/[svn]/libgig/trunk/src/gig.h
ViewVC logotype

Annotation of /libgig/trunk/src/gig.h

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3169 - (hide annotations) (download) (as text)
Wed May 10 21:17:10 2017 UTC (6 years, 10 months ago) by schoenebeck
File MIME type: text/x-c++hdr
File size: 89258 byte(s)
* src/gig.h: Added enum reflection API functions for
  retrieving enum declaration type information at
  runtime (countEnum(), enumKey(), enumKeys(),
  enumValue()).
* Archive: Added methods valueAsInt(), valueAsReal()
  and valueAsBool().
* Bumped version (4.0.0.svn20).

1 schoenebeck 2 /***************************************************************************
2     * *
3 schoenebeck 933 * libgig - C++ cross-platform Gigasampler format file access library *
4 schoenebeck 2 * *
5 schoenebeck 3117 * Copyright (C) 2003-2017 by Christian Schoenebeck *
6 schoenebeck 384 * <cuse@users.sourceforge.net> *
7 schoenebeck 2 * *
8     * This library is free software; you can redistribute it and/or modify *
9     * it under the terms of the GNU General Public License as published by *
10     * the Free Software Foundation; either version 2 of the License, or *
11     * (at your option) any later version. *
12     * *
13     * This library is distributed in the hope that it will be useful, *
14     * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16     * GNU General Public License for more details. *
17     * *
18     * You should have received a copy of the GNU General Public License *
19     * along with this library; if not, write to the Free Software *
20     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21     * MA 02111-1307 USA *
22     ***************************************************************************/
23    
24     #ifndef __GIG_H__
25     #define __GIG_H__
26    
27     #include "DLS.h"
28 schoenebeck 2584 #include <vector>
29 schoenebeck 2
30 schoenebeck 3169 #ifndef __has_feature
31     # define __has_feature(x) 0
32     #endif
33     #ifndef HAVE_RTTI
34     # if __GXX_RTTI || __has_feature(cxx_rtti) || _CPPRTTI
35     # define HAVE_RTTI 1
36     # else
37     # define HAVE_RTTI 0
38     # endif
39     #endif
40     #if HAVE_RTTI
41     # include <typeinfo>
42     #endif
43    
44 schoenebeck 11 #if WORDS_BIGENDIAN
45 schoenebeck 2 # define LIST_TYPE_3PRG 0x33707267
46     # define LIST_TYPE_3EWL 0x3365776C
47 schoenebeck 929 # define LIST_TYPE_3GRI 0x33677269
48     # define LIST_TYPE_3GNL 0x33676E6C
49 schoenebeck 2584 # define LIST_TYPE_3LS 0x334c5320 // own gig format extension
50     # define LIST_TYPE_RTIS 0x52544953 // own gig format extension
51 schoenebeck 2 # define CHUNK_ID_3GIX 0x33676978
52     # define CHUNK_ID_3EWA 0x33657761
53     # define CHUNK_ID_3LNK 0x336C6E6B
54     # define CHUNK_ID_3EWG 0x33657767
55     # define CHUNK_ID_EWAV 0x65776176
56 schoenebeck 929 # define CHUNK_ID_3GNM 0x33676E6D
57 persson 1199 # define CHUNK_ID_EINF 0x65696E66
58     # define CHUNK_ID_3CRC 0x33637263
59 schoenebeck 2584 # define CHUNK_ID_SCRI 0x53637269 // own gig format extension
60     # define CHUNK_ID_LSNM 0x4c534e4d // own gig format extension
61     # define CHUNK_ID_SCSL 0x5343534c // own gig format extension
62 schoenebeck 2 #else // little endian
63     # define LIST_TYPE_3PRG 0x67727033
64     # define LIST_TYPE_3EWL 0x6C776533
65 schoenebeck 929 # define LIST_TYPE_3GRI 0x69726733
66     # define LIST_TYPE_3GNL 0x6C6E6733
67 schoenebeck 2584 # define LIST_TYPE_3LS 0x20534c33 // own gig format extension
68     # define LIST_TYPE_RTIS 0x53495452 // own gig format extension
69 schoenebeck 2 # define CHUNK_ID_3GIX 0x78696733
70     # define CHUNK_ID_3EWA 0x61776533
71     # define CHUNK_ID_3LNK 0x6B6E6C33
72     # define CHUNK_ID_3EWG 0x67776533
73     # define CHUNK_ID_EWAV 0x76617765
74 schoenebeck 929 # define CHUNK_ID_3GNM 0x6D6E6733
75 persson 1199 # define CHUNK_ID_EINF 0x666E6965
76     # define CHUNK_ID_3CRC 0x63726333
77 schoenebeck 2584 # define CHUNK_ID_SCRI 0x69726353 // own gig format extension
78     # define CHUNK_ID_LSNM 0x4d4e534c // own gig format extension
79     # define CHUNK_ID_SCSL 0x4c534353 // own gig format extension
80 schoenebeck 2 #endif // WORDS_BIGENDIAN
81    
82 schoenebeck 3169 #ifndef GIG_DECLARE_ENUM
83     # define GIG_DECLARE_ENUM(type, ...) enum type { __VA_ARGS__ }
84     #endif
85    
86 schoenebeck 3140 // just symbol prototyping (since Serialization.h not included by default here)
87     namespace Serialization { class Archive; }
88    
89 schoenebeck 2699 /** Gigasampler/GigaStudio specific classes and definitions */
90 schoenebeck 2 namespace gig {
91    
92     typedef std::string String;
93 schoenebeck 2682 typedef RIFF::progress_t progress_t;
94 schoenebeck 2912 typedef RIFF::file_offset_t file_offset_t;
95 schoenebeck 2
96     /** Lower and upper limit of a range. */
97     struct range_t {
98     uint8_t low; ///< Low value of range.
99     uint8_t high; ///< High value of range.
100     };
101    
102     /** Pointer address and size of a buffer. */
103     struct buffer_t {
104     void* pStart; ///< Points to the beginning of the buffer.
105 schoenebeck 2912 file_offset_t Size; ///< Size of the actual data in the buffer in bytes.
106     file_offset_t NullExtensionSize; ///< The buffer might be bigger than the actual data, if that's the case that unused space at the end of the buffer is filled with NULLs and NullExtensionSize reflects that unused buffer space in bytes. Those NULL extensions are mandatory for differential algorithms that have to take the following data words into account, thus have to access past the buffer's boundary. If you don't know what I'm talking about, just forget this variable. :)
107 schoenebeck 384 buffer_t() {
108     pStart = NULL;
109     Size = 0;
110     NullExtensionSize = 0;
111     }
112 schoenebeck 2 };
113    
114 schoenebeck 3169 /** Standard types of sample loops.
115     *
116     * @see countEnum(), enumKey(), enumKeys(), enumValue()
117     */
118     GIG_DECLARE_ENUM(loop_type_t,
119 schoenebeck 2 loop_type_normal = 0x00000000, ///< Loop forward (normal)
120     loop_type_bidirectional = 0x00000001, ///< Alternating loop (forward/backward, also known as Ping Pong)
121     loop_type_backward = 0x00000002 ///< Loop backward (reverse)
122 schoenebeck 3169 );
123 schoenebeck 2
124 schoenebeck 3169 /** Society of Motion Pictures and Television E time format.
125     *
126     * @see countEnum(), enumKey(), enumKeys(), enumValue()
127     */
128     GIG_DECLARE_ENUM(smpte_format_t,
129 schoenebeck 2 smpte_format_no_offset = 0x00000000, ///< no SMPTE offset
130     smpte_format_24_frames = 0x00000018, ///< 24 frames per second
131     smpte_format_25_frames = 0x00000019, ///< 25 frames per second
132     smpte_format_30_frames_dropping = 0x0000001D, ///< 30 frames per second with frame dropping (30 drop)
133     smpte_format_30_frames = 0x0000001E ///< 30 frames per second
134 schoenebeck 3169 );
135 schoenebeck 2
136 schoenebeck 3169 /** Defines the shape of a function graph.
137     *
138     * @see countEnum(), enumKey(), enumKeys(), enumValue()
139     */
140     GIG_DECLARE_ENUM(curve_type_t,
141 schoenebeck 2 curve_type_nonlinear = 0,
142     curve_type_linear = 1,
143     curve_type_special = 2,
144     curve_type_unknown = 0xffffffff
145 schoenebeck 3169 );
146 schoenebeck 2
147 schoenebeck 3169 /** Dimensions allow to bypass one of the following controllers.
148     *
149     * @see countEnum(), enumKey(), enumKeys(), enumValue()
150     */
151     GIG_DECLARE_ENUM(dim_bypass_ctrl_t,
152 schoenebeck 2 dim_bypass_ctrl_none,
153     dim_bypass_ctrl_94, ///< Effect 4 Depth (MIDI Controller 94)
154     dim_bypass_ctrl_95 ///< Effect 5 Depth (MIDI Controller 95)
155 schoenebeck 3169 );
156 schoenebeck 2
157 schoenebeck 3169 /** Defines how LFO3 is controlled by.
158     *
159     * @see countEnum(), enumKey(), enumKeys(), enumValue()
160     */
161     GIG_DECLARE_ENUM(lfo3_ctrl_t,
162 schoenebeck 2 lfo3_ctrl_internal = 0x00, ///< Only internally controlled.
163     lfo3_ctrl_modwheel = 0x01, ///< Only controlled by external modulation wheel.
164     lfo3_ctrl_aftertouch = 0x02, ///< Only controlled by aftertouch controller.
165     lfo3_ctrl_internal_modwheel = 0x03, ///< Controlled internally and by external modulation wheel.
166     lfo3_ctrl_internal_aftertouch = 0x04 ///< Controlled internally and by aftertouch controller.
167 schoenebeck 3169 );
168 schoenebeck 2
169 schoenebeck 3169 /** Defines how LFO2 is controlled by.
170     *
171     * @see countEnum(), enumKey(), enumKeys(), enumValue()
172     */
173     GIG_DECLARE_ENUM(lfo2_ctrl_t,
174 schoenebeck 2 lfo2_ctrl_internal = 0x00, ///< Only internally controlled.
175     lfo2_ctrl_modwheel = 0x01, ///< Only controlled by external modulation wheel.
176     lfo2_ctrl_foot = 0x02, ///< Only controlled by external foot controller.
177     lfo2_ctrl_internal_modwheel = 0x03, ///< Controlled internally and by external modulation wheel.
178     lfo2_ctrl_internal_foot = 0x04 ///< Controlled internally and by external foot controller.
179 schoenebeck 3169 );
180 schoenebeck 2
181 schoenebeck 3169 /** Defines how LFO1 is controlled by.
182     *
183     * @see countEnum(), enumKey(), enumKeys(), enumValue()
184     */
185     GIG_DECLARE_ENUM(lfo1_ctrl_t,
186 schoenebeck 2 lfo1_ctrl_internal = 0x00, ///< Only internally controlled.
187     lfo1_ctrl_modwheel = 0x01, ///< Only controlled by external modulation wheel.
188     lfo1_ctrl_breath = 0x02, ///< Only controlled by external breath controller.
189     lfo1_ctrl_internal_modwheel = 0x03, ///< Controlled internally and by external modulation wheel.
190     lfo1_ctrl_internal_breath = 0x04 ///< Controlled internally and by external breath controller.
191 schoenebeck 3169 );
192 schoenebeck 2
193 schoenebeck 3169 /** Defines how the filter cutoff frequency is controlled by.
194     *
195     * @see countEnum(), enumKey(), enumKeys(), enumValue()
196     */
197     GIG_DECLARE_ENUM(vcf_cutoff_ctrl_t,
198 schoenebeck 2 vcf_cutoff_ctrl_none = 0x00,
199 persson 834 vcf_cutoff_ctrl_none2 = 0x01, ///< The difference between none and none2 is unknown
200 schoenebeck 2 vcf_cutoff_ctrl_modwheel = 0x81, ///< Modulation Wheel (MIDI Controller 1)
201     vcf_cutoff_ctrl_effect1 = 0x8c, ///< Effect Controller 1 (Coarse, MIDI Controller 12)
202     vcf_cutoff_ctrl_effect2 = 0x8d, ///< Effect Controller 2 (Coarse, MIDI Controller 13)
203     vcf_cutoff_ctrl_breath = 0x82, ///< Breath Controller (Coarse, MIDI Controller 2)
204     vcf_cutoff_ctrl_foot = 0x84, ///< Foot Pedal (Coarse, MIDI Controller 4)
205     vcf_cutoff_ctrl_sustainpedal = 0xc0, ///< Sustain Pedal (MIDI Controller 64)
206     vcf_cutoff_ctrl_softpedal = 0xc3, ///< Soft Pedal (MIDI Controller 67)
207     vcf_cutoff_ctrl_genpurpose7 = 0xd2, ///< General Purpose Controller 7 (Button, MIDI Controller 82)
208     vcf_cutoff_ctrl_genpurpose8 = 0xd3, ///< General Purpose Controller 8 (Button, MIDI Controller 83)
209     vcf_cutoff_ctrl_aftertouch = 0x80 ///< Key Pressure
210 schoenebeck 3169 );
211 schoenebeck 2
212 schoenebeck 3169 /** Defines how the filter resonance is controlled by.
213     *
214     * @see countEnum(), enumKey(), enumKeys(), enumValue()
215     */
216     GIG_DECLARE_ENUM(vcf_res_ctrl_t,
217 schoenebeck 2 vcf_res_ctrl_none = 0xffffffff,
218     vcf_res_ctrl_genpurpose3 = 0, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
219     vcf_res_ctrl_genpurpose4 = 1, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
220     vcf_res_ctrl_genpurpose5 = 2, ///< General Purpose Controller 5 (Button, MIDI Controller 80)
221     vcf_res_ctrl_genpurpose6 = 3 ///< General Purpose Controller 6 (Button, MIDI Controller 81)
222 schoenebeck 3169 );
223 schoenebeck 55
224 schoenebeck 36 /**
225     * Defines a controller that has a certain contrained influence on a
226     * particular synthesis parameter (used to define attenuation controller,
227     * EG1 controller and EG2 controller).
228     *
229     * You should use the respective <i>typedef</i> (means either
230     * attenuation_ctrl_t, eg1_ctrl_t or eg2_ctrl_t) in your code!
231     */
232     struct leverage_ctrl_t {
233 schoenebeck 3169 /** Defines possible controllers.
234     *
235     * @see countEnum(), enumKey(), enumKeys(), enumValue()
236     */
237     GIG_DECLARE_ENUM(type_t,
238 schoenebeck 36 type_none = 0x00, ///< No controller defined
239     type_channelaftertouch = 0x2f, ///< Channel Key Pressure
240     type_velocity = 0xff, ///< Key Velocity
241     type_controlchange = 0xfe ///< Ordinary MIDI control change controller, see field 'controller_number'
242 schoenebeck 3169 );
243 schoenebeck 55
244 schoenebeck 36 type_t type; ///< Controller type
245     uint controller_number; ///< MIDI controller number if this controller is a control change controller, 0 otherwise
246 schoenebeck 3138
247     void serialize(Serialization::Archive* archive);
248 schoenebeck 36 };
249 schoenebeck 55
250 schoenebeck 36 /**
251     * Defines controller influencing attenuation.
252     *
253     * @see leverage_ctrl_t
254     */
255     typedef leverage_ctrl_t attenuation_ctrl_t;
256 schoenebeck 55
257 schoenebeck 36 /**
258     * Defines controller influencing envelope generator 1.
259     *
260     * @see leverage_ctrl_t
261     */
262     typedef leverage_ctrl_t eg1_ctrl_t;
263 schoenebeck 55
264 schoenebeck 36 /**
265     * Defines controller influencing envelope generator 2.
266     *
267     * @see leverage_ctrl_t
268     */
269     typedef leverage_ctrl_t eg2_ctrl_t;
270 schoenebeck 2
271     /**
272     * Defines the type of dimension, that is how the dimension zones (and
273     * thus how the dimension regions are selected by. The number of
274     * dimension zones is always a power of two. All dimensions can have up
275     * to 32 zones (except the layer dimension with only up to 8 zones and
276     * the samplechannel dimension which currently allows only 2 zones).
277 schoenebeck 3169 *
278     * @see countEnum(), enumKey(), enumKeys(), enumValue()
279 schoenebeck 2 */
280 schoenebeck 3169 GIG_DECLARE_ENUM(dimension_t,
281 schoenebeck 2 dimension_none = 0x00, ///< Dimension not in use.
282     dimension_samplechannel = 0x80, ///< If used sample has more than one channel (thus is not mono).
283     dimension_layer = 0x81, ///< For layering of up to 8 instruments (and eventually crossfading of 2 or 4 layers).
284 persson 1076 dimension_velocity = 0x82, ///< Key Velocity (this is the only dimension in gig2 where the ranges can exactly be defined).
285 schoenebeck 2 dimension_channelaftertouch = 0x83, ///< Channel Key Pressure
286     dimension_releasetrigger = 0x84, ///< Special dimension for triggering samples on releasing a key.
287 schoenebeck 353 dimension_keyboard = 0x85, ///< Dimension for keyswitching
288 persson 437 dimension_roundrobin = 0x86, ///< Different samples triggered each time a note is played, dimension regions selected in sequence
289     dimension_random = 0x87, ///< Different samples triggered each time a note is played, random order
290 persson 1076 dimension_smartmidi = 0x88, ///< For MIDI tools like legato and repetition mode
291     dimension_roundrobinkeyboard = 0x89, ///< Different samples triggered each time a note is played, any key advances the counter
292 schoenebeck 2 dimension_modwheel = 0x01, ///< Modulation Wheel (MIDI Controller 1)
293     dimension_breath = 0x02, ///< Breath Controller (Coarse, MIDI Controller 2)
294     dimension_foot = 0x04, ///< Foot Pedal (Coarse, MIDI Controller 4)
295     dimension_portamentotime = 0x05, ///< Portamento Time (Coarse, MIDI Controller 5)
296     dimension_effect1 = 0x0c, ///< Effect Controller 1 (Coarse, MIDI Controller 12)
297     dimension_effect2 = 0x0d, ///< Effect Controller 2 (Coarse, MIDI Controller 13)
298     dimension_genpurpose1 = 0x10, ///< General Purpose Controller 1 (Slider, MIDI Controller 16)
299     dimension_genpurpose2 = 0x11, ///< General Purpose Controller 2 (Slider, MIDI Controller 17)
300     dimension_genpurpose3 = 0x12, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
301     dimension_genpurpose4 = 0x13, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
302     dimension_sustainpedal = 0x40, ///< Sustain Pedal (MIDI Controller 64)
303     dimension_portamento = 0x41, ///< Portamento (MIDI Controller 65)
304     dimension_sostenutopedal = 0x42, ///< Sostenuto Pedal (MIDI Controller 66)
305     dimension_softpedal = 0x43, ///< Soft Pedal (MIDI Controller 67)
306     dimension_genpurpose5 = 0x30, ///< General Purpose Controller 5 (Button, MIDI Controller 80)
307     dimension_genpurpose6 = 0x31, ///< General Purpose Controller 6 (Button, MIDI Controller 81)
308     dimension_genpurpose7 = 0x32, ///< General Purpose Controller 7 (Button, MIDI Controller 82)
309     dimension_genpurpose8 = 0x33, ///< General Purpose Controller 8 (Button, MIDI Controller 83)
310     dimension_effect1depth = 0x5b, ///< Effect 1 Depth (MIDI Controller 91)
311     dimension_effect2depth = 0x5c, ///< Effect 2 Depth (MIDI Controller 92)
312     dimension_effect3depth = 0x5d, ///< Effect 3 Depth (MIDI Controller 93)
313     dimension_effect4depth = 0x5e, ///< Effect 4 Depth (MIDI Controller 94)
314     dimension_effect5depth = 0x5f ///< Effect 5 Depth (MIDI Controller 95)
315 schoenebeck 3169 );
316 schoenebeck 2
317     /**
318     * Intended for internal usage: will be used to convert a dimension value
319     * into the corresponding dimension bit number.
320 schoenebeck 3169 *
321     * @see countEnum(), enumKey(), enumKeys(), enumValue()
322 schoenebeck 2 */
323 schoenebeck 3169 GIG_DECLARE_ENUM(split_type_t,
324 persson 858 split_type_normal, ///< dimension value between 0-127
325 schoenebeck 2 split_type_bit ///< dimension values are already the sought bit number
326 schoenebeck 3169 );
327 schoenebeck 2
328     /** General dimension definition. */
329     struct dimension_def_t {
330     dimension_t dimension; ///< Specifies which source (usually a MIDI controller) is associated with the dimension.
331     uint8_t bits; ///< Number of "bits" (1 bit = 2 splits/zones, 2 bit = 4 splits/zones, 3 bit = 8 splits/zones,...).
332     uint8_t zones; ///< Number of zones the dimension has.
333     split_type_t split_type; ///< Intended for internal usage: will be used to convert a dimension value into the corresponding dimension bit number.
334 persson 774 float zone_size; ///< Intended for internal usage: reflects the size of each zone (128/zones) for normal split types only, 0 otherwise.
335 schoenebeck 2 };
336    
337 schoenebeck 3169 /** Defines which frequencies are filtered by the VCF.
338     *
339     * @see countEnum(), enumKey(), enumKeys(), enumValue()
340     */
341     GIG_DECLARE_ENUM(vcf_type_t,
342 schoenebeck 2 vcf_type_lowpass = 0x00,
343     vcf_type_lowpassturbo = 0xff, ///< More poles than normal lowpass
344     vcf_type_bandpass = 0x01,
345     vcf_type_highpass = 0x02,
346     vcf_type_bandreject = 0x03
347 schoenebeck 3169 );
348 schoenebeck 2
349 schoenebeck 345 /**
350     * Defines the envelope of a crossfade.
351     *
352     * Note: The default value for crossfade points is 0,0,0,0. Layers with
353     * such a default value should be treated as if they would not have a
354 schoenebeck 353 * crossfade.
355 schoenebeck 345 */
356 schoenebeck 2 struct crossfade_t {
357     #if WORDS_BIGENDIAN
358 schoenebeck 345 uint8_t out_end; ///< End postition of fade out.
359     uint8_t out_start; ///< Start position of fade out.
360     uint8_t in_end; ///< End position of fade in.
361 schoenebeck 2 uint8_t in_start; ///< Start position of fade in.
362 schoenebeck 345 #else // little endian
363     uint8_t in_start; ///< Start position of fade in.
364 schoenebeck 2 uint8_t in_end; ///< End position of fade in.
365     uint8_t out_start; ///< Start position of fade out.
366     uint8_t out_end; ///< End postition of fade out.
367     #endif // WORDS_BIGENDIAN
368 schoenebeck 3138
369     void serialize(Serialization::Archive* archive);
370 schoenebeck 2 };
371    
372 schoenebeck 24 /** Reflects the current playback state for a sample. */
373     struct playback_state_t {
374 schoenebeck 2912 file_offset_t position; ///< Current position within the sample.
375 schoenebeck 24 bool reverse; ///< If playback direction is currently backwards (in case there is a pingpong or reverse loop defined).
376 schoenebeck 2912 file_offset_t loop_cycles_left; ///< How many times the loop has still to be passed, this value will be decremented with each loop cycle.
377 schoenebeck 24 };
378    
379 schoenebeck 2 // just symbol prototyping
380     class File;
381     class Instrument;
382     class Sample;
383 capela 310 class Region;
384 schoenebeck 929 class Group;
385 schoenebeck 2584 class Script;
386     class ScriptGroup;
387 schoenebeck 2
388 schoenebeck 2699 /** @brief Encapsulates articulation informations of a dimension region.
389 schoenebeck 2 *
390 schoenebeck 2699 * This is the most important data object of the Gigasampler / GigaStudio
391     * format. A DimensionRegion provides the link to the sample to be played
392     * and all required articulation informations to be interpreted for playing
393     * back the sample and processing it appropriately by the sampler software.
394     * Every Region of a Gigasampler Instrument has at least one dimension
395     * region (exactly then when the Region has no dimension defined). Many
396     * Regions though provide more than one DimensionRegion, which reflect
397     * different playing "cases". For example a different sample might be played
398     * if a certain pedal is pressed down, or if the note was triggered with
399     * different velocity.
400 schoenebeck 2 *
401 schoenebeck 2699 * One instance of a DimensionRegion reflects exactly one particular case
402     * while playing an instrument (for instance "note between C3 and E3 was
403     * triggered AND note on velocity was between 20 and 42 AND modulation wheel
404     * controller is between 80 and 127). The DimensionRegion defines what to do
405     * under that one particular case, that is which sample to play back and how
406     * to play that sample back exactly and how to process it. So a
407     * DimensionRegion object is always linked to exactly one sample. It may
408     * however also link to no sample at all, for defining a "silence" case
409     * where nothing shall be played (for example when note on velocity was
410     * below 6).
411 schoenebeck 2 *
412 schoenebeck 2699 * Note that a DimensionRegion object only defines "what to do", but it does
413     * not define "when to do it". To actually resolve which DimensionRegion to
414     * pick under which situation, you need to refer to the DimensionRegions'
415     * parent Region object. The Region object contains the necessary
416     * "Dimension" definitions, which in turn define which DimensionRegion is
417     * associated with which playing case exactly.
418     *
419     * The Gigasampler/GigaStudio format defines 3 Envelope Generators and 3
420     * Low Frequency Oscillators:
421     *
422 schoenebeck 2 * - EG1 and LFO1, both controlling sample amplitude
423     * - EG2 and LFO2, both controlling filter cutoff frequency
424     * - EG3 and LFO3, both controlling sample pitch
425 schoenebeck 2699 *
426     * Since the gig format was designed as extension to the DLS file format,
427     * this class is derived from the DLS::Sampler class. So also refer to
428     * DLS::Sampler for additional informations, class attributes and methods.
429 schoenebeck 2 */
430     class DimensionRegion : protected DLS::Sampler {
431     public:
432 schoenebeck 2543 uint8_t VelocityUpperLimit; ///< Defines the upper velocity value limit of a velocity split (only if an user defined limit was set, thus a value not equal to 128/NumberOfSplits, else this value is 0). Only for gig2, for gig3 and above the DimensionUpperLimits are used instead.
433 schoenebeck 2 Sample* pSample; ///< Points to the Sample which is assigned to the dimension region.
434     // Sample Amplitude EG/LFO
435     uint16_t EG1PreAttack; ///< Preattack value of the sample amplitude EG (0 - 1000 permille).
436     double EG1Attack; ///< Attack time of the sample amplitude EG (0.000 - 60.000s).
437     double EG1Decay1; ///< Decay time of the sample amplitude EG (0.000 - 60.000s).
438     double EG1Decay2; ///< Only if <i>EG1InfiniteSustain == false</i>: 2nd decay stage time of the sample amplitude EG (0.000 - 60.000s).
439     bool EG1InfiniteSustain; ///< If <i>true</i>, instead of going into Decay2 phase, Decay1 level will be hold until note will be released.
440     uint16_t EG1Sustain; ///< Sustain value of the sample amplitude EG (0 - 1000 permille).
441     double EG1Release; ///< Release time of the sample amplitude EG (0.000 - 60.000s).
442     bool EG1Hold; ///< If <i>true</i>, Decay1 stage should be postponed until the sample reached the sample loop start.
443     eg1_ctrl_t EG1Controller; ///< MIDI Controller which has influence on sample amplitude EG parameters (attack, decay, release).
444     bool EG1ControllerInvert; ///< Invert values coming from defined EG1 controller.
445 schoenebeck 36 uint8_t EG1ControllerAttackInfluence; ///< Amount EG1 Controller has influence on the EG1 Attack time (0 - 3, where 0 means off).
446     uint8_t EG1ControllerDecayInfluence; ///< Amount EG1 Controller has influence on the EG1 Decay time (0 - 3, where 0 means off).
447     uint8_t EG1ControllerReleaseInfluence; ///< Amount EG1 Controller has influence on the EG1 Release time (0 - 3, where 0 means off).
448 schoenebeck 2 double LFO1Frequency; ///< Frequency of the sample amplitude LFO (0.10 - 10.00 Hz).
449     uint16_t LFO1InternalDepth; ///< Firm pitch of the sample amplitude LFO (0 - 1200 cents).
450     uint16_t LFO1ControlDepth; ///< Controller depth influencing sample amplitude LFO pitch (0 - 1200 cents).
451     lfo1_ctrl_t LFO1Controller; ///< MIDI Controller which controls sample amplitude LFO.
452     bool LFO1FlipPhase; ///< Inverts phase of the sample amplitude LFO wave.
453     bool LFO1Sync; ///< If set to <i>true</i> only one LFO should be used for all voices.
454     // Filter Cutoff Frequency EG/LFO
455     uint16_t EG2PreAttack; ///< Preattack value of the filter cutoff EG (0 - 1000 permille).
456     double EG2Attack; ///< Attack time of the filter cutoff EG (0.000 - 60.000s).
457     double EG2Decay1; ///< Decay time of the filter cutoff EG (0.000 - 60.000s).
458     double EG2Decay2; ///< Only if <i>EG2InfiniteSustain == false</i>: 2nd stage decay time of the filter cutoff EG (0.000 - 60.000s).
459     bool EG2InfiniteSustain; ///< If <i>true</i>, instead of going into Decay2 phase, Decay1 level will be hold until note will be released.
460     uint16_t EG2Sustain; ///< Sustain value of the filter cutoff EG (0 - 1000 permille).
461     double EG2Release; ///< Release time of the filter cutoff EG (0.000 - 60.000s).
462     eg2_ctrl_t EG2Controller; ///< MIDI Controller which has influence on filter cutoff EG parameters (attack, decay, release).
463     bool EG2ControllerInvert; ///< Invert values coming from defined EG2 controller.
464 schoenebeck 36 uint8_t EG2ControllerAttackInfluence; ///< Amount EG2 Controller has influence on the EG2 Attack time (0 - 3, where 0 means off).
465     uint8_t EG2ControllerDecayInfluence; ///< Amount EG2 Controller has influence on the EG2 Decay time (0 - 3, where 0 means off).
466     uint8_t EG2ControllerReleaseInfluence; ///< Amount EG2 Controller has influence on the EG2 Release time (0 - 3, where 0 means off).
467 schoenebeck 2 double LFO2Frequency; ///< Frequency of the filter cutoff LFO (0.10 - 10.00 Hz).
468     uint16_t LFO2InternalDepth; ///< Firm pitch of the filter cutoff LFO (0 - 1200 cents).
469     uint16_t LFO2ControlDepth; ///< Controller depth influencing filter cutoff LFO pitch (0 - 1200).
470     lfo2_ctrl_t LFO2Controller; ///< MIDI Controlle which controls the filter cutoff LFO.
471     bool LFO2FlipPhase; ///< Inverts phase of the filter cutoff LFO wave.
472     bool LFO2Sync; ///< If set to <i>true</i> only one LFO should be used for all voices.
473     // Sample Pitch EG/LFO
474     double EG3Attack; ///< Attack time of the sample pitch EG (0.000 - 10.000s).
475     int16_t EG3Depth; ///< Depth of the sample pitch EG (-1200 - +1200).
476     double LFO3Frequency; ///< Frequency of the sample pitch LFO (0.10 - 10.00 Hz).
477     int16_t LFO3InternalDepth; ///< Firm depth of the sample pitch LFO (-1200 - +1200 cents).
478     int16_t LFO3ControlDepth; ///< Controller depth of the sample pitch LFO (-1200 - +1200 cents).
479     lfo3_ctrl_t LFO3Controller; ///< MIDI Controller which controls the sample pitch LFO.
480     bool LFO3Sync; ///< If set to <i>true</i> only one LFO should be used for all voices.
481     // Filter
482     bool VCFEnabled; ///< If filter should be used.
483     vcf_type_t VCFType; ///< Defines the general filter characteristic (lowpass, highpass, bandpass, etc.).
484 schoenebeck 1358 vcf_cutoff_ctrl_t VCFCutoffController; ///< Specifies which external controller has influence on the filter cutoff frequency. @deprecated Don't alter directly, use SetVCFCutoffController() instead!
485 persson 728 bool VCFCutoffControllerInvert; ///< Inverts values coming from the defined cutoff controller
486 schoenebeck 2 uint8_t VCFCutoff; ///< Max. cutoff frequency.
487 schoenebeck 1358 curve_type_t VCFVelocityCurve; ///< Defines a transformation curve for the incoming velocity values, affecting the VCF. @deprecated Don't alter directly, use SetVCFVelocityCurve() instead!
488     uint8_t VCFVelocityScale; ///< (0-127) Amount velocity controls VCF cutoff frequency (only if no other VCF cutoff controller is defined, otherwise this is the minimum cutoff). @deprecated Don't alter directly, use SetVCFVelocityScale() instead!
489     uint8_t VCFVelocityDynamicRange; ///< 0x04 = lowest, 0x00 = highest . @deprecated Don't alter directly, use SetVCFVelocityDynamicRange() instead!
490 schoenebeck 2 uint8_t VCFResonance; ///< Firm internal filter resonance weight.
491     bool VCFResonanceDynamic; ///< If <i>true</i>: Increases the resonance Q according to changes of controllers that actually control the VCF cutoff frequency (EG2, ext. VCF MIDI controller).
492     vcf_res_ctrl_t VCFResonanceController; ///< Specifies which external controller has influence on the filter resonance Q.
493     bool VCFKeyboardTracking; ///< If <i>true</i>: VCF cutoff frequence will be dependend to the note key position relative to the defined breakpoint value.
494     uint8_t VCFKeyboardTrackingBreakpoint; ///< See VCFKeyboardTracking (0 - 127).
495     // Key Velocity Transformations
496 schoenebeck 1358 curve_type_t VelocityResponseCurve; ///< Defines a transformation curve to the incoming velocity values affecting amplitude (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseCurve() instead!
497     uint8_t VelocityResponseDepth; ///< Dynamic range of velocity affecting amplitude (0 - 4) (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseDepth() instead!
498     uint8_t VelocityResponseCurveScaling; ///< 0 - 127 (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseCurveScaling() instead!
499     curve_type_t ReleaseVelocityResponseCurve; ///< Defines a transformation curve to the incoming release veloctiy values affecting envelope times. @deprecated Don't alter directly, use SetReleaseVelocityResponseCurve() instead!
500     uint8_t ReleaseVelocityResponseDepth; ///< Dynamic range of release velocity affecting envelope time (0 - 4). @deprecated Don't alter directly, use SetReleaseVelocityResponseDepth() instead!
501 schoenebeck 2 uint8_t ReleaseTriggerDecay; ///< 0 - 8
502     // Mix / Layer
503     crossfade_t Crossfade;
504     bool PitchTrack; ///< If <i>true</i>: sample will be pitched according to the key position (this will be disabled for drums for example).
505     dim_bypass_ctrl_t DimensionBypass; ///< If defined, the MIDI controller can switch on/off the dimension in realtime.
506     int8_t Pan; ///< Panorama / Balance (-64..0..63 <-> left..middle..right)
507     bool SelfMask; ///< If <i>true</i>: high velocity notes will stop low velocity notes at the same note, with that you can save voices that wouldn't be audible anyway.
508 schoenebeck 36 attenuation_ctrl_t AttenuationController; ///< MIDI Controller which has influence on the volume level of the sample (or entire sample group).
509     bool InvertAttenuationController; ///< Inverts the values coming from the defined Attenuation Controller.
510     uint8_t AttenuationControllerThreshold;///< 0-127
511 schoenebeck 2 uint8_t ChannelOffset; ///< Audio output where the audio signal of the dimension region should be routed to (0 - 9).
512     bool SustainDefeat; ///< If <i>true</i>: Sustain pedal will not hold a note.
513     bool MSDecode; ///< Gigastudio flag: defines if Mid Side Recordings should be decoded.
514     uint16_t SampleStartOffset; ///< Number of samples the sample start should be moved (0 - 2000).
515 persson 406 double SampleAttenuation; ///< Sample volume (calculated from DLS::Sampler::Gain)
516 schoenebeck 2547 uint8_t DimensionUpperLimits[8]; ///< gig3: defines the upper limit of the dimension values for this dimension region. In case you wondered why this is defined on DimensionRegion level and not on Region level: the zone sizes (upper limits) of the velocity dimension can indeed differ in the individual dimension regions, depending on which zones of the other dimension types are currently selected. So this is exceptional for the velocity dimension only. All other dimension types have the same dimension zone sizes for every single DimensionRegion (of the sample Region).
517 persson 406
518 schoenebeck 2 // derived attributes from DLS::Sampler
519 persson 2334 using DLS::Sampler::UnityNote;
520     using DLS::Sampler::FineTune;
521     using DLS::Sampler::Gain;
522     using DLS::Sampler::SampleLoops;
523     using DLS::Sampler::pSampleLoops;
524 schoenebeck 2
525 schoenebeck 809 // own methods
526 schoenebeck 16 double GetVelocityAttenuation(uint8_t MIDIKeyVelocity);
527 persson 613 double GetVelocityRelease(uint8_t MIDIKeyVelocity);
528 persson 728 double GetVelocityCutoff(uint8_t MIDIKeyVelocity);
529 schoenebeck 1358 void SetVelocityResponseCurve(curve_type_t curve);
530     void SetVelocityResponseDepth(uint8_t depth);
531     void SetVelocityResponseCurveScaling(uint8_t scaling);
532     void SetReleaseVelocityResponseCurve(curve_type_t curve);
533     void SetReleaseVelocityResponseDepth(uint8_t depth);
534     void SetVCFCutoffController(vcf_cutoff_ctrl_t controller);
535     void SetVCFVelocityCurve(curve_type_t curve);
536     void SetVCFVelocityDynamicRange(uint8_t range);
537     void SetVCFVelocityScale(uint8_t scaling);
538 schoenebeck 1316 Region* GetParent() const;
539 schoenebeck 1155 // derived methods
540 persson 2334 using DLS::Sampler::AddSampleLoop;
541     using DLS::Sampler::DeleteSampleLoop;
542 schoenebeck 809 // overridden methods
543 schoenebeck 1358 virtual void SetGain(int32_t gain);
544 schoenebeck 2682 virtual void UpdateChunks(progress_t* pProgress);
545 schoenebeck 2394 virtual void CopyAssign(const DimensionRegion* orig);
546 schoenebeck 16 protected:
547 persson 858 uint8_t* VelocityTable; ///< For velocity dimensions with custom defined zone ranges only: used for fast converting from velocity MIDI value to dimension bit number.
548 schoenebeck 1316 DimensionRegion(Region* pParent, RIFF::List* _3ewl);
549 persson 1301 DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src);
550 schoenebeck 16 ~DimensionRegion();
551 schoenebeck 2482 void CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples);
552 schoenebeck 3138 void serialize(Serialization::Archive* archive);
553 schoenebeck 16 friend class Region;
554 schoenebeck 3138 friend class Serialization::Archive;
555 schoenebeck 16 private:
556 schoenebeck 36 typedef enum { ///< Used to decode attenuation, EG1 and EG2 controller
557 schoenebeck 2540 // official leverage controllers as they were defined in the original Gigasampler/GigaStudio format:
558 schoenebeck 36 _lev_ctrl_none = 0x00,
559     _lev_ctrl_modwheel = 0x03, ///< Modulation Wheel (MIDI Controller 1)
560     _lev_ctrl_breath = 0x05, ///< Breath Controller (Coarse, MIDI Controller 2)
561     _lev_ctrl_foot = 0x07, ///< Foot Pedal (Coarse, MIDI Controller 4)
562     _lev_ctrl_effect1 = 0x0d, ///< Effect Controller 1 (Coarse, MIDI Controller 12)
563     _lev_ctrl_effect2 = 0x0f, ///< Effect Controller 2 (Coarse, MIDI Controller 13)
564     _lev_ctrl_genpurpose1 = 0x11, ///< General Purpose Controller 1 (Slider, MIDI Controller 16)
565     _lev_ctrl_genpurpose2 = 0x13, ///< General Purpose Controller 2 (Slider, MIDI Controller 17)
566     _lev_ctrl_genpurpose3 = 0x15, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
567     _lev_ctrl_genpurpose4 = 0x17, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
568     _lev_ctrl_portamentotime = 0x0b, ///< Portamento Time (Coarse, MIDI Controller 5)
569     _lev_ctrl_sustainpedal = 0x01, ///< Sustain Pedal (MIDI Controller 64)
570     _lev_ctrl_portamento = 0x19, ///< Portamento (MIDI Controller 65)
571     _lev_ctrl_sostenutopedal = 0x1b, ///< Sostenuto Pedal (MIDI Controller 66)
572     _lev_ctrl_softpedal = 0x09, ///< Soft Pedal (MIDI Controller 67)
573     _lev_ctrl_genpurpose5 = 0x1d, ///< General Purpose Controller 5 (Button, MIDI Controller 80)
574     _lev_ctrl_genpurpose6 = 0x1f, ///< General Purpose Controller 6 (Button, MIDI Controller 81)
575     _lev_ctrl_genpurpose7 = 0x21, ///< General Purpose Controller 7 (Button, MIDI Controller 82)
576     _lev_ctrl_genpurpose8 = 0x23, ///< General Purpose Controller 8 (Button, MIDI Controller 83)
577     _lev_ctrl_effect1depth = 0x25, ///< Effect 1 Depth (MIDI Controller 91)
578     _lev_ctrl_effect2depth = 0x27, ///< Effect 2 Depth (MIDI Controller 92)
579     _lev_ctrl_effect3depth = 0x29, ///< Effect 3 Depth (MIDI Controller 93)
580     _lev_ctrl_effect4depth = 0x2b, ///< Effect 4 Depth (MIDI Controller 94)
581     _lev_ctrl_effect5depth = 0x2d, ///< Effect 5 Depth (MIDI Controller 95)
582     _lev_ctrl_channelaftertouch = 0x2f, ///< Channel Key Pressure
583 schoenebeck 2540 _lev_ctrl_velocity = 0xff, ///< Key Velocity
584    
585     // format extension (these controllers are so far only supported by LinuxSampler & gigedit) they will *NOT* work with Gigasampler/GigaStudio !
586     // (the assigned values here are their official MIDI CC number plus the highest bit set):
587     _lev_ctrl_CC3_EXT = 0x83, ///< MIDI Controller 3 [gig format extension]
588    
589     _lev_ctrl_CC6_EXT = 0x86, ///< Data Entry MSB (MIDI Controller 6) [gig format extension]
590     _lev_ctrl_CC7_EXT = 0x87, ///< Channel Volume (MIDI Controller 7) [gig format extension]
591     _lev_ctrl_CC8_EXT = 0x88, ///< Balance (MIDI Controller 8) [gig format extension]
592     _lev_ctrl_CC9_EXT = 0x89, ///< MIDI Controller 9 [gig format extension]
593     _lev_ctrl_CC10_EXT = 0x8a, ///< Pan (MIDI Controller 10) [gig format extension]
594     _lev_ctrl_CC11_EXT = 0x8b, ///< Expression Controller (MIDI Controller 11) [gig format extension]
595    
596     _lev_ctrl_CC14_EXT = 0x8e, ///< MIDI Controller 14 [gig format extension]
597     _lev_ctrl_CC15_EXT = 0x8f, ///< MIDI Controller 15 [gig format extension]
598    
599     _lev_ctrl_CC20_EXT = 0x94, ///< MIDI Controller 20 [gig format extension]
600     _lev_ctrl_CC21_EXT = 0x95, ///< MIDI Controller 21 [gig format extension]
601     _lev_ctrl_CC22_EXT = 0x96, ///< MIDI Controller 22 [gig format extension]
602     _lev_ctrl_CC23_EXT = 0x97, ///< MIDI Controller 23 [gig format extension]
603     _lev_ctrl_CC24_EXT = 0x98, ///< MIDI Controller 24 [gig format extension]
604     _lev_ctrl_CC25_EXT = 0x99, ///< MIDI Controller 25 [gig format extension]
605     _lev_ctrl_CC26_EXT = 0x9a, ///< MIDI Controller 26 [gig format extension]
606     _lev_ctrl_CC27_EXT = 0x9b, ///< MIDI Controller 27 [gig format extension]
607     _lev_ctrl_CC28_EXT = 0x9c, ///< MIDI Controller 28 [gig format extension]
608     _lev_ctrl_CC29_EXT = 0x9d, ///< MIDI Controller 29 [gig format extension]
609     _lev_ctrl_CC30_EXT = 0x9e, ///< MIDI Controller 30 [gig format extension]
610     _lev_ctrl_CC31_EXT = 0x9f, ///< MIDI Controller 31 [gig format extension]
611    
612     _lev_ctrl_CC68_EXT = 0xc4, ///< Legato Footswitch (MIDI Controller 68) [gig format extension]
613     _lev_ctrl_CC69_EXT = 0xc5, ///< Hold 2 (MIDI Controller 69) [gig format extension]
614     _lev_ctrl_CC70_EXT = 0xc6, ///< Sound Ctrl. 1 - Sound Variation (MIDI Controller 70) [gig format extension]
615     _lev_ctrl_CC71_EXT = 0xc7, ///< Sound Ctrl. 2 - Timbre (MIDI Controller 71) [gig format extension]
616     _lev_ctrl_CC72_EXT = 0xc8, ///< Sound Ctrl. 3 - Release Time (MIDI Controller 72) [gig format extension]
617     _lev_ctrl_CC73_EXT = 0xc9, ///< Sound Ctrl. 4 - Attack Time (MIDI Controller 73) [gig format extension]
618     _lev_ctrl_CC74_EXT = 0xca, ///< Sound Ctrl. 5 - Brightness (MIDI Controller 74) [gig format extension]
619     _lev_ctrl_CC75_EXT = 0xcb, ///< Sound Ctrl. 6 - Decay Time (MIDI Controller 75) [gig format extension]
620     _lev_ctrl_CC76_EXT = 0xcc, ///< Sound Ctrl. 7 - Vibrato Rate (MIDI Controller 76) [gig format extension]
621     _lev_ctrl_CC77_EXT = 0xcd, ///< Sound Ctrl. 8 - Vibrato Depth (MIDI Controller 77) [gig format extension]
622     _lev_ctrl_CC78_EXT = 0xce, ///< Sound Ctrl. 9 - Vibrato Delay (MIDI Controller 78) [gig format extension]
623     _lev_ctrl_CC79_EXT = 0xcf, ///< Sound Ctrl. 10 (MIDI Controller 79) [gig format extension]
624    
625     _lev_ctrl_CC84_EXT = 0xd4, ///< Portamento Control (MIDI Controller 84) [gig format extension]
626     _lev_ctrl_CC85_EXT = 0xd5, ///< MIDI Controller 85 [gig format extension]
627     _lev_ctrl_CC86_EXT = 0xd6, ///< MIDI Controller 86 [gig format extension]
628     _lev_ctrl_CC87_EXT = 0xd7, ///< MIDI Controller 87 [gig format extension]
629    
630     _lev_ctrl_CC89_EXT = 0xd9, ///< MIDI Controller 89 [gig format extension]
631     _lev_ctrl_CC90_EXT = 0xda, ///< MIDI Controller 90 [gig format extension]
632    
633     _lev_ctrl_CC96_EXT = 0xe0, ///< Data Increment (MIDI Controller 96) [gig format extension]
634     _lev_ctrl_CC97_EXT = 0xe1, ///< Data Decrement (MIDI Controller 97) [gig format extension]
635    
636     _lev_ctrl_CC102_EXT = 0xe6, ///< MIDI Controller 102 [gig format extension]
637     _lev_ctrl_CC103_EXT = 0xe7, ///< MIDI Controller 103 [gig format extension]
638     _lev_ctrl_CC104_EXT = 0xe8, ///< MIDI Controller 104 [gig format extension]
639     _lev_ctrl_CC105_EXT = 0xe9, ///< MIDI Controller 105 [gig format extension]
640     _lev_ctrl_CC106_EXT = 0xea, ///< MIDI Controller 106 [gig format extension]
641     _lev_ctrl_CC107_EXT = 0xeb, ///< MIDI Controller 107 [gig format extension]
642     _lev_ctrl_CC108_EXT = 0xec, ///< MIDI Controller 108 [gig format extension]
643     _lev_ctrl_CC109_EXT = 0xed, ///< MIDI Controller 109 [gig format extension]
644     _lev_ctrl_CC110_EXT = 0xee, ///< MIDI Controller 110 [gig format extension]
645     _lev_ctrl_CC111_EXT = 0xef, ///< MIDI Controller 111 [gig format extension]
646     _lev_ctrl_CC112_EXT = 0xf0, ///< MIDI Controller 112 [gig format extension]
647     _lev_ctrl_CC113_EXT = 0xf1, ///< MIDI Controller 113 [gig format extension]
648     _lev_ctrl_CC114_EXT = 0xf2, ///< MIDI Controller 114 [gig format extension]
649     _lev_ctrl_CC115_EXT = 0xf3, ///< MIDI Controller 115 [gig format extension]
650     _lev_ctrl_CC116_EXT = 0xf4, ///< MIDI Controller 116 [gig format extension]
651     _lev_ctrl_CC117_EXT = 0xf5, ///< MIDI Controller 117 [gig format extension]
652     _lev_ctrl_CC118_EXT = 0xf6, ///< MIDI Controller 118 [gig format extension]
653     _lev_ctrl_CC119_EXT = 0xf7 ///< MIDI Controller 119 [gig format extension]
654 schoenebeck 55 } _lev_ctrl_t;
655 schoenebeck 16 typedef std::map<uint32_t, double*> VelocityTableMap;
656    
657 schoenebeck 2922 static size_t Instances; ///< Number of DimensionRegion instances.
658 schoenebeck 16 static VelocityTableMap* pVelocityTables; ///< Contains the tables corresponding to the various velocity parameters (VelocityResponseCurve and VelocityResponseDepth).
659     double* pVelocityAttenuationTable; ///< Points to the velocity table corresponding to the velocity parameters of this DimensionRegion.
660 persson 613 double* pVelocityReleaseTable; ///< Points to the velocity table corresponding to the release velocity parameters of this DimensionRegion
661 persson 728 double* pVelocityCutoffTable; ///< Points to the velocity table corresponding to the filter velocity parameters of this DimensionRegion
662 schoenebeck 1316 Region* pRegion;
663 schoenebeck 55
664 schoenebeck 36 leverage_ctrl_t DecodeLeverageController(_lev_ctrl_t EncodedController);
665 schoenebeck 809 _lev_ctrl_t EncodeLeverageController(leverage_ctrl_t DecodedController);
666 schoenebeck 1358 double* GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth);
667     double* GetCutoffVelocityTable(curve_type_t vcfVelocityCurve, uint8_t vcfVelocityDynamicRange, uint8_t vcfVelocityScale, vcf_cutoff_ctrl_t vcfCutoffController);
668 persson 613 double* GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);
669 schoenebeck 308 double* CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);
670 schoenebeck 2 };
671    
672 schoenebeck 2699 /** @brief Encapsulates sample waves of Gigasampler/GigaStudio files used for playback.
673 schoenebeck 809 *
674 schoenebeck 2699 * This class provides access to the actual audio sample data of a
675     * Gigasampler/GigaStudio file. Along to the actual sample data, it also
676     * provides access to the sample's meta informations like bit depth,
677     * sample rate, encoding type, but also loop informations. The latter may be
678     * used by instruments for resembling sounds with arbitary note lengths.
679     *
680 schoenebeck 809 * In case you created a new sample with File::AddSample(), you should
681     * first update all attributes with the desired meta informations
682     * (amount of channels, bit depth, sample rate, etc.), then call
683     * Resize() with the desired sample size, followed by File::Save(), this
684     * will create the mandatory RIFF chunk which will hold the sample wave
685     * data and / or resize the file so you will be able to Write() the
686     * sample data directly to disk.
687 schoenebeck 1154 *
688     * @e Caution: for gig synthesis, most looping relevant information are
689     * retrieved from the respective DimensionRegon instead from the Sample
690     * itself. This was made for allowing different loop definitions for the
691     * same sample under different conditions.
692 schoenebeck 2699 *
693     * Since the gig format was designed as extension to the DLS file format,
694     * this class is derived from the DLS::Sample class. So also refer to
695     * DLS::Sample for additional informations, class attributes and methods.
696 schoenebeck 809 */
697 schoenebeck 2 class Sample : public DLS::Sample {
698     public:
699     uint32_t Manufacturer; ///< Specifies the MIDI Manufacturer's Association (MMA) Manufacturer code for the sampler intended to receive this file's waveform. If no particular manufacturer is to be specified, a value of 0 should be used.
700     uint32_t Product; ///< Specifies the MIDI model ID defined by the manufacturer corresponding to the Manufacturer field. If no particular manufacturer's product is to be specified, a value of 0 should be used.
701 schoenebeck 809 uint32_t SamplePeriod; ///< Specifies the duration of time that passes during the playback of one sample in nanoseconds (normally equal to 1 / Samples Per Second, where Samples Per Second is the value found in the format chunk), don't bother to update this attribute, it won't be saved.
702 schoenebeck 2 uint32_t MIDIUnityNote; ///< Specifies the musical note at which the sample will be played at it's original sample rate.
703 schoenebeck 21 uint32_t FineTune; ///< Specifies the fraction of a semitone up from the specified MIDI unity note field. A value of 0x80000000 means 1/2 semitone (50 cents) and a value of 0x00000000 means no fine tuning between semitones.
704 schoenebeck 2 smpte_format_t SMPTEFormat; ///< Specifies the Society of Motion Pictures and Television E time format used in the following <i>SMPTEOffset</i> field. If a value of 0 is set, <i>SMPTEOffset</i> should also be set to 0.
705     uint32_t SMPTEOffset; ///< The SMPTE Offset value specifies the time offset to be used for the synchronization / calibration to the first sample in the waveform. This value uses a format of 0xhhmmssff where hh is a signed value that specifies the number of hours (-23 to 23), mm is an unsigned value that specifies the number of minutes (0 to 59), ss is an unsigned value that specifies the number of seconds (0 to 59) and ff is an unsigned value that specifies the number of frames (0 to -1).
706 schoenebeck 1154 uint32_t Loops; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: Number of defined sample loops. So far only seen single loops in gig files - please report if you encounter more!)
707 schoenebeck 21 uint32_t LoopID; ///< Specifies the unique ID that corresponds to one of the defined cue points in the cue point list (only if Loops > 0), as the Gigasampler format only allows one loop definition at the moment, this attribute isn't really useful for anything.
708 schoenebeck 1154 loop_type_t LoopType; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The type field defines how the waveform samples will be looped.)
709     uint32_t LoopStart; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The start value specifies the offset [in sample points] in the waveform data of the first sample to be played in the loop [only if Loops > 0].)
710     uint32_t LoopEnd; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The end value specifies the offset [in sample points] in the waveform data which represents the end of the loop [only if Loops > 0].)
711     uint32_t LoopSize; ///< @e Caution: Use the respective fields in the DimensionRegion instead of this one! (Intended purpose: Length of the looping area [in sample points] which is equivalent to @code LoopEnd - LoopStart @endcode.)
712     uint32_t LoopFraction; ///< The fractional value specifies a fraction of a sample at which to loop. This allows a loop to be fine tuned at a resolution greater than one sample. A value of 0 means no fraction, a value of 0x80000000 means 1/2 of a sample length. 0xFFFFFFFF is the smallest fraction of a sample that can be represented.
713     uint32_t LoopPlayCount; ///< Number of times the loop should be played (a value of 0 = infinite).
714 schoenebeck 2 bool Compressed; ///< If the sample wave is compressed (probably just interesting for instrument and sample editors, as this library already handles the decompression in it's sample access methods anyway).
715 persson 437 uint32_t TruncatedBits; ///< For 24-bit compressed samples only: number of bits truncated during compression (0, 4 or 6)
716     bool Dithered; ///< For 24-bit compressed samples only: if dithering was used during compression with bit reduction
717 schoenebeck 2
718     // own methods
719     buffer_t LoadSampleData();
720 schoenebeck 2912 buffer_t LoadSampleData(file_offset_t SampleCount);
721 schoenebeck 2 buffer_t LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount);
722 schoenebeck 2912 buffer_t LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount);
723 schoenebeck 2 buffer_t GetCache();
724 schoenebeck 384 // own static methods
725 schoenebeck 2912 static buffer_t CreateDecompressionBuffer(file_offset_t MaxReadSize);
726 schoenebeck 384 static void DestroyDecompressionBuffer(buffer_t& DecompressionBuffer);
727 schoenebeck 2 // overridden methods
728     void ReleaseSampleData();
729 schoenebeck 2922 void Resize(file_offset_t NewSize);
730 schoenebeck 2912 file_offset_t SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence = RIFF::stream_start);
731     file_offset_t GetPos() const;
732     file_offset_t Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer = NULL);
733     file_offset_t ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState, DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer = NULL);
734     file_offset_t Write(void* pBuffer, file_offset_t SampleCount);
735 schoenebeck 930 Group* GetGroup() const;
736 schoenebeck 2682 virtual void UpdateChunks(progress_t* pProgress);
737 schoenebeck 2482 void CopyAssignMeta(const Sample* orig);
738     void CopyAssignWave(const Sample* orig);
739 schoenebeck 2989 uint32_t GetWaveDataCRC32Checksum();
740     bool VerifyWaveData(uint32_t* pActually = NULL);
741 schoenebeck 2 protected:
742 schoenebeck 2922 static size_t Instances; ///< Number of instances of class Sample.
743 schoenebeck 384 static buffer_t InternalDecompressionBuffer; ///< Buffer used for decompression as well as for truncation of 24 Bit -> 16 Bit samples.
744 schoenebeck 930 Group* pGroup; ///< pointer to the Group this sample belongs to (always not-NULL)
745 schoenebeck 2912 file_offset_t FrameOffset; ///< Current offset (sample points) in current sample frame (for decompression only).
746     file_offset_t* FrameTable; ///< For positioning within compressed samples only: stores the offset values for each frame.
747     file_offset_t SamplePos; ///< For compressed samples only: stores the current position (in sample points).
748     file_offset_t SamplesInLastFrame; ///< For compressed samples only: length of the last sample frame.
749     file_offset_t WorstCaseFrameSize; ///< For compressed samples only: size (in bytes) of the largest possible sample frame.
750     file_offset_t SamplesPerFrame; ///< For compressed samples only: number of samples in a full sample frame.
751 schoenebeck 2 buffer_t RAMCache; ///< Buffers samples (already uncompressed) in RAM.
752 persson 666 unsigned long FileNo; ///< File number (> 0 when sample is stored in an extension file, 0 when it's in the gig)
753 schoenebeck 809 RIFF::Chunk* pCk3gix;
754     RIFF::Chunk* pCkSmpl;
755 schoenebeck 2989 uint32_t crc; ///< Reflects CRC-32 checksum of the raw sample data at the last time when the sample's raw wave form data has been modified consciously by the user by calling Write().
756 schoenebeck 2
757 schoenebeck 2989 Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo = 0, int index = -1);
758 schoenebeck 2 ~Sample();
759 schoenebeck 2985 uint32_t CalculateWaveDataChecksum();
760 persson 365
761     // Guess size (in bytes) of a compressed sample
762 schoenebeck 2912 inline file_offset_t GuessSize(file_offset_t samples) {
763 persson 365 // 16 bit: assume all frames are compressed - 1 byte
764     // per sample and 5 bytes header per 2048 samples
765    
766     // 24 bit: assume next best compression rate - 1.5
767     // bytes per sample and 13 bytes header per 256
768     // samples
769 schoenebeck 2912 const file_offset_t size =
770 persson 365 BitDepth == 24 ? samples + (samples >> 1) + (samples >> 8) * 13
771     : samples + (samples >> 10) * 5;
772     // Double for stereo and add one worst case sample
773     // frame
774     return (Channels == 2 ? size << 1 : size) + WorstCaseFrameSize;
775     }
776 schoenebeck 384
777     // Worst case amount of sample points that can be read with the
778     // given decompression buffer.
779 schoenebeck 2912 inline file_offset_t WorstCaseMaxSamples(buffer_t* pDecompressionBuffer) {
780     return (file_offset_t) ((float)pDecompressionBuffer->Size / (float)WorstCaseFrameSize * (float)SamplesPerFrame);
781 schoenebeck 384 }
782 schoenebeck 2 private:
783     void ScanCompressedSample();
784     friend class File;
785     friend class Region;
786 schoenebeck 930 friend class Group; // allow to modify protected member pGroup
787 schoenebeck 2 };
788    
789     // TODO: <3dnl> list not used yet - not important though (just contains optional descriptions for the dimensions)
790 schoenebeck 2699 /** @brief Defines Region information of a Gigasampler/GigaStudio instrument.
791 schoenebeck 2547 *
792 schoenebeck 2699 * A Region reflects a consecutive area (key range) on the keyboard. The
793     * individual regions in the gig format may not overlap with other regions
794     * (of the same instrument that is). Further, in the gig format a Region is
795     * merely a container for DimensionRegions (a.k.a. "Cases"). The Region
796     * itself does not provide the sample mapping or articulation informations
797     * used, even though the data structures of regions indeed provide such
798     * informations. The latter is however just of historical nature, because
799     * the gig file format was derived from the DLS file format.
800 schoenebeck 2547 *
801     * Each Region consists of at least one or more DimensionRegions. The actual
802     * amount of DimensionRegions depends on which kind of "dimensions" are
803     * defined for this region, and on the split / zone amount for each of those
804     * dimensions.
805 schoenebeck 2699 *
806     * Since the gig format was designed as extension to the DLS file format,
807     * this class is derived from the DLS::Region class. So also refer to
808     * DLS::Region for additional informations, class attributes and methods.
809 schoenebeck 2547 */
810 schoenebeck 2 class Region : public DLS::Region {
811     public:
812 schoenebeck 809 unsigned int Dimensions; ///< Number of defined dimensions, do not alter!
813 schoenebeck 926 dimension_def_t pDimensionDefinitions[8]; ///< Defines the five (gig2) or eight (gig3) possible dimensions (the dimension's controller and number of bits/splits). Use AddDimension() and DeleteDimension() to create a new dimension or delete an existing one.
814 schoenebeck 809 uint32_t DimensionRegions; ///< Total number of DimensionRegions this Region contains, do not alter!
815 schoenebeck 926 DimensionRegion* pDimensionRegions[256]; ///< Pointer array to the 32 (gig2) or 256 (gig3) possible dimension regions (reflects NULL for dimension regions not in use). Avoid to access the array directly and better use GetDimensionRegionByValue() instead, but of course in some cases it makes sense to use the array (e.g. iterating through all DimensionRegions). Use AddDimension() and DeleteDimension() to create a new dimension or delete an existing one (which will create or delete the respective dimension region(s) automatically).
816 schoenebeck 809 unsigned int Layers; ///< Amount of defined layers (1 - 32). A value of 1 actually means no layering, a value > 1 means there is Layer dimension. The same information can of course also be obtained by accessing pDimensionDefinitions. Do not alter this value!
817 schoenebeck 2
818 schoenebeck 1335 // own methods
819 schoenebeck 347 DimensionRegion* GetDimensionRegionByValue(const uint DimValues[8]);
820     DimensionRegion* GetDimensionRegionByBit(const uint8_t DimBits[8]);
821 schoenebeck 2599 int GetDimensionRegionIndexByValue(const uint DimValues[8]);
822 schoenebeck 2 Sample* GetSample();
823 schoenebeck 809 void AddDimension(dimension_def_t* pDimDef);
824     void DeleteDimension(dimension_def_t* pDimDef);
825 schoenebeck 2547 dimension_def_t* GetDimensionDefinition(dimension_t type);
826 schoenebeck 2555 void DeleteDimensionZone(dimension_t type, int zone);
827     void SplitDimensionZone(dimension_t type, int zone);
828 schoenebeck 2639 void SetDimensionType(dimension_t oldType, dimension_t newType);
829 schoenebeck 1335 // overridden methods
830     virtual void SetKeyRange(uint16_t Low, uint16_t High);
831 schoenebeck 2682 virtual void UpdateChunks(progress_t* pProgress);
832 schoenebeck 2394 virtual void CopyAssign(const Region* orig);
833 schoenebeck 2 protected:
834     Region(Instrument* pInstrument, RIFF::List* rgnList);
835     void LoadDimensionRegions(RIFF::List* rgn);
836 persson 858 void UpdateVelocityTable();
837 schoenebeck 515 Sample* GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress = NULL);
838 schoenebeck 2482 void CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples);
839 schoenebeck 2555 DimensionRegion* GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase);
840 schoenebeck 2 ~Region();
841     friend class Instrument;
842     };
843    
844 schoenebeck 2699 /** @brief Abstract base class for all MIDI rules.
845     *
846     * Note: Instead of using MIDI rules, we recommend you using real-time
847     * instrument scripts instead. Read about the reasons below.
848     *
849     * MIDI Rules (also called "iMIDI rules" or "intelligent MIDI rules") were
850     * introduced with GigaStudio 4 as an attempt to increase the power of
851     * potential user controls over sounds. At that point other samplers already
852     * supported certain powerful user control features, which were not possible
853     * with GigaStudio yet. For example triggering new notes by MIDI CC
854     * controller.
855     *
856     * Such extended features however were usually implemented by other samplers
857     * by requiring the sound designer to write an instrument script which the
858     * designer would then bundle with the respective instrument file. Such
859     * scripts are essentially text files, using a very specific programming
860     * language for the purpose of controlling the sampler in real-time. Since
861     * however musicians are not typically keen to writing such cumbersome
862     * script files, the GigaStudio designers decided to implement such extended
863     * features completely without instrument scripts. Instead they created a
864     * set of rules, which could be defined and altered conveniently by mouse
865     * clicks in GSt's instrument editor application. The downside of this
866     * overall approach however, was that those MIDI rules were very limited in
867     * practice. As sound designer you easily came across the possiblities such
868     * MIDI rules were able to offer.
869     *
870     * Due to such severe use case constraints, support for MIDI rules is quite
871     * limited in libgig. At the moment only the "Control Trigger", "Alternator"
872     * and the "Legato" MIDI rules are supported by libgig. Consequently the
873     * graphical instrument editor application gigedit just supports the
874     * "Control Trigger" and "Legato" MIDI rules, and LinuxSampler even does not
875     * support any MIDI rule type at all and LinuxSampler probably will not
876     * support MIDI rules in future either.
877     *
878     * Instead of using MIDI rules, we introduced real-time instrument scripts
879     * as extension to the original GigaStudio file format. This script based
880     * solution is much more powerful than MIDI rules and is already supported
881     * by libgig, gigedit and LinuxSampler.
882     *
883     * @deprecated Just provided for backward compatiblity, use Script for new
884     * instruments instead.
885     */
886 persson 1627 class MidiRule {
887     public:
888     virtual ~MidiRule() { }
889 persson 2450 protected:
890     virtual void UpdateChunks(uint8_t* pData) const = 0;
891     friend class Instrument;
892 persson 1627 };
893    
894 schoenebeck 2699 /** @brief MIDI rule for triggering notes by control change events.
895     *
896     * A "Control Trigger MIDI rule" allows to trigger new notes by sending MIDI
897     * control change events to the sampler.
898     *
899     * Note: "Control Trigger" MIDI rules are only supported by gigedit, but not
900     * by LinuxSampler. We recommend you using real-time instrument scripts
901     * instead. Read more about the details and reasons for this in the
902     * description of the MidiRule base class.
903     *
904     * @deprecated Just provided for backward compatiblity, use Script for new
905     * instruments instead. See description of MidiRule for details.
906     */
907 persson 1627 class MidiRuleCtrlTrigger : public MidiRule {
908     public:
909     uint8_t ControllerNumber; ///< MIDI controller number.
910     uint8_t Triggers; ///< Number of triggers.
911     struct trigger_t {
912     uint8_t TriggerPoint; ///< The CC value to pass for the note to be triggered.
913     bool Descending; ///< If the change in CC value should be downwards.
914     uint8_t VelSensitivity; ///< How sensitive the velocity should be to the speed of the controller change.
915     uint8_t Key; ///< Key to trigger.
916     bool NoteOff; ///< If a note off should be triggered instead of a note on.
917     uint8_t Velocity; ///< Velocity of the note to trigger. 255 means that velocity should depend on the speed of the controller change.
918     bool OverridePedal; ///< If a note off should be triggered even if the sustain pedal is down.
919     } pTriggers[32];
920    
921     protected:
922     MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg);
923 persson 2450 MidiRuleCtrlTrigger();
924     void UpdateChunks(uint8_t* pData) const;
925 persson 1627 friend class Instrument;
926     };
927    
928 schoenebeck 2699 /** @brief MIDI rule for instruments with legato samples.
929     *
930     * A "Legato MIDI rule" allows playing instruments resembling the legato
931     * playing technique. In the past such legato articulations were tried to be
932     * simulated by pitching the samples of the instrument. However since
933     * usually a high amount of pitch is needed for legatos, this always sounded
934     * very artificial and unrealistic. The "Legato MIDI rule" thus uses another
935     * approach. Instead of pitching the samples, it allows the sound designer
936     * to bundle separate, additional samples for the individual legato
937     * situations and the legato rules defined which samples to be played in
938     * which situation.
939     *
940     * Note: "Legato MIDI rules" are only supported by gigedit, but not
941     * by LinuxSampler. We recommend you using real-time instrument scripts
942     * instead. Read more about the details and reasons for this in the
943     * description of the MidiRule base class.
944     *
945     * @deprecated Just provided for backward compatiblity, use Script for new
946     * instruments instead. See description of MidiRule for details.
947     */
948 persson 2450 class MidiRuleLegato : public MidiRule {
949     public:
950     uint8_t LegatoSamples; ///< Number of legato samples per key in each direction (always 12)
951     bool BypassUseController; ///< If a controller should be used to bypass the sustain note
952     uint8_t BypassKey; ///< Key to be used to bypass the sustain note
953     uint8_t BypassController; ///< Controller to be used to bypass the sustain note
954     uint16_t ThresholdTime; ///< Maximum time (ms) between two notes that should be played legato
955     uint16_t ReleaseTime; ///< Release time
956     range_t KeyRange; ///< Key range for legato notes
957     uint8_t ReleaseTriggerKey; ///< Key triggering release samples
958     uint8_t AltSustain1Key; ///< Key triggering alternate sustain samples
959     uint8_t AltSustain2Key; ///< Key triggering a second set of alternate sustain samples
960    
961     protected:
962     MidiRuleLegato(RIFF::Chunk* _3ewg);
963     MidiRuleLegato();
964     void UpdateChunks(uint8_t* pData) const;
965     friend class Instrument;
966     };
967    
968 schoenebeck 2699 /** @brief MIDI rule to automatically cycle through specified sequences of different articulations.
969     *
970     * The instrument must be using the smartmidi dimension.
971     *
972     * Note: "Alternator" MIDI rules are neither supported by gigedit nor by
973     * LinuxSampler. We recommend you using real-time instrument scripts
974     * instead. Read more about the details and reasons for this in the
975     * description of the MidiRule base class.
976     *
977     * @deprecated Just provided for backward compatiblity, use Script for new
978     * instruments instead. See description of MidiRule for details.
979     */
980 persson 2450 class MidiRuleAlternator : public MidiRule {
981     public:
982     uint8_t Articulations; ///< Number of articulations in the instrument
983     String pArticulations[32]; ///< Names of the articulations
984    
985     range_t PlayRange; ///< Key range of the playable keys in the instrument
986    
987     uint8_t Patterns; ///< Number of alternator patterns
988     struct pattern_t {
989     String Name; ///< Name of the pattern
990     int Size; ///< Number of steps in the pattern
991     const uint8_t& operator[](int i) const { /// Articulation to play
992     return data[i];
993     }
994     uint8_t& operator[](int i) {
995     return data[i];
996     }
997     private:
998     uint8_t data[32];
999     } pPatterns[32]; ///< A pattern is a sequence of articulation numbers
1000    
1001     typedef enum {
1002     selector_none,
1003     selector_key_switch,
1004     selector_controller
1005     } selector_t;
1006     selector_t Selector; ///< Method by which pattern is chosen
1007     range_t KeySwitchRange; ///< Key range for key switch selector
1008     uint8_t Controller; ///< CC number for controller selector
1009    
1010     bool Polyphonic; ///< If alternator should step forward only when all notes are off
1011     bool Chained; ///< If all patterns should be chained together
1012    
1013     protected:
1014     MidiRuleAlternator(RIFF::Chunk* _3ewg);
1015     MidiRuleAlternator();
1016     void UpdateChunks(uint8_t* pData) const;
1017     friend class Instrument;
1018     };
1019    
1020 schoenebeck 2699 /** @brief A MIDI rule not yet implemented by libgig.
1021     *
1022     * This class is currently used as a place holder by libgig for MIDI rule
1023     * types which are not supported by libgig yet.
1024     *
1025     * Note: Support for missing MIDI rule types are probably never added to
1026     * libgig. We recommend you using real-time instrument scripts instead.
1027     * Read more about the details and reasons for this in the description of
1028     * the MidiRule base class.
1029     *
1030     * @deprecated Just provided for backward compatiblity, use Script for new
1031     * instruments instead. See description of MidiRule for details.
1032     */
1033 persson 2450 class MidiRuleUnknown : public MidiRule {
1034     protected:
1035     MidiRuleUnknown() { }
1036     void UpdateChunks(uint8_t* pData) const { }
1037     friend class Instrument;
1038     };
1039    
1040 schoenebeck 2584 /** @brief Real-time instrument script (gig format extension).
1041     *
1042     * Real-time instrument scripts are user supplied small programs which can
1043     * be used by instrument designers to create custom behaviors and features
1044     * not available in the stock sampler engine. Features which might be very
1045     * exotic or specific for the respective instrument.
1046     *
1047     * This is an extension of the GigaStudio format, thus a feature which was
1048     * not available in the GigaStudio 4 software. It is currently only
1049 schoenebeck 2699 * supported by LinuxSampler and gigedit. Scripts will not load with the
1050     * original GigaStudio software.
1051 schoenebeck 2761 *
1052     * You find more informations about Instrument Scripts on the LinuxSampler
1053     * documentation site:
1054     *
1055     * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/">About Instrument Scripts in General</a>
1056     * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language">Introduction to the NKSP Script Language</a>
1057     * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language/Reference/">NKSP Reference Manual</a>
1058     * - <a href="http://doc.linuxsampler.org/Gigedit/Managing_Scripts">Using Instrument Scripts with Gigedit</a>
1059 schoenebeck 2584 */
1060     class Script {
1061     public:
1062     enum Encoding_t {
1063     ENCODING_ASCII = 0 ///< Standard 8 bit US ASCII character encoding (default).
1064     };
1065     enum Compression_t {
1066     COMPRESSION_NONE = 0 ///< Is not compressed at all (default).
1067     };
1068     enum Language_t {
1069 schoenebeck 2762 LANGUAGE_NKSP = 0 ///< NKSP stands for "Is Not KSP" (default). Refer to the <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language/Reference/">NKSP Reference Manual</a> for details about this script language.
1070 schoenebeck 2584 };
1071    
1072     String Name; ///< Arbitrary name of the script, which may be displayed i.e. in an instrument editor.
1073     Compression_t Compression; ///< Whether the script was/should be compressed, and if so, which compression algorithm shall be used.
1074     Encoding_t Encoding; ///< Format the script's source code text is encoded with.
1075     Language_t Language; ///< Programming language and dialect the script is written in.
1076     bool Bypass; ///< Global bypass: if enabled, this script shall not be executed by the sampler for any instrument.
1077    
1078     String GetScriptAsText();
1079     void SetScriptAsText(const String& text);
1080     void SetGroup(ScriptGroup* pGroup);
1081 schoenebeck 2601 ScriptGroup* GetGroup() const;
1082 schoenebeck 3117 void CopyAssign(const Script* orig);
1083 schoenebeck 2584 protected:
1084     Script(ScriptGroup* group, RIFF::Chunk* ckScri);
1085     virtual ~Script();
1086 schoenebeck 2682 void UpdateChunks(progress_t* pProgress);
1087 schoenebeck 2584 void RemoveAllScriptReferences();
1088     friend class ScriptGroup;
1089     friend class Instrument;
1090     private:
1091     ScriptGroup* pGroup;
1092     RIFF::Chunk* pChunk; ///< 'Scri' chunk
1093     std::vector<uint8_t> data;
1094     uint32_t crc; ///< CRC-32 checksum of the raw script data
1095     };
1096    
1097     /** @brief Group of instrument scripts (gig format extension).
1098     *
1099     * This class is simply used to sort a bunch of real-time instrument scripts
1100     * into individual groups. This allows instrument designers and script
1101     * developers to keep scripts in a certain order while working with a larger
1102     * amount of scripts in an instrument editor.
1103     *
1104     * This is an extension of the GigaStudio format, thus a feature which was
1105     * not available in the GigaStudio 4 software. It is currently only
1106     * supported by LinuxSampler and gigedit.
1107     */
1108     class ScriptGroup {
1109     public:
1110     String Name; ///< Name of this script group. For example to be displayed in an instrument editor.
1111    
1112     Script* GetScript(uint index);
1113     Script* AddScript();
1114     void DeleteScript(Script* pScript);
1115     protected:
1116     ScriptGroup(File* file, RIFF::List* lstRTIS);
1117     virtual ~ScriptGroup();
1118     void LoadScripts();
1119 schoenebeck 2682 void UpdateChunks(progress_t* pProgress);
1120 schoenebeck 2584 friend class Script;
1121     friend class File;
1122     private:
1123     File* pFile;
1124     RIFF::List* pList; ///< 'RTIS' list chunk
1125     std::list<Script*>* pScripts;
1126     };
1127    
1128 schoenebeck 2699 /** @brief Provides access to a Gigasampler/GigaStudio instrument.
1129     *
1130     * This class provides access to Gigasampler/GigaStudio instruments
1131     * contained in .gig files. A gig instrument is merely a set of keyboard
1132     * ranges (called Region), plus some additional global informations about
1133     * the instrument. The major part of the actual instrument definition used
1134     * for the synthesis of the instrument is contained in the respective Region
1135     * object (or actually in the respective DimensionRegion object being, see
1136     * description of Region for details).
1137     *
1138     * Since the gig format was designed as extension to the DLS file format,
1139     * this class is derived from the DLS::Instrument class. So also refer to
1140     * DLS::Instrument for additional informations, class attributes and
1141     * methods.
1142     */
1143 schoenebeck 2 class Instrument : protected DLS::Instrument {
1144     public:
1145     // derived attributes from DLS::Resource
1146 persson 2334 using DLS::Resource::pInfo;
1147     using DLS::Resource::pDLSID;
1148 schoenebeck 2 // derived attributes from DLS::Instrument
1149 persson 2334 using DLS::Instrument::IsDrum;
1150     using DLS::Instrument::MIDIBank;
1151     using DLS::Instrument::MIDIBankCoarse;
1152     using DLS::Instrument::MIDIBankFine;
1153     using DLS::Instrument::MIDIProgram;
1154     using DLS::Instrument::Regions;
1155 schoenebeck 2 // own attributes
1156     int32_t Attenuation; ///< in dB
1157     uint16_t EffectSend;
1158     int16_t FineTune; ///< in cents
1159     uint16_t PitchbendRange; ///< Number of semitones pitchbend controller can pitch (default is 2).
1160     bool PianoReleaseMode;
1161     range_t DimensionKeyRange; ///< 0-127 (where 0 means C1 and 127 means G9)
1162    
1163    
1164     // derived methods from DLS::Resource
1165 persson 2334 using DLS::Resource::GetParent;
1166 schoenebeck 2 // overridden methods
1167     Region* GetFirstRegion();
1168     Region* GetNextRegion();
1169 schoenebeck 809 Region* AddRegion();
1170     void DeleteRegion(Region* pRegion);
1171 schoenebeck 2700 void MoveTo(Instrument* dst);
1172 schoenebeck 2682 virtual void UpdateChunks(progress_t* pProgress);
1173 schoenebeck 2394 virtual void CopyAssign(const Instrument* orig);
1174 schoenebeck 2 // own methods
1175     Region* GetRegion(unsigned int Key);
1176 persson 1678 MidiRule* GetMidiRule(int i);
1177 persson 2450 MidiRuleCtrlTrigger* AddMidiRuleCtrlTrigger();
1178     MidiRuleLegato* AddMidiRuleLegato();
1179     MidiRuleAlternator* AddMidiRuleAlternator();
1180     void DeleteMidiRule(int i);
1181 schoenebeck 2584 // real-time instrument script methods
1182     Script* GetScriptOfSlot(uint index);
1183     void AddScriptSlot(Script* pScript, bool bypass = false);
1184     void SwapScriptSlots(uint index1, uint index2);
1185     void RemoveScriptSlot(uint index);
1186     void RemoveScript(Script* pScript);
1187     uint ScriptSlotCount() const;
1188     bool IsScriptSlotBypassed(uint index);
1189     void SetScriptSlotBypassed(uint index, bool bBypass);
1190 schoenebeck 2 protected:
1191     Region* RegionKeyTable[128]; ///< fast lookup for the corresponding Region of a MIDI key
1192    
1193 schoenebeck 515 Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress = NULL);
1194 schoenebeck 2 ~Instrument();
1195 schoenebeck 2482 void CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples);
1196 schoenebeck 809 void UpdateRegionKeyTable();
1197 schoenebeck 2584 void LoadScripts();
1198 schoenebeck 2609 void UpdateScriptFileOffsets();
1199 schoenebeck 2 friend class File;
1200 schoenebeck 1335 friend class Region; // so Region can call UpdateRegionKeyTable()
1201 persson 1627 private:
1202 schoenebeck 2584 struct _ScriptPooolEntry {
1203     uint32_t fileOffset;
1204     bool bypass;
1205     };
1206     struct _ScriptPooolRef {
1207     Script* script;
1208     bool bypass;
1209     };
1210 persson 1678 MidiRule** pMidiRules;
1211 schoenebeck 2584 std::vector<_ScriptPooolEntry> scriptPoolFileOffsets;
1212     std::vector<_ScriptPooolRef>* pScriptRefs;
1213 schoenebeck 2 };
1214    
1215 schoenebeck 2699 /** @brief Group of Gigasampler samples
1216 schoenebeck 929 *
1217 schoenebeck 2699 * Groups help to organize a huge collection of Gigasampler samples.
1218 schoenebeck 929 * Groups are not concerned at all for the synthesis, but they help
1219     * sound library developers when working on complex instruments with an
1220     * instrument editor (as long as that instrument editor supports it ;-).
1221     *
1222 schoenebeck 930 * A sample is always assigned to exactly one Group. This also means
1223     * there is always at least one Group in a .gig file, no matter if you
1224     * created one yet or not.
1225 schoenebeck 929 */
1226     class Group {
1227     public:
1228     String Name; ///< Stores the name of this Group.
1229 schoenebeck 930
1230     Sample* GetFirstSample();
1231     Sample* GetNextSample();
1232     void AddSample(Sample* pSample);
1233 schoenebeck 929 protected:
1234 schoenebeck 930 Group(File* file, RIFF::Chunk* ck3gnm);
1235 schoenebeck 929 virtual ~Group();
1236 schoenebeck 2682 virtual void UpdateChunks(progress_t* pProgress);
1237 schoenebeck 930 void MoveAll();
1238 schoenebeck 929 friend class File;
1239     private:
1240 schoenebeck 930 File* pFile;
1241 schoenebeck 2467 RIFF::Chunk* pNameChunk; ///< '3gnm' chunk
1242 schoenebeck 929 };
1243    
1244 schoenebeck 2699 /** @brief Provides convenient access to Gigasampler/GigaStudio .gig files.
1245     *
1246     * This is the entry class for accesing a Gigasampler/GigaStudio (.gig) file
1247     * with libgig. It allows you to open existing .gig files, modifying them
1248     * and saving them persistently either under the same file name or under a
1249     * different location.
1250     *
1251     * A .gig file is merely a monolithic file. That means samples and the
1252     * defintion of the virtual instruments are contained in the same file. A
1253     * .gig file contains an arbitrary amount of samples, and an arbitrary
1254     * amount of instruments which are referencing those samples. It is also
1255     * possible to store samples in .gig files not being referenced by any
1256     * instrument. This is not an error from the file format's point of view and
1257     * it is actually often used in practice during the design phase of new gig
1258     * instruments.
1259     *
1260     * So on toplevel of the gig file format you have:
1261     *
1262     * - A set of samples (see Sample).
1263     * - A set of virtual instruments (see Instrument).
1264     *
1265     * And as extension to the original GigaStudio format, we added:
1266     *
1267     * - Real-time instrument scripts (see Script).
1268     *
1269     * Note that the latter however is only supported by libgig, gigedit and
1270     * LinuxSampler. Scripts are not supported by the original GigaStudio
1271     * software.
1272     *
1273     * All released Gigasampler/GigaStudio file format versions are supported
1274     * (so from first Gigasampler version up to including GigaStudio 4).
1275     *
1276     * Since the gig format was designed as extension to the DLS file format,
1277     * this class is derived from the DLS::File class. So also refer to
1278     * DLS::File for additional informations, class attributes and methods.
1279     */
1280 schoenebeck 2 class File : protected DLS::File {
1281     public:
1282 persson 1199 static const DLS::version_t VERSION_2;
1283     static const DLS::version_t VERSION_3;
1284    
1285 schoenebeck 2 // derived attributes from DLS::Resource
1286 persson 2334 using DLS::Resource::pInfo;
1287     using DLS::Resource::pDLSID;
1288 schoenebeck 2 // derived attributes from DLS::File
1289 persson 2334 using DLS::File::pVersion;
1290     using DLS::File::Instruments;
1291 schoenebeck 2
1292     // derived methods from DLS::Resource
1293 persson 2334 using DLS::Resource::GetParent;
1294 schoenebeck 809 // derived methods from DLS::File
1295 persson 2334 using DLS::File::Save;
1296     using DLS::File::GetFileName;
1297 schoenebeck 2482 using DLS::File::SetFileName;
1298 schoenebeck 2 // overridden methods
1299 schoenebeck 809 File();
1300 schoenebeck 2 File(RIFF::File* pRIFF);
1301 schoenebeck 515 Sample* GetFirstSample(progress_t* pProgress = NULL); ///< Returns a pointer to the first <i>Sample</i> object of the file, <i>NULL</i> otherwise.
1302 schoenebeck 2 Sample* GetNextSample(); ///< Returns a pointer to the next <i>Sample</i> object of the file, <i>NULL</i> otherwise.
1303 schoenebeck 2482 Sample* GetSample(uint index);
1304 schoenebeck 809 Sample* AddSample();
1305     void DeleteSample(Sample* pSample);
1306 schoenebeck 929 Instrument* GetFirstInstrument(); ///< Returns a pointer to the first <i>Instrument</i> object of the file, <i>NULL</i> otherwise.
1307 schoenebeck 2 Instrument* GetNextInstrument(); ///< Returns a pointer to the next <i>Instrument</i> object of the file, <i>NULL</i> otherwise.
1308 schoenebeck 515 Instrument* GetInstrument(uint index, progress_t* pProgress = NULL);
1309 schoenebeck 809 Instrument* AddInstrument();
1310 schoenebeck 2394 Instrument* AddDuplicateInstrument(const Instrument* orig);
1311 schoenebeck 809 void DeleteInstrument(Instrument* pInstrument);
1312 schoenebeck 929 Group* GetFirstGroup(); ///< Returns a pointer to the first <i>Group</i> object of the file, <i>NULL</i> otherwise.
1313     Group* GetNextGroup(); ///< Returns a pointer to the next <i>Group</i> object of the file, <i>NULL</i> otherwise.
1314     Group* GetGroup(uint index);
1315 schoenebeck 2543 Group* GetGroup(String name);
1316 schoenebeck 929 Group* AddGroup();
1317     void DeleteGroup(Group* pGroup);
1318 schoenebeck 1081 void DeleteGroupOnly(Group* pGroup);
1319 schoenebeck 1524 void SetAutoLoad(bool b);
1320     bool GetAutoLoad();
1321 schoenebeck 2482 void AddContentOf(File* pFile);
1322 schoenebeck 2584 ScriptGroup* GetScriptGroup(uint index);
1323     ScriptGroup* GetScriptGroup(const String& name);
1324     ScriptGroup* AddScriptGroup();
1325     void DeleteScriptGroup(ScriptGroup* pGroup);
1326 schoenebeck 929 virtual ~File();
1327 schoenebeck 2682 virtual void UpdateChunks(progress_t* pProgress);
1328 schoenebeck 2 protected:
1329 schoenebeck 823 // overridden protected methods from DLS::File
1330     virtual void LoadSamples();
1331     virtual void LoadInstruments();
1332 schoenebeck 929 virtual void LoadGroups();
1333 schoenebeck 2609 virtual void UpdateFileOffsets();
1334 schoenebeck 823 // own protected methods
1335     virtual void LoadSamples(progress_t* pProgress);
1336     virtual void LoadInstruments(progress_t* pProgress);
1337 schoenebeck 2584 virtual void LoadScriptGroups();
1338 persson 1199 void SetSampleChecksum(Sample* pSample, uint32_t crc);
1339 schoenebeck 2985 uint32_t GetSampleChecksum(Sample* pSample);
1340 schoenebeck 2989 uint32_t GetSampleChecksumByIndex(int index);
1341 schoenebeck 2985 bool VerifySampleChecksumTable();
1342     bool RebuildSampleChecksumTable();
1343     int GetWaveTableIndexOf(gig::Sample* pSample);
1344 schoenebeck 2 friend class Region;
1345 schoenebeck 929 friend class Sample;
1346 schoenebeck 2700 friend class Instrument;
1347 schoenebeck 930 friend class Group; // so Group can access protected member pRIFF
1348 schoenebeck 2584 friend class ScriptGroup; // so ScriptGroup can access protected member pRIFF
1349 schoenebeck 929 private:
1350     std::list<Group*>* pGroups;
1351     std::list<Group*>::iterator GroupsIterator;
1352 schoenebeck 1524 bool bAutoLoad;
1353 schoenebeck 2584 std::list<ScriptGroup*>* pScriptGroups;
1354 schoenebeck 2 };
1355    
1356 schoenebeck 1093 /**
1357     * Will be thrown whenever a gig specific error occurs while trying to
1358     * access a Gigasampler File. Note: In your application you should
1359     * better catch for RIFF::Exception rather than this one, except you
1360     * explicitly want to catch and handle gig::Exception, DLS::Exception
1361     * and RIFF::Exception independently, which usually shouldn't be
1362     * necessary though.
1363     */
1364 schoenebeck 2 class Exception : public DLS::Exception {
1365     public:
1366     Exception(String Message);
1367     void PrintMessage();
1368     };
1369    
1370 schoenebeck 3169 #if HAVE_RTTI
1371     size_t countEnum(const std::type_info& type);
1372     size_t countEnum(String typeName);
1373     const char* enumKey(const std::type_info& type, size_t value);
1374     const char* enumKey(String typeName, size_t value);
1375     bool enumKey(const std::type_info& type, String key);
1376     bool enumKey(String typeName, String key);
1377     const char** enumKeys(const std::type_info& type);
1378     const char** enumKeys(String typeName);
1379     size_t enumValue(String key);
1380     #endif // HAVE_RTTI
1381    
1382 schoenebeck 518 String libraryName();
1383     String libraryVersion();
1384    
1385 schoenebeck 2 } // namespace gig
1386    
1387     #endif // __GIG_H__

  ViewVC Help
Powered by ViewVC