentOf(File* pFile);
1264 schoenebeck 2584 ScriptGroup* GetScriptGroup(uint index);
1265     ScriptGroup* GetScriptGroup(const String& name);
1266     ScriptGroup* AddScriptGroup();
1267     void DeleteScriptGroup(ScriptGroup* pGroup);
1268 schoenebeck 929 virtual ~File();
1269 schoenebeck 2682 virtual void UpdateChunks(progress_t* pProgress);
1270 schoenebeck 2 protected:
1271 schoenebeck 823 // overridden protected methods from DLS::File
1272     virtual void LoadSamples();
1273     virtual void LoadInstruments();
1274 schoenebeck 929 virtual void LoadGroups();
1275 schoenebeck 2609 virtual void UpdateFileOffsets();
1276 schoenebeck 823 // own protected methods
1277     virtual void LoadSamples(progress_t* pProgress);
1278     virtual void LoadInstruments(progress_t* pProgress);
1279 schoenebeck 2584 virtual void LoadScriptGroups();
1280 persson 1199 void SetSampleChecksum(Sample* pSample, uint32_t crc);
1281 schoenebeck 2985 uint32_t GetSampleChecksum(Sample* pSample);
1282 schoenebeck 2989 uint32_t GetSampleChecksumByIndex(int index);
1283 schoenebeck 2985 bool VerifySampleChecksumTable();
1284     bool RebuildSampleChecksumTable();
1285     int GetWaveTableIndexOf(gig::Sample* pSample);
1286 schoenebeck 2 friend class Region;
1287 schoenebeck 929 friend class Sample;
1288 schoenebeck 2700 friend class Instrument;
1289 schoenebeck 930 friend class Group; // so Group can access protected member pRIFF
1290 schoenebeck 2584 friend class ScriptGroup; // so ScriptGroup can access protected member pRIFF
1291 schoenebeck 929 private:
1292     std::list<Group*>* pGroups;
1293     std::list<Group*>::iterator GroupsIterator;
1294 schoenebeck 1524 bool bAutoLoad;
1295 schoenebeck 2584 std::list<ScriptGroup*>* pScriptGroups;
1296 schoenebeck 2 };
1297    
1298 schoenebeck 1093 /**
1299     * Will be thrown whenever a gig specific error occurs while trying to
1300     * access a Gigasampler File. Note: In your application you should
1301     * better catch for RIFF::Exception rather than this one, except you
1302     * explicitly want to catch and handle gig::Exception, DLS::Exception
1303     * and RIFF::Exception independently, which usually shouldn't be
1304     * necessary though.
1305     */
1306 schoenebeck 2 class Exception : public DLS::Exception {
1307     public:
1308     Exception(String Message);
1309     void PrintMessage();
1310     };
1311    
1312 schoenebeck 518 String libraryName();
1313     String libraryVersion();
1314    
1315 schoenebeck 2 } // namespace gig
1316    
1317     #endif // __GIG_H__

  ViewVC Help
Powered by ViewVC