/[svn]/libgig/trunk/src/gig.h
ViewVC logotype

Diff of /libgig/trunk/src/gig.h

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 347 by schoenebeck, Sun Jan 23 20:47:18 2005 UTC revision 1301 by persson, Sat Aug 25 09:59:53 2007 UTC
# Line 1  Line 1 
1  /***************************************************************************  /***************************************************************************
2   *                                                                         *   *                                                                         *
3   *   libgig - C++ cross-platform Gigasampler format file loader library    *   *   libgig - C++ cross-platform Gigasampler format file access library    *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Christian Schoenebeck                     *   *   Copyright (C) 2003-2007 by Christian Schoenebeck                      *
6   *                               <cuse@users.sourceforge.net>              *   *                              <cuse@users.sourceforge.net>               *
7   *                                                                         *   *                                                                         *
8   *   This library is free software; you can redistribute it and/or modify  *   *   This library is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 26  Line 26 
26    
27  #include "DLS.h"  #include "DLS.h"
28    
 #include <math.h>  
 #include <string.h>  
   
 /// Initial size of the sample buffer which is used for decompression of  
 /// compressed sample wave streams - this value should always be bigger than  
 /// the biggest sample piece expected to be read by the sampler engine,  
 /// otherwise the buffer size will be raised at runtime and thus the buffer  
 /// reallocated which is time consuming and unefficient.  
 #define INITIAL_SAMPLE_BUFFER_SIZE              512000 // 512 kB  
   
29  #if WORDS_BIGENDIAN  #if WORDS_BIGENDIAN
30  # define LIST_TYPE_3PRG 0x33707267  # define LIST_TYPE_3PRG 0x33707267
31  # define LIST_TYPE_3EWL 0x3365776C  # define LIST_TYPE_3EWL 0x3365776C
32    # define LIST_TYPE_3GRI 0x33677269
33    # define LIST_TYPE_3GNL 0x33676E6C
34  # define CHUNK_ID_SMPL  0x736D706C  # define CHUNK_ID_SMPL  0x736D706C
35  # define CHUNK_ID_3GIX  0x33676978  # define CHUNK_ID_3GIX  0x33676978
36  # define CHUNK_ID_3EWA  0x33657761  # define CHUNK_ID_3EWA  0x33657761
37  # define CHUNK_ID_3LNK  0x336C6E6B  # define CHUNK_ID_3LNK  0x336C6E6B
38  # define CHUNK_ID_3EWG  0x33657767  # define CHUNK_ID_3EWG  0x33657767
39  # define CHUNK_ID_EWAV  0x65776176  # define CHUNK_ID_EWAV  0x65776176
40    # define CHUNK_ID_3GNM  0x33676E6D
41    # define CHUNK_ID_EINF  0x65696E66
42    # define CHUNK_ID_3CRC  0x33637263
43  #else  // little endian  #else  // little endian
44  # define LIST_TYPE_3PRG 0x67727033  # define LIST_TYPE_3PRG 0x67727033
45  # define LIST_TYPE_3EWL 0x6C776533  # define LIST_TYPE_3EWL 0x6C776533
46    # define LIST_TYPE_3GRI 0x69726733
47    # define LIST_TYPE_3GNL 0x6C6E6733
48  # define CHUNK_ID_SMPL  0x6C706D73  # define CHUNK_ID_SMPL  0x6C706D73
49  # define CHUNK_ID_3GIX  0x78696733  # define CHUNK_ID_3GIX  0x78696733
50  # define CHUNK_ID_3EWA  0x61776533  # define CHUNK_ID_3EWA  0x61776533
51  # define CHUNK_ID_3LNK  0x6B6E6C33  # define CHUNK_ID_3LNK  0x6B6E6C33
52  # define CHUNK_ID_3EWG  0x67776533  # define CHUNK_ID_3EWG  0x67776533
53  # define CHUNK_ID_EWAV  0x76617765  # define CHUNK_ID_EWAV  0x76617765
54    # define CHUNK_ID_3GNM  0x6D6E6733
55    # define CHUNK_ID_EINF  0x666E6965
56    # define CHUNK_ID_3CRC  0x63726333
57  #endif // WORDS_BIGENDIAN  #endif // WORDS_BIGENDIAN
58    
 /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */  
 #define GIG_EXP_DECODE(x)                                       (pow(1.000000008813822, x))  
 #define GIG_PITCH_TRACK_EXTRACT(x)                              (!(x & 0x01))  
 #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x)                       ((x >> 4) & 0x03)  
 #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x)                  ((x >> 1) & 0x03)  
 #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x)                   ((x >> 3) & 0x03)  
 #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x)                 ((x >> 5) & 0x03)  
   
59  /** Gigasampler specific classes and definitions */  /** Gigasampler specific classes and definitions */
60  namespace gig {  namespace gig {
61    
# Line 80  namespace gig { Line 72  namespace gig {
72          void*         pStart;            ///< Points to the beginning of the buffer.          void*         pStart;            ///< Points to the beginning of the buffer.
73          unsigned long Size;              ///< Size of the actual data in the buffer in bytes.          unsigned long Size;              ///< Size of the actual data in the buffer in bytes.
74          unsigned long NullExtensionSize; ///< The buffer might be bigger than the actual data, if that's the case that unused space at the end of the buffer is filled with NULLs and NullExtensionSize reflects that unused buffer space in bytes. Those NULL extensions are mandatory for differential algorithms that have to take the following data words into account, thus have to access past the buffer's boundary. If you don't know what I'm talking about, just forget this variable. :)          unsigned long NullExtensionSize; ///< The buffer might be bigger than the actual data, if that's the case that unused space at the end of the buffer is filled with NULLs and NullExtensionSize reflects that unused buffer space in bytes. Those NULL extensions are mandatory for differential algorithms that have to take the following data words into account, thus have to access past the buffer's boundary. If you don't know what I'm talking about, just forget this variable. :)
75            buffer_t() {
76                pStart            = NULL;
77                Size              = 0;
78                NullExtensionSize = 0;
79            }
80      };      };
81    
82      /** Standard types of sample loops. */      /** Standard types of sample loops. */
# Line 143  namespace gig { Line 140  namespace gig {
140      /** Defines how the filter cutoff frequency is controlled by. */      /** Defines how the filter cutoff frequency is controlled by. */
141      typedef enum {      typedef enum {
142          vcf_cutoff_ctrl_none         = 0x00,          vcf_cutoff_ctrl_none         = 0x00,
143            vcf_cutoff_ctrl_none2        = 0x01,  ///< The difference between none and none2 is unknown
144          vcf_cutoff_ctrl_modwheel     = 0x81,  ///< Modulation Wheel (MIDI Controller 1)          vcf_cutoff_ctrl_modwheel     = 0x81,  ///< Modulation Wheel (MIDI Controller 1)
145          vcf_cutoff_ctrl_effect1      = 0x8c,  ///< Effect Controller 1 (Coarse, MIDI Controller 12)          vcf_cutoff_ctrl_effect1      = 0x8c,  ///< Effect Controller 1 (Coarse, MIDI Controller 12)
146          vcf_cutoff_ctrl_effect2      = 0x8d,  ///< Effect Controller 2 (Coarse, MIDI Controller 13)          vcf_cutoff_ctrl_effect2      = 0x8d,  ///< Effect Controller 2 (Coarse, MIDI Controller 13)
# Line 216  namespace gig { Line 214  namespace gig {
214          dimension_none              = 0x00, ///< Dimension not in use.          dimension_none              = 0x00, ///< Dimension not in use.
215          dimension_samplechannel     = 0x80, ///< If used sample has more than one channel (thus is not mono).          dimension_samplechannel     = 0x80, ///< If used sample has more than one channel (thus is not mono).
216          dimension_layer             = 0x81, ///< For layering of up to 8 instruments (and eventually crossfading of 2 or 4 layers).          dimension_layer             = 0x81, ///< For layering of up to 8 instruments (and eventually crossfading of 2 or 4 layers).
217          dimension_velocity          = 0x82, ///< Key Velocity (this is the only dimension where the ranges can exactly be defined).          dimension_velocity          = 0x82, ///< Key Velocity (this is the only dimension in gig2 where the ranges can exactly be defined).
218          dimension_channelaftertouch = 0x83, ///< Channel Key Pressure          dimension_channelaftertouch = 0x83, ///< Channel Key Pressure
219          dimension_releasetrigger    = 0x84, ///< Special dimension for triggering samples on releasing a key.          dimension_releasetrigger    = 0x84, ///< Special dimension for triggering samples on releasing a key.
220          dimension_keyboard          = 0x85, ///< Key Position          dimension_keyboard          = 0x85, ///< Dimension for keyswitching
221            dimension_roundrobin        = 0x86, ///< Different samples triggered each time a note is played, dimension regions selected in sequence
222            dimension_random            = 0x87, ///< Different samples triggered each time a note is played, random order
223            dimension_smartmidi         = 0x88, ///< For MIDI tools like legato and repetition mode
224            dimension_roundrobinkeyboard = 0x89, ///< Different samples triggered each time a note is played, any key advances the counter
225          dimension_modwheel          = 0x01, ///< Modulation Wheel (MIDI Controller 1)          dimension_modwheel          = 0x01, ///< Modulation Wheel (MIDI Controller 1)
226          dimension_breath            = 0x02, ///< Breath Controller (Coarse, MIDI Controller 2)          dimension_breath            = 0x02, ///< Breath Controller (Coarse, MIDI Controller 2)
227          dimension_foot              = 0x04, ///< Foot Pedal (Coarse, MIDI Controller 4)          dimension_foot              = 0x04, ///< Foot Pedal (Coarse, MIDI Controller 4)
# Line 250  namespace gig { Line 252  namespace gig {
252       * into the corresponding dimension bit number.       * into the corresponding dimension bit number.
253       */       */
254      typedef enum {      typedef enum {
255          split_type_normal,         ///< dimension value between 0-127, no custom range of zones          split_type_normal,         ///< dimension value between 0-127
         split_type_customvelocity, ///< a velocity dimension split with custom range definition for each zone (if a velocity dimension split has no custom defined zone ranges then it's also just of type split_type_normal)  
256          split_type_bit             ///< dimension values are already the sought bit number          split_type_bit             ///< dimension values are already the sought bit number
257      } split_type_t;      } split_type_t;
258    
# Line 261  namespace gig { Line 262  namespace gig {
262          uint8_t      bits;       ///< Number of "bits" (1 bit = 2 splits/zones, 2 bit = 4 splits/zones, 3 bit = 8 splits/zones,...).          uint8_t      bits;       ///< Number of "bits" (1 bit = 2 splits/zones, 2 bit = 4 splits/zones, 3 bit = 8 splits/zones,...).
263          uint8_t      zones;      ///< Number of zones the dimension has.          uint8_t      zones;      ///< Number of zones the dimension has.
264          split_type_t split_type; ///< Intended for internal usage: will be used to convert a dimension value into the corresponding dimension bit number.          split_type_t split_type; ///< Intended for internal usage: will be used to convert a dimension value into the corresponding dimension bit number.
265          range_t*     ranges;     ///< Intended for internal usage: Points to the beginning of a range_t array which reflects the value ranges of each dimension zone (only if custom defined ranges are defined, is NULL otherwise).          float        zone_size;  ///< Intended for internal usage: reflects the size of each zone (128/zones) for normal split types only, 0 otherwise.
         unsigned int zone_size;  ///< Intended for internal usage: reflects the size of each zone (128/zones) for normal split types only, 0 otherwise.  
266      };      };
267    
268      /** Defines which frequencies are filtered by the VCF. */      /** Defines which frequencies are filtered by the VCF. */
# Line 279  namespace gig { Line 279  namespace gig {
279       *       *
280       * Note: The default value for crossfade points is 0,0,0,0. Layers with       * Note: The default value for crossfade points is 0,0,0,0. Layers with
281       * such a default value should be treated as if they would not have a       * such a default value should be treated as if they would not have a
282       * crossfade, that is the crossfade volume factor should <b>always</b>       * crossfade.
      * be 1.0f for such layers.  
283       */       */
284      struct crossfade_t {      struct crossfade_t {
285          #if WORDS_BIGENDIAN          #if WORDS_BIGENDIAN
# Line 303  namespace gig { Line 302  namespace gig {
302          unsigned long loop_cycles_left;  ///< How many times the loop has still to be passed, this value will be decremented with each loop cycle.          unsigned long loop_cycles_left;  ///< How many times the loop has still to be passed, this value will be decremented with each loop cycle.
303      };      };
304    
305        /**
306         * @brief Used for indicating the progress of a certain task.
307         *
308         * The function pointer argument has to be supplied with a valid
309         * function of the given signature which will then be called on
310         * progress changes. An equivalent progress_t structure will be passed
311         * back as argument to the callback function on each progress change.
312         * The factor field of the supplied progress_t structure will then
313         * reflect the current progress as value between 0.0 and 1.0. You might
314         * want to use the custom field for data needed in your callback
315         * function.
316         */
317        struct progress_t {
318            void (*callback)(progress_t*); ///< Callback function pointer which has to be assigned to a function for progress notification.
319            float factor;                  ///< Reflects current progress as value between 0.0 and 1.0.
320            void* custom;                  ///< This pointer can be used for arbitrary data.
321            float __range_min;             ///< Only for internal usage, do not modify!
322            float __range_max;             ///< Only for internal usage, do not modify!
323            progress_t();
324        };
325    
326        /** @brief CRC-32 checksum implementation
327         *
328         * This class is used to calculate checksums of the sample data in
329         * a gig file. The checksums are stored in the 3crc chunk of the
330         * gig file and automatically updated when a sample is written
331         * with Sample::Write().
332         */
333        class CRC {
334        private:
335            uint32_t value;
336            static const uint32_t* table;
337            static uint32_t* initTable();
338        public:
339            CRC() {
340                reset();
341            }
342            void reset() {
343                value = 0xffffffff;
344            }
345            void update(unsigned char* buf, int len) {
346                for (int i = 0 ; i < len ; i++) {
347                    value = table[(value ^ buf[i]) & 0xff] ^ (value >> 8);
348                }
349            }
350            uint32_t getValue() {
351                return value ^ 0xffffffff;
352            }
353        };
354    
355      // just symbol prototyping      // just symbol prototyping
356      class File;      class File;
357      class Instrument;      class Instrument;
358      class Sample;      class Sample;
359      class Region;      class Region;
360        class Group;
361    
362      /** Encapsulates articulation information of a dimension region.      /** @brief Encapsulates articulation information of a dimension region.
363       *       *
364       *  Every Gigasampler Instrument has at least one dimension region       *  Every Gigasampler Instrument has at least one dimension region
365       *  (exactly then when it has no dimension defined).       *  (exactly then when it has no dimension defined).
# Line 323  namespace gig { Line 373  namespace gig {
373       */       */
374      class DimensionRegion : protected DLS::Sampler {      class DimensionRegion : protected DLS::Sampler {
375          public:          public:
376              uint8_t            VelocityUpperLimit;            ///< Defines the upper velocity value limit of a velocity split (only if an user defined limit was set, thus a value not equal to 128/NumberOfSplits, else this value is 0).              uint8_t            VelocityUpperLimit;            ///< Defines the upper velocity value limit of a velocity split (only if an user defined limit was set, thus a value not equal to 128/NumberOfSplits, else this value is 0). Only for gig2, otherwise the DimensionUpperLimts are used instead.
377              Sample*            pSample;                       ///< Points to the Sample which is assigned to the dimension region.              Sample*            pSample;                       ///< Points to the Sample which is assigned to the dimension region.
378              // Sample Amplitude EG/LFO              // Sample Amplitude EG/LFO
379              uint16_t           EG1PreAttack;                  ///< Preattack value of the sample amplitude EG (0 - 1000 permille).              uint16_t           EG1PreAttack;                  ///< Preattack value of the sample amplitude EG (0 - 1000 permille).
# Line 376  namespace gig { Line 426  namespace gig {
426              bool               VCFEnabled;                    ///< If filter should be used.              bool               VCFEnabled;                    ///< If filter should be used.
427              vcf_type_t         VCFType;                       ///< Defines the general filter characteristic (lowpass, highpass, bandpass, etc.).              vcf_type_t         VCFType;                       ///< Defines the general filter characteristic (lowpass, highpass, bandpass, etc.).
428              vcf_cutoff_ctrl_t  VCFCutoffController;           ///< Specifies which external controller has influence on the filter cutoff frequency.              vcf_cutoff_ctrl_t  VCFCutoffController;           ///< Specifies which external controller has influence on the filter cutoff frequency.
429                bool               VCFCutoffControllerInvert;     ///< Inverts values coming from the defined cutoff controller
430              uint8_t            VCFCutoff;                     ///< Max. cutoff frequency.              uint8_t            VCFCutoff;                     ///< Max. cutoff frequency.
431              curve_type_t       VCFVelocityCurve;              ///< Defines a transformation curve for the incoming velocity values, affecting the VCF.              curve_type_t       VCFVelocityCurve;              ///< Defines a transformation curve for the incoming velocity values, affecting the VCF.
432              uint8_t            VCFVelocityScale;              ///< (0-127) Amount velocity controls VCF cutoff frequency (only if no other VCF cutoff controller is defined).              uint8_t            VCFVelocityScale;              ///< (0-127) Amount velocity controls VCF cutoff frequency (only if no other VCF cutoff controller is defined, otherwise this is the minimum cutoff).
433              uint8_t            VCFVelocityDynamicRange;       ///< 0x04 = lowest, 0x00 = highest              uint8_t            VCFVelocityDynamicRange;       ///< 0x04 = lowest, 0x00 = highest
434              uint8_t            VCFResonance;                  ///< Firm internal filter resonance weight.              uint8_t            VCFResonance;                  ///< Firm internal filter resonance weight.
435              bool               VCFResonanceDynamic;           ///< If <i>true</i>: Increases the resonance Q according to changes of controllers that actually control the VCF cutoff frequency (EG2, ext. VCF MIDI controller).              bool               VCFResonanceDynamic;           ///< If <i>true</i>: Increases the resonance Q according to changes of controllers that actually control the VCF cutoff frequency (EG2, ext. VCF MIDI controller).
# Line 405  namespace gig { Line 456  namespace gig {
456              bool               SustainDefeat;                 ///< If <i>true</i>: Sustain pedal will not hold a note.              bool               SustainDefeat;                 ///< If <i>true</i>: Sustain pedal will not hold a note.
457              bool               MSDecode;                      ///< Gigastudio flag: defines if Mid Side Recordings should be decoded.              bool               MSDecode;                      ///< Gigastudio flag: defines if Mid Side Recordings should be decoded.
458              uint16_t           SampleStartOffset;             ///< Number of samples the sample start should be moved (0 - 2000).              uint16_t           SampleStartOffset;             ///< Number of samples the sample start should be moved (0 - 2000).
459                double             SampleAttenuation;             ///< Sample volume (calculated from DLS::Sampler::Gain)
460                uint8_t            DimensionUpperLimits[8];       ///< gig3: defines the upper limit of the dimension values for this dimension region
461    
462              // derived attributes from DLS::Sampler              // derived attributes from DLS::Sampler
463              DLS::Sampler::UnityNote;              DLS::Sampler::UnityNote;
464              DLS::Sampler::FineTune;              DLS::Sampler::FineTune;
# Line 412  namespace gig { Line 466  namespace gig {
466              DLS::Sampler::SampleLoops;              DLS::Sampler::SampleLoops;
467              DLS::Sampler::pSampleLoops;              DLS::Sampler::pSampleLoops;
468    
469              // Methods              // own methods
470              double GetVelocityAttenuation(uint8_t MIDIKeyVelocity);              double GetVelocityAttenuation(uint8_t MIDIKeyVelocity);
471                double GetVelocityRelease(uint8_t MIDIKeyVelocity);
472                double GetVelocityCutoff(uint8_t MIDIKeyVelocity);
473                // derived methods
474                DLS::Sampler::AddSampleLoop;
475                DLS::Sampler::DeleteSampleLoop;
476                // overridden methods
477                virtual void UpdateChunks();
478          protected:          protected:
479                uint8_t* VelocityTable; ///< For velocity dimensions with custom defined zone ranges only: used for fast converting from velocity MIDI value to dimension bit number.
480              DimensionRegion(RIFF::List* _3ewl);              DimensionRegion(RIFF::List* _3ewl);
481                DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src);
482             ~DimensionRegion();             ~DimensionRegion();
483              friend class Region;              friend class Region;
484          private:          private:
# Line 452  namespace gig { Line 515  namespace gig {
515              static uint              Instances;                  ///< Number of DimensionRegion instances.              static uint              Instances;                  ///< Number of DimensionRegion instances.
516              static VelocityTableMap* pVelocityTables;            ///< Contains the tables corresponding to the various velocity parameters (VelocityResponseCurve and VelocityResponseDepth).              static VelocityTableMap* pVelocityTables;            ///< Contains the tables corresponding to the various velocity parameters (VelocityResponseCurve and VelocityResponseDepth).
517              double*                  pVelocityAttenuationTable;  ///< Points to the velocity table corresponding to the velocity parameters of this DimensionRegion.              double*                  pVelocityAttenuationTable;  ///< Points to the velocity table corresponding to the velocity parameters of this DimensionRegion.
518                double*                  pVelocityReleaseTable;      ///< Points to the velocity table corresponding to the release velocity parameters of this DimensionRegion
519                double*                  pVelocityCutoffTable;       ///< Points to the velocity table corresponding to the filter velocity parameters of this DimensionRegion
520    
521              leverage_ctrl_t DecodeLeverageController(_lev_ctrl_t EncodedController);              leverage_ctrl_t DecodeLeverageController(_lev_ctrl_t EncodedController);
522                _lev_ctrl_t     EncodeLeverageController(leverage_ctrl_t DecodedController);
523                double* GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);
524              double* CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);              double* CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);
525      };      };
526    
527      /** Encapsulates sample waves used for playback. */      /** @brief Encapsulates sample waves used for playback.
528         *
529         * In case you created a new sample with File::AddSample(), you should
530         * first update all attributes with the desired meta informations
531         * (amount of channels, bit depth, sample rate, etc.), then call
532         * Resize() with the desired sample size, followed by File::Save(), this
533         * will create the mandatory RIFF chunk which will hold the sample wave
534         * data and / or resize the file so you will be able to Write() the
535         * sample data directly to disk.
536         *
537         * @e Caution: for gig synthesis, most looping relevant information are
538         * retrieved from the respective DimensionRegon instead from the Sample
539         * itself. This was made for allowing different loop definitions for the
540         * same sample under different conditions.
541         */
542      class Sample : public DLS::Sample {      class Sample : public DLS::Sample {
543          public:          public:
             uint16_t       SampleGroup;  
544              uint32_t       Manufacturer;      ///< Specifies the MIDI Manufacturer's Association (MMA) Manufacturer code for the sampler intended to receive this file's waveform. If no particular manufacturer is to be specified, a value of 0 should be used.              uint32_t       Manufacturer;      ///< Specifies the MIDI Manufacturer's Association (MMA) Manufacturer code for the sampler intended to receive this file's waveform. If no particular manufacturer is to be specified, a value of 0 should be used.
545              uint32_t       Product;           ///< Specifies the MIDI model ID defined by the manufacturer corresponding to the Manufacturer field. If no particular manufacturer's product is to be specified, a value of 0 should be used.              uint32_t       Product;           ///< Specifies the MIDI model ID defined by the manufacturer corresponding to the Manufacturer field. If no particular manufacturer's product is to be specified, a value of 0 should be used.
546              uint32_t       SamplePeriod;      ///< Specifies the duration of time that passes during the playback of one sample in nanoseconds (normally equal to 1 / Samplers Per Second, where Samples Per Second is the value found in the format chunk).              uint32_t       SamplePeriod;      ///< Specifies the duration of time that passes during the playback of one sample in nanoseconds (normally equal to 1 / Samples Per Second, where Samples Per Second is the value found in the format chunk), don't bother to update this attribute, it won't be saved.
547              uint32_t       MIDIUnityNote;     ///< Specifies the musical note at which the sample will be played at it's original sample rate.              uint32_t       MIDIUnityNote;     ///< Specifies the musical note at which the sample will be played at it's original sample rate.
548              uint32_t       FineTune;          ///< Specifies the fraction of a semitone up from the specified MIDI unity note field. A value of 0x80000000 means 1/2 semitone (50 cents) and a value of 0x00000000 means no fine tuning between semitones.              uint32_t       FineTune;          ///< Specifies the fraction of a semitone up from the specified MIDI unity note field. A value of 0x80000000 means 1/2 semitone (50 cents) and a value of 0x00000000 means no fine tuning between semitones.
549              smpte_format_t SMPTEFormat;       ///< Specifies the Society of Motion Pictures and Television E time format used in the following <i>SMPTEOffset</i> field. If a value of 0 is set, <i>SMPTEOffset</i> should also be set to 0.              smpte_format_t SMPTEFormat;       ///< Specifies the Society of Motion Pictures and Television E time format used in the following <i>SMPTEOffset</i> field. If a value of 0 is set, <i>SMPTEOffset</i> should also be set to 0.
550              uint32_t       SMPTEOffset;       ///< The SMPTE Offset value specifies the time offset to be used for the synchronization / calibration to the first sample in the waveform. This value uses a format of 0xhhmmssff where hh is a signed value that specifies the number of hours (-23 to 23), mm is an unsigned value that specifies the number of minutes (0 to 59), ss is an unsigned value that specifies the number of seconds (0 to 59) and ff is an unsigned value that specifies the number of frames (0 to -1).              uint32_t       SMPTEOffset;       ///< The SMPTE Offset value specifies the time offset to be used for the synchronization / calibration to the first sample in the waveform. This value uses a format of 0xhhmmssff where hh is a signed value that specifies the number of hours (-23 to 23), mm is an unsigned value that specifies the number of minutes (0 to 59), ss is an unsigned value that specifies the number of seconds (0 to 59) and ff is an unsigned value that specifies the number of frames (0 to -1).
551              uint32_t       Loops;             ///< Number of defined sample loops (so far only seen single loops in gig files - please report me if you encounter more!).              uint32_t       Loops;             ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: Number of defined sample loops. So far only seen single loops in gig files - please report if you encounter more!)
552              uint32_t       LoopID;            ///< Specifies the unique ID that corresponds to one of the defined cue points in the cue point list (only if Loops > 0), as the Gigasampler format only allows one loop definition at the moment, this attribute isn't really useful for anything.              uint32_t       LoopID;            ///< Specifies the unique ID that corresponds to one of the defined cue points in the cue point list (only if Loops > 0), as the Gigasampler format only allows one loop definition at the moment, this attribute isn't really useful for anything.
553              loop_type_t    LoopType;          ///< The type field defines how the waveform samples will be looped (only if Loops > 0).              loop_type_t    LoopType;          ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The type field defines how the waveform samples will be looped.)
554              uint32_t       LoopStart;         ///< The start value specifies the offset (in sample points) in the waveform data of the first sample to be played in the loop (only if Loops > 0).              uint32_t       LoopStart;         ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The start value specifies the offset [in sample points] in the waveform data of the first sample to be played in the loop [only if Loops > 0].)
555              uint32_t       LoopEnd;           ///< The end value specifies the offset (in sample points) in the waveform data which represents the end of the loop (only if Loops > 0).              uint32_t       LoopEnd;           ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The end value specifies the offset [in sample points] in the waveform data which represents the end of the loop [only if Loops > 0].)
556              uint32_t       LoopSize;          ///< Length of the looping area (in sample points) which is equivalent to <i>LoopEnd - LoopStart</i>.              uint32_t       LoopSize;          ///< @e Caution: Use the respective fields in the DimensionRegion instead of this one! (Intended purpose: Length of the looping area [in sample points] which is equivalent to @code LoopEnd - LoopStart @endcode.)
557              uint32_t       LoopFraction;      ///< The fractional value specifies a fraction of a sample at which to loop (only if Loops > 0). This allows a loop to be fine tuned at a resolution greater than one sample. A value of 0 means no fraction, a value of 0x80000000 means 1/2 of a sample length. 0xFFFFFFFF is the smallest fraction of a sample that can be represented.              uint32_t       LoopFraction;      ///< The fractional value specifies a fraction of a sample at which to loop. This allows a loop to be fine tuned at a resolution greater than one sample. A value of 0 means no fraction, a value of 0x80000000 means 1/2 of a sample length. 0xFFFFFFFF is the smallest fraction of a sample that can be represented.
558              uint32_t       LoopPlayCount;     ///< Number of times the loop should be played (only if Loops > 0, a value of 0 = infinite).              uint32_t       LoopPlayCount;     ///< Number of times the loop should be played (a value of 0 = infinite).
559              bool           Compressed;        ///< If the sample wave is compressed (probably just interesting for instrument and sample editors, as this library already handles the decompression in it's sample access methods anyway).              bool           Compressed;        ///< If the sample wave is compressed (probably just interesting for instrument and sample editors, as this library already handles the decompression in it's sample access methods anyway).
560                uint32_t       TruncatedBits;     ///< For 24-bit compressed samples only: number of bits truncated during compression (0, 4 or 6)
561                bool           Dithered;          ///< For 24-bit compressed samples only: if dithering was used during compression with bit reduction
562    
563              // own methods              // own methods
564              buffer_t      LoadSampleData();              buffer_t      LoadSampleData();
# Line 484  namespace gig { Line 566  namespace gig {
566              buffer_t      LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount);              buffer_t      LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount);
567              buffer_t      LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount);              buffer_t      LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount);
568              buffer_t      GetCache();              buffer_t      GetCache();
569                // own static methods
570                static buffer_t CreateDecompressionBuffer(unsigned long MaxReadSize);
571                static void     DestroyDecompressionBuffer(buffer_t& DecompressionBuffer);
572              // overridden methods              // overridden methods
573              void          ReleaseSampleData();              void          ReleaseSampleData();
574                void          Resize(int iNewSize);
575              unsigned long SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence = RIFF::stream_start);              unsigned long SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence = RIFF::stream_start);
576              unsigned long GetPos();              unsigned long GetPos();
577              unsigned long Read(void* pBuffer, unsigned long SampleCount);              unsigned long Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer = NULL);
578              unsigned long ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState);              unsigned long ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState, DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer = NULL);
579                unsigned long Write(void* pBuffer, unsigned long SampleCount);
580                Group*        GetGroup() const;
581                virtual void  UpdateChunks();
582          protected:          protected:
583              static unsigned int  Instances;               ///< Number of instances of class Sample.              static unsigned int  Instances;               ///< Number of instances of class Sample.
584              static unsigned long DecompressionBufferSize; ///< Current size of the decompression buffer.              static buffer_t      InternalDecompressionBuffer; ///< Buffer used for decompression as well as for truncation of 24 Bit -> 16 Bit samples.
585              static void*         pDecompressionBuffer;    ///< Small buffer used for decompression only.              Group*               pGroup;                  ///< pointer to the Group this sample belongs to (always not-NULL)
586              unsigned long        FrameOffset;             ///< Current offset (sample points) in current sample frame (for decompression only).              unsigned long        FrameOffset;             ///< Current offset (sample points) in current sample frame (for decompression only).
587              unsigned long*       FrameTable;              ///< For positioning within compressed samples only: stores the offset values for each frame.              unsigned long*       FrameTable;              ///< For positioning within compressed samples only: stores the offset values for each frame.
588              unsigned long        SamplePos;               ///< For compressed samples only: stores the current position (in sample points).              unsigned long        SamplePos;               ///< For compressed samples only: stores the current position (in sample points).
589                unsigned long        SamplesInLastFrame;      ///< For compressed samples only: length of the last sample frame.
590                unsigned long        WorstCaseFrameSize;      ///< For compressed samples only: size (in bytes) of the largest possible sample frame.
591                unsigned long        SamplesPerFrame;         ///< For compressed samples only: number of samples in a full sample frame.
592              buffer_t             RAMCache;                ///< Buffers samples (already uncompressed) in RAM.              buffer_t             RAMCache;                ///< Buffers samples (already uncompressed) in RAM.
593                unsigned long        FileNo;                  ///< File number (> 0 when sample is stored in an extension file, 0 when it's in the gig)
594                RIFF::Chunk*         pCk3gix;
595                RIFF::Chunk*         pCkSmpl;
596                CRC                  crc;                     ///< CRC-32 checksum of the raw sample data
597    
598              Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset);              Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo = 0);
599             ~Sample();             ~Sample();
600              /**  
601               * Swaps the order of the data words in the given memory area              // Guess size (in bytes) of a compressed sample
602               * with a granularity given by \a WordSize.              inline unsigned long GuessSize(unsigned long samples) {
603               *                  // 16 bit: assume all frames are compressed - 1 byte
604               * @param pData    - pointer to the memory area to be swapped                  // per sample and 5 bytes header per 2048 samples
605               * @param AreaSize - size of the memory area to be swapped (in bytes)  
606               * @param WordSize - size of the data words (in bytes)                  // 24 bit: assume next best compression rate - 1.5
607               */                  // bytes per sample and 13 bytes header per 256
608              inline void SwapMemoryArea(void* pData, unsigned long AreaSize, uint WordSize) {                  // samples
609                  switch (WordSize) { // TODO: unefficient                  const unsigned long size =
610                      case 1: {                      BitDepth == 24 ? samples + (samples >> 1) + (samples >> 8) * 13
611                          uint8_t* pDst = (uint8_t*) pData;                                     : samples + (samples >> 10) * 5;
612                          uint8_t  cache;                  // Double for stereo and add one worst case sample
613                          unsigned long lo = 0, hi = AreaSize - 1;                  // frame
614                          for (; lo < hi; hi--, lo++) {                  return (Channels == 2 ? size << 1 : size) + WorstCaseFrameSize;
                             cache    = pDst[lo];  
                             pDst[lo] = pDst[hi];  
                             pDst[hi] = cache;  
                         }  
                         break;  
                     }  
                     case 2: {  
                         uint16_t* pDst = (uint16_t*) pData;  
                         uint16_t  cache;  
                         unsigned long lo = 0, hi = (AreaSize >> 1) - 1;  
                         for (; lo < hi; hi--, lo++) {  
                             cache    = pDst[lo];  
                             pDst[lo] = pDst[hi];  
                             pDst[hi] = cache;  
                         }  
                         break;  
                     }  
                     case 4: {  
                         uint32_t* pDst = (uint32_t*) pData;  
                         uint32_t  cache;  
                         unsigned long lo = 0, hi = (AreaSize >> 2) - 1;  
                         for (; lo < hi; hi--, lo++) {  
                             cache    = pDst[lo];  
                             pDst[lo] = pDst[hi];  
                             pDst[hi] = cache;  
                         }  
                         break;  
                     }  
                     default: {  
                         uint8_t* pCache = new uint8_t[WordSize]; // TODO: unefficient  
                         unsigned long lo = 0, hi = AreaSize - WordSize;  
                         for (; lo < hi; hi -= WordSize, lo += WordSize) {  
                             memcpy(pCache, (uint8_t*) pData + lo, WordSize);  
                             memcpy((uint8_t*) pData + lo, (uint8_t*) pData + hi, WordSize);  
                             memcpy((uint8_t*) pData + hi, pCache, WordSize);  
                         }  
                         delete[] pCache;  
                         break;  
                     }  
                 }  
615              }              }
616              inline long Min(long A, long B) {  
617                  return (A > B) ? B : A;              // Worst case amount of sample points that can be read with the
618                // given decompression buffer.
619                inline unsigned long WorstCaseMaxSamples(buffer_t* pDecompressionBuffer) {
620                    return (unsigned long) ((float)pDecompressionBuffer->Size / (float)WorstCaseFrameSize * (float)SamplesPerFrame);
621              }              }
             inline long Abs(long val) { return (val > 0) ? val : -val; }  
622          private:          private:
623              void ScanCompressedSample();              void ScanCompressedSample();
624              friend class File;              friend class File;
625              friend class Region;              friend class Region;
626                friend class Group; // allow to modify protected member pGroup
627      };      };
628    
629      // TODO: <3dnl> list not used yet - not important though (just contains optional descriptions for the dimensions)      // TODO: <3dnl> list not used yet - not important though (just contains optional descriptions for the dimensions)
630      /** Defines <i>Region</i> information of an <i>Instrument</i>. */      /** Defines <i>Region</i> information of an <i>Instrument</i>. */
631      class Region : public DLS::Region {      class Region : public DLS::Region {
632          public:          public:
633              unsigned int            Dimensions;               ///< Number of defined dimensions.              unsigned int            Dimensions;               ///< Number of defined dimensions, do not alter!
634              dimension_def_t         pDimensionDefinitions[8]; ///< Defines the five (gig2) or eight (gig3) possible dimensions (the dimension's controller and number of bits/splits).              dimension_def_t         pDimensionDefinitions[8]; ///< Defines the five (gig2) or eight (gig3) possible dimensions (the dimension's controller and number of bits/splits). Use AddDimension() and DeleteDimension() to create a new dimension or delete an existing one.
635              uint32_t                DimensionRegions;         ///< Total number of DimensionRegions this Region contains.              uint32_t                DimensionRegions;         ///< Total number of DimensionRegions this Region contains, do not alter!
636              DimensionRegion*        pDimensionRegions[256];   ///< Pointer array to the 32 (gig2) or 256 (gig3) possible dimension regions (reflects NULL for dimension regions not in use). Avoid to access the array directly and better use GetDimensionRegionByValue() instead, but of course in some cases it makes sense to use the array (e.g. iterating through all DimensionRegions).              DimensionRegion*        pDimensionRegions[256];   ///< Pointer array to the 32 (gig2) or 256 (gig3) possible dimension regions (reflects NULL for dimension regions not in use). Avoid to access the array directly and better use GetDimensionRegionByValue() instead, but of course in some cases it makes sense to use the array (e.g. iterating through all DimensionRegions). Use AddDimension() and DeleteDimension() to create a new dimension or delete an existing one (which will create or delete the respective dimension region(s) automatically).
637              unsigned int            Layers;                   ///< Amount of defined layers (1 - 32). A value of 1 actually means no layering, a value > 1 means there is Layer dimension. The same information can of course also be obtained by accessing pDimensionDefinitions.              unsigned int            Layers;                   ///< Amount of defined layers (1 - 32). A value of 1 actually means no layering, a value > 1 means there is Layer dimension. The same information can of course also be obtained by accessing pDimensionDefinitions. Do not alter this value!
638    
639              DimensionRegion* GetDimensionRegionByValue(const uint DimValues[8]);              DimensionRegion* GetDimensionRegionByValue(const uint DimValues[8]);
640              DimensionRegion* GetDimensionRegionByBit(const uint8_t DimBits[8]);              DimensionRegion* GetDimensionRegionByBit(const uint8_t DimBits[8]);
641              Sample*          GetSample();              Sample*          GetSample();
642                void             AddDimension(dimension_def_t* pDimDef);
643                void             DeleteDimension(dimension_def_t* pDimDef);
644                virtual void     UpdateChunks();
645          protected:          protected:
             uint8_t VelocityTable[128]; ///< For velocity dimensions with custom defined zone ranges only: used for fast converting from velocity MIDI value to dimension bit number.  
   
646              Region(Instrument* pInstrument, RIFF::List* rgnList);              Region(Instrument* pInstrument, RIFF::List* rgnList);
647              void LoadDimensionRegions(RIFF::List* rgn);              void LoadDimensionRegions(RIFF::List* rgn);
648              Sample* GetSampleFromWavePool(unsigned int WavePoolTableIndex);              void UpdateVelocityTable();
649                Sample* GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress = NULL);
650             ~Region();             ~Region();
651              friend class Instrument;              friend class Instrument;
652      };      };
# Line 614  namespace gig { Line 675  namespace gig {
675    
676              // derived methods from DLS::Resource              // derived methods from DLS::Resource
677              DLS::Resource::GetParent;              DLS::Resource::GetParent;
678                // derived methods from DLS::Instrument
679                DLS::Instrument::MoveRegion;
680              // overridden methods              // overridden methods
681              Region*   GetFirstRegion();              Region*   GetFirstRegion();
682              Region*   GetNextRegion();              Region*   GetNextRegion();
683                Region*   AddRegion();
684                void      DeleteRegion(Region* pRegion);
685                virtual void UpdateChunks();
686              // own methods              // own methods
687              Region*   GetRegion(unsigned int Key);              Region*   GetRegion(unsigned int Key);
688          protected:          protected:
             Region**  pRegions;            ///< Pointer array to the regions  
689              Region*   RegionKeyTable[128]; ///< fast lookup for the corresponding Region of a MIDI key              Region*   RegionKeyTable[128]; ///< fast lookup for the corresponding Region of a MIDI key
             int       RegionIndex;  
690    
691              Instrument(File* pFile, RIFF::List* insList);              Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress = NULL);
692             ~Instrument();             ~Instrument();
693                void UpdateRegionKeyTable();
694                friend class File;
695        };
696    
697        /** @brief Group of Gigasampler objects
698         *
699         * Groups help to organize a huge collection of Gigasampler objects.
700         * Groups are not concerned at all for the synthesis, but they help
701         * sound library developers when working on complex instruments with an
702         * instrument editor (as long as that instrument editor supports it ;-).
703         *
704         * At the moment, it seems as only samples can be grouped together in
705         * the Gigasampler format yet. If this is false in the meantime, please
706         * tell us !
707         *
708         * A sample is always assigned to exactly one Group. This also means
709         * there is always at least one Group in a .gig file, no matter if you
710         * created one yet or not.
711         */
712        class Group {
713            public:
714                String Name; ///< Stores the name of this Group.
715    
716                Sample* GetFirstSample();
717                Sample* GetNextSample();
718                void AddSample(Sample* pSample);
719            protected:
720                Group(File* file, RIFF::Chunk* ck3gnm);
721                virtual ~Group();
722                virtual void UpdateChunks();
723                void MoveAll();
724              friend class File;              friend class File;
725            private:
726                File*        pFile;
727                RIFF::Chunk* pNameChunk;
728      };      };
729    
     // TODO: <3gnm> chunk not added yet (just contains the names of the sample groups)  
730      /** Parses Gigasampler files and provides abstract access to the data. */      /** Parses Gigasampler files and provides abstract access to the data. */
731      class File : protected DLS::File {      class File : protected DLS::File {
732          public:          public:
733                static const DLS::version_t VERSION_2;
734                static const DLS::version_t VERSION_3;
735    
736              // derived attributes from DLS::Resource              // derived attributes from DLS::Resource
737              DLS::Resource::pInfo;              DLS::Resource::pInfo;
738              DLS::Resource::pDLSID;              DLS::Resource::pDLSID;
# Line 642  namespace gig { Line 742  namespace gig {
742    
743              // derived methods from DLS::Resource              // derived methods from DLS::Resource
744              DLS::Resource::GetParent;              DLS::Resource::GetParent;
745                // derived methods from DLS::File
746                DLS::File::Save;
747              // overridden  methods              // overridden  methods
748                File();
749              File(RIFF::File* pRIFF);              File(RIFF::File* pRIFF);
750              Sample*     GetFirstSample();     ///< Returns a pointer to the first <i>Sample</i> object of the file, <i>NULL</i> otherwise.              Sample*     GetFirstSample(progress_t* pProgress = NULL); ///< Returns a pointer to the first <i>Sample</i> object of the file, <i>NULL</i> otherwise.
751              Sample*     GetNextSample();      ///< Returns a pointer to the next <i>Sample</i> object of the file, <i>NULL</i> otherwise.              Sample*     GetNextSample();      ///< Returns a pointer to the next <i>Sample</i> object of the file, <i>NULL</i> otherwise.
752                Sample*     AddSample();
753                void        DeleteSample(Sample* pSample);
754              Instrument* GetFirstInstrument(); ///< Returns a pointer to the first <i>Instrument</i> object of the file, <i>NULL</i> otherwise.              Instrument* GetFirstInstrument(); ///< Returns a pointer to the first <i>Instrument</i> object of the file, <i>NULL</i> otherwise.
755              Instrument* GetNextInstrument();  ///< Returns a pointer to the next <i>Instrument</i> object of the file, <i>NULL</i> otherwise.              Instrument* GetNextInstrument();  ///< Returns a pointer to the next <i>Instrument</i> object of the file, <i>NULL</i> otherwise.
756              Instrument* GetInstrument(uint index);              Instrument* GetInstrument(uint index, progress_t* pProgress = NULL);
757             ~File() {};              Instrument* AddInstrument();
758                void        DeleteInstrument(Instrument* pInstrument);
759                Group*      GetFirstGroup(); ///< Returns a pointer to the first <i>Group</i> object of the file, <i>NULL</i> otherwise.
760                Group*      GetNextGroup();  ///< Returns a pointer to the next <i>Group</i> object of the file, <i>NULL</i> otherwise.
761                Group*      GetGroup(uint index);
762                Group*      AddGroup();
763                void        DeleteGroup(Group* pGroup);
764                void        DeleteGroupOnly(Group* pGroup);
765                virtual    ~File();
766                virtual void UpdateChunks();
767          protected:          protected:
768              typedef std::list<Sample*>     SampleList;              // overridden protected methods from DLS::File
769              typedef std::list<Instrument*> InstrumentList;              virtual void LoadSamples();
770                virtual void LoadInstruments();
771              SampleList*              pSamples;              virtual void LoadGroups();
772              SampleList::iterator     SamplesIterator;              // own protected methods
773              InstrumentList*          pInstruments;              virtual void LoadSamples(progress_t* pProgress);
774              InstrumentList::iterator InstrumentsIterator;              virtual void LoadInstruments(progress_t* pProgress);
775                void SetSampleChecksum(Sample* pSample, uint32_t crc);
             void LoadSamples();  
             void LoadInstruments();  
776              friend class Region;              friend class Region;
777                friend class Sample;
778                friend class Group; // so Group can access protected member pRIFF
779            private:
780                static const DLS::Info::FixedStringLength FixedStringLengths[];
781                std::list<Group*>*          pGroups;
782                std::list<Group*>::iterator GroupsIterator;
783      };      };
784    
785      /** Will be thrown whenever a gig specific error occurs while trying to access a Gigasampler File. */      /**
786         * Will be thrown whenever a gig specific error occurs while trying to
787         * access a Gigasampler File. Note: In your application you should
788         * better catch for RIFF::Exception rather than this one, except you
789         * explicitly want to catch and handle gig::Exception, DLS::Exception
790         * and RIFF::Exception independently, which usually shouldn't be
791         * necessary though.
792         */
793      class Exception : public DLS::Exception {      class Exception : public DLS::Exception {
794          public:          public:
795              Exception(String Message);              Exception(String Message);
796              void PrintMessage();              void PrintMessage();
797      };      };
798    
799        String libraryName();
800        String libraryVersion();
801    
802  } // namespace gig  } // namespace gig
803    
804  #endif // __GIG_H__  #endif // __GIG_H__

Legend:
Removed from v.347  
changed lines
  Added in v.1301

  ViewVC Help
Powered by ViewVC