/[svn]/libgig/trunk/src/gig.h
ViewVC logotype

Diff of /libgig/trunk/src/gig.h

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 55 by schoenebeck, Tue Apr 27 09:06:07 2004 UTC revision 3398 by schoenebeck, Sat Dec 9 16:39:27 2017 UTC
# Line 1  Line 1 
1  /***************************************************************************  /***************************************************************************
2   *                                                                         *   *                                                                         *
3   *   libgig - C++ cross-platform Gigasampler format file loader library    *   *   libgig - C++ cross-platform Gigasampler format file access library    *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Christian Schoenebeck                     *   *   Copyright (C) 2003-2017 by Christian Schoenebeck                      *
6   *                               <cuse@users.sourceforge.net>              *   *                              <cuse@users.sourceforge.net>               *
7   *                                                                         *   *                                                                         *
8   *   This library is free software; you can redistribute it and/or modify  *   *   This library is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 25  Line 25 
25  #define __GIG_H__  #define __GIG_H__
26    
27  #include "DLS.h"  #include "DLS.h"
28    #include <vector>
29    
30  #include <math.h>  #ifndef __has_feature
31  #include <string.h>  # define __has_feature(x) 0
32    #endif
33  /// Initial size of the sample buffer which is used for decompression of  #ifndef HAVE_RTTI
34  /// compressed sample wave streams - this value should always be bigger than  # if __GXX_RTTI || __has_feature(cxx_rtti) || _CPPRTTI
35  /// the biggest sample piece expected to be read by the sampler engine,  #  define HAVE_RTTI 1
36  /// otherwise the buffer size will be raised at runtime and thus the buffer  # else
37  /// reallocated which is time consuming and unefficient.  #  define HAVE_RTTI 0
38  #define INITIAL_SAMPLE_BUFFER_SIZE              512000 // 512 kB  # endif
39    #endif
40    #if HAVE_RTTI
41    # include <typeinfo>
42    #else
43    # warning No RTTI available!
44    #endif
45    
46  #if WORDS_BIGENDIAN  #if WORDS_BIGENDIAN
47  # define LIST_TYPE_3PRG 0x33707267  # define LIST_TYPE_3PRG 0x33707267
48  # define LIST_TYPE_3EWL 0x3365776C  # define LIST_TYPE_3EWL 0x3365776C
49  # define CHUNK_ID_SMPL  0x736D706C  # define LIST_TYPE_3GRI 0x33677269
50    # define LIST_TYPE_3GNL 0x33676E6C
51    # define LIST_TYPE_3LS  0x334c5320 // own gig format extension
52    # define LIST_TYPE_RTIS 0x52544953 // own gig format extension
53  # define CHUNK_ID_3GIX  0x33676978  # define CHUNK_ID_3GIX  0x33676978
54  # define CHUNK_ID_3EWA  0x33657761  # define CHUNK_ID_3EWA  0x33657761
55  # define CHUNK_ID_3LNK  0x336C6E6B  # define CHUNK_ID_3LNK  0x336C6E6B
56  # define CHUNK_ID_3EWG  0x33657767  # define CHUNK_ID_3EWG  0x33657767
57  # define CHUNK_ID_EWAV  0x65776176  # define CHUNK_ID_EWAV  0x65776176
58    # define CHUNK_ID_3GNM  0x33676E6D
59    # define CHUNK_ID_EINF  0x65696E66
60    # define CHUNK_ID_3CRC  0x33637263
61    # define CHUNK_ID_SCRI  0x53637269 // own gig format extension
62    # define CHUNK_ID_LSNM  0x4c534e4d // own gig format extension
63    # define CHUNK_ID_SCSL  0x5343534c // own gig format extension
64    # define CHUNK_ID_LSDE  0x4c534445 // own gig format extension
65  #else  // little endian  #else  // little endian
66  # define LIST_TYPE_3PRG 0x67727033  # define LIST_TYPE_3PRG 0x67727033
67  # define LIST_TYPE_3EWL 0x6C776533  # define LIST_TYPE_3EWL 0x6C776533
68  # define CHUNK_ID_SMPL  0x6C706D73  # define LIST_TYPE_3GRI 0x69726733
69    # define LIST_TYPE_3GNL 0x6C6E6733
70    # define LIST_TYPE_3LS  0x20534c33 // own gig format extension
71    # define LIST_TYPE_RTIS 0x53495452 // own gig format extension
72  # define CHUNK_ID_3GIX  0x78696733  # define CHUNK_ID_3GIX  0x78696733
73  # define CHUNK_ID_3EWA  0x61776533  # define CHUNK_ID_3EWA  0x61776533
74  # define CHUNK_ID_3LNK  0x6B6E6C33  # define CHUNK_ID_3LNK  0x6B6E6C33
75  # define CHUNK_ID_3EWG  0x67776533  # define CHUNK_ID_3EWG  0x67776533
76  # define CHUNK_ID_EWAV  0x76617765  # define CHUNK_ID_EWAV  0x76617765
77    # define CHUNK_ID_3GNM  0x6D6E6733
78    # define CHUNK_ID_EINF  0x666E6965
79    # define CHUNK_ID_3CRC  0x63726333
80    # define CHUNK_ID_SCRI  0x69726353 // own gig format extension
81    # define CHUNK_ID_LSNM  0x4d4e534c // own gig format extension
82    # define CHUNK_ID_SCSL  0x4c534353 // own gig format extension
83    # define CHUNK_ID_LSDE  0x4544534c // own gig format extension
84  #endif // WORDS_BIGENDIAN  #endif // WORDS_BIGENDIAN
85    
86  /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */  #ifndef GIG_DECLARE_ENUM
87  #define GIG_EXP_DECODE(x)                                       (pow(1.000000008813822, x))  # define GIG_DECLARE_ENUM(type, ...) enum type { __VA_ARGS__ }
88  #define GIG_PITCH_TRACK_EXTRACT(x)                              (!(x & 0x01))  #endif
89  #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x)                       ((x >> 4) & 0x03)  
90  #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x)                  ((x >> 1) & 0x03)  // just symbol prototyping (since Serialization.h not included by default here)
91  #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x)                   ((x >> 3) & 0x03)  namespace Serialization { class Archive; }
 #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x)                 ((x >> 5) & 0x03)  
 //TODO: the transformation functions are not very accurate compared to the original ones  
 #define GIG_VELOCITY_TRANSFORM_NONLINEAR(x,dynamic,scale)       ((1.0-1.0/pow(x,1.0/(129.0-x))) * (1.0+scale/20.0) + (5.0-dynamic)*pow(x/300.0* (1.0+2.0*scale/128.0),2))  
 #define GIG_VELOCITY_TRANSFORM_LINEAR(x,dynamic,scale)          ((1.0+scale*3.0/128.0)/110.0*x+(5.0-dynamic)/5.0+(5.0-dynamic)*scale)  
 #define GIG_VELOCITY_TRANSFORM_SPECIAL(x,dynamic,scale)         ((1.0+9.0*scale/129.0)*(1.0-1.0/pow(x,1.0/(129.0-x))+pow(3.0*x/pow(129,2),2)+pow((5.0-dynamic)*x/500.0,2)))  
92    
93  /** Gigasampler specific classes and definitions */  /** Gigasampler/GigaStudio specific classes and definitions */
94  namespace gig {  namespace gig {
95    
96      typedef std::string String;      typedef std::string String;
97        typedef RIFF::progress_t progress_t;
98        typedef RIFF::file_offset_t file_offset_t;
99    
100      /** Lower and upper limit of a range. */      /** Lower and upper limit of a range. */
101      struct range_t {      struct range_t {
# Line 82  namespace gig { Line 106  namespace gig {
106      /** Pointer address and size of a buffer. */      /** Pointer address and size of a buffer. */
107      struct buffer_t {      struct buffer_t {
108          void*         pStart;            ///< Points to the beginning of the buffer.          void*         pStart;            ///< Points to the beginning of the buffer.
109          unsigned long Size;              ///< Size of the actual data in the buffer in bytes.          file_offset_t Size;              ///< Size of the actual data in the buffer in bytes.
110          unsigned long NullExtensionSize; ///< The buffer might be bigger than the actual data, if that's the case that unused space at the end of the buffer is filled with NULLs and NullExtensionSize reflects that unused buffer space in bytes. Those NULL extensions are mandatory for differential algorithms that have to take the following data words into account, thus have to access past the buffer's boundary. If you don't know what I'm talking about, just forget this variable. :)          file_offset_t NullExtensionSize; ///< The buffer might be bigger than the actual data, if that's the case that unused space at the end of the buffer is filled with NULLs and NullExtensionSize reflects that unused buffer space in bytes. Those NULL extensions are mandatory for differential algorithms that have to take the following data words into account, thus have to access past the buffer's boundary. If you don't know what I'm talking about, just forget this variable. :)
111            buffer_t() {
112                pStart            = NULL;
113                Size              = 0;
114                NullExtensionSize = 0;
115            }
116      };      };
117    
118      /** Standard types of sample loops. */      /** Standard types of sample loops.
119      typedef enum {       *
120          loop_type_normal        = 0x00000000,  ///< Loop forward (normal)       * @see enumCount(), enumKey(), enumKeys(), enumValue()
121          loop_type_bidirectional = 0x00000001,  ///< Alternating loop (forward/backward, also known as Ping Pong)       */
122          loop_type_backward      = 0x00000002   ///< Loop backward (reverse)      GIG_DECLARE_ENUM(loop_type_t,
123      } loop_type_t;          loop_type_normal        = 0x00000000,  /**< Loop forward (normal) */
124            loop_type_bidirectional = 0x00000001,  /**< Alternating loop (forward/backward, also known as Ping Pong) */
125      /** Society of Motion Pictures and Television E time format. */          loop_type_backward      = 0x00000002   /**< Loop backward (reverse) */
126      typedef enum {      );
127          smpte_format_no_offset          = 0x00000000,  ///< no SMPTE offset  
128          smpte_format_24_frames          = 0x00000018,  ///< 24 frames per second      /** Society of Motion Pictures and Television E time format.
129          smpte_format_25_frames          = 0x00000019,  ///< 25 frames per second       *
130          smpte_format_30_frames_dropping = 0x0000001D,  ///< 30 frames per second with frame dropping (30 drop)       * @see enumCount(), enumKey(), enumKeys(), enumValue()
131          smpte_format_30_frames          = 0x0000001E   ///< 30 frames per second       */
132      } smpte_format_t;      GIG_DECLARE_ENUM(smpte_format_t,
133            smpte_format_no_offset          = 0x00000000,  /**< no SMPTE offset */
134      /** Defines the shape of a function graph. */          smpte_format_24_frames          = 0x00000018,  /**< 24 frames per second */
135      typedef enum {          smpte_format_25_frames          = 0x00000019,  /**< 25 frames per second */
136          curve_type_nonlinear = 0,          smpte_format_30_frames_dropping = 0x0000001D,  /**< 30 frames per second with frame dropping (30 drop) */
137          curve_type_linear    = 1,          smpte_format_30_frames          = 0x0000001E   /**< 30 frames per second */
138          curve_type_special   = 2,      );
139          curve_type_unknown   = 0xffffffff  
140      } curve_type_t;      /** Defines the shape of a function graph.
141         *
142      /** Dimensions allow to bypass one of the following controllers. */       * @see enumCount(), enumKey(), enumKeys(), enumValue()
143      typedef enum {       */
144          dim_bypass_ctrl_none,      GIG_DECLARE_ENUM(curve_type_t,
145          dim_bypass_ctrl_94,   ///< Effect 4 Depth (MIDI Controller 94)          curve_type_nonlinear = 0,          /**< Non-linear curve type. */
146          dim_bypass_ctrl_95    ///< Effect 5 Depth (MIDI Controller 95)          curve_type_linear    = 1,          /**< Linear curve type. */
147      } dim_bypass_ctrl_t;          curve_type_special   = 2,          /**< Special curve type. */
148            curve_type_unknown   = 0xffffffff  /**< Unknown curve type. */
149      /** Defines how LFO3 is controlled by. */      );
150      typedef enum {  
151          lfo3_ctrl_internal            = 0x00, ///< Only internally controlled.      /** Dimensions allow to bypass one of the following controllers.
152          lfo3_ctrl_modwheel            = 0x01, ///< Only controlled by external modulation wheel.       *
153          lfo3_ctrl_aftertouch          = 0x02, ///< Only controlled by aftertouch controller.       * @see enumCount(), enumKey(), enumKeys(), enumValue()
154          lfo3_ctrl_internal_modwheel   = 0x03, ///< Controlled internally and by external modulation wheel.       */
155          lfo3_ctrl_internal_aftertouch = 0x04  ///< Controlled internally and by aftertouch controller.      GIG_DECLARE_ENUM(dim_bypass_ctrl_t,
156      } lfo3_ctrl_t;          dim_bypass_ctrl_none, /**< No controller bypass. */
157            dim_bypass_ctrl_94,   /**< Effect 4 Depth (MIDI Controller 94) */
158      /** Defines how LFO2 is controlled by. */          dim_bypass_ctrl_95    /**< Effect 5 Depth (MIDI Controller 95) */
159      typedef enum {      );
160          lfo2_ctrl_internal            = 0x00, ///< Only internally controlled.  
161          lfo2_ctrl_modwheel            = 0x01, ///< Only controlled by external modulation wheel.      /** Defines how LFO3 is controlled by.
162          lfo2_ctrl_foot                = 0x02, ///< Only controlled by external foot controller.       *
163          lfo2_ctrl_internal_modwheel   = 0x03, ///< Controlled internally and by external modulation wheel.       * @see enumCount(), enumKey(), enumKeys(), enumValue()
164          lfo2_ctrl_internal_foot       = 0x04  ///< Controlled internally and by external foot controller.       */
165      } lfo2_ctrl_t;      GIG_DECLARE_ENUM(lfo3_ctrl_t,
166            lfo3_ctrl_internal            = 0x00, /**< Only internally controlled. */
167      /** Defines how LFO1 is controlled by. */          lfo3_ctrl_modwheel            = 0x01, /**< Only controlled by external modulation wheel. */
168      typedef enum {          lfo3_ctrl_aftertouch          = 0x02, /**< Only controlled by aftertouch controller. */
169          lfo1_ctrl_internal            = 0x00, ///< Only internally controlled.          lfo3_ctrl_internal_modwheel   = 0x03, /**< Controlled internally and by external modulation wheel. */
170          lfo1_ctrl_modwheel            = 0x01, ///< Only controlled by external modulation wheel.          lfo3_ctrl_internal_aftertouch = 0x04  /**< Controlled internally and by aftertouch controller. */
171          lfo1_ctrl_breath              = 0x02, ///< Only controlled by external breath controller.      );
172          lfo1_ctrl_internal_modwheel   = 0x03, ///< Controlled internally and by external modulation wheel.  
173          lfo1_ctrl_internal_breath     = 0x04  ///< Controlled internally and by external breath controller.      /** Defines how LFO2 is controlled by.
174      } lfo1_ctrl_t;       *
175         * @see enumCount(), enumKey(), enumKeys(), enumValue()
176      /** Defines how the filter cutoff frequency is controlled by. */       */
177      typedef enum {      GIG_DECLARE_ENUM(lfo2_ctrl_t,
178          vcf_cutoff_ctrl_none         = 0x00,          lfo2_ctrl_internal            = 0x00, /**< Only internally controlled. */
179          vcf_cutoff_ctrl_modwheel     = 0x81,  ///< Modulation Wheel (MIDI Controller 1)          lfo2_ctrl_modwheel            = 0x01, /**< Only controlled by external modulation wheel. */
180          vcf_cutoff_ctrl_effect1      = 0x8c,  ///< Effect Controller 1 (Coarse, MIDI Controller 12)          lfo2_ctrl_foot                = 0x02, /**< Only controlled by external foot controller. */
181          vcf_cutoff_ctrl_effect2      = 0x8d,  ///< Effect Controller 2 (Coarse, MIDI Controller 13)          lfo2_ctrl_internal_modwheel   = 0x03, /**< Controlled internally and by external modulation wheel. */
182          vcf_cutoff_ctrl_breath       = 0x82,  ///< Breath Controller (Coarse, MIDI Controller 2)          lfo2_ctrl_internal_foot       = 0x04  /**< Controlled internally and by external foot controller. */
183          vcf_cutoff_ctrl_foot         = 0x84,  ///< Foot Pedal (Coarse, MIDI Controller 4)      );
184          vcf_cutoff_ctrl_sustainpedal = 0xc0,  ///< Sustain Pedal (MIDI Controller 64)  
185          vcf_cutoff_ctrl_softpedal    = 0xc3,  ///< Soft Pedal (MIDI Controller 67)      /** Defines how LFO1 is controlled by.
186          vcf_cutoff_ctrl_genpurpose7  = 0xd2,  ///< General Purpose Controller 7 (Button, MIDI Controller 82)       *
187          vcf_cutoff_ctrl_genpurpose8  = 0xd3,  ///< General Purpose Controller 8 (Button, MIDI Controller 83)       * @see enumCount(), enumKey(), enumKeys(), enumValue()
188          vcf_cutoff_ctrl_aftertouch   = 0x80   ///< Key Pressure       */
189      } vcf_cutoff_ctrl_t;      GIG_DECLARE_ENUM(lfo1_ctrl_t,
190            lfo1_ctrl_internal            = 0x00, /**< Only internally controlled. */
191      /** Defines how the filter resonance is controlled by. */          lfo1_ctrl_modwheel            = 0x01, /**< Only controlled by external modulation wheel. */
192      typedef enum {          lfo1_ctrl_breath              = 0x02, /**< Only controlled by external breath controller. */
193          vcf_res_ctrl_none        = 0xffffffff,          lfo1_ctrl_internal_modwheel   = 0x03, /**< Controlled internally and by external modulation wheel. */
194          vcf_res_ctrl_genpurpose3 = 0,           ///< General Purpose Controller 3 (Slider, MIDI Controller 18)          lfo1_ctrl_internal_breath     = 0x04  /**< Controlled internally and by external breath controller. */
195          vcf_res_ctrl_genpurpose4 = 1,           ///< General Purpose Controller 4 (Slider, MIDI Controller 19)      );
196          vcf_res_ctrl_genpurpose5 = 2,           ///< General Purpose Controller 5 (Button, MIDI Controller 80)  
197          vcf_res_ctrl_genpurpose6 = 3            ///< General Purpose Controller 6 (Button, MIDI Controller 81)      /** Defines how the filter cutoff frequency is controlled by.
198      } vcf_res_ctrl_t;       *
199         * @see enumCount(), enumKey(), enumKeys(), enumValue()
200         */
201        GIG_DECLARE_ENUM(vcf_cutoff_ctrl_t,
202            vcf_cutoff_ctrl_none         = 0x00,  /**< No MIDI controller assigned for filter cutoff frequency. */
203            vcf_cutoff_ctrl_none2        = 0x01,  /**< The difference between none and none2 is unknown */
204            vcf_cutoff_ctrl_modwheel     = 0x81,  /**< Modulation Wheel (MIDI Controller 1) */
205            vcf_cutoff_ctrl_effect1      = 0x8c,  /**< Effect Controller 1 (Coarse, MIDI Controller 12) */
206            vcf_cutoff_ctrl_effect2      = 0x8d,  /**< Effect Controller 2 (Coarse, MIDI Controller 13) */
207            vcf_cutoff_ctrl_breath       = 0x82,  /**< Breath Controller (Coarse, MIDI Controller 2) */
208            vcf_cutoff_ctrl_foot         = 0x84,  /**< Foot Pedal (Coarse, MIDI Controller 4) */
209            vcf_cutoff_ctrl_sustainpedal = 0xc0,  /**< Sustain Pedal (MIDI Controller 64) */
210            vcf_cutoff_ctrl_softpedal    = 0xc3,  /**< Soft Pedal (MIDI Controller 67) */
211            vcf_cutoff_ctrl_genpurpose7  = 0xd2,  /**< General Purpose Controller 7 (Button, MIDI Controller 82) */
212            vcf_cutoff_ctrl_genpurpose8  = 0xd3,  /**< General Purpose Controller 8 (Button, MIDI Controller 83) */
213            vcf_cutoff_ctrl_aftertouch   = 0x80   /**< Key Pressure */
214        );
215    
216        /** Defines how the filter resonance is controlled by.
217         *
218         * @see enumCount(), enumKey(), enumKeys(), enumValue()
219         */
220        GIG_DECLARE_ENUM(vcf_res_ctrl_t,
221            vcf_res_ctrl_none        = 0xffffffff,  /**< No MIDI controller assigned for filter resonance. */
222            vcf_res_ctrl_genpurpose3 = 0,           /**< General Purpose Controller 3 (Slider, MIDI Controller 18) */
223            vcf_res_ctrl_genpurpose4 = 1,           /**< General Purpose Controller 4 (Slider, MIDI Controller 19) */
224            vcf_res_ctrl_genpurpose5 = 2,           /**< General Purpose Controller 5 (Button, MIDI Controller 80) */
225            vcf_res_ctrl_genpurpose6 = 3            /**< General Purpose Controller 6 (Button, MIDI Controller 81) */
226        );
227    
228      /**      /**
229       * Defines a controller that has a certain contrained influence on a       * Defines a controller that has a certain contrained influence on a
# Line 177  namespace gig { Line 234  namespace gig {
234       * attenuation_ctrl_t, eg1_ctrl_t or eg2_ctrl_t) in your code!       * attenuation_ctrl_t, eg1_ctrl_t or eg2_ctrl_t) in your code!
235       */       */
236      struct leverage_ctrl_t {      struct leverage_ctrl_t {
237          typedef enum {          /** Defines possible controllers.
238              type_none              = 0x00, ///< No controller defined           *
239              type_channelaftertouch = 0x2f, ///< Channel Key Pressure           * @see enumCount(), enumKey(), enumKeys(), enumValue()
240              type_velocity          = 0xff, ///< Key Velocity           */
241              type_controlchange     = 0xfe  ///< Ordinary MIDI control change controller, see field 'controller_number'          GIG_DECLARE_ENUM(type_t,
242          } type_t;              type_none              = 0x00, /**< No controller defined */
243                type_channelaftertouch = 0x2f, /**< Channel Key Pressure */
244                type_velocity          = 0xff, /**< Key Velocity */
245                type_controlchange     = 0xfe  /**< Ordinary MIDI control change controller, see field 'controller_number' */
246            );
247    
248          type_t type;              ///< Controller type          type_t type;              ///< Controller type
249          uint   controller_number; ///< MIDI controller number if this controller is a control change controller, 0 otherwise          uint   controller_number; ///< MIDI controller number if this controller is a control change controller, 0 otherwise
250    
251            void serialize(Serialization::Archive* archive);
252      };      };
253    
254      /**      /**
# Line 215  namespace gig { Line 278  namespace gig {
278       * dimension zones is always a power of two. All dimensions can have up       * dimension zones is always a power of two. All dimensions can have up
279       * to 32 zones (except the layer dimension with only up to 8 zones and       * to 32 zones (except the layer dimension with only up to 8 zones and
280       * the samplechannel dimension which currently allows only 2 zones).       * the samplechannel dimension which currently allows only 2 zones).
281         *
282         * @see enumCount(), enumKey(), enumKeys(), enumValue()
283       */       */
284      typedef enum {      GIG_DECLARE_ENUM(dimension_t,
285          dimension_none              = 0x00, ///< Dimension not in use.          dimension_none              = 0x00, /**< Dimension not in use. */
286          dimension_samplechannel     = 0x80, ///< If used sample has more than one channel (thus is not mono).          dimension_samplechannel     = 0x80, /**< If used sample has more than one channel (thus is not mono). */
287          dimension_layer             = 0x81, ///< For layering of up to 8 instruments (and eventually crossfading of 2 or 4 layers).          dimension_layer             = 0x81, /**< For layering of up to 8 instruments (and eventually crossfading of 2 or 4 layers). */
288          dimension_velocity          = 0x82, ///< Key Velocity (this is the only dimension where the ranges can exactly be defined).          dimension_velocity          = 0x82, /**< Key Velocity (this is the only dimension in gig2 where the ranges can exactly be defined). */
289          dimension_channelaftertouch = 0x83, ///< Channel Key Pressure          dimension_channelaftertouch = 0x83, /**< Channel Key Pressure */
290          dimension_releasetrigger    = 0x84, ///< Special dimension for triggering samples on releasing a key.          dimension_releasetrigger    = 0x84, /**< Special dimension for triggering samples on releasing a key. */
291          dimension_keyboard          = 0x85, ///< Key Position          dimension_keyboard          = 0x85, /**< Dimension for keyswitching */
292          dimension_modwheel          = 0x01, ///< Modulation Wheel (MIDI Controller 1)          dimension_roundrobin        = 0x86, /**< Different samples triggered each time a note is played, dimension regions selected in sequence */
293          dimension_breath            = 0x02, ///< Breath Controller (Coarse, MIDI Controller 2)          dimension_random            = 0x87, /**< Different samples triggered each time a note is played, random order */
294          dimension_foot              = 0x04, ///< Foot Pedal (Coarse, MIDI Controller 4)          dimension_smartmidi         = 0x88, /**< For MIDI tools like legato and repetition mode */
295          dimension_portamentotime    = 0x05, ///< Portamento Time (Coarse, MIDI Controller 5)          dimension_roundrobinkeyboard = 0x89, /**< Different samples triggered each time a note is played, any key advances the counter */
296          dimension_effect1           = 0x0c, ///< Effect Controller 1 (Coarse, MIDI Controller 12)          dimension_modwheel          = 0x01, /**< Modulation Wheel (MIDI Controller 1) */
297          dimension_effect2           = 0x0d, ///< Effect Controller 2 (Coarse, MIDI Controller 13)          dimension_breath            = 0x02, /**< Breath Controller (Coarse, MIDI Controller 2) */
298          dimension_genpurpose1       = 0x10, ///< General Purpose Controller 1 (Slider, MIDI Controller 16)          dimension_foot              = 0x04, /**< Foot Pedal (Coarse, MIDI Controller 4) */
299          dimension_genpurpose2       = 0x11, ///< General Purpose Controller 2 (Slider, MIDI Controller 17)          dimension_portamentotime    = 0x05, /**< Portamento Time (Coarse, MIDI Controller 5) */
300          dimension_genpurpose3       = 0x12, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)          dimension_effect1           = 0x0c, /**< Effect Controller 1 (Coarse, MIDI Controller 12) */
301          dimension_genpurpose4       = 0x13, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)          dimension_effect2           = 0x0d, /**< Effect Controller 2 (Coarse, MIDI Controller 13) */
302          dimension_sustainpedal      = 0x40, ///< Sustain Pedal (MIDI Controller 64)          dimension_genpurpose1       = 0x10, /**< General Purpose Controller 1 (Slider, MIDI Controller 16) */
303          dimension_portamento        = 0x41, ///< Portamento (MIDI Controller 65)          dimension_genpurpose2       = 0x11, /**< General Purpose Controller 2 (Slider, MIDI Controller 17) */
304          dimension_sostenutopedal    = 0x42, ///< Sostenuto Pedal (MIDI Controller 66)          dimension_genpurpose3       = 0x12, /**< General Purpose Controller 3 (Slider, MIDI Controller 18) */
305          dimension_softpedal         = 0x43, ///< Soft Pedal (MIDI Controller 67)          dimension_genpurpose4       = 0x13, /**< General Purpose Controller 4 (Slider, MIDI Controller 19) */
306          dimension_genpurpose5       = 0x30, ///< General Purpose Controller 5 (Button, MIDI Controller 80)          dimension_sustainpedal      = 0x40, /**< Sustain Pedal (MIDI Controller 64) */
307          dimension_genpurpose6       = 0x31, ///< General Purpose Controller 6 (Button, MIDI Controller 81)          dimension_portamento        = 0x41, /**< Portamento (MIDI Controller 65) */
308          dimension_genpurpose7       = 0x32, ///< General Purpose Controller 7 (Button, MIDI Controller 82)          dimension_sostenutopedal    = 0x42, /**< Sostenuto Pedal (MIDI Controller 66) */
309          dimension_genpurpose8       = 0x33, ///< General Purpose Controller 8 (Button, MIDI Controller 83)          dimension_softpedal         = 0x43, /**< Soft Pedal (MIDI Controller 67) */
310          dimension_effect1depth      = 0x5b, ///< Effect 1 Depth (MIDI Controller 91)          dimension_genpurpose5       = 0x30, /**< General Purpose Controller 5 (Button, MIDI Controller 80) */
311          dimension_effect2depth      = 0x5c, ///< Effect 2 Depth (MIDI Controller 92)          dimension_genpurpose6       = 0x31, /**< General Purpose Controller 6 (Button, MIDI Controller 81) */
312          dimension_effect3depth      = 0x5d, ///< Effect 3 Depth (MIDI Controller 93)          dimension_genpurpose7       = 0x32, /**< General Purpose Controller 7 (Button, MIDI Controller 82) */
313          dimension_effect4depth      = 0x5e, ///< Effect 4 Depth (MIDI Controller 94)          dimension_genpurpose8       = 0x33, /**< General Purpose Controller 8 (Button, MIDI Controller 83) */
314          dimension_effect5depth      = 0x5f  ///< Effect 5 Depth (MIDI Controller 95)          dimension_effect1depth      = 0x5b, /**< Effect 1 Depth (MIDI Controller 91) */
315      } dimension_t;          dimension_effect2depth      = 0x5c, /**< Effect 2 Depth (MIDI Controller 92) */
316            dimension_effect3depth      = 0x5d, /**< Effect 3 Depth (MIDI Controller 93) */
317            dimension_effect4depth      = 0x5e, /**< Effect 4 Depth (MIDI Controller 94) */
318            dimension_effect5depth      = 0x5f  /**< Effect 5 Depth (MIDI Controller 95) */
319        );
320    
321      /**      /**
322       * Intended for internal usage: will be used to convert a dimension value       * Intended for internal usage: will be used to convert a dimension value
323       * into the corresponding dimension bit number.       * into the corresponding dimension bit number.
324         *
325         * @see enumCount(), enumKey(), enumKeys(), enumValue()
326       */       */
327      typedef enum {      GIG_DECLARE_ENUM(split_type_t,
328          split_type_normal,         ///< dimension value between 0-127, no custom range of zones          split_type_normal,         /**< dimension value between 0-127 */
329          split_type_customvelocity, ///< a velocity dimension split with custom range definition for each zone (if a velocity dimension split has no custom defined zone ranges then it's also just of type split_type_normal)          split_type_bit             /**< dimension values are already the sought bit number */
330          split_type_bit             ///< dimension values are already the sought bit number      );
     } split_type_t;  
331    
332      /** General dimension definition. */      /** General dimension definition. */
333      struct dimension_def_t {      struct dimension_def_t {
# Line 265  namespace gig { Line 335  namespace gig {
335          uint8_t      bits;       ///< Number of "bits" (1 bit = 2 splits/zones, 2 bit = 4 splits/zones, 3 bit = 8 splits/zones,...).          uint8_t      bits;       ///< Number of "bits" (1 bit = 2 splits/zones, 2 bit = 4 splits/zones, 3 bit = 8 splits/zones,...).
336          uint8_t      zones;      ///< Number of zones the dimension has.          uint8_t      zones;      ///< Number of zones the dimension has.
337          split_type_t split_type; ///< Intended for internal usage: will be used to convert a dimension value into the corresponding dimension bit number.          split_type_t split_type; ///< Intended for internal usage: will be used to convert a dimension value into the corresponding dimension bit number.
338          range_t*     ranges;     ///< Intended for internal usage: Points to the beginning of a range_t array which reflects the value ranges of each dimension zone (only if custom defined ranges are defined, is NULL otherwise).          float        zone_size;  ///< Intended for internal usage: reflects the size of each zone (128/zones) for normal split types only, 0 otherwise.
         unsigned int zone_size;  ///< Intended for internal usage: reflects the size of each zone (128/zones) for normal split types only, 0 otherwise.  
339      };      };
340    
341      /** Defines which frequencies are filtered by the VCF. */      /** Defines which frequencies are filtered by the VCF.
342      typedef enum {       *
343          vcf_type_lowpass      = 0x00,       * @see enumCount(), enumKey(), enumKeys(), enumValue()
344          vcf_type_lowpassturbo = 0xff, ///< More poles than normal lowpass       */
345          vcf_type_bandpass     = 0x01,      GIG_DECLARE_ENUM(vcf_type_t,
346          vcf_type_highpass     = 0x02,          vcf_type_lowpass      = 0x00, /**< Standard lowpass filter type. */
347          vcf_type_bandreject   = 0x03          vcf_type_lowpassturbo = 0xff, /**< More poles than normal lowpass. */
348      } vcf_type_t;          vcf_type_bandpass     = 0x01, /**< Bandpass filter type. */
349            vcf_type_highpass     = 0x02, /**< Highpass filter type. */
350            vcf_type_bandreject   = 0x03  /**< Highpass filter type. */
351        );
352    
353      /** Defines the envelope of a crossfade. */      /**
354         * Defines the envelope of a crossfade.
355         *
356         * Note: The default value for crossfade points is 0,0,0,0. Layers with
357         * such a default value should be treated as if they would not have a
358         * crossfade.
359         */
360      struct crossfade_t {      struct crossfade_t {
361          #if WORDS_BIGENDIAN          #if WORDS_BIGENDIAN
         uint8_t in_start;   ///< Start position of fade in.  
         uint8_t in_end;     ///< End position of fade in.  
         uint8_t out_start;  ///< Start position of fade out.  
         uint8_t out_end;    ///< End postition of fade out.  
         #else // little endian  
362          uint8_t out_end;    ///< End postition of fade out.          uint8_t out_end;    ///< End postition of fade out.
363          uint8_t out_start;  ///< Start position of fade out.          uint8_t out_start;  ///< Start position of fade out.
364          uint8_t in_end;     ///< End position of fade in.          uint8_t in_end;     ///< End position of fade in.
365          uint8_t in_start;   ///< Start position of fade in.          uint8_t in_start;   ///< Start position of fade in.
366            #else // little endian
367            uint8_t in_start;   ///< Start position of fade in.
368            uint8_t in_end;     ///< End position of fade in.
369            uint8_t out_start;  ///< Start position of fade out.
370            uint8_t out_end;    ///< End postition of fade out.
371          #endif // WORDS_BIGENDIAN          #endif // WORDS_BIGENDIAN
372    
373            void serialize(Serialization::Archive* archive);
374      };      };
375    
376      /** Reflects the current playback state for a sample. */      /** Reflects the current playback state for a sample. */
377      struct playback_state_t {      struct playback_state_t {
378          unsigned long position;          ///< Current position within the sample.          file_offset_t position;          ///< Current position within the sample.
379          bool          reverse;           ///< If playback direction is currently backwards (in case there is a pingpong or reverse loop defined).          bool          reverse;           ///< If playback direction is currently backwards (in case there is a pingpong or reverse loop defined).
380          unsigned long loop_cycles_left;  ///< How many times the loop has still to be passed, this value will be decremented with each loop cycle.          file_offset_t loop_cycles_left;  ///< How many times the loop has still to be passed, this value will be decremented with each loop cycle.
381        };
382    
383        /**
384         * Defines behavior options for envelope generators (gig format extension).
385         *
386         * These options allow to override the precise default behavior of the
387         * envelope generators' state machines.
388         *
389         * @b Note: These EG options are an extension to the original gig file
390         * format, so these options are not available with the original
391         * Gigasampler/GigaStudio software! Currently only LinuxSampler and gigedit
392         * support these EG options!
393         *
394         * Adding these options to the original gig file format was necessary,
395         * because the precise state machine behavior of envelope generators of the
396         * gig format (and thus the default EG behavior if not explicitly overridden
397         * here) deviates from common, expected behavior of envelope generators in
398         * general, if i.e. compared with EGs of hardware synthesizers. For example
399         * with the gig format, the attack and decay stages will be aborted as soon
400         * as a note-off is received. Most other EG implementations in the industry
401         * however always run the attack and decay stages to their full duration,
402         * even if an early note-off arrives. The latter behavior is intentionally
403         * implemented in most other products, because it is required to resemble
404         * percussive sounds in a realistic manner.
405         */
406        struct eg_opt_t {
407            bool AttackCancel;     ///< Whether the "attack" stage is cancelled when receiving a note-off (default: @c true).
408            bool AttackHoldCancel; ///< Whether the "attack hold" stage is cancelled when receiving a note-off (default: @c true).
409            bool Decay1Cancel;     ///< Whether the "decay 1" stage is cancelled when receiving a note-off (default: @c true).
410            bool Decay2Cancel;     ///< Whether the "decay 2" stage is cancelled when receiving a note-off (default: @c true).
411            bool ReleaseCancel;    ///< Whether the "release" stage is cancelled when receiving a note-on (default: @c true).
412    
413            eg_opt_t();
414            void serialize(Serialization::Archive* archive);
415      };      };
416    
417      // just symbol prototyping      // just symbol prototyping
418      class File;      class File;
419      class Instrument;      class Instrument;
420      class Sample;      class Sample;
421        class Region;
422        class Group;
423        class Script;
424        class ScriptGroup;
425    
426      /** Encapsulates articulation information of a dimension region.      /** @brief Encapsulates articulation informations of a dimension region.
427         *
428         * This is the most important data object of the Gigasampler / GigaStudio
429         * format. A DimensionRegion provides the link to the sample to be played
430         * and all required articulation informations to be interpreted for playing
431         * back the sample and processing it appropriately by the sampler software.
432         * Every Region of a Gigasampler Instrument has at least one dimension
433         * region (exactly then when the Region has no dimension defined). Many
434         * Regions though provide more than one DimensionRegion, which reflect
435         * different playing "cases". For example a different sample might be played
436         * if a certain pedal is pressed down, or if the note was triggered with
437         * different velocity.
438       *       *
439       *  Every Gigasampler Instrument has at least one dimension region       * One instance of a DimensionRegion reflects exactly one particular case
440       *  (exactly then when it has no dimension defined).       * while playing an instrument (for instance "note between C3 and E3 was
441         * triggered AND note on velocity was between 20 and 42 AND modulation wheel
442         * controller is between 80 and 127). The DimensionRegion defines what to do
443         * under that one particular case, that is which sample to play back and how
444         * to play that sample back exactly and how to process it. So a
445         * DimensionRegion object is always linked to exactly one sample. It may
446         * however also link to no sample at all, for defining a "silence" case
447         * where nothing shall be played (for example when note on velocity was
448         * below 6).
449       *       *
450       *  Gigasampler provides three Envelope Generators and Low Frequency       * Note that a DimensionRegion object only defines "what to do", but it does
451       *  Oscillators:       * not define "when to do it". To actually resolve which DimensionRegion to
452         * pick under which situation, you need to refer to the DimensionRegions'
453         * parent Region object. The Region object contains the necessary
454         * "Dimension" definitions, which in turn define which DimensionRegion is
455         * associated with which playing case exactly.
456         *
457         * The Gigasampler/GigaStudio format defines 3 Envelope Generators and 3
458         * Low Frequency Oscillators:
459       *       *
460       *  - EG1 and LFO1, both controlling sample amplitude       *  - EG1 and LFO1, both controlling sample amplitude
461       *  - EG2 and LFO2, both controlling filter cutoff frequency       *  - EG2 and LFO2, both controlling filter cutoff frequency
462       *  - EG3 and LFO3, both controlling sample pitch       *  - EG3 and LFO3, both controlling sample pitch
463         *
464         * Since the gig format was designed as extension to the DLS file format,
465         * this class is derived from the DLS::Sampler class. So also refer to
466         * DLS::Sampler for additional informations, class attributes and methods.
467       */       */
468      class DimensionRegion : protected DLS::Sampler {      class DimensionRegion : protected DLS::Sampler {
469          public:          public:
470              uint8_t            VelocityUpperLimit;            ///< Defines the upper velocity value limit of a velocity split (only if an user defined limit was set, thus a value not equal to 128/NumberOfSplits, else this value is 0).              uint8_t            VelocityUpperLimit;            ///< Defines the upper velocity value limit of a velocity split (only if an user defined limit was set, thus a value not equal to 128/NumberOfSplits, else this value is 0). Only for gig2, for gig3 and above the DimensionUpperLimits are used instead.
471              Sample*            pSample;                       ///< Points to the Sample which is assigned to the dimension region.              Sample*            pSample;                       ///< Points to the Sample which is assigned to the dimension region.
472              // Sample Amplitude EG/LFO              // Sample Amplitude EG/LFO
473              uint16_t           EG1PreAttack;                  ///< Preattack value of the sample amplitude EG (0 - 1000 permille).              uint16_t           EG1PreAttack;                  ///< Preattack value of the sample amplitude EG (0 - 1000 permille).
# Line 371  namespace gig { Line 519  namespace gig {
519              // Filter              // Filter
520              bool               VCFEnabled;                    ///< If filter should be used.              bool               VCFEnabled;                    ///< If filter should be used.
521              vcf_type_t         VCFType;                       ///< Defines the general filter characteristic (lowpass, highpass, bandpass, etc.).              vcf_type_t         VCFType;                       ///< Defines the general filter characteristic (lowpass, highpass, bandpass, etc.).
522              vcf_cutoff_ctrl_t  VCFCutoffController;           ///< Specifies which external controller has influence on the filter cutoff frequency.              vcf_cutoff_ctrl_t  VCFCutoffController;           ///< Specifies which external controller has influence on the filter cutoff frequency. @deprecated Don't alter directly, use SetVCFCutoffController() instead!
523                bool               VCFCutoffControllerInvert;     ///< Inverts values coming from the defined cutoff controller
524              uint8_t            VCFCutoff;                     ///< Max. cutoff frequency.              uint8_t            VCFCutoff;                     ///< Max. cutoff frequency.
525              curve_type_t       VCFVelocityCurve;              ///< Defines a transformation curve for the incoming velocity values, affecting the VCF.              curve_type_t       VCFVelocityCurve;              ///< Defines a transformation curve for the incoming velocity values, affecting the VCF. @deprecated Don't alter directly, use SetVCFVelocityCurve() instead!
526              uint8_t            VCFVelocityScale;              ///< (0-127) Amount velocity controls VCF cutoff frequency (only if no other VCF cutoff controller is defined).              uint8_t            VCFVelocityScale;              ///< (0-127) Amount velocity controls VCF cutoff frequency (only if no other VCF cutoff controller is defined, otherwise this is the minimum cutoff). @deprecated Don't alter directly, use SetVCFVelocityScale() instead!
527              uint8_t            VCFVelocityDynamicRange;       ///< 0x04 = lowest, 0x00 = highest              uint8_t            VCFVelocityDynamicRange;       ///< 0x04 = lowest, 0x00 = highest . @deprecated Don't alter directly, use SetVCFVelocityDynamicRange() instead!
528              uint8_t            VCFResonance;                  ///< Firm internal filter resonance weight.              uint8_t            VCFResonance;                  ///< Firm internal filter resonance weight.
529              bool               VCFResonanceDynamic;           ///< If <i>true</i>: Increases the resonance Q according to changes of controllers that actually control the VCF cutoff frequency (EG2, ext. VCF MIDI controller).              bool               VCFResonanceDynamic;           ///< If <i>true</i>: Increases the resonance Q according to changes of controllers that actually control the VCF cutoff frequency (EG2, ext. VCF MIDI controller).
530              vcf_res_ctrl_t     VCFResonanceController;        ///< Specifies which external controller has influence on the filter resonance Q.              vcf_res_ctrl_t     VCFResonanceController;        ///< Specifies which external controller has influence on the filter resonance Q.
531              bool               VCFKeyboardTracking;           ///< If <i>true</i>: VCF cutoff frequence will be dependend to the note key position relative to the defined breakpoint value.              bool               VCFKeyboardTracking;           ///< If <i>true</i>: VCF cutoff frequence will be dependend to the note key position relative to the defined breakpoint value.
532              uint8_t            VCFKeyboardTrackingBreakpoint; ///< See VCFKeyboardTracking (0 - 127).              uint8_t            VCFKeyboardTrackingBreakpoint; ///< See VCFKeyboardTracking (0 - 127).
533              // Key Velocity Transformations              // Key Velocity Transformations
534              curve_type_t       VelocityResponseCurve;         ///< Defines a transformation curve to the incoming velocity values affecting amplitude.              curve_type_t       VelocityResponseCurve;         ///< Defines a transformation curve to the incoming velocity values affecting amplitude (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseCurve() instead!
535              uint8_t            VelocityResponseDepth;         ///< Dynamic range of velocity affecting amplitude (0 - 4).              uint8_t            VelocityResponseDepth;         ///< Dynamic range of velocity affecting amplitude (0 - 4) (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseDepth() instead!
536              uint8_t            VelocityResponseCurveScaling;  ///< 0 - 127              uint8_t            VelocityResponseCurveScaling;  ///< 0 - 127 (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseCurveScaling() instead!
537              curve_type_t       ReleaseVelocityResponseCurve;  ///< Defines a transformation curve to the incoming release veloctiy values affecting envelope times.              curve_type_t       ReleaseVelocityResponseCurve;  ///< Defines a transformation curve to the incoming release veloctiy values affecting envelope times. @deprecated Don't alter directly, use SetReleaseVelocityResponseCurve() instead!
538              uint8_t            ReleaseVelocityResponseDepth;  ///< Dynamic range of release velocity affecting envelope time (0 - 4).              uint8_t            ReleaseVelocityResponseDepth;  ///< Dynamic range of release velocity affecting envelope time (0 - 4). @deprecated Don't alter directly, use SetReleaseVelocityResponseDepth() instead!
539              uint8_t            ReleaseTriggerDecay;           ///< 0 - 8              uint8_t            ReleaseTriggerDecay;           ///< 0 - 8
540              // Mix / Layer              // Mix / Layer
541              crossfade_t        Crossfade;              crossfade_t        Crossfade;
# Line 401  namespace gig { Line 550  namespace gig {
550              bool               SustainDefeat;                 ///< If <i>true</i>: Sustain pedal will not hold a note.              bool               SustainDefeat;                 ///< If <i>true</i>: Sustain pedal will not hold a note.
551              bool               MSDecode;                      ///< Gigastudio flag: defines if Mid Side Recordings should be decoded.              bool               MSDecode;                      ///< Gigastudio flag: defines if Mid Side Recordings should be decoded.
552              uint16_t           SampleStartOffset;             ///< Number of samples the sample start should be moved (0 - 2000).              uint16_t           SampleStartOffset;             ///< Number of samples the sample start should be moved (0 - 2000).
553                double             SampleAttenuation;             ///< Sample volume (calculated from DLS::Sampler::Gain)
554                uint8_t            DimensionUpperLimits[8];       ///< gig3: defines the upper limit of the dimension values for this dimension region. In case you wondered why this is defined on DimensionRegion level and not on Region level: the zone sizes (upper limits) of the velocity dimension can indeed differ in the individual dimension regions, depending on which zones of the other dimension types are currently selected. So this is exceptional for the velocity dimension only. All other dimension types have the same dimension zone sizes for every single DimensionRegion (of the sample Region).
555                eg_opt_t           EG1Options;                    ///< [gig extension]: Behavior options which should be used for envelope generator 1 (volume amplitude EG).
556                eg_opt_t           EG2Options;                    ///< [gig extension]: Behavior options which should be used for envelope generator 2 (filter cutoff EG).
557    
558              // derived attributes from DLS::Sampler              // derived attributes from DLS::Sampler
559              DLS::Sampler::UnityNote;              using DLS::Sampler::UnityNote;
560              DLS::Sampler::FineTune;              using DLS::Sampler::FineTune;
561              DLS::Sampler::Gain;              using DLS::Sampler::Gain;
562              DLS::Sampler::SampleLoops;              using DLS::Sampler::SampleLoops;
563              DLS::Sampler::pSampleLoops;              using DLS::Sampler::pSampleLoops;
564    
565              // Methods              // own methods
566              double GetVelocityAttenuation(uint8_t MIDIKeyVelocity);              double GetVelocityAttenuation(uint8_t MIDIKeyVelocity);
567                double GetVelocityRelease(uint8_t MIDIKeyVelocity);
568                double GetVelocityCutoff(uint8_t MIDIKeyVelocity);
569                void SetVelocityResponseCurve(curve_type_t curve);
570                void SetVelocityResponseDepth(uint8_t depth);
571                void SetVelocityResponseCurveScaling(uint8_t scaling);
572                void SetReleaseVelocityResponseCurve(curve_type_t curve);
573                void SetReleaseVelocityResponseDepth(uint8_t depth);
574                void SetVCFCutoffController(vcf_cutoff_ctrl_t controller);
575                void SetVCFVelocityCurve(curve_type_t curve);
576                void SetVCFVelocityDynamicRange(uint8_t range);
577                void SetVCFVelocityScale(uint8_t scaling);
578                Region* GetParent() const;
579                // derived methods
580                using DLS::Sampler::AddSampleLoop;
581                using DLS::Sampler::DeleteSampleLoop;
582                // overridden methods
583                virtual void SetGain(int32_t gain);
584                virtual void UpdateChunks(progress_t* pProgress);
585                virtual void CopyAssign(const DimensionRegion* orig);
586          protected:          protected:
587              DimensionRegion(RIFF::List* _3ewl);              uint8_t* VelocityTable; ///< For velocity dimensions with custom defined zone ranges only: used for fast converting from velocity MIDI value to dimension bit number.
588                DimensionRegion(Region* pParent, RIFF::List* _3ewl);
589                DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src);
590             ~DimensionRegion();             ~DimensionRegion();
591                void CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples);
592                void serialize(Serialization::Archive* archive);
593              friend class Region;              friend class Region;
594                friend class Serialization::Archive;
595          private:          private:
596              typedef enum { ///< Used to decode attenuation, EG1 and EG2 controller              typedef enum { ///< Used to decode attenuation, EG1 and EG2 controller
597                    // official leverage controllers as they were defined in the original Gigasampler/GigaStudio format:
598                  _lev_ctrl_none              = 0x00,                  _lev_ctrl_none              = 0x00,
599                  _lev_ctrl_modwheel          = 0x03, ///< Modulation Wheel (MIDI Controller 1)                  _lev_ctrl_modwheel          = 0x03, ///< Modulation Wheel (MIDI Controller 1)
600                  _lev_ctrl_breath            = 0x05, ///< Breath Controller (Coarse, MIDI Controller 2)                  _lev_ctrl_breath            = 0x05, ///< Breath Controller (Coarse, MIDI Controller 2)
# Line 441  namespace gig { Line 620  namespace gig {
620                  _lev_ctrl_effect4depth      = 0x2b, ///< Effect 4 Depth (MIDI Controller 94)                  _lev_ctrl_effect4depth      = 0x2b, ///< Effect 4 Depth (MIDI Controller 94)
621                  _lev_ctrl_effect5depth      = 0x2d, ///< Effect 5 Depth (MIDI Controller 95)                  _lev_ctrl_effect5depth      = 0x2d, ///< Effect 5 Depth (MIDI Controller 95)
622                  _lev_ctrl_channelaftertouch = 0x2f, ///< Channel Key Pressure                  _lev_ctrl_channelaftertouch = 0x2f, ///< Channel Key Pressure
623                  _lev_ctrl_velocity          = 0xff  ///< Key Velocity                  _lev_ctrl_velocity          = 0xff, ///< Key Velocity
624    
625                    // format extension (these controllers are so far only supported by LinuxSampler & gigedit) they will *NOT* work with Gigasampler/GigaStudio !
626                    // (the assigned values here are their official MIDI CC number plus the highest bit set):
627                    _lev_ctrl_CC3_EXT           = 0x83, ///< MIDI Controller 3 [gig format extension]
628    
629                    _lev_ctrl_CC6_EXT           = 0x86, ///< Data Entry MSB (MIDI Controller 6) [gig format extension]
630                    _lev_ctrl_CC7_EXT           = 0x87, ///< Channel Volume (MIDI Controller 7) [gig format extension]
631                    _lev_ctrl_CC8_EXT           = 0x88, ///< Balance (MIDI Controller 8) [gig format extension]
632                    _lev_ctrl_CC9_EXT           = 0x89, ///< MIDI Controller 9 [gig format extension]
633                    _lev_ctrl_CC10_EXT          = 0x8a, ///< Pan (MIDI Controller 10) [gig format extension]
634                    _lev_ctrl_CC11_EXT          = 0x8b, ///< Expression Controller (MIDI Controller 11) [gig format extension]
635    
636                    _lev_ctrl_CC14_EXT          = 0x8e, ///< MIDI Controller 14 [gig format extension]
637                    _lev_ctrl_CC15_EXT          = 0x8f, ///< MIDI Controller 15 [gig format extension]
638    
639                    _lev_ctrl_CC20_EXT          = 0x94, ///< MIDI Controller 20 [gig format extension]
640                    _lev_ctrl_CC21_EXT          = 0x95, ///< MIDI Controller 21 [gig format extension]
641                    _lev_ctrl_CC22_EXT          = 0x96, ///< MIDI Controller 22 [gig format extension]
642                    _lev_ctrl_CC23_EXT          = 0x97, ///< MIDI Controller 23 [gig format extension]
643                    _lev_ctrl_CC24_EXT          = 0x98, ///< MIDI Controller 24 [gig format extension]
644                    _lev_ctrl_CC25_EXT          = 0x99, ///< MIDI Controller 25 [gig format extension]
645                    _lev_ctrl_CC26_EXT          = 0x9a, ///< MIDI Controller 26 [gig format extension]
646                    _lev_ctrl_CC27_EXT          = 0x9b, ///< MIDI Controller 27 [gig format extension]
647                    _lev_ctrl_CC28_EXT          = 0x9c, ///< MIDI Controller 28 [gig format extension]
648                    _lev_ctrl_CC29_EXT          = 0x9d, ///< MIDI Controller 29 [gig format extension]
649                    _lev_ctrl_CC30_EXT          = 0x9e, ///< MIDI Controller 30 [gig format extension]
650                    _lev_ctrl_CC31_EXT          = 0x9f, ///< MIDI Controller 31 [gig format extension]
651    
652                    _lev_ctrl_CC68_EXT          = 0xc4, ///< Legato Footswitch (MIDI Controller 68) [gig format extension]
653                    _lev_ctrl_CC69_EXT          = 0xc5, ///< Hold 2 (MIDI Controller 69) [gig format extension]
654                    _lev_ctrl_CC70_EXT          = 0xc6, ///< Sound Ctrl. 1 - Sound Variation (MIDI Controller 70) [gig format extension]
655                    _lev_ctrl_CC71_EXT          = 0xc7, ///< Sound Ctrl. 2 - Timbre (MIDI Controller 71) [gig format extension]
656                    _lev_ctrl_CC72_EXT          = 0xc8, ///< Sound Ctrl. 3 - Release Time (MIDI Controller 72) [gig format extension]
657                    _lev_ctrl_CC73_EXT          = 0xc9, ///< Sound Ctrl. 4 - Attack Time (MIDI Controller 73) [gig format extension]
658                    _lev_ctrl_CC74_EXT          = 0xca, ///< Sound Ctrl. 5 - Brightness (MIDI Controller 74) [gig format extension]
659                    _lev_ctrl_CC75_EXT          = 0xcb, ///< Sound Ctrl. 6 - Decay Time (MIDI Controller 75) [gig format extension]
660                    _lev_ctrl_CC76_EXT          = 0xcc, ///< Sound Ctrl. 7 - Vibrato Rate (MIDI Controller 76) [gig format extension]
661                    _lev_ctrl_CC77_EXT          = 0xcd, ///< Sound Ctrl. 8 - Vibrato Depth (MIDI Controller 77) [gig format extension]
662                    _lev_ctrl_CC78_EXT          = 0xce, ///< Sound Ctrl. 9 - Vibrato Delay (MIDI Controller 78) [gig format extension]
663                    _lev_ctrl_CC79_EXT          = 0xcf, ///< Sound Ctrl. 10 (MIDI Controller 79) [gig format extension]
664    
665                    _lev_ctrl_CC84_EXT          = 0xd4, ///< Portamento Control (MIDI Controller 84) [gig format extension]
666                    _lev_ctrl_CC85_EXT          = 0xd5, ///< MIDI Controller 85 [gig format extension]
667                    _lev_ctrl_CC86_EXT          = 0xd6, ///< MIDI Controller 86 [gig format extension]
668                    _lev_ctrl_CC87_EXT          = 0xd7, ///< MIDI Controller 87 [gig format extension]
669    
670                    _lev_ctrl_CC89_EXT          = 0xd9, ///< MIDI Controller 89 [gig format extension]
671                    _lev_ctrl_CC90_EXT          = 0xda, ///< MIDI Controller 90 [gig format extension]
672    
673                    _lev_ctrl_CC96_EXT          = 0xe0, ///< Data Increment (MIDI Controller 96) [gig format extension]
674                    _lev_ctrl_CC97_EXT          = 0xe1, ///< Data Decrement (MIDI Controller 97) [gig format extension]
675    
676                    _lev_ctrl_CC102_EXT         = 0xe6, ///< MIDI Controller 102 [gig format extension]
677                    _lev_ctrl_CC103_EXT         = 0xe7, ///< MIDI Controller 103 [gig format extension]
678                    _lev_ctrl_CC104_EXT         = 0xe8, ///< MIDI Controller 104 [gig format extension]
679                    _lev_ctrl_CC105_EXT         = 0xe9, ///< MIDI Controller 105 [gig format extension]
680                    _lev_ctrl_CC106_EXT         = 0xea, ///< MIDI Controller 106 [gig format extension]
681                    _lev_ctrl_CC107_EXT         = 0xeb, ///< MIDI Controller 107 [gig format extension]
682                    _lev_ctrl_CC108_EXT         = 0xec, ///< MIDI Controller 108 [gig format extension]
683                    _lev_ctrl_CC109_EXT         = 0xed, ///< MIDI Controller 109 [gig format extension]
684                    _lev_ctrl_CC110_EXT         = 0xee, ///< MIDI Controller 110 [gig format extension]
685                    _lev_ctrl_CC111_EXT         = 0xef, ///< MIDI Controller 111 [gig format extension]
686                    _lev_ctrl_CC112_EXT         = 0xf0, ///< MIDI Controller 112 [gig format extension]
687                    _lev_ctrl_CC113_EXT         = 0xf1, ///< MIDI Controller 113 [gig format extension]
688                    _lev_ctrl_CC114_EXT         = 0xf2, ///< MIDI Controller 114 [gig format extension]
689                    _lev_ctrl_CC115_EXT         = 0xf3, ///< MIDI Controller 115 [gig format extension]
690                    _lev_ctrl_CC116_EXT         = 0xf4, ///< MIDI Controller 116 [gig format extension]
691                    _lev_ctrl_CC117_EXT         = 0xf5, ///< MIDI Controller 117 [gig format extension]
692                    _lev_ctrl_CC118_EXT         = 0xf6, ///< MIDI Controller 118 [gig format extension]
693                    _lev_ctrl_CC119_EXT         = 0xf7  ///< MIDI Controller 119 [gig format extension]
694              } _lev_ctrl_t;              } _lev_ctrl_t;
695              typedef std::map<uint32_t, double*> VelocityTableMap;              typedef std::map<uint32_t, double*> VelocityTableMap;
696    
697              static uint              Instances;                  ///< Number of DimensionRegion instances.              static size_t            Instances;                  ///< Number of DimensionRegion instances.
698              static VelocityTableMap* pVelocityTables;            ///< Contains the tables corresponding to the various velocity parameters (VelocityResponseCurve and VelocityResponseDepth).              static VelocityTableMap* pVelocityTables;            ///< Contains the tables corresponding to the various velocity parameters (VelocityResponseCurve and VelocityResponseDepth).
699              double*                  pVelocityAttenuationTable;  ///< Points to the velocity table corresponding to the velocity parameters of this DimensionRegion.              double*                  pVelocityAttenuationTable;  ///< Points to the velocity table corresponding to the velocity parameters of this DimensionRegion.
700                double*                  pVelocityReleaseTable;      ///< Points to the velocity table corresponding to the release velocity parameters of this DimensionRegion
701                double*                  pVelocityCutoffTable;       ///< Points to the velocity table corresponding to the filter velocity parameters of this DimensionRegion
702                Region*                  pRegion;
703    
704              leverage_ctrl_t DecodeLeverageController(_lev_ctrl_t EncodedController);              leverage_ctrl_t DecodeLeverageController(_lev_ctrl_t EncodedController);
705                _lev_ctrl_t     EncodeLeverageController(leverage_ctrl_t DecodedController);
706                double* GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth);
707                double* GetCutoffVelocityTable(curve_type_t vcfVelocityCurve, uint8_t vcfVelocityDynamicRange, uint8_t vcfVelocityScale, vcf_cutoff_ctrl_t vcfCutoffController);
708                double* GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);
709                double* CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);
710      };      };
711    
712      /** Encapsulates sample waves used for playback. */      /** @brief Encapsulates sample waves of Gigasampler/GigaStudio files used for playback.
713         *
714         * This class provides access to the actual audio sample data of a
715         * Gigasampler/GigaStudio file. Along to the actual sample data, it also
716         * provides access to the sample's meta informations like bit depth,
717         * sample rate, encoding type, but also loop informations. The latter may be
718         * used by instruments for resembling sounds with arbitary note lengths.
719         *
720         * In case you created a new sample with File::AddSample(), you should
721         * first update all attributes with the desired meta informations
722         * (amount of channels, bit depth, sample rate, etc.), then call
723         * Resize() with the desired sample size, followed by File::Save(), this
724         * will create the mandatory RIFF chunk which will hold the sample wave
725         * data and / or resize the file so you will be able to Write() the
726         * sample data directly to disk.
727         *
728         * @e Caution: for gig synthesis, most looping relevant information are
729         * retrieved from the respective DimensionRegon instead from the Sample
730         * itself. This was made for allowing different loop definitions for the
731         * same sample under different conditions.
732         *
733         * Since the gig format was designed as extension to the DLS file format,
734         * this class is derived from the DLS::Sample class. So also refer to
735         * DLS::Sample for additional informations, class attributes and methods.
736         */
737      class Sample : public DLS::Sample {      class Sample : public DLS::Sample {
738          public:          public:
             uint16_t       SampleGroup;  
739              uint32_t       Manufacturer;      ///< Specifies the MIDI Manufacturer's Association (MMA) Manufacturer code for the sampler intended to receive this file's waveform. If no particular manufacturer is to be specified, a value of 0 should be used.              uint32_t       Manufacturer;      ///< Specifies the MIDI Manufacturer's Association (MMA) Manufacturer code for the sampler intended to receive this file's waveform. If no particular manufacturer is to be specified, a value of 0 should be used.
740              uint32_t       Product;           ///< Specifies the MIDI model ID defined by the manufacturer corresponding to the Manufacturer field. If no particular manufacturer's product is to be specified, a value of 0 should be used.              uint32_t       Product;           ///< Specifies the MIDI model ID defined by the manufacturer corresponding to the Manufacturer field. If no particular manufacturer's product is to be specified, a value of 0 should be used.
741              uint32_t       SamplePeriod;      ///< Specifies the duration of time that passes during the playback of one sample in nanoseconds (normally equal to 1 / Samplers Per Second, where Samples Per Second is the value found in the format chunk).              uint32_t       SamplePeriod;      ///< Specifies the duration of time that passes during the playback of one sample in nanoseconds (normally equal to 1 / Samples Per Second, where Samples Per Second is the value found in the format chunk), don't bother to update this attribute, it won't be saved.
742              uint32_t       MIDIUnityNote;     ///< Specifies the musical note at which the sample will be played at it's original sample rate.              uint32_t       MIDIUnityNote;     ///< Specifies the musical note at which the sample will be played at it's original sample rate.
743              uint32_t       FineTune;          ///< Specifies the fraction of a semitone up from the specified MIDI unity note field. A value of 0x80000000 means 1/2 semitone (50 cents) and a value of 0x00000000 means no fine tuning between semitones.              uint32_t       FineTune;          ///< Specifies the fraction of a semitone up from the specified MIDI unity note field. A value of 0x80000000 means 1/2 semitone (50 cents) and a value of 0x00000000 means no fine tuning between semitones.
744              smpte_format_t SMPTEFormat;       ///< Specifies the Society of Motion Pictures and Television E time format used in the following <i>SMPTEOffset</i> field. If a value of 0 is set, <i>SMPTEOffset</i> should also be set to 0.              smpte_format_t SMPTEFormat;       ///< Specifies the Society of Motion Pictures and Television E time format used in the following <i>SMPTEOffset</i> field. If a value of 0 is set, <i>SMPTEOffset</i> should also be set to 0.
745              uint32_t       SMPTEOffset;       ///< The SMPTE Offset value specifies the time offset to be used for the synchronization / calibration to the first sample in the waveform. This value uses a format of 0xhhmmssff where hh is a signed value that specifies the number of hours (-23 to 23), mm is an unsigned value that specifies the number of minutes (0 to 59), ss is an unsigned value that specifies the number of seconds (0 to 59) and ff is an unsigned value that specifies the number of frames (0 to -1).              uint32_t       SMPTEOffset;       ///< The SMPTE Offset value specifies the time offset to be used for the synchronization / calibration to the first sample in the waveform. This value uses a format of 0xhhmmssff where hh is a signed value that specifies the number of hours (-23 to 23), mm is an unsigned value that specifies the number of minutes (0 to 59), ss is an unsigned value that specifies the number of seconds (0 to 59) and ff is an unsigned value that specifies the number of frames (0 to -1).
746              uint32_t       Loops;             ///< Number of defined sample loops (so far only seen single loops in gig files - please report me if you encounter more!).              uint32_t       Loops;             ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: Number of defined sample loops. So far only seen single loops in gig files - please report if you encounter more!)
747              uint32_t       LoopID;            ///< Specifies the unique ID that corresponds to one of the defined cue points in the cue point list (only if Loops > 0), as the Gigasampler format only allows one loop definition at the moment, this attribute isn't really useful for anything.              uint32_t       LoopID;            ///< Specifies the unique ID that corresponds to one of the defined cue points in the cue point list (only if Loops > 0), as the Gigasampler format only allows one loop definition at the moment, this attribute isn't really useful for anything.
748              loop_type_t    LoopType;          ///< The type field defines how the waveform samples will be looped (only if Loops > 0).              loop_type_t    LoopType;          ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The type field defines how the waveform samples will be looped.)
749              uint32_t       LoopStart;         ///< The start value specifies the offset (in sample points) in the waveform data of the first sample to be played in the loop (only if Loops > 0).              uint32_t       LoopStart;         ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The start value specifies the offset [in sample points] in the waveform data of the first sample to be played in the loop [only if Loops > 0].)
750              uint32_t       LoopEnd;           ///< The end value specifies the offset (in sample points) in the waveform data which represents the end of the loop (only if Loops > 0).              uint32_t       LoopEnd;           ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The end value specifies the offset [in sample points] in the waveform data which represents the end of the loop [only if Loops > 0].)
751              uint32_t       LoopSize;          ///< Length of the looping area (in sample points) which is equivalent to <i>LoopEnd - LoopStart</i>.              uint32_t       LoopSize;          ///< @e Caution: Use the respective fields in the DimensionRegion instead of this one! (Intended purpose: Length of the looping area [in sample points] which is equivalent to @code LoopEnd - LoopStart @endcode.)
752              uint32_t       LoopFraction;      ///< The fractional value specifies a fraction of a sample at which to loop (only if Loops > 0). This allows a loop to be fine tuned at a resolution greater than one sample. A value of 0 means no fraction, a value of 0x80000000 means 1/2 of a sample length. 0xFFFFFFFF is the smallest fraction of a sample that can be represented.              uint32_t       LoopFraction;      ///< The fractional value specifies a fraction of a sample at which to loop. This allows a loop to be fine tuned at a resolution greater than one sample. A value of 0 means no fraction, a value of 0x80000000 means 1/2 of a sample length. 0xFFFFFFFF is the smallest fraction of a sample that can be represented.
753              uint32_t       LoopPlayCount;     ///< Number of times the loop should be played (only if Loops > 0, a value of 0 = infinite).              uint32_t       LoopPlayCount;     ///< Number of times the loop should be played (a value of 0 = infinite).
754              bool           Compressed;        ///< If the sample wave is compressed (probably just interesting for instrument and sample editors, as this library already handles the decompression in it's sample access methods anyway).              bool           Compressed;        ///< If the sample wave is compressed (probably just interesting for instrument and sample editors, as this library already handles the decompression in it's sample access methods anyway).
755                uint32_t       TruncatedBits;     ///< For 24-bit compressed samples only: number of bits truncated during compression (0, 4 or 6)
756                bool           Dithered;          ///< For 24-bit compressed samples only: if dithering was used during compression with bit reduction
757    
758              // own methods              // own methods
759              buffer_t      LoadSampleData();              buffer_t      LoadSampleData();
760              buffer_t      LoadSampleData(unsigned long SampleCount);              buffer_t      LoadSampleData(file_offset_t SampleCount);
761              buffer_t      LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount);              buffer_t      LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount);
762              buffer_t      LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount);              buffer_t      LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount);
763              buffer_t      GetCache();              buffer_t      GetCache();
764                // own static methods
765                static buffer_t CreateDecompressionBuffer(file_offset_t MaxReadSize);
766                static void     DestroyDecompressionBuffer(buffer_t& DecompressionBuffer);
767              // overridden methods              // overridden methods
768              void          ReleaseSampleData();              void          ReleaseSampleData();
769              unsigned long SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence = RIFF::stream_start);              void          Resize(file_offset_t NewSize);
770              unsigned long GetPos();              file_offset_t SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence = RIFF::stream_start);
771              unsigned long Read(void* pBuffer, unsigned long SampleCount);              file_offset_t GetPos() const;
772              unsigned long ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState);              file_offset_t Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer = NULL);
773          protected:              file_offset_t ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState, DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer = NULL);
774              static unsigned int  Instances;               ///< Number of instances of class Sample.              file_offset_t Write(void* pBuffer, file_offset_t SampleCount);
775              static unsigned long DecompressionBufferSize; ///< Current size of the decompression buffer.              Group*        GetGroup() const;
776              static void*         pDecompressionBuffer;    ///< Small buffer used for decompression only.              virtual void  UpdateChunks(progress_t* pProgress);
777              unsigned long        FrameOffset;             ///< Current offset (sample points) in current sample frame (for decompression only).              void CopyAssignMeta(const Sample* orig);
778              unsigned long*       FrameTable;              ///< For positioning within compressed samples only: stores the offset values for each frame.              void CopyAssignWave(const Sample* orig);
779              unsigned long        SamplePos;               ///< For compressed samples only: stores the current position (in sample points).              uint32_t GetWaveDataCRC32Checksum();
780                bool VerifyWaveData(uint32_t* pActually = NULL);
781            protected:
782                static size_t        Instances;               ///< Number of instances of class Sample.
783                static buffer_t      InternalDecompressionBuffer; ///< Buffer used for decompression as well as for truncation of 24 Bit -> 16 Bit samples.
784                Group*               pGroup;                  ///< pointer to the Group this sample belongs to (always not-NULL)
785                file_offset_t        FrameOffset;             ///< Current offset (sample points) in current sample frame (for decompression only).
786                file_offset_t*       FrameTable;              ///< For positioning within compressed samples only: stores the offset values for each frame.
787                file_offset_t        SamplePos;               ///< For compressed samples only: stores the current position (in sample points).
788                file_offset_t        SamplesInLastFrame;      ///< For compressed samples only: length of the last sample frame.
789                file_offset_t        WorstCaseFrameSize;      ///< For compressed samples only: size (in bytes) of the largest possible sample frame.
790                file_offset_t        SamplesPerFrame;         ///< For compressed samples only: number of samples in a full sample frame.
791              buffer_t             RAMCache;                ///< Buffers samples (already uncompressed) in RAM.              buffer_t             RAMCache;                ///< Buffers samples (already uncompressed) in RAM.
792                unsigned long        FileNo;                  ///< File number (> 0 when sample is stored in an extension file, 0 when it's in the gig)
793                RIFF::Chunk*         pCk3gix;
794                RIFF::Chunk*         pCkSmpl;
795                uint32_t             crc;                     ///< Reflects CRC-32 checksum of the raw sample data at the last time when the sample's raw wave form data has been modified consciously by the user by calling Write().
796    
797              Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset);              Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo = 0, int index = -1);
798             ~Sample();             ~Sample();
799              /**              uint32_t CalculateWaveDataChecksum();
800               * Swaps the order of the data words in the given memory area  
801               * with a granularity given by \a WordSize.              // Guess size (in bytes) of a compressed sample
802               *              inline file_offset_t GuessSize(file_offset_t samples) {
803               * @param pData    - pointer to the memory area to be swapped                  // 16 bit: assume all frames are compressed - 1 byte
804               * @param AreaSize - size of the memory area to be swapped (in bytes)                  // per sample and 5 bytes header per 2048 samples
805               * @param WordSize - size of the data words (in bytes)  
806               */                  // 24 bit: assume next best compression rate - 1.5
807              inline void SwapMemoryArea(void* pData, unsigned long AreaSize, uint WordSize) {                  // bytes per sample and 13 bytes header per 256
808                  switch (WordSize) { // TODO: unefficient                  // samples
809                      case 1: {                  const file_offset_t size =
810                          uint8_t* pDst = (uint8_t*) pData;                      BitDepth == 24 ? samples + (samples >> 1) + (samples >> 8) * 13
811                          uint8_t  cache;                                     : samples + (samples >> 10) * 5;
812                          unsigned long lo = 0, hi = AreaSize - 1;                  // Double for stereo and add one worst case sample
813                          for (; lo < hi; hi--, lo++) {                  // frame
814                              cache    = pDst[lo];                  return (Channels == 2 ? size << 1 : size) + WorstCaseFrameSize;
                             pDst[lo] = pDst[hi];  
                             pDst[hi] = cache;  
                         }  
                         break;  
                     }  
                     case 2: {  
                         uint16_t* pDst = (uint16_t*) pData;  
                         uint16_t  cache;  
                         unsigned long lo = 0, hi = (AreaSize >> 1) - 1;  
                         for (; lo < hi; hi--, lo++) {  
                             cache    = pDst[lo];  
                             pDst[lo] = pDst[hi];  
                             pDst[hi] = cache;  
                         }  
                         break;  
                     }  
                     case 4: {  
                         uint32_t* pDst = (uint32_t*) pData;  
                         uint32_t  cache;  
                         unsigned long lo = 0, hi = (AreaSize >> 2) - 1;  
                         for (; lo < hi; hi--, lo++) {  
                             cache    = pDst[lo];  
                             pDst[lo] = pDst[hi];  
                             pDst[hi] = cache;  
                         }  
                         break;  
                     }  
                     default: {  
                         uint8_t* pCache = new uint8_t[WordSize]; // TODO: unefficient  
                         unsigned long lo = 0, hi = AreaSize - WordSize;  
                         for (; lo < hi; hi -= WordSize, lo += WordSize) {  
                             memcpy(pCache, (uint8_t*) pData + lo, WordSize);  
                             memcpy((uint8_t*) pData + lo, (uint8_t*) pData + hi, WordSize);  
                             memcpy((uint8_t*) pData + hi, pCache, WordSize);  
                         }  
                         delete[] pCache;  
                         break;  
                     }  
                 }  
815              }              }
816              inline long Min(long A, long B) {  
817                  return (A > B) ? B : A;              // Worst case amount of sample points that can be read with the
818                // given decompression buffer.
819                inline file_offset_t WorstCaseMaxSamples(buffer_t* pDecompressionBuffer) {
820                    return (file_offset_t) ((float)pDecompressionBuffer->Size / (float)WorstCaseFrameSize * (float)SamplesPerFrame);
821              }              }
             inline long Abs(long val) { return (val > 0) ? val : -val; }  
822          private:          private:
823              void ScanCompressedSample();              void ScanCompressedSample();
824              friend class File;              friend class File;
825              friend class Region;              friend class Region;
826                friend class Group; // allow to modify protected member pGroup
827      };      };
828    
829      // TODO: <3dnl> list not used yet - not important though (just contains optional descriptions for the dimensions)      // TODO: <3dnl> list not used yet - not important though (just contains optional descriptions for the dimensions)
830      /** Defines <i>Region</i> information of an <i>Instrument</i>. */      /** @brief Defines Region information of a Gigasampler/GigaStudio instrument.
831         *
832         * A Region reflects a consecutive area (key range) on the keyboard. The
833         * individual regions in the gig format may not overlap with other regions
834         * (of the same instrument that is). Further, in the gig format a Region is
835         * merely a container for DimensionRegions (a.k.a. "Cases"). The Region
836         * itself does not provide the sample mapping or articulation informations
837         * used, even though the data structures of regions indeed provide such
838         * informations. The latter is however just of historical nature, because
839         * the gig file format was derived from the DLS file format.
840         *
841         * Each Region consists of at least one or more DimensionRegions. The actual
842         * amount of DimensionRegions depends on which kind of "dimensions" are
843         * defined for this region, and on the split / zone amount for each of those
844         * dimensions.
845         *
846         * Since the gig format was designed as extension to the DLS file format,
847         * this class is derived from the DLS::Region class. So also refer to
848         * DLS::Region for additional informations, class attributes and methods.
849         */
850      class Region : public DLS::Region {      class Region : public DLS::Region {
851          public:          public:
852              unsigned int            Dimensions;               ///< Number of defined dimensions.              unsigned int            Dimensions;               ///< Number of defined dimensions, do not alter!
853              dimension_def_t         pDimensionDefinitions[5]; ///< Defines the five possible dimensions (the dimension's controller and number of bits/splits).              dimension_def_t         pDimensionDefinitions[8]; ///< Defines the five (gig2) or eight (gig3) possible dimensions (the dimension's controller and number of bits/splits). Use AddDimension() and DeleteDimension() to create a new dimension or delete an existing one.
854              uint32_t                DimensionRegions;         ///< Total number of DimensionRegions this Region contains.              uint32_t                DimensionRegions;         ///< Total number of DimensionRegions this Region contains, do not alter!
855              DimensionRegion*        pDimensionRegions[32];    ///< Pointer array to the 32 possible dimension regions (reflects NULL for dimension regions not in use). Avoid to access the array directly and better use GetDimensionRegionByValue() instead, but of course in some cases it makes sense to use the array (e.g. iterating through all DimensionRegions).              DimensionRegion*        pDimensionRegions[256];   ///< Pointer array to the 32 (gig2) or 256 (gig3) possible dimension regions (reflects NULL for dimension regions not in use). Avoid to access the array directly and better use GetDimensionRegionByValue() instead, but of course in some cases it makes sense to use the array (e.g. iterating through all DimensionRegions). Use AddDimension() and DeleteDimension() to create a new dimension or delete an existing one (which will create or delete the respective dimension region(s) automatically).
856                unsigned int            Layers;                   ///< Amount of defined layers (1 - 32). A value of 1 actually means no layering, a value > 1 means there is Layer dimension. The same information can of course also be obtained by accessing pDimensionDefinitions. Do not alter this value!
857    
858              DimensionRegion* GetDimensionRegionByValue(uint Dim4Val, uint Dim3Val, uint Dim2Val, uint Dim1Val, uint Dim0Val);              // own methods
859              DimensionRegion* GetDimensionRegionByBit(uint8_t Dim4Bit, uint8_t Dim3Bit, uint8_t Dim2Bit, uint8_t Dim1Bit, uint8_t Dim0Bit);              DimensionRegion* GetDimensionRegionByValue(const uint DimValues[8]);
860                DimensionRegion* GetDimensionRegionByBit(const uint8_t DimBits[8]);
861                int              GetDimensionRegionIndexByValue(const uint DimValues[8]);
862              Sample*          GetSample();              Sample*          GetSample();
863                void             AddDimension(dimension_def_t* pDimDef);
864                void             DeleteDimension(dimension_def_t* pDimDef);
865                dimension_def_t* GetDimensionDefinition(dimension_t type);
866                void             DeleteDimensionZone(dimension_t type, int zone);
867                void             SplitDimensionZone(dimension_t type, int zone);
868                void             SetDimensionType(dimension_t oldType, dimension_t newType);
869                // overridden methods
870                virtual void     SetKeyRange(uint16_t Low, uint16_t High);
871                virtual void     UpdateChunks(progress_t* pProgress);
872                virtual void     CopyAssign(const Region* orig);
873          protected:          protected:
             uint8_t VelocityTable[128]; ///< For velocity dimensions with custom defined zone ranges only: used for fast converting from velocity MIDI value to dimension bit number.  
   
874              Region(Instrument* pInstrument, RIFF::List* rgnList);              Region(Instrument* pInstrument, RIFF::List* rgnList);
875              void LoadDimensionRegions(RIFF::List* rgn);              void LoadDimensionRegions(RIFF::List* rgn);
876              Sample* GetSampleFromWavePool(unsigned int WavePoolTableIndex);              void UpdateVelocityTable();
877                Sample* GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress = NULL);
878                void CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples);
879                DimensionRegion* GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase);
880             ~Region();             ~Region();
881              friend class Instrument;              friend class Instrument;
882      };      };
883    
884      /** Provides all neccessary information for the synthesis of an <i>Instrument</i>. */      /** @brief Abstract base class for all MIDI rules.
885         *
886         * Note: Instead of using MIDI rules, we recommend you using real-time
887         * instrument scripts instead. Read about the reasons below.
888         *
889         * MIDI Rules (also called "iMIDI rules" or "intelligent MIDI rules") were
890         * introduced with GigaStudio 4 as an attempt to increase the power of
891         * potential user controls over sounds. At that point other samplers already
892         * supported certain powerful user control features, which were not possible
893         * with GigaStudio yet. For example triggering new notes by MIDI CC
894         * controller.
895         *
896         * Such extended features however were usually implemented by other samplers
897         * by requiring the sound designer to write an instrument script which the
898         * designer would then bundle with the respective instrument file. Such
899         * scripts are essentially text files, using a very specific programming
900         * language for the purpose of controlling the sampler in real-time. Since
901         * however musicians are not typically keen to writing such cumbersome
902         * script files, the GigaStudio designers decided to implement such extended
903         * features completely without instrument scripts. Instead they created a
904         * set of rules, which could be defined and altered conveniently by mouse
905         * clicks in GSt's instrument editor application. The downside of this
906         * overall approach however, was that those MIDI rules were very limited in
907         * practice. As sound designer you easily came across the possiblities such
908         * MIDI rules were able to offer.
909         *
910         * Due to such severe use case constraints, support for MIDI rules is quite
911         * limited in libgig. At the moment only the "Control Trigger", "Alternator"
912         * and the "Legato" MIDI rules are supported by libgig. Consequently the
913         * graphical instrument editor application gigedit just supports the
914         * "Control Trigger" and "Legato" MIDI rules, and LinuxSampler even does not
915         * support any MIDI rule type at all and LinuxSampler probably will not
916         * support MIDI rules in future either.
917         *
918         * Instead of using MIDI rules, we introduced real-time instrument scripts
919         * as extension to the original GigaStudio file format. This script based
920         * solution is much more powerful than MIDI rules and is already supported
921         * by libgig, gigedit and LinuxSampler.
922         *
923         * @deprecated Just provided for backward compatiblity, use Script for new
924         *             instruments instead.
925         */
926        class MidiRule {
927            public:
928                virtual ~MidiRule() { }
929            protected:
930                virtual void UpdateChunks(uint8_t* pData) const = 0;
931                friend class Instrument;
932        };
933    
934        /** @brief MIDI rule for triggering notes by control change events.
935         *
936         * A "Control Trigger MIDI rule" allows to trigger new notes by sending MIDI
937         * control change events to the sampler.
938         *
939         * Note: "Control Trigger" MIDI rules are only supported by gigedit, but not
940         * by LinuxSampler. We recommend you using real-time instrument scripts
941         * instead. Read more about the details and reasons for this in the
942         * description of the MidiRule base class.
943         *
944         * @deprecated Just provided for backward compatiblity, use Script for new
945         *             instruments instead. See description of MidiRule for details.
946         */
947        class MidiRuleCtrlTrigger : public MidiRule {
948            public:
949                uint8_t ControllerNumber;   ///< MIDI controller number.
950                uint8_t Triggers;           ///< Number of triggers.
951                struct trigger_t {
952                    uint8_t TriggerPoint;   ///< The CC value to pass for the note to be triggered.
953                    bool    Descending;     ///< If the change in CC value should be downwards.
954                    uint8_t VelSensitivity; ///< How sensitive the velocity should be to the speed of the controller change.
955                    uint8_t Key;            ///< Key to trigger.
956                    bool    NoteOff;        ///< If a note off should be triggered instead of a note on.
957                    uint8_t Velocity;       ///< Velocity of the note to trigger. 255 means that velocity should depend on the speed of the controller change.
958                    bool    OverridePedal;  ///< If a note off should be triggered even if the sustain pedal is down.
959                } pTriggers[32];
960    
961            protected:
962                MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg);
963                MidiRuleCtrlTrigger();
964                void UpdateChunks(uint8_t* pData) const;
965                friend class Instrument;
966        };
967    
968        /** @brief MIDI rule for instruments with legato samples.
969         *
970         * A "Legato MIDI rule" allows playing instruments resembling the legato
971         * playing technique. In the past such legato articulations were tried to be
972         * simulated by pitching the samples of the instrument. However since
973         * usually a high amount of pitch is needed for legatos, this always sounded
974         * very artificial and unrealistic. The "Legato MIDI rule" thus uses another
975         * approach. Instead of pitching the samples, it allows the sound designer
976         * to bundle separate, additional samples for the individual legato
977         * situations and the legato rules defined which samples to be played in
978         * which situation.
979         *
980         * Note: "Legato MIDI rules" are only supported by gigedit, but not
981         * by LinuxSampler. We recommend you using real-time instrument scripts
982         * instead. Read more about the details and reasons for this in the
983         * description of the MidiRule base class.
984         *
985         * @deprecated Just provided for backward compatiblity, use Script for new
986         *             instruments instead. See description of MidiRule for details.
987         */
988        class MidiRuleLegato : public MidiRule {
989            public:
990                uint8_t LegatoSamples;     ///< Number of legato samples per key in each direction (always 12)
991                bool BypassUseController;  ///< If a controller should be used to bypass the sustain note
992                uint8_t BypassKey;         ///< Key to be used to bypass the sustain note
993                uint8_t BypassController;  ///< Controller to be used to bypass the sustain note
994                uint16_t ThresholdTime;    ///< Maximum time (ms) between two notes that should be played legato
995                uint16_t ReleaseTime;      ///< Release time
996                range_t KeyRange;          ///< Key range for legato notes
997                uint8_t ReleaseTriggerKey; ///< Key triggering release samples
998                uint8_t AltSustain1Key;    ///< Key triggering alternate sustain samples
999                uint8_t AltSustain2Key;    ///< Key triggering a second set of alternate sustain samples
1000    
1001            protected:
1002                MidiRuleLegato(RIFF::Chunk* _3ewg);
1003                MidiRuleLegato();
1004                void UpdateChunks(uint8_t* pData) const;
1005                friend class Instrument;
1006        };
1007    
1008        /** @brief MIDI rule to automatically cycle through specified sequences of different articulations.
1009         *
1010         * The instrument must be using the smartmidi dimension.
1011         *
1012         * Note: "Alternator" MIDI rules are neither supported by gigedit nor by
1013         * LinuxSampler. We recommend you using real-time instrument scripts
1014         * instead. Read more about the details and reasons for this in the
1015         * description of the MidiRule base class.
1016         *
1017         * @deprecated Just provided for backward compatiblity, use Script for new
1018         *             instruments instead. See description of MidiRule for details.
1019         */
1020        class MidiRuleAlternator : public MidiRule {
1021            public:
1022                uint8_t Articulations;     ///< Number of articulations in the instrument
1023                String pArticulations[32]; ///< Names of the articulations
1024    
1025                range_t PlayRange;         ///< Key range of the playable keys in the instrument
1026    
1027                uint8_t Patterns;          ///< Number of alternator patterns
1028                struct pattern_t {
1029                    String Name;           ///< Name of the pattern
1030                    int Size;              ///< Number of steps in the pattern
1031                    const uint8_t& operator[](int i) const { /// Articulation to play
1032                        return data[i];
1033                    }
1034                    uint8_t& operator[](int i) {
1035                        return data[i];
1036                    }
1037                private:
1038                    uint8_t data[32];
1039                } pPatterns[32];           ///< A pattern is a sequence of articulation numbers
1040    
1041                typedef enum {
1042                    selector_none,
1043                    selector_key_switch,
1044                    selector_controller
1045                } selector_t;
1046                selector_t Selector;       ///< Method by which pattern is chosen
1047                range_t KeySwitchRange;    ///< Key range for key switch selector
1048                uint8_t Controller;        ///< CC number for controller selector
1049    
1050                bool Polyphonic;           ///< If alternator should step forward only when all notes are off
1051                bool Chained;              ///< If all patterns should be chained together
1052    
1053            protected:
1054                MidiRuleAlternator(RIFF::Chunk* _3ewg);
1055                MidiRuleAlternator();
1056                void UpdateChunks(uint8_t* pData) const;
1057                friend class Instrument;
1058        };
1059    
1060        /** @brief A MIDI rule not yet implemented by libgig.
1061         *
1062         * This class is currently used as a place holder by libgig for MIDI rule
1063         * types which are not supported by libgig yet.
1064         *
1065         * Note: Support for missing MIDI rule types are probably never added to
1066         * libgig. We recommend you using real-time instrument scripts instead.
1067         * Read more about the details and reasons for this in the description of
1068         * the MidiRule base class.
1069         *
1070         * @deprecated Just provided for backward compatiblity, use Script for new
1071         *             instruments instead. See description of MidiRule for details.
1072         */
1073        class MidiRuleUnknown : public MidiRule {
1074            protected:
1075                MidiRuleUnknown() { }
1076                void UpdateChunks(uint8_t* pData) const { }
1077                friend class Instrument;
1078        };
1079    
1080        /** @brief Real-time instrument script (gig format extension).
1081         *
1082         * Real-time instrument scripts are user supplied small programs which can
1083         * be used by instrument designers to create custom behaviors and features
1084         * not available in the stock sampler engine. Features which might be very
1085         * exotic or specific for the respective instrument.
1086         *
1087         * This is an extension of the GigaStudio format, thus a feature which was
1088         * not available in the GigaStudio 4 software. It is currently only
1089         * supported by LinuxSampler and gigedit. Scripts will not load with the
1090         * original GigaStudio software.
1091         *
1092         * You find more informations about Instrument Scripts on the LinuxSampler
1093         * documentation site:
1094         *
1095         * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/">About Instrument Scripts in General</a>
1096         * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language">Introduction to the NKSP Script Language</a>
1097         * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language/Reference/">NKSP Reference Manual</a>
1098         * - <a href="http://doc.linuxsampler.org/Gigedit/Managing_Scripts">Using Instrument Scripts with Gigedit</a>
1099         */
1100        class Script {
1101            public:
1102                enum Encoding_t {
1103                    ENCODING_ASCII = 0 ///< Standard 8 bit US ASCII character encoding (default).
1104                };
1105                enum Compression_t {
1106                    COMPRESSION_NONE = 0 ///< Is not compressed at all (default).
1107                };
1108                enum Language_t {
1109                    LANGUAGE_NKSP = 0 ///< NKSP stands for "Is Not KSP" (default). Refer to the <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language/Reference/">NKSP Reference Manual</a> for details about this script language.
1110                };
1111    
1112                String         Name;        ///< Arbitrary name of the script, which may be displayed i.e. in an instrument editor.
1113                Compression_t  Compression; ///< Whether the script was/should be compressed, and if so, which compression algorithm shall be used.
1114                Encoding_t     Encoding;    ///< Format the script's source code text is encoded with.
1115                Language_t     Language;    ///< Programming language and dialect the script is written in.
1116                bool           Bypass;      ///< Global bypass: if enabled, this script shall not be executed by the sampler for any instrument.
1117    
1118                String GetScriptAsText();
1119                void   SetScriptAsText(const String& text);
1120                void   SetGroup(ScriptGroup* pGroup);
1121                ScriptGroup* GetGroup() const;
1122                void   CopyAssign(const Script* orig);
1123            protected:
1124                Script(ScriptGroup* group, RIFF::Chunk* ckScri);
1125                virtual ~Script();
1126                void UpdateChunks(progress_t* pProgress);
1127                void RemoveAllScriptReferences();
1128                friend class ScriptGroup;
1129                friend class Instrument;
1130            private:
1131                ScriptGroup*          pGroup;
1132                RIFF::Chunk*          pChunk; ///< 'Scri' chunk
1133                std::vector<uint8_t>  data;
1134                uint32_t              crc; ///< CRC-32 checksum of the raw script data
1135        };
1136    
1137        /** @brief Group of instrument scripts (gig format extension).
1138         *
1139         * This class is simply used to sort a bunch of real-time instrument scripts
1140         * into individual groups. This allows instrument designers and script
1141         * developers to keep scripts in a certain order while working with a larger
1142         * amount of scripts in an instrument editor.
1143         *
1144         * This is an extension of the GigaStudio format, thus a feature which was
1145         * not available in the GigaStudio 4 software. It is currently only
1146         * supported by LinuxSampler and gigedit.
1147         */
1148        class ScriptGroup {
1149            public:
1150                String   Name; ///< Name of this script group. For example to be displayed in an instrument editor.
1151    
1152                Script*  GetScript(uint index);
1153                Script*  AddScript();
1154                void     DeleteScript(Script* pScript);
1155            protected:
1156                ScriptGroup(File* file, RIFF::List* lstRTIS);
1157                virtual ~ScriptGroup();
1158                void LoadScripts();
1159                void UpdateChunks(progress_t* pProgress);
1160                friend class Script;
1161                friend class File;
1162            private:
1163                File*                pFile;
1164                RIFF::List*          pList; ///< 'RTIS' list chunk
1165                std::list<Script*>*  pScripts;
1166        };
1167    
1168        /** @brief Provides access to a Gigasampler/GigaStudio instrument.
1169         *
1170         * This class provides access to Gigasampler/GigaStudio instruments
1171         * contained in .gig files. A gig instrument is merely a set of keyboard
1172         * ranges (called Region), plus some additional global informations about
1173         * the instrument. The major part of the actual instrument definition used
1174         * for the synthesis of the instrument is contained in the respective Region
1175         * object (or actually in the respective DimensionRegion object being, see
1176         * description of Region for details).
1177         *
1178         * Since the gig format was designed as extension to the DLS file format,
1179         * this class is derived from the DLS::Instrument class. So also refer to
1180         * DLS::Instrument for additional informations, class attributes and
1181         * methods.
1182         */
1183      class Instrument : protected DLS::Instrument {      class Instrument : protected DLS::Instrument {
1184          public:          public:
1185              // derived attributes from DLS::Resource              // derived attributes from DLS::Resource
1186              DLS::Resource::pInfo;              using DLS::Resource::pInfo;
1187              DLS::Resource::pDLSID;              using DLS::Resource::pDLSID;
1188              // derived attributes from DLS::Instrument              // derived attributes from DLS::Instrument
1189              DLS::Instrument::IsDrum;              using DLS::Instrument::IsDrum;
1190              DLS::Instrument::MIDIBank;              using DLS::Instrument::MIDIBank;
1191              DLS::Instrument::MIDIBankCoarse;              using DLS::Instrument::MIDIBankCoarse;
1192              DLS::Instrument::MIDIBankFine;              using DLS::Instrument::MIDIBankFine;
1193              DLS::Instrument::MIDIProgram;              using DLS::Instrument::MIDIProgram;
1194              DLS::Instrument::Regions;              using DLS::Instrument::Regions;
1195              // own attributes              // own attributes
1196              int32_t   Attenuation;       ///< in dB              int32_t   Attenuation;       ///< in dB
1197              uint16_t  EffectSend;              uint16_t  EffectSend;
# Line 607  namespace gig { Line 1202  namespace gig {
1202    
1203    
1204              // derived methods from DLS::Resource              // derived methods from DLS::Resource
1205              DLS::Resource::GetParent;              using DLS::Resource::GetParent;
1206              // overridden methods              // overridden methods
1207              Region*   GetFirstRegion();              Region*   GetFirstRegion();
1208              Region*   GetNextRegion();              Region*   GetNextRegion();
1209                Region*   AddRegion();
1210                void      DeleteRegion(Region* pRegion);
1211                void      MoveTo(Instrument* dst);
1212                virtual void UpdateChunks(progress_t* pProgress);
1213                virtual void CopyAssign(const Instrument* orig);
1214              // own methods              // own methods
1215              Region*   GetRegion(unsigned int Key);              Region*   GetRegion(unsigned int Key);
1216                MidiRule* GetMidiRule(int i);
1217                MidiRuleCtrlTrigger* AddMidiRuleCtrlTrigger();
1218                MidiRuleLegato*      AddMidiRuleLegato();
1219                MidiRuleAlternator*  AddMidiRuleAlternator();
1220                void      DeleteMidiRule(int i);
1221                // real-time instrument script methods
1222                Script*   GetScriptOfSlot(uint index);
1223                void      AddScriptSlot(Script* pScript, bool bypass = false);
1224                void      SwapScriptSlots(uint index1, uint index2);
1225                void      RemoveScriptSlot(uint index);
1226                void      RemoveScript(Script* pScript);
1227                uint      ScriptSlotCount() const;
1228                bool      IsScriptSlotBypassed(uint index);
1229                void      SetScriptSlotBypassed(uint index, bool bBypass);
1230          protected:          protected:
             Region**  pRegions;            ///< Pointer array to the regions  
1231              Region*   RegionKeyTable[128]; ///< fast lookup for the corresponding Region of a MIDI key              Region*   RegionKeyTable[128]; ///< fast lookup for the corresponding Region of a MIDI key
             int       RegionIndex;  
1232    
1233              Instrument(File* pFile, RIFF::List* insList);              Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress = NULL);
1234             ~Instrument();             ~Instrument();
1235                void CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples);
1236                void UpdateRegionKeyTable();
1237                void LoadScripts();
1238                void UpdateScriptFileOffsets();
1239              friend class File;              friend class File;
1240                friend class Region; // so Region can call UpdateRegionKeyTable()
1241            private:
1242                struct _ScriptPooolEntry {
1243                    uint32_t fileOffset;
1244                    bool     bypass;
1245                };
1246                struct _ScriptPooolRef {
1247                    Script*  script;
1248                    bool     bypass;
1249                };
1250                MidiRule** pMidiRules;
1251                std::vector<_ScriptPooolEntry> scriptPoolFileOffsets;
1252                std::vector<_ScriptPooolRef>* pScriptRefs;
1253      };      };
1254    
1255      // TODO: <3gnm> chunk not added yet (just contains the names of the sample groups)      /** @brief Group of Gigasampler samples
1256      /** Parses Gigasampler files and provides abstract access to the data. */       *
1257         * Groups help to organize a huge collection of Gigasampler samples.
1258         * Groups are not concerned at all for the synthesis, but they help
1259         * sound library developers when working on complex instruments with an
1260         * instrument editor (as long as that instrument editor supports it ;-).
1261         *
1262         * A sample is always assigned to exactly one Group. This also means
1263         * there is always at least one Group in a .gig file, no matter if you
1264         * created one yet or not.
1265         */
1266        class Group {
1267            public:
1268                String Name; ///< Stores the name of this Group.
1269    
1270                Sample* GetFirstSample();
1271                Sample* GetNextSample();
1272                void AddSample(Sample* pSample);
1273            protected:
1274                Group(File* file, RIFF::Chunk* ck3gnm);
1275                virtual ~Group();
1276                virtual void UpdateChunks(progress_t* pProgress);
1277                void MoveAll();
1278                friend class File;
1279            private:
1280                File*        pFile;
1281                RIFF::Chunk* pNameChunk; ///< '3gnm' chunk
1282        };
1283    
1284        /** @brief Provides convenient access to Gigasampler/GigaStudio .gig files.
1285         *
1286         * This is the entry class for accesing a Gigasampler/GigaStudio (.gig) file
1287         * with libgig. It allows you to open existing .gig files, modifying them
1288         * and saving them persistently either under the same file name or under a
1289         * different location.
1290         *
1291         * A .gig file is merely a monolithic file. That means samples and the
1292         * defintion of the virtual instruments are contained in the same file. A
1293         * .gig file contains an arbitrary amount of samples, and an arbitrary
1294         * amount of instruments which are referencing those samples. It is also
1295         * possible to store samples in .gig files not being referenced by any
1296         * instrument. This is not an error from the file format's point of view and
1297         * it is actually often used in practice during the design phase of new gig
1298         * instruments.
1299         *
1300         * So on toplevel of the gig file format you have:
1301         *
1302         * - A set of samples (see Sample).
1303         * - A set of virtual instruments (see Instrument).
1304         *
1305         * And as extension to the original GigaStudio format, we added:
1306         *
1307         * - Real-time instrument scripts (see Script).
1308         *
1309         * Note that the latter however is only supported by libgig, gigedit and
1310         * LinuxSampler. Scripts are not supported by the original GigaStudio
1311         * software.
1312         *
1313         * All released Gigasampler/GigaStudio file format versions are supported
1314         * (so from first Gigasampler version up to including GigaStudio 4).
1315         *
1316         * Since the gig format was designed as extension to the DLS file format,
1317         * this class is derived from the DLS::File class. So also refer to
1318         * DLS::File for additional informations, class attributes and methods.
1319         */
1320      class File : protected DLS::File {      class File : protected DLS::File {
1321          public:          public:
1322                static const DLS::version_t VERSION_2;
1323                static const DLS::version_t VERSION_3;
1324    
1325              // derived attributes from DLS::Resource              // derived attributes from DLS::Resource
1326              DLS::Resource::pInfo;              using DLS::Resource::pInfo;
1327              DLS::Resource::pDLSID;              using DLS::Resource::pDLSID;
1328              // derived attributes from DLS::File              // derived attributes from DLS::File
1329              DLS::File::pVersion;              using DLS::File::pVersion;
1330              DLS::File::Instruments;              using DLS::File::Instruments;
1331    
1332              // derived methods from DLS::Resource              // derived methods from DLS::Resource
1333              DLS::Resource::GetParent;              using DLS::Resource::GetParent;
1334                // derived methods from DLS::File
1335                using DLS::File::Save;
1336                using DLS::File::GetFileName;
1337                using DLS::File::SetFileName;
1338              // overridden  methods              // overridden  methods
1339                File();
1340              File(RIFF::File* pRIFF);              File(RIFF::File* pRIFF);
1341              Sample*     GetFirstSample();     ///< Returns a pointer to the first <i>Sample</i> object of the file, <i>NULL</i> otherwise.              Sample*     GetFirstSample(progress_t* pProgress = NULL); ///< Returns a pointer to the first <i>Sample</i> object of the file, <i>NULL</i> otherwise.
1342              Sample*     GetNextSample();      ///< Returns a pointer to the next <i>Sample</i> object of the file, <i>NULL</i> otherwise.              Sample*     GetNextSample();      ///< Returns a pointer to the next <i>Sample</i> object of the file, <i>NULL</i> otherwise.
1343                Sample*     GetSample(uint index);
1344                Sample*     AddSample();
1345                void        DeleteSample(Sample* pSample);
1346              Instrument* GetFirstInstrument(); ///< Returns a pointer to the first <i>Instrument</i> object of the file, <i>NULL</i> otherwise.              Instrument* GetFirstInstrument(); ///< Returns a pointer to the first <i>Instrument</i> object of the file, <i>NULL</i> otherwise.
1347              Instrument* GetNextInstrument();  ///< Returns a pointer to the next <i>Instrument</i> object of the file, <i>NULL</i> otherwise.              Instrument* GetNextInstrument();  ///< Returns a pointer to the next <i>Instrument</i> object of the file, <i>NULL</i> otherwise.
1348              Instrument* GetInstrument(uint index);              Instrument* GetInstrument(uint index, progress_t* pProgress = NULL);
1349             ~File() {};              Instrument* AddInstrument();
1350                Instrument* AddDuplicateInstrument(const Instrument* orig);
1351                void        DeleteInstrument(Instrument* pInstrument);
1352                Group*      GetFirstGroup(); ///< Returns a pointer to the first <i>Group</i> object of the file, <i>NULL</i> otherwise.
1353                Group*      GetNextGroup();  ///< Returns a pointer to the next <i>Group</i> object of the file, <i>NULL</i> otherwise.
1354                Group*      GetGroup(uint index);
1355                Group*      GetGroup(String name);
1356                Group*      AddGroup();
1357                void        DeleteGroup(Group* pGroup);
1358                void        DeleteGroupOnly(Group* pGroup);
1359                void        SetAutoLoad(bool b);
1360                bool        GetAutoLoad();
1361                void        AddContentOf(File* pFile);
1362                ScriptGroup* GetScriptGroup(uint index);
1363                ScriptGroup* GetScriptGroup(const String& name);
1364                ScriptGroup* AddScriptGroup();
1365                void        DeleteScriptGroup(ScriptGroup* pGroup);
1366                virtual    ~File();
1367                virtual void UpdateChunks(progress_t* pProgress);
1368          protected:          protected:
1369              typedef std::list<Sample*>     SampleList;              // overridden protected methods from DLS::File
1370              typedef std::list<Instrument*> InstrumentList;              virtual void LoadSamples();
1371                virtual void LoadInstruments();
1372              SampleList*              pSamples;              virtual void LoadGroups();
1373              SampleList::iterator     SamplesIterator;              virtual void UpdateFileOffsets();
1374              InstrumentList*          pInstruments;              // own protected methods
1375              InstrumentList::iterator InstrumentsIterator;              virtual void LoadSamples(progress_t* pProgress);
1376                virtual void LoadInstruments(progress_t* pProgress);
1377              void LoadSamples();              virtual void LoadScriptGroups();
1378              void LoadInstruments();              void SetSampleChecksum(Sample* pSample, uint32_t crc);
1379                uint32_t GetSampleChecksum(Sample* pSample);
1380                uint32_t GetSampleChecksumByIndex(int index);
1381                bool VerifySampleChecksumTable();
1382                bool RebuildSampleChecksumTable();
1383                int  GetWaveTableIndexOf(gig::Sample* pSample);
1384              friend class Region;              friend class Region;
1385                friend class Sample;
1386                friend class Instrument;
1387                friend class Group; // so Group can access protected member pRIFF
1388                friend class ScriptGroup; // so ScriptGroup can access protected member pRIFF
1389            private:
1390                std::list<Group*>*          pGroups;
1391                std::list<Group*>::iterator GroupsIterator;
1392                bool                        bAutoLoad;
1393                std::list<ScriptGroup*>*    pScriptGroups;
1394      };      };
1395    
1396      /** Will be thrown whenever a gig specific error occurs while trying to access a Gigasampler File. */      /**
1397         * Will be thrown whenever a gig specific error occurs while trying to
1398         * access a Gigasampler File. Note: In your application you should
1399         * better catch for RIFF::Exception rather than this one, except you
1400         * explicitly want to catch and handle gig::Exception, DLS::Exception
1401         * and RIFF::Exception independently, which usually shouldn't be
1402         * necessary though.
1403         */
1404      class Exception : public DLS::Exception {      class Exception : public DLS::Exception {
1405          public:          public:
1406              Exception(String Message);              Exception(String format, ...);
1407                Exception(String format, va_list arg);
1408              void PrintMessage();              void PrintMessage();
1409            protected:
1410                Exception();
1411      };      };
1412    
1413    #if HAVE_RTTI
1414        size_t enumCount(const std::type_info& type);
1415        const char* enumKey(const std::type_info& type, size_t value);
1416        bool        enumKey(const std::type_info& type, String key);
1417        const char** enumKeys(const std::type_info& type);
1418    #endif // HAVE_RTTI
1419        size_t enumCount(String typeName);
1420        const char* enumKey(String typeName, size_t value);
1421        bool        enumKey(String typeName, String key);
1422        const char** enumKeys(String typeName);
1423        size_t enumValue(String key);
1424    
1425        String libraryName();
1426        String libraryVersion();
1427    
1428  } // namespace gig  } // namespace gig
1429    
1430  #endif // __GIG_H__  #endif // __GIG_H__

Legend:
Removed from v.55  
changed lines
  Added in v.3398

  ViewVC Help
Powered by ViewVC