/[svn]/libgig/trunk/src/gig.h
ViewVC logotype

Diff of /libgig/trunk/src/gig.h

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 24 by schoenebeck, Fri Dec 26 16:15:31 2003 UTC revision 3140 by schoenebeck, Wed May 3 16:19:53 2017 UTC
# Line 1  Line 1 
1  /***************************************************************************  /***************************************************************************
2   *                                                                         *   *                                                                         *
3   *   libgig - C++ cross-platform Gigasampler format file loader library    *   *   libgig - C++ cross-platform Gigasampler format file access library    *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003 by Christian Schoenebeck                           *   *   Copyright (C) 2003-2017 by Christian Schoenebeck                      *
6   *                         <cuse@users.sourceforge.net>                    *   *                              <cuse@users.sourceforge.net>               *
7   *                                                                         *   *                                                                         *
8   *   This library is free software; you can redistribute it and/or modify  *   *   This library is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 25  Line 25 
25  #define __GIG_H__  #define __GIG_H__
26    
27  #include "DLS.h"  #include "DLS.h"
28    #include <vector>
 #include <math.h>  
 #include <string.h>  
   
 /// Initial size of the sample buffer which is used for decompression of  
 /// compressed sample wave streams - this value should always be bigger than  
 /// the biggest sample piece expected to be read by the sampler engine,  
 /// otherwise the buffer size will be raised at runtime and thus the buffer  
 /// reallocated which is time consuming and unefficient.  
 #define INITIAL_SAMPLE_BUFFER_SIZE              512000 // 512 kB  
29    
30  #if WORDS_BIGENDIAN  #if WORDS_BIGENDIAN
31  # define LIST_TYPE_3PRG 0x33707267  # define LIST_TYPE_3PRG 0x33707267
32  # define LIST_TYPE_3EWL 0x3365776C  # define LIST_TYPE_3EWL 0x3365776C
33  # define CHUNK_ID_SMPL  0x736D706C  # define LIST_TYPE_3GRI 0x33677269
34    # define LIST_TYPE_3GNL 0x33676E6C
35    # define LIST_TYPE_3LS  0x334c5320 // own gig format extension
36    # define LIST_TYPE_RTIS 0x52544953 // own gig format extension
37  # define CHUNK_ID_3GIX  0x33676978  # define CHUNK_ID_3GIX  0x33676978
38  # define CHUNK_ID_3EWA  0x33657761  # define CHUNK_ID_3EWA  0x33657761
39  # define CHUNK_ID_3LNK  0x336C6E6B  # define CHUNK_ID_3LNK  0x336C6E6B
40  # define CHUNK_ID_3EWG  0x33657767  # define CHUNK_ID_3EWG  0x33657767
41  # define CHUNK_ID_EWAV  0x65776176  # define CHUNK_ID_EWAV  0x65776176
42    # define CHUNK_ID_3GNM  0x33676E6D
43    # define CHUNK_ID_EINF  0x65696E66
44    # define CHUNK_ID_3CRC  0x33637263
45    # define CHUNK_ID_SCRI  0x53637269 // own gig format extension
46    # define CHUNK_ID_LSNM  0x4c534e4d // own gig format extension
47    # define CHUNK_ID_SCSL  0x5343534c // own gig format extension
48  #else  // little endian  #else  // little endian
49  # define LIST_TYPE_3PRG 0x67727033  # define LIST_TYPE_3PRG 0x67727033
50  # define LIST_TYPE_3EWL 0x6C776533  # define LIST_TYPE_3EWL 0x6C776533
51  # define CHUNK_ID_SMPL  0x6C706D73  # define LIST_TYPE_3GRI 0x69726733
52    # define LIST_TYPE_3GNL 0x6C6E6733
53    # define LIST_TYPE_3LS  0x20534c33 // own gig format extension
54    # define LIST_TYPE_RTIS 0x53495452 // own gig format extension
55  # define CHUNK_ID_3GIX  0x78696733  # define CHUNK_ID_3GIX  0x78696733
56  # define CHUNK_ID_3EWA  0x61776533  # define CHUNK_ID_3EWA  0x61776533
57  # define CHUNK_ID_3LNK  0x6B6E6C33  # define CHUNK_ID_3LNK  0x6B6E6C33
58  # define CHUNK_ID_3EWG  0x67776533  # define CHUNK_ID_3EWG  0x67776533
59  # define CHUNK_ID_EWAV  0x76617765  # define CHUNK_ID_EWAV  0x76617765
60    # define CHUNK_ID_3GNM  0x6D6E6733
61    # define CHUNK_ID_EINF  0x666E6965
62    # define CHUNK_ID_3CRC  0x63726333
63    # define CHUNK_ID_SCRI  0x69726353 // own gig format extension
64    # define CHUNK_ID_LSNM  0x4d4e534c // own gig format extension
65    # define CHUNK_ID_SCSL  0x4c534353 // own gig format extension
66  #endif // WORDS_BIGENDIAN  #endif // WORDS_BIGENDIAN
67    
68  /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */  // just symbol prototyping (since Serialization.h not included by default here)
69  #define GIG_EXP_DECODE(x)                                       (pow(1.000000008813822, x))  namespace Serialization { class Archive; }
 #define GIG_PITCH_TRACK_EXTRACT(x)                              (!(x & 0x01))  
 #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x)                       ((x >> 4) & 0x03)  
 #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x)                  ((x >> 1) & 0x03)  
 #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x)                   ((x >> 3) & 0x03)  
 #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x)                 ((x >> 5) & 0x03)  
 //TODO: the transformation functions are not very accurate compared to the original ones  
 #define GIG_VELOCITY_TRANSFORM_NONLINEAR(x,dynamic,scale)       ((1.0-1.0/pow(x,1.0/(129.0-x))) * (1.0+scale/20.0) + (5.0-dynamic)*pow(x/300.0* (1.0+2.0*scale/128.0),2))  
 #define GIG_VELOCITY_TRANSFORM_LINEAR(x,dynamic,scale)          ((1.0+scale*3.0/128.0)/110.0*x+(5.0-dynamic)/5.0+(5.0-dynamic)*scale)  
 #define GIG_VELOCITY_TRANSFORM_SPECIAL(x,dynamic,scale)         ((1.0+9.0*scale/129.0)*(1.0-1.0/pow(x,1.0/(129.0-x))+pow(3.0*x/pow(129,2),2)+pow((5.0-dynamic)*x/500.0,2)))  
70    
71  /** Gigasampler specific classes and definitions */  /** Gigasampler/GigaStudio specific classes and definitions */
72  namespace gig {  namespace gig {
73    
74      typedef std::string String;      typedef std::string String;
75        typedef RIFF::progress_t progress_t;
76        typedef RIFF::file_offset_t file_offset_t;
77    
78      /** Lower and upper limit of a range. */      /** Lower and upper limit of a range. */
79      struct range_t {      struct range_t {
# Line 82  namespace gig { Line 84  namespace gig {
84      /** Pointer address and size of a buffer. */      /** Pointer address and size of a buffer. */
85      struct buffer_t {      struct buffer_t {
86          void*         pStart;            ///< Points to the beginning of the buffer.          void*         pStart;            ///< Points to the beginning of the buffer.
87          unsigned long Size;              ///< Size of the actual data in the buffer in bytes.          file_offset_t Size;              ///< Size of the actual data in the buffer in bytes.
88          unsigned long NullExtensionSize; ///< The buffer might be bigger than the actual data, if that's the case that unused space at the end of the buffer is filled with NULLs and NullExtensionSize reflects that unused buffer space in bytes. Those NULL extensions are mandatory for differential algorithms that have to take the following data words into account, thus have to access past the buffer's boundary. If you don't know what I'm talking about, just forget this variable. :)          file_offset_t NullExtensionSize; ///< The buffer might be bigger than the actual data, if that's the case that unused space at the end of the buffer is filled with NULLs and NullExtensionSize reflects that unused buffer space in bytes. Those NULL extensions are mandatory for differential algorithms that have to take the following data words into account, thus have to access past the buffer's boundary. If you don't know what I'm talking about, just forget this variable. :)
89            buffer_t() {
90                pStart            = NULL;
91                Size              = 0;
92                NullExtensionSize = 0;
93            }
94      };      };
95    
96      /** Standard types of sample loops. */      /** Standard types of sample loops. */
# Line 147  namespace gig { Line 154  namespace gig {
154      /** Defines how the filter cutoff frequency is controlled by. */      /** Defines how the filter cutoff frequency is controlled by. */
155      typedef enum {      typedef enum {
156          vcf_cutoff_ctrl_none         = 0x00,          vcf_cutoff_ctrl_none         = 0x00,
157            vcf_cutoff_ctrl_none2        = 0x01,  ///< The difference between none and none2 is unknown
158          vcf_cutoff_ctrl_modwheel     = 0x81,  ///< Modulation Wheel (MIDI Controller 1)          vcf_cutoff_ctrl_modwheel     = 0x81,  ///< Modulation Wheel (MIDI Controller 1)
159          vcf_cutoff_ctrl_effect1      = 0x8c,  ///< Effect Controller 1 (Coarse, MIDI Controller 12)          vcf_cutoff_ctrl_effect1      = 0x8c,  ///< Effect Controller 1 (Coarse, MIDI Controller 12)
160          vcf_cutoff_ctrl_effect2      = 0x8d,  ///< Effect Controller 2 (Coarse, MIDI Controller 13)          vcf_cutoff_ctrl_effect2      = 0x8d,  ///< Effect Controller 2 (Coarse, MIDI Controller 13)
# Line 168  namespace gig { Line 176  namespace gig {
176          vcf_res_ctrl_genpurpose6 = 3            ///< General Purpose Controller 6 (Button, MIDI Controller 81)          vcf_res_ctrl_genpurpose6 = 3            ///< General Purpose Controller 6 (Button, MIDI Controller 81)
177      } vcf_res_ctrl_t;      } vcf_res_ctrl_t;
178    
179      /** Defines how attenuation (=gain / VCA) is controlled by. */      /**
180      typedef enum {       * Defines a controller that has a certain contrained influence on a
181          attenuation_ctrl_none              = 0x00,       * particular synthesis parameter (used to define attenuation controller,
182          attenuation_ctrl_modwheel          = 0x03, ///< Modulation Wheel (MIDI Controller 1)       * EG1 controller and EG2 controller).
183          attenuation_ctrl_breath            = 0x05, ///< Breath Controller (Coarse, MIDI Controller 2)       *
184          attenuation_ctrl_foot              = 0x07, ///< Foot Pedal (Coarse, MIDI Controller 4)       * You should use the respective <i>typedef</i> (means either
185          attenuation_ctrl_effect1           = 0x0d, ///< Effect Controller 1 (Coarse, MIDI Controller 12)       * attenuation_ctrl_t, eg1_ctrl_t or eg2_ctrl_t) in your code!
186          attenuation_ctrl_effect2           = 0x0f, ///< Effect Controller 2 (Coarse, MIDI Controller 13)       */
187          attenuation_ctrl_genpurpose1       = 0x11, ///< General Purpose Controller 1 (Slider, MIDI Controller 16)      struct leverage_ctrl_t {
188          attenuation_ctrl_genpurpose2       = 0x13, ///< General Purpose Controller 2 (Slider, MIDI Controller 17)          typedef enum {
189          attenuation_ctrl_genpurpose3       = 0x15, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)              type_none              = 0x00, ///< No controller defined
190          attenuation_ctrl_genpurpose4       = 0x17, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)              type_channelaftertouch = 0x2f, ///< Channel Key Pressure
191          attenuation_ctrl_portamentotime    = 0x0b, ///< Portamento Time (Coarse, MIDI Controller 5)              type_velocity          = 0xff, ///< Key Velocity
192          attenuation_ctrl_sustainpedal      = 0x01, ///< Sustain Pedal (MIDI Controller 64)              type_controlchange     = 0xfe  ///< Ordinary MIDI control change controller, see field 'controller_number'
193          attenuation_ctrl_portamento        = 0x19, ///< Portamento (MIDI Controller 65)          } type_t;
194          attenuation_ctrl_sostenutopedal    = 0x1b, ///< Sostenuto Pedal (MIDI Controller 66)  
195          attenuation_ctrl_softpedal         = 0x09, ///< Soft Pedal (MIDI Controller 67)          type_t type;              ///< Controller type
196          attenuation_ctrl_genpurpose5       = 0x1d, ///< General Purpose Controller 5 (Button, MIDI Controller 80)          uint   controller_number; ///< MIDI controller number if this controller is a control change controller, 0 otherwise
197          attenuation_ctrl_genpurpose6       = 0x1f, ///< General Purpose Controller 6 (Button, MIDI Controller 81)  
198          attenuation_ctrl_genpurpose7       = 0x21, ///< General Purpose Controller 7 (Button, MIDI Controller 82)          void serialize(Serialization::Archive* archive);
199          attenuation_ctrl_genpurpose8       = 0x23, ///< General Purpose Controller 8 (Button, MIDI Controller 83)      };
200          attenuation_ctrl_effect1depth      = 0x25, ///< Effect 1 Depth (MIDI Controller 91)  
201          attenuation_ctrl_effect2depth      = 0x27, ///< Effect 2 Depth (MIDI Controller 92)      /**
202          attenuation_ctrl_effect3depth      = 0x29, ///< Effect 3 Depth (MIDI Controller 93)       * Defines controller influencing attenuation.
203          attenuation_ctrl_effect4depth      = 0x2b, ///< Effect 4 Depth (MIDI Controller 94)       *
204          attenuation_ctrl_effect5depth      = 0x2d, ///< Effect 5 Depth (MIDI Controller 95)       * @see leverage_ctrl_t
205          attenuation_ctrl_channelaftertouch = 0x2f, ///< Channel Key Pressure       */
206          attenuation_ctrl_velocity          = 0xff  ///< Key Velocity      typedef leverage_ctrl_t attenuation_ctrl_t;
207      } attenuation_ctrl_t, eg1_ctrl_t, eg2_ctrl_t;  
208        /**
209         * Defines controller influencing envelope generator 1.
210         *
211         * @see leverage_ctrl_t
212         */
213        typedef leverage_ctrl_t eg1_ctrl_t;
214    
215        /**
216         * Defines controller influencing envelope generator 2.
217         *
218         * @see leverage_ctrl_t
219         */
220        typedef leverage_ctrl_t eg2_ctrl_t;
221    
222      /**      /**
223       * Defines the type of dimension, that is how the dimension zones (and       * Defines the type of dimension, that is how the dimension zones (and
# Line 209  namespace gig { Line 230  namespace gig {
230          dimension_none              = 0x00, ///< Dimension not in use.          dimension_none              = 0x00, ///< Dimension not in use.
231          dimension_samplechannel     = 0x80, ///< If used sample has more than one channel (thus is not mono).          dimension_samplechannel     = 0x80, ///< If used sample has more than one channel (thus is not mono).
232          dimension_layer             = 0x81, ///< For layering of up to 8 instruments (and eventually crossfading of 2 or 4 layers).          dimension_layer             = 0x81, ///< For layering of up to 8 instruments (and eventually crossfading of 2 or 4 layers).
233          dimension_velocity          = 0x82, ///< Key Velocity (this is the only dimension where the ranges can exactly be defined).          dimension_velocity          = 0x82, ///< Key Velocity (this is the only dimension in gig2 where the ranges can exactly be defined).
234          dimension_channelaftertouch = 0x83, ///< Channel Key Pressure          dimension_channelaftertouch = 0x83, ///< Channel Key Pressure
235          dimension_releasetrigger    = 0x84, ///< Special dimension for triggering samples on releasing a key.          dimension_releasetrigger    = 0x84, ///< Special dimension for triggering samples on releasing a key.
236          dimension_keyboard          = 0x85, ///< Key Position          dimension_keyboard          = 0x85, ///< Dimension for keyswitching
237            dimension_roundrobin        = 0x86, ///< Different samples triggered each time a note is played, dimension regions selected in sequence
238            dimension_random            = 0x87, ///< Different samples triggered each time a note is played, random order
239            dimension_smartmidi         = 0x88, ///< For MIDI tools like legato and repetition mode
240            dimension_roundrobinkeyboard = 0x89, ///< Different samples triggered each time a note is played, any key advances the counter
241          dimension_modwheel          = 0x01, ///< Modulation Wheel (MIDI Controller 1)          dimension_modwheel          = 0x01, ///< Modulation Wheel (MIDI Controller 1)
242          dimension_breath            = 0x02, ///< Breath Controller (Coarse, MIDI Controller 2)          dimension_breath            = 0x02, ///< Breath Controller (Coarse, MIDI Controller 2)
243          dimension_foot              = 0x04, ///< Foot Pedal (Coarse, MIDI Controller 4)          dimension_foot              = 0x04, ///< Foot Pedal (Coarse, MIDI Controller 4)
# Line 243  namespace gig { Line 268  namespace gig {
268       * into the corresponding dimension bit number.       * into the corresponding dimension bit number.
269       */       */
270      typedef enum {      typedef enum {
271          split_type_normal,         ///< dimension value between 0-127, no custom range of zones          split_type_normal,         ///< dimension value between 0-127
         split_type_customvelocity, ///< a velocity dimension split with custom range definition for each zone (if a velocity dimension split has no custom defined zone ranges then it's also just of type split_type_normal)  
272          split_type_bit             ///< dimension values are already the sought bit number          split_type_bit             ///< dimension values are already the sought bit number
273      } split_type_t;      } split_type_t;
274    
# Line 254  namespace gig { Line 278  namespace gig {
278          uint8_t      bits;       ///< Number of "bits" (1 bit = 2 splits/zones, 2 bit = 4 splits/zones, 3 bit = 8 splits/zones,...).          uint8_t      bits;       ///< Number of "bits" (1 bit = 2 splits/zones, 2 bit = 4 splits/zones, 3 bit = 8 splits/zones,...).
279          uint8_t      zones;      ///< Number of zones the dimension has.          uint8_t      zones;      ///< Number of zones the dimension has.
280          split_type_t split_type; ///< Intended for internal usage: will be used to convert a dimension value into the corresponding dimension bit number.          split_type_t split_type; ///< Intended for internal usage: will be used to convert a dimension value into the corresponding dimension bit number.
281          range_t*     ranges;     ///< Intended for internal usage: Points to the beginning of a range_t array which reflects the value ranges of each dimension zone (only if custom defined ranges are defined, is NULL otherwise).          float        zone_size;  ///< Intended for internal usage: reflects the size of each zone (128/zones) for normal split types only, 0 otherwise.
         unsigned int zone_size;  ///< Intended for internal usage: reflects the size of each zone (128/zones) for normal split types only, 0 otherwise.  
282      };      };
283    
284      /** Defines which frequencies are filtered by the VCF. */      /** Defines which frequencies are filtered by the VCF. */
# Line 267  namespace gig { Line 290  namespace gig {
290          vcf_type_bandreject   = 0x03          vcf_type_bandreject   = 0x03
291      } vcf_type_t;      } vcf_type_t;
292    
293      /** Defines the envelope of a crossfade. */      /**
294         * Defines the envelope of a crossfade.
295         *
296         * Note: The default value for crossfade points is 0,0,0,0. Layers with
297         * such a default value should be treated as if they would not have a
298         * crossfade.
299         */
300      struct crossfade_t {      struct crossfade_t {
301          #if WORDS_BIGENDIAN          #if WORDS_BIGENDIAN
         uint8_t in_start;   ///< Start position of fade in.  
         uint8_t in_end;     ///< End position of fade in.  
         uint8_t out_start;  ///< Start position of fade out.  
         uint8_t out_end;    ///< End postition of fade out.  
         #else // little endian  
302          uint8_t out_end;    ///< End postition of fade out.          uint8_t out_end;    ///< End postition of fade out.
303          uint8_t out_start;  ///< Start position of fade out.          uint8_t out_start;  ///< Start position of fade out.
304          uint8_t in_end;     ///< End position of fade in.          uint8_t in_end;     ///< End position of fade in.
305          uint8_t in_start;   ///< Start position of fade in.          uint8_t in_start;   ///< Start position of fade in.
306            #else // little endian
307            uint8_t in_start;   ///< Start position of fade in.
308            uint8_t in_end;     ///< End position of fade in.
309            uint8_t out_start;  ///< Start position of fade out.
310            uint8_t out_end;    ///< End postition of fade out.
311          #endif // WORDS_BIGENDIAN          #endif // WORDS_BIGENDIAN
312    
313            void serialize(Serialization::Archive* archive);
314      };      };
315    
316      /** Reflects the current playback state for a sample. */      /** Reflects the current playback state for a sample. */
317      struct playback_state_t {      struct playback_state_t {
318          unsigned long position;          ///< Current position within the sample.          file_offset_t position;          ///< Current position within the sample.
319          bool          reverse;           ///< If playback direction is currently backwards (in case there is a pingpong or reverse loop defined).          bool          reverse;           ///< If playback direction is currently backwards (in case there is a pingpong or reverse loop defined).
320          unsigned long loop_cycles_left;  ///< How many times the loop has still to be passed, this value will be decremented with each loop cycle.          file_offset_t loop_cycles_left;  ///< How many times the loop has still to be passed, this value will be decremented with each loop cycle.
321      };      };
322    
323      // just symbol prototyping      // just symbol prototyping
324      class File;      class File;
325      class Instrument;      class Instrument;
326      class Sample;      class Sample;
327        class Region;
328        class Group;
329        class Script;
330        class ScriptGroup;
331    
332      /** Encapsulates articulation information of a dimension region.      /** @brief Encapsulates articulation informations of a dimension region.
333         *
334         * This is the most important data object of the Gigasampler / GigaStudio
335         * format. A DimensionRegion provides the link to the sample to be played
336         * and all required articulation informations to be interpreted for playing
337         * back the sample and processing it appropriately by the sampler software.
338         * Every Region of a Gigasampler Instrument has at least one dimension
339         * region (exactly then when the Region has no dimension defined). Many
340         * Regions though provide more than one DimensionRegion, which reflect
341         * different playing "cases". For example a different sample might be played
342         * if a certain pedal is pressed down, or if the note was triggered with
343         * different velocity.
344         *
345         * One instance of a DimensionRegion reflects exactly one particular case
346         * while playing an instrument (for instance "note between C3 and E3 was
347         * triggered AND note on velocity was between 20 and 42 AND modulation wheel
348         * controller is between 80 and 127). The DimensionRegion defines what to do
349         * under that one particular case, that is which sample to play back and how
350         * to play that sample back exactly and how to process it. So a
351         * DimensionRegion object is always linked to exactly one sample. It may
352         * however also link to no sample at all, for defining a "silence" case
353         * where nothing shall be played (for example when note on velocity was
354         * below 6).
355       *       *
356       *  Every Gigasampler Instrument has at least one dimension region       * Note that a DimensionRegion object only defines "what to do", but it does
357       *  (exactly then when it has no dimension defined).       * not define "when to do it". To actually resolve which DimensionRegion to
358         * pick under which situation, you need to refer to the DimensionRegions'
359         * parent Region object. The Region object contains the necessary
360         * "Dimension" definitions, which in turn define which DimensionRegion is
361         * associated with which playing case exactly.
362       *       *
363       *  Gigasampler provides three Envelope Generators and Low Frequency       * The Gigasampler/GigaStudio format defines 3 Envelope Generators and 3
364       *  Oscillators:       * Low Frequency Oscillators:
365       *       *
366       *  - EG1 and LFO1, both controlling sample amplitude       *  - EG1 and LFO1, both controlling sample amplitude
367       *  - EG2 and LFO2, both controlling filter cutoff frequency       *  - EG2 and LFO2, both controlling filter cutoff frequency
368       *  - EG3 and LFO3, both controlling sample pitch       *  - EG3 and LFO3, both controlling sample pitch
369         *
370         * Since the gig format was designed as extension to the DLS file format,
371         * this class is derived from the DLS::Sampler class. So also refer to
372         * DLS::Sampler for additional informations, class attributes and methods.
373       */       */
374      class DimensionRegion : protected DLS::Sampler {      class DimensionRegion : protected DLS::Sampler {
375          public:          public:
376              uint8_t            VelocityUpperLimit;            ///< Defines the upper velocity value limit of a velocity split (only if an user defined limit was set, thus a value not equal to 128/NumberOfSplits, else this value is 0).              uint8_t            VelocityUpperLimit;            ///< Defines the upper velocity value limit of a velocity split (only if an user defined limit was set, thus a value not equal to 128/NumberOfSplits, else this value is 0). Only for gig2, for gig3 and above the DimensionUpperLimits are used instead.
377              Sample*            pSample;                       ///< Points to the Sample which is assigned to the dimension region.              Sample*            pSample;                       ///< Points to the Sample which is assigned to the dimension region.
378              // Sample Amplitude EG/LFO              // Sample Amplitude EG/LFO
379              uint16_t           EG1PreAttack;                  ///< Preattack value of the sample amplitude EG (0 - 1000 permille).              uint16_t           EG1PreAttack;                  ///< Preattack value of the sample amplitude EG (0 - 1000 permille).
# Line 321  namespace gig { Line 386  namespace gig {
386              bool               EG1Hold;                       ///< If <i>true</i>, Decay1 stage should be postponed until the sample reached the sample loop start.              bool               EG1Hold;                       ///< If <i>true</i>, Decay1 stage should be postponed until the sample reached the sample loop start.
387              eg1_ctrl_t         EG1Controller;                 ///< MIDI Controller which has influence on sample amplitude EG parameters (attack, decay, release).              eg1_ctrl_t         EG1Controller;                 ///< MIDI Controller which has influence on sample amplitude EG parameters (attack, decay, release).
388              bool               EG1ControllerInvert;           ///< Invert values coming from defined EG1 controller.              bool               EG1ControllerInvert;           ///< Invert values coming from defined EG1 controller.
389              uint8_t            EG1ControllerAttackInfluence;  ///< Amount EG1 Controller has influence on the EG1 Attack time.              uint8_t            EG1ControllerAttackInfluence;  ///< Amount EG1 Controller has influence on the EG1 Attack time (0 - 3, where 0 means off).
390              uint8_t            EG1ControllerDecayInfluence;   ///< Amount EG1 Controller has influence on the EG1 Decay time.              uint8_t            EG1ControllerDecayInfluence;   ///< Amount EG1 Controller has influence on the EG1 Decay time (0 - 3, where 0 means off).
391              uint8_t            EG1ControllerReleaseInfluence; ///< Amount EG1 Controller has influence on the EG1 Release time.              uint8_t            EG1ControllerReleaseInfluence; ///< Amount EG1 Controller has influence on the EG1 Release time (0 - 3, where 0 means off).
392              double             LFO1Frequency;                 ///< Frequency of the sample amplitude LFO (0.10 - 10.00 Hz).              double             LFO1Frequency;                 ///< Frequency of the sample amplitude LFO (0.10 - 10.00 Hz).
393              uint16_t           LFO1InternalDepth;             ///< Firm pitch of the sample amplitude LFO (0 - 1200 cents).              uint16_t           LFO1InternalDepth;             ///< Firm pitch of the sample amplitude LFO (0 - 1200 cents).
394              uint16_t           LFO1ControlDepth;              ///< Controller depth influencing sample amplitude LFO pitch (0 - 1200 cents).              uint16_t           LFO1ControlDepth;              ///< Controller depth influencing sample amplitude LFO pitch (0 - 1200 cents).
# Line 340  namespace gig { Line 405  namespace gig {
405              double             EG2Release;                    ///< Release time of the filter cutoff EG (0.000 - 60.000s).              double             EG2Release;                    ///< Release time of the filter cutoff EG (0.000 - 60.000s).
406              eg2_ctrl_t         EG2Controller;                 ///< MIDI Controller which has influence on filter cutoff EG parameters (attack, decay, release).              eg2_ctrl_t         EG2Controller;                 ///< MIDI Controller which has influence on filter cutoff EG parameters (attack, decay, release).
407              bool               EG2ControllerInvert;           ///< Invert values coming from defined EG2 controller.              bool               EG2ControllerInvert;           ///< Invert values coming from defined EG2 controller.
408              uint8_t            EG2ControllerAttackInfluence;  ///< Amount EG2 Controller has influence on the EG2 Attack time.              uint8_t            EG2ControllerAttackInfluence;  ///< Amount EG2 Controller has influence on the EG2 Attack time (0 - 3, where 0 means off).
409              uint8_t            EG2ControllerDecayInfluence;   ///< Amount EG2 Controller has influence on the EG2 Decay time.              uint8_t            EG2ControllerDecayInfluence;   ///< Amount EG2 Controller has influence on the EG2 Decay time (0 - 3, where 0 means off).
410              uint8_t            EG2ControllerReleaseInfluence; ///< Amount EG2 Controller has influence on the EG2 Release time.              uint8_t            EG2ControllerReleaseInfluence; ///< Amount EG2 Controller has influence on the EG2 Release time (0 - 3, where 0 means off).
411              double             LFO2Frequency;                 ///< Frequency of the filter cutoff LFO (0.10 - 10.00 Hz).              double             LFO2Frequency;                 ///< Frequency of the filter cutoff LFO (0.10 - 10.00 Hz).
412              uint16_t           LFO2InternalDepth;             ///< Firm pitch of the filter cutoff LFO (0 - 1200 cents).              uint16_t           LFO2InternalDepth;             ///< Firm pitch of the filter cutoff LFO (0 - 1200 cents).
413              uint16_t           LFO2ControlDepth;              ///< Controller depth influencing filter cutoff LFO pitch (0 - 1200).              uint16_t           LFO2ControlDepth;              ///< Controller depth influencing filter cutoff LFO pitch (0 - 1200).
# Line 360  namespace gig { Line 425  namespace gig {
425              // Filter              // Filter
426              bool               VCFEnabled;                    ///< If filter should be used.              bool               VCFEnabled;                    ///< If filter should be used.
427              vcf_type_t         VCFType;                       ///< Defines the general filter characteristic (lowpass, highpass, bandpass, etc.).              vcf_type_t         VCFType;                       ///< Defines the general filter characteristic (lowpass, highpass, bandpass, etc.).
428              vcf_cutoff_ctrl_t  VCFCutoffController;           ///< Specifies which external controller has influence on the filter cutoff frequency.              vcf_cutoff_ctrl_t  VCFCutoffController;           ///< Specifies which external controller has influence on the filter cutoff frequency. @deprecated Don't alter directly, use SetVCFCutoffController() instead!
429                bool               VCFCutoffControllerInvert;     ///< Inverts values coming from the defined cutoff controller
430              uint8_t            VCFCutoff;                     ///< Max. cutoff frequency.              uint8_t            VCFCutoff;                     ///< Max. cutoff frequency.
431              curve_type_t       VCFVelocityCurve;              ///< Defines a transformation curve for the incoming velocity values, affecting the VCF.              curve_type_t       VCFVelocityCurve;              ///< Defines a transformation curve for the incoming velocity values, affecting the VCF. @deprecated Don't alter directly, use SetVCFVelocityCurve() instead!
432              uint8_t            VCFVelocityScale;              ///< (0-127) Amount velocity controls VCF cutoff frequency (only if no other VCF cutoff controller is defined).              uint8_t            VCFVelocityScale;              ///< (0-127) Amount velocity controls VCF cutoff frequency (only if no other VCF cutoff controller is defined, otherwise this is the minimum cutoff). @deprecated Don't alter directly, use SetVCFVelocityScale() instead!
433              uint8_t            VCFVelocityDynamicRange;       ///< 0x04 = lowest, 0x00 = highest              uint8_t            VCFVelocityDynamicRange;       ///< 0x04 = lowest, 0x00 = highest . @deprecated Don't alter directly, use SetVCFVelocityDynamicRange() instead!
434              uint8_t            VCFResonance;                  ///< Firm internal filter resonance weight.              uint8_t            VCFResonance;                  ///< Firm internal filter resonance weight.
435              bool               VCFResonanceDynamic;           ///< If <i>true</i>: Increases the resonance Q according to changes of controllers that actually control the VCF cutoff frequency (EG2, ext. VCF MIDI controller).              bool               VCFResonanceDynamic;           ///< If <i>true</i>: Increases the resonance Q according to changes of controllers that actually control the VCF cutoff frequency (EG2, ext. VCF MIDI controller).
436              vcf_res_ctrl_t     VCFResonanceController;        ///< Specifies which external controller has influence on the filter resonance Q.              vcf_res_ctrl_t     VCFResonanceController;        ///< Specifies which external controller has influence on the filter resonance Q.
437              bool               VCFKeyboardTracking;           ///< If <i>true</i>: VCF cutoff frequence will be dependend to the note key position relative to the defined breakpoint value.              bool               VCFKeyboardTracking;           ///< If <i>true</i>: VCF cutoff frequence will be dependend to the note key position relative to the defined breakpoint value.
438              uint8_t            VCFKeyboardTrackingBreakpoint; ///< See VCFKeyboardTracking (0 - 127).              uint8_t            VCFKeyboardTrackingBreakpoint; ///< See VCFKeyboardTracking (0 - 127).
439              // Key Velocity Transformations              // Key Velocity Transformations
440              curve_type_t       VelocityResponseCurve;         ///< Defines a transformation curve to the incoming velocity values affecting amplitude.              curve_type_t       VelocityResponseCurve;         ///< Defines a transformation curve to the incoming velocity values affecting amplitude (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseCurve() instead!
441              uint8_t            VelocityResponseDepth;         ///< Dynamic range of velocity affecting amplitude (0 - 4).              uint8_t            VelocityResponseDepth;         ///< Dynamic range of velocity affecting amplitude (0 - 4) (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseDepth() instead!
442              uint8_t            VelocityResponseCurveScaling;  ///< 0 - 127              uint8_t            VelocityResponseCurveScaling;  ///< 0 - 127 (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseCurveScaling() instead!
443              curve_type_t       ReleaseVelocityResponseCurve;  ///< Defines a transformation curve to the incoming release veloctiy values affecting envelope times.              curve_type_t       ReleaseVelocityResponseCurve;  ///< Defines a transformation curve to the incoming release veloctiy values affecting envelope times. @deprecated Don't alter directly, use SetReleaseVelocityResponseCurve() instead!
444              uint8_t            ReleaseVelocityResponseDepth;  ///< Dynamic range of release velocity affecting envelope time (0 - 4).              uint8_t            ReleaseVelocityResponseDepth;  ///< Dynamic range of release velocity affecting envelope time (0 - 4). @deprecated Don't alter directly, use SetReleaseVelocityResponseDepth() instead!
445              uint8_t            ReleaseTriggerDecay;           ///< 0 - 8              uint8_t            ReleaseTriggerDecay;           ///< 0 - 8
446              // Mix / Layer              // Mix / Layer
447              crossfade_t        Crossfade;              crossfade_t        Crossfade;
# Line 383  namespace gig { Line 449  namespace gig {
449              dim_bypass_ctrl_t  DimensionBypass;               ///< If defined, the MIDI controller can switch on/off the dimension in realtime.              dim_bypass_ctrl_t  DimensionBypass;               ///< If defined, the MIDI controller can switch on/off the dimension in realtime.
450              int8_t             Pan;                           ///< Panorama / Balance (-64..0..63 <-> left..middle..right)              int8_t             Pan;                           ///< Panorama / Balance (-64..0..63 <-> left..middle..right)
451              bool               SelfMask;                      ///< If <i>true</i>: high velocity notes will stop low velocity notes at the same note, with that you can save voices that wouldn't be audible anyway.              bool               SelfMask;                      ///< If <i>true</i>: high velocity notes will stop low velocity notes at the same note, with that you can save voices that wouldn't be audible anyway.
452              attenuation_ctrl_t AttenuationControl;            ///< MIDI Controller which has influence on the volume level of the sample (or entire sample group).              attenuation_ctrl_t AttenuationController;         ///< MIDI Controller which has influence on the volume level of the sample (or entire sample group).
453              bool               InvertAttenuationControl;      ///< Inverts the values coming from the defined Attenuation Controller.              bool               InvertAttenuationController;   ///< Inverts the values coming from the defined Attenuation Controller.
454              uint8_t            AttenuationControlTreshold;    ///< 0-127              uint8_t            AttenuationControllerThreshold;///< 0-127
455              uint8_t            ChannelOffset;                 ///< Audio output where the audio signal of the dimension region should be routed to (0 - 9).              uint8_t            ChannelOffset;                 ///< Audio output where the audio signal of the dimension region should be routed to (0 - 9).
456              bool               SustainDefeat;                 ///< If <i>true</i>: Sustain pedal will not hold a note.              bool               SustainDefeat;                 ///< If <i>true</i>: Sustain pedal will not hold a note.
457              bool               MSDecode;                      ///< Gigastudio flag: defines if Mid Side Recordings should be decoded.              bool               MSDecode;                      ///< Gigastudio flag: defines if Mid Side Recordings should be decoded.
458              uint16_t           SampleStartOffset;             ///< Number of samples the sample start should be moved (0 - 2000).              uint16_t           SampleStartOffset;             ///< Number of samples the sample start should be moved (0 - 2000).
459                double             SampleAttenuation;             ///< Sample volume (calculated from DLS::Sampler::Gain)
460                uint8_t            DimensionUpperLimits[8];       ///< gig3: defines the upper limit of the dimension values for this dimension region. In case you wondered why this is defined on DimensionRegion level and not on Region level: the zone sizes (upper limits) of the velocity dimension can indeed differ in the individual dimension regions, depending on which zones of the other dimension types are currently selected. So this is exceptional for the velocity dimension only. All other dimension types have the same dimension zone sizes for every single DimensionRegion (of the sample Region).
461    
462              // derived attributes from DLS::Sampler              // derived attributes from DLS::Sampler
463              DLS::Sampler::UnityNote;              using DLS::Sampler::UnityNote;
464              DLS::Sampler::FineTune;              using DLS::Sampler::FineTune;
465              DLS::Sampler::Gain;              using DLS::Sampler::Gain;
466              DLS::Sampler::SampleLoops;              using DLS::Sampler::SampleLoops;
467              DLS::Sampler::pSampleLoops;              using DLS::Sampler::pSampleLoops;
468    
469              // Methods              // own methods
470              double GetVelocityAttenuation(uint8_t MIDIKeyVelocity);              double GetVelocityAttenuation(uint8_t MIDIKeyVelocity);
471                double GetVelocityRelease(uint8_t MIDIKeyVelocity);
472                double GetVelocityCutoff(uint8_t MIDIKeyVelocity);
473                void SetVelocityResponseCurve(curve_type_t curve);
474                void SetVelocityResponseDepth(uint8_t depth);
475                void SetVelocityResponseCurveScaling(uint8_t scaling);
476                void SetReleaseVelocityResponseCurve(curve_type_t curve);
477                void SetReleaseVelocityResponseDepth(uint8_t depth);
478                void SetVCFCutoffController(vcf_cutoff_ctrl_t controller);
479                void SetVCFVelocityCurve(curve_type_t curve);
480                void SetVCFVelocityDynamicRange(uint8_t range);
481                void SetVCFVelocityScale(uint8_t scaling);
482                Region* GetParent() const;
483                // derived methods
484                using DLS::Sampler::AddSampleLoop;
485                using DLS::Sampler::DeleteSampleLoop;
486                // overridden methods
487                virtual void SetGain(int32_t gain);
488                virtual void UpdateChunks(progress_t* pProgress);
489                virtual void CopyAssign(const DimensionRegion* orig);
490          protected:          protected:
491              DimensionRegion(RIFF::List* _3ewl);              uint8_t* VelocityTable; ///< For velocity dimensions with custom defined zone ranges only: used for fast converting from velocity MIDI value to dimension bit number.
492                DimensionRegion(Region* pParent, RIFF::List* _3ewl);
493                DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src);
494             ~DimensionRegion();             ~DimensionRegion();
495                void CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples);
496                void serialize(Serialization::Archive* archive);
497              friend class Region;              friend class Region;
498                friend class Serialization::Archive;
499          private:          private:
500                typedef enum { ///< Used to decode attenuation, EG1 and EG2 controller
501                    // official leverage controllers as they were defined in the original Gigasampler/GigaStudio format:
502                    _lev_ctrl_none              = 0x00,
503                    _lev_ctrl_modwheel          = 0x03, ///< Modulation Wheel (MIDI Controller 1)
504                    _lev_ctrl_breath            = 0x05, ///< Breath Controller (Coarse, MIDI Controller 2)
505                    _lev_ctrl_foot              = 0x07, ///< Foot Pedal (Coarse, MIDI Controller 4)
506                    _lev_ctrl_effect1           = 0x0d, ///< Effect Controller 1 (Coarse, MIDI Controller 12)
507                    _lev_ctrl_effect2           = 0x0f, ///< Effect Controller 2 (Coarse, MIDI Controller 13)
508                    _lev_ctrl_genpurpose1       = 0x11, ///< General Purpose Controller 1 (Slider, MIDI Controller 16)
509                    _lev_ctrl_genpurpose2       = 0x13, ///< General Purpose Controller 2 (Slider, MIDI Controller 17)
510                    _lev_ctrl_genpurpose3       = 0x15, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
511                    _lev_ctrl_genpurpose4       = 0x17, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
512                    _lev_ctrl_portamentotime    = 0x0b, ///< Portamento Time (Coarse, MIDI Controller 5)
513                    _lev_ctrl_sustainpedal      = 0x01, ///< Sustain Pedal (MIDI Controller 64)
514                    _lev_ctrl_portamento        = 0x19, ///< Portamento (MIDI Controller 65)
515                    _lev_ctrl_sostenutopedal    = 0x1b, ///< Sostenuto Pedal (MIDI Controller 66)
516                    _lev_ctrl_softpedal         = 0x09, ///< Soft Pedal (MIDI Controller 67)
517                    _lev_ctrl_genpurpose5       = 0x1d, ///< General Purpose Controller 5 (Button, MIDI Controller 80)
518                    _lev_ctrl_genpurpose6       = 0x1f, ///< General Purpose Controller 6 (Button, MIDI Controller 81)
519                    _lev_ctrl_genpurpose7       = 0x21, ///< General Purpose Controller 7 (Button, MIDI Controller 82)
520                    _lev_ctrl_genpurpose8       = 0x23, ///< General Purpose Controller 8 (Button, MIDI Controller 83)
521                    _lev_ctrl_effect1depth      = 0x25, ///< Effect 1 Depth (MIDI Controller 91)
522                    _lev_ctrl_effect2depth      = 0x27, ///< Effect 2 Depth (MIDI Controller 92)
523                    _lev_ctrl_effect3depth      = 0x29, ///< Effect 3 Depth (MIDI Controller 93)
524                    _lev_ctrl_effect4depth      = 0x2b, ///< Effect 4 Depth (MIDI Controller 94)
525                    _lev_ctrl_effect5depth      = 0x2d, ///< Effect 5 Depth (MIDI Controller 95)
526                    _lev_ctrl_channelaftertouch = 0x2f, ///< Channel Key Pressure
527                    _lev_ctrl_velocity          = 0xff, ///< Key Velocity
528    
529                    // format extension (these controllers are so far only supported by LinuxSampler & gigedit) they will *NOT* work with Gigasampler/GigaStudio !
530                    // (the assigned values here are their official MIDI CC number plus the highest bit set):
531                    _lev_ctrl_CC3_EXT           = 0x83, ///< MIDI Controller 3 [gig format extension]
532    
533                    _lev_ctrl_CC6_EXT           = 0x86, ///< Data Entry MSB (MIDI Controller 6) [gig format extension]
534                    _lev_ctrl_CC7_EXT           = 0x87, ///< Channel Volume (MIDI Controller 7) [gig format extension]
535                    _lev_ctrl_CC8_EXT           = 0x88, ///< Balance (MIDI Controller 8) [gig format extension]
536                    _lev_ctrl_CC9_EXT           = 0x89, ///< MIDI Controller 9 [gig format extension]
537                    _lev_ctrl_CC10_EXT          = 0x8a, ///< Pan (MIDI Controller 10) [gig format extension]
538                    _lev_ctrl_CC11_EXT          = 0x8b, ///< Expression Controller (MIDI Controller 11) [gig format extension]
539    
540                    _lev_ctrl_CC14_EXT          = 0x8e, ///< MIDI Controller 14 [gig format extension]
541                    _lev_ctrl_CC15_EXT          = 0x8f, ///< MIDI Controller 15 [gig format extension]
542    
543                    _lev_ctrl_CC20_EXT          = 0x94, ///< MIDI Controller 20 [gig format extension]
544                    _lev_ctrl_CC21_EXT          = 0x95, ///< MIDI Controller 21 [gig format extension]
545                    _lev_ctrl_CC22_EXT          = 0x96, ///< MIDI Controller 22 [gig format extension]
546                    _lev_ctrl_CC23_EXT          = 0x97, ///< MIDI Controller 23 [gig format extension]
547                    _lev_ctrl_CC24_EXT          = 0x98, ///< MIDI Controller 24 [gig format extension]
548                    _lev_ctrl_CC25_EXT          = 0x99, ///< MIDI Controller 25 [gig format extension]
549                    _lev_ctrl_CC26_EXT          = 0x9a, ///< MIDI Controller 26 [gig format extension]
550                    _lev_ctrl_CC27_EXT          = 0x9b, ///< MIDI Controller 27 [gig format extension]
551                    _lev_ctrl_CC28_EXT          = 0x9c, ///< MIDI Controller 28 [gig format extension]
552                    _lev_ctrl_CC29_EXT          = 0x9d, ///< MIDI Controller 29 [gig format extension]
553                    _lev_ctrl_CC30_EXT          = 0x9e, ///< MIDI Controller 30 [gig format extension]
554                    _lev_ctrl_CC31_EXT          = 0x9f, ///< MIDI Controller 31 [gig format extension]
555    
556                    _lev_ctrl_CC68_EXT          = 0xc4, ///< Legato Footswitch (MIDI Controller 68) [gig format extension]
557                    _lev_ctrl_CC69_EXT          = 0xc5, ///< Hold 2 (MIDI Controller 69) [gig format extension]
558                    _lev_ctrl_CC70_EXT          = 0xc6, ///< Sound Ctrl. 1 - Sound Variation (MIDI Controller 70) [gig format extension]
559                    _lev_ctrl_CC71_EXT          = 0xc7, ///< Sound Ctrl. 2 - Timbre (MIDI Controller 71) [gig format extension]
560                    _lev_ctrl_CC72_EXT          = 0xc8, ///< Sound Ctrl. 3 - Release Time (MIDI Controller 72) [gig format extension]
561                    _lev_ctrl_CC73_EXT          = 0xc9, ///< Sound Ctrl. 4 - Attack Time (MIDI Controller 73) [gig format extension]
562                    _lev_ctrl_CC74_EXT          = 0xca, ///< Sound Ctrl. 5 - Brightness (MIDI Controller 74) [gig format extension]
563                    _lev_ctrl_CC75_EXT          = 0xcb, ///< Sound Ctrl. 6 - Decay Time (MIDI Controller 75) [gig format extension]
564                    _lev_ctrl_CC76_EXT          = 0xcc, ///< Sound Ctrl. 7 - Vibrato Rate (MIDI Controller 76) [gig format extension]
565                    _lev_ctrl_CC77_EXT          = 0xcd, ///< Sound Ctrl. 8 - Vibrato Depth (MIDI Controller 77) [gig format extension]
566                    _lev_ctrl_CC78_EXT          = 0xce, ///< Sound Ctrl. 9 - Vibrato Delay (MIDI Controller 78) [gig format extension]
567                    _lev_ctrl_CC79_EXT          = 0xcf, ///< Sound Ctrl. 10 (MIDI Controller 79) [gig format extension]
568    
569                    _lev_ctrl_CC84_EXT          = 0xd4, ///< Portamento Control (MIDI Controller 84) [gig format extension]
570                    _lev_ctrl_CC85_EXT          = 0xd5, ///< MIDI Controller 85 [gig format extension]
571                    _lev_ctrl_CC86_EXT          = 0xd6, ///< MIDI Controller 86 [gig format extension]
572                    _lev_ctrl_CC87_EXT          = 0xd7, ///< MIDI Controller 87 [gig format extension]
573    
574                    _lev_ctrl_CC89_EXT          = 0xd9, ///< MIDI Controller 89 [gig format extension]
575                    _lev_ctrl_CC90_EXT          = 0xda, ///< MIDI Controller 90 [gig format extension]
576    
577                    _lev_ctrl_CC96_EXT          = 0xe0, ///< Data Increment (MIDI Controller 96) [gig format extension]
578                    _lev_ctrl_CC97_EXT          = 0xe1, ///< Data Decrement (MIDI Controller 97) [gig format extension]
579    
580                    _lev_ctrl_CC102_EXT         = 0xe6, ///< MIDI Controller 102 [gig format extension]
581                    _lev_ctrl_CC103_EXT         = 0xe7, ///< MIDI Controller 103 [gig format extension]
582                    _lev_ctrl_CC104_EXT         = 0xe8, ///< MIDI Controller 104 [gig format extension]
583                    _lev_ctrl_CC105_EXT         = 0xe9, ///< MIDI Controller 105 [gig format extension]
584                    _lev_ctrl_CC106_EXT         = 0xea, ///< MIDI Controller 106 [gig format extension]
585                    _lev_ctrl_CC107_EXT         = 0xeb, ///< MIDI Controller 107 [gig format extension]
586                    _lev_ctrl_CC108_EXT         = 0xec, ///< MIDI Controller 108 [gig format extension]
587                    _lev_ctrl_CC109_EXT         = 0xed, ///< MIDI Controller 109 [gig format extension]
588                    _lev_ctrl_CC110_EXT         = 0xee, ///< MIDI Controller 110 [gig format extension]
589                    _lev_ctrl_CC111_EXT         = 0xef, ///< MIDI Controller 111 [gig format extension]
590                    _lev_ctrl_CC112_EXT         = 0xf0, ///< MIDI Controller 112 [gig format extension]
591                    _lev_ctrl_CC113_EXT         = 0xf1, ///< MIDI Controller 113 [gig format extension]
592                    _lev_ctrl_CC114_EXT         = 0xf2, ///< MIDI Controller 114 [gig format extension]
593                    _lev_ctrl_CC115_EXT         = 0xf3, ///< MIDI Controller 115 [gig format extension]
594                    _lev_ctrl_CC116_EXT         = 0xf4, ///< MIDI Controller 116 [gig format extension]
595                    _lev_ctrl_CC117_EXT         = 0xf5, ///< MIDI Controller 117 [gig format extension]
596                    _lev_ctrl_CC118_EXT         = 0xf6, ///< MIDI Controller 118 [gig format extension]
597                    _lev_ctrl_CC119_EXT         = 0xf7  ///< MIDI Controller 119 [gig format extension]
598                } _lev_ctrl_t;
599              typedef std::map<uint32_t, double*> VelocityTableMap;              typedef std::map<uint32_t, double*> VelocityTableMap;
600    
601              static uint              Instances;                  ///< Number of DimensionRegion instances.              static size_t            Instances;                  ///< Number of DimensionRegion instances.
602              static VelocityTableMap* pVelocityTables;            ///< Contains the tables corresponding to the various velocity parameters (VelocityResponseCurve and VelocityResponseDepth).              static VelocityTableMap* pVelocityTables;            ///< Contains the tables corresponding to the various velocity parameters (VelocityResponseCurve and VelocityResponseDepth).
603              double*                  pVelocityAttenuationTable;  ///< Points to the velocity table corresponding to the velocity parameters of this DimensionRegion.              double*                  pVelocityAttenuationTable;  ///< Points to the velocity table corresponding to the velocity parameters of this DimensionRegion.
604                double*                  pVelocityReleaseTable;      ///< Points to the velocity table corresponding to the release velocity parameters of this DimensionRegion
605                double*                  pVelocityCutoffTable;       ///< Points to the velocity table corresponding to the filter velocity parameters of this DimensionRegion
606                Region*                  pRegion;
607    
608                leverage_ctrl_t DecodeLeverageController(_lev_ctrl_t EncodedController);
609                _lev_ctrl_t     EncodeLeverageController(leverage_ctrl_t DecodedController);
610                double* GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth);
611                double* GetCutoffVelocityTable(curve_type_t vcfVelocityCurve, uint8_t vcfVelocityDynamicRange, uint8_t vcfVelocityScale, vcf_cutoff_ctrl_t vcfCutoffController);
612                double* GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);
613                double* CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);
614      };      };
615    
616      /** Encapsulates sample waves used for playback. */      /** @brief Encapsulates sample waves of Gigasampler/GigaStudio files used for playback.
617         *
618         * This class provides access to the actual audio sample data of a
619         * Gigasampler/GigaStudio file. Along to the actual sample data, it also
620         * provides access to the sample's meta informations like bit depth,
621         * sample rate, encoding type, but also loop informations. The latter may be
622         * used by instruments for resembling sounds with arbitary note lengths.
623         *
624         * In case you created a new sample with File::AddSample(), you should
625         * first update all attributes with the desired meta informations
626         * (amount of channels, bit depth, sample rate, etc.), then call
627         * Resize() with the desired sample size, followed by File::Save(), this
628         * will create the mandatory RIFF chunk which will hold the sample wave
629         * data and / or resize the file so you will be able to Write() the
630         * sample data directly to disk.
631         *
632         * @e Caution: for gig synthesis, most looping relevant information are
633         * retrieved from the respective DimensionRegon instead from the Sample
634         * itself. This was made for allowing different loop definitions for the
635         * same sample under different conditions.
636         *
637         * Since the gig format was designed as extension to the DLS file format,
638         * this class is derived from the DLS::Sample class. So also refer to
639         * DLS::Sample for additional informations, class attributes and methods.
640         */
641      class Sample : public DLS::Sample {      class Sample : public DLS::Sample {
642          public:          public:
             uint16_t       SampleGroup;  
643              uint32_t       Manufacturer;      ///< Specifies the MIDI Manufacturer's Association (MMA) Manufacturer code for the sampler intended to receive this file's waveform. If no particular manufacturer is to be specified, a value of 0 should be used.              uint32_t       Manufacturer;      ///< Specifies the MIDI Manufacturer's Association (MMA) Manufacturer code for the sampler intended to receive this file's waveform. If no particular manufacturer is to be specified, a value of 0 should be used.
644              uint32_t       Product;           ///< Specifies the MIDI model ID defined by the manufacturer corresponding to the Manufacturer field. If no particular manufacturer's product is to be specified, a value of 0 should be used.              uint32_t       Product;           ///< Specifies the MIDI model ID defined by the manufacturer corresponding to the Manufacturer field. If no particular manufacturer's product is to be specified, a value of 0 should be used.
645              uint32_t       SamplePeriod;      ///< Specifies the duration of time that passes during the playback of one sample in nanoseconds (normally equal to 1 / Samplers Per Second, where Samples Per Second is the value found in the format chunk).              uint32_t       SamplePeriod;      ///< Specifies the duration of time that passes during the playback of one sample in nanoseconds (normally equal to 1 / Samples Per Second, where Samples Per Second is the value found in the format chunk), don't bother to update this attribute, it won't be saved.
646              uint32_t       MIDIUnityNote;     ///< Specifies the musical note at which the sample will be played at it's original sample rate.              uint32_t       MIDIUnityNote;     ///< Specifies the musical note at which the sample will be played at it's original sample rate.
647              uint32_t       FineTune;          ///< Specifies the fraction of a semitone up from the specified MIDI unity note field. A value of 0x80000000 means 1/2 semitone (50 cents) and a value of 0x00000000 means no fine tuning between semitones.              uint32_t       FineTune;          ///< Specifies the fraction of a semitone up from the specified MIDI unity note field. A value of 0x80000000 means 1/2 semitone (50 cents) and a value of 0x00000000 means no fine tuning between semitones.
648              smpte_format_t SMPTEFormat;       ///< Specifies the Society of Motion Pictures and Television E time format used in the following <i>SMPTEOffset</i> field. If a value of 0 is set, <i>SMPTEOffset</i> should also be set to 0.              smpte_format_t SMPTEFormat;       ///< Specifies the Society of Motion Pictures and Television E time format used in the following <i>SMPTEOffset</i> field. If a value of 0 is set, <i>SMPTEOffset</i> should also be set to 0.
649              uint32_t       SMPTEOffset;       ///< The SMPTE Offset value specifies the time offset to be used for the synchronization / calibration to the first sample in the waveform. This value uses a format of 0xhhmmssff where hh is a signed value that specifies the number of hours (-23 to 23), mm is an unsigned value that specifies the number of minutes (0 to 59), ss is an unsigned value that specifies the number of seconds (0 to 59) and ff is an unsigned value that specifies the number of frames (0 to -1).              uint32_t       SMPTEOffset;       ///< The SMPTE Offset value specifies the time offset to be used for the synchronization / calibration to the first sample in the waveform. This value uses a format of 0xhhmmssff where hh is a signed value that specifies the number of hours (-23 to 23), mm is an unsigned value that specifies the number of minutes (0 to 59), ss is an unsigned value that specifies the number of seconds (0 to 59) and ff is an unsigned value that specifies the number of frames (0 to -1).
650              uint32_t       Loops;             ///< Number of defined sample loops (so far only seen single loops in gig files - please report me if you encounter more!).              uint32_t       Loops;             ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: Number of defined sample loops. So far only seen single loops in gig files - please report if you encounter more!)
651              uint32_t       LoopID;            ///< Specifies the unique ID that corresponds to one of the defined cue points in the cue point list (only if Loops > 0), as the Gigasampler format only allows one loop definition at the moment, this attribute isn't really useful for anything.              uint32_t       LoopID;            ///< Specifies the unique ID that corresponds to one of the defined cue points in the cue point list (only if Loops > 0), as the Gigasampler format only allows one loop definition at the moment, this attribute isn't really useful for anything.
652              loop_type_t    LoopType;          ///< The type field defines how the waveform samples will be looped (only if Loops > 0).              loop_type_t    LoopType;          ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The type field defines how the waveform samples will be looped.)
653              uint32_t       LoopStart;         ///< The start value specifies the offset (in sample points) in the waveform data of the first sample to be played in the loop (only if Loops > 0).              uint32_t       LoopStart;         ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The start value specifies the offset [in sample points] in the waveform data of the first sample to be played in the loop [only if Loops > 0].)
654              uint32_t       LoopEnd;           ///< The end value specifies the offset (in sample points) in the waveform data which represents the end of the loop (only if Loops > 0).              uint32_t       LoopEnd;           ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The end value specifies the offset [in sample points] in the waveform data which represents the end of the loop [only if Loops > 0].)
655              uint32_t       LoopSize;          ///< Length of the looping area (in sample points) which is equivalent to <i>LoopEnd - LoopStart</i>.              uint32_t       LoopSize;          ///< @e Caution: Use the respective fields in the DimensionRegion instead of this one! (Intended purpose: Length of the looping area [in sample points] which is equivalent to @code LoopEnd - LoopStart @endcode.)
656              uint32_t       LoopFraction;      ///< The fractional value specifies a fraction of a sample at which to loop (only if Loops > 0). This allows a loop to be fine tuned at a resolution greater than one sample. A value of 0 means no fraction, a value of 0x80000000 means 1/2 of a sample length. 0xFFFFFFFF is the smallest fraction of a sample that can be represented.              uint32_t       LoopFraction;      ///< The fractional value specifies a fraction of a sample at which to loop. This allows a loop to be fine tuned at a resolution greater than one sample. A value of 0 means no fraction, a value of 0x80000000 means 1/2 of a sample length. 0xFFFFFFFF is the smallest fraction of a sample that can be represented.
657              uint32_t       LoopPlayCount;     ///< Number of times the loop should be played (only if Loops > 0, a value of 0 = infinite).              uint32_t       LoopPlayCount;     ///< Number of times the loop should be played (a value of 0 = infinite).
658              bool           Compressed;        ///< If the sample wave is compressed (probably just interesting for instrument and sample editors, as this library already handles the decompression in it's sample access methods anyway).              bool           Compressed;        ///< If the sample wave is compressed (probably just interesting for instrument and sample editors, as this library already handles the decompression in it's sample access methods anyway).
659                uint32_t       TruncatedBits;     ///< For 24-bit compressed samples only: number of bits truncated during compression (0, 4 or 6)
660                bool           Dithered;          ///< For 24-bit compressed samples only: if dithering was used during compression with bit reduction
661    
662              // own methods              // own methods
663              buffer_t      LoadSampleData();              buffer_t      LoadSampleData();
664              buffer_t      LoadSampleData(unsigned long SampleCount);              buffer_t      LoadSampleData(file_offset_t SampleCount);
665              buffer_t      LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount);              buffer_t      LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount);
666              buffer_t      LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount);              buffer_t      LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount);
667              buffer_t      GetCache();              buffer_t      GetCache();
668                // own static methods
669                static buffer_t CreateDecompressionBuffer(file_offset_t MaxReadSize);
670                static void     DestroyDecompressionBuffer(buffer_t& DecompressionBuffer);
671              // overridden methods              // overridden methods
672              void          ReleaseSampleData();              void          ReleaseSampleData();
673              unsigned long SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence = RIFF::stream_start);              void          Resize(file_offset_t NewSize);
674              unsigned long GetPos();              file_offset_t SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence = RIFF::stream_start);
675              unsigned long Read(void* pBuffer, unsigned long SampleCount);              file_offset_t GetPos() const;
676              unsigned long ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState);              file_offset_t Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer = NULL);
677          protected:              file_offset_t ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState, DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer = NULL);
678              static unsigned int  Instances;               ///< Number of instances of class Sample.              file_offset_t Write(void* pBuffer, file_offset_t SampleCount);
679              static unsigned long DecompressionBufferSize; ///< Current size of the decompression buffer.              Group*        GetGroup() const;
680              static void*         pDecompressionBuffer;    ///< Small buffer used for decompression only.              virtual void  UpdateChunks(progress_t* pProgress);
681              unsigned long        FrameOffset;             ///< Current offset (sample points) in current sample frame (for decompression only).              void CopyAssignMeta(const Sample* orig);
682              unsigned long*       FrameTable;              ///< For positioning within compressed samples only: stores the offset values for each frame.              void CopyAssignWave(const Sample* orig);
683              unsigned long        SamplePos;               ///< For compressed samples only: stores the current position (in sample points).              uint32_t GetWaveDataCRC32Checksum();
684                bool VerifyWaveData(uint32_t* pActually = NULL);
685            protected:
686                static size_t        Instances;               ///< Number of instances of class Sample.
687                static buffer_t      InternalDecompressionBuffer; ///< Buffer used for decompression as well as for truncation of 24 Bit -> 16 Bit samples.
688                Group*               pGroup;                  ///< pointer to the Group this sample belongs to (always not-NULL)
689                file_offset_t        FrameOffset;             ///< Current offset (sample points) in current sample frame (for decompression only).
690                file_offset_t*       FrameTable;              ///< For positioning within compressed samples only: stores the offset values for each frame.
691                file_offset_t        SamplePos;               ///< For compressed samples only: stores the current position (in sample points).
692                file_offset_t        SamplesInLastFrame;      ///< For compressed samples only: length of the last sample frame.
693                file_offset_t        WorstCaseFrameSize;      ///< For compressed samples only: size (in bytes) of the largest possible sample frame.
694                file_offset_t        SamplesPerFrame;         ///< For compressed samples only: number of samples in a full sample frame.
695              buffer_t             RAMCache;                ///< Buffers samples (already uncompressed) in RAM.              buffer_t             RAMCache;                ///< Buffers samples (already uncompressed) in RAM.
696                unsigned long        FileNo;                  ///< File number (> 0 when sample is stored in an extension file, 0 when it's in the gig)
697                RIFF::Chunk*         pCk3gix;
698                RIFF::Chunk*         pCkSmpl;
699                uint32_t             crc;                     ///< Reflects CRC-32 checksum of the raw sample data at the last time when the sample's raw wave form data has been modified consciously by the user by calling Write().
700    
701              Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset);              Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo = 0, int index = -1);
702             ~Sample();             ~Sample();
703              /**              uint32_t CalculateWaveDataChecksum();
704               * Swaps the order of the data words in the given memory area  
705               * with a granularity given by \a WordSize.              // Guess size (in bytes) of a compressed sample
706               *              inline file_offset_t GuessSize(file_offset_t samples) {
707               * @param pData    - pointer to the memory area to be swapped                  // 16 bit: assume all frames are compressed - 1 byte
708               * @param AreaSize - size of the memory area to be swapped (in bytes)                  // per sample and 5 bytes header per 2048 samples
709               * @param WordSize - size of the data words (in bytes)  
710               */                  // 24 bit: assume next best compression rate - 1.5
711              inline void SwapMemoryArea(void* pData, unsigned long AreaSize, uint WordSize) {                  // bytes per sample and 13 bytes header per 256
712                  switch (WordSize) { // TODO: unefficient                  // samples
713                      case 1: {                  const file_offset_t size =
714                          uint8_t* pDst = (uint8_t*) pData;                      BitDepth == 24 ? samples + (samples >> 1) + (samples >> 8) * 13
715                          uint8_t  cache;                                     : samples + (samples >> 10) * 5;
716                          unsigned long lo = 0, hi = AreaSize - 1;                  // Double for stereo and add one worst case sample
717                          for (; lo < hi; hi--, lo++) {                  // frame
718                              cache    = pDst[lo];                  return (Channels == 2 ? size << 1 : size) + WorstCaseFrameSize;
                             pDst[lo] = pDst[hi];  
                             pDst[hi] = cache;  
                         }  
                         break;  
                     }  
                     case 2: {  
                         uint16_t* pDst = (uint16_t*) pData;  
                         uint16_t  cache;  
                         unsigned long lo = 0, hi = (AreaSize >> 1) - 1;  
                         for (; lo < hi; hi--, lo++) {  
                             cache    = pDst[lo];  
                             pDst[lo] = pDst[hi];  
                             pDst[hi] = cache;  
                         }  
                         break;  
                     }  
                     case 4: {  
                         uint32_t* pDst = (uint32_t*) pData;  
                         uint32_t  cache;  
                         unsigned long lo = 0, hi = (AreaSize >> 2) - 1;  
                         for (; lo < hi; hi--, lo++) {  
                             cache    = pDst[lo];  
                             pDst[lo] = pDst[hi];  
                             pDst[hi] = cache;  
                         }  
                         break;  
                     }  
                     default: {  
                         uint8_t* pCache = new uint8_t[WordSize]; // TODO: unefficient  
                         unsigned long lo = 0, hi = AreaSize - WordSize;  
                         for (; lo < hi; hi -= WordSize, lo += WordSize) {  
                             memcpy(pCache, (uint8_t*) pData + lo, WordSize);  
                             memcpy((uint8_t*) pData + lo, (uint8_t*) pData + hi, WordSize);  
                             memcpy((uint8_t*) pData + hi, pCache, WordSize);  
                         }  
                         delete[] pCache;  
                         break;  
                     }  
                 }  
719              }              }
720              inline long Min(long A, long B) {  
721                  return (A > B) ? B : A;              // Worst case amount of sample points that can be read with the
722                // given decompression buffer.
723                inline file_offset_t WorstCaseMaxSamples(buffer_t* pDecompressionBuffer) {
724                    return (file_offset_t) ((float)pDecompressionBuffer->Size / (float)WorstCaseFrameSize * (float)SamplesPerFrame);
725              }              }
             inline long Abs(long val) { return (val > 0) ? val : -val; }  
726          private:          private:
727              void ScanCompressedSample();              void ScanCompressedSample();
728              friend class File;              friend class File;
729              friend class Region;              friend class Region;
730                friend class Group; // allow to modify protected member pGroup
731      };      };
732    
733      // TODO: <3dnl> list not used yet - not important though (just contains optional descriptions for the dimensions)      // TODO: <3dnl> list not used yet - not important though (just contains optional descriptions for the dimensions)
734      /** Defines <i>Region</i> information of an <i>Instrument</i>. */      /** @brief Defines Region information of a Gigasampler/GigaStudio instrument.
735         *
736         * A Region reflects a consecutive area (key range) on the keyboard. The
737         * individual regions in the gig format may not overlap with other regions
738         * (of the same instrument that is). Further, in the gig format a Region is
739         * merely a container for DimensionRegions (a.k.a. "Cases"). The Region
740         * itself does not provide the sample mapping or articulation informations
741         * used, even though the data structures of regions indeed provide such
742         * informations. The latter is however just of historical nature, because
743         * the gig file format was derived from the DLS file format.
744         *
745         * Each Region consists of at least one or more DimensionRegions. The actual
746         * amount of DimensionRegions depends on which kind of "dimensions" are
747         * defined for this region, and on the split / zone amount for each of those
748         * dimensions.
749         *
750         * Since the gig format was designed as extension to the DLS file format,
751         * this class is derived from the DLS::Region class. So also refer to
752         * DLS::Region for additional informations, class attributes and methods.
753         */
754      class Region : public DLS::Region {      class Region : public DLS::Region {
755          public:          public:
756              unsigned int            Dimensions;               ///< Number of defined dimensions.              unsigned int            Dimensions;               ///< Number of defined dimensions, do not alter!
757              dimension_def_t         pDimensionDefinitions[5]; ///< Defines the five possible dimensions (the dimension's controller and number of bits/splits).              dimension_def_t         pDimensionDefinitions[8]; ///< Defines the five (gig2) or eight (gig3) possible dimensions (the dimension's controller and number of bits/splits). Use AddDimension() and DeleteDimension() to create a new dimension or delete an existing one.
758              uint32_t                DimensionRegions;         ///< Total number of DimensionRegions this Region contains.              uint32_t                DimensionRegions;         ///< Total number of DimensionRegions this Region contains, do not alter!
759              DimensionRegion*        pDimensionRegions[32];    ///< Pointer array to the 32 possible dimension regions (reflects NULL for dimension regions not in use). Avoid to access the array directly and better use GetDimensionRegionByValue() instead, but of course in some cases it makes sense to use the array (e.g. iterating through all DimensionRegions).              DimensionRegion*        pDimensionRegions[256];   ///< Pointer array to the 32 (gig2) or 256 (gig3) possible dimension regions (reflects NULL for dimension regions not in use). Avoid to access the array directly and better use GetDimensionRegionByValue() instead, but of course in some cases it makes sense to use the array (e.g. iterating through all DimensionRegions). Use AddDimension() and DeleteDimension() to create a new dimension or delete an existing one (which will create or delete the respective dimension region(s) automatically).
760                unsigned int            Layers;                   ///< Amount of defined layers (1 - 32). A value of 1 actually means no layering, a value > 1 means there is Layer dimension. The same information can of course also be obtained by accessing pDimensionDefinitions. Do not alter this value!
761    
762              DimensionRegion* GetDimensionRegionByValue(uint Dim4Val, uint Dim3Val, uint Dim2Val, uint Dim1Val, uint Dim0Val);              // own methods
763              DimensionRegion* GetDimensionRegionByBit(uint8_t Dim4Bit, uint8_t Dim3Bit, uint8_t Dim2Bit, uint8_t Dim1Bit, uint8_t Dim0Bit);              DimensionRegion* GetDimensionRegionByValue(const uint DimValues[8]);
764                DimensionRegion* GetDimensionRegionByBit(const uint8_t DimBits[8]);
765                int              GetDimensionRegionIndexByValue(const uint DimValues[8]);
766              Sample*          GetSample();              Sample*          GetSample();
767                void             AddDimension(dimension_def_t* pDimDef);
768                void             DeleteDimension(dimension_def_t* pDimDef);
769                dimension_def_t* GetDimensionDefinition(dimension_t type);
770                void             DeleteDimensionZone(dimension_t type, int zone);
771                void             SplitDimensionZone(dimension_t type, int zone);
772                void             SetDimensionType(dimension_t oldType, dimension_t newType);
773                // overridden methods
774                virtual void     SetKeyRange(uint16_t Low, uint16_t High);
775                virtual void     UpdateChunks(progress_t* pProgress);
776                virtual void     CopyAssign(const Region* orig);
777          protected:          protected:
             uint8_t VelocityTable[128]; ///< For velocity dimensions with custom defined zone ranges only: used for fast converting from velocity MIDI value to dimension bit number.  
   
778              Region(Instrument* pInstrument, RIFF::List* rgnList);              Region(Instrument* pInstrument, RIFF::List* rgnList);
779              void LoadDimensionRegions(RIFF::List* rgn);              void LoadDimensionRegions(RIFF::List* rgn);
780              Sample* GetSampleFromWavePool(unsigned int WavePoolTableIndex);              void UpdateVelocityTable();
781                Sample* GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress = NULL);
782                void CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples);
783                DimensionRegion* GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase);
784             ~Region();             ~Region();
785              friend class Instrument;              friend class Instrument;
786      };      };
787    
788      /** Provides all neccessary information for the synthesis of an <i>Instrument</i>. */      /** @brief Abstract base class for all MIDI rules.
789         *
790         * Note: Instead of using MIDI rules, we recommend you using real-time
791         * instrument scripts instead. Read about the reasons below.
792         *
793         * MIDI Rules (also called "iMIDI rules" or "intelligent MIDI rules") were
794         * introduced with GigaStudio 4 as an attempt to increase the power of
795         * potential user controls over sounds. At that point other samplers already
796         * supported certain powerful user control features, which were not possible
797         * with GigaStudio yet. For example triggering new notes by MIDI CC
798         * controller.
799         *
800         * Such extended features however were usually implemented by other samplers
801         * by requiring the sound designer to write an instrument script which the
802         * designer would then bundle with the respective instrument file. Such
803         * scripts are essentially text files, using a very specific programming
804         * language for the purpose of controlling the sampler in real-time. Since
805         * however musicians are not typically keen to writing such cumbersome
806         * script files, the GigaStudio designers decided to implement such extended
807         * features completely without instrument scripts. Instead they created a
808         * set of rules, which could be defined and altered conveniently by mouse
809         * clicks in GSt's instrument editor application. The downside of this
810         * overall approach however, was that those MIDI rules were very limited in
811         * practice. As sound designer you easily came across the possiblities such
812         * MIDI rules were able to offer.
813         *
814         * Due to such severe use case constraints, support for MIDI rules is quite
815         * limited in libgig. At the moment only the "Control Trigger", "Alternator"
816         * and the "Legato" MIDI rules are supported by libgig. Consequently the
817         * graphical instrument editor application gigedit just supports the
818         * "Control Trigger" and "Legato" MIDI rules, and LinuxSampler even does not
819         * support any MIDI rule type at all and LinuxSampler probably will not
820         * support MIDI rules in future either.
821         *
822         * Instead of using MIDI rules, we introduced real-time instrument scripts
823         * as extension to the original GigaStudio file format. This script based
824         * solution is much more powerful than MIDI rules and is already supported
825         * by libgig, gigedit and LinuxSampler.
826         *
827         * @deprecated Just provided for backward compatiblity, use Script for new
828         *             instruments instead.
829         */
830        class MidiRule {
831            public:
832                virtual ~MidiRule() { }
833            protected:
834                virtual void UpdateChunks(uint8_t* pData) const = 0;
835                friend class Instrument;
836        };
837    
838        /** @brief MIDI rule for triggering notes by control change events.
839         *
840         * A "Control Trigger MIDI rule" allows to trigger new notes by sending MIDI
841         * control change events to the sampler.
842         *
843         * Note: "Control Trigger" MIDI rules are only supported by gigedit, but not
844         * by LinuxSampler. We recommend you using real-time instrument scripts
845         * instead. Read more about the details and reasons for this in the
846         * description of the MidiRule base class.
847         *
848         * @deprecated Just provided for backward compatiblity, use Script for new
849         *             instruments instead. See description of MidiRule for details.
850         */
851        class MidiRuleCtrlTrigger : public MidiRule {
852            public:
853                uint8_t ControllerNumber;   ///< MIDI controller number.
854                uint8_t Triggers;           ///< Number of triggers.
855                struct trigger_t {
856                    uint8_t TriggerPoint;   ///< The CC value to pass for the note to be triggered.
857                    bool    Descending;     ///< If the change in CC value should be downwards.
858                    uint8_t VelSensitivity; ///< How sensitive the velocity should be to the speed of the controller change.
859                    uint8_t Key;            ///< Key to trigger.
860                    bool    NoteOff;        ///< If a note off should be triggered instead of a note on.
861                    uint8_t Velocity;       ///< Velocity of the note to trigger. 255 means that velocity should depend on the speed of the controller change.
862                    bool    OverridePedal;  ///< If a note off should be triggered even if the sustain pedal is down.
863                } pTriggers[32];
864    
865            protected:
866                MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg);
867                MidiRuleCtrlTrigger();
868                void UpdateChunks(uint8_t* pData) const;
869                friend class Instrument;
870        };
871    
872        /** @brief MIDI rule for instruments with legato samples.
873         *
874         * A "Legato MIDI rule" allows playing instruments resembling the legato
875         * playing technique. In the past such legato articulations were tried to be
876         * simulated by pitching the samples of the instrument. However since
877         * usually a high amount of pitch is needed for legatos, this always sounded
878         * very artificial and unrealistic. The "Legato MIDI rule" thus uses another
879         * approach. Instead of pitching the samples, it allows the sound designer
880         * to bundle separate, additional samples for the individual legato
881         * situations and the legato rules defined which samples to be played in
882         * which situation.
883         *
884         * Note: "Legato MIDI rules" are only supported by gigedit, but not
885         * by LinuxSampler. We recommend you using real-time instrument scripts
886         * instead. Read more about the details and reasons for this in the
887         * description of the MidiRule base class.
888         *
889         * @deprecated Just provided for backward compatiblity, use Script for new
890         *             instruments instead. See description of MidiRule for details.
891         */
892        class MidiRuleLegato : public MidiRule {
893            public:
894                uint8_t LegatoSamples;     ///< Number of legato samples per key in each direction (always 12)
895                bool BypassUseController;  ///< If a controller should be used to bypass the sustain note
896                uint8_t BypassKey;         ///< Key to be used to bypass the sustain note
897                uint8_t BypassController;  ///< Controller to be used to bypass the sustain note
898                uint16_t ThresholdTime;    ///< Maximum time (ms) between two notes that should be played legato
899                uint16_t ReleaseTime;      ///< Release time
900                range_t KeyRange;          ///< Key range for legato notes
901                uint8_t ReleaseTriggerKey; ///< Key triggering release samples
902                uint8_t AltSustain1Key;    ///< Key triggering alternate sustain samples
903                uint8_t AltSustain2Key;    ///< Key triggering a second set of alternate sustain samples
904    
905            protected:
906                MidiRuleLegato(RIFF::Chunk* _3ewg);
907                MidiRuleLegato();
908                void UpdateChunks(uint8_t* pData) const;
909                friend class Instrument;
910        };
911    
912        /** @brief MIDI rule to automatically cycle through specified sequences of different articulations.
913         *
914         * The instrument must be using the smartmidi dimension.
915         *
916         * Note: "Alternator" MIDI rules are neither supported by gigedit nor by
917         * LinuxSampler. We recommend you using real-time instrument scripts
918         * instead. Read more about the details and reasons for this in the
919         * description of the MidiRule base class.
920         *
921         * @deprecated Just provided for backward compatiblity, use Script for new
922         *             instruments instead. See description of MidiRule for details.
923         */
924        class MidiRuleAlternator : public MidiRule {
925            public:
926                uint8_t Articulations;     ///< Number of articulations in the instrument
927                String pArticulations[32]; ///< Names of the articulations
928    
929                range_t PlayRange;         ///< Key range of the playable keys in the instrument
930    
931                uint8_t Patterns;          ///< Number of alternator patterns
932                struct pattern_t {
933                    String Name;           ///< Name of the pattern
934                    int Size;              ///< Number of steps in the pattern
935                    const uint8_t& operator[](int i) const { /// Articulation to play
936                        return data[i];
937                    }
938                    uint8_t& operator[](int i) {
939                        return data[i];
940                    }
941                private:
942                    uint8_t data[32];
943                } pPatterns[32];           ///< A pattern is a sequence of articulation numbers
944    
945                typedef enum {
946                    selector_none,
947                    selector_key_switch,
948                    selector_controller
949                } selector_t;
950                selector_t Selector;       ///< Method by which pattern is chosen
951                range_t KeySwitchRange;    ///< Key range for key switch selector
952                uint8_t Controller;        ///< CC number for controller selector
953    
954                bool Polyphonic;           ///< If alternator should step forward only when all notes are off
955                bool Chained;              ///< If all patterns should be chained together
956    
957            protected:
958                MidiRuleAlternator(RIFF::Chunk* _3ewg);
959                MidiRuleAlternator();
960                void UpdateChunks(uint8_t* pData) const;
961                friend class Instrument;
962        };
963    
964        /** @brief A MIDI rule not yet implemented by libgig.
965         *
966         * This class is currently used as a place holder by libgig for MIDI rule
967         * types which are not supported by libgig yet.
968         *
969         * Note: Support for missing MIDI rule types are probably never added to
970         * libgig. We recommend you using real-time instrument scripts instead.
971         * Read more about the details and reasons for this in the description of
972         * the MidiRule base class.
973         *
974         * @deprecated Just provided for backward compatiblity, use Script for new
975         *             instruments instead. See description of MidiRule for details.
976         */
977        class MidiRuleUnknown : public MidiRule {
978            protected:
979                MidiRuleUnknown() { }
980                void UpdateChunks(uint8_t* pData) const { }
981                friend class Instrument;
982        };
983    
984        /** @brief Real-time instrument script (gig format extension).
985         *
986         * Real-time instrument scripts are user supplied small programs which can
987         * be used by instrument designers to create custom behaviors and features
988         * not available in the stock sampler engine. Features which might be very
989         * exotic or specific for the respective instrument.
990         *
991         * This is an extension of the GigaStudio format, thus a feature which was
992         * not available in the GigaStudio 4 software. It is currently only
993         * supported by LinuxSampler and gigedit. Scripts will not load with the
994         * original GigaStudio software.
995         *
996         * You find more informations about Instrument Scripts on the LinuxSampler
997         * documentation site:
998         *
999         * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/">About Instrument Scripts in General</a>
1000         * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language">Introduction to the NKSP Script Language</a>
1001         * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language/Reference/">NKSP Reference Manual</a>
1002         * - <a href="http://doc.linuxsampler.org/Gigedit/Managing_Scripts">Using Instrument Scripts with Gigedit</a>
1003         */
1004        class Script {
1005            public:
1006                enum Encoding_t {
1007                    ENCODING_ASCII = 0 ///< Standard 8 bit US ASCII character encoding (default).
1008                };
1009                enum Compression_t {
1010                    COMPRESSION_NONE = 0 ///< Is not compressed at all (default).
1011                };
1012                enum Language_t {
1013                    LANGUAGE_NKSP = 0 ///< NKSP stands for "Is Not KSP" (default). Refer to the <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language/Reference/">NKSP Reference Manual</a> for details about this script language.
1014                };
1015    
1016                String         Name;        ///< Arbitrary name of the script, which may be displayed i.e. in an instrument editor.
1017                Compression_t  Compression; ///< Whether the script was/should be compressed, and if so, which compression algorithm shall be used.
1018                Encoding_t     Encoding;    ///< Format the script's source code text is encoded with.
1019                Language_t     Language;    ///< Programming language and dialect the script is written in.
1020                bool           Bypass;      ///< Global bypass: if enabled, this script shall not be executed by the sampler for any instrument.
1021    
1022                String GetScriptAsText();
1023                void   SetScriptAsText(const String& text);
1024                void   SetGroup(ScriptGroup* pGroup);
1025                ScriptGroup* GetGroup() const;
1026                void   CopyAssign(const Script* orig);
1027            protected:
1028                Script(ScriptGroup* group, RIFF::Chunk* ckScri);
1029                virtual ~Script();
1030                void UpdateChunks(progress_t* pProgress);
1031                void RemoveAllScriptReferences();
1032                friend class ScriptGroup;
1033                friend class Instrument;
1034            private:
1035                ScriptGroup*          pGroup;
1036                RIFF::Chunk*          pChunk; ///< 'Scri' chunk
1037                std::vector<uint8_t>  data;
1038                uint32_t              crc; ///< CRC-32 checksum of the raw script data
1039        };
1040    
1041        /** @brief Group of instrument scripts (gig format extension).
1042         *
1043         * This class is simply used to sort a bunch of real-time instrument scripts
1044         * into individual groups. This allows instrument designers and script
1045         * developers to keep scripts in a certain order while working with a larger
1046         * amount of scripts in an instrument editor.
1047         *
1048         * This is an extension of the GigaStudio format, thus a feature which was
1049         * not available in the GigaStudio 4 software. It is currently only
1050         * supported by LinuxSampler and gigedit.
1051         */
1052        class ScriptGroup {
1053            public:
1054                String   Name; ///< Name of this script group. For example to be displayed in an instrument editor.
1055    
1056                Script*  GetScript(uint index);
1057                Script*  AddScript();
1058                void     DeleteScript(Script* pScript);
1059            protected:
1060                ScriptGroup(File* file, RIFF::List* lstRTIS);
1061                virtual ~ScriptGroup();
1062                void LoadScripts();
1063                void UpdateChunks(progress_t* pProgress);
1064                friend class Script;
1065                friend class File;
1066            private:
1067                File*                pFile;
1068                RIFF::List*          pList; ///< 'RTIS' list chunk
1069                std::list<Script*>*  pScripts;
1070        };
1071    
1072        /** @brief Provides access to a Gigasampler/GigaStudio instrument.
1073         *
1074         * This class provides access to Gigasampler/GigaStudio instruments
1075         * contained in .gig files. A gig instrument is merely a set of keyboard
1076         * ranges (called Region), plus some additional global informations about
1077         * the instrument. The major part of the actual instrument definition used
1078         * for the synthesis of the instrument is contained in the respective Region
1079         * object (or actually in the respective DimensionRegion object being, see
1080         * description of Region for details).
1081         *
1082         * Since the gig format was designed as extension to the DLS file format,
1083         * this class is derived from the DLS::Instrument class. So also refer to
1084         * DLS::Instrument for additional informations, class attributes and
1085         * methods.
1086         */
1087      class Instrument : protected DLS::Instrument {      class Instrument : protected DLS::Instrument {
1088          public:          public:
1089              // derived attributes from DLS::Resource              // derived attributes from DLS::Resource
1090              DLS::Resource::pInfo;              using DLS::Resource::pInfo;
1091              DLS::Resource::pDLSID;              using DLS::Resource::pDLSID;
1092              // derived attributes from DLS::Instrument              // derived attributes from DLS::Instrument
1093              DLS::Instrument::IsDrum;              using DLS::Instrument::IsDrum;
1094              DLS::Instrument::MIDIBank;              using DLS::Instrument::MIDIBank;
1095              DLS::Instrument::MIDIBankCoarse;              using DLS::Instrument::MIDIBankCoarse;
1096              DLS::Instrument::MIDIBankFine;              using DLS::Instrument::MIDIBankFine;
1097              DLS::Instrument::MIDIProgram;              using DLS::Instrument::MIDIProgram;
1098              DLS::Instrument::Regions;              using DLS::Instrument::Regions;
1099              // own attributes              // own attributes
1100              int32_t   Attenuation;       ///< in dB              int32_t   Attenuation;       ///< in dB
1101              uint16_t  EffectSend;              uint16_t  EffectSend;
# Line 566  namespace gig { Line 1106  namespace gig {
1106    
1107    
1108              // derived methods from DLS::Resource              // derived methods from DLS::Resource
1109              DLS::Resource::GetParent;              using DLS::Resource::GetParent;
1110              // overridden methods              // overridden methods
1111              Region*   GetFirstRegion();              Region*   GetFirstRegion();
1112              Region*   GetNextRegion();              Region*   GetNextRegion();
1113                Region*   AddRegion();
1114                void      DeleteRegion(Region* pRegion);
1115                void      MoveTo(Instrument* dst);
1116                virtual void UpdateChunks(progress_t* pProgress);
1117                virtual void CopyAssign(const Instrument* orig);
1118              // own methods              // own methods
1119              Region*   GetRegion(unsigned int Key);              Region*   GetRegion(unsigned int Key);
1120                MidiRule* GetMidiRule(int i);
1121                MidiRuleCtrlTrigger* AddMidiRuleCtrlTrigger();
1122                MidiRuleLegato*      AddMidiRuleLegato();
1123                MidiRuleAlternator*  AddMidiRuleAlternator();
1124                void      DeleteMidiRule(int i);
1125                // real-time instrument script methods
1126                Script*   GetScriptOfSlot(uint index);
1127                void      AddScriptSlot(Script* pScript, bool bypass = false);
1128                void      SwapScriptSlots(uint index1, uint index2);
1129                void      RemoveScriptSlot(uint index);
1130                void      RemoveScript(Script* pScript);
1131                uint      ScriptSlotCount() const;
1132                bool      IsScriptSlotBypassed(uint index);
1133                void      SetScriptSlotBypassed(uint index, bool bBypass);
1134          protected:          protected:
             Region**  pRegions;            ///< Pointer array to the regions  
1135              Region*   RegionKeyTable[128]; ///< fast lookup for the corresponding Region of a MIDI key              Region*   RegionKeyTable[128]; ///< fast lookup for the corresponding Region of a MIDI key
             int       RegionIndex;  
1136    
1137              Instrument(File* pFile, RIFF::List* insList);              Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress = NULL);
1138             ~Instrument();             ~Instrument();
1139                void CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples);
1140                void UpdateRegionKeyTable();
1141                void LoadScripts();
1142                void UpdateScriptFileOffsets();
1143              friend class File;              friend class File;
1144                friend class Region; // so Region can call UpdateRegionKeyTable()
1145            private:
1146                struct _ScriptPooolEntry {
1147                    uint32_t fileOffset;
1148                    bool     bypass;
1149                };
1150                struct _ScriptPooolRef {
1151                    Script*  script;
1152                    bool     bypass;
1153                };
1154                MidiRule** pMidiRules;
1155                std::vector<_ScriptPooolEntry> scriptPoolFileOffsets;
1156                std::vector<_ScriptPooolRef>* pScriptRefs;
1157      };      };
1158    
1159      // TODO: <3gnm> chunk not added yet (just contains the names of the sample groups)      /** @brief Group of Gigasampler samples
1160      /** Parses Gigasampler files and provides abstract access to the data. */       *
1161         * Groups help to organize a huge collection of Gigasampler samples.
1162         * Groups are not concerned at all for the synthesis, but they help
1163         * sound library developers when working on complex instruments with an
1164         * instrument editor (as long as that instrument editor supports it ;-).
1165         *
1166         * A sample is always assigned to exactly one Group. This also means
1167         * there is always at least one Group in a .gig file, no matter if you
1168         * created one yet or not.
1169         */
1170        class Group {
1171            public:
1172                String Name; ///< Stores the name of this Group.
1173    
1174                Sample* GetFirstSample();
1175                Sample* GetNextSample();
1176                void AddSample(Sample* pSample);
1177            protected:
1178                Group(File* file, RIFF::Chunk* ck3gnm);
1179                virtual ~Group();
1180                virtual void UpdateChunks(progress_t* pProgress);
1181                void MoveAll();
1182                friend class File;
1183            private:
1184                File*        pFile;
1185                RIFF::Chunk* pNameChunk; ///< '3gnm' chunk
1186        };
1187    
1188        /** @brief Provides convenient access to Gigasampler/GigaStudio .gig files.
1189         *
1190         * This is the entry class for accesing a Gigasampler/GigaStudio (.gig) file
1191         * with libgig. It allows you to open existing .gig files, modifying them
1192         * and saving them persistently either under the same file name or under a
1193         * different location.
1194         *
1195         * A .gig file is merely a monolithic file. That means samples and the
1196         * defintion of the virtual instruments are contained in the same file. A
1197         * .gig file contains an arbitrary amount of samples, and an arbitrary
1198         * amount of instruments which are referencing those samples. It is also
1199         * possible to store samples in .gig files not being referenced by any
1200         * instrument. This is not an error from the file format's point of view and
1201         * it is actually often used in practice during the design phase of new gig
1202         * instruments.
1203         *
1204         * So on toplevel of the gig file format you have:
1205         *
1206         * - A set of samples (see Sample).
1207         * - A set of virtual instruments (see Instrument).
1208         *
1209         * And as extension to the original GigaStudio format, we added:
1210         *
1211         * - Real-time instrument scripts (see Script).
1212         *
1213         * Note that the latter however is only supported by libgig, gigedit and
1214         * LinuxSampler. Scripts are not supported by the original GigaStudio
1215         * software.
1216         *
1217         * All released Gigasampler/GigaStudio file format versions are supported
1218         * (so from first Gigasampler version up to including GigaStudio 4).
1219         *
1220         * Since the gig format was designed as extension to the DLS file format,
1221         * this class is derived from the DLS::File class. So also refer to
1222         * DLS::File for additional informations, class attributes and methods.
1223         */
1224      class File : protected DLS::File {      class File : protected DLS::File {
1225          public:          public:
1226                static const DLS::version_t VERSION_2;
1227                static const DLS::version_t VERSION_3;
1228    
1229              // derived attributes from DLS::Resource              // derived attributes from DLS::Resource
1230              DLS::Resource::pInfo;              using DLS::Resource::pInfo;
1231              DLS::Resource::pDLSID;              using DLS::Resource::pDLSID;
1232              // derived attributes from DLS::File              // derived attributes from DLS::File
1233              DLS::File::pVersion;              using DLS::File::pVersion;
1234              DLS::File::Instruments;              using DLS::File::Instruments;
1235    
1236              // derived methods from DLS::Resource              // derived methods from DLS::Resource
1237              DLS::Resource::GetParent;              using DLS::Resource::GetParent;
1238                // derived methods from DLS::File
1239                using DLS::File::Save;
1240                using DLS::File::GetFileName;
1241                using DLS::File::SetFileName;
1242              // overridden  methods              // overridden  methods
1243                File();
1244              File(RIFF::File* pRIFF);              File(RIFF::File* pRIFF);
1245              Sample*     GetFirstSample();     ///< Returns a pointer to the first <i>Sample</i> object of the file, <i>NULL</i> otherwise.              Sample*     GetFirstSample(progress_t* pProgress = NULL); ///< Returns a pointer to the first <i>Sample</i> object of the file, <i>NULL</i> otherwise.
1246              Sample*     GetNextSample();      ///< Returns a pointer to the next <i>Sample</i> object of the file, <i>NULL</i> otherwise.              Sample*     GetNextSample();      ///< Returns a pointer to the next <i>Sample</i> object of the file, <i>NULL</i> otherwise.
1247                Sample*     GetSample(uint index);
1248                Sample*     AddSample();
1249                void        DeleteSample(Sample* pSample);
1250              Instrument* GetFirstInstrument(); ///< Returns a pointer to the first <i>Instrument</i> object of the file, <i>NULL</i> otherwise.              Instrument* GetFirstInstrument(); ///< Returns a pointer to the first <i>Instrument</i> object of the file, <i>NULL</i> otherwise.
1251              Instrument* GetNextInstrument();  ///< Returns a pointer to the next <i>Instrument</i> object of the file, <i>NULL</i> otherwise.              Instrument* GetNextInstrument();  ///< Returns a pointer to the next <i>Instrument</i> object of the file, <i>NULL</i> otherwise.
1252              Instrument* GetInstrument(uint index);              Instrument* GetInstrument(uint index, progress_t* pProgress = NULL);
1253             ~File() {};              Instrument* AddInstrument();
1254                Instrument* AddDuplicateInstrument(const Instrument* orig);
1255                void        DeleteInstrument(Instrument* pInstrument);
1256                Group*      GetFirstGroup(); ///< Returns a pointer to the first <i>Group</i> object of the file, <i>NULL</i> otherwise.
1257                Group*      GetNextGroup();  ///< Returns a pointer to the next <i>Group</i> object of the file, <i>NULL</i> otherwise.
1258                Group*      GetGroup(uint index);
1259                Group*      GetGroup(String name);
1260                Group*      AddGroup();
1261                void        DeleteGroup(Group* pGroup);
1262                void        DeleteGroupOnly(Group* pGroup);
1263                void        SetAutoLoad(bool b);
1264                bool        GetAutoLoad();
1265                void        AddContentOf(File* pFile);
1266                ScriptGroup* GetScriptGroup(uint index);
1267                ScriptGroup* GetScriptGroup(const String& name);
1268                ScriptGroup* AddScriptGroup();
1269                void        DeleteScriptGroup(ScriptGroup* pGroup);
1270                virtual    ~File();
1271                virtual void UpdateChunks(progress_t* pProgress);
1272          protected:          protected:
1273              typedef std::list<Sample*>     SampleList;              // overridden protected methods from DLS::File
1274              typedef std::list<Instrument*> InstrumentList;              virtual void LoadSamples();
1275                virtual void LoadInstruments();
1276              SampleList*              pSamples;              virtual void LoadGroups();
1277              SampleList::iterator     SamplesIterator;              virtual void UpdateFileOffsets();
1278              InstrumentList*          pInstruments;              // own protected methods
1279              InstrumentList::iterator InstrumentsIterator;              virtual void LoadSamples(progress_t* pProgress);
1280                virtual void LoadInstruments(progress_t* pProgress);
1281              void LoadSamples();              virtual void LoadScriptGroups();
1282              void LoadInstruments();              void SetSampleChecksum(Sample* pSample, uint32_t crc);
1283                uint32_t GetSampleChecksum(Sample* pSample);
1284                uint32_t GetSampleChecksumByIndex(int index);
1285                bool VerifySampleChecksumTable();
1286                bool RebuildSampleChecksumTable();
1287                int  GetWaveTableIndexOf(gig::Sample* pSample);
1288              friend class Region;              friend class Region;
1289                friend class Sample;
1290                friend class Instrument;
1291                friend class Group; // so Group can access protected member pRIFF
1292                friend class ScriptGroup; // so ScriptGroup can access protected member pRIFF
1293            private:
1294                std::list<Group*>*          pGroups;
1295                std::list<Group*>::iterator GroupsIterator;
1296                bool                        bAutoLoad;
1297                std::list<ScriptGroup*>*    pScriptGroups;
1298      };      };
1299    
1300      /** Will be thrown whenever a gig specific error occurs while trying to access a Gigasampler File. */      /**
1301         * Will be thrown whenever a gig specific error occurs while trying to
1302         * access a Gigasampler File. Note: In your application you should
1303         * better catch for RIFF::Exception rather than this one, except you
1304         * explicitly want to catch and handle gig::Exception, DLS::Exception
1305         * and RIFF::Exception independently, which usually shouldn't be
1306         * necessary though.
1307         */
1308      class Exception : public DLS::Exception {      class Exception : public DLS::Exception {
1309          public:          public:
1310              Exception(String Message);              Exception(String Message);
1311              void PrintMessage();              void PrintMessage();
1312      };      };
1313    
1314        String libraryName();
1315        String libraryVersion();
1316    
1317  } // namespace gig  } // namespace gig
1318    
1319  #endif // __GIG_H__  #endif // __GIG_H__

Legend:
Removed from v.24  
changed lines
  Added in v.3140

  ViewVC Help
Powered by ViewVC