/[svn]/libgig/trunk/src/gig.h
ViewVC logotype

Diff of /libgig/trunk/src/gig.h

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 308 by schoenebeck, Sun Nov 21 18:02:21 2004 UTC revision 1207 by persson, Sat May 26 13:59:40 2007 UTC
# Line 1  Line 1 
1  /***************************************************************************  /***************************************************************************
2   *                                                                         *   *                                                                         *
3   *   libgig - C++ cross-platform Gigasampler format file loader library    *   *   libgig - C++ cross-platform Gigasampler format file access library    *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Christian Schoenebeck                     *   *   Copyright (C) 2003-2007 by Christian Schoenebeck                      *
6   *                               <cuse@users.sourceforge.net>              *   *                              <cuse@users.sourceforge.net>               *
7   *                                                                         *   *                                                                         *
8   *   This library is free software; you can redistribute it and/or modify  *   *   This library is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 26  Line 26 
26    
27  #include "DLS.h"  #include "DLS.h"
28    
 #include <math.h>  
 #include <string.h>  
   
 /// Initial size of the sample buffer which is used for decompression of  
 /// compressed sample wave streams - this value should always be bigger than  
 /// the biggest sample piece expected to be read by the sampler engine,  
 /// otherwise the buffer size will be raised at runtime and thus the buffer  
 /// reallocated which is time consuming and unefficient.  
 #define INITIAL_SAMPLE_BUFFER_SIZE              512000 // 512 kB  
   
29  #if WORDS_BIGENDIAN  #if WORDS_BIGENDIAN
30  # define LIST_TYPE_3PRG 0x33707267  # define LIST_TYPE_3PRG 0x33707267
31  # define LIST_TYPE_3EWL 0x3365776C  # define LIST_TYPE_3EWL 0x3365776C
32    # define LIST_TYPE_3GRI 0x33677269
33    # define LIST_TYPE_3GNL 0x33676E6C
34  # define CHUNK_ID_SMPL  0x736D706C  # define CHUNK_ID_SMPL  0x736D706C
35  # define CHUNK_ID_3GIX  0x33676978  # define CHUNK_ID_3GIX  0x33676978
36  # define CHUNK_ID_3EWA  0x33657761  # define CHUNK_ID_3EWA  0x33657761
37  # define CHUNK_ID_3LNK  0x336C6E6B  # define CHUNK_ID_3LNK  0x336C6E6B
38  # define CHUNK_ID_3EWG  0x33657767  # define CHUNK_ID_3EWG  0x33657767
39  # define CHUNK_ID_EWAV  0x65776176  # define CHUNK_ID_EWAV  0x65776176
40    # define CHUNK_ID_3GNM  0x33676E6D
41    # define CHUNK_ID_EINF  0x65696E66
42    # define CHUNK_ID_3CRC  0x33637263
43  #else  // little endian  #else  // little endian
44  # define LIST_TYPE_3PRG 0x67727033  # define LIST_TYPE_3PRG 0x67727033
45  # define LIST_TYPE_3EWL 0x6C776533  # define LIST_TYPE_3EWL 0x6C776533
46    # define LIST_TYPE_3GRI 0x69726733
47    # define LIST_TYPE_3GNL 0x6C6E6733
48  # define CHUNK_ID_SMPL  0x6C706D73  # define CHUNK_ID_SMPL  0x6C706D73
49  # define CHUNK_ID_3GIX  0x78696733  # define CHUNK_ID_3GIX  0x78696733
50  # define CHUNK_ID_3EWA  0x61776533  # define CHUNK_ID_3EWA  0x61776533
51  # define CHUNK_ID_3LNK  0x6B6E6C33  # define CHUNK_ID_3LNK  0x6B6E6C33
52  # define CHUNK_ID_3EWG  0x67776533  # define CHUNK_ID_3EWG  0x67776533
53  # define CHUNK_ID_EWAV  0x76617765  # define CHUNK_ID_EWAV  0x76617765
54    # define CHUNK_ID_3GNM  0x6D6E6733
55    # define CHUNK_ID_EINF  0x666E6965
56    # define CHUNK_ID_3CRC  0x63726333
57  #endif // WORDS_BIGENDIAN  #endif // WORDS_BIGENDIAN
58    
 /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */  
 #define GIG_EXP_DECODE(x)                                       (pow(1.000000008813822, x))  
 #define GIG_PITCH_TRACK_EXTRACT(x)                              (!(x & 0x01))  
 #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x)                       ((x >> 4) & 0x03)  
 #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x)                  ((x >> 1) & 0x03)  
 #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x)                   ((x >> 3) & 0x03)  
 #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x)                 ((x >> 5) & 0x03)  
   
59  /** Gigasampler specific classes and definitions */  /** Gigasampler specific classes and definitions */
60  namespace gig {  namespace gig {
61    
# Line 80  namespace gig { Line 72  namespace gig {
72          void*         pStart;            ///< Points to the beginning of the buffer.          void*         pStart;            ///< Points to the beginning of the buffer.
73          unsigned long Size;              ///< Size of the actual data in the buffer in bytes.          unsigned long Size;              ///< Size of the actual data in the buffer in bytes.
74          unsigned long NullExtensionSize; ///< The buffer might be bigger than the actual data, if that's the case that unused space at the end of the buffer is filled with NULLs and NullExtensionSize reflects that unused buffer space in bytes. Those NULL extensions are mandatory for differential algorithms that have to take the following data words into account, thus have to access past the buffer's boundary. If you don't know what I'm talking about, just forget this variable. :)          unsigned long NullExtensionSize; ///< The buffer might be bigger than the actual data, if that's the case that unused space at the end of the buffer is filled with NULLs and NullExtensionSize reflects that unused buffer space in bytes. Those NULL extensions are mandatory for differential algorithms that have to take the following data words into account, thus have to access past the buffer's boundary. If you don't know what I'm talking about, just forget this variable. :)
75            buffer_t() {
76                pStart            = NULL;
77                Size              = 0;
78                NullExtensionSize = 0;
79            }
80      };      };
81    
82      /** Standard types of sample loops. */      /** Standard types of sample loops. */
# Line 143  namespace gig { Line 140  namespace gig {
140      /** Defines how the filter cutoff frequency is controlled by. */      /** Defines how the filter cutoff frequency is controlled by. */
141      typedef enum {      typedef enum {
142          vcf_cutoff_ctrl_none         = 0x00,          vcf_cutoff_ctrl_none         = 0x00,
143            vcf_cutoff_ctrl_none2        = 0x01,  ///< The difference between none and none2 is unknown
144          vcf_cutoff_ctrl_modwheel     = 0x81,  ///< Modulation Wheel (MIDI Controller 1)          vcf_cutoff_ctrl_modwheel     = 0x81,  ///< Modulation Wheel (MIDI Controller 1)
145          vcf_cutoff_ctrl_effect1      = 0x8c,  ///< Effect Controller 1 (Coarse, MIDI Controller 12)          vcf_cutoff_ctrl_effect1      = 0x8c,  ///< Effect Controller 1 (Coarse, MIDI Controller 12)
146          vcf_cutoff_ctrl_effect2      = 0x8d,  ///< Effect Controller 2 (Coarse, MIDI Controller 13)          vcf_cutoff_ctrl_effect2      = 0x8d,  ///< Effect Controller 2 (Coarse, MIDI Controller 13)
# Line 216  namespace gig { Line 214  namespace gig {
214          dimension_none              = 0x00, ///< Dimension not in use.          dimension_none              = 0x00, ///< Dimension not in use.
215          dimension_samplechannel     = 0x80, ///< If used sample has more than one channel (thus is not mono).          dimension_samplechannel     = 0x80, ///< If used sample has more than one channel (thus is not mono).
216          dimension_layer             = 0x81, ///< For layering of up to 8 instruments (and eventually crossfading of 2 or 4 layers).          dimension_layer             = 0x81, ///< For layering of up to 8 instruments (and eventually crossfading of 2 or 4 layers).
217          dimension_velocity          = 0x82, ///< Key Velocity (this is the only dimension where the ranges can exactly be defined).          dimension_velocity          = 0x82, ///< Key Velocity (this is the only dimension in gig2 where the ranges can exactly be defined).
218          dimension_channelaftertouch = 0x83, ///< Channel Key Pressure          dimension_channelaftertouch = 0x83, ///< Channel Key Pressure
219          dimension_releasetrigger    = 0x84, ///< Special dimension for triggering samples on releasing a key.          dimension_releasetrigger    = 0x84, ///< Special dimension for triggering samples on releasing a key.
220          dimension_keyboard          = 0x85, ///< Key Position          dimension_keyboard          = 0x85, ///< Dimension for keyswitching
221            dimension_roundrobin        = 0x86, ///< Different samples triggered each time a note is played, dimension regions selected in sequence
222            dimension_random            = 0x87, ///< Different samples triggered each time a note is played, random order
223            dimension_smartmidi         = 0x88, ///< For MIDI tools like legato and repetition mode
224            dimension_roundrobinkeyboard = 0x89, ///< Different samples triggered each time a note is played, any key advances the counter
225          dimension_modwheel          = 0x01, ///< Modulation Wheel (MIDI Controller 1)          dimension_modwheel          = 0x01, ///< Modulation Wheel (MIDI Controller 1)
226          dimension_breath            = 0x02, ///< Breath Controller (Coarse, MIDI Controller 2)          dimension_breath            = 0x02, ///< Breath Controller (Coarse, MIDI Controller 2)
227          dimension_foot              = 0x04, ///< Foot Pedal (Coarse, MIDI Controller 4)          dimension_foot              = 0x04, ///< Foot Pedal (Coarse, MIDI Controller 4)
# Line 250  namespace gig { Line 252  namespace gig {
252       * into the corresponding dimension bit number.       * into the corresponding dimension bit number.
253       */       */
254      typedef enum {      typedef enum {
255          split_type_normal,         ///< dimension value between 0-127, no custom range of zones          split_type_normal,         ///< dimension value between 0-127
         split_type_customvelocity, ///< a velocity dimension split with custom range definition for each zone (if a velocity dimension split has no custom defined zone ranges then it's also just of type split_type_normal)  
256          split_type_bit             ///< dimension values are already the sought bit number          split_type_bit             ///< dimension values are already the sought bit number
257      } split_type_t;      } split_type_t;
258    
# Line 261  namespace gig { Line 262  namespace gig {
262          uint8_t      bits;       ///< Number of "bits" (1 bit = 2 splits/zones, 2 bit = 4 splits/zones, 3 bit = 8 splits/zones,...).          uint8_t      bits;       ///< Number of "bits" (1 bit = 2 splits/zones, 2 bit = 4 splits/zones, 3 bit = 8 splits/zones,...).
263          uint8_t      zones;      ///< Number of zones the dimension has.          uint8_t      zones;      ///< Number of zones the dimension has.
264          split_type_t split_type; ///< Intended for internal usage: will be used to convert a dimension value into the corresponding dimension bit number.          split_type_t split_type; ///< Intended for internal usage: will be used to convert a dimension value into the corresponding dimension bit number.
265          range_t*     ranges;     ///< Intended for internal usage: Points to the beginning of a range_t array which reflects the value ranges of each dimension zone (only if custom defined ranges are defined, is NULL otherwise).          float        zone_size;  ///< Intended for internal usage: reflects the size of each zone (128/zones) for normal split types only, 0 otherwise.
         unsigned int zone_size;  ///< Intended for internal usage: reflects the size of each zone (128/zones) for normal split types only, 0 otherwise.  
266      };      };
267    
268      /** Defines which frequencies are filtered by the VCF. */      /** Defines which frequencies are filtered by the VCF. */
# Line 274  namespace gig { Line 274  namespace gig {
274          vcf_type_bandreject   = 0x03          vcf_type_bandreject   = 0x03
275      } vcf_type_t;      } vcf_type_t;
276    
277      /** Defines the envelope of a crossfade. */      /**
278         * Defines the envelope of a crossfade.
279         *
280         * Note: The default value for crossfade points is 0,0,0,0. Layers with
281         * such a default value should be treated as if they would not have a
282         * crossfade.
283         */
284      struct crossfade_t {      struct crossfade_t {
285          #if WORDS_BIGENDIAN          #if WORDS_BIGENDIAN
         uint8_t in_start;   ///< Start position of fade in.  
         uint8_t in_end;     ///< End position of fade in.  
         uint8_t out_start;  ///< Start position of fade out.  
         uint8_t out_end;    ///< End postition of fade out.  
         #else // little endian  
286          uint8_t out_end;    ///< End postition of fade out.          uint8_t out_end;    ///< End postition of fade out.
287          uint8_t out_start;  ///< Start position of fade out.          uint8_t out_start;  ///< Start position of fade out.
288          uint8_t in_end;     ///< End position of fade in.          uint8_t in_end;     ///< End position of fade in.
289          uint8_t in_start;   ///< Start position of fade in.          uint8_t in_start;   ///< Start position of fade in.
290            #else // little endian
291            uint8_t in_start;   ///< Start position of fade in.
292            uint8_t in_end;     ///< End position of fade in.
293            uint8_t out_start;  ///< Start position of fade out.
294            uint8_t out_end;    ///< End postition of fade out.
295          #endif // WORDS_BIGENDIAN          #endif // WORDS_BIGENDIAN
296      };      };
297    
# Line 296  namespace gig { Line 302  namespace gig {
302          unsigned long loop_cycles_left;  ///< How many times the loop has still to be passed, this value will be decremented with each loop cycle.          unsigned long loop_cycles_left;  ///< How many times the loop has still to be passed, this value will be decremented with each loop cycle.
303      };      };
304    
305        /**
306         * @brief Used for indicating the progress of a certain task.
307         *
308         * The function pointer argument has to be supplied with a valid
309         * function of the given signature which will then be called on
310         * progress changes. An equivalent progress_t structure will be passed
311         * back as argument to the callback function on each progress change.
312         * The factor field of the supplied progress_t structure will then
313         * reflect the current progress as value between 0.0 and 1.0. You might
314         * want to use the custom field for data needed in your callback
315         * function.
316         */
317        struct progress_t {
318            void (*callback)(progress_t*); ///< Callback function pointer which has to be assigned to a function for progress notification.
319            float factor;                  ///< Reflects current progress as value between 0.0 and 1.0.
320            void* custom;                  ///< This pointer can be used for arbitrary data.
321            float __range_min;             ///< Only for internal usage, do not modify!
322            float __range_max;             ///< Only for internal usage, do not modify!
323            progress_t();
324        };
325    
326        /** @brief CRC-32 checksum implementation
327         *
328         * This class is used to calculate checksums of the sample data in
329         * a gig file. The checksums are stored in the 3crc chunk of the
330         * gig file and automatically updated when a sample is written
331         * with Sample::Write().
332         */
333        class CRC {
334        private:
335            uint32_t value;
336            static const uint32_t* table;
337            static uint32_t* initTable();
338        public:
339            CRC() {
340                reset();
341            }
342            void reset() {
343                value = 0xffffffff;
344            }
345            void update(unsigned char* buf, int len) {
346                for (int i = 0 ; i < len ; i++) {
347                    value = table[(value ^ buf[i]) & 0xff] ^ (value >> 8);
348                }
349            }
350            uint32_t getValue() {
351                return value ^ 0xffffffff;
352            }
353        };
354    
355      // just symbol prototyping      // just symbol prototyping
356      class File;      class File;
357      class Instrument;      class Instrument;
358      class Sample;      class Sample;
359        class Region;
360        class Group;
361    
362      /** Encapsulates articulation information of a dimension region.      /** @brief Encapsulates articulation information of a dimension region.
363       *       *
364       *  Every Gigasampler Instrument has at least one dimension region       *  Every Gigasampler Instrument has at least one dimension region
365       *  (exactly then when it has no dimension defined).       *  (exactly then when it has no dimension defined).
# Line 315  namespace gig { Line 373  namespace gig {
373       */       */
374      class DimensionRegion : protected DLS::Sampler {      class DimensionRegion : protected DLS::Sampler {
375          public:          public:
376              uint8_t            VelocityUpperLimit;            ///< Defines the upper velocity value limit of a velocity split (only if an user defined limit was set, thus a value not equal to 128/NumberOfSplits, else this value is 0).              uint8_t            VelocityUpperLimit;            ///< Defines the upper velocity value limit of a velocity split (only if an user defined limit was set, thus a value not equal to 128/NumberOfSplits, else this value is 0). Only for gig2, otherwise the DimensionUpperLimts are used instead.
377              Sample*            pSample;                       ///< Points to the Sample which is assigned to the dimension region.              Sample*            pSample;                       ///< Points to the Sample which is assigned to the dimension region.
378              // Sample Amplitude EG/LFO              // Sample Amplitude EG/LFO
379              uint16_t           EG1PreAttack;                  ///< Preattack value of the sample amplitude EG (0 - 1000 permille).              uint16_t           EG1PreAttack;                  ///< Preattack value of the sample amplitude EG (0 - 1000 permille).
# Line 368  namespace gig { Line 426  namespace gig {
426              bool               VCFEnabled;                    ///< If filter should be used.              bool               VCFEnabled;                    ///< If filter should be used.
427              vcf_type_t         VCFType;                       ///< Defines the general filter characteristic (lowpass, highpass, bandpass, etc.).              vcf_type_t         VCFType;                       ///< Defines the general filter characteristic (lowpass, highpass, bandpass, etc.).
428              vcf_cutoff_ctrl_t  VCFCutoffController;           ///< Specifies which external controller has influence on the filter cutoff frequency.              vcf_cutoff_ctrl_t  VCFCutoffController;           ///< Specifies which external controller has influence on the filter cutoff frequency.
429                bool               VCFCutoffControllerInvert;     ///< Inverts values coming from the defined cutoff controller
430              uint8_t            VCFCutoff;                     ///< Max. cutoff frequency.              uint8_t            VCFCutoff;                     ///< Max. cutoff frequency.
431              curve_type_t       VCFVelocityCurve;              ///< Defines a transformation curve for the incoming velocity values, affecting the VCF.              curve_type_t       VCFVelocityCurve;              ///< Defines a transformation curve for the incoming velocity values, affecting the VCF.
432              uint8_t            VCFVelocityScale;              ///< (0-127) Amount velocity controls VCF cutoff frequency (only if no other VCF cutoff controller is defined).              uint8_t            VCFVelocityScale;              ///< (0-127) Amount velocity controls VCF cutoff frequency (only if no other VCF cutoff controller is defined, otherwise this is the minimum cutoff).
433              uint8_t            VCFVelocityDynamicRange;       ///< 0x04 = lowest, 0x00 = highest              uint8_t            VCFVelocityDynamicRange;       ///< 0x04 = lowest, 0x00 = highest
434              uint8_t            VCFResonance;                  ///< Firm internal filter resonance weight.              uint8_t            VCFResonance;                  ///< Firm internal filter resonance weight.
435              bool               VCFResonanceDynamic;           ///< If <i>true</i>: Increases the resonance Q according to changes of controllers that actually control the VCF cutoff frequency (EG2, ext. VCF MIDI controller).              bool               VCFResonanceDynamic;           ///< If <i>true</i>: Increases the resonance Q according to changes of controllers that actually control the VCF cutoff frequency (EG2, ext. VCF MIDI controller).
# Line 397  namespace gig { Line 456  namespace gig {
456              bool               SustainDefeat;                 ///< If <i>true</i>: Sustain pedal will not hold a note.              bool               SustainDefeat;                 ///< If <i>true</i>: Sustain pedal will not hold a note.
457              bool               MSDecode;                      ///< Gigastudio flag: defines if Mid Side Recordings should be decoded.              bool               MSDecode;                      ///< Gigastudio flag: defines if Mid Side Recordings should be decoded.
458              uint16_t           SampleStartOffset;             ///< Number of samples the sample start should be moved (0 - 2000).              uint16_t           SampleStartOffset;             ///< Number of samples the sample start should be moved (0 - 2000).
459                double             SampleAttenuation;             ///< Sample volume (calculated from DLS::Sampler::Gain)
460                uint8_t            DimensionUpperLimits[8];       ///< gig3: defines the upper limit of the dimension values for this dimension region
461    
462              // derived attributes from DLS::Sampler              // derived attributes from DLS::Sampler
463              DLS::Sampler::UnityNote;              DLS::Sampler::UnityNote;
464              DLS::Sampler::FineTune;              DLS::Sampler::FineTune;
# Line 404  namespace gig { Line 466  namespace gig {
466              DLS::Sampler::SampleLoops;              DLS::Sampler::SampleLoops;
467              DLS::Sampler::pSampleLoops;              DLS::Sampler::pSampleLoops;
468    
469              // Methods              // own methods
470              double GetVelocityAttenuation(uint8_t MIDIKeyVelocity);              double GetVelocityAttenuation(uint8_t MIDIKeyVelocity);
471                double GetVelocityRelease(uint8_t MIDIKeyVelocity);
472                double GetVelocityCutoff(uint8_t MIDIKeyVelocity);
473                // derived methods
474                DLS::Sampler::AddSampleLoop;
475                DLS::Sampler::DeleteSampleLoop;
476                // overridden methods
477                virtual void UpdateChunks();
478          protected:          protected:
479                uint8_t* VelocityTable; ///< For velocity dimensions with custom defined zone ranges only: used for fast converting from velocity MIDI value to dimension bit number.
480              DimensionRegion(RIFF::List* _3ewl);              DimensionRegion(RIFF::List* _3ewl);
481             ~DimensionRegion();             ~DimensionRegion();
482              friend class Region;              friend class Region;
# Line 444  namespace gig { Line 514  namespace gig {
514              static uint              Instances;                  ///< Number of DimensionRegion instances.              static uint              Instances;                  ///< Number of DimensionRegion instances.
515              static VelocityTableMap* pVelocityTables;            ///< Contains the tables corresponding to the various velocity parameters (VelocityResponseCurve and VelocityResponseDepth).              static VelocityTableMap* pVelocityTables;            ///< Contains the tables corresponding to the various velocity parameters (VelocityResponseCurve and VelocityResponseDepth).
516              double*                  pVelocityAttenuationTable;  ///< Points to the velocity table corresponding to the velocity parameters of this DimensionRegion.              double*                  pVelocityAttenuationTable;  ///< Points to the velocity table corresponding to the velocity parameters of this DimensionRegion.
517                double*                  pVelocityReleaseTable;      ///< Points to the velocity table corresponding to the release velocity parameters of this DimensionRegion
518                double*                  pVelocityCutoffTable;       ///< Points to the velocity table corresponding to the filter velocity parameters of this DimensionRegion
519    
520              leverage_ctrl_t DecodeLeverageController(_lev_ctrl_t EncodedController);              leverage_ctrl_t DecodeLeverageController(_lev_ctrl_t EncodedController);
521                _lev_ctrl_t     EncodeLeverageController(leverage_ctrl_t DecodedController);
522                double* GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);
523              double* CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);              double* CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);
524      };      };
525    
526      /** Encapsulates sample waves used for playback. */      /** @brief Encapsulates sample waves used for playback.
527         *
528         * In case you created a new sample with File::AddSample(), you should
529         * first update all attributes with the desired meta informations
530         * (amount of channels, bit depth, sample rate, etc.), then call
531         * Resize() with the desired sample size, followed by File::Save(), this
532         * will create the mandatory RIFF chunk which will hold the sample wave
533         * data and / or resize the file so you will be able to Write() the
534         * sample data directly to disk.
535         *
536         * @e Caution: for gig synthesis, most looping relevant information are
537         * retrieved from the respective DimensionRegon instead from the Sample
538         * itself. This was made for allowing different loop definitions for the
539         * same sample under different conditions.
540         */
541      class Sample : public DLS::Sample {      class Sample : public DLS::Sample {
542          public:          public:
             uint16_t       SampleGroup;  
543              uint32_t       Manufacturer;      ///< Specifies the MIDI Manufacturer's Association (MMA) Manufacturer code for the sampler intended to receive this file's waveform. If no particular manufacturer is to be specified, a value of 0 should be used.              uint32_t       Manufacturer;      ///< Specifies the MIDI Manufacturer's Association (MMA) Manufacturer code for the sampler intended to receive this file's waveform. If no particular manufacturer is to be specified, a value of 0 should be used.
544              uint32_t       Product;           ///< Specifies the MIDI model ID defined by the manufacturer corresponding to the Manufacturer field. If no particular manufacturer's product is to be specified, a value of 0 should be used.              uint32_t       Product;           ///< Specifies the MIDI model ID defined by the manufacturer corresponding to the Manufacturer field. If no particular manufacturer's product is to be specified, a value of 0 should be used.
545              uint32_t       SamplePeriod;      ///< Specifies the duration of time that passes during the playback of one sample in nanoseconds (normally equal to 1 / Samplers Per Second, where Samples Per Second is the value found in the format chunk).              uint32_t       SamplePeriod;      ///< Specifies the duration of time that passes during the playback of one sample in nanoseconds (normally equal to 1 / Samples Per Second, where Samples Per Second is the value found in the format chunk), don't bother to update this attribute, it won't be saved.
546              uint32_t       MIDIUnityNote;     ///< Specifies the musical note at which the sample will be played at it's original sample rate.              uint32_t       MIDIUnityNote;     ///< Specifies the musical note at which the sample will be played at it's original sample rate.
547              uint32_t       FineTune;          ///< Specifies the fraction of a semitone up from the specified MIDI unity note field. A value of 0x80000000 means 1/2 semitone (50 cents) and a value of 0x00000000 means no fine tuning between semitones.              uint32_t       FineTune;          ///< Specifies the fraction of a semitone up from the specified MIDI unity note field. A value of 0x80000000 means 1/2 semitone (50 cents) and a value of 0x00000000 means no fine tuning between semitones.
548              smpte_format_t SMPTEFormat;       ///< Specifies the Society of Motion Pictures and Television E time format used in the following <i>SMPTEOffset</i> field. If a value of 0 is set, <i>SMPTEOffset</i> should also be set to 0.              smpte_format_t SMPTEFormat;       ///< Specifies the Society of Motion Pictures and Television E time format used in the following <i>SMPTEOffset</i> field. If a value of 0 is set, <i>SMPTEOffset</i> should also be set to 0.
549              uint32_t       SMPTEOffset;       ///< The SMPTE Offset value specifies the time offset to be used for the synchronization / calibration to the first sample in the waveform. This value uses a format of 0xhhmmssff where hh is a signed value that specifies the number of hours (-23 to 23), mm is an unsigned value that specifies the number of minutes (0 to 59), ss is an unsigned value that specifies the number of seconds (0 to 59) and ff is an unsigned value that specifies the number of frames (0 to -1).              uint32_t       SMPTEOffset;       ///< The SMPTE Offset value specifies the time offset to be used for the synchronization / calibration to the first sample in the waveform. This value uses a format of 0xhhmmssff where hh is a signed value that specifies the number of hours (-23 to 23), mm is an unsigned value that specifies the number of minutes (0 to 59), ss is an unsigned value that specifies the number of seconds (0 to 59) and ff is an unsigned value that specifies the number of frames (0 to -1).
550              uint32_t       Loops;             ///< Number of defined sample loops (so far only seen single loops in gig files - please report me if you encounter more!).              uint32_t       Loops;             ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: Number of defined sample loops. So far only seen single loops in gig files - please report if you encounter more!)
551              uint32_t       LoopID;            ///< Specifies the unique ID that corresponds to one of the defined cue points in the cue point list (only if Loops > 0), as the Gigasampler format only allows one loop definition at the moment, this attribute isn't really useful for anything.              uint32_t       LoopID;            ///< Specifies the unique ID that corresponds to one of the defined cue points in the cue point list (only if Loops > 0), as the Gigasampler format only allows one loop definition at the moment, this attribute isn't really useful for anything.
552              loop_type_t    LoopType;          ///< The type field defines how the waveform samples will be looped (only if Loops > 0).              loop_type_t    LoopType;          ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The type field defines how the waveform samples will be looped.)
553              uint32_t       LoopStart;         ///< The start value specifies the offset (in sample points) in the waveform data of the first sample to be played in the loop (only if Loops > 0).              uint32_t       LoopStart;         ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The start value specifies the offset [in sample points] in the waveform data of the first sample to be played in the loop [only if Loops > 0].)
554              uint32_t       LoopEnd;           ///< The end value specifies the offset (in sample points) in the waveform data which represents the end of the loop (only if Loops > 0).              uint32_t       LoopEnd;           ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The end value specifies the offset [in sample points] in the waveform data which represents the end of the loop [only if Loops > 0].)
555              uint32_t       LoopSize;          ///< Length of the looping area (in sample points) which is equivalent to <i>LoopEnd - LoopStart</i>.              uint32_t       LoopSize;          ///< @e Caution: Use the respective fields in the DimensionRegion instead of this one! (Intended purpose: Length of the looping area [in sample points] which is equivalent to @code LoopEnd - LoopStart @endcode.)
556              uint32_t       LoopFraction;      ///< The fractional value specifies a fraction of a sample at which to loop (only if Loops > 0). This allows a loop to be fine tuned at a resolution greater than one sample. A value of 0 means no fraction, a value of 0x80000000 means 1/2 of a sample length. 0xFFFFFFFF is the smallest fraction of a sample that can be represented.              uint32_t       LoopFraction;      ///< The fractional value specifies a fraction of a sample at which to loop. This allows a loop to be fine tuned at a resolution greater than one sample. A value of 0 means no fraction, a value of 0x80000000 means 1/2 of a sample length. 0xFFFFFFFF is the smallest fraction of a sample that can be represented.
557              uint32_t       LoopPlayCount;     ///< Number of times the loop should be played (only if Loops > 0, a value of 0 = infinite).              uint32_t       LoopPlayCount;     ///< Number of times the loop should be played (a value of 0 = infinite).
558              bool           Compressed;        ///< If the sample wave is compressed (probably just interesting for instrument and sample editors, as this library already handles the decompression in it's sample access methods anyway).              bool           Compressed;        ///< If the sample wave is compressed (probably just interesting for instrument and sample editors, as this library already handles the decompression in it's sample access methods anyway).
559                uint32_t       TruncatedBits;     ///< For 24-bit compressed samples only: number of bits truncated during compression (0, 4 or 6)
560                bool           Dithered;          ///< For 24-bit compressed samples only: if dithering was used during compression with bit reduction
561    
562              // own methods              // own methods
563              buffer_t      LoadSampleData();              buffer_t      LoadSampleData();
# Line 476  namespace gig { Line 565  namespace gig {
565              buffer_t      LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount);              buffer_t      LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount);
566              buffer_t      LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount);              buffer_t      LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount);
567              buffer_t      GetCache();              buffer_t      GetCache();
568                // own static methods
569                static buffer_t CreateDecompressionBuffer(unsigned long MaxReadSize);
570                static void     DestroyDecompressionBuffer(buffer_t& DecompressionBuffer);
571              // overridden methods              // overridden methods
572              void          ReleaseSampleData();              void          ReleaseSampleData();
573                void          Resize(int iNewSize);
574              unsigned long SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence = RIFF::stream_start);              unsigned long SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence = RIFF::stream_start);
575              unsigned long GetPos();              unsigned long GetPos();
576              unsigned long Read(void* pBuffer, unsigned long SampleCount);              unsigned long Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer = NULL);
577              unsigned long ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState);              unsigned long ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState, DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer = NULL);
578                unsigned long Write(void* pBuffer, unsigned long SampleCount);
579                Group*        GetGroup() const;
580                virtual void  UpdateChunks();
581          protected:          protected:
582              static unsigned int  Instances;               ///< Number of instances of class Sample.              static unsigned int  Instances;               ///< Number of instances of class Sample.
583              static unsigned long DecompressionBufferSize; ///< Current size of the decompression buffer.              static buffer_t      InternalDecompressionBuffer; ///< Buffer used for decompression as well as for truncation of 24 Bit -> 16 Bit samples.
584              static void*         pDecompressionBuffer;    ///< Small buffer used for decompression only.              Group*               pGroup;                  ///< pointer to the Group this sample belongs to (always not-NULL)
585              unsigned long        FrameOffset;             ///< Current offset (sample points) in current sample frame (for decompression only).              unsigned long        FrameOffset;             ///< Current offset (sample points) in current sample frame (for decompression only).
586              unsigned long*       FrameTable;              ///< For positioning within compressed samples only: stores the offset values for each frame.              unsigned long*       FrameTable;              ///< For positioning within compressed samples only: stores the offset values for each frame.
587              unsigned long        SamplePos;               ///< For compressed samples only: stores the current position (in sample points).              unsigned long        SamplePos;               ///< For compressed samples only: stores the current position (in sample points).
588                unsigned long        SamplesInLastFrame;      ///< For compressed samples only: length of the last sample frame.
589                unsigned long        WorstCaseFrameSize;      ///< For compressed samples only: size (in bytes) of the largest possible sample frame.
590                unsigned long        SamplesPerFrame;         ///< For compressed samples only: number of samples in a full sample frame.
591              buffer_t             RAMCache;                ///< Buffers samples (already uncompressed) in RAM.              buffer_t             RAMCache;                ///< Buffers samples (already uncompressed) in RAM.
592                unsigned long        FileNo;                  ///< File number (> 0 when sample is stored in an extension file, 0 when it's in the gig)
593                RIFF::Chunk*         pCk3gix;
594                RIFF::Chunk*         pCkSmpl;
595                CRC                  crc;                     ///< CRC-32 checksum of the raw sample data
596    
597              Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset);              Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo = 0);
598             ~Sample();             ~Sample();
599              /**  
600               * Swaps the order of the data words in the given memory area              // Guess size (in bytes) of a compressed sample
601               * with a granularity given by \a WordSize.              inline unsigned long GuessSize(unsigned long samples) {
602               *                  // 16 bit: assume all frames are compressed - 1 byte
603               * @param pData    - pointer to the memory area to be swapped                  // per sample and 5 bytes header per 2048 samples
604               * @param AreaSize - size of the memory area to be swapped (in bytes)  
605               * @param WordSize - size of the data words (in bytes)                  // 24 bit: assume next best compression rate - 1.5
606               */                  // bytes per sample and 13 bytes header per 256
607              inline void SwapMemoryArea(void* pData, unsigned long AreaSize, uint WordSize) {                  // samples
608                  switch (WordSize) { // TODO: unefficient                  const unsigned long size =
609                      case 1: {                      BitDepth == 24 ? samples + (samples >> 1) + (samples >> 8) * 13
610                          uint8_t* pDst = (uint8_t*) pData;                                     : samples + (samples >> 10) * 5;
611                          uint8_t  cache;                  // Double for stereo and add one worst case sample
612                          unsigned long lo = 0, hi = AreaSize - 1;                  // frame
613                          for (; lo < hi; hi--, lo++) {                  return (Channels == 2 ? size << 1 : size) + WorstCaseFrameSize;
                             cache    = pDst[lo];  
                             pDst[lo] = pDst[hi];  
                             pDst[hi] = cache;  
                         }  
                         break;  
                     }  
                     case 2: {  
                         uint16_t* pDst = (uint16_t*) pData;  
                         uint16_t  cache;  
                         unsigned long lo = 0, hi = (AreaSize >> 1) - 1;  
                         for (; lo < hi; hi--, lo++) {  
                             cache    = pDst[lo];  
                             pDst[lo] = pDst[hi];  
                             pDst[hi] = cache;  
                         }  
                         break;  
                     }  
                     case 4: {  
                         uint32_t* pDst = (uint32_t*) pData;  
                         uint32_t  cache;  
                         unsigned long lo = 0, hi = (AreaSize >> 2) - 1;  
                         for (; lo < hi; hi--, lo++) {  
                             cache    = pDst[lo];  
                             pDst[lo] = pDst[hi];  
                             pDst[hi] = cache;  
                         }  
                         break;  
                     }  
                     default: {  
                         uint8_t* pCache = new uint8_t[WordSize]; // TODO: unefficient  
                         unsigned long lo = 0, hi = AreaSize - WordSize;  
                         for (; lo < hi; hi -= WordSize, lo += WordSize) {  
                             memcpy(pCache, (uint8_t*) pData + lo, WordSize);  
                             memcpy((uint8_t*) pData + lo, (uint8_t*) pData + hi, WordSize);  
                             memcpy((uint8_t*) pData + hi, pCache, WordSize);  
                         }  
                         delete[] pCache;  
                         break;  
                     }  
                 }  
614              }              }
615              inline long Min(long A, long B) {  
616                  return (A > B) ? B : A;              // Worst case amount of sample points that can be read with the
617                // given decompression buffer.
618                inline unsigned long WorstCaseMaxSamples(buffer_t* pDecompressionBuffer) {
619                    return (unsigned long) ((float)pDecompressionBuffer->Size / (float)WorstCaseFrameSize * (float)SamplesPerFrame);
620              }              }
             inline long Abs(long val) { return (val > 0) ? val : -val; }  
621          private:          private:
622              void ScanCompressedSample();              void ScanCompressedSample();
623              friend class File;              friend class File;
624              friend class Region;              friend class Region;
625                friend class Group; // allow to modify protected member pGroup
626      };      };
627    
628      // TODO: <3dnl> list not used yet - not important though (just contains optional descriptions for the dimensions)      // TODO: <3dnl> list not used yet - not important though (just contains optional descriptions for the dimensions)
629      /** Defines <i>Region</i> information of an <i>Instrument</i>. */      /** Defines <i>Region</i> information of an <i>Instrument</i>. */
630      class Region : public DLS::Region {      class Region : public DLS::Region {
631          public:          public:
632              unsigned int            Dimensions;               ///< Number of defined dimensions.              unsigned int            Dimensions;               ///< Number of defined dimensions, do not alter!
633              dimension_def_t         pDimensionDefinitions[5]; ///< Defines the five possible dimensions (the dimension's controller and number of bits/splits).              dimension_def_t         pDimensionDefinitions[8]; ///< Defines the five (gig2) or eight (gig3) possible dimensions (the dimension's controller and number of bits/splits). Use AddDimension() and DeleteDimension() to create a new dimension or delete an existing one.
634              uint32_t                DimensionRegions;         ///< Total number of DimensionRegions this Region contains.              uint32_t                DimensionRegions;         ///< Total number of DimensionRegions this Region contains, do not alter!
635              DimensionRegion*        pDimensionRegions[32];    ///< Pointer array to the 32 possible dimension regions (reflects NULL for dimension regions not in use). Avoid to access the array directly and better use GetDimensionRegionByValue() instead, but of course in some cases it makes sense to use the array (e.g. iterating through all DimensionRegions).              DimensionRegion*        pDimensionRegions[256];   ///< Pointer array to the 32 (gig2) or 256 (gig3) possible dimension regions (reflects NULL for dimension regions not in use). Avoid to access the array directly and better use GetDimensionRegionByValue() instead, but of course in some cases it makes sense to use the array (e.g. iterating through all DimensionRegions). Use AddDimension() and DeleteDimension() to create a new dimension or delete an existing one (which will create or delete the respective dimension region(s) automatically).
636              unsigned int            Layers;                   ///< Amount of defined layers (1 - 32). A value of 1 actually means no layering, a value > 1 means there is Layer dimension. The same information can of course also be obtained by accessing pDimensionDefinitions.              unsigned int            Layers;                   ///< Amount of defined layers (1 - 32). A value of 1 actually means no layering, a value > 1 means there is Layer dimension. The same information can of course also be obtained by accessing pDimensionDefinitions. Do not alter this value!
637    
638              DimensionRegion* GetDimensionRegionByValue(uint Dim4Val, uint Dim3Val, uint Dim2Val, uint Dim1Val, uint Dim0Val);              DimensionRegion* GetDimensionRegionByValue(const uint DimValues[8]);
639              DimensionRegion* GetDimensionRegionByBit(uint8_t Dim4Bit, uint8_t Dim3Bit, uint8_t Dim2Bit, uint8_t Dim1Bit, uint8_t Dim0Bit);              DimensionRegion* GetDimensionRegionByBit(const uint8_t DimBits[8]);
640              Sample*          GetSample();              Sample*          GetSample();
641                void             AddDimension(dimension_def_t* pDimDef);
642                void             DeleteDimension(dimension_def_t* pDimDef);
643                virtual void     UpdateChunks();
644          protected:          protected:
             uint8_t VelocityTable[128]; ///< For velocity dimensions with custom defined zone ranges only: used for fast converting from velocity MIDI value to dimension bit number.  
   
645              Region(Instrument* pInstrument, RIFF::List* rgnList);              Region(Instrument* pInstrument, RIFF::List* rgnList);
646              void LoadDimensionRegions(RIFF::List* rgn);              void LoadDimensionRegions(RIFF::List* rgn);
647              Sample* GetSampleFromWavePool(unsigned int WavePoolTableIndex);              void UpdateVelocityTable();
648                Sample* GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress = NULL);
649             ~Region();             ~Region();
650              friend class Instrument;              friend class Instrument;
651      };      };
# Line 606  namespace gig { Line 674  namespace gig {
674    
675              // derived methods from DLS::Resource              // derived methods from DLS::Resource
676              DLS::Resource::GetParent;              DLS::Resource::GetParent;
677                // derived methods from DLS::Instrument
678                DLS::Instrument::MoveRegion;
679              // overridden methods              // overridden methods
680              Region*   GetFirstRegion();              Region*   GetFirstRegion();
681              Region*   GetNextRegion();              Region*   GetNextRegion();
682                Region*   AddRegion();
683                void      DeleteRegion(Region* pRegion);
684                virtual void UpdateChunks();
685              // own methods              // own methods
686              Region*   GetRegion(unsigned int Key);              Region*   GetRegion(unsigned int Key);
687          protected:          protected:
             Region**  pRegions;            ///< Pointer array to the regions  
688              Region*   RegionKeyTable[128]; ///< fast lookup for the corresponding Region of a MIDI key              Region*   RegionKeyTable[128]; ///< fast lookup for the corresponding Region of a MIDI key
             int       RegionIndex;  
689    
690              Instrument(File* pFile, RIFF::List* insList);              Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress = NULL);
691             ~Instrument();             ~Instrument();
692                void UpdateRegionKeyTable();
693                friend class File;
694        };
695    
696        /** @brief Group of Gigasampler objects
697         *
698         * Groups help to organize a huge collection of Gigasampler objects.
699         * Groups are not concerned at all for the synthesis, but they help
700         * sound library developers when working on complex instruments with an
701         * instrument editor (as long as that instrument editor supports it ;-).
702         *
703         * At the moment, it seems as only samples can be grouped together in
704         * the Gigasampler format yet. If this is false in the meantime, please
705         * tell us !
706         *
707         * A sample is always assigned to exactly one Group. This also means
708         * there is always at least one Group in a .gig file, no matter if you
709         * created one yet or not.
710         */
711        class Group {
712            public:
713                String Name; ///< Stores the name of this Group.
714    
715                Sample* GetFirstSample();
716                Sample* GetNextSample();
717                void AddSample(Sample* pSample);
718            protected:
719                Group(File* file, RIFF::Chunk* ck3gnm);
720                virtual ~Group();
721                virtual void UpdateChunks();
722                void MoveAll();
723              friend class File;              friend class File;
724            private:
725                File*        pFile;
726                RIFF::Chunk* pNameChunk;
727      };      };
728    
     // TODO: <3gnm> chunk not added yet (just contains the names of the sample groups)  
729      /** Parses Gigasampler files and provides abstract access to the data. */      /** Parses Gigasampler files and provides abstract access to the data. */
730      class File : protected DLS::File {      class File : protected DLS::File {
731          public:          public:
732                static const DLS::version_t VERSION_2;
733                static const DLS::version_t VERSION_3;
734    
735              // derived attributes from DLS::Resource              // derived attributes from DLS::Resource
736              DLS::Resource::pInfo;              DLS::Resource::pInfo;
737              DLS::Resource::pDLSID;              DLS::Resource::pDLSID;
# Line 634  namespace gig { Line 741  namespace gig {
741    
742              // derived methods from DLS::Resource              // derived methods from DLS::Resource
743              DLS::Resource::GetParent;              DLS::Resource::GetParent;
744                // derived methods from DLS::File
745                DLS::File::Save;
746              // overridden  methods              // overridden  methods
747                File();
748              File(RIFF::File* pRIFF);              File(RIFF::File* pRIFF);
749              Sample*     GetFirstSample();     ///< Returns a pointer to the first <i>Sample</i> object of the file, <i>NULL</i> otherwise.              Sample*     GetFirstSample(progress_t* pProgress = NULL); ///< Returns a pointer to the first <i>Sample</i> object of the file, <i>NULL</i> otherwise.
750              Sample*     GetNextSample();      ///< Returns a pointer to the next <i>Sample</i> object of the file, <i>NULL</i> otherwise.              Sample*     GetNextSample();      ///< Returns a pointer to the next <i>Sample</i> object of the file, <i>NULL</i> otherwise.
751                Sample*     AddSample();
752                void        DeleteSample(Sample* pSample);
753              Instrument* GetFirstInstrument(); ///< Returns a pointer to the first <i>Instrument</i> object of the file, <i>NULL</i> otherwise.              Instrument* GetFirstInstrument(); ///< Returns a pointer to the first <i>Instrument</i> object of the file, <i>NULL</i> otherwise.
754              Instrument* GetNextInstrument();  ///< Returns a pointer to the next <i>Instrument</i> object of the file, <i>NULL</i> otherwise.              Instrument* GetNextInstrument();  ///< Returns a pointer to the next <i>Instrument</i> object of the file, <i>NULL</i> otherwise.
755              Instrument* GetInstrument(uint index);              Instrument* GetInstrument(uint index, progress_t* pProgress = NULL);
756             ~File() {};              Instrument* AddInstrument();
757                void        DeleteInstrument(Instrument* pInstrument);
758                Group*      GetFirstGroup(); ///< Returns a pointer to the first <i>Group</i> object of the file, <i>NULL</i> otherwise.
759                Group*      GetNextGroup();  ///< Returns a pointer to the next <i>Group</i> object of the file, <i>NULL</i> otherwise.
760                Group*      GetGroup(uint index);
761                Group*      AddGroup();
762                void        DeleteGroup(Group* pGroup);
763                void        DeleteGroupOnly(Group* pGroup);
764                virtual    ~File();
765                virtual void UpdateChunks();
766          protected:          protected:
767              typedef std::list<Sample*>     SampleList;              // overridden protected methods from DLS::File
768              typedef std::list<Instrument*> InstrumentList;              virtual void LoadSamples();
769                virtual void LoadInstruments();
770              SampleList*              pSamples;              virtual void LoadGroups();
771              SampleList::iterator     SamplesIterator;              // own protected methods
772              InstrumentList*          pInstruments;              virtual void LoadSamples(progress_t* pProgress);
773              InstrumentList::iterator InstrumentsIterator;              virtual void LoadInstruments(progress_t* pProgress);
774                void SetSampleChecksum(Sample* pSample, uint32_t crc);
             void LoadSamples();  
             void LoadInstruments();  
775              friend class Region;              friend class Region;
776                friend class Sample;
777                friend class Group; // so Group can access protected member pRIFF
778            private:
779                static const DLS::Info::FixedStringLength FixedStringLengths[];
780                std::list<Group*>*          pGroups;
781                std::list<Group*>::iterator GroupsIterator;
782      };      };
783    
784      /** Will be thrown whenever a gig specific error occurs while trying to access a Gigasampler File. */      /**
785         * Will be thrown whenever a gig specific error occurs while trying to
786         * access a Gigasampler File. Note: In your application you should
787         * better catch for RIFF::Exception rather than this one, except you
788         * explicitly want to catch and handle gig::Exception, DLS::Exception
789         * and RIFF::Exception independently, which usually shouldn't be
790         * necessary though.
791         */
792      class Exception : public DLS::Exception {      class Exception : public DLS::Exception {
793          public:          public:
794              Exception(String Message);              Exception(String Message);
795              void PrintMessage();              void PrintMessage();
796      };      };
797    
798        String libraryName();
799        String libraryVersion();
800    
801  } // namespace gig  } // namespace gig
802    
803  #endif // __GIG_H__  #endif // __GIG_H__

Legend:
Removed from v.308  
changed lines
  Added in v.1207

  ViewVC Help
Powered by ViewVC