/[svn]/libgig/trunk/src/gig.h
ViewVC logotype

Diff of /libgig/trunk/src/gig.h

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 24 by schoenebeck, Fri Dec 26 16:15:31 2003 UTC revision 3623 by schoenebeck, Wed Oct 2 16:30:29 2019 UTC
# Line 1  Line 1 
1  /***************************************************************************  /***************************************************************************
2   *                                                                         *   *                                                                         *
3   *   libgig - C++ cross-platform Gigasampler format file loader library    *   *   libgig - C++ cross-platform Gigasampler format file access library    *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003 by Christian Schoenebeck                           *   *   Copyright (C) 2003-2019 by Christian Schoenebeck                      *
6   *                         <cuse@users.sourceforge.net>                    *   *                              <cuse@users.sourceforge.net>               *
7   *                                                                         *   *                                                                         *
8   *   This library is free software; you can redistribute it and/or modify  *   *   This library is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 25  Line 25 
25  #define __GIG_H__  #define __GIG_H__
26    
27  #include "DLS.h"  #include "DLS.h"
28    #include <vector>
29    
30  #include <math.h>  #ifndef __has_feature
31  #include <string.h>  # define __has_feature(x) 0
32    #endif
33  /// Initial size of the sample buffer which is used for decompression of  #ifndef HAVE_RTTI
34  /// compressed sample wave streams - this value should always be bigger than  # if __GXX_RTTI || __has_feature(cxx_rtti) || _CPPRTTI
35  /// the biggest sample piece expected to be read by the sampler engine,  #  define HAVE_RTTI 1
36  /// otherwise the buffer size will be raised at runtime and thus the buffer  # else
37  /// reallocated which is time consuming and unefficient.  #  define HAVE_RTTI 0
38  #define INITIAL_SAMPLE_BUFFER_SIZE              512000 // 512 kB  # endif
39    #endif
40    #if HAVE_RTTI
41    # include <typeinfo>
42    #else
43    # warning No RTTI available!
44    #endif
45    
46  #if WORDS_BIGENDIAN  #if WORDS_BIGENDIAN
47  # define LIST_TYPE_3PRG 0x33707267  # define LIST_TYPE_3PRG 0x33707267
48  # define LIST_TYPE_3EWL 0x3365776C  # define LIST_TYPE_3EWL 0x3365776C
49  # define CHUNK_ID_SMPL  0x736D706C  # define LIST_TYPE_3GRI 0x33677269
50    # define LIST_TYPE_3GNL 0x33676E6C
51    # define LIST_TYPE_3LS  0x334c5320 // own gig format extension
52    # define LIST_TYPE_RTIS 0x52544953 // own gig format extension
53  # define CHUNK_ID_3GIX  0x33676978  # define CHUNK_ID_3GIX  0x33676978
54  # define CHUNK_ID_3EWA  0x33657761  # define CHUNK_ID_3EWA  0x33657761
55  # define CHUNK_ID_3LNK  0x336C6E6B  # define CHUNK_ID_3LNK  0x336C6E6B
56  # define CHUNK_ID_3EWG  0x33657767  # define CHUNK_ID_3EWG  0x33657767
57  # define CHUNK_ID_EWAV  0x65776176  # define CHUNK_ID_EWAV  0x65776176
58    # define CHUNK_ID_3GNM  0x33676E6D
59    # define CHUNK_ID_EINF  0x65696E66
60    # define CHUNK_ID_3CRC  0x33637263
61    # define CHUNK_ID_SCRI  0x53637269 // own gig format extension
62    # define CHUNK_ID_LSNM  0x4c534e4d // own gig format extension
63    # define CHUNK_ID_SCSL  0x5343534c // own gig format extension
64    # define CHUNK_ID_LSDE  0x4c534445 // own gig format extension
65  #else  // little endian  #else  // little endian
66  # define LIST_TYPE_3PRG 0x67727033  # define LIST_TYPE_3PRG 0x67727033
67  # define LIST_TYPE_3EWL 0x6C776533  # define LIST_TYPE_3EWL 0x6C776533
68  # define CHUNK_ID_SMPL  0x6C706D73  # define LIST_TYPE_3GRI 0x69726733
69    # define LIST_TYPE_3GNL 0x6C6E6733
70    # define LIST_TYPE_3LS  0x20534c33 // own gig format extension
71    # define LIST_TYPE_RTIS 0x53495452 // own gig format extension
72  # define CHUNK_ID_3GIX  0x78696733  # define CHUNK_ID_3GIX  0x78696733
73  # define CHUNK_ID_3EWA  0x61776533  # define CHUNK_ID_3EWA  0x61776533
74  # define CHUNK_ID_3LNK  0x6B6E6C33  # define CHUNK_ID_3LNK  0x6B6E6C33
75  # define CHUNK_ID_3EWG  0x67776533  # define CHUNK_ID_3EWG  0x67776533
76  # define CHUNK_ID_EWAV  0x76617765  # define CHUNK_ID_EWAV  0x76617765
77    # define CHUNK_ID_3GNM  0x6D6E6733
78    # define CHUNK_ID_EINF  0x666E6965
79    # define CHUNK_ID_3CRC  0x63726333
80    # define CHUNK_ID_SCRI  0x69726353 // own gig format extension
81    # define CHUNK_ID_LSNM  0x4d4e534c // own gig format extension
82    # define CHUNK_ID_SCSL  0x4c534353 // own gig format extension
83    # define CHUNK_ID_LSDE  0x4544534c // own gig format extension
84  #endif // WORDS_BIGENDIAN  #endif // WORDS_BIGENDIAN
85    
86  /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */  #ifndef GIG_DECLARE_ENUM
87  #define GIG_EXP_DECODE(x)                                       (pow(1.000000008813822, x))  # define GIG_DECLARE_ENUM(type, ...) enum type { __VA_ARGS__ }
88  #define GIG_PITCH_TRACK_EXTRACT(x)                              (!(x & 0x01))  #endif
89  #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x)                       ((x >> 4) & 0x03)  
90  #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x)                  ((x >> 1) & 0x03)  // just symbol prototyping (since Serialization.h not included by default here)
91  #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x)                   ((x >> 3) & 0x03)  namespace Serialization { class Archive; }
 #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x)                 ((x >> 5) & 0x03)  
 //TODO: the transformation functions are not very accurate compared to the original ones  
 #define GIG_VELOCITY_TRANSFORM_NONLINEAR(x,dynamic,scale)       ((1.0-1.0/pow(x,1.0/(129.0-x))) * (1.0+scale/20.0) + (5.0-dynamic)*pow(x/300.0* (1.0+2.0*scale/128.0),2))  
 #define GIG_VELOCITY_TRANSFORM_LINEAR(x,dynamic,scale)          ((1.0+scale*3.0/128.0)/110.0*x+(5.0-dynamic)/5.0+(5.0-dynamic)*scale)  
 #define GIG_VELOCITY_TRANSFORM_SPECIAL(x,dynamic,scale)         ((1.0+9.0*scale/129.0)*(1.0-1.0/pow(x,1.0/(129.0-x))+pow(3.0*x/pow(129,2),2)+pow((5.0-dynamic)*x/500.0,2)))  
92    
93  /** Gigasampler specific classes and definitions */  /** Gigasampler/GigaStudio specific classes and definitions */
94  namespace gig {  namespace gig {
95    
96      typedef std::string String;      typedef std::string String;
97        typedef RIFF::progress_t progress_t;
98        typedef RIFF::file_offset_t file_offset_t;
99    
100      /** Lower and upper limit of a range. */      /** Lower and upper limit of a range. */
101      struct range_t {      struct range_t {
# Line 82  namespace gig { Line 106  namespace gig {
106      /** Pointer address and size of a buffer. */      /** Pointer address and size of a buffer. */
107      struct buffer_t {      struct buffer_t {
108          void*         pStart;            ///< Points to the beginning of the buffer.          void*         pStart;            ///< Points to the beginning of the buffer.
109          unsigned long Size;              ///< Size of the actual data in the buffer in bytes.          file_offset_t Size;              ///< Size of the actual data in the buffer in bytes.
110          unsigned long NullExtensionSize; ///< The buffer might be bigger than the actual data, if that's the case that unused space at the end of the buffer is filled with NULLs and NullExtensionSize reflects that unused buffer space in bytes. Those NULL extensions are mandatory for differential algorithms that have to take the following data words into account, thus have to access past the buffer's boundary. If you don't know what I'm talking about, just forget this variable. :)          file_offset_t NullExtensionSize; ///< The buffer might be bigger than the actual data, if that's the case that unused space at the end of the buffer is filled with NULLs and NullExtensionSize reflects that unused buffer space in bytes. Those NULL extensions are mandatory for differential algorithms that have to take the following data words into account, thus have to access past the buffer's boundary. If you don't know what I'm talking about, just forget this variable. :)
111            buffer_t() {
112                pStart            = NULL;
113                Size              = 0;
114                NullExtensionSize = 0;
115            }
116        };
117    
118        /** Standard types of sample loops.
119         *
120         * @see enumCount(), enumKey(), enumKeys(), enumValue()
121         */
122        GIG_DECLARE_ENUM(loop_type_t,
123            loop_type_normal        = 0x00000000,  /**< Loop forward (normal) */
124            loop_type_bidirectional = 0x00000001,  /**< Alternating loop (forward/backward, also known as Ping Pong) */
125            loop_type_backward      = 0x00000002   /**< Loop backward (reverse) */
126        );
127    
128        /** Society of Motion Pictures and Television E time format.
129         *
130         * @see enumCount(), enumKey(), enumKeys(), enumValue()
131         */
132        GIG_DECLARE_ENUM(smpte_format_t,
133            smpte_format_no_offset          = 0x00000000,  /**< no SMPTE offset */
134            smpte_format_24_frames          = 0x00000018,  /**< 24 frames per second */
135            smpte_format_25_frames          = 0x00000019,  /**< 25 frames per second */
136            smpte_format_30_frames_dropping = 0x0000001D,  /**< 30 frames per second with frame dropping (30 drop) */
137            smpte_format_30_frames          = 0x0000001E   /**< 30 frames per second */
138        );
139    
140        /** Defines the shape of a function graph.
141         *
142         * @see enumCount(), enumKey(), enumKeys(), enumValue()
143         */
144        GIG_DECLARE_ENUM(curve_type_t,
145            curve_type_nonlinear = 0,          /**< Non-linear curve type. */
146            curve_type_linear    = 1,          /**< Linear curve type. */
147            curve_type_special   = 2,          /**< Special curve type. */
148            curve_type_unknown   = 0xffffffff  /**< Unknown curve type. */
149        );
150    
151        /** Defines the wave form type used by an LFO (gig format extension).
152         *
153         * This is a gig format extension. The original Gigasampler/GigaStudio
154         * software always used a sine (sinus) wave form for all its 3 LFOs, so this
155         * was not configurable in the original gig format. Accordingly setting any
156         * other wave form than sine (sinus) will be ignored by the original
157         * Gigasampler/GigaStudio software.
158         *
159         * @see enumCount(), enumKey(), enumKeys(), enumValue()
160         */
161        GIG_DECLARE_ENUM(lfo_wave_t,
162            lfo_wave_sine     = 0,  /**< Sine (sinus) wave form (this is the default wave form). */
163            lfo_wave_triangle = 1,  /**< Triangle wave form. */
164            lfo_wave_saw      = 2,  /**< Saw (up) wave form (saw down wave form can be achieved by flipping the phase). */
165            lfo_wave_square   = 3,  /**< Square wave form. */
166        );
167    
168        /** Dimensions allow to bypass one of the following controllers.
169         *
170         * @see enumCount(), enumKey(), enumKeys(), enumValue()
171         */
172        GIG_DECLARE_ENUM(dim_bypass_ctrl_t,
173            dim_bypass_ctrl_none, /**< No controller bypass. */
174            dim_bypass_ctrl_94,   /**< Effect 4 Depth (MIDI Controller 94) */
175            dim_bypass_ctrl_95    /**< Effect 5 Depth (MIDI Controller 95) */
176        );
177    
178        /** Defines how LFO3 is controlled by.
179         *
180         * @see enumCount(), enumKey(), enumKeys(), enumValue()
181         */
182        GIG_DECLARE_ENUM(lfo3_ctrl_t,
183            lfo3_ctrl_internal            = 0x00, /**< Only internally controlled. */
184            lfo3_ctrl_modwheel            = 0x01, /**< Only controlled by external modulation wheel. */
185            lfo3_ctrl_aftertouch          = 0x02, /**< Only controlled by aftertouch controller. */
186            lfo3_ctrl_internal_modwheel   = 0x03, /**< Controlled internally and by external modulation wheel. */
187            lfo3_ctrl_internal_aftertouch = 0x04  /**< Controlled internally and by aftertouch controller. */
188        );
189    
190        /** Defines how LFO2 is controlled by.
191         *
192         * @see enumCount(), enumKey(), enumKeys(), enumValue()
193         */
194        GIG_DECLARE_ENUM(lfo2_ctrl_t,
195            lfo2_ctrl_internal            = 0x00, /**< Only internally controlled. */
196            lfo2_ctrl_modwheel            = 0x01, /**< Only controlled by external modulation wheel. */
197            lfo2_ctrl_foot                = 0x02, /**< Only controlled by external foot controller. */
198            lfo2_ctrl_internal_modwheel   = 0x03, /**< Controlled internally and by external modulation wheel. */
199            lfo2_ctrl_internal_foot       = 0x04  /**< Controlled internally and by external foot controller. */
200        );
201    
202        /** Defines how LFO1 is controlled by.
203         *
204         * @see enumCount(), enumKey(), enumKeys(), enumValue()
205         */
206        GIG_DECLARE_ENUM(lfo1_ctrl_t,
207            lfo1_ctrl_internal            = 0x00, /**< Only internally controlled. */
208            lfo1_ctrl_modwheel            = 0x01, /**< Only controlled by external modulation wheel. */
209            lfo1_ctrl_breath              = 0x02, /**< Only controlled by external breath controller. */
210            lfo1_ctrl_internal_modwheel   = 0x03, /**< Controlled internally and by external modulation wheel. */
211            lfo1_ctrl_internal_breath     = 0x04  /**< Controlled internally and by external breath controller. */
212        );
213    
214        /** Defines how the filter cutoff frequency is controlled by.
215         *
216         * @see enumCount(), enumKey(), enumKeys(), enumValue()
217         */
218        GIG_DECLARE_ENUM(vcf_cutoff_ctrl_t,
219            vcf_cutoff_ctrl_none         = 0x00,  /**< No MIDI controller assigned for filter cutoff frequency. */
220            vcf_cutoff_ctrl_none2        = 0x01,  /**< The difference between none and none2 is unknown */
221            vcf_cutoff_ctrl_modwheel     = 0x81,  /**< Modulation Wheel (MIDI Controller 1) */
222            vcf_cutoff_ctrl_effect1      = 0x8c,  /**< Effect Controller 1 (Coarse, MIDI Controller 12) */
223            vcf_cutoff_ctrl_effect2      = 0x8d,  /**< Effect Controller 2 (Coarse, MIDI Controller 13) */
224            vcf_cutoff_ctrl_breath       = 0x82,  /**< Breath Controller (Coarse, MIDI Controller 2) */
225            vcf_cutoff_ctrl_foot         = 0x84,  /**< Foot Pedal (Coarse, MIDI Controller 4) */
226            vcf_cutoff_ctrl_sustainpedal = 0xc0,  /**< Sustain Pedal (MIDI Controller 64) */
227            vcf_cutoff_ctrl_softpedal    = 0xc3,  /**< Soft Pedal (MIDI Controller 67) */
228            vcf_cutoff_ctrl_genpurpose7  = 0xd2,  /**< General Purpose Controller 7 (Button, MIDI Controller 82) */
229            vcf_cutoff_ctrl_genpurpose8  = 0xd3,  /**< General Purpose Controller 8 (Button, MIDI Controller 83) */
230            vcf_cutoff_ctrl_aftertouch   = 0x80   /**< Key Pressure */
231        );
232    
233        /** Defines how the filter resonance is controlled by.
234         *
235         * @see enumCount(), enumKey(), enumKeys(), enumValue()
236         */
237        GIG_DECLARE_ENUM(vcf_res_ctrl_t,
238            vcf_res_ctrl_none        = 0xffffffff,  /**< No MIDI controller assigned for filter resonance. */
239            vcf_res_ctrl_genpurpose3 = 0,           /**< General Purpose Controller 3 (Slider, MIDI Controller 18) */
240            vcf_res_ctrl_genpurpose4 = 1,           /**< General Purpose Controller 4 (Slider, MIDI Controller 19) */
241            vcf_res_ctrl_genpurpose5 = 2,           /**< General Purpose Controller 5 (Button, MIDI Controller 80) */
242            vcf_res_ctrl_genpurpose6 = 3            /**< General Purpose Controller 6 (Button, MIDI Controller 81) */
243        );
244    
245        /**
246         * Defines a controller that has a certain contrained influence on a
247         * particular synthesis parameter (used to define attenuation controller,
248         * EG1 controller and EG2 controller).
249         *
250         * You should use the respective <i>typedef</i> (means either
251         * attenuation_ctrl_t, eg1_ctrl_t or eg2_ctrl_t) in your code!
252         */
253        struct leverage_ctrl_t {
254            /** Defines possible controllers.
255             *
256             * @see enumCount(), enumKey(), enumKeys(), enumValue()
257             */
258            GIG_DECLARE_ENUM(type_t,
259                type_none              = 0x00, /**< No controller defined */
260                type_channelaftertouch = 0x2f, /**< Channel Key Pressure */
261                type_velocity          = 0xff, /**< Key Velocity */
262                type_controlchange     = 0xfe  /**< Ordinary MIDI control change controller, see field 'controller_number' */
263            );
264    
265            type_t type;              ///< Controller type
266            uint   controller_number; ///< MIDI controller number if this controller is a control change controller, 0 otherwise
267    
268            void serialize(Serialization::Archive* archive);
269      };      };
270    
271      /** Standard types of sample loops. */      /**
272      typedef enum {       * Defines controller influencing attenuation.
273          loop_type_normal        = 0x00000000,  ///< Loop forward (normal)       *
274          loop_type_bidirectional = 0x00000001,  ///< Alternating loop (forward/backward, also known as Ping Pong)       * @see leverage_ctrl_t
275          loop_type_backward      = 0x00000002   ///< Loop backward (reverse)       */
276      } loop_type_t;      typedef leverage_ctrl_t attenuation_ctrl_t;
277    
278      /** Society of Motion Pictures and Television E time format. */      /**
279      typedef enum {       * Defines controller influencing envelope generator 1.
280          smpte_format_no_offset          = 0x00000000,  ///< no SMPTE offset       *
281          smpte_format_24_frames          = 0x00000018,  ///< 24 frames per second       * @see leverage_ctrl_t
282          smpte_format_25_frames          = 0x00000019,  ///< 25 frames per second       */
283          smpte_format_30_frames_dropping = 0x0000001D,  ///< 30 frames per second with frame dropping (30 drop)      typedef leverage_ctrl_t eg1_ctrl_t;
284          smpte_format_30_frames          = 0x0000001E   ///< 30 frames per second  
285      } smpte_format_t;      /**
286         * Defines controller influencing envelope generator 2.
287      /** Defines the shape of a function graph. */       *
288      typedef enum {       * @see leverage_ctrl_t
289          curve_type_nonlinear = 0,       */
290          curve_type_linear    = 1,      typedef leverage_ctrl_t eg2_ctrl_t;
         curve_type_special   = 2,  
         curve_type_unknown   = 0xffffffff  
     } curve_type_t;  
   
     /** Dimensions allow to bypass one of the following controllers. */  
     typedef enum {  
         dim_bypass_ctrl_none,  
         dim_bypass_ctrl_94,   ///< Effect 4 Depth (MIDI Controller 94)  
         dim_bypass_ctrl_95    ///< Effect 5 Depth (MIDI Controller 95)  
     } dim_bypass_ctrl_t;  
   
     /** Defines how LFO3 is controlled by. */  
     typedef enum {  
         lfo3_ctrl_internal            = 0x00, ///< Only internally controlled.  
         lfo3_ctrl_modwheel            = 0x01, ///< Only controlled by external modulation wheel.  
         lfo3_ctrl_aftertouch          = 0x02, ///< Only controlled by aftertouch controller.  
         lfo3_ctrl_internal_modwheel   = 0x03, ///< Controlled internally and by external modulation wheel.  
         lfo3_ctrl_internal_aftertouch = 0x04  ///< Controlled internally and by aftertouch controller.  
     } lfo3_ctrl_t;  
   
     /** Defines how LFO2 is controlled by. */  
     typedef enum {  
         lfo2_ctrl_internal            = 0x00, ///< Only internally controlled.  
         lfo2_ctrl_modwheel            = 0x01, ///< Only controlled by external modulation wheel.  
         lfo2_ctrl_foot                = 0x02, ///< Only controlled by external foot controller.  
         lfo2_ctrl_internal_modwheel   = 0x03, ///< Controlled internally and by external modulation wheel.  
         lfo2_ctrl_internal_foot       = 0x04  ///< Controlled internally and by external foot controller.  
     } lfo2_ctrl_t;  
   
     /** Defines how LFO1 is controlled by. */  
     typedef enum {  
         lfo1_ctrl_internal            = 0x00, ///< Only internally controlled.  
         lfo1_ctrl_modwheel            = 0x01, ///< Only controlled by external modulation wheel.  
         lfo1_ctrl_breath              = 0x02, ///< Only controlled by external breath controller.  
         lfo1_ctrl_internal_modwheel   = 0x03, ///< Controlled internally and by external modulation wheel.  
         lfo1_ctrl_internal_breath     = 0x04  ///< Controlled internally and by external breath controller.  
     } lfo1_ctrl_t;  
   
     /** Defines how the filter cutoff frequency is controlled by. */  
     typedef enum {  
         vcf_cutoff_ctrl_none         = 0x00,  
         vcf_cutoff_ctrl_modwheel     = 0x81,  ///< Modulation Wheel (MIDI Controller 1)  
         vcf_cutoff_ctrl_effect1      = 0x8c,  ///< Effect Controller 1 (Coarse, MIDI Controller 12)  
         vcf_cutoff_ctrl_effect2      = 0x8d,  ///< Effect Controller 2 (Coarse, MIDI Controller 13)  
         vcf_cutoff_ctrl_breath       = 0x82,  ///< Breath Controller (Coarse, MIDI Controller 2)  
         vcf_cutoff_ctrl_foot         = 0x84,  ///< Foot Pedal (Coarse, MIDI Controller 4)  
         vcf_cutoff_ctrl_sustainpedal = 0xc0,  ///< Sustain Pedal (MIDI Controller 64)  
         vcf_cutoff_ctrl_softpedal    = 0xc3,  ///< Soft Pedal (MIDI Controller 67)  
         vcf_cutoff_ctrl_genpurpose7  = 0xd2,  ///< General Purpose Controller 7 (Button, MIDI Controller 82)  
         vcf_cutoff_ctrl_genpurpose8  = 0xd3,  ///< General Purpose Controller 8 (Button, MIDI Controller 83)  
         vcf_cutoff_ctrl_aftertouch   = 0x80   ///< Key Pressure  
     } vcf_cutoff_ctrl_t;  
   
     /** Defines how the filter resonance is controlled by. */  
     typedef enum {  
         vcf_res_ctrl_none        = 0xffffffff,  
         vcf_res_ctrl_genpurpose3 = 0,           ///< General Purpose Controller 3 (Slider, MIDI Controller 18)  
         vcf_res_ctrl_genpurpose4 = 1,           ///< General Purpose Controller 4 (Slider, MIDI Controller 19)  
         vcf_res_ctrl_genpurpose5 = 2,           ///< General Purpose Controller 5 (Button, MIDI Controller 80)  
         vcf_res_ctrl_genpurpose6 = 3            ///< General Purpose Controller 6 (Button, MIDI Controller 81)  
     } vcf_res_ctrl_t;  
   
     /** Defines how attenuation (=gain / VCA) is controlled by. */  
     typedef enum {  
         attenuation_ctrl_none              = 0x00,  
         attenuation_ctrl_modwheel          = 0x03, ///< Modulation Wheel (MIDI Controller 1)  
         attenuation_ctrl_breath            = 0x05, ///< Breath Controller (Coarse, MIDI Controller 2)  
         attenuation_ctrl_foot              = 0x07, ///< Foot Pedal (Coarse, MIDI Controller 4)  
         attenuation_ctrl_effect1           = 0x0d, ///< Effect Controller 1 (Coarse, MIDI Controller 12)  
         attenuation_ctrl_effect2           = 0x0f, ///< Effect Controller 2 (Coarse, MIDI Controller 13)  
         attenuation_ctrl_genpurpose1       = 0x11, ///< General Purpose Controller 1 (Slider, MIDI Controller 16)  
         attenuation_ctrl_genpurpose2       = 0x13, ///< General Purpose Controller 2 (Slider, MIDI Controller 17)  
         attenuation_ctrl_genpurpose3       = 0x15, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)  
         attenuation_ctrl_genpurpose4       = 0x17, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)  
         attenuation_ctrl_portamentotime    = 0x0b, ///< Portamento Time (Coarse, MIDI Controller 5)  
         attenuation_ctrl_sustainpedal      = 0x01, ///< Sustain Pedal (MIDI Controller 64)  
         attenuation_ctrl_portamento        = 0x19, ///< Portamento (MIDI Controller 65)  
         attenuation_ctrl_sostenutopedal    = 0x1b, ///< Sostenuto Pedal (MIDI Controller 66)  
         attenuation_ctrl_softpedal         = 0x09, ///< Soft Pedal (MIDI Controller 67)  
         attenuation_ctrl_genpurpose5       = 0x1d, ///< General Purpose Controller 5 (Button, MIDI Controller 80)  
         attenuation_ctrl_genpurpose6       = 0x1f, ///< General Purpose Controller 6 (Button, MIDI Controller 81)  
         attenuation_ctrl_genpurpose7       = 0x21, ///< General Purpose Controller 7 (Button, MIDI Controller 82)  
         attenuation_ctrl_genpurpose8       = 0x23, ///< General Purpose Controller 8 (Button, MIDI Controller 83)  
         attenuation_ctrl_effect1depth      = 0x25, ///< Effect 1 Depth (MIDI Controller 91)  
         attenuation_ctrl_effect2depth      = 0x27, ///< Effect 2 Depth (MIDI Controller 92)  
         attenuation_ctrl_effect3depth      = 0x29, ///< Effect 3 Depth (MIDI Controller 93)  
         attenuation_ctrl_effect4depth      = 0x2b, ///< Effect 4 Depth (MIDI Controller 94)  
         attenuation_ctrl_effect5depth      = 0x2d, ///< Effect 5 Depth (MIDI Controller 95)  
         attenuation_ctrl_channelaftertouch = 0x2f, ///< Channel Key Pressure  
         attenuation_ctrl_velocity          = 0xff  ///< Key Velocity  
     } attenuation_ctrl_t, eg1_ctrl_t, eg2_ctrl_t;  
291    
292      /**      /**
293       * Defines the type of dimension, that is how the dimension zones (and       * Defines the type of dimension, that is how the dimension zones (and
# Line 204  namespace gig { Line 295  namespace gig {
295       * dimension zones is always a power of two. All dimensions can have up       * dimension zones is always a power of two. All dimensions can have up
296       * to 32 zones (except the layer dimension with only up to 8 zones and       * to 32 zones (except the layer dimension with only up to 8 zones and
297       * the samplechannel dimension which currently allows only 2 zones).       * the samplechannel dimension which currently allows only 2 zones).
298         *
299         * @see enumCount(), enumKey(), enumKeys(), enumValue()
300       */       */
301      typedef enum {      GIG_DECLARE_ENUM(dimension_t,
302          dimension_none              = 0x00, ///< Dimension not in use.          dimension_none              = 0x00, /**< Dimension not in use. */
303          dimension_samplechannel     = 0x80, ///< If used sample has more than one channel (thus is not mono).          dimension_samplechannel     = 0x80, /**< If used sample has more than one channel (thus is not mono). */
304          dimension_layer             = 0x81, ///< For layering of up to 8 instruments (and eventually crossfading of 2 or 4 layers).          dimension_layer             = 0x81, /**< For layering of up to 8 instruments (and eventually crossfading of 2 or 4 layers). */
305          dimension_velocity          = 0x82, ///< Key Velocity (this is the only dimension where the ranges can exactly be defined).          dimension_velocity          = 0x82, /**< Key Velocity (this is the only dimension in gig2 where the ranges can exactly be defined). */
306          dimension_channelaftertouch = 0x83, ///< Channel Key Pressure          dimension_channelaftertouch = 0x83, /**< Channel Key Pressure */
307          dimension_releasetrigger    = 0x84, ///< Special dimension for triggering samples on releasing a key.          dimension_releasetrigger    = 0x84, /**< Special dimension for triggering samples on releasing a key. */
308          dimension_keyboard          = 0x85, ///< Key Position          dimension_keyboard          = 0x85, /**< Dimension for keyswitching */
309          dimension_modwheel          = 0x01, ///< Modulation Wheel (MIDI Controller 1)          dimension_roundrobin        = 0x86, /**< Different samples triggered each time a note is played, dimension regions selected in sequence */
310          dimension_breath            = 0x02, ///< Breath Controller (Coarse, MIDI Controller 2)          dimension_random            = 0x87, /**< Different samples triggered each time a note is played, random order */
311          dimension_foot              = 0x04, ///< Foot Pedal (Coarse, MIDI Controller 4)          dimension_smartmidi         = 0x88, /**< For MIDI tools like legato and repetition mode */
312          dimension_portamentotime    = 0x05, ///< Portamento Time (Coarse, MIDI Controller 5)          dimension_roundrobinkeyboard = 0x89, /**< Different samples triggered each time a note is played, any key advances the counter */
313          dimension_effect1           = 0x0c, ///< Effect Controller 1 (Coarse, MIDI Controller 12)          dimension_modwheel          = 0x01, /**< Modulation Wheel (MIDI Controller 1) */
314          dimension_effect2           = 0x0d, ///< Effect Controller 2 (Coarse, MIDI Controller 13)          dimension_breath            = 0x02, /**< Breath Controller (Coarse, MIDI Controller 2) */
315          dimension_genpurpose1       = 0x10, ///< General Purpose Controller 1 (Slider, MIDI Controller 16)          dimension_foot              = 0x04, /**< Foot Pedal (Coarse, MIDI Controller 4) */
316          dimension_genpurpose2       = 0x11, ///< General Purpose Controller 2 (Slider, MIDI Controller 17)          dimension_portamentotime    = 0x05, /**< Portamento Time (Coarse, MIDI Controller 5) */
317          dimension_genpurpose3       = 0x12, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)          dimension_effect1           = 0x0c, /**< Effect Controller 1 (Coarse, MIDI Controller 12) */
318          dimension_genpurpose4       = 0x13, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)          dimension_effect2           = 0x0d, /**< Effect Controller 2 (Coarse, MIDI Controller 13) */
319          dimension_sustainpedal      = 0x40, ///< Sustain Pedal (MIDI Controller 64)          dimension_genpurpose1       = 0x10, /**< General Purpose Controller 1 (Slider, MIDI Controller 16) */
320          dimension_portamento        = 0x41, ///< Portamento (MIDI Controller 65)          dimension_genpurpose2       = 0x11, /**< General Purpose Controller 2 (Slider, MIDI Controller 17) */
321          dimension_sostenutopedal    = 0x42, ///< Sostenuto Pedal (MIDI Controller 66)          dimension_genpurpose3       = 0x12, /**< General Purpose Controller 3 (Slider, MIDI Controller 18) */
322          dimension_softpedal         = 0x43, ///< Soft Pedal (MIDI Controller 67)          dimension_genpurpose4       = 0x13, /**< General Purpose Controller 4 (Slider, MIDI Controller 19) */
323          dimension_genpurpose5       = 0x30, ///< General Purpose Controller 5 (Button, MIDI Controller 80)          dimension_sustainpedal      = 0x40, /**< Sustain Pedal (MIDI Controller 64) */
324          dimension_genpurpose6       = 0x31, ///< General Purpose Controller 6 (Button, MIDI Controller 81)          dimension_portamento        = 0x41, /**< Portamento (MIDI Controller 65) */
325          dimension_genpurpose7       = 0x32, ///< General Purpose Controller 7 (Button, MIDI Controller 82)          dimension_sostenutopedal    = 0x42, /**< Sostenuto Pedal (MIDI Controller 66) */
326          dimension_genpurpose8       = 0x33, ///< General Purpose Controller 8 (Button, MIDI Controller 83)          dimension_softpedal         = 0x43, /**< Soft Pedal (MIDI Controller 67) */
327          dimension_effect1depth      = 0x5b, ///< Effect 1 Depth (MIDI Controller 91)          dimension_genpurpose5       = 0x30, /**< General Purpose Controller 5 (Button, MIDI Controller 80) */
328          dimension_effect2depth      = 0x5c, ///< Effect 2 Depth (MIDI Controller 92)          dimension_genpurpose6       = 0x31, /**< General Purpose Controller 6 (Button, MIDI Controller 81) */
329          dimension_effect3depth      = 0x5d, ///< Effect 3 Depth (MIDI Controller 93)          dimension_genpurpose7       = 0x32, /**< General Purpose Controller 7 (Button, MIDI Controller 82) */
330          dimension_effect4depth      = 0x5e, ///< Effect 4 Depth (MIDI Controller 94)          dimension_genpurpose8       = 0x33, /**< General Purpose Controller 8 (Button, MIDI Controller 83) */
331          dimension_effect5depth      = 0x5f  ///< Effect 5 Depth (MIDI Controller 95)          dimension_effect1depth      = 0x5b, /**< Effect 1 Depth (MIDI Controller 91) */
332      } dimension_t;          dimension_effect2depth      = 0x5c, /**< Effect 2 Depth (MIDI Controller 92) */
333            dimension_effect3depth      = 0x5d, /**< Effect 3 Depth (MIDI Controller 93) */
334            dimension_effect4depth      = 0x5e, /**< Effect 4 Depth (MIDI Controller 94) */
335            dimension_effect5depth      = 0x5f  /**< Effect 5 Depth (MIDI Controller 95) */
336        );
337    
338      /**      /**
339       * Intended for internal usage: will be used to convert a dimension value       * Intended for internal usage: will be used to convert a dimension value
340       * into the corresponding dimension bit number.       * into the corresponding dimension bit number.
341         *
342         * @see enumCount(), enumKey(), enumKeys(), enumValue()
343       */       */
344      typedef enum {      GIG_DECLARE_ENUM(split_type_t,
345          split_type_normal,         ///< dimension value between 0-127, no custom range of zones          split_type_normal,         /**< dimension value between 0-127 */
346          split_type_customvelocity, ///< a velocity dimension split with custom range definition for each zone (if a velocity dimension split has no custom defined zone ranges then it's also just of type split_type_normal)          split_type_bit             /**< dimension values are already the sought bit number */
347          split_type_bit             ///< dimension values are already the sought bit number      );
     } split_type_t;  
348    
349      /** General dimension definition. */      /** General dimension definition. */
350      struct dimension_def_t {      struct dimension_def_t {
# Line 254  namespace gig { Line 352  namespace gig {
352          uint8_t      bits;       ///< Number of "bits" (1 bit = 2 splits/zones, 2 bit = 4 splits/zones, 3 bit = 8 splits/zones,...).          uint8_t      bits;       ///< Number of "bits" (1 bit = 2 splits/zones, 2 bit = 4 splits/zones, 3 bit = 8 splits/zones,...).
353          uint8_t      zones;      ///< Number of zones the dimension has.          uint8_t      zones;      ///< Number of zones the dimension has.
354          split_type_t split_type; ///< Intended for internal usage: will be used to convert a dimension value into the corresponding dimension bit number.          split_type_t split_type; ///< Intended for internal usage: will be used to convert a dimension value into the corresponding dimension bit number.
355          range_t*     ranges;     ///< Intended for internal usage: Points to the beginning of a range_t array which reflects the value ranges of each dimension zone (only if custom defined ranges are defined, is NULL otherwise).          float        zone_size;  ///< Intended for internal usage: reflects the size of each zone (128/zones) for normal split types only, 0 otherwise.
         unsigned int zone_size;  ///< Intended for internal usage: reflects the size of each zone (128/zones) for normal split types only, 0 otherwise.  
356      };      };
357    
358      /** Defines which frequencies are filtered by the VCF. */      /** Defines which frequencies are filtered by the VCF.
359      typedef enum {       *
360          vcf_type_lowpass      = 0x00,       * @see enumCount(), enumKey(), enumKeys(), enumValue()
361          vcf_type_lowpassturbo = 0xff, ///< More poles than normal lowpass       */
362          vcf_type_bandpass     = 0x01,      GIG_DECLARE_ENUM(vcf_type_t,
363          vcf_type_highpass     = 0x02,          vcf_type_lowpass      = 0x00, /**< Standard lowpass filter type. */
364          vcf_type_bandreject   = 0x03          vcf_type_lowpassturbo = 0xff, /**< More poles than normal lowpass. */
365      } vcf_type_t;          vcf_type_bandpass     = 0x01, /**< Bandpass filter type. */
366            vcf_type_highpass     = 0x02, /**< Highpass filter type. */
367            vcf_type_bandreject   = 0x03  /**< Band reject filter type. */
368        );
369    
370      /** Defines the envelope of a crossfade. */      /**
371         * Defines the envelope of a crossfade.
372         *
373         * Note: The default value for crossfade points is 0,0,0,0. Layers with
374         * such a default value should be treated as if they would not have a
375         * crossfade.
376         */
377      struct crossfade_t {      struct crossfade_t {
378          #if WORDS_BIGENDIAN          #if WORDS_BIGENDIAN
         uint8_t in_start;   ///< Start position of fade in.  
         uint8_t in_end;     ///< End position of fade in.  
         uint8_t out_start;  ///< Start position of fade out.  
         uint8_t out_end;    ///< End postition of fade out.  
         #else // little endian  
379          uint8_t out_end;    ///< End postition of fade out.          uint8_t out_end;    ///< End postition of fade out.
380          uint8_t out_start;  ///< Start position of fade out.          uint8_t out_start;  ///< Start position of fade out.
381          uint8_t in_end;     ///< End position of fade in.          uint8_t in_end;     ///< End position of fade in.
382          uint8_t in_start;   ///< Start position of fade in.          uint8_t in_start;   ///< Start position of fade in.
383            #else // little endian
384            uint8_t in_start;   ///< Start position of fade in.
385            uint8_t in_end;     ///< End position of fade in.
386            uint8_t out_start;  ///< Start position of fade out.
387            uint8_t out_end;    ///< End postition of fade out.
388          #endif // WORDS_BIGENDIAN          #endif // WORDS_BIGENDIAN
389    
390            void serialize(Serialization::Archive* archive);
391      };      };
392    
393      /** Reflects the current playback state for a sample. */      /** Reflects the current playback state for a sample. */
394      struct playback_state_t {      struct playback_state_t {
395          unsigned long position;          ///< Current position within the sample.          file_offset_t position;          ///< Current position within the sample.
396          bool          reverse;           ///< If playback direction is currently backwards (in case there is a pingpong or reverse loop defined).          bool          reverse;           ///< If playback direction is currently backwards (in case there is a pingpong or reverse loop defined).
397          unsigned long loop_cycles_left;  ///< How many times the loop has still to be passed, this value will be decremented with each loop cycle.          file_offset_t loop_cycles_left;  ///< How many times the loop has still to be passed, this value will be decremented with each loop cycle.
398      };      };
399    
400        /**
401         * Defines behavior options for envelope generators (gig format extension).
402         *
403         * These options allow to override the precise default behavior of the
404         * envelope generators' state machines.
405         *
406         * @b Note: These EG options are an extension to the original gig file
407         * format, so these options are not available with the original
408         * Gigasampler/GigaStudio software! Currently only LinuxSampler and gigedit
409         * support these EG options!
410         *
411         * Adding these options to the original gig file format was necessary,
412         * because the precise state machine behavior of envelope generators of the
413         * gig format (and thus the default EG behavior if not explicitly overridden
414         * here) deviates from common, expected behavior of envelope generators in
415         * general, if i.e. compared with EGs of hardware synthesizers. For example
416         * with the gig format, the attack and decay stages will be aborted as soon
417         * as a note-off is received. Most other EG implementations in the industry
418         * however always run the attack and decay stages to their full duration,
419         * even if an early note-off arrives. The latter behavior is intentionally
420         * implemented in most other products, because it is required to resemble
421         * percussive sounds in a realistic manner.
422         */
423        struct eg_opt_t {
424            bool AttackCancel;     ///< Whether the "attack" stage is cancelled when receiving a note-off (default: @c true).
425            bool AttackHoldCancel; ///< Whether the "attack hold" stage is cancelled when receiving a note-off (default: @c true).
426            bool Decay1Cancel;     ///< Whether the "decay 1" stage is cancelled when receiving a note-off (default: @c true).
427            bool Decay2Cancel;     ///< Whether the "decay 2" stage is cancelled when receiving a note-off (default: @c true).
428            bool ReleaseCancel;    ///< Whether the "release" stage is cancelled when receiving a note-on (default: @c true).
429    
430            eg_opt_t();
431            void serialize(Serialization::Archive* archive);
432        };
433    
434        /** @brief Defines behaviour of release triggered sample(s) on sustain pedal up event.
435         *
436         * This option defines whether a sustain pedal up event (CC#64) would cause
437         * release triggered samples to be played (if any).
438         *
439         * @b Note: This option is an extension to the original gig file format,
440         * so this option is not available with the original Gigasampler/GigaStudio
441         * software! Currently only LinuxSampler and gigedit support this option!
442         *
443         * By default (which equals the original Gigasampler/GigaStudio behaviour)
444         * no release triggered samples are played if the sustain pedal is released.
445         * So usually in the gig format release triggered samples are only played
446         * on MIDI note-off events.
447         *
448         * @see enumCount(), enumKey(), enumKeys(), enumValue()
449         */
450        GIG_DECLARE_ENUM(sust_rel_trg_t,
451            sust_rel_trg_none        = 0x00, /**< No release triggered sample(s) are played on sustain pedal up (default). */
452            sust_rel_trg_maxvelocity = 0x01, /**< Play release trigger sample(s) on sustain pedal up, and simply use 127 as MIDI velocity for playback. */
453            sust_rel_trg_keyvelocity = 0x02  /**< Play release trigger sample(s) on sustain pedal up, and use the key`s last MIDI note-on velocity for playback. */
454        );
455    
456      // just symbol prototyping      // just symbol prototyping
457      class File;      class File;
458      class Instrument;      class Instrument;
459      class Sample;      class Sample;
460        class Region;
461        class Group;
462        class Script;
463        class ScriptGroup;
464    
465      /** Encapsulates articulation information of a dimension region.      /** @brief Encapsulates articulation informations of a dimension region.
466         *
467         * This is the most important data object of the Gigasampler / GigaStudio
468         * format. A DimensionRegion provides the link to the sample to be played
469         * and all required articulation informations to be interpreted for playing
470         * back the sample and processing it appropriately by the sampler software.
471         * Every Region of a Gigasampler Instrument has at least one dimension
472         * region (exactly then when the Region has no dimension defined). Many
473         * Regions though provide more than one DimensionRegion, which reflect
474         * different playing "cases". For example a different sample might be played
475         * if a certain pedal is pressed down, or if the note was triggered with
476         * different velocity.
477         *
478         * One instance of a DimensionRegion reflects exactly one particular case
479         * while playing an instrument (for instance "note between C3 and E3 was
480         * triggered AND note on velocity was between 20 and 42 AND modulation wheel
481         * controller is between 80 and 127). The DimensionRegion defines what to do
482         * under that one particular case, that is which sample to play back and how
483         * to play that sample back exactly and how to process it. So a
484         * DimensionRegion object is always linked to exactly one sample. It may
485         * however also link to no sample at all, for defining a "silence" case
486         * where nothing shall be played (for example when note on velocity was
487         * below 6).
488       *       *
489       *  Every Gigasampler Instrument has at least one dimension region       * Note that a DimensionRegion object only defines "what to do", but it does
490       *  (exactly then when it has no dimension defined).       * not define "when to do it". To actually resolve which DimensionRegion to
491         * pick under which situation, you need to refer to the DimensionRegions'
492         * parent Region object. The Region object contains the necessary
493         * "Dimension" definitions, which in turn define which DimensionRegion is
494         * associated with which playing case exactly.
495       *       *
496       *  Gigasampler provides three Envelope Generators and Low Frequency       * The Gigasampler/GigaStudio format defines 3 Envelope Generators and 3
497       *  Oscillators:       * Low Frequency Oscillators:
498       *       *
499       *  - EG1 and LFO1, both controlling sample amplitude       *  - EG1 and LFO1, both controlling sample amplitude
500       *  - EG2 and LFO2, both controlling filter cutoff frequency       *  - EG2 and LFO2, both controlling filter cutoff frequency
501       *  - EG3 and LFO3, both controlling sample pitch       *  - EG3 and LFO3, both controlling sample pitch
502         *
503         * Since the gig format was designed as extension to the DLS file format,
504         * this class is derived from the DLS::Sampler class. So also refer to
505         * DLS::Sampler for additional informations, class attributes and methods.
506       */       */
507      class DimensionRegion : protected DLS::Sampler {      class DimensionRegion : protected DLS::Sampler {
508          public:          public:
509              uint8_t            VelocityUpperLimit;            ///< Defines the upper velocity value limit of a velocity split (only if an user defined limit was set, thus a value not equal to 128/NumberOfSplits, else this value is 0).              uint8_t            VelocityUpperLimit;            ///< Defines the upper velocity value limit of a velocity split (only if an user defined limit was set, thus a value not equal to 128/NumberOfSplits, else this value is 0). Only for gig2, for gig3 and above the DimensionUpperLimits are used instead.
510              Sample*            pSample;                       ///< Points to the Sample which is assigned to the dimension region.              Sample*            pSample;                       ///< Points to the Sample which is assigned to the dimension region.
511              // Sample Amplitude EG/LFO              // Sample Amplitude EG/LFO
512              uint16_t           EG1PreAttack;                  ///< Preattack value of the sample amplitude EG (0 - 1000 permille).              uint16_t           EG1PreAttack;                  ///< Preattack value of the sample amplitude EG (0 - 1000 permille).
# Line 321  namespace gig { Line 519  namespace gig {
519              bool               EG1Hold;                       ///< If <i>true</i>, Decay1 stage should be postponed until the sample reached the sample loop start.              bool               EG1Hold;                       ///< If <i>true</i>, Decay1 stage should be postponed until the sample reached the sample loop start.
520              eg1_ctrl_t         EG1Controller;                 ///< MIDI Controller which has influence on sample amplitude EG parameters (attack, decay, release).              eg1_ctrl_t         EG1Controller;                 ///< MIDI Controller which has influence on sample amplitude EG parameters (attack, decay, release).
521              bool               EG1ControllerInvert;           ///< Invert values coming from defined EG1 controller.              bool               EG1ControllerInvert;           ///< Invert values coming from defined EG1 controller.
522              uint8_t            EG1ControllerAttackInfluence;  ///< Amount EG1 Controller has influence on the EG1 Attack time.              uint8_t            EG1ControllerAttackInfluence;  ///< Amount EG1 Controller has influence on the EG1 Attack time (0 - 3, where 0 means off).
523              uint8_t            EG1ControllerDecayInfluence;   ///< Amount EG1 Controller has influence on the EG1 Decay time.              uint8_t            EG1ControllerDecayInfluence;   ///< Amount EG1 Controller has influence on the EG1 Decay time (0 - 3, where 0 means off).
524              uint8_t            EG1ControllerReleaseInfluence; ///< Amount EG1 Controller has influence on the EG1 Release time.              uint8_t            EG1ControllerReleaseInfluence; ///< Amount EG1 Controller has influence on the EG1 Release time (0 - 3, where 0 means off).
525                lfo_wave_t         LFO1WaveForm;                  ///< [gig extension]: The fundamental wave form to be used by the amplitude LFO, e.g. sine, triangle, saw, square (default: sine).
526              double             LFO1Frequency;                 ///< Frequency of the sample amplitude LFO (0.10 - 10.00 Hz).              double             LFO1Frequency;                 ///< Frequency of the sample amplitude LFO (0.10 - 10.00 Hz).
527                double             LFO1Phase;                     ///< [gig extension]: Phase displacement of the amplitude LFO's wave form (0.0° - 360.0°).
528              uint16_t           LFO1InternalDepth;             ///< Firm pitch of the sample amplitude LFO (0 - 1200 cents).              uint16_t           LFO1InternalDepth;             ///< Firm pitch of the sample amplitude LFO (0 - 1200 cents).
529              uint16_t           LFO1ControlDepth;              ///< Controller depth influencing sample amplitude LFO pitch (0 - 1200 cents).              uint16_t           LFO1ControlDepth;              ///< Controller depth influencing sample amplitude LFO pitch (0 - 1200 cents).
530              lfo1_ctrl_t        LFO1Controller;                ///< MIDI Controller which controls sample amplitude LFO.              lfo1_ctrl_t        LFO1Controller;                ///< MIDI Controller which controls sample amplitude LFO.
531              bool               LFO1FlipPhase;                 ///< Inverts phase of the sample amplitude LFO wave.              bool               LFO1FlipPhase;                 ///< Inverts the polarity of the sample amplitude LFO wave, so it flips the wave form vertically.
532              bool               LFO1Sync;                      ///< If set to <i>true</i> only one LFO should be used for all voices.              bool               LFO1Sync;                      ///< If set to <i>true</i> only one LFO should be used for all voices.
533              // Filter Cutoff Frequency EG/LFO              // Filter Cutoff Frequency EG/LFO
534              uint16_t           EG2PreAttack;                  ///< Preattack value of the filter cutoff EG (0 - 1000 permille).              uint16_t           EG2PreAttack;                  ///< Preattack value of the filter cutoff EG (0 - 1000 permille).
# Line 340  namespace gig { Line 540  namespace gig {
540              double             EG2Release;                    ///< Release time of the filter cutoff EG (0.000 - 60.000s).              double             EG2Release;                    ///< Release time of the filter cutoff EG (0.000 - 60.000s).
541              eg2_ctrl_t         EG2Controller;                 ///< MIDI Controller which has influence on filter cutoff EG parameters (attack, decay, release).              eg2_ctrl_t         EG2Controller;                 ///< MIDI Controller which has influence on filter cutoff EG parameters (attack, decay, release).
542              bool               EG2ControllerInvert;           ///< Invert values coming from defined EG2 controller.              bool               EG2ControllerInvert;           ///< Invert values coming from defined EG2 controller.
543              uint8_t            EG2ControllerAttackInfluence;  ///< Amount EG2 Controller has influence on the EG2 Attack time.              uint8_t            EG2ControllerAttackInfluence;  ///< Amount EG2 Controller has influence on the EG2 Attack time (0 - 3, where 0 means off).
544              uint8_t            EG2ControllerDecayInfluence;   ///< Amount EG2 Controller has influence on the EG2 Decay time.              uint8_t            EG2ControllerDecayInfluence;   ///< Amount EG2 Controller has influence on the EG2 Decay time (0 - 3, where 0 means off).
545              uint8_t            EG2ControllerReleaseInfluence; ///< Amount EG2 Controller has influence on the EG2 Release time.              uint8_t            EG2ControllerReleaseInfluence; ///< Amount EG2 Controller has influence on the EG2 Release time (0 - 3, where 0 means off).
546                lfo_wave_t         LFO2WaveForm;                  ///< [gig extension]: The fundamental wave form to be used by the filter cutoff LFO, e.g. sine, triangle, saw, square (default: sine).
547              double             LFO2Frequency;                 ///< Frequency of the filter cutoff LFO (0.10 - 10.00 Hz).              double             LFO2Frequency;                 ///< Frequency of the filter cutoff LFO (0.10 - 10.00 Hz).
548                double             LFO2Phase;                     ///< [gig extension]: Phase displacement of the filter cutoff LFO's wave form (0.0° - 360.0°).
549              uint16_t           LFO2InternalDepth;             ///< Firm pitch of the filter cutoff LFO (0 - 1200 cents).              uint16_t           LFO2InternalDepth;             ///< Firm pitch of the filter cutoff LFO (0 - 1200 cents).
550              uint16_t           LFO2ControlDepth;              ///< Controller depth influencing filter cutoff LFO pitch (0 - 1200).              uint16_t           LFO2ControlDepth;              ///< Controller depth influencing filter cutoff LFO pitch (0 - 1200).
551              lfo2_ctrl_t        LFO2Controller;                ///< MIDI Controlle which controls the filter cutoff LFO.              lfo2_ctrl_t        LFO2Controller;                ///< MIDI Controlle which controls the filter cutoff LFO.
552              bool               LFO2FlipPhase;                 ///< Inverts phase of the filter cutoff LFO wave.              bool               LFO2FlipPhase;                 ///< Inverts the polarity of the filter cutoff LFO wave, so it flips the wave form vertically.
553              bool               LFO2Sync;                      ///< If set to <i>true</i> only one LFO should be used for all voices.              bool               LFO2Sync;                      ///< If set to <i>true</i> only one LFO should be used for all voices.
554              // Sample Pitch EG/LFO              // Sample Pitch EG/LFO
555              double             EG3Attack;                     ///< Attack time of the sample pitch EG (0.000 - 10.000s).              double             EG3Attack;                     ///< Attack time of the sample pitch EG (0.000 - 10.000s).
556              int16_t            EG3Depth;                      ///< Depth of the sample pitch EG (-1200 - +1200).              int16_t            EG3Depth;                      ///< Depth of the sample pitch EG (-1200 - +1200).
557                lfo_wave_t         LFO3WaveForm;                  ///< [gig extension]: The fundamental wave form to be used by the pitch LFO, e.g. sine, triangle, saw, square (default: sine).
558              double             LFO3Frequency;                 ///< Frequency of the sample pitch LFO (0.10 - 10.00 Hz).              double             LFO3Frequency;                 ///< Frequency of the sample pitch LFO (0.10 - 10.00 Hz).
559                double             LFO3Phase;                     ///< [gig extension]: Phase displacement of the pitch LFO's wave form (0.0° - 360.0°).
560              int16_t            LFO3InternalDepth;             ///< Firm depth of the sample pitch LFO (-1200 - +1200 cents).              int16_t            LFO3InternalDepth;             ///< Firm depth of the sample pitch LFO (-1200 - +1200 cents).
561              int16_t            LFO3ControlDepth;              ///< Controller depth of the sample pitch LFO (-1200 - +1200 cents).              int16_t            LFO3ControlDepth;              ///< Controller depth of the sample pitch LFO (-1200 - +1200 cents).
562              lfo3_ctrl_t        LFO3Controller;                ///< MIDI Controller which controls the sample pitch LFO.              lfo3_ctrl_t        LFO3Controller;                ///< MIDI Controller which controls the sample pitch LFO.
563                bool               LFO3FlipPhase;                 ///< [gig extension]: Inverts the polarity of the pitch LFO wave, so it flips the wave form vertically (@b NOTE: this setting for LFO3 is a gig format extension; flipping the polarity was only available for LFO1 and LFO2 in the original Gigasampler/GigaStudio software).
564              bool               LFO3Sync;                      ///< If set to <i>true</i> only one LFO should be used for all voices.              bool               LFO3Sync;                      ///< If set to <i>true</i> only one LFO should be used for all voices.
565              // Filter              // Filter
566              bool               VCFEnabled;                    ///< If filter should be used.              bool               VCFEnabled;                    ///< If filter should be used.
567              vcf_type_t         VCFType;                       ///< Defines the general filter characteristic (lowpass, highpass, bandpass, etc.).              vcf_type_t         VCFType;                       ///< Defines the general filter characteristic (lowpass, highpass, bandpass, etc.).
568              vcf_cutoff_ctrl_t  VCFCutoffController;           ///< Specifies which external controller has influence on the filter cutoff frequency.              vcf_cutoff_ctrl_t  VCFCutoffController;           ///< Specifies which external controller has influence on the filter cutoff frequency. @deprecated Don't alter directly, use SetVCFCutoffController() instead!
569                bool               VCFCutoffControllerInvert;     ///< Inverts values coming from the defined cutoff controller
570              uint8_t            VCFCutoff;                     ///< Max. cutoff frequency.              uint8_t            VCFCutoff;                     ///< Max. cutoff frequency.
571              curve_type_t       VCFVelocityCurve;              ///< Defines a transformation curve for the incoming velocity values, affecting the VCF.              curve_type_t       VCFVelocityCurve;              ///< Defines a transformation curve for the incoming velocity values, affecting the VCF. @deprecated Don't alter directly, use SetVCFVelocityCurve() instead!
572              uint8_t            VCFVelocityScale;              ///< (0-127) Amount velocity controls VCF cutoff frequency (only if no other VCF cutoff controller is defined).              uint8_t            VCFVelocityScale;              ///< (0-127) Amount velocity controls VCF cutoff frequency (only if no other VCF cutoff controller is defined, otherwise this is the minimum cutoff). @deprecated Don't alter directly, use SetVCFVelocityScale() instead!
573              uint8_t            VCFVelocityDynamicRange;       ///< 0x04 = lowest, 0x00 = highest              uint8_t            VCFVelocityDynamicRange;       ///< 0x04 = lowest, 0x00 = highest . @deprecated Don't alter directly, use SetVCFVelocityDynamicRange() instead!
574              uint8_t            VCFResonance;                  ///< Firm internal filter resonance weight.              uint8_t            VCFResonance;                  ///< Firm internal filter resonance weight.
575              bool               VCFResonanceDynamic;           ///< If <i>true</i>: Increases the resonance Q according to changes of controllers that actually control the VCF cutoff frequency (EG2, ext. VCF MIDI controller).              bool               VCFResonanceDynamic;           ///< If <i>true</i>: Increases the resonance Q according to changes of controllers that actually control the VCF cutoff frequency (EG2, ext. VCF MIDI controller).
576              vcf_res_ctrl_t     VCFResonanceController;        ///< Specifies which external controller has influence on the filter resonance Q.              vcf_res_ctrl_t     VCFResonanceController;        ///< Specifies which external controller has influence on the filter resonance Q.
577              bool               VCFKeyboardTracking;           ///< If <i>true</i>: VCF cutoff frequence will be dependend to the note key position relative to the defined breakpoint value.              bool               VCFKeyboardTracking;           ///< If <i>true</i>: VCF cutoff frequence will be dependend to the note key position relative to the defined breakpoint value.
578              uint8_t            VCFKeyboardTrackingBreakpoint; ///< See VCFKeyboardTracking (0 - 127).              uint8_t            VCFKeyboardTrackingBreakpoint; ///< See VCFKeyboardTracking (0 - 127).
579              // Key Velocity Transformations              // Key Velocity Transformations
580              curve_type_t       VelocityResponseCurve;         ///< Defines a transformation curve to the incoming velocity values affecting amplitude.              curve_type_t       VelocityResponseCurve;         ///< Defines a transformation curve to the incoming velocity values affecting amplitude (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseCurve() instead!
581              uint8_t            VelocityResponseDepth;         ///< Dynamic range of velocity affecting amplitude (0 - 4).              uint8_t            VelocityResponseDepth;         ///< Dynamic range of velocity affecting amplitude (0 - 4) (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseDepth() instead!
582              uint8_t            VelocityResponseCurveScaling;  ///< 0 - 127              uint8_t            VelocityResponseCurveScaling;  ///< 0 - 127 (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseCurveScaling() instead!
583              curve_type_t       ReleaseVelocityResponseCurve;  ///< Defines a transformation curve to the incoming release veloctiy values affecting envelope times.              curve_type_t       ReleaseVelocityResponseCurve;  ///< Defines a transformation curve to the incoming release veloctiy values affecting envelope times. @deprecated Don't alter directly, use SetReleaseVelocityResponseCurve() instead!
584              uint8_t            ReleaseVelocityResponseDepth;  ///< Dynamic range of release velocity affecting envelope time (0 - 4).              uint8_t            ReleaseVelocityResponseDepth;  ///< Dynamic range of release velocity affecting envelope time (0 - 4). @deprecated Don't alter directly, use SetReleaseVelocityResponseDepth() instead!
585              uint8_t            ReleaseTriggerDecay;           ///< 0 - 8              uint8_t            ReleaseTriggerDecay;           ///< 0 - 8
586              // Mix / Layer              // Mix / Layer
587              crossfade_t        Crossfade;              crossfade_t        Crossfade;
# Line 383  namespace gig { Line 589  namespace gig {
589              dim_bypass_ctrl_t  DimensionBypass;               ///< If defined, the MIDI controller can switch on/off the dimension in realtime.              dim_bypass_ctrl_t  DimensionBypass;               ///< If defined, the MIDI controller can switch on/off the dimension in realtime.
590              int8_t             Pan;                           ///< Panorama / Balance (-64..0..63 <-> left..middle..right)              int8_t             Pan;                           ///< Panorama / Balance (-64..0..63 <-> left..middle..right)
591              bool               SelfMask;                      ///< If <i>true</i>: high velocity notes will stop low velocity notes at the same note, with that you can save voices that wouldn't be audible anyway.              bool               SelfMask;                      ///< If <i>true</i>: high velocity notes will stop low velocity notes at the same note, with that you can save voices that wouldn't be audible anyway.
592              attenuation_ctrl_t AttenuationControl;            ///< MIDI Controller which has influence on the volume level of the sample (or entire sample group).              attenuation_ctrl_t AttenuationController;         ///< MIDI Controller which has influence on the volume level of the sample (or entire sample group).
593              bool               InvertAttenuationControl;      ///< Inverts the values coming from the defined Attenuation Controller.              bool               InvertAttenuationController;   ///< Inverts the values coming from the defined Attenuation Controller.
594              uint8_t            AttenuationControlTreshold;    ///< 0-127              uint8_t            AttenuationControllerThreshold;///< 0-127
595              uint8_t            ChannelOffset;                 ///< Audio output where the audio signal of the dimension region should be routed to (0 - 9).              uint8_t            ChannelOffset;                 ///< Audio output where the audio signal of the dimension region should be routed to (0 - 9).
596              bool               SustainDefeat;                 ///< If <i>true</i>: Sustain pedal will not hold a note.              bool               SustainDefeat;                 ///< If <i>true</i>: Sustain pedal will not hold a note.
597              bool               MSDecode;                      ///< Gigastudio flag: defines if Mid Side Recordings should be decoded.              bool               MSDecode;                      ///< Gigastudio flag: defines if Mid Side Recordings should be decoded.
598              uint16_t           SampleStartOffset;             ///< Number of samples the sample start should be moved (0 - 2000).              uint16_t           SampleStartOffset;             ///< Number of samples the sample start should be moved (0 - 2000).
599                double             SampleAttenuation;             ///< Sample volume (calculated from DLS::Sampler::Gain)
600                uint8_t            DimensionUpperLimits[8];       ///< gig3: defines the upper limit of the dimension values for this dimension region. In case you wondered why this is defined on DimensionRegion level and not on Region level: the zone sizes (upper limits) of the velocity dimension can indeed differ in the individual dimension regions, depending on which zones of the other dimension types are currently selected. So this is exceptional for the velocity dimension only. All other dimension types have the same dimension zone sizes for every single DimensionRegion (of the sample Region).
601                eg_opt_t           EG1Options;                    ///< [gig extension]: Behavior options which should be used for envelope generator 1 (volume amplitude EG).
602                eg_opt_t           EG2Options;                    ///< [gig extension]: Behavior options which should be used for envelope generator 2 (filter cutoff EG).
603                sust_rel_trg_t     SustainReleaseTrigger;         ///< [gig extension]: Whether a sustain pedal up event shall play release trigger sample.
604                bool               NoNoteOffReleaseTrigger;       ///< [gig extension]: If @c true then don't play a release trigger sample on MIDI note-off events.
605    
606              // derived attributes from DLS::Sampler              // derived attributes from DLS::Sampler
607              DLS::Sampler::UnityNote;              using DLS::Sampler::UnityNote;
608              DLS::Sampler::FineTune;              using DLS::Sampler::FineTune;
609              DLS::Sampler::Gain;              using DLS::Sampler::Gain;
610              DLS::Sampler::SampleLoops;              using DLS::Sampler::SampleLoops;
611              DLS::Sampler::pSampleLoops;              using DLS::Sampler::pSampleLoops;
612    
613              // Methods              // own methods
614              double GetVelocityAttenuation(uint8_t MIDIKeyVelocity);              double GetVelocityAttenuation(uint8_t MIDIKeyVelocity);
615                double GetVelocityRelease(uint8_t MIDIKeyVelocity);
616                double GetVelocityCutoff(uint8_t MIDIKeyVelocity);
617                void SetVelocityResponseCurve(curve_type_t curve);
618                void SetVelocityResponseDepth(uint8_t depth);
619                void SetVelocityResponseCurveScaling(uint8_t scaling);
620                void SetReleaseVelocityResponseCurve(curve_type_t curve);
621                void SetReleaseVelocityResponseDepth(uint8_t depth);
622                void SetVCFCutoffController(vcf_cutoff_ctrl_t controller);
623                void SetVCFVelocityCurve(curve_type_t curve);
624                void SetVCFVelocityDynamicRange(uint8_t range);
625                void SetVCFVelocityScale(uint8_t scaling);
626                Region* GetParent() const;
627                // derived methods
628                using DLS::Sampler::AddSampleLoop;
629                using DLS::Sampler::DeleteSampleLoop;
630                // overridden methods
631                virtual void SetGain(int32_t gain) OVERRIDE;
632                virtual void UpdateChunks(progress_t* pProgress) OVERRIDE;
633                virtual void CopyAssign(const DimensionRegion* orig);
634          protected:          protected:
635              DimensionRegion(RIFF::List* _3ewl);              uint8_t* VelocityTable; ///< For velocity dimensions with custom defined zone ranges only: used for fast converting from velocity MIDI value to dimension bit number.
636                DimensionRegion(Region* pParent, RIFF::List* _3ewl);
637                DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src);
638             ~DimensionRegion();             ~DimensionRegion();
639                void CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples);
640                void serialize(Serialization::Archive* archive);
641              friend class Region;              friend class Region;
642                friend class Serialization::Archive;
643          private:          private:
644                typedef enum { ///< Used to decode attenuation, EG1 and EG2 controller
645                    // official leverage controllers as they were defined in the original Gigasampler/GigaStudio format:
646                    _lev_ctrl_none              = 0x00,
647                    _lev_ctrl_modwheel          = 0x03, ///< Modulation Wheel (MIDI Controller 1)
648                    _lev_ctrl_breath            = 0x05, ///< Breath Controller (Coarse, MIDI Controller 2)
649                    _lev_ctrl_foot              = 0x07, ///< Foot Pedal (Coarse, MIDI Controller 4)
650                    _lev_ctrl_effect1           = 0x0d, ///< Effect Controller 1 (Coarse, MIDI Controller 12)
651                    _lev_ctrl_effect2           = 0x0f, ///< Effect Controller 2 (Coarse, MIDI Controller 13)
652                    _lev_ctrl_genpurpose1       = 0x11, ///< General Purpose Controller 1 (Slider, MIDI Controller 16)
653                    _lev_ctrl_genpurpose2       = 0x13, ///< General Purpose Controller 2 (Slider, MIDI Controller 17)
654                    _lev_ctrl_genpurpose3       = 0x15, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
655                    _lev_ctrl_genpurpose4       = 0x17, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
656                    _lev_ctrl_portamentotime    = 0x0b, ///< Portamento Time (Coarse, MIDI Controller 5)
657                    _lev_ctrl_sustainpedal      = 0x01, ///< Sustain Pedal (MIDI Controller 64)
658                    _lev_ctrl_portamento        = 0x19, ///< Portamento (MIDI Controller 65)
659                    _lev_ctrl_sostenutopedal    = 0x1b, ///< Sostenuto Pedal (MIDI Controller 66)
660                    _lev_ctrl_softpedal         = 0x09, ///< Soft Pedal (MIDI Controller 67)
661                    _lev_ctrl_genpurpose5       = 0x1d, ///< General Purpose Controller 5 (Button, MIDI Controller 80)
662                    _lev_ctrl_genpurpose6       = 0x1f, ///< General Purpose Controller 6 (Button, MIDI Controller 81)
663                    _lev_ctrl_genpurpose7       = 0x21, ///< General Purpose Controller 7 (Button, MIDI Controller 82)
664                    _lev_ctrl_genpurpose8       = 0x23, ///< General Purpose Controller 8 (Button, MIDI Controller 83)
665                    _lev_ctrl_effect1depth      = 0x25, ///< Effect 1 Depth (MIDI Controller 91)
666                    _lev_ctrl_effect2depth      = 0x27, ///< Effect 2 Depth (MIDI Controller 92)
667                    _lev_ctrl_effect3depth      = 0x29, ///< Effect 3 Depth (MIDI Controller 93)
668                    _lev_ctrl_effect4depth      = 0x2b, ///< Effect 4 Depth (MIDI Controller 94)
669                    _lev_ctrl_effect5depth      = 0x2d, ///< Effect 5 Depth (MIDI Controller 95)
670                    _lev_ctrl_channelaftertouch = 0x2f, ///< Channel Key Pressure
671                    _lev_ctrl_velocity          = 0xff, ///< Key Velocity
672    
673                    // format extension (these controllers are so far only supported by LinuxSampler & gigedit) they will *NOT* work with Gigasampler/GigaStudio !
674                    // (the assigned values here are their official MIDI CC number plus the highest bit set):
675                    _lev_ctrl_CC3_EXT           = 0x83, ///< MIDI Controller 3 [gig format extension]
676    
677                    _lev_ctrl_CC6_EXT           = 0x86, ///< Data Entry MSB (MIDI Controller 6) [gig format extension]
678                    _lev_ctrl_CC7_EXT           = 0x87, ///< Channel Volume (MIDI Controller 7) [gig format extension]
679                    _lev_ctrl_CC8_EXT           = 0x88, ///< Balance (MIDI Controller 8) [gig format extension]
680                    _lev_ctrl_CC9_EXT           = 0x89, ///< MIDI Controller 9 [gig format extension]
681                    _lev_ctrl_CC10_EXT          = 0x8a, ///< Pan (MIDI Controller 10) [gig format extension]
682                    _lev_ctrl_CC11_EXT          = 0x8b, ///< Expression Controller (MIDI Controller 11) [gig format extension]
683    
684                    _lev_ctrl_CC14_EXT          = 0x8e, ///< MIDI Controller 14 [gig format extension]
685                    _lev_ctrl_CC15_EXT          = 0x8f, ///< MIDI Controller 15 [gig format extension]
686    
687                    _lev_ctrl_CC20_EXT          = 0x94, ///< MIDI Controller 20 [gig format extension]
688                    _lev_ctrl_CC21_EXT          = 0x95, ///< MIDI Controller 21 [gig format extension]
689                    _lev_ctrl_CC22_EXT          = 0x96, ///< MIDI Controller 22 [gig format extension]
690                    _lev_ctrl_CC23_EXT          = 0x97, ///< MIDI Controller 23 [gig format extension]
691                    _lev_ctrl_CC24_EXT          = 0x98, ///< MIDI Controller 24 [gig format extension]
692                    _lev_ctrl_CC25_EXT          = 0x99, ///< MIDI Controller 25 [gig format extension]
693                    _lev_ctrl_CC26_EXT          = 0x9a, ///< MIDI Controller 26 [gig format extension]
694                    _lev_ctrl_CC27_EXT          = 0x9b, ///< MIDI Controller 27 [gig format extension]
695                    _lev_ctrl_CC28_EXT          = 0x9c, ///< MIDI Controller 28 [gig format extension]
696                    _lev_ctrl_CC29_EXT          = 0x9d, ///< MIDI Controller 29 [gig format extension]
697                    _lev_ctrl_CC30_EXT          = 0x9e, ///< MIDI Controller 30 [gig format extension]
698                    _lev_ctrl_CC31_EXT          = 0x9f, ///< MIDI Controller 31 [gig format extension]
699    
700                    _lev_ctrl_CC68_EXT          = 0xc4, ///< Legato Footswitch (MIDI Controller 68) [gig format extension]
701                    _lev_ctrl_CC69_EXT          = 0xc5, ///< Hold 2 (MIDI Controller 69) [gig format extension]
702                    _lev_ctrl_CC70_EXT          = 0xc6, ///< Sound Ctrl. 1 - Sound Variation (MIDI Controller 70) [gig format extension]
703                    _lev_ctrl_CC71_EXT          = 0xc7, ///< Sound Ctrl. 2 - Timbre (MIDI Controller 71) [gig format extension]
704                    _lev_ctrl_CC72_EXT          = 0xc8, ///< Sound Ctrl. 3 - Release Time (MIDI Controller 72) [gig format extension]
705                    _lev_ctrl_CC73_EXT          = 0xc9, ///< Sound Ctrl. 4 - Attack Time (MIDI Controller 73) [gig format extension]
706                    _lev_ctrl_CC74_EXT          = 0xca, ///< Sound Ctrl. 5 - Brightness (MIDI Controller 74) [gig format extension]
707                    _lev_ctrl_CC75_EXT          = 0xcb, ///< Sound Ctrl. 6 - Decay Time (MIDI Controller 75) [gig format extension]
708                    _lev_ctrl_CC76_EXT          = 0xcc, ///< Sound Ctrl. 7 - Vibrato Rate (MIDI Controller 76) [gig format extension]
709                    _lev_ctrl_CC77_EXT          = 0xcd, ///< Sound Ctrl. 8 - Vibrato Depth (MIDI Controller 77) [gig format extension]
710                    _lev_ctrl_CC78_EXT          = 0xce, ///< Sound Ctrl. 9 - Vibrato Delay (MIDI Controller 78) [gig format extension]
711                    _lev_ctrl_CC79_EXT          = 0xcf, ///< Sound Ctrl. 10 (MIDI Controller 79) [gig format extension]
712    
713                    _lev_ctrl_CC84_EXT          = 0xd4, ///< Portamento Control (MIDI Controller 84) [gig format extension]
714                    _lev_ctrl_CC85_EXT          = 0xd5, ///< MIDI Controller 85 [gig format extension]
715                    _lev_ctrl_CC86_EXT          = 0xd6, ///< MIDI Controller 86 [gig format extension]
716                    _lev_ctrl_CC87_EXT          = 0xd7, ///< MIDI Controller 87 [gig format extension]
717    
718                    _lev_ctrl_CC89_EXT          = 0xd9, ///< MIDI Controller 89 [gig format extension]
719                    _lev_ctrl_CC90_EXT          = 0xda, ///< MIDI Controller 90 [gig format extension]
720    
721                    _lev_ctrl_CC96_EXT          = 0xe0, ///< Data Increment (MIDI Controller 96) [gig format extension]
722                    _lev_ctrl_CC97_EXT          = 0xe1, ///< Data Decrement (MIDI Controller 97) [gig format extension]
723    
724                    _lev_ctrl_CC102_EXT         = 0xe6, ///< MIDI Controller 102 [gig format extension]
725                    _lev_ctrl_CC103_EXT         = 0xe7, ///< MIDI Controller 103 [gig format extension]
726                    _lev_ctrl_CC104_EXT         = 0xe8, ///< MIDI Controller 104 [gig format extension]
727                    _lev_ctrl_CC105_EXT         = 0xe9, ///< MIDI Controller 105 [gig format extension]
728                    _lev_ctrl_CC106_EXT         = 0xea, ///< MIDI Controller 106 [gig format extension]
729                    _lev_ctrl_CC107_EXT         = 0xeb, ///< MIDI Controller 107 [gig format extension]
730                    _lev_ctrl_CC108_EXT         = 0xec, ///< MIDI Controller 108 [gig format extension]
731                    _lev_ctrl_CC109_EXT         = 0xed, ///< MIDI Controller 109 [gig format extension]
732                    _lev_ctrl_CC110_EXT         = 0xee, ///< MIDI Controller 110 [gig format extension]
733                    _lev_ctrl_CC111_EXT         = 0xef, ///< MIDI Controller 111 [gig format extension]
734                    _lev_ctrl_CC112_EXT         = 0xf0, ///< MIDI Controller 112 [gig format extension]
735                    _lev_ctrl_CC113_EXT         = 0xf1, ///< MIDI Controller 113 [gig format extension]
736                    _lev_ctrl_CC114_EXT         = 0xf2, ///< MIDI Controller 114 [gig format extension]
737                    _lev_ctrl_CC115_EXT         = 0xf3, ///< MIDI Controller 115 [gig format extension]
738                    _lev_ctrl_CC116_EXT         = 0xf4, ///< MIDI Controller 116 [gig format extension]
739                    _lev_ctrl_CC117_EXT         = 0xf5, ///< MIDI Controller 117 [gig format extension]
740                    _lev_ctrl_CC118_EXT         = 0xf6, ///< MIDI Controller 118 [gig format extension]
741                    _lev_ctrl_CC119_EXT         = 0xf7  ///< MIDI Controller 119 [gig format extension]
742                } _lev_ctrl_t;
743              typedef std::map<uint32_t, double*> VelocityTableMap;              typedef std::map<uint32_t, double*> VelocityTableMap;
744    
745              static uint              Instances;                  ///< Number of DimensionRegion instances.              static size_t            Instances;                  ///< Number of DimensionRegion instances.
746              static VelocityTableMap* pVelocityTables;            ///< Contains the tables corresponding to the various velocity parameters (VelocityResponseCurve and VelocityResponseDepth).              static VelocityTableMap* pVelocityTables;            ///< Contains the tables corresponding to the various velocity parameters (VelocityResponseCurve and VelocityResponseDepth).
747              double*                  pVelocityAttenuationTable;  ///< Points to the velocity table corresponding to the velocity parameters of this DimensionRegion.              double*                  pVelocityAttenuationTable;  ///< Points to the velocity table corresponding to the velocity parameters of this DimensionRegion.
748                double*                  pVelocityReleaseTable;      ///< Points to the velocity table corresponding to the release velocity parameters of this DimensionRegion
749                double*                  pVelocityCutoffTable;       ///< Points to the velocity table corresponding to the filter velocity parameters of this DimensionRegion
750                Region*                  pRegion;
751    
752                leverage_ctrl_t DecodeLeverageController(_lev_ctrl_t EncodedController);
753                _lev_ctrl_t     EncodeLeverageController(leverage_ctrl_t DecodedController);
754                double* GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth);
755                double* GetCutoffVelocityTable(curve_type_t vcfVelocityCurve, uint8_t vcfVelocityDynamicRange, uint8_t vcfVelocityScale, vcf_cutoff_ctrl_t vcfCutoffController);
756                double* GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);
757                double* CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);
758                bool UsesAnyGigFormatExtension() const;
759      };      };
760    
761      /** Encapsulates sample waves used for playback. */      /** @brief Encapsulates sample waves of Gigasampler/GigaStudio files used for playback.
762         *
763         * This class provides access to the actual audio sample data of a
764         * Gigasampler/GigaStudio file. Along to the actual sample data, it also
765         * provides access to the sample's meta informations like bit depth,
766         * sample rate, encoding type, but also loop informations. The latter may be
767         * used by instruments for resembling sounds with arbitary note lengths.
768         *
769         * In case you created a new sample with File::AddSample(), you should
770         * first update all attributes with the desired meta informations
771         * (amount of channels, bit depth, sample rate, etc.), then call
772         * Resize() with the desired sample size, followed by File::Save(), this
773         * will create the mandatory RIFF chunk which will hold the sample wave
774         * data and / or resize the file so you will be able to Write() the
775         * sample data directly to disk.
776         *
777         * @e Caution: for gig synthesis, most looping relevant information are
778         * retrieved from the respective DimensionRegon instead from the Sample
779         * itself. This was made for allowing different loop definitions for the
780         * same sample under different conditions.
781         *
782         * Since the gig format was designed as extension to the DLS file format,
783         * this class is derived from the DLS::Sample class. So also refer to
784         * DLS::Sample for additional informations, class attributes and methods.
785         */
786      class Sample : public DLS::Sample {      class Sample : public DLS::Sample {
787          public:          public:
             uint16_t       SampleGroup;  
788              uint32_t       Manufacturer;      ///< Specifies the MIDI Manufacturer's Association (MMA) Manufacturer code for the sampler intended to receive this file's waveform. If no particular manufacturer is to be specified, a value of 0 should be used.              uint32_t       Manufacturer;      ///< Specifies the MIDI Manufacturer's Association (MMA) Manufacturer code for the sampler intended to receive this file's waveform. If no particular manufacturer is to be specified, a value of 0 should be used.
789              uint32_t       Product;           ///< Specifies the MIDI model ID defined by the manufacturer corresponding to the Manufacturer field. If no particular manufacturer's product is to be specified, a value of 0 should be used.              uint32_t       Product;           ///< Specifies the MIDI model ID defined by the manufacturer corresponding to the Manufacturer field. If no particular manufacturer's product is to be specified, a value of 0 should be used.
790              uint32_t       SamplePeriod;      ///< Specifies the duration of time that passes during the playback of one sample in nanoseconds (normally equal to 1 / Samplers Per Second, where Samples Per Second is the value found in the format chunk).              uint32_t       SamplePeriod;      ///< Specifies the duration of time that passes during the playback of one sample in nanoseconds (normally equal to 1 / Samples Per Second, where Samples Per Second is the value found in the format chunk), don't bother to update this attribute, it won't be saved.
791              uint32_t       MIDIUnityNote;     ///< Specifies the musical note at which the sample will be played at it's original sample rate.              uint32_t       MIDIUnityNote;     ///< Specifies the musical note at which the sample will be played at it's original sample rate.
792              uint32_t       FineTune;          ///< Specifies the fraction of a semitone up from the specified MIDI unity note field. A value of 0x80000000 means 1/2 semitone (50 cents) and a value of 0x00000000 means no fine tuning between semitones.              uint32_t       FineTune;          ///< Specifies the fraction of a semitone up from the specified MIDI unity note field. A value of 0x80000000 means 1/2 semitone (50 cents) and a value of 0x00000000 means no fine tuning between semitones.
793              smpte_format_t SMPTEFormat;       ///< Specifies the Society of Motion Pictures and Television E time format used in the following <i>SMPTEOffset</i> field. If a value of 0 is set, <i>SMPTEOffset</i> should also be set to 0.              smpte_format_t SMPTEFormat;       ///< Specifies the Society of Motion Pictures and Television E time format used in the following <i>SMPTEOffset</i> field. If a value of 0 is set, <i>SMPTEOffset</i> should also be set to 0.
794              uint32_t       SMPTEOffset;       ///< The SMPTE Offset value specifies the time offset to be used for the synchronization / calibration to the first sample in the waveform. This value uses a format of 0xhhmmssff where hh is a signed value that specifies the number of hours (-23 to 23), mm is an unsigned value that specifies the number of minutes (0 to 59), ss is an unsigned value that specifies the number of seconds (0 to 59) and ff is an unsigned value that specifies the number of frames (0 to -1).              uint32_t       SMPTEOffset;       ///< The SMPTE Offset value specifies the time offset to be used for the synchronization / calibration to the first sample in the waveform. This value uses a format of 0xhhmmssff where hh is a signed value that specifies the number of hours (-23 to 23), mm is an unsigned value that specifies the number of minutes (0 to 59), ss is an unsigned value that specifies the number of seconds (0 to 59) and ff is an unsigned value that specifies the number of frames (0 to -1).
795              uint32_t       Loops;             ///< Number of defined sample loops (so far only seen single loops in gig files - please report me if you encounter more!).              uint32_t       Loops;             ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: Number of defined sample loops. So far only seen single loops in gig files - please report if you encounter more!)
796              uint32_t       LoopID;            ///< Specifies the unique ID that corresponds to one of the defined cue points in the cue point list (only if Loops > 0), as the Gigasampler format only allows one loop definition at the moment, this attribute isn't really useful for anything.              uint32_t       LoopID;            ///< Specifies the unique ID that corresponds to one of the defined cue points in the cue point list (only if Loops > 0), as the Gigasampler format only allows one loop definition at the moment, this attribute isn't really useful for anything.
797              loop_type_t    LoopType;          ///< The type field defines how the waveform samples will be looped (only if Loops > 0).              loop_type_t    LoopType;          ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The type field defines how the waveform samples will be looped.)
798              uint32_t       LoopStart;         ///< The start value specifies the offset (in sample points) in the waveform data of the first sample to be played in the loop (only if Loops > 0).              uint32_t       LoopStart;         ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The start value specifies the offset [in sample points] in the waveform data of the first sample to be played in the loop [only if Loops > 0].)
799              uint32_t       LoopEnd;           ///< The end value specifies the offset (in sample points) in the waveform data which represents the end of the loop (only if Loops > 0).              uint32_t       LoopEnd;           ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The end value specifies the offset [in sample points] in the waveform data which represents the end of the loop [only if Loops > 0].)
800              uint32_t       LoopSize;          ///< Length of the looping area (in sample points) which is equivalent to <i>LoopEnd - LoopStart</i>.              uint32_t       LoopSize;          ///< @e Caution: Use the respective fields in the DimensionRegion instead of this one! (Intended purpose: Length of the looping area [in sample points] which is equivalent to @code LoopEnd - LoopStart @endcode.)
801              uint32_t       LoopFraction;      ///< The fractional value specifies a fraction of a sample at which to loop (only if Loops > 0). This allows a loop to be fine tuned at a resolution greater than one sample. A value of 0 means no fraction, a value of 0x80000000 means 1/2 of a sample length. 0xFFFFFFFF is the smallest fraction of a sample that can be represented.              uint32_t       LoopFraction;      ///< The fractional value specifies a fraction of a sample at which to loop. This allows a loop to be fine tuned at a resolution greater than one sample. A value of 0 means no fraction, a value of 0x80000000 means 1/2 of a sample length. 0xFFFFFFFF is the smallest fraction of a sample that can be represented.
802              uint32_t       LoopPlayCount;     ///< Number of times the loop should be played (only if Loops > 0, a value of 0 = infinite).              uint32_t       LoopPlayCount;     ///< Number of times the loop should be played (a value of 0 = infinite).
803              bool           Compressed;        ///< If the sample wave is compressed (probably just interesting for instrument and sample editors, as this library already handles the decompression in it's sample access methods anyway).              bool           Compressed;        ///< If the sample wave is compressed (probably just interesting for instrument and sample editors, as this library already handles the decompression in it's sample access methods anyway).
804                uint32_t       TruncatedBits;     ///< For 24-bit compressed samples only: number of bits truncated during compression (0, 4 or 6)
805                bool           Dithered;          ///< For 24-bit compressed samples only: if dithering was used during compression with bit reduction
806    
807              // own methods              // own methods
808              buffer_t      LoadSampleData();              buffer_t      LoadSampleData();
809              buffer_t      LoadSampleData(unsigned long SampleCount);              buffer_t      LoadSampleData(file_offset_t SampleCount);
810              buffer_t      LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount);              buffer_t      LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount);
811              buffer_t      LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount);              buffer_t      LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount);
812              buffer_t      GetCache();              buffer_t      GetCache();
813                // own static methods
814                static buffer_t CreateDecompressionBuffer(file_offset_t MaxReadSize);
815                static void     DestroyDecompressionBuffer(buffer_t& DecompressionBuffer);
816              // overridden methods              // overridden methods
817              void          ReleaseSampleData();              void          ReleaseSampleData();
818              unsigned long SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence = RIFF::stream_start);              void          Resize(file_offset_t NewSize);
819              unsigned long GetPos();              file_offset_t SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence = RIFF::stream_start);
820              unsigned long Read(void* pBuffer, unsigned long SampleCount);              file_offset_t GetPos() const;
821              unsigned long ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState);              file_offset_t Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer = NULL);
822          protected:              file_offset_t ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState, DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer = NULL);
823              static unsigned int  Instances;               ///< Number of instances of class Sample.              file_offset_t Write(void* pBuffer, file_offset_t SampleCount);
824              static unsigned long DecompressionBufferSize; ///< Current size of the decompression buffer.              Group*        GetGroup() const;
825              static void*         pDecompressionBuffer;    ///< Small buffer used for decompression only.              virtual void  UpdateChunks(progress_t* pProgress) OVERRIDE;
826              unsigned long        FrameOffset;             ///< Current offset (sample points) in current sample frame (for decompression only).              void CopyAssignMeta(const Sample* orig);
827              unsigned long*       FrameTable;              ///< For positioning within compressed samples only: stores the offset values for each frame.              void CopyAssignWave(const Sample* orig);
828              unsigned long        SamplePos;               ///< For compressed samples only: stores the current position (in sample points).              uint32_t GetWaveDataCRC32Checksum();
829                bool VerifyWaveData(uint32_t* pActually = NULL);
830            protected:
831                static size_t        Instances;               ///< Number of instances of class Sample.
832                static buffer_t      InternalDecompressionBuffer; ///< Buffer used for decompression as well as for truncation of 24 Bit -> 16 Bit samples.
833                Group*               pGroup;                  ///< pointer to the Group this sample belongs to (always not-NULL)
834                file_offset_t        FrameOffset;             ///< Current offset (sample points) in current sample frame (for decompression only).
835                file_offset_t*       FrameTable;              ///< For positioning within compressed samples only: stores the offset values for each frame.
836                file_offset_t        SamplePos;               ///< For compressed samples only: stores the current position (in sample points).
837                file_offset_t        SamplesInLastFrame;      ///< For compressed samples only: length of the last sample frame.
838                file_offset_t        WorstCaseFrameSize;      ///< For compressed samples only: size (in bytes) of the largest possible sample frame.
839                file_offset_t        SamplesPerFrame;         ///< For compressed samples only: number of samples in a full sample frame.
840              buffer_t             RAMCache;                ///< Buffers samples (already uncompressed) in RAM.              buffer_t             RAMCache;                ///< Buffers samples (already uncompressed) in RAM.
841                unsigned long        FileNo;                  ///< File number (> 0 when sample is stored in an extension file, 0 when it's in the gig)
842                RIFF::Chunk*         pCk3gix;
843                RIFF::Chunk*         pCkSmpl;
844                uint32_t             crc;                     ///< Reflects CRC-32 checksum of the raw sample data at the last time when the sample's raw wave form data has been modified consciously by the user by calling Write().
845    
846              Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset);              Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo = 0, int index = -1);
847             ~Sample();             ~Sample();
848              /**              uint32_t CalculateWaveDataChecksum();
849               * Swaps the order of the data words in the given memory area  
850               * with a granularity given by \a WordSize.              // Guess size (in bytes) of a compressed sample
851               *              inline file_offset_t GuessSize(file_offset_t samples) {
852               * @param pData    - pointer to the memory area to be swapped                  // 16 bit: assume all frames are compressed - 1 byte
853               * @param AreaSize - size of the memory area to be swapped (in bytes)                  // per sample and 5 bytes header per 2048 samples
854               * @param WordSize - size of the data words (in bytes)  
855               */                  // 24 bit: assume next best compression rate - 1.5
856              inline void SwapMemoryArea(void* pData, unsigned long AreaSize, uint WordSize) {                  // bytes per sample and 13 bytes header per 256
857                  switch (WordSize) { // TODO: unefficient                  // samples
858                      case 1: {                  const file_offset_t size =
859                          uint8_t* pDst = (uint8_t*) pData;                      BitDepth == 24 ? samples + (samples >> 1) + (samples >> 8) * 13
860                          uint8_t  cache;                                     : samples + (samples >> 10) * 5;
861                          unsigned long lo = 0, hi = AreaSize - 1;                  // Double for stereo and add one worst case sample
862                          for (; lo < hi; hi--, lo++) {                  // frame
863                              cache    = pDst[lo];                  return (Channels == 2 ? size << 1 : size) + WorstCaseFrameSize;
                             pDst[lo] = pDst[hi];  
                             pDst[hi] = cache;  
                         }  
                         break;  
                     }  
                     case 2: {  
                         uint16_t* pDst = (uint16_t*) pData;  
                         uint16_t  cache;  
                         unsigned long lo = 0, hi = (AreaSize >> 1) - 1;  
                         for (; lo < hi; hi--, lo++) {  
                             cache    = pDst[lo];  
                             pDst[lo] = pDst[hi];  
                             pDst[hi] = cache;  
                         }  
                         break;  
                     }  
                     case 4: {  
                         uint32_t* pDst = (uint32_t*) pData;  
                         uint32_t  cache;  
                         unsigned long lo = 0, hi = (AreaSize >> 2) - 1;  
                         for (; lo < hi; hi--, lo++) {  
                             cache    = pDst[lo];  
                             pDst[lo] = pDst[hi];  
                             pDst[hi] = cache;  
                         }  
                         break;  
                     }  
                     default: {  
                         uint8_t* pCache = new uint8_t[WordSize]; // TODO: unefficient  
                         unsigned long lo = 0, hi = AreaSize - WordSize;  
                         for (; lo < hi; hi -= WordSize, lo += WordSize) {  
                             memcpy(pCache, (uint8_t*) pData + lo, WordSize);  
                             memcpy((uint8_t*) pData + lo, (uint8_t*) pData + hi, WordSize);  
                             memcpy((uint8_t*) pData + hi, pCache, WordSize);  
                         }  
                         delete[] pCache;  
                         break;  
                     }  
                 }  
864              }              }
865              inline long Min(long A, long B) {  
866                  return (A > B) ? B : A;              // Worst case amount of sample points that can be read with the
867                // given decompression buffer.
868                inline file_offset_t WorstCaseMaxSamples(buffer_t* pDecompressionBuffer) {
869                    return (file_offset_t) ((float)pDecompressionBuffer->Size / (float)WorstCaseFrameSize * (float)SamplesPerFrame);
870              }              }
             inline long Abs(long val) { return (val > 0) ? val : -val; }  
871          private:          private:
872              void ScanCompressedSample();              void ScanCompressedSample();
873              friend class File;              friend class File;
874              friend class Region;              friend class Region;
875                friend class Group; // allow to modify protected member pGroup
876      };      };
877    
878      // TODO: <3dnl> list not used yet - not important though (just contains optional descriptions for the dimensions)      // TODO: <3dnl> list not used yet - not important though (just contains optional descriptions for the dimensions)
879      /** Defines <i>Region</i> information of an <i>Instrument</i>. */      /** @brief Defines Region information of a Gigasampler/GigaStudio instrument.
880         *
881         * A Region reflects a consecutive area (key range) on the keyboard. The
882         * individual regions in the gig format may not overlap with other regions
883         * (of the same instrument that is). Further, in the gig format a Region is
884         * merely a container for DimensionRegions (a.k.a. "Cases"). The Region
885         * itself does not provide the sample mapping or articulation informations
886         * used, even though the data structures of regions indeed provide such
887         * informations. The latter is however just of historical nature, because
888         * the gig file format was derived from the DLS file format.
889         *
890         * Each Region consists of at least one or more DimensionRegions. The actual
891         * amount of DimensionRegions depends on which kind of "dimensions" are
892         * defined for this region, and on the split / zone amount for each of those
893         * dimensions.
894         *
895         * Since the gig format was designed as extension to the DLS file format,
896         * this class is derived from the DLS::Region class. So also refer to
897         * DLS::Region for additional informations, class attributes and methods.
898         */
899      class Region : public DLS::Region {      class Region : public DLS::Region {
900          public:          public:
901              unsigned int            Dimensions;               ///< Number of defined dimensions.              unsigned int            Dimensions;               ///< Number of defined dimensions, do not alter!
902              dimension_def_t         pDimensionDefinitions[5]; ///< Defines the five possible dimensions (the dimension's controller and number of bits/splits).              dimension_def_t         pDimensionDefinitions[8]; ///< Defines the five (gig2) or eight (gig3) possible dimensions (the dimension's controller and number of bits/splits). Use AddDimension() and DeleteDimension() to create a new dimension or delete an existing one.
903              uint32_t                DimensionRegions;         ///< Total number of DimensionRegions this Region contains.              uint32_t                DimensionRegions;         ///< Total number of DimensionRegions this Region contains, do not alter!
904              DimensionRegion*        pDimensionRegions[32];    ///< Pointer array to the 32 possible dimension regions (reflects NULL for dimension regions not in use). Avoid to access the array directly and better use GetDimensionRegionByValue() instead, but of course in some cases it makes sense to use the array (e.g. iterating through all DimensionRegions).              DimensionRegion*        pDimensionRegions[256];   ///< Pointer array to the 32 (gig2) or 256 (gig3) possible dimension regions (reflects NULL for dimension regions not in use). Avoid to access the array directly and better use GetDimensionRegionByValue() instead, but of course in some cases it makes sense to use the array (e.g. iterating through all DimensionRegions). Use AddDimension() and DeleteDimension() to create a new dimension or delete an existing one (which will create or delete the respective dimension region(s) automatically).
905                unsigned int            Layers;                   ///< Amount of defined layers (1 - 32). A value of 1 actually means no layering, a value > 1 means there is Layer dimension. The same information can of course also be obtained by accessing pDimensionDefinitions. Do not alter this value!
906    
907              DimensionRegion* GetDimensionRegionByValue(uint Dim4Val, uint Dim3Val, uint Dim2Val, uint Dim1Val, uint Dim0Val);              // own methods
908              DimensionRegion* GetDimensionRegionByBit(uint8_t Dim4Bit, uint8_t Dim3Bit, uint8_t Dim2Bit, uint8_t Dim1Bit, uint8_t Dim0Bit);              DimensionRegion* GetDimensionRegionByValue(const uint DimValues[8]);
909                DimensionRegion* GetDimensionRegionByBit(const uint8_t DimBits[8]);
910                int              GetDimensionRegionIndexByValue(const uint DimValues[8]);
911              Sample*          GetSample();              Sample*          GetSample();
912                void             AddDimension(dimension_def_t* pDimDef);
913                void             DeleteDimension(dimension_def_t* pDimDef);
914                dimension_def_t* GetDimensionDefinition(dimension_t type);
915                void             DeleteDimensionZone(dimension_t type, int zone);
916                void             SplitDimensionZone(dimension_t type, int zone);
917                void             SetDimensionType(dimension_t oldType, dimension_t newType);
918                // overridden methods
919                virtual void     SetKeyRange(uint16_t Low, uint16_t High) OVERRIDE;
920                virtual void     UpdateChunks(progress_t* pProgress) OVERRIDE;
921                virtual void     CopyAssign(const Region* orig);
922          protected:          protected:
             uint8_t VelocityTable[128]; ///< For velocity dimensions with custom defined zone ranges only: used for fast converting from velocity MIDI value to dimension bit number.  
   
923              Region(Instrument* pInstrument, RIFF::List* rgnList);              Region(Instrument* pInstrument, RIFF::List* rgnList);
924              void LoadDimensionRegions(RIFF::List* rgn);              void LoadDimensionRegions(RIFF::List* rgn);
925              Sample* GetSampleFromWavePool(unsigned int WavePoolTableIndex);              void UpdateVelocityTable();
926                Sample* GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress = NULL);
927                void CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples);
928                DimensionRegion* GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase);
929             ~Region();             ~Region();
930              friend class Instrument;              friend class Instrument;
931      };      };
932    
933      /** Provides all neccessary information for the synthesis of an <i>Instrument</i>. */      /** @brief Abstract base class for all MIDI rules.
934         *
935         * Note: Instead of using MIDI rules, we recommend you using real-time
936         * instrument scripts instead. Read about the reasons below.
937         *
938         * MIDI Rules (also called "iMIDI rules" or "intelligent MIDI rules") were
939         * introduced with GigaStudio 4 as an attempt to increase the power of
940         * potential user controls over sounds. At that point other samplers already
941         * supported certain powerful user control features, which were not possible
942         * with GigaStudio yet. For example triggering new notes by MIDI CC
943         * controller.
944         *
945         * Such extended features however were usually implemented by other samplers
946         * by requiring the sound designer to write an instrument script which the
947         * designer would then bundle with the respective instrument file. Such
948         * scripts are essentially text files, using a very specific programming
949         * language for the purpose of controlling the sampler in real-time. Since
950         * however musicians are not typically keen to writing such cumbersome
951         * script files, the GigaStudio designers decided to implement such extended
952         * features completely without instrument scripts. Instead they created a
953         * set of rules, which could be defined and altered conveniently by mouse
954         * clicks in GSt's instrument editor application. The downside of this
955         * overall approach however, was that those MIDI rules were very limited in
956         * practice. As sound designer you easily came across the possiblities such
957         * MIDI rules were able to offer.
958         *
959         * Due to such severe use case constraints, support for MIDI rules is quite
960         * limited in libgig. At the moment only the "Control Trigger", "Alternator"
961         * and the "Legato" MIDI rules are supported by libgig. Consequently the
962         * graphical instrument editor application gigedit just supports the
963         * "Control Trigger" and "Legato" MIDI rules, and LinuxSampler even does not
964         * support any MIDI rule type at all and LinuxSampler probably will not
965         * support MIDI rules in future either.
966         *
967         * Instead of using MIDI rules, we introduced real-time instrument scripts
968         * as extension to the original GigaStudio file format. This script based
969         * solution is much more powerful than MIDI rules and is already supported
970         * by libgig, gigedit and LinuxSampler.
971         *
972         * @deprecated Just provided for backward compatiblity, use Script for new
973         *             instruments instead.
974         */
975        class MidiRule {
976            public:
977                virtual ~MidiRule() { }
978            protected:
979                virtual void UpdateChunks(uint8_t* pData) const = 0;
980                friend class Instrument;
981        };
982    
983        /** @brief MIDI rule for triggering notes by control change events.
984         *
985         * A "Control Trigger MIDI rule" allows to trigger new notes by sending MIDI
986         * control change events to the sampler.
987         *
988         * Note: "Control Trigger" MIDI rules are only supported by gigedit, but not
989         * by LinuxSampler. We recommend you using real-time instrument scripts
990         * instead. Read more about the details and reasons for this in the
991         * description of the MidiRule base class.
992         *
993         * @deprecated Just provided for backward compatiblity, use Script for new
994         *             instruments instead. See description of MidiRule for details.
995         */
996        class MidiRuleCtrlTrigger : public MidiRule {
997            public:
998                uint8_t ControllerNumber;   ///< MIDI controller number.
999                uint8_t Triggers;           ///< Number of triggers.
1000                struct trigger_t {
1001                    uint8_t TriggerPoint;   ///< The CC value to pass for the note to be triggered.
1002                    bool    Descending;     ///< If the change in CC value should be downwards.
1003                    uint8_t VelSensitivity; ///< How sensitive the velocity should be to the speed of the controller change.
1004                    uint8_t Key;            ///< Key to trigger.
1005                    bool    NoteOff;        ///< If a note off should be triggered instead of a note on.
1006                    uint8_t Velocity;       ///< Velocity of the note to trigger. 255 means that velocity should depend on the speed of the controller change.
1007                    bool    OverridePedal;  ///< If a note off should be triggered even if the sustain pedal is down.
1008                } pTriggers[32];
1009    
1010            protected:
1011                MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg);
1012                MidiRuleCtrlTrigger();
1013                void UpdateChunks(uint8_t* pData) const OVERRIDE;
1014                friend class Instrument;
1015        };
1016    
1017        /** @brief MIDI rule for instruments with legato samples.
1018         *
1019         * A "Legato MIDI rule" allows playing instruments resembling the legato
1020         * playing technique. In the past such legato articulations were tried to be
1021         * simulated by pitching the samples of the instrument. However since
1022         * usually a high amount of pitch is needed for legatos, this always sounded
1023         * very artificial and unrealistic. The "Legato MIDI rule" thus uses another
1024         * approach. Instead of pitching the samples, it allows the sound designer
1025         * to bundle separate, additional samples for the individual legato
1026         * situations and the legato rules defined which samples to be played in
1027         * which situation.
1028         *
1029         * Note: "Legato MIDI rules" are only supported by gigedit, but not
1030         * by LinuxSampler. We recommend you using real-time instrument scripts
1031         * instead. Read more about the details and reasons for this in the
1032         * description of the MidiRule base class.
1033         *
1034         * @deprecated Just provided for backward compatiblity, use Script for new
1035         *             instruments instead. See description of MidiRule for details.
1036         */
1037        class MidiRuleLegato : public MidiRule {
1038            public:
1039                uint8_t LegatoSamples;     ///< Number of legato samples per key in each direction (always 12)
1040                bool BypassUseController;  ///< If a controller should be used to bypass the sustain note
1041                uint8_t BypassKey;         ///< Key to be used to bypass the sustain note
1042                uint8_t BypassController;  ///< Controller to be used to bypass the sustain note
1043                uint16_t ThresholdTime;    ///< Maximum time (ms) between two notes that should be played legato
1044                uint16_t ReleaseTime;      ///< Release time
1045                range_t KeyRange;          ///< Key range for legato notes
1046                uint8_t ReleaseTriggerKey; ///< Key triggering release samples
1047                uint8_t AltSustain1Key;    ///< Key triggering alternate sustain samples
1048                uint8_t AltSustain2Key;    ///< Key triggering a second set of alternate sustain samples
1049    
1050            protected:
1051                MidiRuleLegato(RIFF::Chunk* _3ewg);
1052                MidiRuleLegato();
1053                void UpdateChunks(uint8_t* pData) const OVERRIDE;
1054                friend class Instrument;
1055        };
1056    
1057        /** @brief MIDI rule to automatically cycle through specified sequences of different articulations.
1058         *
1059         * The instrument must be using the smartmidi dimension.
1060         *
1061         * Note: "Alternator" MIDI rules are neither supported by gigedit nor by
1062         * LinuxSampler. We recommend you using real-time instrument scripts
1063         * instead. Read more about the details and reasons for this in the
1064         * description of the MidiRule base class.
1065         *
1066         * @deprecated Just provided for backward compatiblity, use Script for new
1067         *             instruments instead. See description of MidiRule for details.
1068         */
1069        class MidiRuleAlternator : public MidiRule {
1070            public:
1071                uint8_t Articulations;     ///< Number of articulations in the instrument
1072                String pArticulations[32]; ///< Names of the articulations
1073    
1074                range_t PlayRange;         ///< Key range of the playable keys in the instrument
1075    
1076                uint8_t Patterns;          ///< Number of alternator patterns
1077                struct pattern_t {
1078                    String Name;           ///< Name of the pattern
1079                    int Size;              ///< Number of steps in the pattern
1080                    const uint8_t& operator[](int i) const { /// Articulation to play
1081                        return data[i];
1082                    }
1083                    uint8_t& operator[](int i) {
1084                        return data[i];
1085                    }
1086                private:
1087                    uint8_t data[32];
1088                } pPatterns[32];           ///< A pattern is a sequence of articulation numbers
1089    
1090                typedef enum {
1091                    selector_none,
1092                    selector_key_switch,
1093                    selector_controller
1094                } selector_t;
1095                selector_t Selector;       ///< Method by which pattern is chosen
1096                range_t KeySwitchRange;    ///< Key range for key switch selector
1097                uint8_t Controller;        ///< CC number for controller selector
1098    
1099                bool Polyphonic;           ///< If alternator should step forward only when all notes are off
1100                bool Chained;              ///< If all patterns should be chained together
1101    
1102            protected:
1103                MidiRuleAlternator(RIFF::Chunk* _3ewg);
1104                MidiRuleAlternator();
1105                void UpdateChunks(uint8_t* pData) const OVERRIDE;
1106                friend class Instrument;
1107        };
1108    
1109        /** @brief A MIDI rule not yet implemented by libgig.
1110         *
1111         * This class is currently used as a place holder by libgig for MIDI rule
1112         * types which are not supported by libgig yet.
1113         *
1114         * Note: Support for missing MIDI rule types are probably never added to
1115         * libgig. We recommend you using real-time instrument scripts instead.
1116         * Read more about the details and reasons for this in the description of
1117         * the MidiRule base class.
1118         *
1119         * @deprecated Just provided for backward compatiblity, use Script for new
1120         *             instruments instead. See description of MidiRule for details.
1121         */
1122        class MidiRuleUnknown : public MidiRule {
1123            protected:
1124                MidiRuleUnknown() { }
1125                void UpdateChunks(uint8_t* pData) const OVERRIDE { }
1126                friend class Instrument;
1127        };
1128    
1129        /** @brief Real-time instrument script (gig format extension).
1130         *
1131         * Real-time instrument scripts are user supplied small programs which can
1132         * be used by instrument designers to create custom behaviors and features
1133         * not available in the stock sampler engine. Features which might be very
1134         * exotic or specific for the respective instrument.
1135         *
1136         * This is an extension of the GigaStudio format, thus a feature which was
1137         * not available in the GigaStudio 4 software. It is currently only
1138         * supported by LinuxSampler and gigedit. Scripts will not load with the
1139         * original GigaStudio software.
1140         *
1141         * You find more informations about Instrument Scripts on the LinuxSampler
1142         * documentation site:
1143         *
1144         * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/">About Instrument Scripts in General</a>
1145         * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language">Introduction to the NKSP Script Language</a>
1146         * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language/Reference/">NKSP Reference Manual</a>
1147         * - <a href="http://doc.linuxsampler.org/Gigedit/Managing_Scripts">Using Instrument Scripts with Gigedit</a>
1148         */
1149        class Script : protected DLS::Storage {
1150            public:
1151                enum Encoding_t {
1152                    ENCODING_ASCII = 0 ///< Standard 8 bit US ASCII character encoding (default).
1153                };
1154                enum Compression_t {
1155                    COMPRESSION_NONE = 0 ///< Is not compressed at all (default).
1156                };
1157                enum Language_t {
1158                    LANGUAGE_NKSP = 0 ///< NKSP stands for "Is Not KSP" (default). Refer to the <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language/Reference/">NKSP Reference Manual</a> for details about this script language.
1159                };
1160    
1161                String         Name;        ///< Arbitrary name of the script, which may be displayed i.e. in an instrument editor.
1162                Compression_t  Compression; ///< Whether the script was/should be compressed, and if so, which compression algorithm shall be used.
1163                Encoding_t     Encoding;    ///< Format the script's source code text is encoded with.
1164                Language_t     Language;    ///< Programming language and dialect the script is written in.
1165                bool           Bypass;      ///< Global bypass: if enabled, this script shall not be executed by the sampler for any instrument.
1166    
1167                String GetScriptAsText();
1168                void   SetScriptAsText(const String& text);
1169                void   SetGroup(ScriptGroup* pGroup);
1170                ScriptGroup* GetGroup() const;
1171                void   CopyAssign(const Script* orig);
1172            protected:
1173                Script(ScriptGroup* group, RIFF::Chunk* ckScri);
1174                virtual ~Script();
1175                void UpdateChunks(progress_t* pProgress) OVERRIDE;
1176                void DeleteChunks() OVERRIDE;
1177                void RemoveAllScriptReferences();
1178                friend class ScriptGroup;
1179                friend class Instrument;
1180            private:
1181                ScriptGroup*          pGroup;
1182                RIFF::Chunk*          pChunk; ///< 'Scri' chunk
1183                std::vector<uint8_t>  data;
1184                uint32_t              crc; ///< CRC-32 checksum of the raw script data
1185        };
1186    
1187        /** @brief Group of instrument scripts (gig format extension).
1188         *
1189         * This class is simply used to sort a bunch of real-time instrument scripts
1190         * into individual groups. This allows instrument designers and script
1191         * developers to keep scripts in a certain order while working with a larger
1192         * amount of scripts in an instrument editor.
1193         *
1194         * This is an extension of the GigaStudio format, thus a feature which was
1195         * not available in the GigaStudio 4 software. It is currently only
1196         * supported by LinuxSampler and gigedit.
1197         */
1198        class ScriptGroup : protected DLS::Storage {
1199            public:
1200                String   Name; ///< Name of this script group. For example to be displayed in an instrument editor.
1201    
1202                Script*  GetScript(uint index);
1203                Script*  AddScript();
1204                void     DeleteScript(Script* pScript);
1205            protected:
1206                ScriptGroup(File* file, RIFF::List* lstRTIS);
1207                virtual ~ScriptGroup();
1208                void LoadScripts();
1209                virtual void UpdateChunks(progress_t* pProgress) OVERRIDE;
1210                virtual void DeleteChunks() OVERRIDE;
1211                friend class Script;
1212                friend class File;
1213            private:
1214                File*                pFile;
1215                RIFF::List*          pList; ///< 'RTIS' list chunk
1216                std::list<Script*>*  pScripts;
1217        };
1218    
1219        /** @brief Provides access to a Gigasampler/GigaStudio instrument.
1220         *
1221         * This class provides access to Gigasampler/GigaStudio instruments
1222         * contained in .gig files. A gig instrument is merely a set of keyboard
1223         * ranges (called Region), plus some additional global informations about
1224         * the instrument. The major part of the actual instrument definition used
1225         * for the synthesis of the instrument is contained in the respective Region
1226         * object (or actually in the respective DimensionRegion object being, see
1227         * description of Region for details).
1228         *
1229         * Since the gig format was designed as extension to the DLS file format,
1230         * this class is derived from the DLS::Instrument class. So also refer to
1231         * DLS::Instrument for additional informations, class attributes and
1232         * methods.
1233         */
1234      class Instrument : protected DLS::Instrument {      class Instrument : protected DLS::Instrument {
1235          public:          public:
1236              // derived attributes from DLS::Resource              // derived attributes from DLS::Resource
1237              DLS::Resource::pInfo;              using DLS::Resource::pInfo;
1238              DLS::Resource::pDLSID;              using DLS::Resource::pDLSID;
1239              // derived attributes from DLS::Instrument              // derived attributes from DLS::Instrument
1240              DLS::Instrument::IsDrum;              using DLS::Instrument::IsDrum;
1241              DLS::Instrument::MIDIBank;              using DLS::Instrument::MIDIBank;
1242              DLS::Instrument::MIDIBankCoarse;              using DLS::Instrument::MIDIBankCoarse;
1243              DLS::Instrument::MIDIBankFine;              using DLS::Instrument::MIDIBankFine;
1244              DLS::Instrument::MIDIProgram;              using DLS::Instrument::MIDIProgram;
1245              DLS::Instrument::Regions;              using DLS::Instrument::Regions;
1246              // own attributes              // own attributes
1247              int32_t   Attenuation;       ///< in dB              int32_t   Attenuation;       ///< in dB
1248              uint16_t  EffectSend;              uint16_t  EffectSend;
# Line 566  namespace gig { Line 1253  namespace gig {
1253    
1254    
1255              // derived methods from DLS::Resource              // derived methods from DLS::Resource
1256              DLS::Resource::GetParent;              using DLS::Resource::GetParent;
1257              // overridden methods              // overridden methods
1258              Region*   GetFirstRegion();              Region*   GetFirstRegion();
1259              Region*   GetNextRegion();              Region*   GetNextRegion();
1260                Region*   AddRegion();
1261                void      DeleteRegion(Region* pRegion);
1262                void      MoveTo(Instrument* dst);
1263                virtual void UpdateChunks(progress_t* pProgress) OVERRIDE;
1264                virtual void CopyAssign(const Instrument* orig);
1265              // own methods              // own methods
1266              Region*   GetRegion(unsigned int Key);              Region*   GetRegion(unsigned int Key);
1267                MidiRule* GetMidiRule(int i);
1268                MidiRuleCtrlTrigger* AddMidiRuleCtrlTrigger();
1269                MidiRuleLegato*      AddMidiRuleLegato();
1270                MidiRuleAlternator*  AddMidiRuleAlternator();
1271                void      DeleteMidiRule(int i);
1272                // real-time instrument script methods
1273                Script*   GetScriptOfSlot(uint index);
1274                void      AddScriptSlot(Script* pScript, bool bypass = false);
1275                void      SwapScriptSlots(uint index1, uint index2);
1276                void      RemoveScriptSlot(uint index);
1277                void      RemoveScript(Script* pScript);
1278                uint      ScriptSlotCount() const;
1279                bool      IsScriptSlotBypassed(uint index);
1280                void      SetScriptSlotBypassed(uint index, bool bBypass);
1281          protected:          protected:
             Region**  pRegions;            ///< Pointer array to the regions  
1282              Region*   RegionKeyTable[128]; ///< fast lookup for the corresponding Region of a MIDI key              Region*   RegionKeyTable[128]; ///< fast lookup for the corresponding Region of a MIDI key
             int       RegionIndex;  
1283    
1284              Instrument(File* pFile, RIFF::List* insList);              Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress = NULL);
1285             ~Instrument();             ~Instrument();
1286                void CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples);
1287                void UpdateRegionKeyTable();
1288                void LoadScripts();
1289                void UpdateScriptFileOffsets();
1290              friend class File;              friend class File;
1291                friend class Region; // so Region can call UpdateRegionKeyTable()
1292            private:
1293                struct _ScriptPooolEntry {
1294                    uint32_t fileOffset;
1295                    bool     bypass;
1296                };
1297                struct _ScriptPooolRef {
1298                    Script*  script;
1299                    bool     bypass;
1300                };
1301                MidiRule** pMidiRules;
1302                std::vector<_ScriptPooolEntry> scriptPoolFileOffsets;
1303                std::vector<_ScriptPooolRef>* pScriptRefs;
1304      };      };
1305    
1306      // TODO: <3gnm> chunk not added yet (just contains the names of the sample groups)      /** @brief Group of Gigasampler samples
1307      /** Parses Gigasampler files and provides abstract access to the data. */       *
1308         * Groups help to organize a huge collection of Gigasampler samples.
1309         * Groups are not concerned at all for the synthesis, but they help
1310         * sound library developers when working on complex instruments with an
1311         * instrument editor (as long as that instrument editor supports it ;-).
1312         *
1313         * A sample is always assigned to exactly one Group. This also means
1314         * there is always at least one Group in a .gig file, no matter if you
1315         * created one yet or not.
1316         */
1317        class Group : public DLS::Storage {
1318            public:
1319                String Name; ///< Stores the name of this Group.
1320    
1321                Sample* GetFirstSample();
1322                Sample* GetNextSample();
1323                void AddSample(Sample* pSample);
1324            protected:
1325                Group(File* file, RIFF::Chunk* ck3gnm);
1326                virtual ~Group();
1327                virtual void UpdateChunks(progress_t* pProgress) OVERRIDE;
1328                virtual void DeleteChunks() OVERRIDE;
1329                void MoveAll();
1330                friend class File;
1331            private:
1332                File*        pFile;
1333                RIFF::Chunk* pNameChunk; ///< '3gnm' chunk
1334        };
1335    
1336        /** @brief Provides convenient access to Gigasampler/GigaStudio .gig files.
1337         *
1338         * This is the entry class for accesing a Gigasampler/GigaStudio (.gig) file
1339         * with libgig. It allows you to open existing .gig files, modifying them
1340         * and saving them persistently either under the same file name or under a
1341         * different location.
1342         *
1343         * A .gig file is merely a monolithic file. That means samples and the
1344         * defintion of the virtual instruments are contained in the same file. A
1345         * .gig file contains an arbitrary amount of samples, and an arbitrary
1346         * amount of instruments which are referencing those samples. It is also
1347         * possible to store samples in .gig files not being referenced by any
1348         * instrument. This is not an error from the file format's point of view and
1349         * it is actually often used in practice during the design phase of new gig
1350         * instruments.
1351         *
1352         * So on toplevel of the gig file format you have:
1353         *
1354         * - A set of samples (see Sample).
1355         * - A set of virtual instruments (see Instrument).
1356         *
1357         * And as extension to the original GigaStudio format, we added:
1358         *
1359         * - Real-time instrument scripts (see Script).
1360         *
1361         * Note that the latter however is only supported by libgig, gigedit and
1362         * LinuxSampler. Scripts are not supported by the original GigaStudio
1363         * software.
1364         *
1365         * All released Gigasampler/GigaStudio file format versions are supported
1366         * (so from first Gigasampler version up to including GigaStudio 4).
1367         *
1368         * Since the gig format was designed as extension to the DLS file format,
1369         * this class is derived from the DLS::File class. So also refer to
1370         * DLS::File for additional informations, class attributes and methods.
1371         */
1372      class File : protected DLS::File {      class File : protected DLS::File {
1373          public:          public:
1374                static const DLS::version_t VERSION_2;
1375                static const DLS::version_t VERSION_3;
1376                static const DLS::version_t VERSION_4;
1377    
1378              // derived attributes from DLS::Resource              // derived attributes from DLS::Resource
1379              DLS::Resource::pInfo;              using DLS::Resource::pInfo;
1380              DLS::Resource::pDLSID;              using DLS::Resource::pDLSID;
1381              // derived attributes from DLS::File              // derived attributes from DLS::File
1382              DLS::File::pVersion;              using DLS::File::pVersion;
1383              DLS::File::Instruments;              using DLS::File::Instruments;
1384    
1385              // derived methods from DLS::Resource              // derived methods from DLS::Resource
1386              DLS::Resource::GetParent;              using DLS::Resource::GetParent;
1387                // derived methods from DLS::File
1388                using DLS::File::Save;
1389                using DLS::File::GetFileName;
1390                using DLS::File::SetFileName;
1391                using DLS::File::GetRiffFile;
1392              // overridden  methods              // overridden  methods
1393                File();
1394              File(RIFF::File* pRIFF);              File(RIFF::File* pRIFF);
1395              Sample*     GetFirstSample();     ///< Returns a pointer to the first <i>Sample</i> object of the file, <i>NULL</i> otherwise.              Sample*     GetFirstSample(progress_t* pProgress = NULL); ///< Returns a pointer to the first <i>Sample</i> object of the file, <i>NULL</i> otherwise.
1396              Sample*     GetNextSample();      ///< Returns a pointer to the next <i>Sample</i> object of the file, <i>NULL</i> otherwise.              Sample*     GetNextSample();      ///< Returns a pointer to the next <i>Sample</i> object of the file, <i>NULL</i> otherwise.
1397                Sample*     GetSample(uint index);
1398                Sample*     AddSample();
1399                size_t      CountSamples();
1400                void        DeleteSample(Sample* pSample);
1401              Instrument* GetFirstInstrument(); ///< Returns a pointer to the first <i>Instrument</i> object of the file, <i>NULL</i> otherwise.              Instrument* GetFirstInstrument(); ///< Returns a pointer to the first <i>Instrument</i> object of the file, <i>NULL</i> otherwise.
1402              Instrument* GetNextInstrument();  ///< Returns a pointer to the next <i>Instrument</i> object of the file, <i>NULL</i> otherwise.              Instrument* GetNextInstrument();  ///< Returns a pointer to the next <i>Instrument</i> object of the file, <i>NULL</i> otherwise.
1403              Instrument* GetInstrument(uint index);              Instrument* GetInstrument(uint index, progress_t* pProgress = NULL);
1404             ~File() {};              Instrument* AddInstrument();
1405                Instrument* AddDuplicateInstrument(const Instrument* orig);
1406                size_t      CountInstruments();
1407                void        DeleteInstrument(Instrument* pInstrument);
1408                Group*      GetFirstGroup(); ///< Returns a pointer to the first <i>Group</i> object of the file, <i>NULL</i> otherwise.
1409                Group*      GetNextGroup();  ///< Returns a pointer to the next <i>Group</i> object of the file, <i>NULL</i> otherwise.
1410                Group*      GetGroup(uint index);
1411                Group*      GetGroup(String name);
1412                Group*      AddGroup();
1413                void        DeleteGroup(Group* pGroup);
1414                void        DeleteGroupOnly(Group* pGroup);
1415                void        SetAutoLoad(bool b);
1416                bool        GetAutoLoad();
1417                void        AddContentOf(File* pFile);
1418                ScriptGroup* GetScriptGroup(uint index);
1419                ScriptGroup* GetScriptGroup(const String& name);
1420                ScriptGroup* AddScriptGroup();
1421                void        DeleteScriptGroup(ScriptGroup* pGroup);
1422                virtual    ~File();
1423                virtual void UpdateChunks(progress_t* pProgress) OVERRIDE;
1424          protected:          protected:
1425              typedef std::list<Sample*>     SampleList;              // overridden protected methods from DLS::File
1426              typedef std::list<Instrument*> InstrumentList;              virtual void LoadSamples() OVERRIDE;
1427                virtual void LoadInstruments() OVERRIDE;
1428              SampleList*              pSamples;              virtual void LoadGroups();
1429              SampleList::iterator     SamplesIterator;              virtual void UpdateFileOffsets() OVERRIDE;
1430              InstrumentList*          pInstruments;              // own protected methods
1431              InstrumentList::iterator InstrumentsIterator;              virtual void LoadSamples(progress_t* pProgress);
1432                virtual void LoadInstruments(progress_t* pProgress);
1433              void LoadSamples();              virtual void LoadScriptGroups();
1434              void LoadInstruments();              void SetSampleChecksum(Sample* pSample, uint32_t crc);
1435                uint32_t GetSampleChecksum(Sample* pSample);
1436                uint32_t GetSampleChecksumByIndex(int index);
1437                bool VerifySampleChecksumTable();
1438                bool RebuildSampleChecksumTable();
1439                int  GetWaveTableIndexOf(gig::Sample* pSample);
1440              friend class Region;              friend class Region;
1441                friend class Sample;
1442                friend class Instrument;
1443                friend class Group; // so Group can access protected member pRIFF
1444                friend class ScriptGroup; // so ScriptGroup can access protected member pRIFF
1445            private:
1446                std::list<Group*>*          pGroups;
1447                std::list<Group*>::iterator GroupsIterator;
1448                bool                        bAutoLoad;
1449                std::list<ScriptGroup*>*    pScriptGroups;
1450      };      };
1451    
1452      /** Will be thrown whenever a gig specific error occurs while trying to access a Gigasampler File. */      /**
1453         * Will be thrown whenever a gig specific error occurs while trying to
1454         * access a Gigasampler File. Note: In your application you should
1455         * better catch for RIFF::Exception rather than this one, except you
1456         * explicitly want to catch and handle gig::Exception, DLS::Exception
1457         * and RIFF::Exception independently, which usually shouldn't be
1458         * necessary though.
1459         */
1460      class Exception : public DLS::Exception {      class Exception : public DLS::Exception {
1461          public:          public:
1462              Exception(String Message);              Exception(String format, ...);
1463                Exception(String format, va_list arg);
1464              void PrintMessage();              void PrintMessage();
1465            protected:
1466                Exception();
1467      };      };
1468    
1469    #if HAVE_RTTI
1470        size_t enumCount(const std::type_info& type);
1471        const char* enumKey(const std::type_info& type, size_t value);
1472        bool        enumKey(const std::type_info& type, String key);
1473        const char** enumKeys(const std::type_info& type);
1474    #endif // HAVE_RTTI
1475        size_t enumCount(String typeName);
1476        const char* enumKey(String typeName, size_t value);
1477        bool        enumKey(String typeName, String key);
1478        const char** enumKeys(String typeName);
1479        size_t enumValue(String key);
1480    
1481        String libraryName();
1482        String libraryVersion();
1483    
1484  } // namespace gig  } // namespace gig
1485    
1486  #endif // __GIG_H__  #endif // __GIG_H__

Legend:
Removed from v.24  
changed lines
  Added in v.3623

  ViewVC Help
Powered by ViewVC