/[svn]/libgig/trunk/src/gig.h
ViewVC logotype

Diff of /libgig/trunk/src/gig.h

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 11 by schoenebeck, Sun Nov 16 17:47:00 2003 UTC revision 3138 by schoenebeck, Wed May 3 14:41:58 2017 UTC
# Line 1  Line 1 
1  /***************************************************************************  /***************************************************************************
2   *                                                                         *   *                                                                         *
3   *   libgig - C++ cross-platform Gigasampler format file loader library    *   *   libgig - C++ cross-platform Gigasampler format file access library    *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003 by Christian Schoenebeck                           *   *   Copyright (C) 2003-2017 by Christian Schoenebeck                      *
6   *                         <cuse@users.sourceforge.net>                    *   *                              <cuse@users.sourceforge.net>               *
7   *                                                                         *   *                                                                         *
8   *   This library is free software; you can redistribute it and/or modify  *   *   This library is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 25  Line 25 
25  #define __GIG_H__  #define __GIG_H__
26    
27  #include "DLS.h"  #include "DLS.h"
28    #include "Serialization.h"
29  #include <math.h>  #include <vector>
 #include <string.h>  
   
 /// Initial size of the sample buffer which is used for decompression of  
 /// compressed sample wave streams - this value should always be bigger than  
 /// the biggest sample piece expected to be read by the sampler engine,  
 /// otherwise the buffer size will be raised at runtime and thus the buffer  
 /// reallocated which is time consuming and unefficient.  
 #define INITIAL_SAMPLE_BUFFER_SIZE              512000 // 512 kB  
30    
31  #if WORDS_BIGENDIAN  #if WORDS_BIGENDIAN
32  # define LIST_TYPE_3PRG 0x33707267  # define LIST_TYPE_3PRG 0x33707267
33  # define LIST_TYPE_3EWL 0x3365776C  # define LIST_TYPE_3EWL 0x3365776C
34  # define CHUNK_ID_SMPL  0x736D706C  # define LIST_TYPE_3GRI 0x33677269
35    # define LIST_TYPE_3GNL 0x33676E6C
36    # define LIST_TYPE_3LS  0x334c5320 // own gig format extension
37    # define LIST_TYPE_RTIS 0x52544953 // own gig format extension
38  # define CHUNK_ID_3GIX  0x33676978  # define CHUNK_ID_3GIX  0x33676978
39  # define CHUNK_ID_3EWA  0x33657761  # define CHUNK_ID_3EWA  0x33657761
40  # define CHUNK_ID_3LNK  0x336C6E6B  # define CHUNK_ID_3LNK  0x336C6E6B
41  # define CHUNK_ID_3EWG  0x33657767  # define CHUNK_ID_3EWG  0x33657767
42  # define CHUNK_ID_EWAV  0x65776176  # define CHUNK_ID_EWAV  0x65776176
43    # define CHUNK_ID_3GNM  0x33676E6D
44    # define CHUNK_ID_EINF  0x65696E66
45    # define CHUNK_ID_3CRC  0x33637263
46    # define CHUNK_ID_SCRI  0x53637269 // own gig format extension
47    # define CHUNK_ID_LSNM  0x4c534e4d // own gig format extension
48    # define CHUNK_ID_SCSL  0x5343534c // own gig format extension
49  #else  // little endian  #else  // little endian
50  # define LIST_TYPE_3PRG 0x67727033  # define LIST_TYPE_3PRG 0x67727033
51  # define LIST_TYPE_3EWL 0x6C776533  # define LIST_TYPE_3EWL 0x6C776533
52  # define CHUNK_ID_SMPL  0x6C706D73  # define LIST_TYPE_3GRI 0x69726733
53    # define LIST_TYPE_3GNL 0x6C6E6733
54    # define LIST_TYPE_3LS  0x20534c33 // own gig format extension
55    # define LIST_TYPE_RTIS 0x53495452 // own gig format extension
56  # define CHUNK_ID_3GIX  0x78696733  # define CHUNK_ID_3GIX  0x78696733
57  # define CHUNK_ID_3EWA  0x61776533  # define CHUNK_ID_3EWA  0x61776533
58  # define CHUNK_ID_3LNK  0x6B6E6C33  # define CHUNK_ID_3LNK  0x6B6E6C33
59  # define CHUNK_ID_3EWG  0x67776533  # define CHUNK_ID_3EWG  0x67776533
60  # define CHUNK_ID_EWAV  0x76617765  # define CHUNK_ID_EWAV  0x76617765
61    # define CHUNK_ID_3GNM  0x6D6E6733
62    # define CHUNK_ID_EINF  0x666E6965
63    # define CHUNK_ID_3CRC  0x63726333
64    # define CHUNK_ID_SCRI  0x69726353 // own gig format extension
65    # define CHUNK_ID_LSNM  0x4d4e534c // own gig format extension
66    # define CHUNK_ID_SCSL  0x4c534353 // own gig format extension
67  #endif // WORDS_BIGENDIAN  #endif // WORDS_BIGENDIAN
68    
69  /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */  /** Gigasampler/GigaStudio specific classes and definitions */
 #define GIG_EXP_DECODE(x)                       (pow(1.000000008813822, x))  
 #define GIG_PITCH_TRACK_EXTRACT(x)              (!(x & 0x01))  
 #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x)       ((x >> 4) & 0x03)  
 #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x)  ((x >> 1) & 0x03)  
 #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x)   ((x >> 3) & 0x03)  
 #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x) ((x >> 5) & 0x03)  
   
 /** Gigasampler specific classes and definitions */  
70  namespace gig {  namespace gig {
71    
72      typedef std::string String;      typedef std::string String;
73        typedef RIFF::progress_t progress_t;
74        typedef RIFF::file_offset_t file_offset_t;
75    
76      /** Lower and upper limit of a range. */      /** Lower and upper limit of a range. */
77      struct range_t {      struct range_t {
# Line 78  namespace gig { Line 82  namespace gig {
82      /** Pointer address and size of a buffer. */      /** Pointer address and size of a buffer. */
83      struct buffer_t {      struct buffer_t {
84          void*         pStart;            ///< Points to the beginning of the buffer.          void*         pStart;            ///< Points to the beginning of the buffer.
85          unsigned long Size;              ///< Size of the actual data in the buffer in bytes.          file_offset_t Size;              ///< Size of the actual data in the buffer in bytes.
86          unsigned long NullExtensionSize; ///< The buffer might be bigger than the actual data, if that's the case that unused space at the end of the buffer is filled with NULLs and NullExtensionSize reflects that unused buffer space in bytes. Those NULL extensions are mandatory for differential algorithms that have to take the following data words into account, thus have to access past the buffer's boundary. If you don't know what I'm talking about, just forget this variable. :)          file_offset_t NullExtensionSize; ///< The buffer might be bigger than the actual data, if that's the case that unused space at the end of the buffer is filled with NULLs and NullExtensionSize reflects that unused buffer space in bytes. Those NULL extensions are mandatory for differential algorithms that have to take the following data words into account, thus have to access past the buffer's boundary. If you don't know what I'm talking about, just forget this variable. :)
87            buffer_t() {
88                pStart            = NULL;
89                Size              = 0;
90                NullExtensionSize = 0;
91            }
92      };      };
93    
94      /** Standard types of sample loops. */      /** Standard types of sample loops. */
# Line 143  namespace gig { Line 152  namespace gig {
152      /** Defines how the filter cutoff frequency is controlled by. */      /** Defines how the filter cutoff frequency is controlled by. */
153      typedef enum {      typedef enum {
154          vcf_cutoff_ctrl_none         = 0x00,          vcf_cutoff_ctrl_none         = 0x00,
155            vcf_cutoff_ctrl_none2        = 0x01,  ///< The difference between none and none2 is unknown
156          vcf_cutoff_ctrl_modwheel     = 0x81,  ///< Modulation Wheel (MIDI Controller 1)          vcf_cutoff_ctrl_modwheel     = 0x81,  ///< Modulation Wheel (MIDI Controller 1)
157          vcf_cutoff_ctrl_effect1      = 0x8c,  ///< Effect Controller 1 (Coarse, MIDI Controller 12)          vcf_cutoff_ctrl_effect1      = 0x8c,  ///< Effect Controller 1 (Coarse, MIDI Controller 12)
158          vcf_cutoff_ctrl_effect2      = 0x8d,  ///< Effect Controller 2 (Coarse, MIDI Controller 13)          vcf_cutoff_ctrl_effect2      = 0x8d,  ///< Effect Controller 2 (Coarse, MIDI Controller 13)
# Line 164  namespace gig { Line 174  namespace gig {
174          vcf_res_ctrl_genpurpose6 = 3            ///< General Purpose Controller 6 (Button, MIDI Controller 81)          vcf_res_ctrl_genpurpose6 = 3            ///< General Purpose Controller 6 (Button, MIDI Controller 81)
175      } vcf_res_ctrl_t;      } vcf_res_ctrl_t;
176    
177      /** Defines how attenuation (=gain / VCA) is controlled by. */      /**
178      typedef enum {       * Defines a controller that has a certain contrained influence on a
179          attenuation_ctrl_none              = 0x00,       * particular synthesis parameter (used to define attenuation controller,
180          attenuation_ctrl_modwheel          = 0x03, ///< Modulation Wheel (MIDI Controller 1)       * EG1 controller and EG2 controller).
181          attenuation_ctrl_breath            = 0x05, ///< Breath Controller (Coarse, MIDI Controller 2)       *
182          attenuation_ctrl_foot              = 0x07, ///< Foot Pedal (Coarse, MIDI Controller 4)       * You should use the respective <i>typedef</i> (means either
183          attenuation_ctrl_effect1           = 0x0d, ///< Effect Controller 1 (Coarse, MIDI Controller 12)       * attenuation_ctrl_t, eg1_ctrl_t or eg2_ctrl_t) in your code!
184          attenuation_ctrl_effect2           = 0x0f, ///< Effect Controller 2 (Coarse, MIDI Controller 13)       */
185          attenuation_ctrl_genpurpose1       = 0x11, ///< General Purpose Controller 1 (Slider, MIDI Controller 16)      struct leverage_ctrl_t {
186          attenuation_ctrl_genpurpose2       = 0x13, ///< General Purpose Controller 2 (Slider, MIDI Controller 17)          typedef enum {
187          attenuation_ctrl_genpurpose3       = 0x15, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)              type_none              = 0x00, ///< No controller defined
188          attenuation_ctrl_genpurpose4       = 0x17, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)              type_channelaftertouch = 0x2f, ///< Channel Key Pressure
189          attenuation_ctrl_portamentotime    = 0x0b, ///< Portamento Time (Coarse, MIDI Controller 5)              type_velocity          = 0xff, ///< Key Velocity
190          attenuation_ctrl_sustainpedal      = 0x01, ///< Sustain Pedal (MIDI Controller 64)              type_controlchange     = 0xfe  ///< Ordinary MIDI control change controller, see field 'controller_number'
191          attenuation_ctrl_portamento        = 0x19, ///< Portamento (MIDI Controller 65)          } type_t;
192          attenuation_ctrl_sostenutopedal    = 0x1b, ///< Sostenuto Pedal (MIDI Controller 66)  
193          attenuation_ctrl_softpedal         = 0x09, ///< Soft Pedal (MIDI Controller 67)          type_t type;              ///< Controller type
194          attenuation_ctrl_genpurpose5       = 0x1d, ///< General Purpose Controller 5 (Button, MIDI Controller 80)          uint   controller_number; ///< MIDI controller number if this controller is a control change controller, 0 otherwise
195          attenuation_ctrl_genpurpose6       = 0x1f, ///< General Purpose Controller 6 (Button, MIDI Controller 81)  
196          attenuation_ctrl_genpurpose7       = 0x21, ///< General Purpose Controller 7 (Button, MIDI Controller 82)          void serialize(Serialization::Archive* archive);
197          attenuation_ctrl_genpurpose8       = 0x23, ///< General Purpose Controller 8 (Button, MIDI Controller 83)      };
198          attenuation_ctrl_effect1depth      = 0x25, ///< Effect 1 Depth (MIDI Controller 91)  
199          attenuation_ctrl_effect2depth      = 0x27, ///< Effect 2 Depth (MIDI Controller 92)      /**
200          attenuation_ctrl_effect3depth      = 0x29, ///< Effect 3 Depth (MIDI Controller 93)       * Defines controller influencing attenuation.
201          attenuation_ctrl_effect4depth      = 0x2b, ///< Effect 4 Depth (MIDI Controller 94)       *
202          attenuation_ctrl_effect5depth      = 0x2d, ///< Effect 5 Depth (MIDI Controller 95)       * @see leverage_ctrl_t
203          attenuation_ctrl_channelaftertouch = 0x2f, ///< Channel Key Pressure       */
204          attenuation_ctrl_velocity          = 0xff  ///< Key Velocity      typedef leverage_ctrl_t attenuation_ctrl_t;
205      } attenuation_ctrl_t, eg1_ctrl_t, eg2_ctrl_t;  
206        /**
207         * Defines controller influencing envelope generator 1.
208         *
209         * @see leverage_ctrl_t
210         */
211        typedef leverage_ctrl_t eg1_ctrl_t;
212    
213        /**
214         * Defines controller influencing envelope generator 2.
215         *
216         * @see leverage_ctrl_t
217         */
218        typedef leverage_ctrl_t eg2_ctrl_t;
219    
220      /**      /**
221       * Defines the type of dimension, that is how the dimension zones (and       * Defines the type of dimension, that is how the dimension zones (and
# Line 205  namespace gig { Line 228  namespace gig {
228          dimension_none              = 0x00, ///< Dimension not in use.          dimension_none              = 0x00, ///< Dimension not in use.
229          dimension_samplechannel     = 0x80, ///< If used sample has more than one channel (thus is not mono).          dimension_samplechannel     = 0x80, ///< If used sample has more than one channel (thus is not mono).
230          dimension_layer             = 0x81, ///< For layering of up to 8 instruments (and eventually crossfading of 2 or 4 layers).          dimension_layer             = 0x81, ///< For layering of up to 8 instruments (and eventually crossfading of 2 or 4 layers).
231          dimension_velocity          = 0x82, ///< Key Velocity (this is the only dimension where the ranges can exactly be defined).          dimension_velocity          = 0x82, ///< Key Velocity (this is the only dimension in gig2 where the ranges can exactly be defined).
232          dimension_channelaftertouch = 0x83, ///< Channel Key Pressure          dimension_channelaftertouch = 0x83, ///< Channel Key Pressure
233          dimension_releasetrigger    = 0x84, ///< Special dimension for triggering samples on releasing a key.          dimension_releasetrigger    = 0x84, ///< Special dimension for triggering samples on releasing a key.
234          dimension_keyboard          = 0x85, ///< Key Position          dimension_keyboard          = 0x85, ///< Dimension for keyswitching
235            dimension_roundrobin        = 0x86, ///< Different samples triggered each time a note is played, dimension regions selected in sequence
236            dimension_random            = 0x87, ///< Different samples triggered each time a note is played, random order
237            dimension_smartmidi         = 0x88, ///< For MIDI tools like legato and repetition mode
238            dimension_roundrobinkeyboard = 0x89, ///< Different samples triggered each time a note is played, any key advances the counter
239          dimension_modwheel          = 0x01, ///< Modulation Wheel (MIDI Controller 1)          dimension_modwheel          = 0x01, ///< Modulation Wheel (MIDI Controller 1)
240          dimension_breath            = 0x02, ///< Breath Controller (Coarse, MIDI Controller 2)          dimension_breath            = 0x02, ///< Breath Controller (Coarse, MIDI Controller 2)
241          dimension_foot              = 0x04, ///< Foot Pedal (Coarse, MIDI Controller 4)          dimension_foot              = 0x04, ///< Foot Pedal (Coarse, MIDI Controller 4)
# Line 239  namespace gig { Line 266  namespace gig {
266       * into the corresponding dimension bit number.       * into the corresponding dimension bit number.
267       */       */
268      typedef enum {      typedef enum {
269          split_type_normal,         ///< dimension value between 0-127, no custom range of zones          split_type_normal,         ///< dimension value between 0-127
         split_type_customvelocity, ///< a velocity dimension split with custom range definition for each zone (if a velocity dimension split has no custom defined zone ranges then it's also just of type split_type_normal)  
270          split_type_bit             ///< dimension values are already the sought bit number          split_type_bit             ///< dimension values are already the sought bit number
271      } split_type_t;      } split_type_t;
272    
# Line 250  namespace gig { Line 276  namespace gig {
276          uint8_t      bits;       ///< Number of "bits" (1 bit = 2 splits/zones, 2 bit = 4 splits/zones, 3 bit = 8 splits/zones,...).          uint8_t      bits;       ///< Number of "bits" (1 bit = 2 splits/zones, 2 bit = 4 splits/zones, 3 bit = 8 splits/zones,...).
277          uint8_t      zones;      ///< Number of zones the dimension has.          uint8_t      zones;      ///< Number of zones the dimension has.
278          split_type_t split_type; ///< Intended for internal usage: will be used to convert a dimension value into the corresponding dimension bit number.          split_type_t split_type; ///< Intended for internal usage: will be used to convert a dimension value into the corresponding dimension bit number.
279          range_t*     ranges;     ///< Intended for internal usage: Points to the beginning of a range_t array which reflects the value ranges of each dimension zone (only if custom defined ranges are defined, is NULL otherwise).          float        zone_size;  ///< Intended for internal usage: reflects the size of each zone (128/zones) for normal split types only, 0 otherwise.
         unsigned int zone_size;  ///< Intended for internal usage: reflects the size of each zone (128/zones) for normal split types only, 0 otherwise.  
280      };      };
281    
282      /** Defines which frequencies are filtered by the VCF. */      /** Defines which frequencies are filtered by the VCF. */
# Line 263  namespace gig { Line 288  namespace gig {
288          vcf_type_bandreject   = 0x03          vcf_type_bandreject   = 0x03
289      } vcf_type_t;      } vcf_type_t;
290    
291      /** Defines the envelope of a crossfade. */      /**
292         * Defines the envelope of a crossfade.
293         *
294         * Note: The default value for crossfade points is 0,0,0,0. Layers with
295         * such a default value should be treated as if they would not have a
296         * crossfade.
297         */
298      struct crossfade_t {      struct crossfade_t {
299          #if WORDS_BIGENDIAN          #if WORDS_BIGENDIAN
         uint8_t in_start;   ///< Start position of fade in.  
         uint8_t in_end;     ///< End position of fade in.  
         uint8_t out_start;  ///< Start position of fade out.  
         uint8_t out_end;    ///< End postition of fade out.  
         #else // little endian  
300          uint8_t out_end;    ///< End postition of fade out.          uint8_t out_end;    ///< End postition of fade out.
301          uint8_t out_start;  ///< Start position of fade out.          uint8_t out_start;  ///< Start position of fade out.
302          uint8_t in_end;     ///< End position of fade in.          uint8_t in_end;     ///< End position of fade in.
303          uint8_t in_start;   ///< Start position of fade in.          uint8_t in_start;   ///< Start position of fade in.
304            #else // little endian
305            uint8_t in_start;   ///< Start position of fade in.
306            uint8_t in_end;     ///< End position of fade in.
307            uint8_t out_start;  ///< Start position of fade out.
308            uint8_t out_end;    ///< End postition of fade out.
309          #endif // WORDS_BIGENDIAN          #endif // WORDS_BIGENDIAN
310    
311            void serialize(Serialization::Archive* archive);
312        };
313    
314        /** Reflects the current playback state for a sample. */
315        struct playback_state_t {
316            file_offset_t position;          ///< Current position within the sample.
317            bool          reverse;           ///< If playback direction is currently backwards (in case there is a pingpong or reverse loop defined).
318            file_offset_t loop_cycles_left;  ///< How many times the loop has still to be passed, this value will be decremented with each loop cycle.
319      };      };
320    
321      // just symbol prototyping      // just symbol prototyping
322      class File;      class File;
323      class Instrument;      class Instrument;
324      class Sample;      class Sample;
325        class Region;
326        class Group;
327        class Script;
328        class ScriptGroup;
329    
330      /** Encapsulates articulation information of a dimension region.      /** @brief Encapsulates articulation informations of a dimension region.
331         *
332         * This is the most important data object of the Gigasampler / GigaStudio
333         * format. A DimensionRegion provides the link to the sample to be played
334         * and all required articulation informations to be interpreted for playing
335         * back the sample and processing it appropriately by the sampler software.
336         * Every Region of a Gigasampler Instrument has at least one dimension
337         * region (exactly then when the Region has no dimension defined). Many
338         * Regions though provide more than one DimensionRegion, which reflect
339         * different playing "cases". For example a different sample might be played
340         * if a certain pedal is pressed down, or if the note was triggered with
341         * different velocity.
342         *
343         * One instance of a DimensionRegion reflects exactly one particular case
344         * while playing an instrument (for instance "note between C3 and E3 was
345         * triggered AND note on velocity was between 20 and 42 AND modulation wheel
346         * controller is between 80 and 127). The DimensionRegion defines what to do
347         * under that one particular case, that is which sample to play back and how
348         * to play that sample back exactly and how to process it. So a
349         * DimensionRegion object is always linked to exactly one sample. It may
350         * however also link to no sample at all, for defining a "silence" case
351         * where nothing shall be played (for example when note on velocity was
352         * below 6).
353       *       *
354       *  Every Gigasampler Instrument has at least one dimension region       * Note that a DimensionRegion object only defines "what to do", but it does
355       *  (exactly then when it has no dimension defined).       * not define "when to do it". To actually resolve which DimensionRegion to
356         * pick under which situation, you need to refer to the DimensionRegions'
357         * parent Region object. The Region object contains the necessary
358         * "Dimension" definitions, which in turn define which DimensionRegion is
359         * associated with which playing case exactly.
360       *       *
361       *  Gigasampler provides three Envelope Generators and Low Frequency       * The Gigasampler/GigaStudio format defines 3 Envelope Generators and 3
362       *  Oscillators:       * Low Frequency Oscillators:
363       *       *
364       *  - EG1 and LFO1, both controlling sample amplitude       *  - EG1 and LFO1, both controlling sample amplitude
365       *  - EG2 and LFO2, both controlling filter cutoff frequency       *  - EG2 and LFO2, both controlling filter cutoff frequency
366       *  - EG3 and LFO3, both controlling sample pitch       *  - EG3 and LFO3, both controlling sample pitch
367         *
368         * Since the gig format was designed as extension to the DLS file format,
369         * this class is derived from the DLS::Sampler class. So also refer to
370         * DLS::Sampler for additional informations, class attributes and methods.
371       */       */
372      class DimensionRegion : protected DLS::Sampler {      class DimensionRegion : protected DLS::Sampler {
373          public:          public:
374              uint8_t            VelocityUpperLimit;            ///< Defines the upper velocity value limit of a velocity split (only if an user defined limit was set, thus a value not equal to 128/NumberOfSplits, else this value is 0).              uint8_t            VelocityUpperLimit;            ///< Defines the upper velocity value limit of a velocity split (only if an user defined limit was set, thus a value not equal to 128/NumberOfSplits, else this value is 0). Only for gig2, for gig3 and above the DimensionUpperLimits are used instead.
375              Sample*            pSample;                       ///< Points to the Sample which is assigned to the dimension region.              Sample*            pSample;                       ///< Points to the Sample which is assigned to the dimension region.
376              // Sample Amplitude EG/LFO              // Sample Amplitude EG/LFO
377              uint16_t           EG1PreAttack;                  ///< Preattack value of the sample amplitude EG (0 - 1000 permille).              uint16_t           EG1PreAttack;                  ///< Preattack value of the sample amplitude EG (0 - 1000 permille).
# Line 310  namespace gig { Line 384  namespace gig {
384              bool               EG1Hold;                       ///< If <i>true</i>, Decay1 stage should be postponed until the sample reached the sample loop start.              bool               EG1Hold;                       ///< If <i>true</i>, Decay1 stage should be postponed until the sample reached the sample loop start.
385              eg1_ctrl_t         EG1Controller;                 ///< MIDI Controller which has influence on sample amplitude EG parameters (attack, decay, release).              eg1_ctrl_t         EG1Controller;                 ///< MIDI Controller which has influence on sample amplitude EG parameters (attack, decay, release).
386              bool               EG1ControllerInvert;           ///< Invert values coming from defined EG1 controller.              bool               EG1ControllerInvert;           ///< Invert values coming from defined EG1 controller.
387              uint8_t            EG1ControllerAttackInfluence;  ///< Amount EG1 Controller has influence on the EG1 Attack time.              uint8_t            EG1ControllerAttackInfluence;  ///< Amount EG1 Controller has influence on the EG1 Attack time (0 - 3, where 0 means off).
388              uint8_t            EG1ControllerDecayInfluence;   ///< Amount EG1 Controller has influence on the EG1 Decay time.              uint8_t            EG1ControllerDecayInfluence;   ///< Amount EG1 Controller has influence on the EG1 Decay time (0 - 3, where 0 means off).
389              uint8_t            EG1ControllerReleaseInfluence; ///< Amount EG1 Controller has influence on the EG1 Release time.              uint8_t            EG1ControllerReleaseInfluence; ///< Amount EG1 Controller has influence on the EG1 Release time (0 - 3, where 0 means off).
390              double             LFO1Frequency;                 ///< Frequency of the sample amplitude LFO (0.10 - 10.00 Hz).              double             LFO1Frequency;                 ///< Frequency of the sample amplitude LFO (0.10 - 10.00 Hz).
391              uint16_t           LFO1InternalDepth;             ///< Firm pitch of the sample amplitude LFO (0 - 1200 cents).              uint16_t           LFO1InternalDepth;             ///< Firm pitch of the sample amplitude LFO (0 - 1200 cents).
392              uint16_t           LFO1ControlDepth;              ///< Controller depth influencing sample amplitude LFO pitch (0 - 1200 cents).              uint16_t           LFO1ControlDepth;              ///< Controller depth influencing sample amplitude LFO pitch (0 - 1200 cents).
# Line 329  namespace gig { Line 403  namespace gig {
403              double             EG2Release;                    ///< Release time of the filter cutoff EG (0.000 - 60.000s).              double             EG2Release;                    ///< Release time of the filter cutoff EG (0.000 - 60.000s).
404              eg2_ctrl_t         EG2Controller;                 ///< MIDI Controller which has influence on filter cutoff EG parameters (attack, decay, release).              eg2_ctrl_t         EG2Controller;                 ///< MIDI Controller which has influence on filter cutoff EG parameters (attack, decay, release).
405              bool               EG2ControllerInvert;           ///< Invert values coming from defined EG2 controller.              bool               EG2ControllerInvert;           ///< Invert values coming from defined EG2 controller.
406              uint8_t            EG2ControllerAttackInfluence;  ///< Amount EG2 Controller has influence on the EG2 Attack time.              uint8_t            EG2ControllerAttackInfluence;  ///< Amount EG2 Controller has influence on the EG2 Attack time (0 - 3, where 0 means off).
407              uint8_t            EG2ControllerDecayInfluence;   ///< Amount EG2 Controller has influence on the EG2 Decay time.              uint8_t            EG2ControllerDecayInfluence;   ///< Amount EG2 Controller has influence on the EG2 Decay time (0 - 3, where 0 means off).
408              uint8_t            EG2ControllerReleaseInfluence; ///< Amount EG2 Controller has influence on the EG2 Release time.              uint8_t            EG2ControllerReleaseInfluence; ///< Amount EG2 Controller has influence on the EG2 Release time (0 - 3, where 0 means off).
409              double             LFO2Frequency;                 ///< Frequency of the filter cutoff LFO (0.10 - 10.00 Hz).              double             LFO2Frequency;                 ///< Frequency of the filter cutoff LFO (0.10 - 10.00 Hz).
410              uint16_t           LFO2InternalDepth;             ///< Firm pitch of the filter cutoff LFO (0 - 1200 cents).              uint16_t           LFO2InternalDepth;             ///< Firm pitch of the filter cutoff LFO (0 - 1200 cents).
411              uint16_t           LFO2ControlDepth;              ///< Controller depth influencing filter cutoff LFO pitch (0 - 1200).              uint16_t           LFO2ControlDepth;              ///< Controller depth influencing filter cutoff LFO pitch (0 - 1200).
# Line 349  namespace gig { Line 423  namespace gig {
423              // Filter              // Filter
424              bool               VCFEnabled;                    ///< If filter should be used.              bool               VCFEnabled;                    ///< If filter should be used.
425              vcf_type_t         VCFType;                       ///< Defines the general filter characteristic (lowpass, highpass, bandpass, etc.).              vcf_type_t         VCFType;                       ///< Defines the general filter characteristic (lowpass, highpass, bandpass, etc.).
426              vcf_cutoff_ctrl_t  VCFCutoffController;           ///< Specifies which external controller has influence on the filter cutoff frequency.              vcf_cutoff_ctrl_t  VCFCutoffController;           ///< Specifies which external controller has influence on the filter cutoff frequency. @deprecated Don't alter directly, use SetVCFCutoffController() instead!
427                bool               VCFCutoffControllerInvert;     ///< Inverts values coming from the defined cutoff controller
428              uint8_t            VCFCutoff;                     ///< Max. cutoff frequency.              uint8_t            VCFCutoff;                     ///< Max. cutoff frequency.
429              curve_type_t       VCFVelocityCurve;              ///< Defines a transformation curve for the incoming velocity values, affecting the VCF.              curve_type_t       VCFVelocityCurve;              ///< Defines a transformation curve for the incoming velocity values, affecting the VCF. @deprecated Don't alter directly, use SetVCFVelocityCurve() instead!
430              uint8_t            VCFVelocityScale;              ///< (0-127) Amount velocity controls VCF cutoff frequency (only if no other VCF cutoff controller is defined).              uint8_t            VCFVelocityScale;              ///< (0-127) Amount velocity controls VCF cutoff frequency (only if no other VCF cutoff controller is defined, otherwise this is the minimum cutoff). @deprecated Don't alter directly, use SetVCFVelocityScale() instead!
431              uint8_t            VCFVelocityDynamicRange;       ///< 0x04 = lowest, 0x00 = highest              uint8_t            VCFVelocityDynamicRange;       ///< 0x04 = lowest, 0x00 = highest . @deprecated Don't alter directly, use SetVCFVelocityDynamicRange() instead!
432              uint8_t            VCFResonance;                  ///< Firm internal filter resonance weight.              uint8_t            VCFResonance;                  ///< Firm internal filter resonance weight.
433              bool               VCFResonanceDynamic;           ///< If <i>true</i>: Increases the resonance Q according to changes of controllers that actually control the VCF cutoff frequency (EG2, ext. VCF MIDI controller).              bool               VCFResonanceDynamic;           ///< If <i>true</i>: Increases the resonance Q according to changes of controllers that actually control the VCF cutoff frequency (EG2, ext. VCF MIDI controller).
434              vcf_res_ctrl_t     VCFResonanceController;        ///< Specifies which external controller has influence on the filter resonance Q.              vcf_res_ctrl_t     VCFResonanceController;        ///< Specifies which external controller has influence on the filter resonance Q.
435              bool               VCFKeyboardTracking;           ///< If <i>true</i>: VCF cutoff frequence will be dependend to the note key position relative to the defined breakpoint value.              bool               VCFKeyboardTracking;           ///< If <i>true</i>: VCF cutoff frequence will be dependend to the note key position relative to the defined breakpoint value.
436              uint8_t            VCFKeyboardTrackingBreakpoint; ///< See VCFKeyboardTracking (0 - 127).              uint8_t            VCFKeyboardTrackingBreakpoint; ///< See VCFKeyboardTracking (0 - 127).
437              // Key Velocity Transformations              // Key Velocity Transformations
438              curve_type_t       VelocityResponseCurve;         ///< Defines a transformation curve to the incoming velocity values affecting amplitude.              curve_type_t       VelocityResponseCurve;         ///< Defines a transformation curve to the incoming velocity values affecting amplitude (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseCurve() instead!
439              uint8_t            VelocityResponseDepth;         ///< Dynamic range of velocity affecting amplitude (0 - 4).              uint8_t            VelocityResponseDepth;         ///< Dynamic range of velocity affecting amplitude (0 - 4) (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseDepth() instead!
440              uint8_t            VelocityResponseCurveScaling;              uint8_t            VelocityResponseCurveScaling;  ///< 0 - 127 (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseCurveScaling() instead!
441              curve_type_t       ReleaseVelocityResponseCurve;  ///< Defines a transformation curve to the incoming release veloctiy values affecting envelope times.              curve_type_t       ReleaseVelocityResponseCurve;  ///< Defines a transformation curve to the incoming release veloctiy values affecting envelope times. @deprecated Don't alter directly, use SetReleaseVelocityResponseCurve() instead!
442              uint8_t            ReleaseVelocityResponseDepth;  ///< Dynamic range of release velocity affecting envelope time (0 - 4).              uint8_t            ReleaseVelocityResponseDepth;  ///< Dynamic range of release velocity affecting envelope time (0 - 4). @deprecated Don't alter directly, use SetReleaseVelocityResponseDepth() instead!
443              uint8_t            ReleaseTriggerDecay;           ///< 0 - 8              uint8_t            ReleaseTriggerDecay;           ///< 0 - 8
444              // Mix / Layer              // Mix / Layer
445              crossfade_t        Crossfade;              crossfade_t        Crossfade;
# Line 372  namespace gig { Line 447  namespace gig {
447              dim_bypass_ctrl_t  DimensionBypass;               ///< If defined, the MIDI controller can switch on/off the dimension in realtime.              dim_bypass_ctrl_t  DimensionBypass;               ///< If defined, the MIDI controller can switch on/off the dimension in realtime.
448              int8_t             Pan;                           ///< Panorama / Balance (-64..0..63 <-> left..middle..right)              int8_t             Pan;                           ///< Panorama / Balance (-64..0..63 <-> left..middle..right)
449              bool               SelfMask;                      ///< If <i>true</i>: high velocity notes will stop low velocity notes at the same note, with that you can save voices that wouldn't be audible anyway.              bool               SelfMask;                      ///< If <i>true</i>: high velocity notes will stop low velocity notes at the same note, with that you can save voices that wouldn't be audible anyway.
450              attenuation_ctrl_t AttenuationControl;            ///< MIDI Controller which has influence on the volume level of the sample (or entire sample group).              attenuation_ctrl_t AttenuationController;         ///< MIDI Controller which has influence on the volume level of the sample (or entire sample group).
451              bool               InvertAttenuationControl;      ///< Inverts the values coming from the defined Attenuation Controller.              bool               InvertAttenuationController;   ///< Inverts the values coming from the defined Attenuation Controller.
452              uint8_t            AttenuationControlTreshold;    ///< 0-127              uint8_t            AttenuationControllerThreshold;///< 0-127
453              uint8_t            ChannelOffset;                 ///< Audio output where the audio signal of the dimension region should be routed to (0 - 9).              uint8_t            ChannelOffset;                 ///< Audio output where the audio signal of the dimension region should be routed to (0 - 9).
454              bool               SustainDefeat;                 ///< If <i>true</i>: Sustain pedal will not hold a note.              bool               SustainDefeat;                 ///< If <i>true</i>: Sustain pedal will not hold a note.
455              bool               MSDecode;                      ///< Gigastudio flag: defines if Mid Side Recordings should be decoded.              bool               MSDecode;                      ///< Gigastudio flag: defines if Mid Side Recordings should be decoded.
456              uint16_t           SampleStartOffset;             ///< Number of samples the sample start should be moved (0 - 2000).              uint16_t           SampleStartOffset;             ///< Number of samples the sample start should be moved (0 - 2000).
457                double             SampleAttenuation;             ///< Sample volume (calculated from DLS::Sampler::Gain)
458                uint8_t            DimensionUpperLimits[8];       ///< gig3: defines the upper limit of the dimension values for this dimension region. In case you wondered why this is defined on DimensionRegion level and not on Region level: the zone sizes (upper limits) of the velocity dimension can indeed differ in the individual dimension regions, depending on which zones of the other dimension types are currently selected. So this is exceptional for the velocity dimension only. All other dimension types have the same dimension zone sizes for every single DimensionRegion (of the sample Region).
459    
460              // derived attributes from DLS::Sampler              // derived attributes from DLS::Sampler
461              DLS::Sampler::UnityNote;              using DLS::Sampler::UnityNote;
462              DLS::Sampler::FineTune;              using DLS::Sampler::FineTune;
463              DLS::Sampler::Gain;              using DLS::Sampler::Gain;
464              DLS::Sampler::SampleLoops;              using DLS::Sampler::SampleLoops;
465              DLS::Sampler::pSampleLoops;              using DLS::Sampler::pSampleLoops;
466    
467              DimensionRegion(RIFF::List* _3ewl);              // own methods
468                double GetVelocityAttenuation(uint8_t MIDIKeyVelocity);
469                double GetVelocityRelease(uint8_t MIDIKeyVelocity);
470                double GetVelocityCutoff(uint8_t MIDIKeyVelocity);
471                void SetVelocityResponseCurve(curve_type_t curve);
472                void SetVelocityResponseDepth(uint8_t depth);
473                void SetVelocityResponseCurveScaling(uint8_t scaling);
474                void SetReleaseVelocityResponseCurve(curve_type_t curve);
475                void SetReleaseVelocityResponseDepth(uint8_t depth);
476                void SetVCFCutoffController(vcf_cutoff_ctrl_t controller);
477                void SetVCFVelocityCurve(curve_type_t curve);
478                void SetVCFVelocityDynamicRange(uint8_t range);
479                void SetVCFVelocityScale(uint8_t scaling);
480                Region* GetParent() const;
481                // derived methods
482                using DLS::Sampler::AddSampleLoop;
483                using DLS::Sampler::DeleteSampleLoop;
484                // overridden methods
485                virtual void SetGain(int32_t gain);
486                virtual void UpdateChunks(progress_t* pProgress);
487                virtual void CopyAssign(const DimensionRegion* orig);
488            protected:
489                uint8_t* VelocityTable; ///< For velocity dimensions with custom defined zone ranges only: used for fast converting from velocity MIDI value to dimension bit number.
490                DimensionRegion(Region* pParent, RIFF::List* _3ewl);
491                DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src);
492               ~DimensionRegion();
493                void CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples);
494                void serialize(Serialization::Archive* archive);
495                friend class Region;
496                friend class Serialization::Archive;
497            private:
498                typedef enum { ///< Used to decode attenuation, EG1 and EG2 controller
499                    // official leverage controllers as they were defined in the original Gigasampler/GigaStudio format:
500                    _lev_ctrl_none              = 0x00,
501                    _lev_ctrl_modwheel          = 0x03, ///< Modulation Wheel (MIDI Controller 1)
502                    _lev_ctrl_breath            = 0x05, ///< Breath Controller (Coarse, MIDI Controller 2)
503                    _lev_ctrl_foot              = 0x07, ///< Foot Pedal (Coarse, MIDI Controller 4)
504                    _lev_ctrl_effect1           = 0x0d, ///< Effect Controller 1 (Coarse, MIDI Controller 12)
505                    _lev_ctrl_effect2           = 0x0f, ///< Effect Controller 2 (Coarse, MIDI Controller 13)
506                    _lev_ctrl_genpurpose1       = 0x11, ///< General Purpose Controller 1 (Slider, MIDI Controller 16)
507                    _lev_ctrl_genpurpose2       = 0x13, ///< General Purpose Controller 2 (Slider, MIDI Controller 17)
508                    _lev_ctrl_genpurpose3       = 0x15, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
509                    _lev_ctrl_genpurpose4       = 0x17, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
510                    _lev_ctrl_portamentotime    = 0x0b, ///< Portamento Time (Coarse, MIDI Controller 5)
511                    _lev_ctrl_sustainpedal      = 0x01, ///< Sustain Pedal (MIDI Controller 64)
512                    _lev_ctrl_portamento        = 0x19, ///< Portamento (MIDI Controller 65)
513                    _lev_ctrl_sostenutopedal    = 0x1b, ///< Sostenuto Pedal (MIDI Controller 66)
514                    _lev_ctrl_softpedal         = 0x09, ///< Soft Pedal (MIDI Controller 67)
515                    _lev_ctrl_genpurpose5       = 0x1d, ///< General Purpose Controller 5 (Button, MIDI Controller 80)
516                    _lev_ctrl_genpurpose6       = 0x1f, ///< General Purpose Controller 6 (Button, MIDI Controller 81)
517                    _lev_ctrl_genpurpose7       = 0x21, ///< General Purpose Controller 7 (Button, MIDI Controller 82)
518                    _lev_ctrl_genpurpose8       = 0x23, ///< General Purpose Controller 8 (Button, MIDI Controller 83)
519                    _lev_ctrl_effect1depth      = 0x25, ///< Effect 1 Depth (MIDI Controller 91)
520                    _lev_ctrl_effect2depth      = 0x27, ///< Effect 2 Depth (MIDI Controller 92)
521                    _lev_ctrl_effect3depth      = 0x29, ///< Effect 3 Depth (MIDI Controller 93)
522                    _lev_ctrl_effect4depth      = 0x2b, ///< Effect 4 Depth (MIDI Controller 94)
523                    _lev_ctrl_effect5depth      = 0x2d, ///< Effect 5 Depth (MIDI Controller 95)
524                    _lev_ctrl_channelaftertouch = 0x2f, ///< Channel Key Pressure
525                    _lev_ctrl_velocity          = 0xff, ///< Key Velocity
526    
527                    // format extension (these controllers are so far only supported by LinuxSampler & gigedit) they will *NOT* work with Gigasampler/GigaStudio !
528                    // (the assigned values here are their official MIDI CC number plus the highest bit set):
529                    _lev_ctrl_CC3_EXT           = 0x83, ///< MIDI Controller 3 [gig format extension]
530    
531                    _lev_ctrl_CC6_EXT           = 0x86, ///< Data Entry MSB (MIDI Controller 6) [gig format extension]
532                    _lev_ctrl_CC7_EXT           = 0x87, ///< Channel Volume (MIDI Controller 7) [gig format extension]
533                    _lev_ctrl_CC8_EXT           = 0x88, ///< Balance (MIDI Controller 8) [gig format extension]
534                    _lev_ctrl_CC9_EXT           = 0x89, ///< MIDI Controller 9 [gig format extension]
535                    _lev_ctrl_CC10_EXT          = 0x8a, ///< Pan (MIDI Controller 10) [gig format extension]
536                    _lev_ctrl_CC11_EXT          = 0x8b, ///< Expression Controller (MIDI Controller 11) [gig format extension]
537    
538                    _lev_ctrl_CC14_EXT          = 0x8e, ///< MIDI Controller 14 [gig format extension]
539                    _lev_ctrl_CC15_EXT          = 0x8f, ///< MIDI Controller 15 [gig format extension]
540    
541                    _lev_ctrl_CC20_EXT          = 0x94, ///< MIDI Controller 20 [gig format extension]
542                    _lev_ctrl_CC21_EXT          = 0x95, ///< MIDI Controller 21 [gig format extension]
543                    _lev_ctrl_CC22_EXT          = 0x96, ///< MIDI Controller 22 [gig format extension]
544                    _lev_ctrl_CC23_EXT          = 0x97, ///< MIDI Controller 23 [gig format extension]
545                    _lev_ctrl_CC24_EXT          = 0x98, ///< MIDI Controller 24 [gig format extension]
546                    _lev_ctrl_CC25_EXT          = 0x99, ///< MIDI Controller 25 [gig format extension]
547                    _lev_ctrl_CC26_EXT          = 0x9a, ///< MIDI Controller 26 [gig format extension]
548                    _lev_ctrl_CC27_EXT          = 0x9b, ///< MIDI Controller 27 [gig format extension]
549                    _lev_ctrl_CC28_EXT          = 0x9c, ///< MIDI Controller 28 [gig format extension]
550                    _lev_ctrl_CC29_EXT          = 0x9d, ///< MIDI Controller 29 [gig format extension]
551                    _lev_ctrl_CC30_EXT          = 0x9e, ///< MIDI Controller 30 [gig format extension]
552                    _lev_ctrl_CC31_EXT          = 0x9f, ///< MIDI Controller 31 [gig format extension]
553    
554                    _lev_ctrl_CC68_EXT          = 0xc4, ///< Legato Footswitch (MIDI Controller 68) [gig format extension]
555                    _lev_ctrl_CC69_EXT          = 0xc5, ///< Hold 2 (MIDI Controller 69) [gig format extension]
556                    _lev_ctrl_CC70_EXT          = 0xc6, ///< Sound Ctrl. 1 - Sound Variation (MIDI Controller 70) [gig format extension]
557                    _lev_ctrl_CC71_EXT          = 0xc7, ///< Sound Ctrl. 2 - Timbre (MIDI Controller 71) [gig format extension]
558                    _lev_ctrl_CC72_EXT          = 0xc8, ///< Sound Ctrl. 3 - Release Time (MIDI Controller 72) [gig format extension]
559                    _lev_ctrl_CC73_EXT          = 0xc9, ///< Sound Ctrl. 4 - Attack Time (MIDI Controller 73) [gig format extension]
560                    _lev_ctrl_CC74_EXT          = 0xca, ///< Sound Ctrl. 5 - Brightness (MIDI Controller 74) [gig format extension]
561                    _lev_ctrl_CC75_EXT          = 0xcb, ///< Sound Ctrl. 6 - Decay Time (MIDI Controller 75) [gig format extension]
562                    _lev_ctrl_CC76_EXT          = 0xcc, ///< Sound Ctrl. 7 - Vibrato Rate (MIDI Controller 76) [gig format extension]
563                    _lev_ctrl_CC77_EXT          = 0xcd, ///< Sound Ctrl. 8 - Vibrato Depth (MIDI Controller 77) [gig format extension]
564                    _lev_ctrl_CC78_EXT          = 0xce, ///< Sound Ctrl. 9 - Vibrato Delay (MIDI Controller 78) [gig format extension]
565                    _lev_ctrl_CC79_EXT          = 0xcf, ///< Sound Ctrl. 10 (MIDI Controller 79) [gig format extension]
566    
567                    _lev_ctrl_CC84_EXT          = 0xd4, ///< Portamento Control (MIDI Controller 84) [gig format extension]
568                    _lev_ctrl_CC85_EXT          = 0xd5, ///< MIDI Controller 85 [gig format extension]
569                    _lev_ctrl_CC86_EXT          = 0xd6, ///< MIDI Controller 86 [gig format extension]
570                    _lev_ctrl_CC87_EXT          = 0xd7, ///< MIDI Controller 87 [gig format extension]
571    
572                    _lev_ctrl_CC89_EXT          = 0xd9, ///< MIDI Controller 89 [gig format extension]
573                    _lev_ctrl_CC90_EXT          = 0xda, ///< MIDI Controller 90 [gig format extension]
574    
575                    _lev_ctrl_CC96_EXT          = 0xe0, ///< Data Increment (MIDI Controller 96) [gig format extension]
576                    _lev_ctrl_CC97_EXT          = 0xe1, ///< Data Decrement (MIDI Controller 97) [gig format extension]
577    
578                    _lev_ctrl_CC102_EXT         = 0xe6, ///< MIDI Controller 102 [gig format extension]
579                    _lev_ctrl_CC103_EXT         = 0xe7, ///< MIDI Controller 103 [gig format extension]
580                    _lev_ctrl_CC104_EXT         = 0xe8, ///< MIDI Controller 104 [gig format extension]
581                    _lev_ctrl_CC105_EXT         = 0xe9, ///< MIDI Controller 105 [gig format extension]
582                    _lev_ctrl_CC106_EXT         = 0xea, ///< MIDI Controller 106 [gig format extension]
583                    _lev_ctrl_CC107_EXT         = 0xeb, ///< MIDI Controller 107 [gig format extension]
584                    _lev_ctrl_CC108_EXT         = 0xec, ///< MIDI Controller 108 [gig format extension]
585                    _lev_ctrl_CC109_EXT         = 0xed, ///< MIDI Controller 109 [gig format extension]
586                    _lev_ctrl_CC110_EXT         = 0xee, ///< MIDI Controller 110 [gig format extension]
587                    _lev_ctrl_CC111_EXT         = 0xef, ///< MIDI Controller 111 [gig format extension]
588                    _lev_ctrl_CC112_EXT         = 0xf0, ///< MIDI Controller 112 [gig format extension]
589                    _lev_ctrl_CC113_EXT         = 0xf1, ///< MIDI Controller 113 [gig format extension]
590                    _lev_ctrl_CC114_EXT         = 0xf2, ///< MIDI Controller 114 [gig format extension]
591                    _lev_ctrl_CC115_EXT         = 0xf3, ///< MIDI Controller 115 [gig format extension]
592                    _lev_ctrl_CC116_EXT         = 0xf4, ///< MIDI Controller 116 [gig format extension]
593                    _lev_ctrl_CC117_EXT         = 0xf5, ///< MIDI Controller 117 [gig format extension]
594                    _lev_ctrl_CC118_EXT         = 0xf6, ///< MIDI Controller 118 [gig format extension]
595                    _lev_ctrl_CC119_EXT         = 0xf7  ///< MIDI Controller 119 [gig format extension]
596                } _lev_ctrl_t;
597                typedef std::map<uint32_t, double*> VelocityTableMap;
598    
599                static size_t            Instances;                  ///< Number of DimensionRegion instances.
600                static VelocityTableMap* pVelocityTables;            ///< Contains the tables corresponding to the various velocity parameters (VelocityResponseCurve and VelocityResponseDepth).
601                double*                  pVelocityAttenuationTable;  ///< Points to the velocity table corresponding to the velocity parameters of this DimensionRegion.
602                double*                  pVelocityReleaseTable;      ///< Points to the velocity table corresponding to the release velocity parameters of this DimensionRegion
603                double*                  pVelocityCutoffTable;       ///< Points to the velocity table corresponding to the filter velocity parameters of this DimensionRegion
604                Region*                  pRegion;
605    
606                leverage_ctrl_t DecodeLeverageController(_lev_ctrl_t EncodedController);
607                _lev_ctrl_t     EncodeLeverageController(leverage_ctrl_t DecodedController);
608                double* GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth);
609                double* GetCutoffVelocityTable(curve_type_t vcfVelocityCurve, uint8_t vcfVelocityDynamicRange, uint8_t vcfVelocityScale, vcf_cutoff_ctrl_t vcfCutoffController);
610                double* GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);
611                double* CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);
612      };      };
613    
614      /** Encapsulates sample waves used for playback. */      /** @brief Encapsulates sample waves of Gigasampler/GigaStudio files used for playback.
615         *
616         * This class provides access to the actual audio sample data of a
617         * Gigasampler/GigaStudio file. Along to the actual sample data, it also
618         * provides access to the sample's meta informations like bit depth,
619         * sample rate, encoding type, but also loop informations. The latter may be
620         * used by instruments for resembling sounds with arbitary note lengths.
621         *
622         * In case you created a new sample with File::AddSample(), you should
623         * first update all attributes with the desired meta informations
624         * (amount of channels, bit depth, sample rate, etc.), then call
625         * Resize() with the desired sample size, followed by File::Save(), this
626         * will create the mandatory RIFF chunk which will hold the sample wave
627         * data and / or resize the file so you will be able to Write() the
628         * sample data directly to disk.
629         *
630         * @e Caution: for gig synthesis, most looping relevant information are
631         * retrieved from the respective DimensionRegon instead from the Sample
632         * itself. This was made for allowing different loop definitions for the
633         * same sample under different conditions.
634         *
635         * Since the gig format was designed as extension to the DLS file format,
636         * this class is derived from the DLS::Sample class. So also refer to
637         * DLS::Sample for additional informations, class attributes and methods.
638         */
639      class Sample : public DLS::Sample {      class Sample : public DLS::Sample {
640          public:          public:
             uint16_t       SampleGroup;  
641              uint32_t       Manufacturer;      ///< Specifies the MIDI Manufacturer's Association (MMA) Manufacturer code for the sampler intended to receive this file's waveform. If no particular manufacturer is to be specified, a value of 0 should be used.              uint32_t       Manufacturer;      ///< Specifies the MIDI Manufacturer's Association (MMA) Manufacturer code for the sampler intended to receive this file's waveform. If no particular manufacturer is to be specified, a value of 0 should be used.
642              uint32_t       Product;           ///< Specifies the MIDI model ID defined by the manufacturer corresponding to the Manufacturer field. If no particular manufacturer's product is to be specified, a value of 0 should be used.              uint32_t       Product;           ///< Specifies the MIDI model ID defined by the manufacturer corresponding to the Manufacturer field. If no particular manufacturer's product is to be specified, a value of 0 should be used.
643              uint32_t       SamplePeriod;      ///< Specifies the duration of time that passes during the playback of one sample in nanoseconds (normally equal to 1 / Samplers Per Second, where Samples Per Second is the value found in the format chunk).              uint32_t       SamplePeriod;      ///< Specifies the duration of time that passes during the playback of one sample in nanoseconds (normally equal to 1 / Samples Per Second, where Samples Per Second is the value found in the format chunk), don't bother to update this attribute, it won't be saved.
644              uint32_t       MIDIUnityNote;     ///< Specifies the musical note at which the sample will be played at it's original sample rate.              uint32_t       MIDIUnityNote;     ///< Specifies the musical note at which the sample will be played at it's original sample rate.
645              uint32_t       MIDIPitchFraction; ///< Specifies the fraction of a semitone up from the specified MIDI unity note field. A value of 0x80000000 means 1/2 semitone (50 cents) and a value of 0x00000000 means no fine tuning between semitones.              uint32_t       FineTune;          ///< Specifies the fraction of a semitone up from the specified MIDI unity note field. A value of 0x80000000 means 1/2 semitone (50 cents) and a value of 0x00000000 means no fine tuning between semitones.
646              smpte_format_t SMPTEFormat;       ///< Specifies the Society of Motion Pictures and Television E time format used in the following <i>SMPTEOffset</i> field. If a value of 0 is set, <i>SMPTEOffset</i> should also be set to 0.              smpte_format_t SMPTEFormat;       ///< Specifies the Society of Motion Pictures and Television E time format used in the following <i>SMPTEOffset</i> field. If a value of 0 is set, <i>SMPTEOffset</i> should also be set to 0.
647              uint32_t       SMPTEOffset;       ///< The SMPTE Offset value specifies the time offset to be used for the synchronization / calibration to the first sample in the waveform. This value uses a format of 0xhhmmssff where hh is a signed value that specifies the number of hours (-23 to 23), mm is an unsigned value that specifies the number of minutes (0 to 59), ss is an unsigned value that specifies the number of seconds (0 to 59) and ff is an unsigned value that specifies the number of frames (0 to -1).              uint32_t       SMPTEOffset;       ///< The SMPTE Offset value specifies the time offset to be used for the synchronization / calibration to the first sample in the waveform. This value uses a format of 0xhhmmssff where hh is a signed value that specifies the number of hours (-23 to 23), mm is an unsigned value that specifies the number of minutes (0 to 59), ss is an unsigned value that specifies the number of seconds (0 to 59) and ff is an unsigned value that specifies the number of frames (0 to -1).
648              uint32_t       Loops;             ///< Number of defined sample loops (so far only seen single loops in gig files - please report me if you encounter more!).              uint32_t       Loops;             ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: Number of defined sample loops. So far only seen single loops in gig files - please report if you encounter more!)
649              uint32_t       LoopID;            ///< Specifies the unique ID that corresponds to one of the defined cue points in the cue point list (only if Loops > 0).              uint32_t       LoopID;            ///< Specifies the unique ID that corresponds to one of the defined cue points in the cue point list (only if Loops > 0), as the Gigasampler format only allows one loop definition at the moment, this attribute isn't really useful for anything.
650              loop_type_t    LoopType;          ///< The type field defines how the waveform samples will be looped (only if Loops > 0).              loop_type_t    LoopType;          ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The type field defines how the waveform samples will be looped.)
651              uint32_t       LoopStart;         ///< The start value specifies the byte offset into the waveform data of the first sample to be played in the loop (only if Loops > 0).              uint32_t       LoopStart;         ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The start value specifies the offset [in sample points] in the waveform data of the first sample to be played in the loop [only if Loops > 0].)
652              uint32_t       LoopEnd;           ///< The end value specifies the byte offset into the waveform data of the last sample to be played in the loop (only if Loops > 0).              uint32_t       LoopEnd;           ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The end value specifies the offset [in sample points] in the waveform data which represents the end of the loop [only if Loops > 0].)
653              uint32_t       LoopFraction;      ///< The fractional value specifies a fraction of a sample at which to loop (only if Loops > 0). This allows a loop to be fine tuned at a resolution greater than one sample. A value of 0 means no fraction, a value of 0x80000000 means 1/2 of a sample length. 0xFFFFFFFF is the smallest fraction of a sample that can be represented.              uint32_t       LoopSize;          ///< @e Caution: Use the respective fields in the DimensionRegion instead of this one! (Intended purpose: Length of the looping area [in sample points] which is equivalent to @code LoopEnd - LoopStart @endcode.)
654              uint32_t       LoopPlayCount;     ///< Number of times the loop should be played (only if Loops > 0, a value of 0 = infinite).              uint32_t       LoopFraction;      ///< The fractional value specifies a fraction of a sample at which to loop. This allows a loop to be fine tuned at a resolution greater than one sample. A value of 0 means no fraction, a value of 0x80000000 means 1/2 of a sample length. 0xFFFFFFFF is the smallest fraction of a sample that can be represented.
655                uint32_t       LoopPlayCount;     ///< Number of times the loop should be played (a value of 0 = infinite).
656              bool           Compressed;        ///< If the sample wave is compressed (probably just interesting for instrument and sample editors, as this library already handles the decompression in it's sample access methods anyway).              bool           Compressed;        ///< If the sample wave is compressed (probably just interesting for instrument and sample editors, as this library already handles the decompression in it's sample access methods anyway).
657                uint32_t       TruncatedBits;     ///< For 24-bit compressed samples only: number of bits truncated during compression (0, 4 or 6)
658                bool           Dithered;          ///< For 24-bit compressed samples only: if dithering was used during compression with bit reduction
659    
660              // own methods              // own methods
661              buffer_t      LoadSampleData();              buffer_t      LoadSampleData();
662              buffer_t      LoadSampleData(unsigned long SampleCount);              buffer_t      LoadSampleData(file_offset_t SampleCount);
663              buffer_t      LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount);              buffer_t      LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount);
664              buffer_t      LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount);              buffer_t      LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount);
665              buffer_t      GetCache();              buffer_t      GetCache();
666                // own static methods
667                static buffer_t CreateDecompressionBuffer(file_offset_t MaxReadSize);
668                static void     DestroyDecompressionBuffer(buffer_t& DecompressionBuffer);
669              // overridden methods              // overridden methods
670              void          ReleaseSampleData();              void          ReleaseSampleData();
671              unsigned long SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence = RIFF::stream_start);              void          Resize(file_offset_t NewSize);
672              unsigned long GetPos();              file_offset_t SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence = RIFF::stream_start);
673              unsigned long Read(void* pBuffer, unsigned long SampleCount);              file_offset_t GetPos() const;
674          protected:              file_offset_t Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer = NULL);
675              static unsigned int  Instances;               ///< Number of instances of class Sample.              file_offset_t ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState, DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer = NULL);
676              static unsigned long DecompressionBufferSize; ///< Current size of the decompression buffer.              file_offset_t Write(void* pBuffer, file_offset_t SampleCount);
677              static void*         pDecompressionBuffer;    ///< Small buffer used for decompression only.              Group*        GetGroup() const;
678              unsigned long        FrameOffset;             ///< Current offset (sample points) in current sample frame (for decompression only).              virtual void  UpdateChunks(progress_t* pProgress);
679              unsigned long*       FrameTable;              ///< For positioning within compressed samples only: stores the offset values for each frame.              void CopyAssignMeta(const Sample* orig);
680              unsigned long        SamplePos;               ///< For compressed samples only: stores the current position (in sample points).              void CopyAssignWave(const Sample* orig);
681                uint32_t GetWaveDataCRC32Checksum();
682                bool VerifyWaveData(uint32_t* pActually = NULL);
683            protected:
684                static size_t        Instances;               ///< Number of instances of class Sample.
685                static buffer_t      InternalDecompressionBuffer; ///< Buffer used for decompression as well as for truncation of 24 Bit -> 16 Bit samples.
686                Group*               pGroup;                  ///< pointer to the Group this sample belongs to (always not-NULL)
687                file_offset_t        FrameOffset;             ///< Current offset (sample points) in current sample frame (for decompression only).
688                file_offset_t*       FrameTable;              ///< For positioning within compressed samples only: stores the offset values for each frame.
689                file_offset_t        SamplePos;               ///< For compressed samples only: stores the current position (in sample points).
690                file_offset_t        SamplesInLastFrame;      ///< For compressed samples only: length of the last sample frame.
691                file_offset_t        WorstCaseFrameSize;      ///< For compressed samples only: size (in bytes) of the largest possible sample frame.
692                file_offset_t        SamplesPerFrame;         ///< For compressed samples only: number of samples in a full sample frame.
693              buffer_t             RAMCache;                ///< Buffers samples (already uncompressed) in RAM.              buffer_t             RAMCache;                ///< Buffers samples (already uncompressed) in RAM.
694                unsigned long        FileNo;                  ///< File number (> 0 when sample is stored in an extension file, 0 when it's in the gig)
695                RIFF::Chunk*         pCk3gix;
696                RIFF::Chunk*         pCkSmpl;
697                uint32_t             crc;                     ///< Reflects CRC-32 checksum of the raw sample data at the last time when the sample's raw wave form data has been modified consciously by the user by calling Write().
698    
699              Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset);              Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo = 0, int index = -1);
700             ~Sample();             ~Sample();
701                uint32_t CalculateWaveDataChecksum();
702    
703                // Guess size (in bytes) of a compressed sample
704                inline file_offset_t GuessSize(file_offset_t samples) {
705                    // 16 bit: assume all frames are compressed - 1 byte
706                    // per sample and 5 bytes header per 2048 samples
707    
708                    // 24 bit: assume next best compression rate - 1.5
709                    // bytes per sample and 13 bytes header per 256
710                    // samples
711                    const file_offset_t size =
712                        BitDepth == 24 ? samples + (samples >> 1) + (samples >> 8) * 13
713                                       : samples + (samples >> 10) * 5;
714                    // Double for stereo and add one worst case sample
715                    // frame
716                    return (Channels == 2 ? size << 1 : size) + WorstCaseFrameSize;
717                }
718    
719                // Worst case amount of sample points that can be read with the
720                // given decompression buffer.
721                inline file_offset_t WorstCaseMaxSamples(buffer_t* pDecompressionBuffer) {
722                    return (file_offset_t) ((float)pDecompressionBuffer->Size / (float)WorstCaseFrameSize * (float)SamplesPerFrame);
723                }
724          private:          private:
725              void ScanCompressedSample();              void ScanCompressedSample();
726              friend class File;              friend class File;
727              friend class Region;              friend class Region;
728                friend class Group; // allow to modify protected member pGroup
729      };      };
730    
731      // TODO: <3dnl> list not used yet - not important though (just contains optional descriptions for the dimensions)      // TODO: <3dnl> list not used yet - not important though (just contains optional descriptions for the dimensions)
732      /** Defines <i>Region</i> information of an <i>Instrument</i>. */      /** @brief Defines Region information of a Gigasampler/GigaStudio instrument.
733         *
734         * A Region reflects a consecutive area (key range) on the keyboard. The
735         * individual regions in the gig format may not overlap with other regions
736         * (of the same instrument that is). Further, in the gig format a Region is
737         * merely a container for DimensionRegions (a.k.a. "Cases"). The Region
738         * itself does not provide the sample mapping or articulation informations
739         * used, even though the data structures of regions indeed provide such
740         * informations. The latter is however just of historical nature, because
741         * the gig file format was derived from the DLS file format.
742         *
743         * Each Region consists of at least one or more DimensionRegions. The actual
744         * amount of DimensionRegions depends on which kind of "dimensions" are
745         * defined for this region, and on the split / zone amount for each of those
746         * dimensions.
747         *
748         * Since the gig format was designed as extension to the DLS file format,
749         * this class is derived from the DLS::Region class. So also refer to
750         * DLS::Region for additional informations, class attributes and methods.
751         */
752      class Region : public DLS::Region {      class Region : public DLS::Region {
753          public:          public:
754              unsigned int            Dimensions;               ///< Number of defined dimensions.              unsigned int            Dimensions;               ///< Number of defined dimensions, do not alter!
755              dimension_def_t         pDimensionDefinitions[5]; ///< Defines the five possible dimensions (the dimension's controller and number of bits/splits).              dimension_def_t         pDimensionDefinitions[8]; ///< Defines the five (gig2) or eight (gig3) possible dimensions (the dimension's controller and number of bits/splits). Use AddDimension() and DeleteDimension() to create a new dimension or delete an existing one.
756              uint32_t                DimensionRegions;         ///< Total number of DimensionRegions this Region contains.              uint32_t                DimensionRegions;         ///< Total number of DimensionRegions this Region contains, do not alter!
757              DimensionRegion*        pDimensionRegions[32];    ///< Pointer array to the 32 possible dimension regions (reflects NULL for dimension regions not in use). Avoid to access the array directly and better use GetDimensionRegionByValue() instead, but of course in some cases it makes sense to use the array (e.g. iterating through all DimensionRegions).              DimensionRegion*        pDimensionRegions[256];   ///< Pointer array to the 32 (gig2) or 256 (gig3) possible dimension regions (reflects NULL for dimension regions not in use). Avoid to access the array directly and better use GetDimensionRegionByValue() instead, but of course in some cases it makes sense to use the array (e.g. iterating through all DimensionRegions). Use AddDimension() and DeleteDimension() to create a new dimension or delete an existing one (which will create or delete the respective dimension region(s) automatically).
758                unsigned int            Layers;                   ///< Amount of defined layers (1 - 32). A value of 1 actually means no layering, a value > 1 means there is Layer dimension. The same information can of course also be obtained by accessing pDimensionDefinitions. Do not alter this value!
759    
760              DimensionRegion* GetDimensionRegionByValue(uint Dim4Val, uint Dim3Val, uint Dim2Val, uint Dim1Val, uint Dim0Val);              // own methods
761              DimensionRegion* GetDimensionRegionByBit(uint8_t Dim4Bit, uint8_t Dim3Bit, uint8_t Dim2Bit, uint8_t Dim1Bit, uint8_t Dim0Bit);              DimensionRegion* GetDimensionRegionByValue(const uint DimValues[8]);
762                DimensionRegion* GetDimensionRegionByBit(const uint8_t DimBits[8]);
763                int              GetDimensionRegionIndexByValue(const uint DimValues[8]);
764              Sample*          GetSample();              Sample*          GetSample();
765                void             AddDimension(dimension_def_t* pDimDef);
766                void             DeleteDimension(dimension_def_t* pDimDef);
767                dimension_def_t* GetDimensionDefinition(dimension_t type);
768                void             DeleteDimensionZone(dimension_t type, int zone);
769                void             SplitDimensionZone(dimension_t type, int zone);
770                void             SetDimensionType(dimension_t oldType, dimension_t newType);
771                // overridden methods
772                virtual void     SetKeyRange(uint16_t Low, uint16_t High);
773                virtual void     UpdateChunks(progress_t* pProgress);
774                virtual void     CopyAssign(const Region* orig);
775          protected:          protected:
             uint8_t VelocityTable[128]; ///< For velocity dimensions with custom defined zone ranges only: used for fast converting from velocity MIDI value to dimension bit number.  
   
776              Region(Instrument* pInstrument, RIFF::List* rgnList);              Region(Instrument* pInstrument, RIFF::List* rgnList);
777              void LoadDimensionRegions(RIFF::List* rgn);              void LoadDimensionRegions(RIFF::List* rgn);
778              Sample* GetSampleFromWavePool(unsigned int WavePoolTableIndex);              void UpdateVelocityTable();
779                Sample* GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress = NULL);
780                void CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples);
781                DimensionRegion* GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase);
782             ~Region();             ~Region();
783              friend class Instrument;              friend class Instrument;
784      };      };
785    
786      /** Provides all neccessary information for the synthesis of an <i>Instrument</i>. */      /** @brief Abstract base class for all MIDI rules.
787         *
788         * Note: Instead of using MIDI rules, we recommend you using real-time
789         * instrument scripts instead. Read about the reasons below.
790         *
791         * MIDI Rules (also called "iMIDI rules" or "intelligent MIDI rules") were
792         * introduced with GigaStudio 4 as an attempt to increase the power of
793         * potential user controls over sounds. At that point other samplers already
794         * supported certain powerful user control features, which were not possible
795         * with GigaStudio yet. For example triggering new notes by MIDI CC
796         * controller.
797         *
798         * Such extended features however were usually implemented by other samplers
799         * by requiring the sound designer to write an instrument script which the
800         * designer would then bundle with the respective instrument file. Such
801         * scripts are essentially text files, using a very specific programming
802         * language for the purpose of controlling the sampler in real-time. Since
803         * however musicians are not typically keen to writing such cumbersome
804         * script files, the GigaStudio designers decided to implement such extended
805         * features completely without instrument scripts. Instead they created a
806         * set of rules, which could be defined and altered conveniently by mouse
807         * clicks in GSt's instrument editor application. The downside of this
808         * overall approach however, was that those MIDI rules were very limited in
809         * practice. As sound designer you easily came across the possiblities such
810         * MIDI rules were able to offer.
811         *
812         * Due to such severe use case constraints, support for MIDI rules is quite
813         * limited in libgig. At the moment only the "Control Trigger", "Alternator"
814         * and the "Legato" MIDI rules are supported by libgig. Consequently the
815         * graphical instrument editor application gigedit just supports the
816         * "Control Trigger" and "Legato" MIDI rules, and LinuxSampler even does not
817         * support any MIDI rule type at all and LinuxSampler probably will not
818         * support MIDI rules in future either.
819         *
820         * Instead of using MIDI rules, we introduced real-time instrument scripts
821         * as extension to the original GigaStudio file format. This script based
822         * solution is much more powerful than MIDI rules and is already supported
823         * by libgig, gigedit and LinuxSampler.
824         *
825         * @deprecated Just provided for backward compatiblity, use Script for new
826         *             instruments instead.
827         */
828        class MidiRule {
829            public:
830                virtual ~MidiRule() { }
831            protected:
832                virtual void UpdateChunks(uint8_t* pData) const = 0;
833                friend class Instrument;
834        };
835    
836        /** @brief MIDI rule for triggering notes by control change events.
837         *
838         * A "Control Trigger MIDI rule" allows to trigger new notes by sending MIDI
839         * control change events to the sampler.
840         *
841         * Note: "Control Trigger" MIDI rules are only supported by gigedit, but not
842         * by LinuxSampler. We recommend you using real-time instrument scripts
843         * instead. Read more about the details and reasons for this in the
844         * description of the MidiRule base class.
845         *
846         * @deprecated Just provided for backward compatiblity, use Script for new
847         *             instruments instead. See description of MidiRule for details.
848         */
849        class MidiRuleCtrlTrigger : public MidiRule {
850            public:
851                uint8_t ControllerNumber;   ///< MIDI controller number.
852                uint8_t Triggers;           ///< Number of triggers.
853                struct trigger_t {
854                    uint8_t TriggerPoint;   ///< The CC value to pass for the note to be triggered.
855                    bool    Descending;     ///< If the change in CC value should be downwards.
856                    uint8_t VelSensitivity; ///< How sensitive the velocity should be to the speed of the controller change.
857                    uint8_t Key;            ///< Key to trigger.
858                    bool    NoteOff;        ///< If a note off should be triggered instead of a note on.
859                    uint8_t Velocity;       ///< Velocity of the note to trigger. 255 means that velocity should depend on the speed of the controller change.
860                    bool    OverridePedal;  ///< If a note off should be triggered even if the sustain pedal is down.
861                } pTriggers[32];
862    
863            protected:
864                MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg);
865                MidiRuleCtrlTrigger();
866                void UpdateChunks(uint8_t* pData) const;
867                friend class Instrument;
868        };
869    
870        /** @brief MIDI rule for instruments with legato samples.
871         *
872         * A "Legato MIDI rule" allows playing instruments resembling the legato
873         * playing technique. In the past such legato articulations were tried to be
874         * simulated by pitching the samples of the instrument. However since
875         * usually a high amount of pitch is needed for legatos, this always sounded
876         * very artificial and unrealistic. The "Legato MIDI rule" thus uses another
877         * approach. Instead of pitching the samples, it allows the sound designer
878         * to bundle separate, additional samples for the individual legato
879         * situations and the legato rules defined which samples to be played in
880         * which situation.
881         *
882         * Note: "Legato MIDI rules" are only supported by gigedit, but not
883         * by LinuxSampler. We recommend you using real-time instrument scripts
884         * instead. Read more about the details and reasons for this in the
885         * description of the MidiRule base class.
886         *
887         * @deprecated Just provided for backward compatiblity, use Script for new
888         *             instruments instead. See description of MidiRule for details.
889         */
890        class MidiRuleLegato : public MidiRule {
891            public:
892                uint8_t LegatoSamples;     ///< Number of legato samples per key in each direction (always 12)
893                bool BypassUseController;  ///< If a controller should be used to bypass the sustain note
894                uint8_t BypassKey;         ///< Key to be used to bypass the sustain note
895                uint8_t BypassController;  ///< Controller to be used to bypass the sustain note
896                uint16_t ThresholdTime;    ///< Maximum time (ms) between two notes that should be played legato
897                uint16_t ReleaseTime;      ///< Release time
898                range_t KeyRange;          ///< Key range for legato notes
899                uint8_t ReleaseTriggerKey; ///< Key triggering release samples
900                uint8_t AltSustain1Key;    ///< Key triggering alternate sustain samples
901                uint8_t AltSustain2Key;    ///< Key triggering a second set of alternate sustain samples
902    
903            protected:
904                MidiRuleLegato(RIFF::Chunk* _3ewg);
905                MidiRuleLegato();
906                void UpdateChunks(uint8_t* pData) const;
907                friend class Instrument;
908        };
909    
910        /** @brief MIDI rule to automatically cycle through specified sequences of different articulations.
911         *
912         * The instrument must be using the smartmidi dimension.
913         *
914         * Note: "Alternator" MIDI rules are neither supported by gigedit nor by
915         * LinuxSampler. We recommend you using real-time instrument scripts
916         * instead. Read more about the details and reasons for this in the
917         * description of the MidiRule base class.
918         *
919         * @deprecated Just provided for backward compatiblity, use Script for new
920         *             instruments instead. See description of MidiRule for details.
921         */
922        class MidiRuleAlternator : public MidiRule {
923            public:
924                uint8_t Articulations;     ///< Number of articulations in the instrument
925                String pArticulations[32]; ///< Names of the articulations
926    
927                range_t PlayRange;         ///< Key range of the playable keys in the instrument
928    
929                uint8_t Patterns;          ///< Number of alternator patterns
930                struct pattern_t {
931                    String Name;           ///< Name of the pattern
932                    int Size;              ///< Number of steps in the pattern
933                    const uint8_t& operator[](int i) const { /// Articulation to play
934                        return data[i];
935                    }
936                    uint8_t& operator[](int i) {
937                        return data[i];
938                    }
939                private:
940                    uint8_t data[32];
941                } pPatterns[32];           ///< A pattern is a sequence of articulation numbers
942    
943                typedef enum {
944                    selector_none,
945                    selector_key_switch,
946                    selector_controller
947                } selector_t;
948                selector_t Selector;       ///< Method by which pattern is chosen
949                range_t KeySwitchRange;    ///< Key range for key switch selector
950                uint8_t Controller;        ///< CC number for controller selector
951    
952                bool Polyphonic;           ///< If alternator should step forward only when all notes are off
953                bool Chained;              ///< If all patterns should be chained together
954    
955            protected:
956                MidiRuleAlternator(RIFF::Chunk* _3ewg);
957                MidiRuleAlternator();
958                void UpdateChunks(uint8_t* pData) const;
959                friend class Instrument;
960        };
961    
962        /** @brief A MIDI rule not yet implemented by libgig.
963         *
964         * This class is currently used as a place holder by libgig for MIDI rule
965         * types which are not supported by libgig yet.
966         *
967         * Note: Support for missing MIDI rule types are probably never added to
968         * libgig. We recommend you using real-time instrument scripts instead.
969         * Read more about the details and reasons for this in the description of
970         * the MidiRule base class.
971         *
972         * @deprecated Just provided for backward compatiblity, use Script for new
973         *             instruments instead. See description of MidiRule for details.
974         */
975        class MidiRuleUnknown : public MidiRule {
976            protected:
977                MidiRuleUnknown() { }
978                void UpdateChunks(uint8_t* pData) const { }
979                friend class Instrument;
980        };
981    
982        /** @brief Real-time instrument script (gig format extension).
983         *
984         * Real-time instrument scripts are user supplied small programs which can
985         * be used by instrument designers to create custom behaviors and features
986         * not available in the stock sampler engine. Features which might be very
987         * exotic or specific for the respective instrument.
988         *
989         * This is an extension of the GigaStudio format, thus a feature which was
990         * not available in the GigaStudio 4 software. It is currently only
991         * supported by LinuxSampler and gigedit. Scripts will not load with the
992         * original GigaStudio software.
993         *
994         * You find more informations about Instrument Scripts on the LinuxSampler
995         * documentation site:
996         *
997         * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/">About Instrument Scripts in General</a>
998         * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language">Introduction to the NKSP Script Language</a>
999         * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language/Reference/">NKSP Reference Manual</a>
1000         * - <a href="http://doc.linuxsampler.org/Gigedit/Managing_Scripts">Using Instrument Scripts with Gigedit</a>
1001         */
1002        class Script {
1003            public:
1004                enum Encoding_t {
1005                    ENCODING_ASCII = 0 ///< Standard 8 bit US ASCII character encoding (default).
1006                };
1007                enum Compression_t {
1008                    COMPRESSION_NONE = 0 ///< Is not compressed at all (default).
1009                };
1010                enum Language_t {
1011                    LANGUAGE_NKSP = 0 ///< NKSP stands for "Is Not KSP" (default). Refer to the <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language/Reference/">NKSP Reference Manual</a> for details about this script language.
1012                };
1013    
1014                String         Name;        ///< Arbitrary name of the script, which may be displayed i.e. in an instrument editor.
1015                Compression_t  Compression; ///< Whether the script was/should be compressed, and if so, which compression algorithm shall be used.
1016                Encoding_t     Encoding;    ///< Format the script's source code text is encoded with.
1017                Language_t     Language;    ///< Programming language and dialect the script is written in.
1018                bool           Bypass;      ///< Global bypass: if enabled, this script shall not be executed by the sampler for any instrument.
1019    
1020                String GetScriptAsText();
1021                void   SetScriptAsText(const String& text);
1022                void   SetGroup(ScriptGroup* pGroup);
1023                ScriptGroup* GetGroup() const;
1024                void   CopyAssign(const Script* orig);
1025            protected:
1026                Script(ScriptGroup* group, RIFF::Chunk* ckScri);
1027                virtual ~Script();
1028                void UpdateChunks(progress_t* pProgress);
1029                void RemoveAllScriptReferences();
1030                friend class ScriptGroup;
1031                friend class Instrument;
1032            private:
1033                ScriptGroup*          pGroup;
1034                RIFF::Chunk*          pChunk; ///< 'Scri' chunk
1035                std::vector<uint8_t>  data;
1036                uint32_t              crc; ///< CRC-32 checksum of the raw script data
1037        };
1038    
1039        /** @brief Group of instrument scripts (gig format extension).
1040         *
1041         * This class is simply used to sort a bunch of real-time instrument scripts
1042         * into individual groups. This allows instrument designers and script
1043         * developers to keep scripts in a certain order while working with a larger
1044         * amount of scripts in an instrument editor.
1045         *
1046         * This is an extension of the GigaStudio format, thus a feature which was
1047         * not available in the GigaStudio 4 software. It is currently only
1048         * supported by LinuxSampler and gigedit.
1049         */
1050        class ScriptGroup {
1051            public:
1052                String   Name; ///< Name of this script group. For example to be displayed in an instrument editor.
1053    
1054                Script*  GetScript(uint index);
1055                Script*  AddScript();
1056                void     DeleteScript(Script* pScript);
1057            protected:
1058                ScriptGroup(File* file, RIFF::List* lstRTIS);
1059                virtual ~ScriptGroup();
1060                void LoadScripts();
1061                void UpdateChunks(progress_t* pProgress);
1062                friend class Script;
1063                friend class File;
1064            private:
1065                File*                pFile;
1066                RIFF::List*          pList; ///< 'RTIS' list chunk
1067                std::list<Script*>*  pScripts;
1068        };
1069    
1070        /** @brief Provides access to a Gigasampler/GigaStudio instrument.
1071         *
1072         * This class provides access to Gigasampler/GigaStudio instruments
1073         * contained in .gig files. A gig instrument is merely a set of keyboard
1074         * ranges (called Region), plus some additional global informations about
1075         * the instrument. The major part of the actual instrument definition used
1076         * for the synthesis of the instrument is contained in the respective Region
1077         * object (or actually in the respective DimensionRegion object being, see
1078         * description of Region for details).
1079         *
1080         * Since the gig format was designed as extension to the DLS file format,
1081         * this class is derived from the DLS::Instrument class. So also refer to
1082         * DLS::Instrument for additional informations, class attributes and
1083         * methods.
1084         */
1085      class Instrument : protected DLS::Instrument {      class Instrument : protected DLS::Instrument {
1086          public:          public:
1087              // derived attributes from DLS::Resource              // derived attributes from DLS::Resource
1088              DLS::Resource::pInfo;              using DLS::Resource::pInfo;
1089              DLS::Resource::pDLSID;              using DLS::Resource::pDLSID;
1090              // derived attributes from DLS::Instrument              // derived attributes from DLS::Instrument
1091              DLS::Instrument::IsDrum;              using DLS::Instrument::IsDrum;
1092              DLS::Instrument::MIDIBank;              using DLS::Instrument::MIDIBank;
1093              DLS::Instrument::MIDIBankCoarse;              using DLS::Instrument::MIDIBankCoarse;
1094              DLS::Instrument::MIDIBankFine;              using DLS::Instrument::MIDIBankFine;
1095              DLS::Instrument::MIDIProgram;              using DLS::Instrument::MIDIProgram;
1096              DLS::Instrument::Regions;              using DLS::Instrument::Regions;
1097              // own attributes              // own attributes
1098              int32_t   Attenuation;       ///< in dB              int32_t   Attenuation;       ///< in dB
1099              uint16_t  EffectSend;              uint16_t  EffectSend;
# Line 482  namespace gig { Line 1104  namespace gig {
1104    
1105    
1106              // derived methods from DLS::Resource              // derived methods from DLS::Resource
1107              DLS::Resource::GetParent;              using DLS::Resource::GetParent;
1108              // overridden methods              // overridden methods
1109              Region*   GetFirstRegion();              Region*   GetFirstRegion();
1110              Region*   GetNextRegion();              Region*   GetNextRegion();
1111                Region*   AddRegion();
1112                void      DeleteRegion(Region* pRegion);
1113                void      MoveTo(Instrument* dst);
1114                virtual void UpdateChunks(progress_t* pProgress);
1115                virtual void CopyAssign(const Instrument* orig);
1116              // own methods              // own methods
1117              Region*   GetRegion(unsigned int Key);              Region*   GetRegion(unsigned int Key);
1118                MidiRule* GetMidiRule(int i);
1119                MidiRuleCtrlTrigger* AddMidiRuleCtrlTrigger();
1120                MidiRuleLegato*      AddMidiRuleLegato();
1121                MidiRuleAlternator*  AddMidiRuleAlternator();
1122                void      DeleteMidiRule(int i);
1123                // real-time instrument script methods
1124                Script*   GetScriptOfSlot(uint index);
1125                void      AddScriptSlot(Script* pScript, bool bypass = false);
1126                void      SwapScriptSlots(uint index1, uint index2);
1127                void      RemoveScriptSlot(uint index);
1128                void      RemoveScript(Script* pScript);
1129                uint      ScriptSlotCount() const;
1130                bool      IsScriptSlotBypassed(uint index);
1131                void      SetScriptSlotBypassed(uint index, bool bBypass);
1132          protected:          protected:
             Region**  pRegions;            ///< Pointer array to the regions  
1133              Region*   RegionKeyTable[128]; ///< fast lookup for the corresponding Region of a MIDI key              Region*   RegionKeyTable[128]; ///< fast lookup for the corresponding Region of a MIDI key
             int       RegionIndex;  
1134    
1135              Instrument(File* pFile, RIFF::List* insList);              Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress = NULL);
1136             ~Instrument();             ~Instrument();
1137                void CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples);
1138                void UpdateRegionKeyTable();
1139                void LoadScripts();
1140                void UpdateScriptFileOffsets();
1141              friend class File;              friend class File;
1142                friend class Region; // so Region can call UpdateRegionKeyTable()
1143            private:
1144                struct _ScriptPooolEntry {
1145                    uint32_t fileOffset;
1146                    bool     bypass;
1147                };
1148                struct _ScriptPooolRef {
1149                    Script*  script;
1150                    bool     bypass;
1151                };
1152                MidiRule** pMidiRules;
1153                std::vector<_ScriptPooolEntry> scriptPoolFileOffsets;
1154                std::vector<_ScriptPooolRef>* pScriptRefs;
1155      };      };
1156    
1157      // TODO: <3gnm> chunk not added yet (just contains the names of the sample groups)      /** @brief Group of Gigasampler samples
1158      /** Parses Gigasampler files and provides abstract access to the data. */       *
1159         * Groups help to organize a huge collection of Gigasampler samples.
1160         * Groups are not concerned at all for the synthesis, but they help
1161         * sound library developers when working on complex instruments with an
1162         * instrument editor (as long as that instrument editor supports it ;-).
1163         *
1164         * A sample is always assigned to exactly one Group. This also means
1165         * there is always at least one Group in a .gig file, no matter if you
1166         * created one yet or not.
1167         */
1168        class Group {
1169            public:
1170                String Name; ///< Stores the name of this Group.
1171    
1172                Sample* GetFirstSample();
1173                Sample* GetNextSample();
1174                void AddSample(Sample* pSample);
1175            protected:
1176                Group(File* file, RIFF::Chunk* ck3gnm);
1177                virtual ~Group();
1178                virtual void UpdateChunks(progress_t* pProgress);
1179                void MoveAll();
1180                friend class File;
1181            private:
1182                File*        pFile;
1183                RIFF::Chunk* pNameChunk; ///< '3gnm' chunk
1184        };
1185    
1186        /** @brief Provides convenient access to Gigasampler/GigaStudio .gig files.
1187         *
1188         * This is the entry class for accesing a Gigasampler/GigaStudio (.gig) file
1189         * with libgig. It allows you to open existing .gig files, modifying them
1190         * and saving them persistently either under the same file name or under a
1191         * different location.
1192         *
1193         * A .gig file is merely a monolithic file. That means samples and the
1194         * defintion of the virtual instruments are contained in the same file. A
1195         * .gig file contains an arbitrary amount of samples, and an arbitrary
1196         * amount of instruments which are referencing those samples. It is also
1197         * possible to store samples in .gig files not being referenced by any
1198         * instrument. This is not an error from the file format's point of view and
1199         * it is actually often used in practice during the design phase of new gig
1200         * instruments.
1201         *
1202         * So on toplevel of the gig file format you have:
1203         *
1204         * - A set of samples (see Sample).
1205         * - A set of virtual instruments (see Instrument).
1206         *
1207         * And as extension to the original GigaStudio format, we added:
1208         *
1209         * - Real-time instrument scripts (see Script).
1210         *
1211         * Note that the latter however is only supported by libgig, gigedit and
1212         * LinuxSampler. Scripts are not supported by the original GigaStudio
1213         * software.
1214         *
1215         * All released Gigasampler/GigaStudio file format versions are supported
1216         * (so from first Gigasampler version up to including GigaStudio 4).
1217         *
1218         * Since the gig format was designed as extension to the DLS file format,
1219         * this class is derived from the DLS::File class. So also refer to
1220         * DLS::File for additional informations, class attributes and methods.
1221         */
1222      class File : protected DLS::File {      class File : protected DLS::File {
1223          public:          public:
1224                static const DLS::version_t VERSION_2;
1225                static const DLS::version_t VERSION_3;
1226    
1227              // derived attributes from DLS::Resource              // derived attributes from DLS::Resource
1228              DLS::Resource::pInfo;              using DLS::Resource::pInfo;
1229              DLS::Resource::pDLSID;              using DLS::Resource::pDLSID;
1230              // derived attributes from DLS::File              // derived attributes from DLS::File
1231              DLS::File::pVersion;              using DLS::File::pVersion;
1232              DLS::File::Instruments;              using DLS::File::Instruments;
1233    
1234              // derived methods from DLS::Resource              // derived methods from DLS::Resource
1235              DLS::Resource::GetParent;              using DLS::Resource::GetParent;
1236                // derived methods from DLS::File
1237                using DLS::File::Save;
1238                using DLS::File::GetFileName;
1239                using DLS::File::SetFileName;
1240              // overridden  methods              // overridden  methods
1241                File();
1242              File(RIFF::File* pRIFF);              File(RIFF::File* pRIFF);
1243              Sample*     GetFirstSample();     ///< Returns a pointer to the first <i>Sample</i> object of the file, <i>NULL</i> otherwise.              Sample*     GetFirstSample(progress_t* pProgress = NULL); ///< Returns a pointer to the first <i>Sample</i> object of the file, <i>NULL</i> otherwise.
1244              Sample*     GetNextSample();      ///< Returns a pointer to the next <i>Sample</i> object of the file, <i>NULL</i> otherwise.              Sample*     GetNextSample();      ///< Returns a pointer to the next <i>Sample</i> object of the file, <i>NULL</i> otherwise.
1245                Sample*     GetSample(uint index);
1246                Sample*     AddSample();
1247                void        DeleteSample(Sample* pSample);
1248              Instrument* GetFirstInstrument(); ///< Returns a pointer to the first <i>Instrument</i> object of the file, <i>NULL</i> otherwise.              Instrument* GetFirstInstrument(); ///< Returns a pointer to the first <i>Instrument</i> object of the file, <i>NULL</i> otherwise.
1249              Instrument* GetNextInstrument();  ///< Returns a pointer to the next <i>Instrument</i> object of the file, <i>NULL</i> otherwise.              Instrument* GetNextInstrument();  ///< Returns a pointer to the next <i>Instrument</i> object of the file, <i>NULL</i> otherwise.
1250             ~File() {};              Instrument* GetInstrument(uint index, progress_t* pProgress = NULL);
1251                Instrument* AddInstrument();
1252                Instrument* AddDuplicateInstrument(const Instrument* orig);
1253                void        DeleteInstrument(Instrument* pInstrument);
1254                Group*      GetFirstGroup(); ///< Returns a pointer to the first <i>Group</i> object of the file, <i>NULL</i> otherwise.
1255                Group*      GetNextGroup();  ///< Returns a pointer to the next <i>Group</i> object of the file, <i>NULL</i> otherwise.
1256                Group*      GetGroup(uint index);
1257                Group*      GetGroup(String name);
1258                Group*      AddGroup();
1259                void        DeleteGroup(Group* pGroup);
1260                void        DeleteGroupOnly(Group* pGroup);
1261                void        SetAutoLoad(bool b);
1262                bool        GetAutoLoad();
1263                void        AddContentOf(File* pFile);
1264                ScriptGroup* GetScriptGroup(uint index);
1265                ScriptGroup* GetScriptGroup(const String& name);
1266                ScriptGroup* AddScriptGroup();
1267                void        DeleteScriptGroup(ScriptGroup* pGroup);
1268                virtual    ~File();
1269                virtual void UpdateChunks(progress_t* pProgress);
1270          protected:          protected:
1271              typedef std::list<Sample*>     SampleList;              // overridden protected methods from DLS::File
1272              typedef std::list<Instrument*> InstrumentList;              virtual void LoadSamples();
1273                virtual void LoadInstruments();
1274              SampleList*              pSamples;              virtual void LoadGroups();
1275              SampleList::iterator     SamplesIterator;              virtual void UpdateFileOffsets();
1276              InstrumentList*          pInstruments;              // own protected methods
1277              InstrumentList::iterator InstrumentsIterator;              virtual void LoadSamples(progress_t* pProgress);
1278                virtual void LoadInstruments(progress_t* pProgress);
1279              void LoadSamples();              virtual void LoadScriptGroups();
1280              void LoadInstruments();              void SetSampleChecksum(Sample* pSample, uint32_t crc);
1281                uint32_t GetSampleChecksum(Sample* pSample);
1282                uint32_t GetSampleChecksumByIndex(int index);
1283                bool VerifySampleChecksumTable();
1284                bool RebuildSampleChecksumTable();
1285                int  GetWaveTableIndexOf(gig::Sample* pSample);
1286              friend class Region;              friend class Region;
1287                friend class Sample;
1288                friend class Instrument;
1289                friend class Group; // so Group can access protected member pRIFF
1290                friend class ScriptGroup; // so ScriptGroup can access protected member pRIFF
1291            private:
1292                std::list<Group*>*          pGroups;
1293                std::list<Group*>::iterator GroupsIterator;
1294                bool                        bAutoLoad;
1295                std::list<ScriptGroup*>*    pScriptGroups;
1296      };      };
1297    
1298      /** Will be thrown whenever a gig specific error occurs while trying to access a Gigasampler File. */      /**
1299         * Will be thrown whenever a gig specific error occurs while trying to
1300         * access a Gigasampler File. Note: In your application you should
1301         * better catch for RIFF::Exception rather than this one, except you
1302         * explicitly want to catch and handle gig::Exception, DLS::Exception
1303         * and RIFF::Exception independently, which usually shouldn't be
1304         * necessary though.
1305         */
1306      class Exception : public DLS::Exception {      class Exception : public DLS::Exception {
1307          public:          public:
1308              Exception(String Message);              Exception(String Message);
1309              void PrintMessage();              void PrintMessage();
1310      };      };
1311    
1312        String libraryName();
1313        String libraryVersion();
1314    
1315  } // namespace gig  } // namespace gig
1316    
1317  #endif // __GIG_H__  #endif // __GIG_H__

Legend:
Removed from v.11  
changed lines
  Added in v.3138

  ViewVC Help
Powered by ViewVC