/[svn]/libgig/trunk/src/gig.h
ViewVC logotype

Annotation of /libgig/trunk/src/gig.h

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3324 - (hide annotations) (download) (as text)
Fri Jul 21 13:05:39 2017 UTC (6 years, 8 months ago) by schoenebeck
File MIME type: text/x-c++hdr
File size: 91726 byte(s)
* gig.h/.cpp: Forgot about "decay 2" stage in previous commit.
* Bumped version (4.0.0.svn28).

1 schoenebeck 2 /***************************************************************************
2     * *
3 schoenebeck 933 * libgig - C++ cross-platform Gigasampler format file access library *
4 schoenebeck 2 * *
5 schoenebeck 3117 * Copyright (C) 2003-2017 by Christian Schoenebeck *
6 schoenebeck 384 * <cuse@users.sourceforge.net> *
7 schoenebeck 2 * *
8     * This library is free software; you can redistribute it and/or modify *
9     * it under the terms of the GNU General Public License as published by *
10     * the Free Software Foundation; either version 2 of the License, or *
11     * (at your option) any later version. *
12     * *
13     * This library is distributed in the hope that it will be useful, *
14     * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16     * GNU General Public License for more details. *
17     * *
18     * You should have received a copy of the GNU General Public License *
19     * along with this library; if not, write to the Free Software *
20     * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21     * MA 02111-1307 USA *
22     ***************************************************************************/
23    
24     #ifndef __GIG_H__
25     #define __GIG_H__
26    
27     #include "DLS.h"
28 schoenebeck 2584 #include <vector>
29 schoenebeck 2
30 schoenebeck 3169 #ifndef __has_feature
31     # define __has_feature(x) 0
32     #endif
33     #ifndef HAVE_RTTI
34     # if __GXX_RTTI || __has_feature(cxx_rtti) || _CPPRTTI
35     # define HAVE_RTTI 1
36     # else
37     # define HAVE_RTTI 0
38     # endif
39     #endif
40     #if HAVE_RTTI
41     # include <typeinfo>
42 schoenebeck 3173 #else
43     # warning No RTTI available!
44 schoenebeck 3169 #endif
45    
46 schoenebeck 11 #if WORDS_BIGENDIAN
47 schoenebeck 2 # define LIST_TYPE_3PRG 0x33707267
48     # define LIST_TYPE_3EWL 0x3365776C
49 schoenebeck 929 # define LIST_TYPE_3GRI 0x33677269
50     # define LIST_TYPE_3GNL 0x33676E6C
51 schoenebeck 2584 # define LIST_TYPE_3LS 0x334c5320 // own gig format extension
52     # define LIST_TYPE_RTIS 0x52544953 // own gig format extension
53 schoenebeck 2 # define CHUNK_ID_3GIX 0x33676978
54     # define CHUNK_ID_3EWA 0x33657761
55     # define CHUNK_ID_3LNK 0x336C6E6B
56     # define CHUNK_ID_3EWG 0x33657767
57     # define CHUNK_ID_EWAV 0x65776176
58 schoenebeck 929 # define CHUNK_ID_3GNM 0x33676E6D
59 persson 1199 # define CHUNK_ID_EINF 0x65696E66
60     # define CHUNK_ID_3CRC 0x33637263
61 schoenebeck 2584 # define CHUNK_ID_SCRI 0x53637269 // own gig format extension
62     # define CHUNK_ID_LSNM 0x4c534e4d // own gig format extension
63     # define CHUNK_ID_SCSL 0x5343534c // own gig format extension
64 schoenebeck 3323 # define CHUNK_ID_LSDE 0x4c534445 // own gig format extension
65 schoenebeck 2 #else // little endian
66     # define LIST_TYPE_3PRG 0x67727033
67     # define LIST_TYPE_3EWL 0x6C776533
68 schoenebeck 929 # define LIST_TYPE_3GRI 0x69726733
69     # define LIST_TYPE_3GNL 0x6C6E6733
70 schoenebeck 2584 # define LIST_TYPE_3LS 0x20534c33 // own gig format extension
71     # define LIST_TYPE_RTIS 0x53495452 // own gig format extension
72 schoenebeck 2 # define CHUNK_ID_3GIX 0x78696733
73     # define CHUNK_ID_3EWA 0x61776533
74     # define CHUNK_ID_3LNK 0x6B6E6C33
75     # define CHUNK_ID_3EWG 0x67776533
76     # define CHUNK_ID_EWAV 0x76617765
77 schoenebeck 929 # define CHUNK_ID_3GNM 0x6D6E6733
78 persson 1199 # define CHUNK_ID_EINF 0x666E6965
79     # define CHUNK_ID_3CRC 0x63726333
80 schoenebeck 2584 # define CHUNK_ID_SCRI 0x69726353 // own gig format extension
81     # define CHUNK_ID_LSNM 0x4d4e534c // own gig format extension
82     # define CHUNK_ID_SCSL 0x4c534353 // own gig format extension
83 schoenebeck 3323 # define CHUNK_ID_LSDE 0x4544534c // own gig format extension
84 schoenebeck 2 #endif // WORDS_BIGENDIAN
85    
86 schoenebeck 3169 #ifndef GIG_DECLARE_ENUM
87     # define GIG_DECLARE_ENUM(type, ...) enum type { __VA_ARGS__ }
88     #endif
89    
90 schoenebeck 3140 // just symbol prototyping (since Serialization.h not included by default here)
91     namespace Serialization { class Archive; }
92    
93 schoenebeck 2699 /** Gigasampler/GigaStudio specific classes and definitions */
94 schoenebeck 2 namespace gig {
95    
96     typedef std::string String;
97 schoenebeck 2682 typedef RIFF::progress_t progress_t;
98 schoenebeck 2912 typedef RIFF::file_offset_t file_offset_t;
99 schoenebeck 2
100     /** Lower and upper limit of a range. */
101     struct range_t {
102     uint8_t low; ///< Low value of range.
103     uint8_t high; ///< High value of range.
104     };
105    
106     /** Pointer address and size of a buffer. */
107     struct buffer_t {
108     void* pStart; ///< Points to the beginning of the buffer.
109 schoenebeck 2912 file_offset_t Size; ///< Size of the actual data in the buffer in bytes.
110     file_offset_t NullExtensionSize; ///< The buffer might be bigger than the actual data, if that's the case that unused space at the end of the buffer is filled with NULLs and NullExtensionSize reflects that unused buffer space in bytes. Those NULL extensions are mandatory for differential algorithms that have to take the following data words into account, thus have to access past the buffer's boundary. If you don't know what I'm talking about, just forget this variable. :)
111 schoenebeck 384 buffer_t() {
112     pStart = NULL;
113     Size = 0;
114     NullExtensionSize = 0;
115     }
116 schoenebeck 2 };
117    
118 schoenebeck 3169 /** Standard types of sample loops.
119     *
120 schoenebeck 3181 * @see enumCount(), enumKey(), enumKeys(), enumValue()
121 schoenebeck 3169 */
122     GIG_DECLARE_ENUM(loop_type_t,
123 schoenebeck 2 loop_type_normal = 0x00000000, ///< Loop forward (normal)
124     loop_type_bidirectional = 0x00000001, ///< Alternating loop (forward/backward, also known as Ping Pong)
125     loop_type_backward = 0x00000002 ///< Loop backward (reverse)
126 schoenebeck 3169 );
127 schoenebeck 2
128 schoenebeck 3169 /** Society of Motion Pictures and Television E time format.
129     *
130 schoenebeck 3181 * @see enumCount(), enumKey(), enumKeys(), enumValue()
131 schoenebeck 3169 */
132     GIG_DECLARE_ENUM(smpte_format_t,
133 schoenebeck 2 smpte_format_no_offset = 0x00000000, ///< no SMPTE offset
134     smpte_format_24_frames = 0x00000018, ///< 24 frames per second
135     smpte_format_25_frames = 0x00000019, ///< 25 frames per second
136     smpte_format_30_frames_dropping = 0x0000001D, ///< 30 frames per second with frame dropping (30 drop)
137     smpte_format_30_frames = 0x0000001E ///< 30 frames per second
138 schoenebeck 3169 );
139 schoenebeck 2
140 schoenebeck 3169 /** Defines the shape of a function graph.
141     *
142 schoenebeck 3181 * @see enumCount(), enumKey(), enumKeys(), enumValue()
143 schoenebeck 3169 */
144     GIG_DECLARE_ENUM(curve_type_t,
145 schoenebeck 2 curve_type_nonlinear = 0,
146     curve_type_linear = 1,
147     curve_type_special = 2,
148     curve_type_unknown = 0xffffffff
149 schoenebeck 3169 );
150 schoenebeck 2
151 schoenebeck 3169 /** Dimensions allow to bypass one of the following controllers.
152     *
153 schoenebeck 3181 * @see enumCount(), enumKey(), enumKeys(), enumValue()
154 schoenebeck 3169 */
155     GIG_DECLARE_ENUM(dim_bypass_ctrl_t,
156 schoenebeck 2 dim_bypass_ctrl_none,
157     dim_bypass_ctrl_94, ///< Effect 4 Depth (MIDI Controller 94)
158     dim_bypass_ctrl_95 ///< Effect 5 Depth (MIDI Controller 95)
159 schoenebeck 3169 );
160 schoenebeck 2
161 schoenebeck 3169 /** Defines how LFO3 is controlled by.
162     *
163 schoenebeck 3181 * @see enumCount(), enumKey(), enumKeys(), enumValue()
164 schoenebeck 3169 */
165     GIG_DECLARE_ENUM(lfo3_ctrl_t,
166 schoenebeck 2 lfo3_ctrl_internal = 0x00, ///< Only internally controlled.
167     lfo3_ctrl_modwheel = 0x01, ///< Only controlled by external modulation wheel.
168     lfo3_ctrl_aftertouch = 0x02, ///< Only controlled by aftertouch controller.
169     lfo3_ctrl_internal_modwheel = 0x03, ///< Controlled internally and by external modulation wheel.
170     lfo3_ctrl_internal_aftertouch = 0x04 ///< Controlled internally and by aftertouch controller.
171 schoenebeck 3169 );
172 schoenebeck 2
173 schoenebeck 3169 /** Defines how LFO2 is controlled by.
174     *
175 schoenebeck 3181 * @see enumCount(), enumKey(), enumKeys(), enumValue()
176 schoenebeck 3169 */
177     GIG_DECLARE_ENUM(lfo2_ctrl_t,
178 schoenebeck 2 lfo2_ctrl_internal = 0x00, ///< Only internally controlled.
179     lfo2_ctrl_modwheel = 0x01, ///< Only controlled by external modulation wheel.
180     lfo2_ctrl_foot = 0x02, ///< Only controlled by external foot controller.
181     lfo2_ctrl_internal_modwheel = 0x03, ///< Controlled internally and by external modulation wheel.
182     lfo2_ctrl_internal_foot = 0x04 ///< Controlled internally and by external foot controller.
183 schoenebeck 3169 );
184 schoenebeck 2
185 schoenebeck 3169 /** Defines how LFO1 is controlled by.
186     *
187 schoenebeck 3181 * @see enumCount(), enumKey(), enumKeys(), enumValue()
188 schoenebeck 3169 */
189     GIG_DECLARE_ENUM(lfo1_ctrl_t,
190 schoenebeck 2 lfo1_ctrl_internal = 0x00, ///< Only internally controlled.
191     lfo1_ctrl_modwheel = 0x01, ///< Only controlled by external modulation wheel.
192     lfo1_ctrl_breath = 0x02, ///< Only controlled by external breath controller.
193     lfo1_ctrl_internal_modwheel = 0x03, ///< Controlled internally and by external modulation wheel.
194     lfo1_ctrl_internal_breath = 0x04 ///< Controlled internally and by external breath controller.
195 schoenebeck 3169 );
196 schoenebeck 2
197 schoenebeck 3169 /** Defines how the filter cutoff frequency is controlled by.
198     *
199 schoenebeck 3181 * @see enumCount(), enumKey(), enumKeys(), enumValue()
200 schoenebeck 3169 */
201     GIG_DECLARE_ENUM(vcf_cutoff_ctrl_t,
202 schoenebeck 2 vcf_cutoff_ctrl_none = 0x00,
203 persson 834 vcf_cutoff_ctrl_none2 = 0x01, ///< The difference between none and none2 is unknown
204 schoenebeck 2 vcf_cutoff_ctrl_modwheel = 0x81, ///< Modulation Wheel (MIDI Controller 1)
205     vcf_cutoff_ctrl_effect1 = 0x8c, ///< Effect Controller 1 (Coarse, MIDI Controller 12)
206     vcf_cutoff_ctrl_effect2 = 0x8d, ///< Effect Controller 2 (Coarse, MIDI Controller 13)
207     vcf_cutoff_ctrl_breath = 0x82, ///< Breath Controller (Coarse, MIDI Controller 2)
208     vcf_cutoff_ctrl_foot = 0x84, ///< Foot Pedal (Coarse, MIDI Controller 4)
209     vcf_cutoff_ctrl_sustainpedal = 0xc0, ///< Sustain Pedal (MIDI Controller 64)
210     vcf_cutoff_ctrl_softpedal = 0xc3, ///< Soft Pedal (MIDI Controller 67)
211     vcf_cutoff_ctrl_genpurpose7 = 0xd2, ///< General Purpose Controller 7 (Button, MIDI Controller 82)
212     vcf_cutoff_ctrl_genpurpose8 = 0xd3, ///< General Purpose Controller 8 (Button, MIDI Controller 83)
213     vcf_cutoff_ctrl_aftertouch = 0x80 ///< Key Pressure
214 schoenebeck 3169 );
215 schoenebeck 2
216 schoenebeck 3169 /** Defines how the filter resonance is controlled by.
217     *
218 schoenebeck 3181 * @see enumCount(), enumKey(), enumKeys(), enumValue()
219 schoenebeck 3169 */
220     GIG_DECLARE_ENUM(vcf_res_ctrl_t,
221 schoenebeck 2 vcf_res_ctrl_none = 0xffffffff,
222     vcf_res_ctrl_genpurpose3 = 0, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
223     vcf_res_ctrl_genpurpose4 = 1, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
224     vcf_res_ctrl_genpurpose5 = 2, ///< General Purpose Controller 5 (Button, MIDI Controller 80)
225     vcf_res_ctrl_genpurpose6 = 3 ///< General Purpose Controller 6 (Button, MIDI Controller 81)
226 schoenebeck 3169 );
227 schoenebeck 55
228 schoenebeck 36 /**
229     * Defines a controller that has a certain contrained influence on a
230     * particular synthesis parameter (used to define attenuation controller,
231     * EG1 controller and EG2 controller).
232     *
233     * You should use the respective <i>typedef</i> (means either
234     * attenuation_ctrl_t, eg1_ctrl_t or eg2_ctrl_t) in your code!
235     */
236     struct leverage_ctrl_t {
237 schoenebeck 3169 /** Defines possible controllers.
238     *
239 schoenebeck 3181 * @see enumCount(), enumKey(), enumKeys(), enumValue()
240 schoenebeck 3169 */
241     GIG_DECLARE_ENUM(type_t,
242 schoenebeck 36 type_none = 0x00, ///< No controller defined
243     type_channelaftertouch = 0x2f, ///< Channel Key Pressure
244     type_velocity = 0xff, ///< Key Velocity
245     type_controlchange = 0xfe ///< Ordinary MIDI control change controller, see field 'controller_number'
246 schoenebeck 3169 );
247 schoenebeck 55
248 schoenebeck 36 type_t type; ///< Controller type
249     uint controller_number; ///< MIDI controller number if this controller is a control change controller, 0 otherwise
250 schoenebeck 3138
251     void serialize(Serialization::Archive* archive);
252 schoenebeck 36 };
253 schoenebeck 55
254 schoenebeck 36 /**
255     * Defines controller influencing attenuation.
256     *
257     * @see leverage_ctrl_t
258     */
259     typedef leverage_ctrl_t attenuation_ctrl_t;
260 schoenebeck 55
261 schoenebeck 36 /**
262     * Defines controller influencing envelope generator 1.
263     *
264     * @see leverage_ctrl_t
265     */
266     typedef leverage_ctrl_t eg1_ctrl_t;
267 schoenebeck 55
268 schoenebeck 36 /**
269     * Defines controller influencing envelope generator 2.
270     *
271     * @see leverage_ctrl_t
272     */
273     typedef leverage_ctrl_t eg2_ctrl_t;
274 schoenebeck 2
275     /**
276     * Defines the type of dimension, that is how the dimension zones (and
277     * thus how the dimension regions are selected by. The number of
278     * dimension zones is always a power of two. All dimensions can have up
279     * to 32 zones (except the layer dimension with only up to 8 zones and
280     * the samplechannel dimension which currently allows only 2 zones).
281 schoenebeck 3169 *
282 schoenebeck 3181 * @see enumCount(), enumKey(), enumKeys(), enumValue()
283 schoenebeck 2 */
284 schoenebeck 3169 GIG_DECLARE_ENUM(dimension_t,
285 schoenebeck 2 dimension_none = 0x00, ///< Dimension not in use.
286     dimension_samplechannel = 0x80, ///< If used sample has more than one channel (thus is not mono).
287     dimension_layer = 0x81, ///< For layering of up to 8 instruments (and eventually crossfading of 2 or 4 layers).
288 persson 1076 dimension_velocity = 0x82, ///< Key Velocity (this is the only dimension in gig2 where the ranges can exactly be defined).
289 schoenebeck 2 dimension_channelaftertouch = 0x83, ///< Channel Key Pressure
290     dimension_releasetrigger = 0x84, ///< Special dimension for triggering samples on releasing a key.
291 schoenebeck 353 dimension_keyboard = 0x85, ///< Dimension for keyswitching
292 persson 437 dimension_roundrobin = 0x86, ///< Different samples triggered each time a note is played, dimension regions selected in sequence
293     dimension_random = 0x87, ///< Different samples triggered each time a note is played, random order
294 persson 1076 dimension_smartmidi = 0x88, ///< For MIDI tools like legato and repetition mode
295     dimension_roundrobinkeyboard = 0x89, ///< Different samples triggered each time a note is played, any key advances the counter
296 schoenebeck 2 dimension_modwheel = 0x01, ///< Modulation Wheel (MIDI Controller 1)
297     dimension_breath = 0x02, ///< Breath Controller (Coarse, MIDI Controller 2)
298     dimension_foot = 0x04, ///< Foot Pedal (Coarse, MIDI Controller 4)
299     dimension_portamentotime = 0x05, ///< Portamento Time (Coarse, MIDI Controller 5)
300     dimension_effect1 = 0x0c, ///< Effect Controller 1 (Coarse, MIDI Controller 12)
301     dimension_effect2 = 0x0d, ///< Effect Controller 2 (Coarse, MIDI Controller 13)
302     dimension_genpurpose1 = 0x10, ///< General Purpose Controller 1 (Slider, MIDI Controller 16)
303     dimension_genpurpose2 = 0x11, ///< General Purpose Controller 2 (Slider, MIDI Controller 17)
304     dimension_genpurpose3 = 0x12, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
305     dimension_genpurpose4 = 0x13, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
306     dimension_sustainpedal = 0x40, ///< Sustain Pedal (MIDI Controller 64)
307     dimension_portamento = 0x41, ///< Portamento (MIDI Controller 65)
308     dimension_sostenutopedal = 0x42, ///< Sostenuto Pedal (MIDI Controller 66)
309     dimension_softpedal = 0x43, ///< Soft Pedal (MIDI Controller 67)
310     dimension_genpurpose5 = 0x30, ///< General Purpose Controller 5 (Button, MIDI Controller 80)
311     dimension_genpurpose6 = 0x31, ///< General Purpose Controller 6 (Button, MIDI Controller 81)
312     dimension_genpurpose7 = 0x32, ///< General Purpose Controller 7 (Button, MIDI Controller 82)
313     dimension_genpurpose8 = 0x33, ///< General Purpose Controller 8 (Button, MIDI Controller 83)
314     dimension_effect1depth = 0x5b, ///< Effect 1 Depth (MIDI Controller 91)
315     dimension_effect2depth = 0x5c, ///< Effect 2 Depth (MIDI Controller 92)
316     dimension_effect3depth = 0x5d, ///< Effect 3 Depth (MIDI Controller 93)
317     dimension_effect4depth = 0x5e, ///< Effect 4 Depth (MIDI Controller 94)
318     dimension_effect5depth = 0x5f ///< Effect 5 Depth (MIDI Controller 95)
319 schoenebeck 3169 );
320 schoenebeck 2
321     /**
322     * Intended for internal usage: will be used to convert a dimension value
323     * into the corresponding dimension bit number.
324 schoenebeck 3169 *
325 schoenebeck 3181 * @see enumCount(), enumKey(), enumKeys(), enumValue()
326 schoenebeck 2 */
327 schoenebeck 3169 GIG_DECLARE_ENUM(split_type_t,
328 persson 858 split_type_normal, ///< dimension value between 0-127
329 schoenebeck 2 split_type_bit ///< dimension values are already the sought bit number
330 schoenebeck 3169 );
331 schoenebeck 2
332     /** General dimension definition. */
333     struct dimension_def_t {
334     dimension_t dimension; ///< Specifies which source (usually a MIDI controller) is associated with the dimension.
335     uint8_t bits; ///< Number of "bits" (1 bit = 2 splits/zones, 2 bit = 4 splits/zones, 3 bit = 8 splits/zones,...).
336     uint8_t zones; ///< Number of zones the dimension has.
337     split_type_t split_type; ///< Intended for internal usage: will be used to convert a dimension value into the corresponding dimension bit number.
338 persson 774 float zone_size; ///< Intended for internal usage: reflects the size of each zone (128/zones) for normal split types only, 0 otherwise.
339 schoenebeck 2 };
340    
341 schoenebeck 3169 /** Defines which frequencies are filtered by the VCF.
342     *
343 schoenebeck 3181 * @see enumCount(), enumKey(), enumKeys(), enumValue()
344 schoenebeck 3169 */
345     GIG_DECLARE_ENUM(vcf_type_t,
346 schoenebeck 2 vcf_type_lowpass = 0x00,
347     vcf_type_lowpassturbo = 0xff, ///< More poles than normal lowpass
348     vcf_type_bandpass = 0x01,
349     vcf_type_highpass = 0x02,
350     vcf_type_bandreject = 0x03
351 schoenebeck 3169 );
352 schoenebeck 2
353 schoenebeck 345 /**
354     * Defines the envelope of a crossfade.
355     *
356     * Note: The default value for crossfade points is 0,0,0,0. Layers with
357     * such a default value should be treated as if they would not have a
358 schoenebeck 353 * crossfade.
359 schoenebeck 345 */
360 schoenebeck 2 struct crossfade_t {
361     #if WORDS_BIGENDIAN
362 schoenebeck 345 uint8_t out_end; ///< End postition of fade out.
363     uint8_t out_start; ///< Start position of fade out.
364     uint8_t in_end; ///< End position of fade in.
365 schoenebeck 2 uint8_t in_start; ///< Start position of fade in.
366 schoenebeck 345 #else // little endian
367     uint8_t in_start; ///< Start position of fade in.
368 schoenebeck 2 uint8_t in_end; ///< End position of fade in.
369     uint8_t out_start; ///< Start position of fade out.
370     uint8_t out_end; ///< End postition of fade out.
371     #endif // WORDS_BIGENDIAN
372 schoenebeck 3138
373     void serialize(Serialization::Archive* archive);
374 schoenebeck 2 };
375    
376 schoenebeck 24 /** Reflects the current playback state for a sample. */
377     struct playback_state_t {
378 schoenebeck 2912 file_offset_t position; ///< Current position within the sample.
379 schoenebeck 24 bool reverse; ///< If playback direction is currently backwards (in case there is a pingpong or reverse loop defined).
380 schoenebeck 2912 file_offset_t loop_cycles_left; ///< How many times the loop has still to be passed, this value will be decremented with each loop cycle.
381 schoenebeck 24 };
382    
383 schoenebeck 3323 /**
384 schoenebeck 3324 * Defines behavior options for envelope generators (gig format extension).
385 schoenebeck 3323 *
386     * These options allow to override the precise default behavior of the
387     * envelope generators' state machines.
388     *
389     * @b Note: These EG options are an extension to the original gig file
390     * format, so these options are not available with the original
391     * Gigasampler/GigaStudio software! Currently only LinuxSampler and gigedit
392     * support these EG options!
393     *
394     * Adding these options to the original gig file format was necessary,
395     * because the precise state machine behavior of envelope generators of the
396     * gig format (and thus the default EG behavior if not explicitly overridden
397     * here) deviates from common, expected behavior of envelope generators in
398     * general, if i.e. compared with EGs of hardware synthesizers. For example
399     * with the gig format, the attack and decay stages will be aborted as soon
400     * as a note-off is received. Most other EG implementations in the industry
401     * however always run the attack and decay stages to their full duration,
402     * even if an early note-off arrives. The latter behavior is intentionally
403     * implemented in most other products, because it is required to resemble
404     * percussive sounds in a realistic manner.
405     */
406     struct eg_opt_t {
407     bool AttackCancel; ///< Whether the "attack" stage is cancelled when receiving a note-off (default: @c true).
408     bool AttackHoldCancel; ///< Whether the "attack hold" stage is cancelled when receiving a note-off (default: @c true).
409 schoenebeck 3324 bool Decay1Cancel; ///< Whether the "decay 1" stage is cancelled when receiving a note-off (default: @c true).
410     bool Decay2Cancel; ///< Whether the "decay 2" stage is cancelled when receiving a note-off (default: @c true).
411 schoenebeck 3323 bool ReleaseCancel; ///< Whether the "release" stage is cancelled when receiving a note-on (default: @c true).
412    
413     eg_opt_t();
414     void serialize(Serialization::Archive* archive);
415     };
416    
417 schoenebeck 2 // just symbol prototyping
418     class File;
419     class Instrument;
420     class Sample;
421 capela 310 class Region;
422 schoenebeck 929 class Group;
423 schoenebeck 2584 class Script;
424     class ScriptGroup;
425 schoenebeck 2
426 schoenebeck 2699 /** @brief Encapsulates articulation informations of a dimension region.
427 schoenebeck 2 *
428 schoenebeck 2699 * This is the most important data object of the Gigasampler / GigaStudio
429     * format. A DimensionRegion provides the link to the sample to be played
430     * and all required articulation informations to be interpreted for playing
431     * back the sample and processing it appropriately by the sampler software.
432     * Every Region of a Gigasampler Instrument has at least one dimension
433     * region (exactly then when the Region has no dimension defined). Many
434     * Regions though provide more than one DimensionRegion, which reflect
435     * different playing "cases". For example a different sample might be played
436     * if a certain pedal is pressed down, or if the note was triggered with
437     * different velocity.
438 schoenebeck 2 *
439 schoenebeck 2699 * One instance of a DimensionRegion reflects exactly one particular case
440     * while playing an instrument (for instance "note between C3 and E3 was
441     * triggered AND note on velocity was between 20 and 42 AND modulation wheel
442     * controller is between 80 and 127). The DimensionRegion defines what to do
443     * under that one particular case, that is which sample to play back and how
444     * to play that sample back exactly and how to process it. So a
445     * DimensionRegion object is always linked to exactly one sample. It may
446     * however also link to no sample at all, for defining a "silence" case
447     * where nothing shall be played (for example when note on velocity was
448     * below 6).
449 schoenebeck 2 *
450 schoenebeck 2699 * Note that a DimensionRegion object only defines "what to do", but it does
451     * not define "when to do it". To actually resolve which DimensionRegion to
452     * pick under which situation, you need to refer to the DimensionRegions'
453     * parent Region object. The Region object contains the necessary
454     * "Dimension" definitions, which in turn define which DimensionRegion is
455     * associated with which playing case exactly.
456     *
457     * The Gigasampler/GigaStudio format defines 3 Envelope Generators and 3
458     * Low Frequency Oscillators:
459     *
460 schoenebeck 2 * - EG1 and LFO1, both controlling sample amplitude
461     * - EG2 and LFO2, both controlling filter cutoff frequency
462     * - EG3 and LFO3, both controlling sample pitch
463 schoenebeck 2699 *
464     * Since the gig format was designed as extension to the DLS file format,
465     * this class is derived from the DLS::Sampler class. So also refer to
466     * DLS::Sampler for additional informations, class attributes and methods.
467 schoenebeck 2 */
468     class DimensionRegion : protected DLS::Sampler {
469     public:
470 schoenebeck 2543 uint8_t VelocityUpperLimit; ///< Defines the upper velocity value limit of a velocity split (only if an user defined limit was set, thus a value not equal to 128/NumberOfSplits, else this value is 0). Only for gig2, for gig3 and above the DimensionUpperLimits are used instead.
471 schoenebeck 2 Sample* pSample; ///< Points to the Sample which is assigned to the dimension region.
472     // Sample Amplitude EG/LFO
473     uint16_t EG1PreAttack; ///< Preattack value of the sample amplitude EG (0 - 1000 permille).
474     double EG1Attack; ///< Attack time of the sample amplitude EG (0.000 - 60.000s).
475     double EG1Decay1; ///< Decay time of the sample amplitude EG (0.000 - 60.000s).
476     double EG1Decay2; ///< Only if <i>EG1InfiniteSustain == false</i>: 2nd decay stage time of the sample amplitude EG (0.000 - 60.000s).
477     bool EG1InfiniteSustain; ///< If <i>true</i>, instead of going into Decay2 phase, Decay1 level will be hold until note will be released.
478     uint16_t EG1Sustain; ///< Sustain value of the sample amplitude EG (0 - 1000 permille).
479     double EG1Release; ///< Release time of the sample amplitude EG (0.000 - 60.000s).
480     bool EG1Hold; ///< If <i>true</i>, Decay1 stage should be postponed until the sample reached the sample loop start.
481     eg1_ctrl_t EG1Controller; ///< MIDI Controller which has influence on sample amplitude EG parameters (attack, decay, release).
482     bool EG1ControllerInvert; ///< Invert values coming from defined EG1 controller.
483 schoenebeck 36 uint8_t EG1ControllerAttackInfluence; ///< Amount EG1 Controller has influence on the EG1 Attack time (0 - 3, where 0 means off).
484     uint8_t EG1ControllerDecayInfluence; ///< Amount EG1 Controller has influence on the EG1 Decay time (0 - 3, where 0 means off).
485     uint8_t EG1ControllerReleaseInfluence; ///< Amount EG1 Controller has influence on the EG1 Release time (0 - 3, where 0 means off).
486 schoenebeck 2 double LFO1Frequency; ///< Frequency of the sample amplitude LFO (0.10 - 10.00 Hz).
487     uint16_t LFO1InternalDepth; ///< Firm pitch of the sample amplitude LFO (0 - 1200 cents).
488     uint16_t LFO1ControlDepth; ///< Controller depth influencing sample amplitude LFO pitch (0 - 1200 cents).
489     lfo1_ctrl_t LFO1Controller; ///< MIDI Controller which controls sample amplitude LFO.
490     bool LFO1FlipPhase; ///< Inverts phase of the sample amplitude LFO wave.
491     bool LFO1Sync; ///< If set to <i>true</i> only one LFO should be used for all voices.
492     // Filter Cutoff Frequency EG/LFO
493     uint16_t EG2PreAttack; ///< Preattack value of the filter cutoff EG (0 - 1000 permille).
494     double EG2Attack; ///< Attack time of the filter cutoff EG (0.000 - 60.000s).
495     double EG2Decay1; ///< Decay time of the filter cutoff EG (0.000 - 60.000s).
496     double EG2Decay2; ///< Only if <i>EG2InfiniteSustain == false</i>: 2nd stage decay time of the filter cutoff EG (0.000 - 60.000s).
497     bool EG2InfiniteSustain; ///< If <i>true</i>, instead of going into Decay2 phase, Decay1 level will be hold until note will be released.
498     uint16_t EG2Sustain; ///< Sustain value of the filter cutoff EG (0 - 1000 permille).
499     double EG2Release; ///< Release time of the filter cutoff EG (0.000 - 60.000s).
500     eg2_ctrl_t EG2Controller; ///< MIDI Controller which has influence on filter cutoff EG parameters (attack, decay, release).
501     bool EG2ControllerInvert; ///< Invert values coming from defined EG2 controller.
502 schoenebeck 36 uint8_t EG2ControllerAttackInfluence; ///< Amount EG2 Controller has influence on the EG2 Attack time (0 - 3, where 0 means off).
503     uint8_t EG2ControllerDecayInfluence; ///< Amount EG2 Controller has influence on the EG2 Decay time (0 - 3, where 0 means off).
504     uint8_t EG2ControllerReleaseInfluence; ///< Amount EG2 Controller has influence on the EG2 Release time (0 - 3, where 0 means off).
505 schoenebeck 2 double LFO2Frequency; ///< Frequency of the filter cutoff LFO (0.10 - 10.00 Hz).
506     uint16_t LFO2InternalDepth; ///< Firm pitch of the filter cutoff LFO (0 - 1200 cents).
507     uint16_t LFO2ControlDepth; ///< Controller depth influencing filter cutoff LFO pitch (0 - 1200).
508     lfo2_ctrl_t LFO2Controller; ///< MIDI Controlle which controls the filter cutoff LFO.
509     bool LFO2FlipPhase; ///< Inverts phase of the filter cutoff LFO wave.
510     bool LFO2Sync; ///< If set to <i>true</i> only one LFO should be used for all voices.
511     // Sample Pitch EG/LFO
512     double EG3Attack; ///< Attack time of the sample pitch EG (0.000 - 10.000s).
513     int16_t EG3Depth; ///< Depth of the sample pitch EG (-1200 - +1200).
514     double LFO3Frequency; ///< Frequency of the sample pitch LFO (0.10 - 10.00 Hz).
515     int16_t LFO3InternalDepth; ///< Firm depth of the sample pitch LFO (-1200 - +1200 cents).
516     int16_t LFO3ControlDepth; ///< Controller depth of the sample pitch LFO (-1200 - +1200 cents).
517     lfo3_ctrl_t LFO3Controller; ///< MIDI Controller which controls the sample pitch LFO.
518     bool LFO3Sync; ///< If set to <i>true</i> only one LFO should be used for all voices.
519     // Filter
520     bool VCFEnabled; ///< If filter should be used.
521     vcf_type_t VCFType; ///< Defines the general filter characteristic (lowpass, highpass, bandpass, etc.).
522 schoenebeck 1358 vcf_cutoff_ctrl_t VCFCutoffController; ///< Specifies which external controller has influence on the filter cutoff frequency. @deprecated Don't alter directly, use SetVCFCutoffController() instead!
523 persson 728 bool VCFCutoffControllerInvert; ///< Inverts values coming from the defined cutoff controller
524 schoenebeck 2 uint8_t VCFCutoff; ///< Max. cutoff frequency.
525 schoenebeck 1358 curve_type_t VCFVelocityCurve; ///< Defines a transformation curve for the incoming velocity values, affecting the VCF. @deprecated Don't alter directly, use SetVCFVelocityCurve() instead!
526     uint8_t VCFVelocityScale; ///< (0-127) Amount velocity controls VCF cutoff frequency (only if no other VCF cutoff controller is defined, otherwise this is the minimum cutoff). @deprecated Don't alter directly, use SetVCFVelocityScale() instead!
527     uint8_t VCFVelocityDynamicRange; ///< 0x04 = lowest, 0x00 = highest . @deprecated Don't alter directly, use SetVCFVelocityDynamicRange() instead!
528 schoenebeck 2 uint8_t VCFResonance; ///< Firm internal filter resonance weight.
529     bool VCFResonanceDynamic; ///< If <i>true</i>: Increases the resonance Q according to changes of controllers that actually control the VCF cutoff frequency (EG2, ext. VCF MIDI controller).
530     vcf_res_ctrl_t VCFResonanceController; ///< Specifies which external controller has influence on the filter resonance Q.
531     bool VCFKeyboardTracking; ///< If <i>true</i>: VCF cutoff frequence will be dependend to the note key position relative to the defined breakpoint value.
532     uint8_t VCFKeyboardTrackingBreakpoint; ///< See VCFKeyboardTracking (0 - 127).
533     // Key Velocity Transformations
534 schoenebeck 1358 curve_type_t VelocityResponseCurve; ///< Defines a transformation curve to the incoming velocity values affecting amplitude (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseCurve() instead!
535     uint8_t VelocityResponseDepth; ///< Dynamic range of velocity affecting amplitude (0 - 4) (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseDepth() instead!
536     uint8_t VelocityResponseCurveScaling; ///< 0 - 127 (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseCurveScaling() instead!
537     curve_type_t ReleaseVelocityResponseCurve; ///< Defines a transformation curve to the incoming release veloctiy values affecting envelope times. @deprecated Don't alter directly, use SetReleaseVelocityResponseCurve() instead!
538     uint8_t ReleaseVelocityResponseDepth; ///< Dynamic range of release velocity affecting envelope time (0 - 4). @deprecated Don't alter directly, use SetReleaseVelocityResponseDepth() instead!
539 schoenebeck 2 uint8_t ReleaseTriggerDecay; ///< 0 - 8
540     // Mix / Layer
541     crossfade_t Crossfade;
542     bool PitchTrack; ///< If <i>true</i>: sample will be pitched according to the key position (this will be disabled for drums for example).
543     dim_bypass_ctrl_t DimensionBypass; ///< If defined, the MIDI controller can switch on/off the dimension in realtime.
544     int8_t Pan; ///< Panorama / Balance (-64..0..63 <-> left..middle..right)
545     bool SelfMask; ///< If <i>true</i>: high velocity notes will stop low velocity notes at the same note, with that you can save voices that wouldn't be audible anyway.
546 schoenebeck 36 attenuation_ctrl_t AttenuationController; ///< MIDI Controller which has influence on the volume level of the sample (or entire sample group).
547     bool InvertAttenuationController; ///< Inverts the values coming from the defined Attenuation Controller.
548     uint8_t AttenuationControllerThreshold;///< 0-127
549 schoenebeck 2 uint8_t ChannelOffset; ///< Audio output where the audio signal of the dimension region should be routed to (0 - 9).
550     bool SustainDefeat; ///< If <i>true</i>: Sustain pedal will not hold a note.
551     bool MSDecode; ///< Gigastudio flag: defines if Mid Side Recordings should be decoded.
552     uint16_t SampleStartOffset; ///< Number of samples the sample start should be moved (0 - 2000).
553 persson 406 double SampleAttenuation; ///< Sample volume (calculated from DLS::Sampler::Gain)
554 schoenebeck 2547 uint8_t DimensionUpperLimits[8]; ///< gig3: defines the upper limit of the dimension values for this dimension region. In case you wondered why this is defined on DimensionRegion level and not on Region level: the zone sizes (upper limits) of the velocity dimension can indeed differ in the individual dimension regions, depending on which zones of the other dimension types are currently selected. So this is exceptional for the velocity dimension only. All other dimension types have the same dimension zone sizes for every single DimensionRegion (of the sample Region).
555 schoenebeck 3323 eg_opt_t EGOptions; ///< [gig extension]: Behavior options which should be used for all 3 envelope generators.
556 persson 406
557 schoenebeck 2 // derived attributes from DLS::Sampler
558 persson 2334 using DLS::Sampler::UnityNote;
559     using DLS::Sampler::FineTune;
560     using DLS::Sampler::Gain;
561     using DLS::Sampler::SampleLoops;
562     using DLS::Sampler::pSampleLoops;
563 schoenebeck 2
564 schoenebeck 809 // own methods
565 schoenebeck 16 double GetVelocityAttenuation(uint8_t MIDIKeyVelocity);
566 persson 613 double GetVelocityRelease(uint8_t MIDIKeyVelocity);
567 persson 728 double GetVelocityCutoff(uint8_t MIDIKeyVelocity);
568 schoenebeck 1358 void SetVelocityResponseCurve(curve_type_t curve);
569     void SetVelocityResponseDepth(uint8_t depth);
570     void SetVelocityResponseCurveScaling(uint8_t scaling);
571     void SetReleaseVelocityResponseCurve(curve_type_t curve);
572     void SetReleaseVelocityResponseDepth(uint8_t depth);
573     void SetVCFCutoffController(vcf_cutoff_ctrl_t controller);
574     void SetVCFVelocityCurve(curve_type_t curve);
575     void SetVCFVelocityDynamicRange(uint8_t range);
576     void SetVCFVelocityScale(uint8_t scaling);
577 schoenebeck 1316 Region* GetParent() const;
578 schoenebeck 1155 // derived methods
579 persson 2334 using DLS::Sampler::AddSampleLoop;
580     using DLS::Sampler::DeleteSampleLoop;
581 schoenebeck 809 // overridden methods
582 schoenebeck 1358 virtual void SetGain(int32_t gain);
583 schoenebeck 2682 virtual void UpdateChunks(progress_t* pProgress);
584 schoenebeck 2394 virtual void CopyAssign(const DimensionRegion* orig);
585 schoenebeck 16 protected:
586 persson 858 uint8_t* VelocityTable; ///< For velocity dimensions with custom defined zone ranges only: used for fast converting from velocity MIDI value to dimension bit number.
587 schoenebeck 1316 DimensionRegion(Region* pParent, RIFF::List* _3ewl);
588 persson 1301 DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src);
589 schoenebeck 16 ~DimensionRegion();
590 schoenebeck 2482 void CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples);
591 schoenebeck 3138 void serialize(Serialization::Archive* archive);
592 schoenebeck 16 friend class Region;
593 schoenebeck 3138 friend class Serialization::Archive;
594 schoenebeck 16 private:
595 schoenebeck 36 typedef enum { ///< Used to decode attenuation, EG1 and EG2 controller
596 schoenebeck 2540 // official leverage controllers as they were defined in the original Gigasampler/GigaStudio format:
597 schoenebeck 36 _lev_ctrl_none = 0x00,
598     _lev_ctrl_modwheel = 0x03, ///< Modulation Wheel (MIDI Controller 1)
599     _lev_ctrl_breath = 0x05, ///< Breath Controller (Coarse, MIDI Controller 2)
600     _lev_ctrl_foot = 0x07, ///< Foot Pedal (Coarse, MIDI Controller 4)
601     _lev_ctrl_effect1 = 0x0d, ///< Effect Controller 1 (Coarse, MIDI Controller 12)
602     _lev_ctrl_effect2 = 0x0f, ///< Effect Controller 2 (Coarse, MIDI Controller 13)
603     _lev_ctrl_genpurpose1 = 0x11, ///< General Purpose Controller 1 (Slider, MIDI Controller 16)
604     _lev_ctrl_genpurpose2 = 0x13, ///< General Purpose Controller 2 (Slider, MIDI Controller 17)
605     _lev_ctrl_genpurpose3 = 0x15, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
606     _lev_ctrl_genpurpose4 = 0x17, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
607     _lev_ctrl_portamentotime = 0x0b, ///< Portamento Time (Coarse, MIDI Controller 5)
608     _lev_ctrl_sustainpedal = 0x01, ///< Sustain Pedal (MIDI Controller 64)
609     _lev_ctrl_portamento = 0x19, ///< Portamento (MIDI Controller 65)
610     _lev_ctrl_sostenutopedal = 0x1b, ///< Sostenuto Pedal (MIDI Controller 66)
611     _lev_ctrl_softpedal = 0x09, ///< Soft Pedal (MIDI Controller 67)
612     _lev_ctrl_genpurpose5 = 0x1d, ///< General Purpose Controller 5 (Button, MIDI Controller 80)
613     _lev_ctrl_genpurpose6 = 0x1f, ///< General Purpose Controller 6 (Button, MIDI Controller 81)
614     _lev_ctrl_genpurpose7 = 0x21, ///< General Purpose Controller 7 (Button, MIDI Controller 82)
615     _lev_ctrl_genpurpose8 = 0x23, ///< General Purpose Controller 8 (Button, MIDI Controller 83)
616     _lev_ctrl_effect1depth = 0x25, ///< Effect 1 Depth (MIDI Controller 91)
617     _lev_ctrl_effect2depth = 0x27, ///< Effect 2 Depth (MIDI Controller 92)
618     _lev_ctrl_effect3depth = 0x29, ///< Effect 3 Depth (MIDI Controller 93)
619     _lev_ctrl_effect4depth = 0x2b, ///< Effect 4 Depth (MIDI Controller 94)
620     _lev_ctrl_effect5depth = 0x2d, ///< Effect 5 Depth (MIDI Controller 95)
621     _lev_ctrl_channelaftertouch = 0x2f, ///< Channel Key Pressure
622 schoenebeck 2540 _lev_ctrl_velocity = 0xff, ///< Key Velocity
623    
624     // format extension (these controllers are so far only supported by LinuxSampler & gigedit) they will *NOT* work with Gigasampler/GigaStudio !
625     // (the assigned values here are their official MIDI CC number plus the highest bit set):
626     _lev_ctrl_CC3_EXT = 0x83, ///< MIDI Controller 3 [gig format extension]
627    
628     _lev_ctrl_CC6_EXT = 0x86, ///< Data Entry MSB (MIDI Controller 6) [gig format extension]
629     _lev_ctrl_CC7_EXT = 0x87, ///< Channel Volume (MIDI Controller 7) [gig format extension]
630     _lev_ctrl_CC8_EXT = 0x88, ///< Balance (MIDI Controller 8) [gig format extension]
631     _lev_ctrl_CC9_EXT = 0x89, ///< MIDI Controller 9 [gig format extension]
632     _lev_ctrl_CC10_EXT = 0x8a, ///< Pan (MIDI Controller 10) [gig format extension]
633     _lev_ctrl_CC11_EXT = 0x8b, ///< Expression Controller (MIDI Controller 11) [gig format extension]
634    
635     _lev_ctrl_CC14_EXT = 0x8e, ///< MIDI Controller 14 [gig format extension]
636     _lev_ctrl_CC15_EXT = 0x8f, ///< MIDI Controller 15 [gig format extension]
637    
638     _lev_ctrl_CC20_EXT = 0x94, ///< MIDI Controller 20 [gig format extension]
639     _lev_ctrl_CC21_EXT = 0x95, ///< MIDI Controller 21 [gig format extension]
640     _lev_ctrl_CC22_EXT = 0x96, ///< MIDI Controller 22 [gig format extension]
641     _lev_ctrl_CC23_EXT = 0x97, ///< MIDI Controller 23 [gig format extension]
642     _lev_ctrl_CC24_EXT = 0x98, ///< MIDI Controller 24 [gig format extension]
643     _lev_ctrl_CC25_EXT = 0x99, ///< MIDI Controller 25 [gig format extension]
644     _lev_ctrl_CC26_EXT = 0x9a, ///< MIDI Controller 26 [gig format extension]
645     _lev_ctrl_CC27_EXT = 0x9b, ///< MIDI Controller 27 [gig format extension]
646     _lev_ctrl_CC28_EXT = 0x9c, ///< MIDI Controller 28 [gig format extension]
647     _lev_ctrl_CC29_EXT = 0x9d, ///< MIDI Controller 29 [gig format extension]
648     _lev_ctrl_CC30_EXT = 0x9e, ///< MIDI Controller 30 [gig format extension]
649     _lev_ctrl_CC31_EXT = 0x9f, ///< MIDI Controller 31 [gig format extension]
650    
651     _lev_ctrl_CC68_EXT = 0xc4, ///< Legato Footswitch (MIDI Controller 68) [gig format extension]
652     _lev_ctrl_CC69_EXT = 0xc5, ///< Hold 2 (MIDI Controller 69) [gig format extension]
653     _lev_ctrl_CC70_EXT = 0xc6, ///< Sound Ctrl. 1 - Sound Variation (MIDI Controller 70) [gig format extension]
654     _lev_ctrl_CC71_EXT = 0xc7, ///< Sound Ctrl. 2 - Timbre (MIDI Controller 71) [gig format extension]
655     _lev_ctrl_CC72_EXT = 0xc8, ///< Sound Ctrl. 3 - Release Time (MIDI Controller 72) [gig format extension]
656     _lev_ctrl_CC73_EXT = 0xc9, ///< Sound Ctrl. 4 - Attack Time (MIDI Controller 73) [gig format extension]
657     _lev_ctrl_CC74_EXT = 0xca, ///< Sound Ctrl. 5 - Brightness (MIDI Controller 74) [gig format extension]
658     _lev_ctrl_CC75_EXT = 0xcb, ///< Sound Ctrl. 6 - Decay Time (MIDI Controller 75) [gig format extension]
659     _lev_ctrl_CC76_EXT = 0xcc, ///< Sound Ctrl. 7 - Vibrato Rate (MIDI Controller 76) [gig format extension]
660     _lev_ctrl_CC77_EXT = 0xcd, ///< Sound Ctrl. 8 - Vibrato Depth (MIDI Controller 77) [gig format extension]
661     _lev_ctrl_CC78_EXT = 0xce, ///< Sound Ctrl. 9 - Vibrato Delay (MIDI Controller 78) [gig format extension]
662     _lev_ctrl_CC79_EXT = 0xcf, ///< Sound Ctrl. 10 (MIDI Controller 79) [gig format extension]
663    
664     _lev_ctrl_CC84_EXT = 0xd4, ///< Portamento Control (MIDI Controller 84) [gig format extension]
665     _lev_ctrl_CC85_EXT = 0xd5, ///< MIDI Controller 85 [gig format extension]
666     _lev_ctrl_CC86_EXT = 0xd6, ///< MIDI Controller 86 [gig format extension]
667     _lev_ctrl_CC87_EXT = 0xd7, ///< MIDI Controller 87 [gig format extension]
668    
669     _lev_ctrl_CC89_EXT = 0xd9, ///< MIDI Controller 89 [gig format extension]
670     _lev_ctrl_CC90_EXT = 0xda, ///< MIDI Controller 90 [gig format extension]
671    
672     _lev_ctrl_CC96_EXT = 0xe0, ///< Data Increment (MIDI Controller 96) [gig format extension]
673     _lev_ctrl_CC97_EXT = 0xe1, ///< Data Decrement (MIDI Controller 97) [gig format extension]
674    
675     _lev_ctrl_CC102_EXT = 0xe6, ///< MIDI Controller 102 [gig format extension]
676     _lev_ctrl_CC103_EXT = 0xe7, ///< MIDI Controller 103 [gig format extension]
677     _lev_ctrl_CC104_EXT = 0xe8, ///< MIDI Controller 104 [gig format extension]
678     _lev_ctrl_CC105_EXT = 0xe9, ///< MIDI Controller 105 [gig format extension]
679     _lev_ctrl_CC106_EXT = 0xea, ///< MIDI Controller 106 [gig format extension]
680     _lev_ctrl_CC107_EXT = 0xeb, ///< MIDI Controller 107 [gig format extension]
681     _lev_ctrl_CC108_EXT = 0xec, ///< MIDI Controller 108 [gig format extension]
682     _lev_ctrl_CC109_EXT = 0xed, ///< MIDI Controller 109 [gig format extension]
683     _lev_ctrl_CC110_EXT = 0xee, ///< MIDI Controller 110 [gig format extension]
684     _lev_ctrl_CC111_EXT = 0xef, ///< MIDI Controller 111 [gig format extension]
685     _lev_ctrl_CC112_EXT = 0xf0, ///< MIDI Controller 112 [gig format extension]
686     _lev_ctrl_CC113_EXT = 0xf1, ///< MIDI Controller 113 [gig format extension]
687     _lev_ctrl_CC114_EXT = 0xf2, ///< MIDI Controller 114 [gig format extension]
688     _lev_ctrl_CC115_EXT = 0xf3, ///< MIDI Controller 115 [gig format extension]
689     _lev_ctrl_CC116_EXT = 0xf4, ///< MIDI Controller 116 [gig format extension]
690     _lev_ctrl_CC117_EXT = 0xf5, ///< MIDI Controller 117 [gig format extension]
691     _lev_ctrl_CC118_EXT = 0xf6, ///< MIDI Controller 118 [gig format extension]
692     _lev_ctrl_CC119_EXT = 0xf7 ///< MIDI Controller 119 [gig format extension]
693 schoenebeck 55 } _lev_ctrl_t;
694 schoenebeck 16 typedef std::map<uint32_t, double*> VelocityTableMap;
695    
696 schoenebeck 2922 static size_t Instances; ///< Number of DimensionRegion instances.
697 schoenebeck 16 static VelocityTableMap* pVelocityTables; ///< Contains the tables corresponding to the various velocity parameters (VelocityResponseCurve and VelocityResponseDepth).
698     double* pVelocityAttenuationTable; ///< Points to the velocity table corresponding to the velocity parameters of this DimensionRegion.
699 persson 613 double* pVelocityReleaseTable; ///< Points to the velocity table corresponding to the release velocity parameters of this DimensionRegion
700 persson 728 double* pVelocityCutoffTable; ///< Points to the velocity table corresponding to the filter velocity parameters of this DimensionRegion
701 schoenebeck 1316 Region* pRegion;
702 schoenebeck 55
703 schoenebeck 36 leverage_ctrl_t DecodeLeverageController(_lev_ctrl_t EncodedController);
704 schoenebeck 809 _lev_ctrl_t EncodeLeverageController(leverage_ctrl_t DecodedController);
705 schoenebeck 1358 double* GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth);
706     double* GetCutoffVelocityTable(curve_type_t vcfVelocityCurve, uint8_t vcfVelocityDynamicRange, uint8_t vcfVelocityScale, vcf_cutoff_ctrl_t vcfCutoffController);
707 persson 613 double* GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);
708 schoenebeck 308 double* CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);
709 schoenebeck 2 };
710    
711 schoenebeck 2699 /** @brief Encapsulates sample waves of Gigasampler/GigaStudio files used for playback.
712 schoenebeck 809 *
713 schoenebeck 2699 * This class provides access to the actual audio sample data of a
714     * Gigasampler/GigaStudio file. Along to the actual sample data, it also
715     * provides access to the sample's meta informations like bit depth,
716     * sample rate, encoding type, but also loop informations. The latter may be
717     * used by instruments for resembling sounds with arbitary note lengths.
718     *
719 schoenebeck 809 * In case you created a new sample with File::AddSample(), you should
720     * first update all attributes with the desired meta informations
721     * (amount of channels, bit depth, sample rate, etc.), then call
722     * Resize() with the desired sample size, followed by File::Save(), this
723     * will create the mandatory RIFF chunk which will hold the sample wave
724     * data and / or resize the file so you will be able to Write() the
725     * sample data directly to disk.
726 schoenebeck 1154 *
727     * @e Caution: for gig synthesis, most looping relevant information are
728     * retrieved from the respective DimensionRegon instead from the Sample
729     * itself. This was made for allowing different loop definitions for the
730     * same sample under different conditions.
731 schoenebeck 2699 *
732     * Since the gig format was designed as extension to the DLS file format,
733     * this class is derived from the DLS::Sample class. So also refer to
734     * DLS::Sample for additional informations, class attributes and methods.
735 schoenebeck 809 */
736 schoenebeck 2 class Sample : public DLS::Sample {
737     public:
738     uint32_t Manufacturer; ///< Specifies the MIDI Manufacturer's Association (MMA) Manufacturer code for the sampler intended to receive this file's waveform. If no particular manufacturer is to be specified, a value of 0 should be used.
739     uint32_t Product; ///< Specifies the MIDI model ID defined by the manufacturer corresponding to the Manufacturer field. If no particular manufacturer's product is to be specified, a value of 0 should be used.
740 schoenebeck 809 uint32_t SamplePeriod; ///< Specifies the duration of time that passes during the playback of one sample in nanoseconds (normally equal to 1 / Samples Per Second, where Samples Per Second is the value found in the format chunk), don't bother to update this attribute, it won't be saved.
741 schoenebeck 2 uint32_t MIDIUnityNote; ///< Specifies the musical note at which the sample will be played at it's original sample rate.
742 schoenebeck 21 uint32_t FineTune; ///< Specifies the fraction of a semitone up from the specified MIDI unity note field. A value of 0x80000000 means 1/2 semitone (50 cents) and a value of 0x00000000 means no fine tuning between semitones.
743 schoenebeck 2 smpte_format_t SMPTEFormat; ///< Specifies the Society of Motion Pictures and Television E time format used in the following <i>SMPTEOffset</i> field. If a value of 0 is set, <i>SMPTEOffset</i> should also be set to 0.
744     uint32_t SMPTEOffset; ///< The SMPTE Offset value specifies the time offset to be used for the synchronization / calibration to the first sample in the waveform. This value uses a format of 0xhhmmssff where hh is a signed value that specifies the number of hours (-23 to 23), mm is an unsigned value that specifies the number of minutes (0 to 59), ss is an unsigned value that specifies the number of seconds (0 to 59) and ff is an unsigned value that specifies the number of frames (0 to -1).
745 schoenebeck 1154 uint32_t Loops; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: Number of defined sample loops. So far only seen single loops in gig files - please report if you encounter more!)
746 schoenebeck 21 uint32_t LoopID; ///< Specifies the unique ID that corresponds to one of the defined cue points in the cue point list (only if Loops > 0), as the Gigasampler format only allows one loop definition at the moment, this attribute isn't really useful for anything.
747 schoenebeck 1154 loop_type_t LoopType; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The type field defines how the waveform samples will be looped.)
748     uint32_t LoopStart; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The start value specifies the offset [in sample points] in the waveform data of the first sample to be played in the loop [only if Loops > 0].)
749     uint32_t LoopEnd; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The end value specifies the offset [in sample points] in the waveform data which represents the end of the loop [only if Loops > 0].)
750     uint32_t LoopSize; ///< @e Caution: Use the respective fields in the DimensionRegion instead of this one! (Intended purpose: Length of the looping area [in sample points] which is equivalent to @code LoopEnd - LoopStart @endcode.)
751     uint32_t LoopFraction; ///< The fractional value specifies a fraction of a sample at which to loop. This allows a loop to be fine tuned at a resolution greater than one sample. A value of 0 means no fraction, a value of 0x80000000 means 1/2 of a sample length. 0xFFFFFFFF is the smallest fraction of a sample that can be represented.
752     uint32_t LoopPlayCount; ///< Number of times the loop should be played (a value of 0 = infinite).
753 schoenebeck 2 bool Compressed; ///< If the sample wave is compressed (probably just interesting for instrument and sample editors, as this library already handles the decompression in it's sample access methods anyway).
754 persson 437 uint32_t TruncatedBits; ///< For 24-bit compressed samples only: number of bits truncated during compression (0, 4 or 6)
755     bool Dithered; ///< For 24-bit compressed samples only: if dithering was used during compression with bit reduction
756 schoenebeck 2
757     // own methods
758     buffer_t LoadSampleData();
759 schoenebeck 2912 buffer_t LoadSampleData(file_offset_t SampleCount);
760 schoenebeck 2 buffer_t LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount);
761 schoenebeck 2912 buffer_t LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount);
762 schoenebeck 2 buffer_t GetCache();
763 schoenebeck 384 // own static methods
764 schoenebeck 2912 static buffer_t CreateDecompressionBuffer(file_offset_t MaxReadSize);
765 schoenebeck 384 static void DestroyDecompressionBuffer(buffer_t& DecompressionBuffer);
766 schoenebeck 2 // overridden methods
767     void ReleaseSampleData();
768 schoenebeck 2922 void Resize(file_offset_t NewSize);
769 schoenebeck 2912 file_offset_t SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence = RIFF::stream_start);
770     file_offset_t GetPos() const;
771     file_offset_t Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer = NULL);
772     file_offset_t ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState, DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer = NULL);
773     file_offset_t Write(void* pBuffer, file_offset_t SampleCount);
774 schoenebeck 930 Group* GetGroup() const;
775 schoenebeck 2682 virtual void UpdateChunks(progress_t* pProgress);
776 schoenebeck 2482 void CopyAssignMeta(const Sample* orig);
777     void CopyAssignWave(const Sample* orig);
778 schoenebeck 2989 uint32_t GetWaveDataCRC32Checksum();
779     bool VerifyWaveData(uint32_t* pActually = NULL);
780 schoenebeck 2 protected:
781 schoenebeck 2922 static size_t Instances; ///< Number of instances of class Sample.
782 schoenebeck 384 static buffer_t InternalDecompressionBuffer; ///< Buffer used for decompression as well as for truncation of 24 Bit -> 16 Bit samples.
783 schoenebeck 930 Group* pGroup; ///< pointer to the Group this sample belongs to (always not-NULL)
784 schoenebeck 2912 file_offset_t FrameOffset; ///< Current offset (sample points) in current sample frame (for decompression only).
785     file_offset_t* FrameTable; ///< For positioning within compressed samples only: stores the offset values for each frame.
786     file_offset_t SamplePos; ///< For compressed samples only: stores the current position (in sample points).
787     file_offset_t SamplesInLastFrame; ///< For compressed samples only: length of the last sample frame.
788     file_offset_t WorstCaseFrameSize; ///< For compressed samples only: size (in bytes) of the largest possible sample frame.
789     file_offset_t SamplesPerFrame; ///< For compressed samples only: number of samples in a full sample frame.
790 schoenebeck 2 buffer_t RAMCache; ///< Buffers samples (already uncompressed) in RAM.
791 persson 666 unsigned long FileNo; ///< File number (> 0 when sample is stored in an extension file, 0 when it's in the gig)
792 schoenebeck 809 RIFF::Chunk* pCk3gix;
793     RIFF::Chunk* pCkSmpl;
794 schoenebeck 2989 uint32_t crc; ///< Reflects CRC-32 checksum of the raw sample data at the last time when the sample's raw wave form data has been modified consciously by the user by calling Write().
795 schoenebeck 2
796 schoenebeck 2989 Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo = 0, int index = -1);
797 schoenebeck 2 ~Sample();
798 schoenebeck 2985 uint32_t CalculateWaveDataChecksum();
799 persson 365
800     // Guess size (in bytes) of a compressed sample
801 schoenebeck 2912 inline file_offset_t GuessSize(file_offset_t samples) {
802 persson 365 // 16 bit: assume all frames are compressed - 1 byte
803     // per sample and 5 bytes header per 2048 samples
804    
805     // 24 bit: assume next best compression rate - 1.5
806     // bytes per sample and 13 bytes header per 256
807     // samples
808 schoenebeck 2912 const file_offset_t size =
809 persson 365 BitDepth == 24 ? samples + (samples >> 1) + (samples >> 8) * 13
810     : samples + (samples >> 10) * 5;
811     // Double for stereo and add one worst case sample
812     // frame
813     return (Channels == 2 ? size << 1 : size) + WorstCaseFrameSize;
814     }
815 schoenebeck 384
816     // Worst case amount of sample points that can be read with the
817     // given decompression buffer.
818 schoenebeck 2912 inline file_offset_t WorstCaseMaxSamples(buffer_t* pDecompressionBuffer) {
819     return (file_offset_t) ((float)pDecompressionBuffer->Size / (float)WorstCaseFrameSize * (float)SamplesPerFrame);
820 schoenebeck 384 }
821 schoenebeck 2 private:
822     void ScanCompressedSample();
823     friend class File;
824     friend class Region;
825 schoenebeck 930 friend class Group; // allow to modify protected member pGroup
826 schoenebeck 2 };
827    
828     // TODO: <3dnl> list not used yet - not important though (just contains optional descriptions for the dimensions)
829 schoenebeck 2699 /** @brief Defines Region information of a Gigasampler/GigaStudio instrument.
830 schoenebeck 2547 *
831 schoenebeck 2699 * A Region reflects a consecutive area (key range) on the keyboard. The
832     * individual regions in the gig format may not overlap with other regions
833     * (of the same instrument that is). Further, in the gig format a Region is
834     * merely a container for DimensionRegions (a.k.a. "Cases"). The Region
835     * itself does not provide the sample mapping or articulation informations
836     * used, even though the data structures of regions indeed provide such
837     * informations. The latter is however just of historical nature, because
838     * the gig file format was derived from the DLS file format.
839 schoenebeck 2547 *
840     * Each Region consists of at least one or more DimensionRegions. The actual
841     * amount of DimensionRegions depends on which kind of "dimensions" are
842     * defined for this region, and on the split / zone amount for each of those
843     * dimensions.
844 schoenebeck 2699 *
845     * Since the gig format was designed as extension to the DLS file format,
846     * this class is derived from the DLS::Region class. So also refer to
847     * DLS::Region for additional informations, class attributes and methods.
848 schoenebeck 2547 */
849 schoenebeck 2 class Region : public DLS::Region {
850     public:
851 schoenebeck 809 unsigned int Dimensions; ///< Number of defined dimensions, do not alter!
852 schoenebeck 926 dimension_def_t pDimensionDefinitions[8]; ///< Defines the five (gig2) or eight (gig3) possible dimensions (the dimension's controller and number of bits/splits). Use AddDimension() and DeleteDimension() to create a new dimension or delete an existing one.
853 schoenebeck 809 uint32_t DimensionRegions; ///< Total number of DimensionRegions this Region contains, do not alter!
854 schoenebeck 926 DimensionRegion* pDimensionRegions[256]; ///< Pointer array to the 32 (gig2) or 256 (gig3) possible dimension regions (reflects NULL for dimension regions not in use). Avoid to access the array directly and better use GetDimensionRegionByValue() instead, but of course in some cases it makes sense to use the array (e.g. iterating through all DimensionRegions). Use AddDimension() and DeleteDimension() to create a new dimension or delete an existing one (which will create or delete the respective dimension region(s) automatically).
855 schoenebeck 809 unsigned int Layers; ///< Amount of defined layers (1 - 32). A value of 1 actually means no layering, a value > 1 means there is Layer dimension. The same information can of course also be obtained by accessing pDimensionDefinitions. Do not alter this value!
856 schoenebeck 2
857 schoenebeck 1335 // own methods
858 schoenebeck 347 DimensionRegion* GetDimensionRegionByValue(const uint DimValues[8]);
859     DimensionRegion* GetDimensionRegionByBit(const uint8_t DimBits[8]);
860 schoenebeck 2599 int GetDimensionRegionIndexByValue(const uint DimValues[8]);
861 schoenebeck 2 Sample* GetSample();
862 schoenebeck 809 void AddDimension(dimension_def_t* pDimDef);
863     void DeleteDimension(dimension_def_t* pDimDef);
864 schoenebeck 2547 dimension_def_t* GetDimensionDefinition(dimension_t type);
865 schoenebeck 2555 void DeleteDimensionZone(dimension_t type, int zone);
866     void SplitDimensionZone(dimension_t type, int zone);
867 schoenebeck 2639 void SetDimensionType(dimension_t oldType, dimension_t newType);
868 schoenebeck 1335 // overridden methods
869     virtual void SetKeyRange(uint16_t Low, uint16_t High);
870 schoenebeck 2682 virtual void UpdateChunks(progress_t* pProgress);
871 schoenebeck 2394 virtual void CopyAssign(const Region* orig);
872 schoenebeck 2 protected:
873     Region(Instrument* pInstrument, RIFF::List* rgnList);
874     void LoadDimensionRegions(RIFF::List* rgn);
875 persson 858 void UpdateVelocityTable();
876 schoenebeck 515 Sample* GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress = NULL);
877 schoenebeck 2482 void CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples);
878 schoenebeck 2555 DimensionRegion* GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase);
879 schoenebeck 2 ~Region();
880     friend class Instrument;
881     };
882    
883 schoenebeck 2699 /** @brief Abstract base class for all MIDI rules.
884     *
885     * Note: Instead of using MIDI rules, we recommend you using real-time
886     * instrument scripts instead. Read about the reasons below.
887     *
888     * MIDI Rules (also called "iMIDI rules" or "intelligent MIDI rules") were
889     * introduced with GigaStudio 4 as an attempt to increase the power of
890     * potential user controls over sounds. At that point other samplers already
891     * supported certain powerful user control features, which were not possible
892     * with GigaStudio yet. For example triggering new notes by MIDI CC
893     * controller.
894     *
895     * Such extended features however were usually implemented by other samplers
896     * by requiring the sound designer to write an instrument script which the
897     * designer would then bundle with the respective instrument file. Such
898     * scripts are essentially text files, using a very specific programming
899     * language for the purpose of controlling the sampler in real-time. Since
900     * however musicians are not typically keen to writing such cumbersome
901     * script files, the GigaStudio designers decided to implement such extended
902     * features completely without instrument scripts. Instead they created a
903     * set of rules, which could be defined and altered conveniently by mouse
904     * clicks in GSt's instrument editor application. The downside of this
905     * overall approach however, was that those MIDI rules were very limited in
906     * practice. As sound designer you easily came across the possiblities such
907     * MIDI rules were able to offer.
908     *
909     * Due to such severe use case constraints, support for MIDI rules is quite
910     * limited in libgig. At the moment only the "Control Trigger", "Alternator"
911     * and the "Legato" MIDI rules are supported by libgig. Consequently the
912     * graphical instrument editor application gigedit just supports the
913     * "Control Trigger" and "Legato" MIDI rules, and LinuxSampler even does not
914     * support any MIDI rule type at all and LinuxSampler probably will not
915     * support MIDI rules in future either.
916     *
917     * Instead of using MIDI rules, we introduced real-time instrument scripts
918     * as extension to the original GigaStudio file format. This script based
919     * solution is much more powerful than MIDI rules and is already supported
920     * by libgig, gigedit and LinuxSampler.
921     *
922     * @deprecated Just provided for backward compatiblity, use Script for new
923     * instruments instead.
924     */
925 persson 1627 class MidiRule {
926     public:
927     virtual ~MidiRule() { }
928 persson 2450 protected:
929     virtual void UpdateChunks(uint8_t* pData) const = 0;
930     friend class Instrument;
931 persson 1627 };
932    
933 schoenebeck 2699 /** @brief MIDI rule for triggering notes by control change events.
934     *
935     * A "Control Trigger MIDI rule" allows to trigger new notes by sending MIDI
936     * control change events to the sampler.
937     *
938     * Note: "Control Trigger" MIDI rules are only supported by gigedit, but not
939     * by LinuxSampler. We recommend you using real-time instrument scripts
940     * instead. Read more about the details and reasons for this in the
941     * description of the MidiRule base class.
942     *
943     * @deprecated Just provided for backward compatiblity, use Script for new
944     * instruments instead. See description of MidiRule for details.
945     */
946 persson 1627 class MidiRuleCtrlTrigger : public MidiRule {
947     public:
948     uint8_t ControllerNumber; ///< MIDI controller number.
949     uint8_t Triggers; ///< Number of triggers.
950     struct trigger_t {
951     uint8_t TriggerPoint; ///< The CC value to pass for the note to be triggered.
952     bool Descending; ///< If the change in CC value should be downwards.
953     uint8_t VelSensitivity; ///< How sensitive the velocity should be to the speed of the controller change.
954     uint8_t Key; ///< Key to trigger.
955     bool NoteOff; ///< If a note off should be triggered instead of a note on.
956     uint8_t Velocity; ///< Velocity of the note to trigger. 255 means that velocity should depend on the speed of the controller change.
957     bool OverridePedal; ///< If a note off should be triggered even if the sustain pedal is down.
958     } pTriggers[32];
959    
960     protected:
961     MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg);
962 persson 2450 MidiRuleCtrlTrigger();
963     void UpdateChunks(uint8_t* pData) const;
964 persson 1627 friend class Instrument;
965     };
966    
967 schoenebeck 2699 /** @brief MIDI rule for instruments with legato samples.
968     *
969     * A "Legato MIDI rule" allows playing instruments resembling the legato
970     * playing technique. In the past such legato articulations were tried to be
971     * simulated by pitching the samples of the instrument. However since
972     * usually a high amount of pitch is needed for legatos, this always sounded
973     * very artificial and unrealistic. The "Legato MIDI rule" thus uses another
974     * approach. Instead of pitching the samples, it allows the sound designer
975     * to bundle separate, additional samples for the individual legato
976     * situations and the legato rules defined which samples to be played in
977     * which situation.
978     *
979     * Note: "Legato MIDI rules" are only supported by gigedit, but not
980     * by LinuxSampler. We recommend you using real-time instrument scripts
981     * instead. Read more about the details and reasons for this in the
982     * description of the MidiRule base class.
983     *
984     * @deprecated Just provided for backward compatiblity, use Script for new
985     * instruments instead. See description of MidiRule for details.
986     */
987 persson 2450 class MidiRuleLegato : public MidiRule {
988     public:
989     uint8_t LegatoSamples; ///< Number of legato samples per key in each direction (always 12)
990     bool BypassUseController; ///< If a controller should be used to bypass the sustain note
991     uint8_t BypassKey; ///< Key to be used to bypass the sustain note
992     uint8_t BypassController; ///< Controller to be used to bypass the sustain note
993     uint16_t ThresholdTime; ///< Maximum time (ms) between two notes that should be played legato
994     uint16_t ReleaseTime; ///< Release time
995     range_t KeyRange; ///< Key range for legato notes
996     uint8_t ReleaseTriggerKey; ///< Key triggering release samples
997     uint8_t AltSustain1Key; ///< Key triggering alternate sustain samples
998     uint8_t AltSustain2Key; ///< Key triggering a second set of alternate sustain samples
999    
1000     protected:
1001     MidiRuleLegato(RIFF::Chunk* _3ewg);
1002     MidiRuleLegato();
1003     void UpdateChunks(uint8_t* pData) const;
1004     friend class Instrument;
1005     };
1006    
1007 schoenebeck 2699 /** @brief MIDI rule to automatically cycle through specified sequences of different articulations.
1008     *
1009     * The instrument must be using the smartmidi dimension.
1010     *
1011     * Note: "Alternator" MIDI rules are neither supported by gigedit nor by
1012     * LinuxSampler. We recommend you using real-time instrument scripts
1013     * instead. Read more about the details and reasons for this in the
1014     * description of the MidiRule base class.
1015     *
1016     * @deprecated Just provided for backward compatiblity, use Script for new
1017     * instruments instead. See description of MidiRule for details.
1018     */
1019 persson 2450 class MidiRuleAlternator : public MidiRule {
1020     public:
1021     uint8_t Articulations; ///< Number of articulations in the instrument
1022     String pArticulations[32]; ///< Names of the articulations
1023    
1024     range_t PlayRange; ///< Key range of the playable keys in the instrument
1025    
1026     uint8_t Patterns; ///< Number of alternator patterns
1027     struct pattern_t {
1028     String Name; ///< Name of the pattern
1029     int Size; ///< Number of steps in the pattern
1030     const uint8_t& operator[](int i) const { /// Articulation to play
1031     return data[i];
1032     }
1033     uint8_t& operator[](int i) {
1034     return data[i];
1035     }
1036     private:
1037     uint8_t data[32];
1038     } pPatterns[32]; ///< A pattern is a sequence of articulation numbers
1039    
1040     typedef enum {
1041     selector_none,
1042     selector_key_switch,
1043     selector_controller
1044     } selector_t;
1045     selector_t Selector; ///< Method by which pattern is chosen
1046     range_t KeySwitchRange; ///< Key range for key switch selector
1047     uint8_t Controller; ///< CC number for controller selector
1048    
1049     bool Polyphonic; ///< If alternator should step forward only when all notes are off
1050     bool Chained; ///< If all patterns should be chained together
1051    
1052     protected:
1053     MidiRuleAlternator(RIFF::Chunk* _3ewg);
1054     MidiRuleAlternator();
1055     void UpdateChunks(uint8_t* pData) const;
1056     friend class Instrument;
1057     };
1058    
1059 schoenebeck 2699 /** @brief A MIDI rule not yet implemented by libgig.
1060     *
1061     * This class is currently used as a place holder by libgig for MIDI rule
1062     * types which are not supported by libgig yet.
1063     *
1064     * Note: Support for missing MIDI rule types are probably never added to
1065     * libgig. We recommend you using real-time instrument scripts instead.
1066     * Read more about the details and reasons for this in the description of
1067     * the MidiRule base class.
1068     *
1069     * @deprecated Just provided for backward compatiblity, use Script for new
1070     * instruments instead. See description of MidiRule for details.
1071     */
1072 persson 2450 class MidiRuleUnknown : public MidiRule {
1073     protected:
1074     MidiRuleUnknown() { }
1075     void UpdateChunks(uint8_t* pData) const { }
1076     friend class Instrument;
1077     };
1078    
1079 schoenebeck 2584 /** @brief Real-time instrument script (gig format extension).
1080     *
1081     * Real-time instrument scripts are user supplied small programs which can
1082     * be used by instrument designers to create custom behaviors and features
1083     * not available in the stock sampler engine. Features which might be very
1084     * exotic or specific for the respective instrument.
1085     *
1086     * This is an extension of the GigaStudio format, thus a feature which was
1087     * not available in the GigaStudio 4 software. It is currently only
1088 schoenebeck 2699 * supported by LinuxSampler and gigedit. Scripts will not load with the
1089     * original GigaStudio software.
1090 schoenebeck 2761 *
1091     * You find more informations about Instrument Scripts on the LinuxSampler
1092     * documentation site:
1093     *
1094     * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/">About Instrument Scripts in General</a>
1095     * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language">Introduction to the NKSP Script Language</a>
1096     * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language/Reference/">NKSP Reference Manual</a>
1097     * - <a href="http://doc.linuxsampler.org/Gigedit/Managing_Scripts">Using Instrument Scripts with Gigedit</a>
1098 schoenebeck 2584 */
1099     class Script {
1100     public:
1101     enum Encoding_t {
1102     ENCODING_ASCII = 0 ///< Standard 8 bit US ASCII character encoding (default).
1103     };
1104     enum Compression_t {
1105     COMPRESSION_NONE = 0 ///< Is not compressed at all (default).
1106     };
1107     enum Language_t {
1108 schoenebeck 2762 LANGUAGE_NKSP = 0 ///< NKSP stands for "Is Not KSP" (default). Refer to the <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language/Reference/">NKSP Reference Manual</a> for details about this script language.
1109 schoenebeck 2584 };
1110    
1111     String Name; ///< Arbitrary name of the script, which may be displayed i.e. in an instrument editor.
1112     Compression_t Compression; ///< Whether the script was/should be compressed, and if so, which compression algorithm shall be used.
1113     Encoding_t Encoding; ///< Format the script's source code text is encoded with.
1114     Language_t Language; ///< Programming language and dialect the script is written in.
1115     bool Bypass; ///< Global bypass: if enabled, this script shall not be executed by the sampler for any instrument.
1116    
1117     String GetScriptAsText();
1118     void SetScriptAsText(const String& text);
1119     void SetGroup(ScriptGroup* pGroup);
1120 schoenebeck 2601 ScriptGroup* GetGroup() const;
1121 schoenebeck 3117 void CopyAssign(const Script* orig);
1122 schoenebeck 2584 protected:
1123     Script(ScriptGroup* group, RIFF::Chunk* ckScri);
1124     virtual ~Script();
1125 schoenebeck 2682 void UpdateChunks(progress_t* pProgress);
1126 schoenebeck 2584 void RemoveAllScriptReferences();
1127     friend class ScriptGroup;
1128     friend class Instrument;
1129     private:
1130     ScriptGroup* pGroup;
1131     RIFF::Chunk* pChunk; ///< 'Scri' chunk
1132     std::vector<uint8_t> data;
1133     uint32_t crc; ///< CRC-32 checksum of the raw script data
1134     };
1135    
1136     /** @brief Group of instrument scripts (gig format extension).
1137     *
1138     * This class is simply used to sort a bunch of real-time instrument scripts
1139     * into individual groups. This allows instrument designers and script
1140     * developers to keep scripts in a certain order while working with a larger
1141     * amount of scripts in an instrument editor.
1142     *
1143     * This is an extension of the GigaStudio format, thus a feature which was
1144     * not available in the GigaStudio 4 software. It is currently only
1145     * supported by LinuxSampler and gigedit.
1146     */
1147     class ScriptGroup {
1148     public:
1149     String Name; ///< Name of this script group. For example to be displayed in an instrument editor.
1150    
1151     Script* GetScript(uint index);
1152     Script* AddScript();
1153     void DeleteScript(Script* pScript);
1154     protected:
1155     ScriptGroup(File* file, RIFF::List* lstRTIS);
1156     virtual ~ScriptGroup();
1157     void LoadScripts();
1158 schoenebeck 2682 void UpdateChunks(progress_t* pProgress);
1159 schoenebeck 2584 friend class Script;
1160     friend class File;
1161     private:
1162     File* pFile;
1163     RIFF::List* pList; ///< 'RTIS' list chunk
1164     std::list<Script*>* pScripts;
1165     };
1166    
1167 schoenebeck 2699 /** @brief Provides access to a Gigasampler/GigaStudio instrument.
1168     *
1169     * This class provides access to Gigasampler/GigaStudio instruments
1170     * contained in .gig files. A gig instrument is merely a set of keyboard
1171     * ranges (called Region), plus some additional global informations about
1172     * the instrument. The major part of the actual instrument definition used
1173     * for the synthesis of the instrument is contained in the respective Region
1174     * object (or actually in the respective DimensionRegion object being, see
1175     * description of Region for details).
1176     *
1177     * Since the gig format was designed as extension to the DLS file format,
1178     * this class is derived from the DLS::Instrument class. So also refer to
1179     * DLS::Instrument for additional informations, class attributes and
1180     * methods.
1181     */
1182 schoenebeck 2 class Instrument : protected DLS::Instrument {
1183     public:
1184     // derived attributes from DLS::Resource
1185 persson 2334 using DLS::Resource::pInfo;
1186     using DLS::Resource::pDLSID;
1187 schoenebeck 2 // derived attributes from DLS::Instrument
1188 persson 2334 using DLS::Instrument::IsDrum;
1189     using DLS::Instrument::MIDIBank;
1190     using DLS::Instrument::MIDIBankCoarse;
1191     using DLS::Instrument::MIDIBankFine;
1192     using DLS::Instrument::MIDIProgram;
1193     using DLS::Instrument::Regions;
1194 schoenebeck 2 // own attributes
1195     int32_t Attenuation; ///< in dB
1196     uint16_t EffectSend;
1197     int16_t FineTune; ///< in cents
1198     uint16_t PitchbendRange; ///< Number of semitones pitchbend controller can pitch (default is 2).
1199     bool PianoReleaseMode;
1200     range_t DimensionKeyRange; ///< 0-127 (where 0 means C1 and 127 means G9)
1201    
1202    
1203     // derived methods from DLS::Resource
1204 persson 2334 using DLS::Resource::GetParent;
1205 schoenebeck 2 // overridden methods
1206     Region* GetFirstRegion();
1207     Region* GetNextRegion();
1208 schoenebeck 809 Region* AddRegion();
1209     void DeleteRegion(Region* pRegion);
1210 schoenebeck 2700 void MoveTo(Instrument* dst);
1211 schoenebeck 2682 virtual void UpdateChunks(progress_t* pProgress);
1212 schoenebeck 2394 virtual void CopyAssign(const Instrument* orig);
1213 schoenebeck 2 // own methods
1214     Region* GetRegion(unsigned int Key);
1215 persson 1678 MidiRule* GetMidiRule(int i);
1216 persson 2450 MidiRuleCtrlTrigger* AddMidiRuleCtrlTrigger();
1217     MidiRuleLegato* AddMidiRuleLegato();
1218     MidiRuleAlternator* AddMidiRuleAlternator();
1219     void DeleteMidiRule(int i);
1220 schoenebeck 2584 // real-time instrument script methods
1221     Script* GetScriptOfSlot(uint index);
1222     void AddScriptSlot(Script* pScript, bool bypass = false);
1223     void SwapScriptSlots(uint index1, uint index2);
1224     void RemoveScriptSlot(uint index);
1225     void RemoveScript(Script* pScript);
1226     uint ScriptSlotCount() const;
1227     bool IsScriptSlotBypassed(uint index);
1228     void SetScriptSlotBypassed(uint index, bool bBypass);
1229 schoenebeck 2 protected:
1230     Region* RegionKeyTable[128]; ///< fast lookup for the corresponding Region of a MIDI key
1231    
1232 schoenebeck 515 Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress = NULL);
1233 schoenebeck 2 ~Instrument();
1234 schoenebeck 2482 void CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples);
1235 schoenebeck 809 void UpdateRegionKeyTable();
1236 schoenebeck 2584 void LoadScripts();
1237 schoenebeck 2609 void UpdateScriptFileOffsets();
1238 schoenebeck 2 friend class File;
1239 schoenebeck 1335 friend class Region; // so Region can call UpdateRegionKeyTable()
1240 persson 1627 private:
1241 schoenebeck 2584 struct _ScriptPooolEntry {
1242     uint32_t fileOffset;
1243     bool bypass;
1244     };
1245     struct _ScriptPooolRef {
1246     Script* script;
1247     bool bypass;
1248     };
1249 persson 1678 MidiRule** pMidiRules;
1250 schoenebeck 2584 std::vector<_ScriptPooolEntry> scriptPoolFileOffsets;
1251     std::vector<_ScriptPooolRef>* pScriptRefs;
1252 schoenebeck 2 };
1253    
1254 schoenebeck 2699 /** @brief Group of Gigasampler samples
1255 schoenebeck 929 *
1256 schoenebeck 2699 * Groups help to organize a huge collection of Gigasampler samples.
1257 schoenebeck 929 * Groups are not concerned at all for the synthesis, but they help
1258     * sound library developers when working on complex instruments with an
1259     * instrument editor (as long as that instrument editor supports it ;-).
1260     *
1261 schoenebeck 930 * A sample is always assigned to exactly one Group. This also means
1262     * there is always at least one Group in a .gig file, no matter if you
1263     * created one yet or not.
1264 schoenebeck 929 */
1265     class Group {
1266     public:
1267     String Name; ///< Stores the name of this Group.
1268 schoenebeck 930
1269     Sample* GetFirstSample();
1270     Sample* GetNextSample();
1271     void AddSample(Sample* pSample);
1272 schoenebeck 929 protected:
1273 schoenebeck 930 Group(File* file, RIFF::Chunk* ck3gnm);
1274 schoenebeck 929 virtual ~Group();
1275 schoenebeck 2682 virtual void UpdateChunks(progress_t* pProgress);
1276 schoenebeck 930 void MoveAll();
1277 schoenebeck 929 friend class File;
1278     private:
1279 schoenebeck 930 File* pFile;
1280 schoenebeck 2467 RIFF::Chunk* pNameChunk; ///< '3gnm' chunk
1281 schoenebeck 929 };
1282    
1283 schoenebeck 2699 /** @brief Provides convenient access to Gigasampler/GigaStudio .gig files.
1284     *
1285     * This is the entry class for accesing a Gigasampler/GigaStudio (.gig) file
1286     * with libgig. It allows you to open existing .gig files, modifying them
1287     * and saving them persistently either under the same file name or under a
1288     * different location.
1289     *
1290     * A .gig file is merely a monolithic file. That means samples and the
1291     * defintion of the virtual instruments are contained in the same file. A
1292     * .gig file contains an arbitrary amount of samples, and an arbitrary
1293     * amount of instruments which are referencing those samples. It is also
1294     * possible to store samples in .gig files not being referenced by any
1295     * instrument. This is not an error from the file format's point of view and
1296     * it is actually often used in practice during the design phase of new gig
1297     * instruments.
1298     *
1299     * So on toplevel of the gig file format you have:
1300     *
1301     * - A set of samples (see Sample).
1302     * - A set of virtual instruments (see Instrument).
1303     *
1304     * And as extension to the original GigaStudio format, we added:
1305     *
1306     * - Real-time instrument scripts (see Script).
1307     *
1308     * Note that the latter however is only supported by libgig, gigedit and
1309     * LinuxSampler. Scripts are not supported by the original GigaStudio
1310     * software.
1311     *
1312     * All released Gigasampler/GigaStudio file format versions are supported
1313     * (so from first Gigasampler version up to including GigaStudio 4).
1314     *
1315     * Since the gig format was designed as extension to the DLS file format,
1316     * this class is derived from the DLS::File class. So also refer to
1317     * DLS::File for additional informations, class attributes and methods.
1318     */
1319 schoenebeck 2 class File : protected DLS::File {
1320     public:
1321 persson 1199 static const DLS::version_t VERSION_2;
1322     static const DLS::version_t VERSION_3;
1323    
1324 schoenebeck 2 // derived attributes from DLS::Resource
1325 persson 2334 using DLS::Resource::pInfo;
1326     using DLS::Resource::pDLSID;
1327 schoenebeck 2 // derived attributes from DLS::File
1328 persson 2334 using DLS::File::pVersion;
1329     using DLS::File::Instruments;
1330 schoenebeck 2
1331     // derived methods from DLS::Resource
1332 persson 2334 using DLS::Resource::GetParent;
1333 schoenebeck 809 // derived methods from DLS::File
1334 persson 2334 using DLS::File::Save;
1335     using DLS::File::GetFileName;
1336 schoenebeck 2482 using DLS::File::SetFileName;
1337 schoenebeck 2 // overridden methods
1338 schoenebeck 809 File();
1339 schoenebeck 2 File(RIFF::File* pRIFF);
1340 schoenebeck 515 Sample* GetFirstSample(progress_t* pProgress = NULL); ///< Returns a pointer to the first <i>Sample</i> object of the file, <i>NULL</i> otherwise.
1341 schoenebeck 2 Sample* GetNextSample(); ///< Returns a pointer to the next <i>Sample</i> object of the file, <i>NULL</i> otherwise.
1342 schoenebeck 2482 Sample* GetSample(uint index);
1343 schoenebeck 809 Sample* AddSample();
1344     void DeleteSample(Sample* pSample);
1345 schoenebeck 929 Instrument* GetFirstInstrument(); ///< Returns a pointer to the first <i>Instrument</i> object of the file, <i>NULL</i> otherwise.
1346 schoenebeck 2 Instrument* GetNextInstrument(); ///< Returns a pointer to the next <i>Instrument</i> object of the file, <i>NULL</i> otherwise.
1347 schoenebeck 515 Instrument* GetInstrument(uint index, progress_t* pProgress = NULL);
1348 schoenebeck 809 Instrument* AddInstrument();
1349 schoenebeck 2394 Instrument* AddDuplicateInstrument(const Instrument* orig);
1350 schoenebeck 809 void DeleteInstrument(Instrument* pInstrument);
1351 schoenebeck 929 Group* GetFirstGroup(); ///< Returns a pointer to the first <i>Group</i> object of the file, <i>NULL</i> otherwise.
1352     Group* GetNextGroup(); ///< Returns a pointer to the next <i>Group</i> object of the file, <i>NULL</i> otherwise.
1353     Group* GetGroup(uint index);
1354 schoenebeck 2543 Group* GetGroup(String name);
1355 schoenebeck 929 Group* AddGroup();
1356     void DeleteGroup(Group* pGroup);
1357 schoenebeck 1081 void DeleteGroupOnly(Group* pGroup);
1358 schoenebeck 1524 void SetAutoLoad(bool b);
1359     bool GetAutoLoad();
1360 schoenebeck 2482 void AddContentOf(File* pFile);
1361 schoenebeck 2584 ScriptGroup* GetScriptGroup(uint index);
1362     ScriptGroup* GetScriptGroup(const String& name);
1363     ScriptGroup* AddScriptGroup();
1364     void DeleteScriptGroup(ScriptGroup* pGroup);
1365 schoenebeck 929 virtual ~File();
1366 schoenebeck 2682 virtual void UpdateChunks(progress_t* pProgress);
1367 schoenebeck 2 protected:
1368 schoenebeck 823 // overridden protected methods from DLS::File
1369     virtual void LoadSamples();
1370     virtual void LoadInstruments();
1371 schoenebeck 929 virtual void LoadGroups();
1372 schoenebeck 2609 virtual void UpdateFileOffsets();
1373 schoenebeck 823 // own protected methods
1374     virtual void LoadSamples(progress_t* pProgress);
1375     virtual void LoadInstruments(progress_t* pProgress);
1376 schoenebeck 2584 virtual void LoadScriptGroups();
1377 persson 1199 void SetSampleChecksum(Sample* pSample, uint32_t crc);
1378 schoenebeck 2985 uint32_t GetSampleChecksum(Sample* pSample);
1379 schoenebeck 2989 uint32_t GetSampleChecksumByIndex(int index);
1380 schoenebeck 2985 bool VerifySampleChecksumTable();
1381     bool RebuildSampleChecksumTable();
1382     int GetWaveTableIndexOf(gig::Sample* pSample);
1383 schoenebeck 2 friend class Region;
1384 schoenebeck 929 friend class Sample;
1385 schoenebeck 2700 friend class Instrument;
1386 schoenebeck 930 friend class Group; // so Group can access protected member pRIFF
1387 schoenebeck 2584 friend class ScriptGroup; // so ScriptGroup can access protected member pRIFF
1388 schoenebeck 929 private:
1389     std::list<Group*>* pGroups;
1390     std::list<Group*>::iterator GroupsIterator;
1391 schoenebeck 1524 bool bAutoLoad;
1392 schoenebeck 2584 std::list<ScriptGroup*>* pScriptGroups;
1393 schoenebeck 2 };
1394    
1395 schoenebeck 1093 /**
1396     * Will be thrown whenever a gig specific error occurs while trying to
1397     * access a Gigasampler File. Note: In your application you should
1398     * better catch for RIFF::Exception rather than this one, except you
1399     * explicitly want to catch and handle gig::Exception, DLS::Exception
1400     * and RIFF::Exception independently, which usually shouldn't be
1401     * necessary though.
1402     */
1403 schoenebeck 2 class Exception : public DLS::Exception {
1404     public:
1405 schoenebeck 3198 Exception(String format, ...);
1406     Exception(String format, va_list arg);
1407 schoenebeck 2 void PrintMessage();
1408 schoenebeck 3198 protected:
1409     Exception();
1410 schoenebeck 2 };
1411    
1412 schoenebeck 3169 #if HAVE_RTTI
1413 schoenebeck 3181 size_t enumCount(const std::type_info& type);
1414 schoenebeck 3173 const char* enumKey(const std::type_info& type, size_t value);
1415     bool enumKey(const std::type_info& type, String key);
1416     const char** enumKeys(const std::type_info& type);
1417     #endif // HAVE_RTTI
1418 schoenebeck 3181 size_t enumCount(String typeName);
1419 schoenebeck 3169 const char* enumKey(String typeName, size_t value);
1420     bool enumKey(String typeName, String key);
1421     const char** enumKeys(String typeName);
1422     size_t enumValue(String key);
1423    
1424 schoenebeck 518 String libraryName();
1425     String libraryVersion();
1426    
1427 schoenebeck 2 } // namespace gig
1428    
1429     #endif // __GIG_H__

  ViewVC Help
Powered by ViewVC