/[svn]/libgig/trunk/src/gig.h
ViewVC logotype

Annotation of /libgig/trunk/src/gig.h

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3181 - (hide annotations) (download) (as text)
Sun May 14 17:08:42 2017 UTC (6 years, 11 months ago) by schoenebeck
File MIME type: text/x-c++hdr
File size: 89293 byte(s)
* Just some minor API cosmetics: renamed recently added
  enum reflections API function countEmum() -> enumCount().
* Bumped version (4.0.0.svn22).

1 schoenebeck 2 /***************************************************************************
2     * *
3 schoenebeck 933 * libgig - C++ cross-platform Gigasampler format file access library *
4 schoenebeck 2 * *
5 schoenebeck 3117 * Copyright (C) 2003-2017 by Christian Schoenebeck *
6 schoenebeck 384 * <cuse@users.sourceforge.net> *
7 schoenebeck 2 * *
8     * This library is free software; you can redistribute it and/or modify *
9     * it under the terms of the GNU General Public License as published by *
10     * the Free Software Foundation; either version 2 of the License, or *
11     * (at your option) any later version. *
12     * *
13     * This library is distributed in the hope that it will be useful, *
14     * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16     * GNU General Public License for more details. *
17     * *
18     * You should have received a copy of the GNU General Public License *
19     * along with this library; if not, write to the Free Software *
20     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21     * MA 02111-1307 USA *
22     ***************************************************************************/
23    
24     #ifndef __GIG_H__
25     #define __GIG_H__
26    
27     #include "DLS.h"
28 schoenebeck 2584 #include <vector>
29 schoenebeck 2
30 schoenebeck 3169 #ifndef __has_feature
31     # define __has_feature(x) 0
32     #endif
33     #ifndef HAVE_RTTI
34     # if __GXX_RTTI || __has_feature(cxx_rtti) || _CPPRTTI
35     # define HAVE_RTTI 1
36     # else
37     # define HAVE_RTTI 0
38     # endif
39     #endif
40     #if HAVE_RTTI
41     # include <typeinfo>
42 schoenebeck 3173 #else
43     # warning No RTTI available!
44 schoenebeck 3169 #endif
45    
46 schoenebeck 11 #if WORDS_BIGENDIAN
47 schoenebeck 2 # define LIST_TYPE_3PRG 0x33707267
48     # define LIST_TYPE_3EWL 0x3365776C
49 schoenebeck 929 # define LIST_TYPE_3GRI 0x33677269
50     # define LIST_TYPE_3GNL 0x33676E6C
51 schoenebeck 2584 # define LIST_TYPE_3LS 0x334c5320 // own gig format extension
52     # define LIST_TYPE_RTIS 0x52544953 // own gig format extension
53 schoenebeck 2 # define CHUNK_ID_3GIX 0x33676978
54     # define CHUNK_ID_3EWA 0x33657761
55     # define CHUNK_ID_3LNK 0x336C6E6B
56     # define CHUNK_ID_3EWG 0x33657767
57     # define CHUNK_ID_EWAV 0x65776176
58 schoenebeck 929 # define CHUNK_ID_3GNM 0x33676E6D
59 persson 1199 # define CHUNK_ID_EINF 0x65696E66
60     # define CHUNK_ID_3CRC 0x33637263
61 schoenebeck 2584 # define CHUNK_ID_SCRI 0x53637269 // own gig format extension
62     # define CHUNK_ID_LSNM 0x4c534e4d // own gig format extension
63     # define CHUNK_ID_SCSL 0x5343534c // own gig format extension
64 schoenebeck 2 #else // little endian
65     # define LIST_TYPE_3PRG 0x67727033
66     # define LIST_TYPE_3EWL 0x6C776533
67 schoenebeck 929 # define LIST_TYPE_3GRI 0x69726733
68     # define LIST_TYPE_3GNL 0x6C6E6733
69 schoenebeck 2584 # define LIST_TYPE_3LS 0x20534c33 // own gig format extension
70     # define LIST_TYPE_RTIS 0x53495452 // own gig format extension
71 schoenebeck 2 # define CHUNK_ID_3GIX 0x78696733
72     # define CHUNK_ID_3EWA 0x61776533
73     # define CHUNK_ID_3LNK 0x6B6E6C33
74     # define CHUNK_ID_3EWG 0x67776533
75     # define CHUNK_ID_EWAV 0x76617765
76 schoenebeck 929 # define CHUNK_ID_3GNM 0x6D6E6733
77 persson 1199 # define CHUNK_ID_EINF 0x666E6965
78     # define CHUNK_ID_3CRC 0x63726333
79 schoenebeck 2584 # define CHUNK_ID_SCRI 0x69726353 // own gig format extension
80     # define CHUNK_ID_LSNM 0x4d4e534c // own gig format extension
81     # define CHUNK_ID_SCSL 0x4c534353 // own gig format extension
82 schoenebeck 2 #endif // WORDS_BIGENDIAN
83    
84 schoenebeck 3169 #ifndef GIG_DECLARE_ENUM
85     # define GIG_DECLARE_ENUM(type, ...) enum type { __VA_ARGS__ }
86     #endif
87    
88 schoenebeck 3140 // just symbol prototyping (since Serialization.h not included by default here)
89     namespace Serialization { class Archive; }
90    
91 schoenebeck 2699 /** Gigasampler/GigaStudio specific classes and definitions */
92 schoenebeck 2 namespace gig {
93    
94     typedef std::string String;
95 schoenebeck 2682 typedef RIFF::progress_t progress_t;
96 schoenebeck 2912 typedef RIFF::file_offset_t file_offset_t;
97 schoenebeck 2
98     /** Lower and upper limit of a range. */
99     struct range_t {
100     uint8_t low; ///< Low value of range.
101     uint8_t high; ///< High value of range.
102     };
103    
104     /** Pointer address and size of a buffer. */
105     struct buffer_t {
106     void* pStart; ///< Points to the beginning of the buffer.
107 schoenebeck 2912 file_offset_t Size; ///< Size of the actual data in the buffer in bytes.
108     file_offset_t NullExtensionSize; ///< The buffer might be bigger than the actual data, if that's the case that unused space at the end of the buffer is filled with NULLs and NullExtensionSize reflects that unused buffer space in bytes. Those NULL extensions are mandatory for differential algorithms that have to take the following data words into account, thus have to access past the buffer's boundary. If you don't know what I'm talking about, just forget this variable. :)
109 schoenebeck 384 buffer_t() {
110     pStart = NULL;
111     Size = 0;
112     NullExtensionSize = 0;
113     }
114 schoenebeck 2 };
115    
116 schoenebeck 3169 /** Standard types of sample loops.
117     *
118 schoenebeck 3181 * @see enumCount(), enumKey(), enumKeys(), enumValue()
119 schoenebeck 3169 */
120     GIG_DECLARE_ENUM(loop_type_t,
121 schoenebeck 2 loop_type_normal = 0x00000000, ///< Loop forward (normal)
122     loop_type_bidirectional = 0x00000001, ///< Alternating loop (forward/backward, also known as Ping Pong)
123     loop_type_backward = 0x00000002 ///< Loop backward (reverse)
124 schoenebeck 3169 );
125 schoenebeck 2
126 schoenebeck 3169 /** Society of Motion Pictures and Television E time format.
127     *
128 schoenebeck 3181 * @see enumCount(), enumKey(), enumKeys(), enumValue()
129 schoenebeck 3169 */
130     GIG_DECLARE_ENUM(smpte_format_t,
131 schoenebeck 2 smpte_format_no_offset = 0x00000000, ///< no SMPTE offset
132     smpte_format_24_frames = 0x00000018, ///< 24 frames per second
133     smpte_format_25_frames = 0x00000019, ///< 25 frames per second
134     smpte_format_30_frames_dropping = 0x0000001D, ///< 30 frames per second with frame dropping (30 drop)
135     smpte_format_30_frames = 0x0000001E ///< 30 frames per second
136 schoenebeck 3169 );
137 schoenebeck 2
138 schoenebeck 3169 /** Defines the shape of a function graph.
139     *
140 schoenebeck 3181 * @see enumCount(), enumKey(), enumKeys(), enumValue()
141 schoenebeck 3169 */
142     GIG_DECLARE_ENUM(curve_type_t,
143 schoenebeck 2 curve_type_nonlinear = 0,
144     curve_type_linear = 1,
145     curve_type_special = 2,
146     curve_type_unknown = 0xffffffff
147 schoenebeck 3169 );
148 schoenebeck 2
149 schoenebeck 3169 /** Dimensions allow to bypass one of the following controllers.
150     *
151 schoenebeck 3181 * @see enumCount(), enumKey(), enumKeys(), enumValue()
152 schoenebeck 3169 */
153     GIG_DECLARE_ENUM(dim_bypass_ctrl_t,
154 schoenebeck 2 dim_bypass_ctrl_none,
155     dim_bypass_ctrl_94, ///< Effect 4 Depth (MIDI Controller 94)
156     dim_bypass_ctrl_95 ///< Effect 5 Depth (MIDI Controller 95)
157 schoenebeck 3169 );
158 schoenebeck 2
159 schoenebeck 3169 /** Defines how LFO3 is controlled by.
160     *
161 schoenebeck 3181 * @see enumCount(), enumKey(), enumKeys(), enumValue()
162 schoenebeck 3169 */
163     GIG_DECLARE_ENUM(lfo3_ctrl_t,
164 schoenebeck 2 lfo3_ctrl_internal = 0x00, ///< Only internally controlled.
165     lfo3_ctrl_modwheel = 0x01, ///< Only controlled by external modulation wheel.
166     lfo3_ctrl_aftertouch = 0x02, ///< Only controlled by aftertouch controller.
167     lfo3_ctrl_internal_modwheel = 0x03, ///< Controlled internally and by external modulation wheel.
168     lfo3_ctrl_internal_aftertouch = 0x04 ///< Controlled internally and by aftertouch controller.
169 schoenebeck 3169 );
170 schoenebeck 2
171 schoenebeck 3169 /** Defines how LFO2 is controlled by.
172     *
173 schoenebeck 3181 * @see enumCount(), enumKey(), enumKeys(), enumValue()
174 schoenebeck 3169 */
175     GIG_DECLARE_ENUM(lfo2_ctrl_t,
176 schoenebeck 2 lfo2_ctrl_internal = 0x00, ///< Only internally controlled.
177     lfo2_ctrl_modwheel = 0x01, ///< Only controlled by external modulation wheel.
178     lfo2_ctrl_foot = 0x02, ///< Only controlled by external foot controller.
179     lfo2_ctrl_internal_modwheel = 0x03, ///< Controlled internally and by external modulation wheel.
180     lfo2_ctrl_internal_foot = 0x04 ///< Controlled internally and by external foot controller.
181 schoenebeck 3169 );
182 schoenebeck 2
183 schoenebeck 3169 /** Defines how LFO1 is controlled by.
184     *
185 schoenebeck 3181 * @see enumCount(), enumKey(), enumKeys(), enumValue()
186 schoenebeck 3169 */
187     GIG_DECLARE_ENUM(lfo1_ctrl_t,
188 schoenebeck 2 lfo1_ctrl_internal = 0x00, ///< Only internally controlled.
189     lfo1_ctrl_modwheel = 0x01, ///< Only controlled by external modulation wheel.
190     lfo1_ctrl_breath = 0x02, ///< Only controlled by external breath controller.
191     lfo1_ctrl_internal_modwheel = 0x03, ///< Controlled internally and by external modulation wheel.
192     lfo1_ctrl_internal_breath = 0x04 ///< Controlled internally and by external breath controller.
193 schoenebeck 3169 );
194 schoenebeck 2
195 schoenebeck 3169 /** Defines how the filter cutoff frequency is controlled by.
196     *
197 schoenebeck 3181 * @see enumCount(), enumKey(), enumKeys(), enumValue()
198 schoenebeck 3169 */
199     GIG_DECLARE_ENUM(vcf_cutoff_ctrl_t,
200 schoenebeck 2 vcf_cutoff_ctrl_none = 0x00,
201 persson 834 vcf_cutoff_ctrl_none2 = 0x01, ///< The difference between none and none2 is unknown
202 schoenebeck 2 vcf_cutoff_ctrl_modwheel = 0x81, ///< Modulation Wheel (MIDI Controller 1)
203     vcf_cutoff_ctrl_effect1 = 0x8c, ///< Effect Controller 1 (Coarse, MIDI Controller 12)
204     vcf_cutoff_ctrl_effect2 = 0x8d, ///< Effect Controller 2 (Coarse, MIDI Controller 13)
205     vcf_cutoff_ctrl_breath = 0x82, ///< Breath Controller (Coarse, MIDI Controller 2)
206     vcf_cutoff_ctrl_foot = 0x84, ///< Foot Pedal (Coarse, MIDI Controller 4)
207     vcf_cutoff_ctrl_sustainpedal = 0xc0, ///< Sustain Pedal (MIDI Controller 64)
208     vcf_cutoff_ctrl_softpedal = 0xc3, ///< Soft Pedal (MIDI Controller 67)
209     vcf_cutoff_ctrl_genpurpose7 = 0xd2, ///< General Purpose Controller 7 (Button, MIDI Controller 82)
210     vcf_cutoff_ctrl_genpurpose8 = 0xd3, ///< General Purpose Controller 8 (Button, MIDI Controller 83)
211     vcf_cutoff_ctrl_aftertouch = 0x80 ///< Key Pressure
212 schoenebeck 3169 );
213 schoenebeck 2
214 schoenebeck 3169 /** Defines how the filter resonance is controlled by.
215     *
216 schoenebeck 3181 * @see enumCount(), enumKey(), enumKeys(), enumValue()
217 schoenebeck 3169 */
218     GIG_DECLARE_ENUM(vcf_res_ctrl_t,
219 schoenebeck 2 vcf_res_ctrl_none = 0xffffffff,
220     vcf_res_ctrl_genpurpose3 = 0, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
221     vcf_res_ctrl_genpurpose4 = 1, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
222     vcf_res_ctrl_genpurpose5 = 2, ///< General Purpose Controller 5 (Button, MIDI Controller 80)
223     vcf_res_ctrl_genpurpose6 = 3 ///< General Purpose Controller 6 (Button, MIDI Controller 81)
224 schoenebeck 3169 );
225 schoenebeck 55
226 schoenebeck 36 /**
227     * Defines a controller that has a certain contrained influence on a
228     * particular synthesis parameter (used to define attenuation controller,
229     * EG1 controller and EG2 controller).
230     *
231     * You should use the respective <i>typedef</i> (means either
232     * attenuation_ctrl_t, eg1_ctrl_t or eg2_ctrl_t) in your code!
233     */
234     struct leverage_ctrl_t {
235 schoenebeck 3169 /** Defines possible controllers.
236     *
237 schoenebeck 3181 * @see enumCount(), enumKey(), enumKeys(), enumValue()
238 schoenebeck 3169 */
239     GIG_DECLARE_ENUM(type_t,
240 schoenebeck 36 type_none = 0x00, ///< No controller defined
241     type_channelaftertouch = 0x2f, ///< Channel Key Pressure
242     type_velocity = 0xff, ///< Key Velocity
243     type_controlchange = 0xfe ///< Ordinary MIDI control change controller, see field 'controller_number'
244 schoenebeck 3169 );
245 schoenebeck 55
246 schoenebeck 36 type_t type; ///< Controller type
247     uint controller_number; ///< MIDI controller number if this controller is a control change controller, 0 otherwise
248 schoenebeck 3138
249     void serialize(Serialization::Archive* archive);
250 schoenebeck 36 };
251 schoenebeck 55
252 schoenebeck 36 /**
253     * Defines controller influencing attenuation.
254     *
255     * @see leverage_ctrl_t
256     */
257     typedef leverage_ctrl_t attenuation_ctrl_t;
258 schoenebeck 55
259 schoenebeck 36 /**
260     * Defines controller influencing envelope generator 1.
261     *
262     * @see leverage_ctrl_t
263     */
264     typedef leverage_ctrl_t eg1_ctrl_t;
265 schoenebeck 55
266 schoenebeck 36 /**
267     * Defines controller influencing envelope generator 2.
268     *
269     * @see leverage_ctrl_t
270     */
271     typedef leverage_ctrl_t eg2_ctrl_t;
272 schoenebeck 2
273     /**
274     * Defines the type of dimension, that is how the dimension zones (and
275     * thus how the dimension regions are selected by. The number of
276     * dimension zones is always a power of two. All dimensions can have up
277     * to 32 zones (except the layer dimension with only up to 8 zones and
278     * the samplechannel dimension which currently allows only 2 zones).
279 schoenebeck 3169 *
280 schoenebeck 3181 * @see enumCount(), enumKey(), enumKeys(), enumValue()
281 schoenebeck 2 */
282 schoenebeck 3169 GIG_DECLARE_ENUM(dimension_t,
283 schoenebeck 2 dimension_none = 0x00, ///< Dimension not in use.
284     dimension_samplechannel = 0x80, ///< If used sample has more than one channel (thus is not mono).
285     dimension_layer = 0x81, ///< For layering of up to 8 instruments (and eventually crossfading of 2 or 4 layers).
286 persson 1076 dimension_velocity = 0x82, ///< Key Velocity (this is the only dimension in gig2 where the ranges can exactly be defined).
287 schoenebeck 2 dimension_channelaftertouch = 0x83, ///< Channel Key Pressure
288     dimension_releasetrigger = 0x84, ///< Special dimension for triggering samples on releasing a key.
289 schoenebeck 353 dimension_keyboard = 0x85, ///< Dimension for keyswitching
290 persson 437 dimension_roundrobin = 0x86, ///< Different samples triggered each time a note is played, dimension regions selected in sequence
291     dimension_random = 0x87, ///< Different samples triggered each time a note is played, random order
292 persson 1076 dimension_smartmidi = 0x88, ///< For MIDI tools like legato and repetition mode
293     dimension_roundrobinkeyboard = 0x89, ///< Different samples triggered each time a note is played, any key advances the counter
294 schoenebeck 2 dimension_modwheel = 0x01, ///< Modulation Wheel (MIDI Controller 1)
295     dimension_breath = 0x02, ///< Breath Controller (Coarse, MIDI Controller 2)
296     dimension_foot = 0x04, ///< Foot Pedal (Coarse, MIDI Controller 4)
297     dimension_portamentotime = 0x05, ///< Portamento Time (Coarse, MIDI Controller 5)
298     dimension_effect1 = 0x0c, ///< Effect Controller 1 (Coarse, MIDI Controller 12)
299     dimension_effect2 = 0x0d, ///< Effect Controller 2 (Coarse, MIDI Controller 13)
300     dimension_genpurpose1 = 0x10, ///< General Purpose Controller 1 (Slider, MIDI Controller 16)
301     dimension_genpurpose2 = 0x11, ///< General Purpose Controller 2 (Slider, MIDI Controller 17)
302     dimension_genpurpose3 = 0x12, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
303     dimension_genpurpose4 = 0x13, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
304     dimension_sustainpedal = 0x40, ///< Sustain Pedal (MIDI Controller 64)
305     dimension_portamento = 0x41, ///< Portamento (MIDI Controller 65)
306     dimension_sostenutopedal = 0x42, ///< Sostenuto Pedal (MIDI Controller 66)
307     dimension_softpedal = 0x43, ///< Soft Pedal (MIDI Controller 67)
308     dimension_genpurpose5 = 0x30, ///< General Purpose Controller 5 (Button, MIDI Controller 80)
309     dimension_genpurpose6 = 0x31, ///< General Purpose Controller 6 (Button, MIDI Controller 81)
310     dimension_genpurpose7 = 0x32, ///< General Purpose Controller 7 (Button, MIDI Controller 82)
311     dimension_genpurpose8 = 0x33, ///< General Purpose Controller 8 (Button, MIDI Controller 83)
312     dimension_effect1depth = 0x5b, ///< Effect 1 Depth (MIDI Controller 91)
313     dimension_effect2depth = 0x5c, ///< Effect 2 Depth (MIDI Controller 92)
314     dimension_effect3depth = 0x5d, ///< Effect 3 Depth (MIDI Controller 93)
315     dimension_effect4depth = 0x5e, ///< Effect 4 Depth (MIDI Controller 94)
316     dimension_effect5depth = 0x5f ///< Effect 5 Depth (MIDI Controller 95)
317 schoenebeck 3169 );
318 schoenebeck 2
319     /**
320     * Intended for internal usage: will be used to convert a dimension value
321     * into the corresponding dimension bit number.
322 schoenebeck 3169 *
323 schoenebeck 3181 * @see enumCount(), enumKey(), enumKeys(), enumValue()
324 schoenebeck 2 */
325 schoenebeck 3169 GIG_DECLARE_ENUM(split_type_t,
326 persson 858 split_type_normal, ///< dimension value between 0-127
327 schoenebeck 2 split_type_bit ///< dimension values are already the sought bit number
328 schoenebeck 3169 );
329 schoenebeck 2
330     /** General dimension definition. */
331     struct dimension_def_t {
332     dimension_t dimension; ///< Specifies which source (usually a MIDI controller) is associated with the dimension.
333     uint8_t bits; ///< Number of "bits" (1 bit = 2 splits/zones, 2 bit = 4 splits/zones, 3 bit = 8 splits/zones,...).
334     uint8_t zones; ///< Number of zones the dimension has.
335     split_type_t split_type; ///< Intended for internal usage: will be used to convert a dimension value into the corresponding dimension bit number.
336 persson 774 float zone_size; ///< Intended for internal usage: reflects the size of each zone (128/zones) for normal split types only, 0 otherwise.
337 schoenebeck 2 };
338    
339 schoenebeck 3169 /** Defines which frequencies are filtered by the VCF.
340     *
341 schoenebeck 3181 * @see enumCount(), enumKey(), enumKeys(), enumValue()
342 schoenebeck 3169 */
343     GIG_DECLARE_ENUM(vcf_type_t,
344 schoenebeck 2 vcf_type_lowpass = 0x00,
345     vcf_type_lowpassturbo = 0xff, ///< More poles than normal lowpass
346     vcf_type_bandpass = 0x01,
347     vcf_type_highpass = 0x02,
348     vcf_type_bandreject = 0x03
349 schoenebeck 3169 );
350 schoenebeck 2
351 schoenebeck 345 /**
352     * Defines the envelope of a crossfade.
353     *
354     * Note: The default value for crossfade points is 0,0,0,0. Layers with
355     * such a default value should be treated as if they would not have a
356 schoenebeck 353 * crossfade.
357 schoenebeck 345 */
358 schoenebeck 2 struct crossfade_t {
359     #if WORDS_BIGENDIAN
360 schoenebeck 345 uint8_t out_end; ///< End postition of fade out.
361     uint8_t out_start; ///< Start position of fade out.
362     uint8_t in_end; ///< End position of fade in.
363 schoenebeck 2 uint8_t in_start; ///< Start position of fade in.
364 schoenebeck 345 #else // little endian
365     uint8_t in_start; ///< Start position of fade in.
366 schoenebeck 2 uint8_t in_end; ///< End position of fade in.
367     uint8_t out_start; ///< Start position of fade out.
368     uint8_t out_end; ///< End postition of fade out.
369     #endif // WORDS_BIGENDIAN
370 schoenebeck 3138
371     void serialize(Serialization::Archive* archive);
372 schoenebeck 2 };
373    
374 schoenebeck 24 /** Reflects the current playback state for a sample. */
375     struct playback_state_t {
376 schoenebeck 2912 file_offset_t position; ///< Current position within the sample.
377 schoenebeck 24 bool reverse; ///< If playback direction is currently backwards (in case there is a pingpong or reverse loop defined).
378 schoenebeck 2912 file_offset_t loop_cycles_left; ///< How many times the loop has still to be passed, this value will be decremented with each loop cycle.
379 schoenebeck 24 };
380    
381 schoenebeck 2 // just symbol prototyping
382     class File;
383     class Instrument;
384     class Sample;
385 capela 310 class Region;
386 schoenebeck 929 class Group;
387 schoenebeck 2584 class Script;
388     class ScriptGroup;
389 schoenebeck 2
390 schoenebeck 2699 /** @brief Encapsulates articulation informations of a dimension region.
391 schoenebeck 2 *
392 schoenebeck 2699 * This is the most important data object of the Gigasampler / GigaStudio
393     * format. A DimensionRegion provides the link to the sample to be played
394     * and all required articulation informations to be interpreted for playing
395     * back the sample and processing it appropriately by the sampler software.
396     * Every Region of a Gigasampler Instrument has at least one dimension
397     * region (exactly then when the Region has no dimension defined). Many
398     * Regions though provide more than one DimensionRegion, which reflect
399     * different playing "cases". For example a different sample might be played
400     * if a certain pedal is pressed down, or if the note was triggered with
401     * different velocity.
402 schoenebeck 2 *
403 schoenebeck 2699 * One instance of a DimensionRegion reflects exactly one particular case
404     * while playing an instrument (for instance "note between C3 and E3 was
405     * triggered AND note on velocity was between 20 and 42 AND modulation wheel
406     * controller is between 80 and 127). The DimensionRegion defines what to do
407     * under that one particular case, that is which sample to play back and how
408     * to play that sample back exactly and how to process it. So a
409     * DimensionRegion object is always linked to exactly one sample. It may
410     * however also link to no sample at all, for defining a "silence" case
411     * where nothing shall be played (for example when note on velocity was
412     * below 6).
413 schoenebeck 2 *
414 schoenebeck 2699 * Note that a DimensionRegion object only defines "what to do", but it does
415     * not define "when to do it". To actually resolve which DimensionRegion to
416     * pick under which situation, you need to refer to the DimensionRegions'
417     * parent Region object. The Region object contains the necessary
418     * "Dimension" definitions, which in turn define which DimensionRegion is
419     * associated with which playing case exactly.
420     *
421     * The Gigasampler/GigaStudio format defines 3 Envelope Generators and 3
422     * Low Frequency Oscillators:
423     *
424 schoenebeck 2 * - EG1 and LFO1, both controlling sample amplitude
425     * - EG2 and LFO2, both controlling filter cutoff frequency
426     * - EG3 and LFO3, both controlling sample pitch
427 schoenebeck 2699 *
428     * Since the gig format was designed as extension to the DLS file format,
429     * this class is derived from the DLS::Sampler class. So also refer to
430     * DLS::Sampler for additional informations, class attributes and methods.
431 schoenebeck 2 */
432     class DimensionRegion : protected DLS::Sampler {
433     public:
434 schoenebeck 2543 uint8_t VelocityUpperLimit; ///< Defines the upper velocity value limit of a velocity split (only if an user defined limit was set, thus a value not equal to 128/NumberOfSplits, else this value is 0). Only for gig2, for gig3 and above the DimensionUpperLimits are used instead.
435 schoenebeck 2 Sample* pSample; ///< Points to the Sample which is assigned to the dimension region.
436     // Sample Amplitude EG/LFO
437     uint16_t EG1PreAttack; ///< Preattack value of the sample amplitude EG (0 - 1000 permille).
438     double EG1Attack; ///< Attack time of the sample amplitude EG (0.000 - 60.000s).
439     double EG1Decay1; ///< Decay time of the sample amplitude EG (0.000 - 60.000s).
440     double EG1Decay2; ///< Only if <i>EG1InfiniteSustain == false</i>: 2nd decay stage time of the sample amplitude EG (0.000 - 60.000s).
441     bool EG1InfiniteSustain; ///< If <i>true</i>, instead of going into Decay2 phase, Decay1 level will be hold until note will be released.
442     uint16_t EG1Sustain; ///< Sustain value of the sample amplitude EG (0 - 1000 permille).
443     double EG1Release; ///< Release time of the sample amplitude EG (0.000 - 60.000s).
444     bool EG1Hold; ///< If <i>true</i>, Decay1 stage should be postponed until the sample reached the sample loop start.
445     eg1_ctrl_t EG1Controller; ///< MIDI Controller which has influence on sample amplitude EG parameters (attack, decay, release).
446     bool EG1ControllerInvert; ///< Invert values coming from defined EG1 controller.
447 schoenebeck 36 uint8_t EG1ControllerAttackInfluence; ///< Amount EG1 Controller has influence on the EG1 Attack time (0 - 3, where 0 means off).
448     uint8_t EG1ControllerDecayInfluence; ///< Amount EG1 Controller has influence on the EG1 Decay time (0 - 3, where 0 means off).
449     uint8_t EG1ControllerReleaseInfluence; ///< Amount EG1 Controller has influence on the EG1 Release time (0 - 3, where 0 means off).
450 schoenebeck 2 double LFO1Frequency; ///< Frequency of the sample amplitude LFO (0.10 - 10.00 Hz).
451     uint16_t LFO1InternalDepth; ///< Firm pitch of the sample amplitude LFO (0 - 1200 cents).
452     uint16_t LFO1ControlDepth; ///< Controller depth influencing sample amplitude LFO pitch (0 - 1200 cents).
453     lfo1_ctrl_t LFO1Controller; ///< MIDI Controller which controls sample amplitude LFO.
454     bool LFO1FlipPhase; ///< Inverts phase of the sample amplitude LFO wave.
455     bool LFO1Sync; ///< If set to <i>true</i> only one LFO should be used for all voices.
456     // Filter Cutoff Frequency EG/LFO
457     uint16_t EG2PreAttack; ///< Preattack value of the filter cutoff EG (0 - 1000 permille).
458     double EG2Attack; ///< Attack time of the filter cutoff EG (0.000 - 60.000s).
459     double EG2Decay1; ///< Decay time of the filter cutoff EG (0.000 - 60.000s).
460     double EG2Decay2; ///< Only if <i>EG2InfiniteSustain == false</i>: 2nd stage decay time of the filter cutoff EG (0.000 - 60.000s).
461     bool EG2InfiniteSustain; ///< If <i>true</i>, instead of going into Decay2 phase, Decay1 level will be hold until note will be released.
462     uint16_t EG2Sustain; ///< Sustain value of the filter cutoff EG (0 - 1000 permille).
463     double EG2Release; ///< Release time of the filter cutoff EG (0.000 - 60.000s).
464     eg2_ctrl_t EG2Controller; ///< MIDI Controller which has influence on filter cutoff EG parameters (attack, decay, release).
465     bool EG2ControllerInvert; ///< Invert values coming from defined EG2 controller.
466 schoenebeck 36 uint8_t EG2ControllerAttackInfluence; ///< Amount EG2 Controller has influence on the EG2 Attack time (0 - 3, where 0 means off).
467     uint8_t EG2ControllerDecayInfluence; ///< Amount EG2 Controller has influence on the EG2 Decay time (0 - 3, where 0 means off).
468     uint8_t EG2ControllerReleaseInfluence; ///< Amount EG2 Controller has influence on the EG2 Release time (0 - 3, where 0 means off).
469 schoenebeck 2 double LFO2Frequency; ///< Frequency of the filter cutoff LFO (0.10 - 10.00 Hz).
470     uint16_t LFO2InternalDepth; ///< Firm pitch of the filter cutoff LFO (0 - 1200 cents).
471     uint16_t LFO2ControlDepth; ///< Controller depth influencing filter cutoff LFO pitch (0 - 1200).
472     lfo2_ctrl_t LFO2Controller; ///< MIDI Controlle which controls the filter cutoff LFO.
473     bool LFO2FlipPhase; ///< Inverts phase of the filter cutoff LFO wave.
474     bool LFO2Sync; ///< If set to <i>true</i> only one LFO should be used for all voices.
475     // Sample Pitch EG/LFO
476     double EG3Attack; ///< Attack time of the sample pitch EG (0.000 - 10.000s).
477     int16_t EG3Depth; ///< Depth of the sample pitch EG (-1200 - +1200).
478     double LFO3Frequency; ///< Frequency of the sample pitch LFO (0.10 - 10.00 Hz).
479     int16_t LFO3InternalDepth; ///< Firm depth of the sample pitch LFO (-1200 - +1200 cents).
480     int16_t LFO3ControlDepth; ///< Controller depth of the sample pitch LFO (-1200 - +1200 cents).
481     lfo3_ctrl_t LFO3Controller; ///< MIDI Controller which controls the sample pitch LFO.
482     bool LFO3Sync; ///< If set to <i>true</i> only one LFO should be used for all voices.
483     // Filter
484     bool VCFEnabled; ///< If filter should be used.
485     vcf_type_t VCFType; ///< Defines the general filter characteristic (lowpass, highpass, bandpass, etc.).
486 schoenebeck 1358 vcf_cutoff_ctrl_t VCFCutoffController; ///< Specifies which external controller has influence on the filter cutoff frequency. @deprecated Don't alter directly, use SetVCFCutoffController() instead!
487 persson 728 bool VCFCutoffControllerInvert; ///< Inverts values coming from the defined cutoff controller
488 schoenebeck 2 uint8_t VCFCutoff; ///< Max. cutoff frequency.
489 schoenebeck 1358 curve_type_t VCFVelocityCurve; ///< Defines a transformation curve for the incoming velocity values, affecting the VCF. @deprecated Don't alter directly, use SetVCFVelocityCurve() instead!
490     uint8_t VCFVelocityScale; ///< (0-127) Amount velocity controls VCF cutoff frequency (only if no other VCF cutoff controller is defined, otherwise this is the minimum cutoff). @deprecated Don't alter directly, use SetVCFVelocityScale() instead!
491     uint8_t VCFVelocityDynamicRange; ///< 0x04 = lowest, 0x00 = highest . @deprecated Don't alter directly, use SetVCFVelocityDynamicRange() instead!
492 schoenebeck 2 uint8_t VCFResonance; ///< Firm internal filter resonance weight.
493     bool VCFResonanceDynamic; ///< If <i>true</i>: Increases the resonance Q according to changes of controllers that actually control the VCF cutoff frequency (EG2, ext. VCF MIDI controller).
494     vcf_res_ctrl_t VCFResonanceController; ///< Specifies which external controller has influence on the filter resonance Q.
495     bool VCFKeyboardTracking; ///< If <i>true</i>: VCF cutoff frequence will be dependend to the note key position relative to the defined breakpoint value.
496     uint8_t VCFKeyboardTrackingBreakpoint; ///< See VCFKeyboardTracking (0 - 127).
497     // Key Velocity Transformations
498 schoenebeck 1358 curve_type_t VelocityResponseCurve; ///< Defines a transformation curve to the incoming velocity values affecting amplitude (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseCurve() instead!
499     uint8_t VelocityResponseDepth; ///< Dynamic range of velocity affecting amplitude (0 - 4) (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseDepth() instead!
500     uint8_t VelocityResponseCurveScaling; ///< 0 - 127 (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseCurveScaling() instead!
501     curve_type_t ReleaseVelocityResponseCurve; ///< Defines a transformation curve to the incoming release veloctiy values affecting envelope times. @deprecated Don't alter directly, use SetReleaseVelocityResponseCurve() instead!
502     uint8_t ReleaseVelocityResponseDepth; ///< Dynamic range of release velocity affecting envelope time (0 - 4). @deprecated Don't alter directly, use SetReleaseVelocityResponseDepth() instead!
503 schoenebeck 2 uint8_t ReleaseTriggerDecay; ///< 0 - 8
504     // Mix / Layer
505     crossfade_t Crossfade;
506     bool PitchTrack; ///< If <i>true</i>: sample will be pitched according to the key position (this will be disabled for drums for example).
507     dim_bypass_ctrl_t DimensionBypass; ///< If defined, the MIDI controller can switch on/off the dimension in realtime.
508     int8_t Pan; ///< Panorama / Balance (-64..0..63 <-> left..middle..right)
509     bool SelfMask; ///< If <i>true</i>: high velocity notes will stop low velocity notes at the same note, with that you can save voices that wouldn't be audible anyway.
510 schoenebeck 36 attenuation_ctrl_t AttenuationController; ///< MIDI Controller which has influence on the volume level of the sample (or entire sample group).
511     bool InvertAttenuationController; ///< Inverts the values coming from the defined Attenuation Controller.
512     uint8_t AttenuationControllerThreshold;///< 0-127
513 schoenebeck 2 uint8_t ChannelOffset; ///< Audio output where the audio signal of the dimension region should be routed to (0 - 9).
514     bool SustainDefeat; ///< If <i>true</i>: Sustain pedal will not hold a note.
515     bool MSDecode; ///< Gigastudio flag: defines if Mid Side Recordings should be decoded.
516     uint16_t SampleStartOffset; ///< Number of samples the sample start should be moved (0 - 2000).
517 persson 406 double SampleAttenuation; ///< Sample volume (calculated from DLS::Sampler::Gain)
518 schoenebeck 2547 uint8_t DimensionUpperLimits[8]; ///< gig3: defines the upper limit of the dimension values for this dimension region. In case you wondered why this is defined on DimensionRegion level and not on Region level: the zone sizes (upper limits) of the velocity dimension can indeed differ in the individual dimension regions, depending on which zones of the other dimension types are currently selected. So this is exceptional for the velocity dimension only. All other dimension types have the same dimension zone sizes for every single DimensionRegion (of the sample Region).
519 persson 406
520 schoenebeck 2 // derived attributes from DLS::Sampler
521 persson 2334 using DLS::Sampler::UnityNote;
522     using DLS::Sampler::FineTune;
523     using DLS::Sampler::Gain;
524     using DLS::Sampler::SampleLoops;
525     using DLS::Sampler::pSampleLoops;
526 schoenebeck 2
527 schoenebeck 809 // own methods
528 schoenebeck 16 double GetVelocityAttenuation(uint8_t MIDIKeyVelocity);
529 persson 613 double GetVelocityRelease(uint8_t MIDIKeyVelocity);
530 persson 728 double GetVelocityCutoff(uint8_t MIDIKeyVelocity);
531 schoenebeck 1358 void SetVelocityResponseCurve(curve_type_t curve);
532     void SetVelocityResponseDepth(uint8_t depth);
533     void SetVelocityResponseCurveScaling(uint8_t scaling);
534     void SetReleaseVelocityResponseCurve(curve_type_t curve);
535     void SetReleaseVelocityResponseDepth(uint8_t depth);
536     void SetVCFCutoffController(vcf_cutoff_ctrl_t controller);
537     void SetVCFVelocityCurve(curve_type_t curve);
538     void SetVCFVelocityDynamicRange(uint8_t range);
539     void SetVCFVelocityScale(uint8_t scaling);
540 schoenebeck 1316 Region* GetParent() const;
541 schoenebeck 1155 // derived methods
542 persson 2334 using DLS::Sampler::AddSampleLoop;
543     using DLS::Sampler::DeleteSampleLoop;
544 schoenebeck 809 // overridden methods
545 schoenebeck 1358 virtual void SetGain(int32_t gain);
546 schoenebeck 2682 virtual void UpdateChunks(progress_t* pProgress);
547 schoenebeck 2394 virtual void CopyAssign(const DimensionRegion* orig);
548 schoenebeck 16 protected:
549 persson 858 uint8_t* VelocityTable; ///< For velocity dimensions with custom defined zone ranges only: used for fast converting from velocity MIDI value to dimension bit number.
550 schoenebeck 1316 DimensionRegion(Region* pParent, RIFF::List* _3ewl);
551 persson 1301 DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src);
552 schoenebeck 16 ~DimensionRegion();
553 schoenebeck 2482 void CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples);
554 schoenebeck 3138 void serialize(Serialization::Archive* archive);
555 schoenebeck 16 friend class Region;
556 schoenebeck 3138 friend class Serialization::Archive;
557 schoenebeck 16 private:
558 schoenebeck 36 typedef enum { ///< Used to decode attenuation, EG1 and EG2 controller
559 schoenebeck 2540 // official leverage controllers as they were defined in the original Gigasampler/GigaStudio format:
560 schoenebeck 36 _lev_ctrl_none = 0x00,
561     _lev_ctrl_modwheel = 0x03, ///< Modulation Wheel (MIDI Controller 1)
562     _lev_ctrl_breath = 0x05, ///< Breath Controller (Coarse, MIDI Controller 2)
563     _lev_ctrl_foot = 0x07, ///< Foot Pedal (Coarse, MIDI Controller 4)
564     _lev_ctrl_effect1 = 0x0d, ///< Effect Controller 1 (Coarse, MIDI Controller 12)
565     _lev_ctrl_effect2 = 0x0f, ///< Effect Controller 2 (Coarse, MIDI Controller 13)
566     _lev_ctrl_genpurpose1 = 0x11, ///< General Purpose Controller 1 (Slider, MIDI Controller 16)
567     _lev_ctrl_genpurpose2 = 0x13, ///< General Purpose Controller 2 (Slider, MIDI Controller 17)
568     _lev_ctrl_genpurpose3 = 0x15, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
569     _lev_ctrl_genpurpose4 = 0x17, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
570     _lev_ctrl_portamentotime = 0x0b, ///< Portamento Time (Coarse, MIDI Controller 5)
571     _lev_ctrl_sustainpedal = 0x01, ///< Sustain Pedal (MIDI Controller 64)
572     _lev_ctrl_portamento = 0x19, ///< Portamento (MIDI Controller 65)
573     _lev_ctrl_sostenutopedal = 0x1b, ///< Sostenuto Pedal (MIDI Controller 66)
574     _lev_ctrl_softpedal = 0x09, ///< Soft Pedal (MIDI Controller 67)
575     _lev_ctrl_genpurpose5 = 0x1d, ///< General Purpose Controller 5 (Button, MIDI Controller 80)
576     _lev_ctrl_genpurpose6 = 0x1f, ///< General Purpose Controller 6 (Button, MIDI Controller 81)
577     _lev_ctrl_genpurpose7 = 0x21, ///< General Purpose Controller 7 (Button, MIDI Controller 82)
578     _lev_ctrl_genpurpose8 = 0x23, ///< General Purpose Controller 8 (Button, MIDI Controller 83)
579     _lev_ctrl_effect1depth = 0x25, ///< Effect 1 Depth (MIDI Controller 91)
580     _lev_ctrl_effect2depth = 0x27, ///< Effect 2 Depth (MIDI Controller 92)
581     _lev_ctrl_effect3depth = 0x29, ///< Effect 3 Depth (MIDI Controller 93)
582     _lev_ctrl_effect4depth = 0x2b, ///< Effect 4 Depth (MIDI Controller 94)
583     _lev_ctrl_effect5depth = 0x2d, ///< Effect 5 Depth (MIDI Controller 95)
584     _lev_ctrl_channelaftertouch = 0x2f, ///< Channel Key Pressure
585 schoenebeck 2540 _lev_ctrl_velocity = 0xff, ///< Key Velocity
586    
587     // format extension (these controllers are so far only supported by LinuxSampler & gigedit) they will *NOT* work with Gigasampler/GigaStudio !
588     // (the assigned values here are their official MIDI CC number plus the highest bit set):
589     _lev_ctrl_CC3_EXT = 0x83, ///< MIDI Controller 3 [gig format extension]
590    
591     _lev_ctrl_CC6_EXT = 0x86, ///< Data Entry MSB (MIDI Controller 6) [gig format extension]
592     _lev_ctrl_CC7_EXT = 0x87, ///< Channel Volume (MIDI Controller 7) [gig format extension]
593     _lev_ctrl_CC8_EXT = 0x88, ///< Balance (MIDI Controller 8) [gig format extension]
594     _lev_ctrl_CC9_EXT = 0x89, ///< MIDI Controller 9 [gig format extension]
595     _lev_ctrl_CC10_EXT = 0x8a, ///< Pan (MIDI Controller 10) [gig format extension]
596     _lev_ctrl_CC11_EXT = 0x8b, ///< Expression Controller (MIDI Controller 11) [gig format extension]
597    
598     _lev_ctrl_CC14_EXT = 0x8e, ///< MIDI Controller 14 [gig format extension]
599     _lev_ctrl_CC15_EXT = 0x8f, ///< MIDI Controller 15 [gig format extension]
600    
601     _lev_ctrl_CC20_EXT = 0x94, ///< MIDI Controller 20 [gig format extension]
602     _lev_ctrl_CC21_EXT = 0x95, ///< MIDI Controller 21 [gig format extension]
603     _lev_ctrl_CC22_EXT = 0x96, ///< MIDI Controller 22 [gig format extension]
604     _lev_ctrl_CC23_EXT = 0x97, ///< MIDI Controller 23 [gig format extension]
605     _lev_ctrl_CC24_EXT = 0x98, ///< MIDI Controller 24 [gig format extension]
606     _lev_ctrl_CC25_EXT = 0x99, ///< MIDI Controller 25 [gig format extension]
607     _lev_ctrl_CC26_EXT = 0x9a, ///< MIDI Controller 26 [gig format extension]
608     _lev_ctrl_CC27_EXT = 0x9b, ///< MIDI Controller 27 [gig format extension]
609     _lev_ctrl_CC28_EXT = 0x9c, ///< MIDI Controller 28 [gig format extension]
610     _lev_ctrl_CC29_EXT = 0x9d, ///< MIDI Controller 29 [gig format extension]
611     _lev_ctrl_CC30_EXT = 0x9e, ///< MIDI Controller 30 [gig format extension]
612     _lev_ctrl_CC31_EXT = 0x9f, ///< MIDI Controller 31 [gig format extension]
613    
614     _lev_ctrl_CC68_EXT = 0xc4, ///< Legato Footswitch (MIDI Controller 68) [gig format extension]
615     _lev_ctrl_CC69_EXT = 0xc5, ///< Hold 2 (MIDI Controller 69) [gig format extension]
616     _lev_ctrl_CC70_EXT = 0xc6, ///< Sound Ctrl. 1 - Sound Variation (MIDI Controller 70) [gig format extension]
617     _lev_ctrl_CC71_EXT = 0xc7, ///< Sound Ctrl. 2 - Timbre (MIDI Controller 71) [gig format extension]
618     _lev_ctrl_CC72_EXT = 0xc8, ///< Sound Ctrl. 3 - Release Time (MIDI Controller 72) [gig format extension]
619     _lev_ctrl_CC73_EXT = 0xc9, ///< Sound Ctrl. 4 - Attack Time (MIDI Controller 73) [gig format extension]
620     _lev_ctrl_CC74_EXT = 0xca, ///< Sound Ctrl. 5 - Brightness (MIDI Controller 74) [gig format extension]
621     _lev_ctrl_CC75_EXT = 0xcb, ///< Sound Ctrl. 6 - Decay Time (MIDI Controller 75) [gig format extension]
622     _lev_ctrl_CC76_EXT = 0xcc, ///< Sound Ctrl. 7 - Vibrato Rate (MIDI Controller 76) [gig format extension]
623     _lev_ctrl_CC77_EXT = 0xcd, ///< Sound Ctrl. 8 - Vibrato Depth (MIDI Controller 77) [gig format extension]
624     _lev_ctrl_CC78_EXT = 0xce, ///< Sound Ctrl. 9 - Vibrato Delay (MIDI Controller 78) [gig format extension]
625     _lev_ctrl_CC79_EXT = 0xcf, ///< Sound Ctrl. 10 (MIDI Controller 79) [gig format extension]
626    
627     _lev_ctrl_CC84_EXT = 0xd4, ///< Portamento Control (MIDI Controller 84) [gig format extension]
628     _lev_ctrl_CC85_EXT = 0xd5, ///< MIDI Controller 85 [gig format extension]
629     _lev_ctrl_CC86_EXT = 0xd6, ///< MIDI Controller 86 [gig format extension]
630     _lev_ctrl_CC87_EXT = 0xd7, ///< MIDI Controller 87 [gig format extension]
631    
632     _lev_ctrl_CC89_EXT = 0xd9, ///< MIDI Controller 89 [gig format extension]
633     _lev_ctrl_CC90_EXT = 0xda, ///< MIDI Controller 90 [gig format extension]
634    
635     _lev_ctrl_CC96_EXT = 0xe0, ///< Data Increment (MIDI Controller 96) [gig format extension]
636     _lev_ctrl_CC97_EXT = 0xe1, ///< Data Decrement (MIDI Controller 97) [gig format extension]
637    
638     _lev_ctrl_CC102_EXT = 0xe6, ///< MIDI Controller 102 [gig format extension]
639     _lev_ctrl_CC103_EXT = 0xe7, ///< MIDI Controller 103 [gig format extension]
640     _lev_ctrl_CC104_EXT = 0xe8, ///< MIDI Controller 104 [gig format extension]
641     _lev_ctrl_CC105_EXT = 0xe9, ///< MIDI Controller 105 [gig format extension]
642     _lev_ctrl_CC106_EXT = 0xea, ///< MIDI Controller 106 [gig format extension]
643     _lev_ctrl_CC107_EXT = 0xeb, ///< MIDI Controller 107 [gig format extension]
644     _lev_ctrl_CC108_EXT = 0xec, ///< MIDI Controller 108 [gig format extension]
645     _lev_ctrl_CC109_EXT = 0xed, ///< MIDI Controller 109 [gig format extension]
646     _lev_ctrl_CC110_EXT = 0xee, ///< MIDI Controller 110 [gig format extension]
647     _lev_ctrl_CC111_EXT = 0xef, ///< MIDI Controller 111 [gig format extension]
648     _lev_ctrl_CC112_EXT = 0xf0, ///< MIDI Controller 112 [gig format extension]
649     _lev_ctrl_CC113_EXT = 0xf1, ///< MIDI Controller 113 [gig format extension]
650     _lev_ctrl_CC114_EXT = 0xf2, ///< MIDI Controller 114 [gig format extension]
651     _lev_ctrl_CC115_EXT = 0xf3, ///< MIDI Controller 115 [gig format extension]
652     _lev_ctrl_CC116_EXT = 0xf4, ///< MIDI Controller 116 [gig format extension]
653     _lev_ctrl_CC117_EXT = 0xf5, ///< MIDI Controller 117 [gig format extension]
654     _lev_ctrl_CC118_EXT = 0xf6, ///< MIDI Controller 118 [gig format extension]
655     _lev_ctrl_CC119_EXT = 0xf7 ///< MIDI Controller 119 [gig format extension]
656 schoenebeck 55 } _lev_ctrl_t;
657 schoenebeck 16 typedef std::map<uint32_t, double*> VelocityTableMap;
658    
659 schoenebeck 2922 static size_t Instances; ///< Number of DimensionRegion instances.
660 schoenebeck 16 static VelocityTableMap* pVelocityTables; ///< Contains the tables corresponding to the various velocity parameters (VelocityResponseCurve and VelocityResponseDepth).
661     double* pVelocityAttenuationTable; ///< Points to the velocity table corresponding to the velocity parameters of this DimensionRegion.
662 persson 613 double* pVelocityReleaseTable; ///< Points to the velocity table corresponding to the release velocity parameters of this DimensionRegion
663 persson 728 double* pVelocityCutoffTable; ///< Points to the velocity table corresponding to the filter velocity parameters of this DimensionRegion
664 schoenebeck 1316 Region* pRegion;
665 schoenebeck 55
666 schoenebeck 36 leverage_ctrl_t DecodeLeverageController(_lev_ctrl_t EncodedController);
667 schoenebeck 809 _lev_ctrl_t EncodeLeverageController(leverage_ctrl_t DecodedController);
668 schoenebeck 1358 double* GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth);
669     double* GetCutoffVelocityTable(curve_type_t vcfVelocityCurve, uint8_t vcfVelocityDynamicRange, uint8_t vcfVelocityScale, vcf_cutoff_ctrl_t vcfCutoffController);
670 persson 613 double* GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);
671 schoenebeck 308 double* CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);
672 schoenebeck 2 };
673    
674 schoenebeck 2699 /** @brief Encapsulates sample waves of Gigasampler/GigaStudio files used for playback.
675 schoenebeck 809 *
676 schoenebeck 2699 * This class provides access to the actual audio sample data of a
677     * Gigasampler/GigaStudio file. Along to the actual sample data, it also
678     * provides access to the sample's meta informations like bit depth,
679     * sample rate, encoding type, but also loop informations. The latter may be
680     * used by instruments for resembling sounds with arbitary note lengths.
681     *
682 schoenebeck 809 * In case you created a new sample with File::AddSample(), you should
683     * first update all attributes with the desired meta informations
684     * (amount of channels, bit depth, sample rate, etc.), then call
685     * Resize() with the desired sample size, followed by File::Save(), this
686     * will create the mandatory RIFF chunk which will hold the sample wave
687     * data and / or resize the file so you will be able to Write() the
688     * sample data directly to disk.
689 schoenebeck 1154 *
690     * @e Caution: for gig synthesis, most looping relevant information are
691     * retrieved from the respective DimensionRegon instead from the Sample
692     * itself. This was made for allowing different loop definitions for the
693     * same sample under different conditions.
694 schoenebeck 2699 *
695     * Since the gig format was designed as extension to the DLS file format,
696     * this class is derived from the DLS::Sample class. So also refer to
697     * DLS::Sample for additional informations, class attributes and methods.
698 schoenebeck 809 */
699 schoenebeck 2 class Sample : public DLS::Sample {
700     public:
701     uint32_t Manufacturer; ///< Specifies the MIDI Manufacturer's Association (MMA) Manufacturer code for the sampler intended to receive this file's waveform. If no particular manufacturer is to be specified, a value of 0 should be used.
702     uint32_t Product; ///< Specifies the MIDI model ID defined by the manufacturer corresponding to the Manufacturer field. If no particular manufacturer's product is to be specified, a value of 0 should be used.
703 schoenebeck 809 uint32_t SamplePeriod; ///< Specifies the duration of time that passes during the playback of one sample in nanoseconds (normally equal to 1 / Samples Per Second, where Samples Per Second is the value found in the format chunk), don't bother to update this attribute, it won't be saved.
704 schoenebeck 2 uint32_t MIDIUnityNote; ///< Specifies the musical note at which the sample will be played at it's original sample rate.
705 schoenebeck 21 uint32_t FineTune; ///< Specifies the fraction of a semitone up from the specified MIDI unity note field. A value of 0x80000000 means 1/2 semitone (50 cents) and a value of 0x00000000 means no fine tuning between semitones.
706 schoenebeck 2 smpte_format_t SMPTEFormat; ///< Specifies the Society of Motion Pictures and Television E time format used in the following <i>SMPTEOffset</i> field. If a value of 0 is set, <i>SMPTEOffset</i> should also be set to 0.
707     uint32_t SMPTEOffset; ///< The SMPTE Offset value specifies the time offset to be used for the synchronization / calibration to the first sample in the waveform. This value uses a format of 0xhhmmssff where hh is a signed value that specifies the number of hours (-23 to 23), mm is an unsigned value that specifies the number of minutes (0 to 59), ss is an unsigned value that specifies the number of seconds (0 to 59) and ff is an unsigned value that specifies the number of frames (0 to -1).
708 schoenebeck 1154 uint32_t Loops; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: Number of defined sample loops. So far only seen single loops in gig files - please report if you encounter more!)
709 schoenebeck 21 uint32_t LoopID; ///< Specifies the unique ID that corresponds to one of the defined cue points in the cue point list (only if Loops > 0), as the Gigasampler format only allows one loop definition at the moment, this attribute isn't really useful for anything.
710 schoenebeck 1154 loop_type_t LoopType; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The type field defines how the waveform samples will be looped.)
711     uint32_t LoopStart; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The start value specifies the offset [in sample points] in the waveform data of the first sample to be played in the loop [only if Loops > 0].)
712     uint32_t LoopEnd; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The end value specifies the offset [in sample points] in the waveform data which represents the end of the loop [only if Loops > 0].)
713     uint32_t LoopSize; ///< @e Caution: Use the respective fields in the DimensionRegion instead of this one! (Intended purpose: Length of the looping area [in sample points] which is equivalent to @code LoopEnd - LoopStart @endcode.)
714     uint32_t LoopFraction; ///< The fractional value specifies a fraction of a sample at which to loop. This allows a loop to be fine tuned at a resolution greater than one sample. A value of 0 means no fraction, a value of 0x80000000 means 1/2 of a sample length. 0xFFFFFFFF is the smallest fraction of a sample that can be represented.
715     uint32_t LoopPlayCount; ///< Number of times the loop should be played (a value of 0 = infinite).
716 schoenebeck 2 bool Compressed; ///< If the sample wave is compressed (probably just interesting for instrument and sample editors, as this library already handles the decompression in it's sample access methods anyway).
717 persson 437 uint32_t TruncatedBits; ///< For 24-bit compressed samples only: number of bits truncated during compression (0, 4 or 6)
718     bool Dithered; ///< For 24-bit compressed samples only: if dithering was used during compression with bit reduction
719 schoenebeck 2
720     // own methods
721     buffer_t LoadSampleData();
722 schoenebeck 2912 buffer_t LoadSampleData(file_offset_t SampleCount);
723 schoenebeck 2 buffer_t LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount);
724 schoenebeck 2912 buffer_t LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount);
725 schoenebeck 2 buffer_t GetCache();
726 schoenebeck 384 // own static methods
727 schoenebeck 2912 static buffer_t CreateDecompressionBuffer(file_offset_t MaxReadSize);
728 schoenebeck 384 static void DestroyDecompressionBuffer(buffer_t& DecompressionBuffer);
729 schoenebeck 2 // overridden methods
730     void ReleaseSampleData();
731 schoenebeck 2922 void Resize(file_offset_t NewSize);
732 schoenebeck 2912 file_offset_t SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence = RIFF::stream_start);
733     file_offset_t GetPos() const;
734     file_offset_t Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer = NULL);
735     file_offset_t ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState, DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer = NULL);
736     file_offset_t Write(void* pBuffer, file_offset_t SampleCount);
737 schoenebeck 930 Group* GetGroup() const;
738 schoenebeck 2682 virtual void UpdateChunks(progress_t* pProgress);
739 schoenebeck 2482 void CopyAssignMeta(const Sample* orig);
740     void CopyAssignWave(const Sample* orig);
741 schoenebeck 2989 uint32_t GetWaveDataCRC32Checksum();
742     bool VerifyWaveData(uint32_t* pActually = NULL);
743 schoenebeck 2 protected:
744 schoenebeck 2922 static size_t Instances; ///< Number of instances of class Sample.
745 schoenebeck 384 static buffer_t InternalDecompressionBuffer; ///< Buffer used for decompression as well as for truncation of 24 Bit -> 16 Bit samples.
746 schoenebeck 930 Group* pGroup; ///< pointer to the Group this sample belongs to (always not-NULL)
747 schoenebeck 2912 file_offset_t FrameOffset; ///< Current offset (sample points) in current sample frame (for decompression only).
748     file_offset_t* FrameTable; ///< For positioning within compressed samples only: stores the offset values for each frame.
749     file_offset_t SamplePos; ///< For compressed samples only: stores the current position (in sample points).
750     file_offset_t SamplesInLastFrame; ///< For compressed samples only: length of the last sample frame.
751     file_offset_t WorstCaseFrameSize; ///< For compressed samples only: size (in bytes) of the largest possible sample frame.
752     file_offset_t SamplesPerFrame; ///< For compressed samples only: number of samples in a full sample frame.
753 schoenebeck 2 buffer_t RAMCache; ///< Buffers samples (already uncompressed) in RAM.
754 persson 666 unsigned long FileNo; ///< File number (> 0 when sample is stored in an extension file, 0 when it's in the gig)
755 schoenebeck 809 RIFF::Chunk* pCk3gix;
756     RIFF::Chunk* pCkSmpl;
757 schoenebeck 2989 uint32_t crc; ///< Reflects CRC-32 checksum of the raw sample data at the last time when the sample's raw wave form data has been modified consciously by the user by calling Write().
758 schoenebeck 2
759 schoenebeck 2989 Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo = 0, int index = -1);
760 schoenebeck 2 ~Sample();
761 schoenebeck 2985 uint32_t CalculateWaveDataChecksum();
762 persson 365
763     // Guess size (in bytes) of a compressed sample
764 schoenebeck 2912 inline file_offset_t GuessSize(file_offset_t samples) {
765 persson 365 // 16 bit: assume all frames are compressed - 1 byte
766     // per sample and 5 bytes header per 2048 samples
767    
768     // 24 bit: assume next best compression rate - 1.5
769     // bytes per sample and 13 bytes header per 256
770     // samples
771 schoenebeck 2912 const file_offset_t size =
772 persson 365 BitDepth == 24 ? samples + (samples >> 1) + (samples >> 8) * 13
773     : samples + (samples >> 10) * 5;
774     // Double for stereo and add one worst case sample
775     // frame
776     return (Channels == 2 ? size << 1 : size) + WorstCaseFrameSize;
777     }
778 schoenebeck 384
779     // Worst case amount of sample points that can be read with the
780     // given decompression buffer.
781 schoenebeck 2912 inline file_offset_t WorstCaseMaxSamples(buffer_t* pDecompressionBuffer) {
782     return (file_offset_t) ((float)pDecompressionBuffer->Size / (float)WorstCaseFrameSize * (float)SamplesPerFrame);
783 schoenebeck 384 }
784 schoenebeck 2 private:
785     void ScanCompressedSample();
786     friend class File;
787     friend class Region;
788 schoenebeck 930 friend class Group; // allow to modify protected member pGroup
789 schoenebeck 2 };
790    
791     // TODO: <3dnl> list not used yet - not important though (just contains optional descriptions for the dimensions)
792 schoenebeck 2699 /** @brief Defines Region information of a Gigasampler/GigaStudio instrument.
793 schoenebeck 2547 *
794 schoenebeck 2699 * A Region reflects a consecutive area (key range) on the keyboard. The
795     * individual regions in the gig format may not overlap with other regions
796     * (of the same instrument that is). Further, in the gig format a Region is
797     * merely a container for DimensionRegions (a.k.a. "Cases"). The Region
798     * itself does not provide the sample mapping or articulation informations
799     * used, even though the data structures of regions indeed provide such
800     * informations. The latter is however just of historical nature, because
801     * the gig file format was derived from the DLS file format.
802 schoenebeck 2547 *
803     * Each Region consists of at least one or more DimensionRegions. The actual
804     * amount of DimensionRegions depends on which kind of "dimensions" are
805     * defined for this region, and on the split / zone amount for each of those
806     * dimensions.
807 schoenebeck 2699 *
808     * Since the gig format was designed as extension to the DLS file format,
809     * this class is derived from the DLS::Region class. So also refer to
810     * DLS::Region for additional informations, class attributes and methods.
811 schoenebeck 2547 */
812 schoenebeck 2 class Region : public DLS::Region {
813     public:
814 schoenebeck 809 unsigned int Dimensions; ///< Number of defined dimensions, do not alter!
815 schoenebeck 926 dimension_def_t pDimensionDefinitions[8]; ///< Defines the five (gig2) or eight (gig3) possible dimensions (the dimension's controller and number of bits/splits). Use AddDimension() and DeleteDimension() to create a new dimension or delete an existing one.
816 schoenebeck 809 uint32_t DimensionRegions; ///< Total number of DimensionRegions this Region contains, do not alter!
817 schoenebeck 926 DimensionRegion* pDimensionRegions[256]; ///< Pointer array to the 32 (gig2) or 256 (gig3) possible dimension regions (reflects NULL for dimension regions not in use). Avoid to access the array directly and better use GetDimensionRegionByValue() instead, but of course in some cases it makes sense to use the array (e.g. iterating through all DimensionRegions). Use AddDimension() and DeleteDimension() to create a new dimension or delete an existing one (which will create or delete the respective dimension region(s) automatically).
818 schoenebeck 809 unsigned int Layers; ///< Amount of defined layers (1 - 32). A value of 1 actually means no layering, a value > 1 means there is Layer dimension. The same information can of course also be obtained by accessing pDimensionDefinitions. Do not alter this value!
819 schoenebeck 2
820 schoenebeck 1335 // own methods
821 schoenebeck 347 DimensionRegion* GetDimensionRegionByValue(const uint DimValues[8]);
822     DimensionRegion* GetDimensionRegionByBit(const uint8_t DimBits[8]);
823 schoenebeck 2599 int GetDimensionRegionIndexByValue(const uint DimValues[8]);
824 schoenebeck 2 Sample* GetSample();
825 schoenebeck 809 void AddDimension(dimension_def_t* pDimDef);
826     void DeleteDimension(dimension_def_t* pDimDef);
827 schoenebeck 2547 dimension_def_t* GetDimensionDefinition(dimension_t type);
828 schoenebeck 2555 void DeleteDimensionZone(dimension_t type, int zone);
829     void SplitDimensionZone(dimension_t type, int zone);
830 schoenebeck 2639 void SetDimensionType(dimension_t oldType, dimension_t newType);
831 schoenebeck 1335 // overridden methods
832     virtual void SetKeyRange(uint16_t Low, uint16_t High);
833 schoenebeck 2682 virtual void UpdateChunks(progress_t* pProgress);
834 schoenebeck 2394 virtual void CopyAssign(const Region* orig);
835 schoenebeck 2 protected:
836     Region(Instrument* pInstrument, RIFF::List* rgnList);
837     void LoadDimensionRegions(RIFF::List* rgn);
838 persson 858 void UpdateVelocityTable();
839 schoenebeck 515 Sample* GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress = NULL);
840 schoenebeck 2482 void CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples);
841 schoenebeck 2555 DimensionRegion* GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase);
842 schoenebeck 2 ~Region();
843     friend class Instrument;
844     };
845    
846 schoenebeck 2699 /** @brief Abstract base class for all MIDI rules.
847     *
848     * Note: Instead of using MIDI rules, we recommend you using real-time
849     * instrument scripts instead. Read about the reasons below.
850     *
851     * MIDI Rules (also called "iMIDI rules" or "intelligent MIDI rules") were
852     * introduced with GigaStudio 4 as an attempt to increase the power of
853     * potential user controls over sounds. At that point other samplers already
854     * supported certain powerful user control features, which were not possible
855     * with GigaStudio yet. For example triggering new notes by MIDI CC
856     * controller.
857     *
858     * Such extended features however were usually implemented by other samplers
859     * by requiring the sound designer to write an instrument script which the
860     * designer would then bundle with the respective instrument file. Such
861     * scripts are essentially text files, using a very specific programming
862     * language for the purpose of controlling the sampler in real-time. Since
863     * however musicians are not typically keen to writing such cumbersome
864     * script files, the GigaStudio designers decided to implement such extended
865     * features completely without instrument scripts. Instead they created a
866     * set of rules, which could be defined and altered conveniently by mouse
867     * clicks in GSt's instrument editor application. The downside of this
868     * overall approach however, was that those MIDI rules were very limited in
869     * practice. As sound designer you easily came across the possiblities such
870     * MIDI rules were able to offer.
871     *
872     * Due to such severe use case constraints, support for MIDI rules is quite
873     * limited in libgig. At the moment only the "Control Trigger", "Alternator"
874     * and the "Legato" MIDI rules are supported by libgig. Consequently the
875     * graphical instrument editor application gigedit just supports the
876     * "Control Trigger" and "Legato" MIDI rules, and LinuxSampler even does not
877     * support any MIDI rule type at all and LinuxSampler probably will not
878     * support MIDI rules in future either.
879     *
880     * Instead of using MIDI rules, we introduced real-time instrument scripts
881     * as extension to the original GigaStudio file format. This script based
882     * solution is much more powerful than MIDI rules and is already supported
883     * by libgig, gigedit and LinuxSampler.
884     *
885     * @deprecated Just provided for backward compatiblity, use Script for new
886     * instruments instead.
887     */
888 persson 1627 class MidiRule {
889     public:
890     virtual ~MidiRule() { }
891 persson 2450 protected:
892     virtual void UpdateChunks(uint8_t* pData) const = 0;
893     friend class Instrument;
894 persson 1627 };
895    
896 schoenebeck 2699 /** @brief MIDI rule for triggering notes by control change events.
897     *
898     * A "Control Trigger MIDI rule" allows to trigger new notes by sending MIDI
899     * control change events to the sampler.
900     *
901     * Note: "Control Trigger" MIDI rules are only supported by gigedit, but not
902     * by LinuxSampler. We recommend you using real-time instrument scripts
903     * instead. Read more about the details and reasons for this in the
904     * description of the MidiRule base class.
905     *
906     * @deprecated Just provided for backward compatiblity, use Script for new
907     * instruments instead. See description of MidiRule for details.
908     */
909 persson 1627 class MidiRuleCtrlTrigger : public MidiRule {
910     public:
911     uint8_t ControllerNumber; ///< MIDI controller number.
912     uint8_t Triggers; ///< Number of triggers.
913     struct trigger_t {
914     uint8_t TriggerPoint; ///< The CC value to pass for the note to be triggered.
915     bool Descending; ///< If the change in CC value should be downwards.
916     uint8_t VelSensitivity; ///< How sensitive the velocity should be to the speed of the controller change.
917     uint8_t Key; ///< Key to trigger.
918     bool NoteOff; ///< If a note off should be triggered instead of a note on.
919     uint8_t Velocity; ///< Velocity of the note to trigger. 255 means that velocity should depend on the speed of the controller change.
920     bool OverridePedal; ///< If a note off should be triggered even if the sustain pedal is down.
921     } pTriggers[32];
922    
923     protected:
924     MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg);
925 persson 2450 MidiRuleCtrlTrigger();
926     void UpdateChunks(uint8_t* pData) const;
927 persson 1627 friend class Instrument;
928     };
929    
930 schoenebeck 2699 /** @brief MIDI rule for instruments with legato samples.
931     *
932     * A "Legato MIDI rule" allows playing instruments resembling the legato
933     * playing technique. In the past such legato articulations were tried to be
934     * simulated by pitching the samples of the instrument. However since
935     * usually a high amount of pitch is needed for legatos, this always sounded
936     * very artificial and unrealistic. The "Legato MIDI rule" thus uses another
937     * approach. Instead of pitching the samples, it allows the sound designer
938     * to bundle separate, additional samples for the individual legato
939     * situations and the legato rules defined which samples to be played in
940     * which situation.
941     *
942     * Note: "Legato MIDI rules" are only supported by gigedit, but not
943     * by LinuxSampler. We recommend you using real-time instrument scripts
944     * instead. Read more about the details and reasons for this in the
945     * description of the MidiRule base class.
946     *
947     * @deprecated Just provided for backward compatiblity, use Script for new
948     * instruments instead. See description of MidiRule for details.
949     */
950 persson 2450 class MidiRuleLegato : public MidiRule {
951     public:
952     uint8_t LegatoSamples; ///< Number of legato samples per key in each direction (always 12)
953     bool BypassUseController; ///< If a controller should be used to bypass the sustain note
954     uint8_t BypassKey; ///< Key to be used to bypass the sustain note
955     uint8_t BypassController; ///< Controller to be used to bypass the sustain note
956     uint16_t ThresholdTime; ///< Maximum time (ms) between two notes that should be played legato
957     uint16_t ReleaseTime; ///< Release time
958     range_t KeyRange; ///< Key range for legato notes
959     uint8_t ReleaseTriggerKey; ///< Key triggering release samples
960     uint8_t AltSustain1Key; ///< Key triggering alternate sustain samples
961     uint8_t AltSustain2Key; ///< Key triggering a second set of alternate sustain samples
962    
963     protected:
964     MidiRuleLegato(RIFF::Chunk* _3ewg);
965     MidiRuleLegato();
966     void UpdateChunks(uint8_t* pData) const;
967     friend class Instrument;
968     };
969    
970 schoenebeck 2699 /** @brief MIDI rule to automatically cycle through specified sequences of different articulations.
971     *
972     * The instrument must be using the smartmidi dimension.
973     *
974     * Note: "Alternator" MIDI rules are neither supported by gigedit nor by
975     * LinuxSampler. We recommend you using real-time instrument scripts
976     * instead. Read more about the details and reasons for this in the
977     * description of the MidiRule base class.
978     *
979     * @deprecated Just provided for backward compatiblity, use Script for new
980     * instruments instead. See description of MidiRule for details.
981     */
982 persson 2450 class MidiRuleAlternator : public MidiRule {
983     public:
984     uint8_t Articulations; ///< Number of articulations in the instrument
985     String pArticulations[32]; ///< Names of the articulations
986    
987     range_t PlayRange; ///< Key range of the playable keys in the instrument
988    
989     uint8_t Patterns; ///< Number of alternator patterns
990     struct pattern_t {
991     String Name; ///< Name of the pattern
992     int Size; ///< Number of steps in the pattern
993     const uint8_t& operator[](int i) const { /// Articulation to play
994     return data[i];
995     }
996     uint8_t& operator[](int i) {
997     return data[i];
998     }
999     private:
1000     uint8_t data[32];
1001     } pPatterns[32]; ///< A pattern is a sequence of articulation numbers
1002    
1003     typedef enum {
1004     selector_none,
1005     selector_key_switch,
1006     selector_controller
1007     } selector_t;
1008     selector_t Selector; ///< Method by which pattern is chosen
1009     range_t KeySwitchRange; ///< Key range for key switch selector
1010     uint8_t Controller; ///< CC number for controller selector
1011    
1012     bool Polyphonic; ///< If alternator should step forward only when all notes are off
1013     bool Chained; ///< If all patterns should be chained together
1014    
1015     protected:
1016     MidiRuleAlternator(RIFF::Chunk* _3ewg);
1017     MidiRuleAlternator();
1018     void UpdateChunks(uint8_t* pData) const;
1019     friend class Instrument;
1020     };
1021    
1022 schoenebeck 2699 /** @brief A MIDI rule not yet implemented by libgig.
1023     *
1024     * This class is currently used as a place holder by libgig for MIDI rule
1025     * types which are not supported by libgig yet.
1026     *
1027     * Note: Support for missing MIDI rule types are probably never added to
1028     * libgig. We recommend you using real-time instrument scripts instead.
1029     * Read more about the details and reasons for this in the description of
1030     * the MidiRule base class.
1031     *
1032     * @deprecated Just provided for backward compatiblity, use Script for new
1033     * instruments instead. See description of MidiRule for details.
1034     */
1035 persson 2450 class MidiRuleUnknown : public MidiRule {
1036     protected:
1037     MidiRuleUnknown() { }
1038     void UpdateChunks(uint8_t* pData) const { }
1039     friend class Instrument;
1040     };
1041    
1042 schoenebeck 2584 /** @brief Real-time instrument script (gig format extension).
1043     *
1044     * Real-time instrument scripts are user supplied small programs which can
1045     * be used by instrument designers to create custom behaviors and features
1046     * not available in the stock sampler engine. Features which might be very
1047     * exotic or specific for the respective instrument.
1048     *
1049     * This is an extension of the GigaStudio format, thus a feature which was
1050     * not available in the GigaStudio 4 software. It is currently only
1051 schoenebeck 2699 * supported by LinuxSampler and gigedit. Scripts will not load with the
1052     * original GigaStudio software.
1053 schoenebeck 2761 *
1054     * You find more informations about Instrument Scripts on the LinuxSampler
1055     * documentation site:
1056     *
1057     * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/">About Instrument Scripts in General</a>
1058     * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language">Introduction to the NKSP Script Language</a>
1059     * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language/Reference/">NKSP Reference Manual</a>
1060     * - <a href="http://doc.linuxsampler.org/Gigedit/Managing_Scripts">Using Instrument Scripts with Gigedit</a>
1061 schoenebeck 2584 */
1062     class Script {
1063     public:
1064     enum Encoding_t {
1065     ENCODING_ASCII = 0 ///< Standard 8 bit US ASCII character encoding (default).
1066     };
1067     enum Compression_t {
1068     COMPRESSION_NONE = 0 ///< Is not compressed at all (default).
1069     };
1070     enum Language_t {
1071 schoenebeck 2762 LANGUAGE_NKSP = 0 ///< NKSP stands for "Is Not KSP" (default). Refer to the <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language/Reference/">NKSP Reference Manual</a> for details about this script language.
1072 schoenebeck 2584 };
1073    
1074     String Name; ///< Arbitrary name of the script, which may be displayed i.e. in an instrument editor.
1075     Compression_t Compression; ///< Whether the script was/should be compressed, and if so, which compression algorithm shall be used.
1076     Encoding_t Encoding; ///< Format the script's source code text is encoded with.
1077     Language_t Language; ///< Programming language and dialect the script is written in.
1078     bool Bypass; ///< Global bypass: if enabled, this script shall not be executed by the sampler for any instrument.
1079    
1080     String GetScriptAsText();
1081     void SetScriptAsText(const String& text);
1082     void SetGroup(ScriptGroup* pGroup);
1083 schoenebeck 2601 ScriptGroup* GetGroup() const;
1084 schoenebeck 3117 void CopyAssign(const Script* orig);
1085 schoenebeck 2584 protected:
1086     Script(ScriptGroup* group, RIFF::Chunk* ckScri);
1087     virtual ~Script();
1088 schoenebeck 2682 void UpdateChunks(progress_t* pProgress);
1089 schoenebeck 2584 void RemoveAllScriptReferences();
1090     friend class ScriptGroup;
1091     friend class Instrument;
1092     private:
1093     ScriptGroup* pGroup;
1094     RIFF::Chunk* pChunk; ///< 'Scri' chunk
1095     std::vector<uint8_t> data;
1096     uint32_t crc; ///< CRC-32 checksum of the raw script data
1097     };
1098    
1099     /** @brief Group of instrument scripts (gig format extension).
1100     *
1101     * This class is simply used to sort a bunch of real-time instrument scripts
1102     * into individual groups. This allows instrument designers and script
1103     * developers to keep scripts in a certain order while working with a larger
1104     * amount of scripts in an instrument editor.
1105     *
1106     * This is an extension of the GigaStudio format, thus a feature which was
1107     * not available in the GigaStudio 4 software. It is currently only
1108     * supported by LinuxSampler and gigedit.
1109     */
1110     class ScriptGroup {
1111     public:
1112     String Name; ///< Name of this script group. For example to be displayed in an instrument editor.
1113    
1114     Script* GetScript(uint index);
1115     Script* AddScript();
1116     void DeleteScript(Script* pScript);
1117     protected:
1118     ScriptGroup(File* file, RIFF::List* lstRTIS);
1119     virtual ~ScriptGroup();
1120     void LoadScripts();
1121 schoenebeck 2682 void UpdateChunks(progress_t* pProgress);
1122 schoenebeck 2584 friend class Script;
1123     friend class File;
1124     private:
1125     File* pFile;
1126     RIFF::List* pList; ///< 'RTIS' list chunk
1127     std::list<Script*>* pScripts;
1128     };
1129    
1130 schoenebeck 2699 /** @brief Provides access to a Gigasampler/GigaStudio instrument.
1131     *
1132     * This class provides access to Gigasampler/GigaStudio instruments
1133     * contained in .gig files. A gig instrument is merely a set of keyboard
1134     * ranges (called Region), plus some additional global informations about
1135     * the instrument. The major part of the actual instrument definition used
1136     * for the synthesis of the instrument is contained in the respective Region
1137     * object (or actually in the respective DimensionRegion object being, see
1138     * description of Region for details).
1139     *
1140     * Since the gig format was designed as extension to the DLS file format,
1141     * this class is derived from the DLS::Instrument class. So also refer to
1142     * DLS::Instrument for additional informations, class attributes and
1143     * methods.
1144     */
1145 schoenebeck 2 class Instrument : protected DLS::Instrument {
1146     public:
1147     // derived attributes from DLS::Resource
1148 persson 2334 using DLS::Resource::pInfo;
1149     using DLS::Resource::pDLSID;
1150 schoenebeck 2 // derived attributes from DLS::Instrument
1151 persson 2334 using DLS::Instrument::IsDrum;
1152     using DLS::Instrument::MIDIBank;
1153     using DLS::Instrument::MIDIBankCoarse;
1154     using DLS::Instrument::MIDIBankFine;
1155     using DLS::Instrument::MIDIProgram;
1156     using DLS::Instrument::Regions;
1157 schoenebeck 2 // own attributes
1158     int32_t Attenuation; ///< in dB
1159     uint16_t EffectSend;
1160     int16_t FineTune; ///< in cents
1161     uint16_t PitchbendRange; ///< Number of semitones pitchbend controller can pitch (default is 2).
1162     bool PianoReleaseMode;
1163     range_t DimensionKeyRange; ///< 0-127 (where 0 means C1 and 127 means G9)
1164    
1165    
1166     // derived methods from DLS::Resource
1167 persson 2334 using DLS::Resource::GetParent;
1168 schoenebeck 2 // overridden methods
1169     Region* GetFirstRegion();
1170     Region* GetNextRegion();
1171 schoenebeck 809 Region* AddRegion();
1172     void DeleteRegion(Region* pRegion);
1173 schoenebeck 2700 void MoveTo(Instrument* dst);
1174 schoenebeck 2682 virtual void UpdateChunks(progress_t* pProgress);
1175 schoenebeck 2394 virtual void CopyAssign(const Instrument* orig);
1176 schoenebeck 2 // own methods
1177     Region* GetRegion(unsigned int Key);
1178 persson 1678 MidiRule* GetMidiRule(int i);
1179 persson 2450 MidiRuleCtrlTrigger* AddMidiRuleCtrlTrigger();
1180     MidiRuleLegato* AddMidiRuleLegato();
1181     MidiRuleAlternator* AddMidiRuleAlternator();
1182     void DeleteMidiRule(int i);
1183 schoenebeck 2584 // real-time instrument script methods
1184     Script* GetScriptOfSlot(uint index);
1185     void AddScriptSlot(Script* pScript, bool bypass = false);
1186     void SwapScriptSlots(uint index1, uint index2);
1187     void RemoveScriptSlot(uint index);
1188     void RemoveScript(Script* pScript);
1189     uint ScriptSlotCount() const;
1190     bool IsScriptSlotBypassed(uint index);
1191     void SetScriptSlotBypassed(uint index, bool bBypass);
1192 schoenebeck 2 protected:
1193     Region* RegionKeyTable[128]; ///< fast lookup for the corresponding Region of a MIDI key
1194    
1195 schoenebeck 515 Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress = NULL);
1196 schoenebeck 2 ~Instrument();
1197 schoenebeck 2482 void CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples);
1198 schoenebeck 809 void UpdateRegionKeyTable();
1199 schoenebeck 2584 void LoadScripts();
1200 schoenebeck 2609 void UpdateScriptFileOffsets();
1201 schoenebeck 2 friend class File;
1202 schoenebeck 1335 friend class Region; // so Region can call UpdateRegionKeyTable()
1203 persson 1627 private:
1204 schoenebeck 2584 struct _ScriptPooolEntry {
1205     uint32_t fileOffset;
1206     bool bypass;
1207     };
1208     struct _ScriptPooolRef {
1209     Script* script;
1210     bool bypass;
1211     };
1212 persson 1678 MidiRule** pMidiRules;
1213 schoenebeck 2584 std::vector<_ScriptPooolEntry> scriptPoolFileOffsets;
1214     std::vector<_ScriptPooolRef>* pScriptRefs;
1215 schoenebeck 2 };
1216    
1217 schoenebeck 2699 /** @brief Group of Gigasampler samples
1218 schoenebeck 929 *
1219 schoenebeck 2699 * Groups help to organize a huge collection of Gigasampler samples.
1220 schoenebeck 929 * Groups are not concerned at all for the synthesis, but they help
1221     * sound library developers when working on complex instruments with an
1222     * instrument editor (as long as that instrument editor supports it ;-).
1223     *
1224 schoenebeck 930 * A sample is always assigned to exactly one Group. This also means
1225     * there is always at least one Group in a .gig file, no matter if you
1226     * created one yet or not.
1227 schoenebeck 929 */
1228     class Group {
1229     public:
1230     String Name; ///< Stores the name of this Group.
1231 schoenebeck 930
1232     Sample* GetFirstSample();
1233     Sample* GetNextSample();
1234     void AddSample(Sample* pSample);
1235 schoenebeck 929 protected:
1236 schoenebeck 930 Group(File* file, RIFF::Chunk* ck3gnm);
1237 schoenebeck 929 virtual ~Group();
1238 schoenebeck 2682 virtual void UpdateChunks(progress_t* pProgress);
1239 schoenebeck 930 void MoveAll();
1240 schoenebeck 929 friend class File;
1241     private:
1242 schoenebeck 930 File* pFile;
1243 schoenebeck 2467 RIFF::Chunk* pNameChunk; ///< '3gnm' chunk
1244 schoenebeck 929 };
1245    
1246 schoenebeck 2699 /** @brief Provides convenient access to Gigasampler/GigaStudio .gig files.
1247     *
1248     * This is the entry class for accesing a Gigasampler/GigaStudio (.gig) file
1249     * with libgig. It allows you to open existing .gig files, modifying them
1250     * and saving them persistently either under the same file name or under a
1251     * different location.
1252     *
1253     * A .gig file is merely a monolithic file. That means samples and the
1254     * defintion of the virtual instruments are contained in the same file. A
1255     * .gig file contains an arbitrary amount of samples, and an arbitrary
1256     * amount of instruments which are referencing those samples. It is also
1257     * possible to store samples in .gig files not being referenced by any
1258     * instrument. This is not an error from the file format's point of view and
1259     * it is actually often used in practice during the design phase of new gig
1260     * instruments.
1261     *
1262     * So on toplevel of the gig file format you have:
1263     *
1264     * - A set of samples (see Sample).
1265     * - A set of virtual instruments (see Instrument).
1266     *
1267     * And as extension to the original GigaStudio format, we added:
1268     *
1269     * - Real-time instrument scripts (see Script).
1270     *
1271     * Note that the latter however is only supported by libgig, gigedit and
1272     * LinuxSampler. Scripts are not supported by the original GigaStudio
1273     * software.
1274     *
1275     * All released Gigasampler/GigaStudio file format versions are supported
1276     * (so from first Gigasampler version up to including GigaStudio 4).
1277     *
1278     * Since the gig format was designed as extension to the DLS file format,
1279     * this class is derived from the DLS::File class. So also refer to
1280     * DLS::File for additional informations, class attributes and methods.
1281     */
1282 schoenebeck 2 class File : protected DLS::File {
1283     public:
1284 persson 1199 static const DLS::version_t VERSION_2;
1285     static const DLS::version_t VERSION_3;
1286    
1287 schoenebeck 2 // derived attributes from DLS::Resource
1288 persson 2334 using DLS::Resource::pInfo;
1289     using DLS::Resource::pDLSID;
1290 schoenebeck 2 // derived attributes from DLS::File
1291 persson 2334 using DLS::File::pVersion;
1292     using DLS::File::Instruments;
1293 schoenebeck 2
1294     // derived methods from DLS::Resource
1295 persson 2334 using DLS::Resource::GetParent;
1296 schoenebeck 809 // derived methods from DLS::File
1297 persson 2334 using DLS::File::Save;
1298     using DLS::File::GetFileName;
1299 schoenebeck 2482 using DLS::File::SetFileName;
1300 schoenebeck 2 // overridden methods
1301 schoenebeck 809 File();
1302 schoenebeck 2 File(RIFF::File* pRIFF);
1303 schoenebeck 515 Sample* GetFirstSample(progress_t* pProgress = NULL); ///< Returns a pointer to the first <i>Sample</i> object of the file, <i>NULL</i> otherwise.
1304 schoenebeck 2 Sample* GetNextSample(); ///< Returns a pointer to the next <i>Sample</i> object of the file, <i>NULL</i> otherwise.
1305 schoenebeck 2482 Sample* GetSample(uint index);
1306 schoenebeck 809 Sample* AddSample();
1307     void DeleteSample(Sample* pSample);
1308 schoenebeck 929 Instrument* GetFirstInstrument(); ///< Returns a pointer to the first <i>Instrument</i> object of the file, <i>NULL</i> otherwise.
1309 schoenebeck 2 Instrument* GetNextInstrument(); ///< Returns a pointer to the next <i>Instrument</i> object of the file, <i>NULL</i> otherwise.
1310 schoenebeck 515 Instrument* GetInstrument(uint index, progress_t* pProgress = NULL);
1311 schoenebeck 809 Instrument* AddInstrument();
1312 schoenebeck 2394 Instrument* AddDuplicateInstrument(const Instrument* orig);
1313 schoenebeck 809 void DeleteInstrument(Instrument* pInstrument);
1314 schoenebeck 929 Group* GetFirstGroup(); ///< Returns a pointer to the first <i>Group</i> object of the file, <i>NULL</i> otherwise.
1315     Group* GetNextGroup(); ///< Returns a pointer to the next <i>Group</i> object of the file, <i>NULL</i> otherwise.
1316     Group* GetGroup(uint index);
1317 schoenebeck 2543 Group* GetGroup(String name);
1318 schoenebeck 929 Group* AddGroup();
1319     void DeleteGroup(Group* pGroup);
1320 schoenebeck 1081 void DeleteGroupOnly(Group* pGroup);
1321 schoenebeck 1524 void SetAutoLoad(bool b);
1322     bool GetAutoLoad();
1323 schoenebeck 2482 void AddContentOf(File* pFile);
1324 schoenebeck 2584 ScriptGroup* GetScriptGroup(uint index);
1325     ScriptGroup* GetScriptGroup(const String& name);
1326     ScriptGroup* AddScriptGroup();
1327     void DeleteScriptGroup(ScriptGroup* pGroup);
1328 schoenebeck 929 virtual ~File();
1329 schoenebeck 2682 virtual void UpdateChunks(progress_t* pProgress);
1330 schoenebeck 2 protected:
1331 schoenebeck 823 // overridden protected methods from DLS::File
1332     virtual void LoadSamples();
1333     virtual void LoadInstruments();
1334 schoenebeck 929 virtual void LoadGroups();
1335 schoenebeck 2609 virtual void UpdateFileOffsets();
1336 schoenebeck 823 // own protected methods
1337     virtual void LoadSamples(progress_t* pProgress);
1338     virtual void LoadInstruments(progress_t* pProgress);
1339 schoenebeck 2584 virtual void LoadScriptGroups();
1340 persson 1199 void SetSampleChecksum(Sample* pSample, uint32_t crc);
1341 schoenebeck 2985 uint32_t GetSampleChecksum(Sample* pSample);
1342 schoenebeck 2989 uint32_t GetSampleChecksumByIndex(int index);
1343 schoenebeck 2985 bool VerifySampleChecksumTable();
1344     bool RebuildSampleChecksumTable();
1345     int GetWaveTableIndexOf(gig::Sample* pSample);
1346 schoenebeck 2 friend class Region;
1347 schoenebeck 929 friend class Sample;
1348 schoenebeck 2700 friend class Instrument;
1349 schoenebeck 930 friend class Group; // so Group can access protected member pRIFF
1350 schoenebeck 2584 friend class ScriptGroup; // so ScriptGroup can access protected member pRIFF
1351 schoenebeck 929 private:
1352     std::list<Group*>* pGroups;
1353     std::list<Group*>::iterator GroupsIterator;
1354 schoenebeck 1524 bool bAutoLoad;
1355 schoenebeck 2584 std::list<ScriptGroup*>* pScriptGroups;
1356 schoenebeck 2 };
1357    
1358 schoenebeck 1093 /**
1359     * Will be thrown whenever a gig specific error occurs while trying to
1360     * access a Gigasampler File. Note: In your application you should
1361     * better catch for RIFF::Exception rather than this one, except you
1362     * explicitly want to catch and handle gig::Exception, DLS::Exception
1363     * and RIFF::Exception independently, which usually shouldn't be
1364     * necessary though.
1365     */
1366 schoenebeck 2 class Exception : public DLS::Exception {
1367     public:
1368     Exception(String Message);
1369     void PrintMessage();
1370     };
1371    
1372 schoenebeck 3169 #if HAVE_RTTI
1373 schoenebeck 3181 size_t enumCount(const std::type_info& type);
1374 schoenebeck 3173 const char* enumKey(const std::type_info& type, size_t value);
1375     bool enumKey(const std::type_info& type, String key);
1376     const char** enumKeys(const std::type_info& type);
1377     #endif // HAVE_RTTI
1378 schoenebeck 3181 size_t enumCount(String typeName);
1379 schoenebeck 3169 const char* enumKey(String typeName, size_t value);
1380     bool enumKey(String typeName, String key);
1381     const char** enumKeys(String typeName);
1382     size_t enumValue(String key);
1383    
1384 schoenebeck 518 String libraryName();
1385     String libraryVersion();
1386    
1387 schoenebeck 2 } // namespace gig
1388    
1389     #endif // __GIG_H__

  ViewVC Help
Powered by ViewVC