/[svn]/libgig/trunk/src/gig.h
ViewVC logotype

Diff of /libgig/trunk/src/gig.h

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 353 by schoenebeck, Sat Jan 29 14:25:35 2005 UTC revision 3324 by schoenebeck, Fri Jul 21 13:05:39 2017 UTC
# Line 1  Line 1 
1  /***************************************************************************  /***************************************************************************
2   *                                                                         *   *                                                                         *
3   *   libgig - C++ cross-platform Gigasampler format file loader library    *   *   libgig - C++ cross-platform Gigasampler format file access library    *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Christian Schoenebeck                     *   *   Copyright (C) 2003-2017 by Christian Schoenebeck                      *
6   *                               <cuse@users.sourceforge.net>              *   *                              <cuse@users.sourceforge.net>               *
7   *                                                                         *   *                                                                         *
8   *   This library is free software; you can redistribute it and/or modify  *   *   This library is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 25  Line 25 
25  #define __GIG_H__  #define __GIG_H__
26    
27  #include "DLS.h"  #include "DLS.h"
28    #include <vector>
29    
30  #include <math.h>  #ifndef __has_feature
31  #include <string.h>  # define __has_feature(x) 0
32    #endif
33  /// Initial size of the sample buffer which is used for decompression of  #ifndef HAVE_RTTI
34  /// compressed sample wave streams - this value should always be bigger than  # if __GXX_RTTI || __has_feature(cxx_rtti) || _CPPRTTI
35  /// the biggest sample piece expected to be read by the sampler engine,  #  define HAVE_RTTI 1
36  /// otherwise the buffer size will be raised at runtime and thus the buffer  # else
37  /// reallocated which is time consuming and unefficient.  #  define HAVE_RTTI 0
38  #define INITIAL_SAMPLE_BUFFER_SIZE              512000 // 512 kB  # endif
39    #endif
40    #if HAVE_RTTI
41    # include <typeinfo>
42    #else
43    # warning No RTTI available!
44    #endif
45    
46  #if WORDS_BIGENDIAN  #if WORDS_BIGENDIAN
47  # define LIST_TYPE_3PRG 0x33707267  # define LIST_TYPE_3PRG 0x33707267
48  # define LIST_TYPE_3EWL 0x3365776C  # define LIST_TYPE_3EWL 0x3365776C
49  # define CHUNK_ID_SMPL  0x736D706C  # define LIST_TYPE_3GRI 0x33677269
50    # define LIST_TYPE_3GNL 0x33676E6C
51    # define LIST_TYPE_3LS  0x334c5320 // own gig format extension
52    # define LIST_TYPE_RTIS 0x52544953 // own gig format extension
53  # define CHUNK_ID_3GIX  0x33676978  # define CHUNK_ID_3GIX  0x33676978
54  # define CHUNK_ID_3EWA  0x33657761  # define CHUNK_ID_3EWA  0x33657761
55  # define CHUNK_ID_3LNK  0x336C6E6B  # define CHUNK_ID_3LNK  0x336C6E6B
56  # define CHUNK_ID_3EWG  0x33657767  # define CHUNK_ID_3EWG  0x33657767
57  # define CHUNK_ID_EWAV  0x65776176  # define CHUNK_ID_EWAV  0x65776176
58    # define CHUNK_ID_3GNM  0x33676E6D
59    # define CHUNK_ID_EINF  0x65696E66
60    # define CHUNK_ID_3CRC  0x33637263
61    # define CHUNK_ID_SCRI  0x53637269 // own gig format extension
62    # define CHUNK_ID_LSNM  0x4c534e4d // own gig format extension
63    # define CHUNK_ID_SCSL  0x5343534c // own gig format extension
64    # define CHUNK_ID_LSDE  0x4c534445 // own gig format extension
65  #else  // little endian  #else  // little endian
66  # define LIST_TYPE_3PRG 0x67727033  # define LIST_TYPE_3PRG 0x67727033
67  # define LIST_TYPE_3EWL 0x6C776533  # define LIST_TYPE_3EWL 0x6C776533
68  # define CHUNK_ID_SMPL  0x6C706D73  # define LIST_TYPE_3GRI 0x69726733
69    # define LIST_TYPE_3GNL 0x6C6E6733
70    # define LIST_TYPE_3LS  0x20534c33 // own gig format extension
71    # define LIST_TYPE_RTIS 0x53495452 // own gig format extension
72  # define CHUNK_ID_3GIX  0x78696733  # define CHUNK_ID_3GIX  0x78696733
73  # define CHUNK_ID_3EWA  0x61776533  # define CHUNK_ID_3EWA  0x61776533
74  # define CHUNK_ID_3LNK  0x6B6E6C33  # define CHUNK_ID_3LNK  0x6B6E6C33
75  # define CHUNK_ID_3EWG  0x67776533  # define CHUNK_ID_3EWG  0x67776533
76  # define CHUNK_ID_EWAV  0x76617765  # define CHUNK_ID_EWAV  0x76617765
77    # define CHUNK_ID_3GNM  0x6D6E6733
78    # define CHUNK_ID_EINF  0x666E6965
79    # define CHUNK_ID_3CRC  0x63726333
80    # define CHUNK_ID_SCRI  0x69726353 // own gig format extension
81    # define CHUNK_ID_LSNM  0x4d4e534c // own gig format extension
82    # define CHUNK_ID_SCSL  0x4c534353 // own gig format extension
83    # define CHUNK_ID_LSDE  0x4544534c // own gig format extension
84  #endif // WORDS_BIGENDIAN  #endif // WORDS_BIGENDIAN
85    
86  /** (so far) every exponential paramater in the gig format has a basis of 1.000000008813822 */  #ifndef GIG_DECLARE_ENUM
87  #define GIG_EXP_DECODE(x)                                       (pow(1.000000008813822, x))  # define GIG_DECLARE_ENUM(type, ...) enum type { __VA_ARGS__ }
88  #define GIG_PITCH_TRACK_EXTRACT(x)                              (!(x & 0x01))  #endif
89  #define GIG_VCF_RESONANCE_CTRL_EXTRACT(x)                       ((x >> 4) & 0x03)  
90  #define GIG_EG_CTR_ATTACK_INFLUENCE_EXTRACT(x)                  ((x >> 1) & 0x03)  // just symbol prototyping (since Serialization.h not included by default here)
91  #define GIG_EG_CTR_DECAY_INFLUENCE_EXTRACT(x)                   ((x >> 3) & 0x03)  namespace Serialization { class Archive; }
 #define GIG_EG_CTR_RELEASE_INFLUENCE_EXTRACT(x)                 ((x >> 5) & 0x03)  
92    
93  /** Gigasampler specific classes and definitions */  /** Gigasampler/GigaStudio specific classes and definitions */
94  namespace gig {  namespace gig {
95    
96      typedef std::string String;      typedef std::string String;
97        typedef RIFF::progress_t progress_t;
98        typedef RIFF::file_offset_t file_offset_t;
99    
100      /** Lower and upper limit of a range. */      /** Lower and upper limit of a range. */
101      struct range_t {      struct range_t {
# Line 78  namespace gig { Line 106  namespace gig {
106      /** Pointer address and size of a buffer. */      /** Pointer address and size of a buffer. */
107      struct buffer_t {      struct buffer_t {
108          void*         pStart;            ///< Points to the beginning of the buffer.          void*         pStart;            ///< Points to the beginning of the buffer.
109          unsigned long Size;              ///< Size of the actual data in the buffer in bytes.          file_offset_t Size;              ///< Size of the actual data in the buffer in bytes.
110          unsigned long NullExtensionSize; ///< The buffer might be bigger than the actual data, if that's the case that unused space at the end of the buffer is filled with NULLs and NullExtensionSize reflects that unused buffer space in bytes. Those NULL extensions are mandatory for differential algorithms that have to take the following data words into account, thus have to access past the buffer's boundary. If you don't know what I'm talking about, just forget this variable. :)          file_offset_t NullExtensionSize; ///< The buffer might be bigger than the actual data, if that's the case that unused space at the end of the buffer is filled with NULLs and NullExtensionSize reflects that unused buffer space in bytes. Those NULL extensions are mandatory for differential algorithms that have to take the following data words into account, thus have to access past the buffer's boundary. If you don't know what I'm talking about, just forget this variable. :)
111            buffer_t() {
112                pStart            = NULL;
113                Size              = 0;
114                NullExtensionSize = 0;
115            }
116      };      };
117    
118      /** Standard types of sample loops. */      /** Standard types of sample loops.
119      typedef enum {       *
120         * @see enumCount(), enumKey(), enumKeys(), enumValue()
121         */
122        GIG_DECLARE_ENUM(loop_type_t,
123          loop_type_normal        = 0x00000000,  ///< Loop forward (normal)          loop_type_normal        = 0x00000000,  ///< Loop forward (normal)
124          loop_type_bidirectional = 0x00000001,  ///< Alternating loop (forward/backward, also known as Ping Pong)          loop_type_bidirectional = 0x00000001,  ///< Alternating loop (forward/backward, also known as Ping Pong)
125          loop_type_backward      = 0x00000002   ///< Loop backward (reverse)          loop_type_backward      = 0x00000002   ///< Loop backward (reverse)
126      } loop_type_t;      );
127    
128      /** Society of Motion Pictures and Television E time format. */      /** Society of Motion Pictures and Television E time format.
129      typedef enum {       *
130         * @see enumCount(), enumKey(), enumKeys(), enumValue()
131         */
132        GIG_DECLARE_ENUM(smpte_format_t,
133          smpte_format_no_offset          = 0x00000000,  ///< no SMPTE offset          smpte_format_no_offset          = 0x00000000,  ///< no SMPTE offset
134          smpte_format_24_frames          = 0x00000018,  ///< 24 frames per second          smpte_format_24_frames          = 0x00000018,  ///< 24 frames per second
135          smpte_format_25_frames          = 0x00000019,  ///< 25 frames per second          smpte_format_25_frames          = 0x00000019,  ///< 25 frames per second
136          smpte_format_30_frames_dropping = 0x0000001D,  ///< 30 frames per second with frame dropping (30 drop)          smpte_format_30_frames_dropping = 0x0000001D,  ///< 30 frames per second with frame dropping (30 drop)
137          smpte_format_30_frames          = 0x0000001E   ///< 30 frames per second          smpte_format_30_frames          = 0x0000001E   ///< 30 frames per second
138      } smpte_format_t;      );
139    
140      /** Defines the shape of a function graph. */      /** Defines the shape of a function graph.
141      typedef enum {       *
142         * @see enumCount(), enumKey(), enumKeys(), enumValue()
143         */
144        GIG_DECLARE_ENUM(curve_type_t,
145          curve_type_nonlinear = 0,          curve_type_nonlinear = 0,
146          curve_type_linear    = 1,          curve_type_linear    = 1,
147          curve_type_special   = 2,          curve_type_special   = 2,
148          curve_type_unknown   = 0xffffffff          curve_type_unknown   = 0xffffffff
149      } curve_type_t;      );
150    
151      /** Dimensions allow to bypass one of the following controllers. */      /** Dimensions allow to bypass one of the following controllers.
152      typedef enum {       *
153         * @see enumCount(), enumKey(), enumKeys(), enumValue()
154         */
155        GIG_DECLARE_ENUM(dim_bypass_ctrl_t,
156          dim_bypass_ctrl_none,          dim_bypass_ctrl_none,
157          dim_bypass_ctrl_94,   ///< Effect 4 Depth (MIDI Controller 94)          dim_bypass_ctrl_94,   ///< Effect 4 Depth (MIDI Controller 94)
158          dim_bypass_ctrl_95    ///< Effect 5 Depth (MIDI Controller 95)          dim_bypass_ctrl_95    ///< Effect 5 Depth (MIDI Controller 95)
159      } dim_bypass_ctrl_t;      );
160    
161      /** Defines how LFO3 is controlled by. */      /** Defines how LFO3 is controlled by.
162      typedef enum {       *
163         * @see enumCount(), enumKey(), enumKeys(), enumValue()
164         */
165        GIG_DECLARE_ENUM(lfo3_ctrl_t,
166          lfo3_ctrl_internal            = 0x00, ///< Only internally controlled.          lfo3_ctrl_internal            = 0x00, ///< Only internally controlled.
167          lfo3_ctrl_modwheel            = 0x01, ///< Only controlled by external modulation wheel.          lfo3_ctrl_modwheel            = 0x01, ///< Only controlled by external modulation wheel.
168          lfo3_ctrl_aftertouch          = 0x02, ///< Only controlled by aftertouch controller.          lfo3_ctrl_aftertouch          = 0x02, ///< Only controlled by aftertouch controller.
169          lfo3_ctrl_internal_modwheel   = 0x03, ///< Controlled internally and by external modulation wheel.          lfo3_ctrl_internal_modwheel   = 0x03, ///< Controlled internally and by external modulation wheel.
170          lfo3_ctrl_internal_aftertouch = 0x04  ///< Controlled internally and by aftertouch controller.          lfo3_ctrl_internal_aftertouch = 0x04  ///< Controlled internally and by aftertouch controller.
171      } lfo3_ctrl_t;      );
172    
173      /** Defines how LFO2 is controlled by. */      /** Defines how LFO2 is controlled by.
174      typedef enum {       *
175         * @see enumCount(), enumKey(), enumKeys(), enumValue()
176         */
177        GIG_DECLARE_ENUM(lfo2_ctrl_t,
178          lfo2_ctrl_internal            = 0x00, ///< Only internally controlled.          lfo2_ctrl_internal            = 0x00, ///< Only internally controlled.
179          lfo2_ctrl_modwheel            = 0x01, ///< Only controlled by external modulation wheel.          lfo2_ctrl_modwheel            = 0x01, ///< Only controlled by external modulation wheel.
180          lfo2_ctrl_foot                = 0x02, ///< Only controlled by external foot controller.          lfo2_ctrl_foot                = 0x02, ///< Only controlled by external foot controller.
181          lfo2_ctrl_internal_modwheel   = 0x03, ///< Controlled internally and by external modulation wheel.          lfo2_ctrl_internal_modwheel   = 0x03, ///< Controlled internally and by external modulation wheel.
182          lfo2_ctrl_internal_foot       = 0x04  ///< Controlled internally and by external foot controller.          lfo2_ctrl_internal_foot       = 0x04  ///< Controlled internally and by external foot controller.
183      } lfo2_ctrl_t;      );
184    
185      /** Defines how LFO1 is controlled by. */      /** Defines how LFO1 is controlled by.
186      typedef enum {       *
187         * @see enumCount(), enumKey(), enumKeys(), enumValue()
188         */
189        GIG_DECLARE_ENUM(lfo1_ctrl_t,
190          lfo1_ctrl_internal            = 0x00, ///< Only internally controlled.          lfo1_ctrl_internal            = 0x00, ///< Only internally controlled.
191          lfo1_ctrl_modwheel            = 0x01, ///< Only controlled by external modulation wheel.          lfo1_ctrl_modwheel            = 0x01, ///< Only controlled by external modulation wheel.
192          lfo1_ctrl_breath              = 0x02, ///< Only controlled by external breath controller.          lfo1_ctrl_breath              = 0x02, ///< Only controlled by external breath controller.
193          lfo1_ctrl_internal_modwheel   = 0x03, ///< Controlled internally and by external modulation wheel.          lfo1_ctrl_internal_modwheel   = 0x03, ///< Controlled internally and by external modulation wheel.
194          lfo1_ctrl_internal_breath     = 0x04  ///< Controlled internally and by external breath controller.          lfo1_ctrl_internal_breath     = 0x04  ///< Controlled internally and by external breath controller.
195      } lfo1_ctrl_t;      );
196    
197      /** Defines how the filter cutoff frequency is controlled by. */      /** Defines how the filter cutoff frequency is controlled by.
198      typedef enum {       *
199         * @see enumCount(), enumKey(), enumKeys(), enumValue()
200         */
201        GIG_DECLARE_ENUM(vcf_cutoff_ctrl_t,
202          vcf_cutoff_ctrl_none         = 0x00,          vcf_cutoff_ctrl_none         = 0x00,
203            vcf_cutoff_ctrl_none2        = 0x01,  ///< The difference between none and none2 is unknown
204          vcf_cutoff_ctrl_modwheel     = 0x81,  ///< Modulation Wheel (MIDI Controller 1)          vcf_cutoff_ctrl_modwheel     = 0x81,  ///< Modulation Wheel (MIDI Controller 1)
205          vcf_cutoff_ctrl_effect1      = 0x8c,  ///< Effect Controller 1 (Coarse, MIDI Controller 12)          vcf_cutoff_ctrl_effect1      = 0x8c,  ///< Effect Controller 1 (Coarse, MIDI Controller 12)
206          vcf_cutoff_ctrl_effect2      = 0x8d,  ///< Effect Controller 2 (Coarse, MIDI Controller 13)          vcf_cutoff_ctrl_effect2      = 0x8d,  ///< Effect Controller 2 (Coarse, MIDI Controller 13)
# Line 153  namespace gig { Line 211  namespace gig {
211          vcf_cutoff_ctrl_genpurpose7  = 0xd2,  ///< General Purpose Controller 7 (Button, MIDI Controller 82)          vcf_cutoff_ctrl_genpurpose7  = 0xd2,  ///< General Purpose Controller 7 (Button, MIDI Controller 82)
212          vcf_cutoff_ctrl_genpurpose8  = 0xd3,  ///< General Purpose Controller 8 (Button, MIDI Controller 83)          vcf_cutoff_ctrl_genpurpose8  = 0xd3,  ///< General Purpose Controller 8 (Button, MIDI Controller 83)
213          vcf_cutoff_ctrl_aftertouch   = 0x80   ///< Key Pressure          vcf_cutoff_ctrl_aftertouch   = 0x80   ///< Key Pressure
214      } vcf_cutoff_ctrl_t;      );
215    
216      /** Defines how the filter resonance is controlled by. */      /** Defines how the filter resonance is controlled by.
217      typedef enum {       *
218         * @see enumCount(), enumKey(), enumKeys(), enumValue()
219         */
220        GIG_DECLARE_ENUM(vcf_res_ctrl_t,
221          vcf_res_ctrl_none        = 0xffffffff,          vcf_res_ctrl_none        = 0xffffffff,
222          vcf_res_ctrl_genpurpose3 = 0,           ///< General Purpose Controller 3 (Slider, MIDI Controller 18)          vcf_res_ctrl_genpurpose3 = 0,           ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
223          vcf_res_ctrl_genpurpose4 = 1,           ///< General Purpose Controller 4 (Slider, MIDI Controller 19)          vcf_res_ctrl_genpurpose4 = 1,           ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
224          vcf_res_ctrl_genpurpose5 = 2,           ///< General Purpose Controller 5 (Button, MIDI Controller 80)          vcf_res_ctrl_genpurpose5 = 2,           ///< General Purpose Controller 5 (Button, MIDI Controller 80)
225          vcf_res_ctrl_genpurpose6 = 3            ///< General Purpose Controller 6 (Button, MIDI Controller 81)          vcf_res_ctrl_genpurpose6 = 3            ///< General Purpose Controller 6 (Button, MIDI Controller 81)
226      } vcf_res_ctrl_t;      );
227    
228      /**      /**
229       * Defines a controller that has a certain contrained influence on a       * Defines a controller that has a certain contrained influence on a
# Line 173  namespace gig { Line 234  namespace gig {
234       * attenuation_ctrl_t, eg1_ctrl_t or eg2_ctrl_t) in your code!       * attenuation_ctrl_t, eg1_ctrl_t or eg2_ctrl_t) in your code!
235       */       */
236      struct leverage_ctrl_t {      struct leverage_ctrl_t {
237          typedef enum {          /** Defines possible controllers.
238             *
239             * @see enumCount(), enumKey(), enumKeys(), enumValue()
240             */
241            GIG_DECLARE_ENUM(type_t,
242              type_none              = 0x00, ///< No controller defined              type_none              = 0x00, ///< No controller defined
243              type_channelaftertouch = 0x2f, ///< Channel Key Pressure              type_channelaftertouch = 0x2f, ///< Channel Key Pressure
244              type_velocity          = 0xff, ///< Key Velocity              type_velocity          = 0xff, ///< Key Velocity
245              type_controlchange     = 0xfe  ///< Ordinary MIDI control change controller, see field 'controller_number'              type_controlchange     = 0xfe  ///< Ordinary MIDI control change controller, see field 'controller_number'
246          } type_t;          );
247    
248          type_t type;              ///< Controller type          type_t type;              ///< Controller type
249          uint   controller_number; ///< MIDI controller number if this controller is a control change controller, 0 otherwise          uint   controller_number; ///< MIDI controller number if this controller is a control change controller, 0 otherwise
250    
251            void serialize(Serialization::Archive* archive);
252      };      };
253    
254      /**      /**
# Line 211  namespace gig { Line 278  namespace gig {
278       * dimension zones is always a power of two. All dimensions can have up       * dimension zones is always a power of two. All dimensions can have up
279       * to 32 zones (except the layer dimension with only up to 8 zones and       * to 32 zones (except the layer dimension with only up to 8 zones and
280       * the samplechannel dimension which currently allows only 2 zones).       * the samplechannel dimension which currently allows only 2 zones).
281         *
282         * @see enumCount(), enumKey(), enumKeys(), enumValue()
283       */       */
284      typedef enum {      GIG_DECLARE_ENUM(dimension_t,
285          dimension_none              = 0x00, ///< Dimension not in use.          dimension_none              = 0x00, ///< Dimension not in use.
286          dimension_samplechannel     = 0x80, ///< If used sample has more than one channel (thus is not mono).          dimension_samplechannel     = 0x80, ///< If used sample has more than one channel (thus is not mono).
287          dimension_layer             = 0x81, ///< For layering of up to 8 instruments (and eventually crossfading of 2 or 4 layers).          dimension_layer             = 0x81, ///< For layering of up to 8 instruments (and eventually crossfading of 2 or 4 layers).
288          dimension_velocity          = 0x82, ///< Key Velocity (this is the only dimension where the ranges can exactly be defined).          dimension_velocity          = 0x82, ///< Key Velocity (this is the only dimension in gig2 where the ranges can exactly be defined).
289          dimension_channelaftertouch = 0x83, ///< Channel Key Pressure          dimension_channelaftertouch = 0x83, ///< Channel Key Pressure
290          dimension_releasetrigger    = 0x84, ///< Special dimension for triggering samples on releasing a key.          dimension_releasetrigger    = 0x84, ///< Special dimension for triggering samples on releasing a key.
291          dimension_keyboard          = 0x85, ///< Dimension for keyswitching          dimension_keyboard          = 0x85, ///< Dimension for keyswitching
292            dimension_roundrobin        = 0x86, ///< Different samples triggered each time a note is played, dimension regions selected in sequence
293            dimension_random            = 0x87, ///< Different samples triggered each time a note is played, random order
294            dimension_smartmidi         = 0x88, ///< For MIDI tools like legato and repetition mode
295            dimension_roundrobinkeyboard = 0x89, ///< Different samples triggered each time a note is played, any key advances the counter
296          dimension_modwheel          = 0x01, ///< Modulation Wheel (MIDI Controller 1)          dimension_modwheel          = 0x01, ///< Modulation Wheel (MIDI Controller 1)
297          dimension_breath            = 0x02, ///< Breath Controller (Coarse, MIDI Controller 2)          dimension_breath            = 0x02, ///< Breath Controller (Coarse, MIDI Controller 2)
298          dimension_foot              = 0x04, ///< Foot Pedal (Coarse, MIDI Controller 4)          dimension_foot              = 0x04, ///< Foot Pedal (Coarse, MIDI Controller 4)
# Line 243  namespace gig { Line 316  namespace gig {
316          dimension_effect3depth      = 0x5d, ///< Effect 3 Depth (MIDI Controller 93)          dimension_effect3depth      = 0x5d, ///< Effect 3 Depth (MIDI Controller 93)
317          dimension_effect4depth      = 0x5e, ///< Effect 4 Depth (MIDI Controller 94)          dimension_effect4depth      = 0x5e, ///< Effect 4 Depth (MIDI Controller 94)
318          dimension_effect5depth      = 0x5f  ///< Effect 5 Depth (MIDI Controller 95)          dimension_effect5depth      = 0x5f  ///< Effect 5 Depth (MIDI Controller 95)
319      } dimension_t;      );
320    
321      /**      /**
322       * Intended for internal usage: will be used to convert a dimension value       * Intended for internal usage: will be used to convert a dimension value
323       * into the corresponding dimension bit number.       * into the corresponding dimension bit number.
324         *
325         * @see enumCount(), enumKey(), enumKeys(), enumValue()
326       */       */
327      typedef enum {      GIG_DECLARE_ENUM(split_type_t,
328          split_type_normal,         ///< dimension value between 0-127, no custom range of zones          split_type_normal,         ///< dimension value between 0-127
         split_type_customvelocity, ///< a velocity dimension split with custom range definition for each zone (if a velocity dimension split has no custom defined zone ranges then it's also just of type split_type_normal)  
329          split_type_bit             ///< dimension values are already the sought bit number          split_type_bit             ///< dimension values are already the sought bit number
330      } split_type_t;      );
331    
332      /** General dimension definition. */      /** General dimension definition. */
333      struct dimension_def_t {      struct dimension_def_t {
# Line 261  namespace gig { Line 335  namespace gig {
335          uint8_t      bits;       ///< Number of "bits" (1 bit = 2 splits/zones, 2 bit = 4 splits/zones, 3 bit = 8 splits/zones,...).          uint8_t      bits;       ///< Number of "bits" (1 bit = 2 splits/zones, 2 bit = 4 splits/zones, 3 bit = 8 splits/zones,...).
336          uint8_t      zones;      ///< Number of zones the dimension has.          uint8_t      zones;      ///< Number of zones the dimension has.
337          split_type_t split_type; ///< Intended for internal usage: will be used to convert a dimension value into the corresponding dimension bit number.          split_type_t split_type; ///< Intended for internal usage: will be used to convert a dimension value into the corresponding dimension bit number.
338          range_t*     ranges;     ///< Intended for internal usage: Points to the beginning of a range_t array which reflects the value ranges of each dimension zone (only if custom defined ranges are defined, is NULL otherwise).          float        zone_size;  ///< Intended for internal usage: reflects the size of each zone (128/zones) for normal split types only, 0 otherwise.
         unsigned int zone_size;  ///< Intended for internal usage: reflects the size of each zone (128/zones) for normal split types only, 0 otherwise.  
339      };      };
340    
341      /** Defines which frequencies are filtered by the VCF. */      /** Defines which frequencies are filtered by the VCF.
342      typedef enum {       *
343         * @see enumCount(), enumKey(), enumKeys(), enumValue()
344         */
345        GIG_DECLARE_ENUM(vcf_type_t,
346          vcf_type_lowpass      = 0x00,          vcf_type_lowpass      = 0x00,
347          vcf_type_lowpassturbo = 0xff, ///< More poles than normal lowpass          vcf_type_lowpassturbo = 0xff, ///< More poles than normal lowpass
348          vcf_type_bandpass     = 0x01,          vcf_type_bandpass     = 0x01,
349          vcf_type_highpass     = 0x02,          vcf_type_highpass     = 0x02,
350          vcf_type_bandreject   = 0x03          vcf_type_bandreject   = 0x03
351      } vcf_type_t;      );
352    
353      /**      /**
354       * Defines the envelope of a crossfade.       * Defines the envelope of a crossfade.
# Line 293  namespace gig { Line 369  namespace gig {
369          uint8_t out_start;  ///< Start position of fade out.          uint8_t out_start;  ///< Start position of fade out.
370          uint8_t out_end;    ///< End postition of fade out.          uint8_t out_end;    ///< End postition of fade out.
371          #endif // WORDS_BIGENDIAN          #endif // WORDS_BIGENDIAN
372    
373            void serialize(Serialization::Archive* archive);
374      };      };
375    
376      /** Reflects the current playback state for a sample. */      /** Reflects the current playback state for a sample. */
377      struct playback_state_t {      struct playback_state_t {
378          unsigned long position;          ///< Current position within the sample.          file_offset_t position;          ///< Current position within the sample.
379          bool          reverse;           ///< If playback direction is currently backwards (in case there is a pingpong or reverse loop defined).          bool          reverse;           ///< If playback direction is currently backwards (in case there is a pingpong or reverse loop defined).
380          unsigned long loop_cycles_left;  ///< How many times the loop has still to be passed, this value will be decremented with each loop cycle.          file_offset_t loop_cycles_left;  ///< How many times the loop has still to be passed, this value will be decremented with each loop cycle.
381        };
382    
383        /**
384         * Defines behavior options for envelope generators (gig format extension).
385         *
386         * These options allow to override the precise default behavior of the
387         * envelope generators' state machines.
388         *
389         * @b Note: These EG options are an extension to the original gig file
390         * format, so these options are not available with the original
391         * Gigasampler/GigaStudio software! Currently only LinuxSampler and gigedit
392         * support these EG options!
393         *
394         * Adding these options to the original gig file format was necessary,
395         * because the precise state machine behavior of envelope generators of the
396         * gig format (and thus the default EG behavior if not explicitly overridden
397         * here) deviates from common, expected behavior of envelope generators in
398         * general, if i.e. compared with EGs of hardware synthesizers. For example
399         * with the gig format, the attack and decay stages will be aborted as soon
400         * as a note-off is received. Most other EG implementations in the industry
401         * however always run the attack and decay stages to their full duration,
402         * even if an early note-off arrives. The latter behavior is intentionally
403         * implemented in most other products, because it is required to resemble
404         * percussive sounds in a realistic manner.
405         */
406        struct eg_opt_t {
407            bool AttackCancel;     ///< Whether the "attack" stage is cancelled when receiving a note-off (default: @c true).
408            bool AttackHoldCancel; ///< Whether the "attack hold" stage is cancelled when receiving a note-off (default: @c true).
409            bool Decay1Cancel;     ///< Whether the "decay 1" stage is cancelled when receiving a note-off (default: @c true).
410            bool Decay2Cancel;     ///< Whether the "decay 2" stage is cancelled when receiving a note-off (default: @c true).
411            bool ReleaseCancel;    ///< Whether the "release" stage is cancelled when receiving a note-on (default: @c true).
412    
413            eg_opt_t();
414            void serialize(Serialization::Archive* archive);
415      };      };
416    
417      // just symbol prototyping      // just symbol prototyping
# Line 307  namespace gig { Line 419  namespace gig {
419      class Instrument;      class Instrument;
420      class Sample;      class Sample;
421      class Region;      class Region;
422        class Group;
423        class Script;
424        class ScriptGroup;
425    
426      /** Encapsulates articulation information of a dimension region.      /** @brief Encapsulates articulation informations of a dimension region.
427         *
428         * This is the most important data object of the Gigasampler / GigaStudio
429         * format. A DimensionRegion provides the link to the sample to be played
430         * and all required articulation informations to be interpreted for playing
431         * back the sample and processing it appropriately by the sampler software.
432         * Every Region of a Gigasampler Instrument has at least one dimension
433         * region (exactly then when the Region has no dimension defined). Many
434         * Regions though provide more than one DimensionRegion, which reflect
435         * different playing "cases". For example a different sample might be played
436         * if a certain pedal is pressed down, or if the note was triggered with
437         * different velocity.
438       *       *
439       *  Every Gigasampler Instrument has at least one dimension region       * One instance of a DimensionRegion reflects exactly one particular case
440       *  (exactly then when it has no dimension defined).       * while playing an instrument (for instance "note between C3 and E3 was
441         * triggered AND note on velocity was between 20 and 42 AND modulation wheel
442         * controller is between 80 and 127). The DimensionRegion defines what to do
443         * under that one particular case, that is which sample to play back and how
444         * to play that sample back exactly and how to process it. So a
445         * DimensionRegion object is always linked to exactly one sample. It may
446         * however also link to no sample at all, for defining a "silence" case
447         * where nothing shall be played (for example when note on velocity was
448         * below 6).
449       *       *
450       *  Gigasampler provides three Envelope Generators and Low Frequency       * Note that a DimensionRegion object only defines "what to do", but it does
451       *  Oscillators:       * not define "when to do it". To actually resolve which DimensionRegion to
452         * pick under which situation, you need to refer to the DimensionRegions'
453         * parent Region object. The Region object contains the necessary
454         * "Dimension" definitions, which in turn define which DimensionRegion is
455         * associated with which playing case exactly.
456         *
457         * The Gigasampler/GigaStudio format defines 3 Envelope Generators and 3
458         * Low Frequency Oscillators:
459       *       *
460       *  - EG1 and LFO1, both controlling sample amplitude       *  - EG1 and LFO1, both controlling sample amplitude
461       *  - EG2 and LFO2, both controlling filter cutoff frequency       *  - EG2 and LFO2, both controlling filter cutoff frequency
462       *  - EG3 and LFO3, both controlling sample pitch       *  - EG3 and LFO3, both controlling sample pitch
463         *
464         * Since the gig format was designed as extension to the DLS file format,
465         * this class is derived from the DLS::Sampler class. So also refer to
466         * DLS::Sampler for additional informations, class attributes and methods.
467       */       */
468      class DimensionRegion : protected DLS::Sampler {      class DimensionRegion : protected DLS::Sampler {
469          public:          public:
470              uint8_t            VelocityUpperLimit;            ///< Defines the upper velocity value limit of a velocity split (only if an user defined limit was set, thus a value not equal to 128/NumberOfSplits, else this value is 0).              uint8_t            VelocityUpperLimit;            ///< Defines the upper velocity value limit of a velocity split (only if an user defined limit was set, thus a value not equal to 128/NumberOfSplits, else this value is 0). Only for gig2, for gig3 and above the DimensionUpperLimits are used instead.
471              Sample*            pSample;                       ///< Points to the Sample which is assigned to the dimension region.              Sample*            pSample;                       ///< Points to the Sample which is assigned to the dimension region.
472              // Sample Amplitude EG/LFO              // Sample Amplitude EG/LFO
473              uint16_t           EG1PreAttack;                  ///< Preattack value of the sample amplitude EG (0 - 1000 permille).              uint16_t           EG1PreAttack;                  ///< Preattack value of the sample amplitude EG (0 - 1000 permille).
# Line 374  namespace gig { Line 519  namespace gig {
519              // Filter              // Filter
520              bool               VCFEnabled;                    ///< If filter should be used.              bool               VCFEnabled;                    ///< If filter should be used.
521              vcf_type_t         VCFType;                       ///< Defines the general filter characteristic (lowpass, highpass, bandpass, etc.).              vcf_type_t         VCFType;                       ///< Defines the general filter characteristic (lowpass, highpass, bandpass, etc.).
522              vcf_cutoff_ctrl_t  VCFCutoffController;           ///< Specifies which external controller has influence on the filter cutoff frequency.              vcf_cutoff_ctrl_t  VCFCutoffController;           ///< Specifies which external controller has influence on the filter cutoff frequency. @deprecated Don't alter directly, use SetVCFCutoffController() instead!
523                bool               VCFCutoffControllerInvert;     ///< Inverts values coming from the defined cutoff controller
524              uint8_t            VCFCutoff;                     ///< Max. cutoff frequency.              uint8_t            VCFCutoff;                     ///< Max. cutoff frequency.
525              curve_type_t       VCFVelocityCurve;              ///< Defines a transformation curve for the incoming velocity values, affecting the VCF.              curve_type_t       VCFVelocityCurve;              ///< Defines a transformation curve for the incoming velocity values, affecting the VCF. @deprecated Don't alter directly, use SetVCFVelocityCurve() instead!
526              uint8_t            VCFVelocityScale;              ///< (0-127) Amount velocity controls VCF cutoff frequency (only if no other VCF cutoff controller is defined).              uint8_t            VCFVelocityScale;              ///< (0-127) Amount velocity controls VCF cutoff frequency (only if no other VCF cutoff controller is defined, otherwise this is the minimum cutoff). @deprecated Don't alter directly, use SetVCFVelocityScale() instead!
527              uint8_t            VCFVelocityDynamicRange;       ///< 0x04 = lowest, 0x00 = highest              uint8_t            VCFVelocityDynamicRange;       ///< 0x04 = lowest, 0x00 = highest . @deprecated Don't alter directly, use SetVCFVelocityDynamicRange() instead!
528              uint8_t            VCFResonance;                  ///< Firm internal filter resonance weight.              uint8_t            VCFResonance;                  ///< Firm internal filter resonance weight.
529              bool               VCFResonanceDynamic;           ///< If <i>true</i>: Increases the resonance Q according to changes of controllers that actually control the VCF cutoff frequency (EG2, ext. VCF MIDI controller).              bool               VCFResonanceDynamic;           ///< If <i>true</i>: Increases the resonance Q according to changes of controllers that actually control the VCF cutoff frequency (EG2, ext. VCF MIDI controller).
530              vcf_res_ctrl_t     VCFResonanceController;        ///< Specifies which external controller has influence on the filter resonance Q.              vcf_res_ctrl_t     VCFResonanceController;        ///< Specifies which external controller has influence on the filter resonance Q.
531              bool               VCFKeyboardTracking;           ///< If <i>true</i>: VCF cutoff frequence will be dependend to the note key position relative to the defined breakpoint value.              bool               VCFKeyboardTracking;           ///< If <i>true</i>: VCF cutoff frequence will be dependend to the note key position relative to the defined breakpoint value.
532              uint8_t            VCFKeyboardTrackingBreakpoint; ///< See VCFKeyboardTracking (0 - 127).              uint8_t            VCFKeyboardTrackingBreakpoint; ///< See VCFKeyboardTracking (0 - 127).
533              // Key Velocity Transformations              // Key Velocity Transformations
534              curve_type_t       VelocityResponseCurve;         ///< Defines a transformation curve to the incoming velocity values affecting amplitude (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead).              curve_type_t       VelocityResponseCurve;         ///< Defines a transformation curve to the incoming velocity values affecting amplitude (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseCurve() instead!
535              uint8_t            VelocityResponseDepth;         ///< Dynamic range of velocity affecting amplitude (0 - 4) (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead).              uint8_t            VelocityResponseDepth;         ///< Dynamic range of velocity affecting amplitude (0 - 4) (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseDepth() instead!
536              uint8_t            VelocityResponseCurveScaling;  ///< 0 - 127 (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead)              uint8_t            VelocityResponseCurveScaling;  ///< 0 - 127 (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseCurveScaling() instead!
537              curve_type_t       ReleaseVelocityResponseCurve;  ///< Defines a transformation curve to the incoming release veloctiy values affecting envelope times.              curve_type_t       ReleaseVelocityResponseCurve;  ///< Defines a transformation curve to the incoming release veloctiy values affecting envelope times. @deprecated Don't alter directly, use SetReleaseVelocityResponseCurve() instead!
538              uint8_t            ReleaseVelocityResponseDepth;  ///< Dynamic range of release velocity affecting envelope time (0 - 4).              uint8_t            ReleaseVelocityResponseDepth;  ///< Dynamic range of release velocity affecting envelope time (0 - 4). @deprecated Don't alter directly, use SetReleaseVelocityResponseDepth() instead!
539              uint8_t            ReleaseTriggerDecay;           ///< 0 - 8              uint8_t            ReleaseTriggerDecay;           ///< 0 - 8
540              // Mix / Layer              // Mix / Layer
541              crossfade_t        Crossfade;              crossfade_t        Crossfade;
# Line 404  namespace gig { Line 550  namespace gig {
550              bool               SustainDefeat;                 ///< If <i>true</i>: Sustain pedal will not hold a note.              bool               SustainDefeat;                 ///< If <i>true</i>: Sustain pedal will not hold a note.
551              bool               MSDecode;                      ///< Gigastudio flag: defines if Mid Side Recordings should be decoded.              bool               MSDecode;                      ///< Gigastudio flag: defines if Mid Side Recordings should be decoded.
552              uint16_t           SampleStartOffset;             ///< Number of samples the sample start should be moved (0 - 2000).              uint16_t           SampleStartOffset;             ///< Number of samples the sample start should be moved (0 - 2000).
553                double             SampleAttenuation;             ///< Sample volume (calculated from DLS::Sampler::Gain)
554                uint8_t            DimensionUpperLimits[8];       ///< gig3: defines the upper limit of the dimension values for this dimension region. In case you wondered why this is defined on DimensionRegion level and not on Region level: the zone sizes (upper limits) of the velocity dimension can indeed differ in the individual dimension regions, depending on which zones of the other dimension types are currently selected. So this is exceptional for the velocity dimension only. All other dimension types have the same dimension zone sizes for every single DimensionRegion (of the sample Region).
555                eg_opt_t           EGOptions;                     ///< [gig extension]: Behavior options which should be used for all 3 envelope generators.
556    
557              // derived attributes from DLS::Sampler              // derived attributes from DLS::Sampler
558              DLS::Sampler::UnityNote;              using DLS::Sampler::UnityNote;
559              DLS::Sampler::FineTune;              using DLS::Sampler::FineTune;
560              DLS::Sampler::Gain;              using DLS::Sampler::Gain;
561              DLS::Sampler::SampleLoops;              using DLS::Sampler::SampleLoops;
562              DLS::Sampler::pSampleLoops;              using DLS::Sampler::pSampleLoops;
563    
564              // Methods              // own methods
565              double GetVelocityAttenuation(uint8_t MIDIKeyVelocity);              double GetVelocityAttenuation(uint8_t MIDIKeyVelocity);
566                double GetVelocityRelease(uint8_t MIDIKeyVelocity);
567                double GetVelocityCutoff(uint8_t MIDIKeyVelocity);
568                void SetVelocityResponseCurve(curve_type_t curve);
569                void SetVelocityResponseDepth(uint8_t depth);
570                void SetVelocityResponseCurveScaling(uint8_t scaling);
571                void SetReleaseVelocityResponseCurve(curve_type_t curve);
572                void SetReleaseVelocityResponseDepth(uint8_t depth);
573                void SetVCFCutoffController(vcf_cutoff_ctrl_t controller);
574                void SetVCFVelocityCurve(curve_type_t curve);
575                void SetVCFVelocityDynamicRange(uint8_t range);
576                void SetVCFVelocityScale(uint8_t scaling);
577                Region* GetParent() const;
578                // derived methods
579                using DLS::Sampler::AddSampleLoop;
580                using DLS::Sampler::DeleteSampleLoop;
581                // overridden methods
582                virtual void SetGain(int32_t gain);
583                virtual void UpdateChunks(progress_t* pProgress);
584                virtual void CopyAssign(const DimensionRegion* orig);
585          protected:          protected:
586              DimensionRegion(RIFF::List* _3ewl);              uint8_t* VelocityTable; ///< For velocity dimensions with custom defined zone ranges only: used for fast converting from velocity MIDI value to dimension bit number.
587                DimensionRegion(Region* pParent, RIFF::List* _3ewl);
588                DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src);
589             ~DimensionRegion();             ~DimensionRegion();
590                void CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples);
591                void serialize(Serialization::Archive* archive);
592              friend class Region;              friend class Region;
593                friend class Serialization::Archive;
594          private:          private:
595              typedef enum { ///< Used to decode attenuation, EG1 and EG2 controller              typedef enum { ///< Used to decode attenuation, EG1 and EG2 controller
596                    // official leverage controllers as they were defined in the original Gigasampler/GigaStudio format:
597                  _lev_ctrl_none              = 0x00,                  _lev_ctrl_none              = 0x00,
598                  _lev_ctrl_modwheel          = 0x03, ///< Modulation Wheel (MIDI Controller 1)                  _lev_ctrl_modwheel          = 0x03, ///< Modulation Wheel (MIDI Controller 1)
599                  _lev_ctrl_breath            = 0x05, ///< Breath Controller (Coarse, MIDI Controller 2)                  _lev_ctrl_breath            = 0x05, ///< Breath Controller (Coarse, MIDI Controller 2)
# Line 444  namespace gig { Line 619  namespace gig {
619                  _lev_ctrl_effect4depth      = 0x2b, ///< Effect 4 Depth (MIDI Controller 94)                  _lev_ctrl_effect4depth      = 0x2b, ///< Effect 4 Depth (MIDI Controller 94)
620                  _lev_ctrl_effect5depth      = 0x2d, ///< Effect 5 Depth (MIDI Controller 95)                  _lev_ctrl_effect5depth      = 0x2d, ///< Effect 5 Depth (MIDI Controller 95)
621                  _lev_ctrl_channelaftertouch = 0x2f, ///< Channel Key Pressure                  _lev_ctrl_channelaftertouch = 0x2f, ///< Channel Key Pressure
622                  _lev_ctrl_velocity          = 0xff  ///< Key Velocity                  _lev_ctrl_velocity          = 0xff, ///< Key Velocity
623    
624                    // format extension (these controllers are so far only supported by LinuxSampler & gigedit) they will *NOT* work with Gigasampler/GigaStudio !
625                    // (the assigned values here are their official MIDI CC number plus the highest bit set):
626                    _lev_ctrl_CC3_EXT           = 0x83, ///< MIDI Controller 3 [gig format extension]
627    
628                    _lev_ctrl_CC6_EXT           = 0x86, ///< Data Entry MSB (MIDI Controller 6) [gig format extension]
629                    _lev_ctrl_CC7_EXT           = 0x87, ///< Channel Volume (MIDI Controller 7) [gig format extension]
630                    _lev_ctrl_CC8_EXT           = 0x88, ///< Balance (MIDI Controller 8) [gig format extension]
631                    _lev_ctrl_CC9_EXT           = 0x89, ///< MIDI Controller 9 [gig format extension]
632                    _lev_ctrl_CC10_EXT          = 0x8a, ///< Pan (MIDI Controller 10) [gig format extension]
633                    _lev_ctrl_CC11_EXT          = 0x8b, ///< Expression Controller (MIDI Controller 11) [gig format extension]
634    
635                    _lev_ctrl_CC14_EXT          = 0x8e, ///< MIDI Controller 14 [gig format extension]
636                    _lev_ctrl_CC15_EXT          = 0x8f, ///< MIDI Controller 15 [gig format extension]
637    
638                    _lev_ctrl_CC20_EXT          = 0x94, ///< MIDI Controller 20 [gig format extension]
639                    _lev_ctrl_CC21_EXT          = 0x95, ///< MIDI Controller 21 [gig format extension]
640                    _lev_ctrl_CC22_EXT          = 0x96, ///< MIDI Controller 22 [gig format extension]
641                    _lev_ctrl_CC23_EXT          = 0x97, ///< MIDI Controller 23 [gig format extension]
642                    _lev_ctrl_CC24_EXT          = 0x98, ///< MIDI Controller 24 [gig format extension]
643                    _lev_ctrl_CC25_EXT          = 0x99, ///< MIDI Controller 25 [gig format extension]
644                    _lev_ctrl_CC26_EXT          = 0x9a, ///< MIDI Controller 26 [gig format extension]
645                    _lev_ctrl_CC27_EXT          = 0x9b, ///< MIDI Controller 27 [gig format extension]
646                    _lev_ctrl_CC28_EXT          = 0x9c, ///< MIDI Controller 28 [gig format extension]
647                    _lev_ctrl_CC29_EXT          = 0x9d, ///< MIDI Controller 29 [gig format extension]
648                    _lev_ctrl_CC30_EXT          = 0x9e, ///< MIDI Controller 30 [gig format extension]
649                    _lev_ctrl_CC31_EXT          = 0x9f, ///< MIDI Controller 31 [gig format extension]
650    
651                    _lev_ctrl_CC68_EXT          = 0xc4, ///< Legato Footswitch (MIDI Controller 68) [gig format extension]
652                    _lev_ctrl_CC69_EXT          = 0xc5, ///< Hold 2 (MIDI Controller 69) [gig format extension]
653                    _lev_ctrl_CC70_EXT          = 0xc6, ///< Sound Ctrl. 1 - Sound Variation (MIDI Controller 70) [gig format extension]
654                    _lev_ctrl_CC71_EXT          = 0xc7, ///< Sound Ctrl. 2 - Timbre (MIDI Controller 71) [gig format extension]
655                    _lev_ctrl_CC72_EXT          = 0xc8, ///< Sound Ctrl. 3 - Release Time (MIDI Controller 72) [gig format extension]
656                    _lev_ctrl_CC73_EXT          = 0xc9, ///< Sound Ctrl. 4 - Attack Time (MIDI Controller 73) [gig format extension]
657                    _lev_ctrl_CC74_EXT          = 0xca, ///< Sound Ctrl. 5 - Brightness (MIDI Controller 74) [gig format extension]
658                    _lev_ctrl_CC75_EXT          = 0xcb, ///< Sound Ctrl. 6 - Decay Time (MIDI Controller 75) [gig format extension]
659                    _lev_ctrl_CC76_EXT          = 0xcc, ///< Sound Ctrl. 7 - Vibrato Rate (MIDI Controller 76) [gig format extension]
660                    _lev_ctrl_CC77_EXT          = 0xcd, ///< Sound Ctrl. 8 - Vibrato Depth (MIDI Controller 77) [gig format extension]
661                    _lev_ctrl_CC78_EXT          = 0xce, ///< Sound Ctrl. 9 - Vibrato Delay (MIDI Controller 78) [gig format extension]
662                    _lev_ctrl_CC79_EXT          = 0xcf, ///< Sound Ctrl. 10 (MIDI Controller 79) [gig format extension]
663    
664                    _lev_ctrl_CC84_EXT          = 0xd4, ///< Portamento Control (MIDI Controller 84) [gig format extension]
665                    _lev_ctrl_CC85_EXT          = 0xd5, ///< MIDI Controller 85 [gig format extension]
666                    _lev_ctrl_CC86_EXT          = 0xd6, ///< MIDI Controller 86 [gig format extension]
667                    _lev_ctrl_CC87_EXT          = 0xd7, ///< MIDI Controller 87 [gig format extension]
668    
669                    _lev_ctrl_CC89_EXT          = 0xd9, ///< MIDI Controller 89 [gig format extension]
670                    _lev_ctrl_CC90_EXT          = 0xda, ///< MIDI Controller 90 [gig format extension]
671    
672                    _lev_ctrl_CC96_EXT          = 0xe0, ///< Data Increment (MIDI Controller 96) [gig format extension]
673                    _lev_ctrl_CC97_EXT          = 0xe1, ///< Data Decrement (MIDI Controller 97) [gig format extension]
674    
675                    _lev_ctrl_CC102_EXT         = 0xe6, ///< MIDI Controller 102 [gig format extension]
676                    _lev_ctrl_CC103_EXT         = 0xe7, ///< MIDI Controller 103 [gig format extension]
677                    _lev_ctrl_CC104_EXT         = 0xe8, ///< MIDI Controller 104 [gig format extension]
678                    _lev_ctrl_CC105_EXT         = 0xe9, ///< MIDI Controller 105 [gig format extension]
679                    _lev_ctrl_CC106_EXT         = 0xea, ///< MIDI Controller 106 [gig format extension]
680                    _lev_ctrl_CC107_EXT         = 0xeb, ///< MIDI Controller 107 [gig format extension]
681                    _lev_ctrl_CC108_EXT         = 0xec, ///< MIDI Controller 108 [gig format extension]
682                    _lev_ctrl_CC109_EXT         = 0xed, ///< MIDI Controller 109 [gig format extension]
683                    _lev_ctrl_CC110_EXT         = 0xee, ///< MIDI Controller 110 [gig format extension]
684                    _lev_ctrl_CC111_EXT         = 0xef, ///< MIDI Controller 111 [gig format extension]
685                    _lev_ctrl_CC112_EXT         = 0xf0, ///< MIDI Controller 112 [gig format extension]
686                    _lev_ctrl_CC113_EXT         = 0xf1, ///< MIDI Controller 113 [gig format extension]
687                    _lev_ctrl_CC114_EXT         = 0xf2, ///< MIDI Controller 114 [gig format extension]
688                    _lev_ctrl_CC115_EXT         = 0xf3, ///< MIDI Controller 115 [gig format extension]
689                    _lev_ctrl_CC116_EXT         = 0xf4, ///< MIDI Controller 116 [gig format extension]
690                    _lev_ctrl_CC117_EXT         = 0xf5, ///< MIDI Controller 117 [gig format extension]
691                    _lev_ctrl_CC118_EXT         = 0xf6, ///< MIDI Controller 118 [gig format extension]
692                    _lev_ctrl_CC119_EXT         = 0xf7  ///< MIDI Controller 119 [gig format extension]
693              } _lev_ctrl_t;              } _lev_ctrl_t;
694              typedef std::map<uint32_t, double*> VelocityTableMap;              typedef std::map<uint32_t, double*> VelocityTableMap;
695    
696              static uint              Instances;                  ///< Number of DimensionRegion instances.              static size_t            Instances;                  ///< Number of DimensionRegion instances.
697              static VelocityTableMap* pVelocityTables;            ///< Contains the tables corresponding to the various velocity parameters (VelocityResponseCurve and VelocityResponseDepth).              static VelocityTableMap* pVelocityTables;            ///< Contains the tables corresponding to the various velocity parameters (VelocityResponseCurve and VelocityResponseDepth).
698              double*                  pVelocityAttenuationTable;  ///< Points to the velocity table corresponding to the velocity parameters of this DimensionRegion.              double*                  pVelocityAttenuationTable;  ///< Points to the velocity table corresponding to the velocity parameters of this DimensionRegion.
699                double*                  pVelocityReleaseTable;      ///< Points to the velocity table corresponding to the release velocity parameters of this DimensionRegion
700                double*                  pVelocityCutoffTable;       ///< Points to the velocity table corresponding to the filter velocity parameters of this DimensionRegion
701                Region*                  pRegion;
702    
703              leverage_ctrl_t DecodeLeverageController(_lev_ctrl_t EncodedController);              leverage_ctrl_t DecodeLeverageController(_lev_ctrl_t EncodedController);
704                _lev_ctrl_t     EncodeLeverageController(leverage_ctrl_t DecodedController);
705                double* GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth);
706                double* GetCutoffVelocityTable(curve_type_t vcfVelocityCurve, uint8_t vcfVelocityDynamicRange, uint8_t vcfVelocityScale, vcf_cutoff_ctrl_t vcfCutoffController);
707                double* GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);
708              double* CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);              double* CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);
709      };      };
710    
711      /** Encapsulates sample waves used for playback. */      /** @brief Encapsulates sample waves of Gigasampler/GigaStudio files used for playback.
712         *
713         * This class provides access to the actual audio sample data of a
714         * Gigasampler/GigaStudio file. Along to the actual sample data, it also
715         * provides access to the sample's meta informations like bit depth,
716         * sample rate, encoding type, but also loop informations. The latter may be
717         * used by instruments for resembling sounds with arbitary note lengths.
718         *
719         * In case you created a new sample with File::AddSample(), you should
720         * first update all attributes with the desired meta informations
721         * (amount of channels, bit depth, sample rate, etc.), then call
722         * Resize() with the desired sample size, followed by File::Save(), this
723         * will create the mandatory RIFF chunk which will hold the sample wave
724         * data and / or resize the file so you will be able to Write() the
725         * sample data directly to disk.
726         *
727         * @e Caution: for gig synthesis, most looping relevant information are
728         * retrieved from the respective DimensionRegon instead from the Sample
729         * itself. This was made for allowing different loop definitions for the
730         * same sample under different conditions.
731         *
732         * Since the gig format was designed as extension to the DLS file format,
733         * this class is derived from the DLS::Sample class. So also refer to
734         * DLS::Sample for additional informations, class attributes and methods.
735         */
736      class Sample : public DLS::Sample {      class Sample : public DLS::Sample {
737          public:          public:
             uint16_t       SampleGroup;  
738              uint32_t       Manufacturer;      ///< Specifies the MIDI Manufacturer's Association (MMA) Manufacturer code for the sampler intended to receive this file's waveform. If no particular manufacturer is to be specified, a value of 0 should be used.              uint32_t       Manufacturer;      ///< Specifies the MIDI Manufacturer's Association (MMA) Manufacturer code for the sampler intended to receive this file's waveform. If no particular manufacturer is to be specified, a value of 0 should be used.
739              uint32_t       Product;           ///< Specifies the MIDI model ID defined by the manufacturer corresponding to the Manufacturer field. If no particular manufacturer's product is to be specified, a value of 0 should be used.              uint32_t       Product;           ///< Specifies the MIDI model ID defined by the manufacturer corresponding to the Manufacturer field. If no particular manufacturer's product is to be specified, a value of 0 should be used.
740              uint32_t       SamplePeriod;      ///< Specifies the duration of time that passes during the playback of one sample in nanoseconds (normally equal to 1 / Samplers Per Second, where Samples Per Second is the value found in the format chunk).              uint32_t       SamplePeriod;      ///< Specifies the duration of time that passes during the playback of one sample in nanoseconds (normally equal to 1 / Samples Per Second, where Samples Per Second is the value found in the format chunk), don't bother to update this attribute, it won't be saved.
741              uint32_t       MIDIUnityNote;     ///< Specifies the musical note at which the sample will be played at it's original sample rate.              uint32_t       MIDIUnityNote;     ///< Specifies the musical note at which the sample will be played at it's original sample rate.
742              uint32_t       FineTune;          ///< Specifies the fraction of a semitone up from the specified MIDI unity note field. A value of 0x80000000 means 1/2 semitone (50 cents) and a value of 0x00000000 means no fine tuning between semitones.              uint32_t       FineTune;          ///< Specifies the fraction of a semitone up from the specified MIDI unity note field. A value of 0x80000000 means 1/2 semitone (50 cents) and a value of 0x00000000 means no fine tuning between semitones.
743              smpte_format_t SMPTEFormat;       ///< Specifies the Society of Motion Pictures and Television E time format used in the following <i>SMPTEOffset</i> field. If a value of 0 is set, <i>SMPTEOffset</i> should also be set to 0.              smpte_format_t SMPTEFormat;       ///< Specifies the Society of Motion Pictures and Television E time format used in the following <i>SMPTEOffset</i> field. If a value of 0 is set, <i>SMPTEOffset</i> should also be set to 0.
744              uint32_t       SMPTEOffset;       ///< The SMPTE Offset value specifies the time offset to be used for the synchronization / calibration to the first sample in the waveform. This value uses a format of 0xhhmmssff where hh is a signed value that specifies the number of hours (-23 to 23), mm is an unsigned value that specifies the number of minutes (0 to 59), ss is an unsigned value that specifies the number of seconds (0 to 59) and ff is an unsigned value that specifies the number of frames (0 to -1).              uint32_t       SMPTEOffset;       ///< The SMPTE Offset value specifies the time offset to be used for the synchronization / calibration to the first sample in the waveform. This value uses a format of 0xhhmmssff where hh is a signed value that specifies the number of hours (-23 to 23), mm is an unsigned value that specifies the number of minutes (0 to 59), ss is an unsigned value that specifies the number of seconds (0 to 59) and ff is an unsigned value that specifies the number of frames (0 to -1).
745              uint32_t       Loops;             ///< Number of defined sample loops (so far only seen single loops in gig files - please report me if you encounter more!).              uint32_t       Loops;             ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: Number of defined sample loops. So far only seen single loops in gig files - please report if you encounter more!)
746              uint32_t       LoopID;            ///< Specifies the unique ID that corresponds to one of the defined cue points in the cue point list (only if Loops > 0), as the Gigasampler format only allows one loop definition at the moment, this attribute isn't really useful for anything.              uint32_t       LoopID;            ///< Specifies the unique ID that corresponds to one of the defined cue points in the cue point list (only if Loops > 0), as the Gigasampler format only allows one loop definition at the moment, this attribute isn't really useful for anything.
747              loop_type_t    LoopType;          ///< The type field defines how the waveform samples will be looped (only if Loops > 0).              loop_type_t    LoopType;          ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The type field defines how the waveform samples will be looped.)
748              uint32_t       LoopStart;         ///< The start value specifies the offset (in sample points) in the waveform data of the first sample to be played in the loop (only if Loops > 0).              uint32_t       LoopStart;         ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The start value specifies the offset [in sample points] in the waveform data of the first sample to be played in the loop [only if Loops > 0].)
749              uint32_t       LoopEnd;           ///< The end value specifies the offset (in sample points) in the waveform data which represents the end of the loop (only if Loops > 0).              uint32_t       LoopEnd;           ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The end value specifies the offset [in sample points] in the waveform data which represents the end of the loop [only if Loops > 0].)
750              uint32_t       LoopSize;          ///< Length of the looping area (in sample points) which is equivalent to <i>LoopEnd - LoopStart</i>.              uint32_t       LoopSize;          ///< @e Caution: Use the respective fields in the DimensionRegion instead of this one! (Intended purpose: Length of the looping area [in sample points] which is equivalent to @code LoopEnd - LoopStart @endcode.)
751              uint32_t       LoopFraction;      ///< The fractional value specifies a fraction of a sample at which to loop (only if Loops > 0). This allows a loop to be fine tuned at a resolution greater than one sample. A value of 0 means no fraction, a value of 0x80000000 means 1/2 of a sample length. 0xFFFFFFFF is the smallest fraction of a sample that can be represented.              uint32_t       LoopFraction;      ///< The fractional value specifies a fraction of a sample at which to loop. This allows a loop to be fine tuned at a resolution greater than one sample. A value of 0 means no fraction, a value of 0x80000000 means 1/2 of a sample length. 0xFFFFFFFF is the smallest fraction of a sample that can be represented.
752              uint32_t       LoopPlayCount;     ///< Number of times the loop should be played (only if Loops > 0, a value of 0 = infinite).              uint32_t       LoopPlayCount;     ///< Number of times the loop should be played (a value of 0 = infinite).
753              bool           Compressed;        ///< If the sample wave is compressed (probably just interesting for instrument and sample editors, as this library already handles the decompression in it's sample access methods anyway).              bool           Compressed;        ///< If the sample wave is compressed (probably just interesting for instrument and sample editors, as this library already handles the decompression in it's sample access methods anyway).
754                uint32_t       TruncatedBits;     ///< For 24-bit compressed samples only: number of bits truncated during compression (0, 4 or 6)
755                bool           Dithered;          ///< For 24-bit compressed samples only: if dithering was used during compression with bit reduction
756    
757              // own methods              // own methods
758              buffer_t      LoadSampleData();              buffer_t      LoadSampleData();
759              buffer_t      LoadSampleData(unsigned long SampleCount);              buffer_t      LoadSampleData(file_offset_t SampleCount);
760              buffer_t      LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount);              buffer_t      LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount);
761              buffer_t      LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount);              buffer_t      LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount);
762              buffer_t      GetCache();              buffer_t      GetCache();
763                // own static methods
764                static buffer_t CreateDecompressionBuffer(file_offset_t MaxReadSize);
765                static void     DestroyDecompressionBuffer(buffer_t& DecompressionBuffer);
766              // overridden methods              // overridden methods
767              void          ReleaseSampleData();              void          ReleaseSampleData();
768              unsigned long SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence = RIFF::stream_start);              void          Resize(file_offset_t NewSize);
769              unsigned long GetPos();              file_offset_t SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence = RIFF::stream_start);
770              unsigned long Read(void* pBuffer, unsigned long SampleCount);              file_offset_t GetPos() const;
771              unsigned long ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState);              file_offset_t Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer = NULL);
772          protected:              file_offset_t ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState, DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer = NULL);
773              static unsigned int  Instances;               ///< Number of instances of class Sample.              file_offset_t Write(void* pBuffer, file_offset_t SampleCount);
774              static unsigned long DecompressionBufferSize; ///< Current size of the decompression buffer.              Group*        GetGroup() const;
775              static void*         pDecompressionBuffer;    ///< Small buffer used for decompression only.              virtual void  UpdateChunks(progress_t* pProgress);
776              unsigned long        FrameOffset;             ///< Current offset (sample points) in current sample frame (for decompression only).              void CopyAssignMeta(const Sample* orig);
777              unsigned long*       FrameTable;              ///< For positioning within compressed samples only: stores the offset values for each frame.              void CopyAssignWave(const Sample* orig);
778              unsigned long        SamplePos;               ///< For compressed samples only: stores the current position (in sample points).              uint32_t GetWaveDataCRC32Checksum();
779                bool VerifyWaveData(uint32_t* pActually = NULL);
780            protected:
781                static size_t        Instances;               ///< Number of instances of class Sample.
782                static buffer_t      InternalDecompressionBuffer; ///< Buffer used for decompression as well as for truncation of 24 Bit -> 16 Bit samples.
783                Group*               pGroup;                  ///< pointer to the Group this sample belongs to (always not-NULL)
784                file_offset_t        FrameOffset;             ///< Current offset (sample points) in current sample frame (for decompression only).
785                file_offset_t*       FrameTable;              ///< For positioning within compressed samples only: stores the offset values for each frame.
786                file_offset_t        SamplePos;               ///< For compressed samples only: stores the current position (in sample points).
787                file_offset_t        SamplesInLastFrame;      ///< For compressed samples only: length of the last sample frame.
788                file_offset_t        WorstCaseFrameSize;      ///< For compressed samples only: size (in bytes) of the largest possible sample frame.
789                file_offset_t        SamplesPerFrame;         ///< For compressed samples only: number of samples in a full sample frame.
790              buffer_t             RAMCache;                ///< Buffers samples (already uncompressed) in RAM.              buffer_t             RAMCache;                ///< Buffers samples (already uncompressed) in RAM.
791                unsigned long        FileNo;                  ///< File number (> 0 when sample is stored in an extension file, 0 when it's in the gig)
792                RIFF::Chunk*         pCk3gix;
793                RIFF::Chunk*         pCkSmpl;
794                uint32_t             crc;                     ///< Reflects CRC-32 checksum of the raw sample data at the last time when the sample's raw wave form data has been modified consciously by the user by calling Write().
795    
796              Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset);              Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo = 0, int index = -1);
797             ~Sample();             ~Sample();
798              /**              uint32_t CalculateWaveDataChecksum();
799               * Swaps the order of the data words in the given memory area  
800               * with a granularity given by \a WordSize.              // Guess size (in bytes) of a compressed sample
801               *              inline file_offset_t GuessSize(file_offset_t samples) {
802               * @param pData    - pointer to the memory area to be swapped                  // 16 bit: assume all frames are compressed - 1 byte
803               * @param AreaSize - size of the memory area to be swapped (in bytes)                  // per sample and 5 bytes header per 2048 samples
804               * @param WordSize - size of the data words (in bytes)  
805               */                  // 24 bit: assume next best compression rate - 1.5
806              inline void SwapMemoryArea(void* pData, unsigned long AreaSize, uint WordSize) {                  // bytes per sample and 13 bytes header per 256
807                  switch (WordSize) { // TODO: unefficient                  // samples
808                      case 1: {                  const file_offset_t size =
809                          uint8_t* pDst = (uint8_t*) pData;                      BitDepth == 24 ? samples + (samples >> 1) + (samples >> 8) * 13
810                          uint8_t  cache;                                     : samples + (samples >> 10) * 5;
811                          unsigned long lo = 0, hi = AreaSize - 1;                  // Double for stereo and add one worst case sample
812                          for (; lo < hi; hi--, lo++) {                  // frame
813                              cache    = pDst[lo];                  return (Channels == 2 ? size << 1 : size) + WorstCaseFrameSize;
                             pDst[lo] = pDst[hi];  
                             pDst[hi] = cache;  
                         }  
                         break;  
                     }  
                     case 2: {  
                         uint16_t* pDst = (uint16_t*) pData;  
                         uint16_t  cache;  
                         unsigned long lo = 0, hi = (AreaSize >> 1) - 1;  
                         for (; lo < hi; hi--, lo++) {  
                             cache    = pDst[lo];  
                             pDst[lo] = pDst[hi];  
                             pDst[hi] = cache;  
                         }  
                         break;  
                     }  
                     case 4: {  
                         uint32_t* pDst = (uint32_t*) pData;  
                         uint32_t  cache;  
                         unsigned long lo = 0, hi = (AreaSize >> 2) - 1;  
                         for (; lo < hi; hi--, lo++) {  
                             cache    = pDst[lo];  
                             pDst[lo] = pDst[hi];  
                             pDst[hi] = cache;  
                         }  
                         break;  
                     }  
                     default: {  
                         uint8_t* pCache = new uint8_t[WordSize]; // TODO: unefficient  
                         unsigned long lo = 0, hi = AreaSize - WordSize;  
                         for (; lo < hi; hi -= WordSize, lo += WordSize) {  
                             memcpy(pCache, (uint8_t*) pData + lo, WordSize);  
                             memcpy((uint8_t*) pData + lo, (uint8_t*) pData + hi, WordSize);  
                             memcpy((uint8_t*) pData + hi, pCache, WordSize);  
                         }  
                         delete[] pCache;  
                         break;  
                     }  
                 }  
814              }              }
815              inline long Min(long A, long B) {  
816                  return (A > B) ? B : A;              // Worst case amount of sample points that can be read with the
817                // given decompression buffer.
818                inline file_offset_t WorstCaseMaxSamples(buffer_t* pDecompressionBuffer) {
819                    return (file_offset_t) ((float)pDecompressionBuffer->Size / (float)WorstCaseFrameSize * (float)SamplesPerFrame);
820              }              }
             inline long Abs(long val) { return (val > 0) ? val : -val; }  
821          private:          private:
822              void ScanCompressedSample();              void ScanCompressedSample();
823              friend class File;              friend class File;
824              friend class Region;              friend class Region;
825                friend class Group; // allow to modify protected member pGroup
826      };      };
827    
828      // TODO: <3dnl> list not used yet - not important though (just contains optional descriptions for the dimensions)      // TODO: <3dnl> list not used yet - not important though (just contains optional descriptions for the dimensions)
829      /** Defines <i>Region</i> information of an <i>Instrument</i>. */      /** @brief Defines Region information of a Gigasampler/GigaStudio instrument.
830         *
831         * A Region reflects a consecutive area (key range) on the keyboard. The
832         * individual regions in the gig format may not overlap with other regions
833         * (of the same instrument that is). Further, in the gig format a Region is
834         * merely a container for DimensionRegions (a.k.a. "Cases"). The Region
835         * itself does not provide the sample mapping or articulation informations
836         * used, even though the data structures of regions indeed provide such
837         * informations. The latter is however just of historical nature, because
838         * the gig file format was derived from the DLS file format.
839         *
840         * Each Region consists of at least one or more DimensionRegions. The actual
841         * amount of DimensionRegions depends on which kind of "dimensions" are
842         * defined for this region, and on the split / zone amount for each of those
843         * dimensions.
844         *
845         * Since the gig format was designed as extension to the DLS file format,
846         * this class is derived from the DLS::Region class. So also refer to
847         * DLS::Region for additional informations, class attributes and methods.
848         */
849      class Region : public DLS::Region {      class Region : public DLS::Region {
850          public:          public:
851              unsigned int            Dimensions;               ///< Number of defined dimensions.              unsigned int            Dimensions;               ///< Number of defined dimensions, do not alter!
852              dimension_def_t         pDimensionDefinitions[8]; ///< Defines the five (gig2) or eight (gig3) possible dimensions (the dimension's controller and number of bits/splits).              dimension_def_t         pDimensionDefinitions[8]; ///< Defines the five (gig2) or eight (gig3) possible dimensions (the dimension's controller and number of bits/splits). Use AddDimension() and DeleteDimension() to create a new dimension or delete an existing one.
853              uint32_t                DimensionRegions;         ///< Total number of DimensionRegions this Region contains.              uint32_t                DimensionRegions;         ///< Total number of DimensionRegions this Region contains, do not alter!
854              DimensionRegion*        pDimensionRegions[256];   ///< Pointer array to the 32 (gig2) or 256 (gig3) possible dimension regions (reflects NULL for dimension regions not in use). Avoid to access the array directly and better use GetDimensionRegionByValue() instead, but of course in some cases it makes sense to use the array (e.g. iterating through all DimensionRegions).              DimensionRegion*        pDimensionRegions[256];   ///< Pointer array to the 32 (gig2) or 256 (gig3) possible dimension regions (reflects NULL for dimension regions not in use). Avoid to access the array directly and better use GetDimensionRegionByValue() instead, but of course in some cases it makes sense to use the array (e.g. iterating through all DimensionRegions). Use AddDimension() and DeleteDimension() to create a new dimension or delete an existing one (which will create or delete the respective dimension region(s) automatically).
855              unsigned int            Layers;                   ///< Amount of defined layers (1 - 32). A value of 1 actually means no layering, a value > 1 means there is Layer dimension. The same information can of course also be obtained by accessing pDimensionDefinitions.              unsigned int            Layers;                   ///< Amount of defined layers (1 - 32). A value of 1 actually means no layering, a value > 1 means there is Layer dimension. The same information can of course also be obtained by accessing pDimensionDefinitions. Do not alter this value!
856    
857                // own methods
858              DimensionRegion* GetDimensionRegionByValue(const uint DimValues[8]);              DimensionRegion* GetDimensionRegionByValue(const uint DimValues[8]);
859              DimensionRegion* GetDimensionRegionByBit(const uint8_t DimBits[8]);              DimensionRegion* GetDimensionRegionByBit(const uint8_t DimBits[8]);
860                int              GetDimensionRegionIndexByValue(const uint DimValues[8]);
861              Sample*          GetSample();              Sample*          GetSample();
862                void             AddDimension(dimension_def_t* pDimDef);
863                void             DeleteDimension(dimension_def_t* pDimDef);
864                dimension_def_t* GetDimensionDefinition(dimension_t type);
865                void             DeleteDimensionZone(dimension_t type, int zone);
866                void             SplitDimensionZone(dimension_t type, int zone);
867                void             SetDimensionType(dimension_t oldType, dimension_t newType);
868                // overridden methods
869                virtual void     SetKeyRange(uint16_t Low, uint16_t High);
870                virtual void     UpdateChunks(progress_t* pProgress);
871                virtual void     CopyAssign(const Region* orig);
872          protected:          protected:
             uint8_t VelocityTable[128]; ///< For velocity dimensions with custom defined zone ranges only: used for fast converting from velocity MIDI value to dimension bit number.  
   
873              Region(Instrument* pInstrument, RIFF::List* rgnList);              Region(Instrument* pInstrument, RIFF::List* rgnList);
874              void LoadDimensionRegions(RIFF::List* rgn);              void LoadDimensionRegions(RIFF::List* rgn);
875              Sample* GetSampleFromWavePool(unsigned int WavePoolTableIndex);              void UpdateVelocityTable();
876                Sample* GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress = NULL);
877                void CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples);
878                DimensionRegion* GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase);
879             ~Region();             ~Region();
880              friend class Instrument;              friend class Instrument;
881      };      };
882    
883      /** Provides all neccessary information for the synthesis of an <i>Instrument</i>. */      /** @brief Abstract base class for all MIDI rules.
884         *
885         * Note: Instead of using MIDI rules, we recommend you using real-time
886         * instrument scripts instead. Read about the reasons below.
887         *
888         * MIDI Rules (also called "iMIDI rules" or "intelligent MIDI rules") were
889         * introduced with GigaStudio 4 as an attempt to increase the power of
890         * potential user controls over sounds. At that point other samplers already
891         * supported certain powerful user control features, which were not possible
892         * with GigaStudio yet. For example triggering new notes by MIDI CC
893         * controller.
894         *
895         * Such extended features however were usually implemented by other samplers
896         * by requiring the sound designer to write an instrument script which the
897         * designer would then bundle with the respective instrument file. Such
898         * scripts are essentially text files, using a very specific programming
899         * language for the purpose of controlling the sampler in real-time. Since
900         * however musicians are not typically keen to writing such cumbersome
901         * script files, the GigaStudio designers decided to implement such extended
902         * features completely without instrument scripts. Instead they created a
903         * set of rules, which could be defined and altered conveniently by mouse
904         * clicks in GSt's instrument editor application. The downside of this
905         * overall approach however, was that those MIDI rules were very limited in
906         * practice. As sound designer you easily came across the possiblities such
907         * MIDI rules were able to offer.
908         *
909         * Due to such severe use case constraints, support for MIDI rules is quite
910         * limited in libgig. At the moment only the "Control Trigger", "Alternator"
911         * and the "Legato" MIDI rules are supported by libgig. Consequently the
912         * graphical instrument editor application gigedit just supports the
913         * "Control Trigger" and "Legato" MIDI rules, and LinuxSampler even does not
914         * support any MIDI rule type at all and LinuxSampler probably will not
915         * support MIDI rules in future either.
916         *
917         * Instead of using MIDI rules, we introduced real-time instrument scripts
918         * as extension to the original GigaStudio file format. This script based
919         * solution is much more powerful than MIDI rules and is already supported
920         * by libgig, gigedit and LinuxSampler.
921         *
922         * @deprecated Just provided for backward compatiblity, use Script for new
923         *             instruments instead.
924         */
925        class MidiRule {
926            public:
927                virtual ~MidiRule() { }
928            protected:
929                virtual void UpdateChunks(uint8_t* pData) const = 0;
930                friend class Instrument;
931        };
932    
933        /** @brief MIDI rule for triggering notes by control change events.
934         *
935         * A "Control Trigger MIDI rule" allows to trigger new notes by sending MIDI
936         * control change events to the sampler.
937         *
938         * Note: "Control Trigger" MIDI rules are only supported by gigedit, but not
939         * by LinuxSampler. We recommend you using real-time instrument scripts
940         * instead. Read more about the details and reasons for this in the
941         * description of the MidiRule base class.
942         *
943         * @deprecated Just provided for backward compatiblity, use Script for new
944         *             instruments instead. See description of MidiRule for details.
945         */
946        class MidiRuleCtrlTrigger : public MidiRule {
947            public:
948                uint8_t ControllerNumber;   ///< MIDI controller number.
949                uint8_t Triggers;           ///< Number of triggers.
950                struct trigger_t {
951                    uint8_t TriggerPoint;   ///< The CC value to pass for the note to be triggered.
952                    bool    Descending;     ///< If the change in CC value should be downwards.
953                    uint8_t VelSensitivity; ///< How sensitive the velocity should be to the speed of the controller change.
954                    uint8_t Key;            ///< Key to trigger.
955                    bool    NoteOff;        ///< If a note off should be triggered instead of a note on.
956                    uint8_t Velocity;       ///< Velocity of the note to trigger. 255 means that velocity should depend on the speed of the controller change.
957                    bool    OverridePedal;  ///< If a note off should be triggered even if the sustain pedal is down.
958                } pTriggers[32];
959    
960            protected:
961                MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg);
962                MidiRuleCtrlTrigger();
963                void UpdateChunks(uint8_t* pData) const;
964                friend class Instrument;
965        };
966    
967        /** @brief MIDI rule for instruments with legato samples.
968         *
969         * A "Legato MIDI rule" allows playing instruments resembling the legato
970         * playing technique. In the past such legato articulations were tried to be
971         * simulated by pitching the samples of the instrument. However since
972         * usually a high amount of pitch is needed for legatos, this always sounded
973         * very artificial and unrealistic. The "Legato MIDI rule" thus uses another
974         * approach. Instead of pitching the samples, it allows the sound designer
975         * to bundle separate, additional samples for the individual legato
976         * situations and the legato rules defined which samples to be played in
977         * which situation.
978         *
979         * Note: "Legato MIDI rules" are only supported by gigedit, but not
980         * by LinuxSampler. We recommend you using real-time instrument scripts
981         * instead. Read more about the details and reasons for this in the
982         * description of the MidiRule base class.
983         *
984         * @deprecated Just provided for backward compatiblity, use Script for new
985         *             instruments instead. See description of MidiRule for details.
986         */
987        class MidiRuleLegato : public MidiRule {
988            public:
989                uint8_t LegatoSamples;     ///< Number of legato samples per key in each direction (always 12)
990                bool BypassUseController;  ///< If a controller should be used to bypass the sustain note
991                uint8_t BypassKey;         ///< Key to be used to bypass the sustain note
992                uint8_t BypassController;  ///< Controller to be used to bypass the sustain note
993                uint16_t ThresholdTime;    ///< Maximum time (ms) between two notes that should be played legato
994                uint16_t ReleaseTime;      ///< Release time
995                range_t KeyRange;          ///< Key range for legato notes
996                uint8_t ReleaseTriggerKey; ///< Key triggering release samples
997                uint8_t AltSustain1Key;    ///< Key triggering alternate sustain samples
998                uint8_t AltSustain2Key;    ///< Key triggering a second set of alternate sustain samples
999    
1000            protected:
1001                MidiRuleLegato(RIFF::Chunk* _3ewg);
1002                MidiRuleLegato();
1003                void UpdateChunks(uint8_t* pData) const;
1004                friend class Instrument;
1005        };
1006    
1007        /** @brief MIDI rule to automatically cycle through specified sequences of different articulations.
1008         *
1009         * The instrument must be using the smartmidi dimension.
1010         *
1011         * Note: "Alternator" MIDI rules are neither supported by gigedit nor by
1012         * LinuxSampler. We recommend you using real-time instrument scripts
1013         * instead. Read more about the details and reasons for this in the
1014         * description of the MidiRule base class.
1015         *
1016         * @deprecated Just provided for backward compatiblity, use Script for new
1017         *             instruments instead. See description of MidiRule for details.
1018         */
1019        class MidiRuleAlternator : public MidiRule {
1020            public:
1021                uint8_t Articulations;     ///< Number of articulations in the instrument
1022                String pArticulations[32]; ///< Names of the articulations
1023    
1024                range_t PlayRange;         ///< Key range of the playable keys in the instrument
1025    
1026                uint8_t Patterns;          ///< Number of alternator patterns
1027                struct pattern_t {
1028                    String Name;           ///< Name of the pattern
1029                    int Size;              ///< Number of steps in the pattern
1030                    const uint8_t& operator[](int i) const { /// Articulation to play
1031                        return data[i];
1032                    }
1033                    uint8_t& operator[](int i) {
1034                        return data[i];
1035                    }
1036                private:
1037                    uint8_t data[32];
1038                } pPatterns[32];           ///< A pattern is a sequence of articulation numbers
1039    
1040                typedef enum {
1041                    selector_none,
1042                    selector_key_switch,
1043                    selector_controller
1044                } selector_t;
1045                selector_t Selector;       ///< Method by which pattern is chosen
1046                range_t KeySwitchRange;    ///< Key range for key switch selector
1047                uint8_t Controller;        ///< CC number for controller selector
1048    
1049                bool Polyphonic;           ///< If alternator should step forward only when all notes are off
1050                bool Chained;              ///< If all patterns should be chained together
1051    
1052            protected:
1053                MidiRuleAlternator(RIFF::Chunk* _3ewg);
1054                MidiRuleAlternator();
1055                void UpdateChunks(uint8_t* pData) const;
1056                friend class Instrument;
1057        };
1058    
1059        /** @brief A MIDI rule not yet implemented by libgig.
1060         *
1061         * This class is currently used as a place holder by libgig for MIDI rule
1062         * types which are not supported by libgig yet.
1063         *
1064         * Note: Support for missing MIDI rule types are probably never added to
1065         * libgig. We recommend you using real-time instrument scripts instead.
1066         * Read more about the details and reasons for this in the description of
1067         * the MidiRule base class.
1068         *
1069         * @deprecated Just provided for backward compatiblity, use Script for new
1070         *             instruments instead. See description of MidiRule for details.
1071         */
1072        class MidiRuleUnknown : public MidiRule {
1073            protected:
1074                MidiRuleUnknown() { }
1075                void UpdateChunks(uint8_t* pData) const { }
1076                friend class Instrument;
1077        };
1078    
1079        /** @brief Real-time instrument script (gig format extension).
1080         *
1081         * Real-time instrument scripts are user supplied small programs which can
1082         * be used by instrument designers to create custom behaviors and features
1083         * not available in the stock sampler engine. Features which might be very
1084         * exotic or specific for the respective instrument.
1085         *
1086         * This is an extension of the GigaStudio format, thus a feature which was
1087         * not available in the GigaStudio 4 software. It is currently only
1088         * supported by LinuxSampler and gigedit. Scripts will not load with the
1089         * original GigaStudio software.
1090         *
1091         * You find more informations about Instrument Scripts on the LinuxSampler
1092         * documentation site:
1093         *
1094         * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/">About Instrument Scripts in General</a>
1095         * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language">Introduction to the NKSP Script Language</a>
1096         * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language/Reference/">NKSP Reference Manual</a>
1097         * - <a href="http://doc.linuxsampler.org/Gigedit/Managing_Scripts">Using Instrument Scripts with Gigedit</a>
1098         */
1099        class Script {
1100            public:
1101                enum Encoding_t {
1102                    ENCODING_ASCII = 0 ///< Standard 8 bit US ASCII character encoding (default).
1103                };
1104                enum Compression_t {
1105                    COMPRESSION_NONE = 0 ///< Is not compressed at all (default).
1106                };
1107                enum Language_t {
1108                    LANGUAGE_NKSP = 0 ///< NKSP stands for "Is Not KSP" (default). Refer to the <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language/Reference/">NKSP Reference Manual</a> for details about this script language.
1109                };
1110    
1111                String         Name;        ///< Arbitrary name of the script, which may be displayed i.e. in an instrument editor.
1112                Compression_t  Compression; ///< Whether the script was/should be compressed, and if so, which compression algorithm shall be used.
1113                Encoding_t     Encoding;    ///< Format the script's source code text is encoded with.
1114                Language_t     Language;    ///< Programming language and dialect the script is written in.
1115                bool           Bypass;      ///< Global bypass: if enabled, this script shall not be executed by the sampler for any instrument.
1116    
1117                String GetScriptAsText();
1118                void   SetScriptAsText(const String& text);
1119                void   SetGroup(ScriptGroup* pGroup);
1120                ScriptGroup* GetGroup() const;
1121                void   CopyAssign(const Script* orig);
1122            protected:
1123                Script(ScriptGroup* group, RIFF::Chunk* ckScri);
1124                virtual ~Script();
1125                void UpdateChunks(progress_t* pProgress);
1126                void RemoveAllScriptReferences();
1127                friend class ScriptGroup;
1128                friend class Instrument;
1129            private:
1130                ScriptGroup*          pGroup;
1131                RIFF::Chunk*          pChunk; ///< 'Scri' chunk
1132                std::vector<uint8_t>  data;
1133                uint32_t              crc; ///< CRC-32 checksum of the raw script data
1134        };
1135    
1136        /** @brief Group of instrument scripts (gig format extension).
1137         *
1138         * This class is simply used to sort a bunch of real-time instrument scripts
1139         * into individual groups. This allows instrument designers and script
1140         * developers to keep scripts in a certain order while working with a larger
1141         * amount of scripts in an instrument editor.
1142         *
1143         * This is an extension of the GigaStudio format, thus a feature which was
1144         * not available in the GigaStudio 4 software. It is currently only
1145         * supported by LinuxSampler and gigedit.
1146         */
1147        class ScriptGroup {
1148            public:
1149                String   Name; ///< Name of this script group. For example to be displayed in an instrument editor.
1150    
1151                Script*  GetScript(uint index);
1152                Script*  AddScript();
1153                void     DeleteScript(Script* pScript);
1154            protected:
1155                ScriptGroup(File* file, RIFF::List* lstRTIS);
1156                virtual ~ScriptGroup();
1157                void LoadScripts();
1158                void UpdateChunks(progress_t* pProgress);
1159                friend class Script;
1160                friend class File;
1161            private:
1162                File*                pFile;
1163                RIFF::List*          pList; ///< 'RTIS' list chunk
1164                std::list<Script*>*  pScripts;
1165        };
1166    
1167        /** @brief Provides access to a Gigasampler/GigaStudio instrument.
1168         *
1169         * This class provides access to Gigasampler/GigaStudio instruments
1170         * contained in .gig files. A gig instrument is merely a set of keyboard
1171         * ranges (called Region), plus some additional global informations about
1172         * the instrument. The major part of the actual instrument definition used
1173         * for the synthesis of the instrument is contained in the respective Region
1174         * object (or actually in the respective DimensionRegion object being, see
1175         * description of Region for details).
1176         *
1177         * Since the gig format was designed as extension to the DLS file format,
1178         * this class is derived from the DLS::Instrument class. So also refer to
1179         * DLS::Instrument for additional informations, class attributes and
1180         * methods.
1181         */
1182      class Instrument : protected DLS::Instrument {      class Instrument : protected DLS::Instrument {
1183          public:          public:
1184              // derived attributes from DLS::Resource              // derived attributes from DLS::Resource
1185              DLS::Resource::pInfo;              using DLS::Resource::pInfo;
1186              DLS::Resource::pDLSID;              using DLS::Resource::pDLSID;
1187              // derived attributes from DLS::Instrument              // derived attributes from DLS::Instrument
1188              DLS::Instrument::IsDrum;              using DLS::Instrument::IsDrum;
1189              DLS::Instrument::MIDIBank;              using DLS::Instrument::MIDIBank;
1190              DLS::Instrument::MIDIBankCoarse;              using DLS::Instrument::MIDIBankCoarse;
1191              DLS::Instrument::MIDIBankFine;              using DLS::Instrument::MIDIBankFine;
1192              DLS::Instrument::MIDIProgram;              using DLS::Instrument::MIDIProgram;
1193              DLS::Instrument::Regions;              using DLS::Instrument::Regions;
1194              // own attributes              // own attributes
1195              int32_t   Attenuation;       ///< in dB              int32_t   Attenuation;       ///< in dB
1196              uint16_t  EffectSend;              uint16_t  EffectSend;
# Line 612  namespace gig { Line 1201  namespace gig {
1201    
1202    
1203              // derived methods from DLS::Resource              // derived methods from DLS::Resource
1204              DLS::Resource::GetParent;              using DLS::Resource::GetParent;
1205              // overridden methods              // overridden methods
1206              Region*   GetFirstRegion();              Region*   GetFirstRegion();
1207              Region*   GetNextRegion();              Region*   GetNextRegion();
1208                Region*   AddRegion();
1209                void      DeleteRegion(Region* pRegion);
1210                void      MoveTo(Instrument* dst);
1211                virtual void UpdateChunks(progress_t* pProgress);
1212                virtual void CopyAssign(const Instrument* orig);
1213              // own methods              // own methods
1214              Region*   GetRegion(unsigned int Key);              Region*   GetRegion(unsigned int Key);
1215                MidiRule* GetMidiRule(int i);
1216                MidiRuleCtrlTrigger* AddMidiRuleCtrlTrigger();
1217                MidiRuleLegato*      AddMidiRuleLegato();
1218                MidiRuleAlternator*  AddMidiRuleAlternator();
1219                void      DeleteMidiRule(int i);
1220                // real-time instrument script methods
1221                Script*   GetScriptOfSlot(uint index);
1222                void      AddScriptSlot(Script* pScript, bool bypass = false);
1223                void      SwapScriptSlots(uint index1, uint index2);
1224                void      RemoveScriptSlot(uint index);
1225                void      RemoveScript(Script* pScript);
1226                uint      ScriptSlotCount() const;
1227                bool      IsScriptSlotBypassed(uint index);
1228                void      SetScriptSlotBypassed(uint index, bool bBypass);
1229          protected:          protected:
             Region**  pRegions;            ///< Pointer array to the regions  
1230              Region*   RegionKeyTable[128]; ///< fast lookup for the corresponding Region of a MIDI key              Region*   RegionKeyTable[128]; ///< fast lookup for the corresponding Region of a MIDI key
             int       RegionIndex;  
1231    
1232              Instrument(File* pFile, RIFF::List* insList);              Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress = NULL);
1233             ~Instrument();             ~Instrument();
1234                void CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples);
1235                void UpdateRegionKeyTable();
1236                void LoadScripts();
1237                void UpdateScriptFileOffsets();
1238              friend class File;              friend class File;
1239                friend class Region; // so Region can call UpdateRegionKeyTable()
1240            private:
1241                struct _ScriptPooolEntry {
1242                    uint32_t fileOffset;
1243                    bool     bypass;
1244                };
1245                struct _ScriptPooolRef {
1246                    Script*  script;
1247                    bool     bypass;
1248                };
1249                MidiRule** pMidiRules;
1250                std::vector<_ScriptPooolEntry> scriptPoolFileOffsets;
1251                std::vector<_ScriptPooolRef>* pScriptRefs;
1252        };
1253    
1254        /** @brief Group of Gigasampler samples
1255         *
1256         * Groups help to organize a huge collection of Gigasampler samples.
1257         * Groups are not concerned at all for the synthesis, but they help
1258         * sound library developers when working on complex instruments with an
1259         * instrument editor (as long as that instrument editor supports it ;-).
1260         *
1261         * A sample is always assigned to exactly one Group. This also means
1262         * there is always at least one Group in a .gig file, no matter if you
1263         * created one yet or not.
1264         */
1265        class Group {
1266            public:
1267                String Name; ///< Stores the name of this Group.
1268    
1269                Sample* GetFirstSample();
1270                Sample* GetNextSample();
1271                void AddSample(Sample* pSample);
1272            protected:
1273                Group(File* file, RIFF::Chunk* ck3gnm);
1274                virtual ~Group();
1275                virtual void UpdateChunks(progress_t* pProgress);
1276                void MoveAll();
1277                friend class File;
1278            private:
1279                File*        pFile;
1280                RIFF::Chunk* pNameChunk; ///< '3gnm' chunk
1281      };      };
1282    
1283      // TODO: <3gnm> chunk not added yet (just contains the names of the sample groups)      /** @brief Provides convenient access to Gigasampler/GigaStudio .gig files.
1284      /** Parses Gigasampler files and provides abstract access to the data. */       *
1285         * This is the entry class for accesing a Gigasampler/GigaStudio (.gig) file
1286         * with libgig. It allows you to open existing .gig files, modifying them
1287         * and saving them persistently either under the same file name or under a
1288         * different location.
1289         *
1290         * A .gig file is merely a monolithic file. That means samples and the
1291         * defintion of the virtual instruments are contained in the same file. A
1292         * .gig file contains an arbitrary amount of samples, and an arbitrary
1293         * amount of instruments which are referencing those samples. It is also
1294         * possible to store samples in .gig files not being referenced by any
1295         * instrument. This is not an error from the file format's point of view and
1296         * it is actually often used in practice during the design phase of new gig
1297         * instruments.
1298         *
1299         * So on toplevel of the gig file format you have:
1300         *
1301         * - A set of samples (see Sample).
1302         * - A set of virtual instruments (see Instrument).
1303         *
1304         * And as extension to the original GigaStudio format, we added:
1305         *
1306         * - Real-time instrument scripts (see Script).
1307         *
1308         * Note that the latter however is only supported by libgig, gigedit and
1309         * LinuxSampler. Scripts are not supported by the original GigaStudio
1310         * software.
1311         *
1312         * All released Gigasampler/GigaStudio file format versions are supported
1313         * (so from first Gigasampler version up to including GigaStudio 4).
1314         *
1315         * Since the gig format was designed as extension to the DLS file format,
1316         * this class is derived from the DLS::File class. So also refer to
1317         * DLS::File for additional informations, class attributes and methods.
1318         */
1319      class File : protected DLS::File {      class File : protected DLS::File {
1320          public:          public:
1321                static const DLS::version_t VERSION_2;
1322                static const DLS::version_t VERSION_3;
1323    
1324              // derived attributes from DLS::Resource              // derived attributes from DLS::Resource
1325              DLS::Resource::pInfo;              using DLS::Resource::pInfo;
1326              DLS::Resource::pDLSID;              using DLS::Resource::pDLSID;
1327              // derived attributes from DLS::File              // derived attributes from DLS::File
1328              DLS::File::pVersion;              using DLS::File::pVersion;
1329              DLS::File::Instruments;              using DLS::File::Instruments;
1330    
1331              // derived methods from DLS::Resource              // derived methods from DLS::Resource
1332              DLS::Resource::GetParent;              using DLS::Resource::GetParent;
1333                // derived methods from DLS::File
1334                using DLS::File::Save;
1335                using DLS::File::GetFileName;
1336                using DLS::File::SetFileName;
1337              // overridden  methods              // overridden  methods
1338                File();
1339              File(RIFF::File* pRIFF);              File(RIFF::File* pRIFF);
1340              Sample*     GetFirstSample();     ///< Returns a pointer to the first <i>Sample</i> object of the file, <i>NULL</i> otherwise.              Sample*     GetFirstSample(progress_t* pProgress = NULL); ///< Returns a pointer to the first <i>Sample</i> object of the file, <i>NULL</i> otherwise.
1341              Sample*     GetNextSample();      ///< Returns a pointer to the next <i>Sample</i> object of the file, <i>NULL</i> otherwise.              Sample*     GetNextSample();      ///< Returns a pointer to the next <i>Sample</i> object of the file, <i>NULL</i> otherwise.
1342                Sample*     GetSample(uint index);
1343                Sample*     AddSample();
1344                void        DeleteSample(Sample* pSample);
1345              Instrument* GetFirstInstrument(); ///< Returns a pointer to the first <i>Instrument</i> object of the file, <i>NULL</i> otherwise.              Instrument* GetFirstInstrument(); ///< Returns a pointer to the first <i>Instrument</i> object of the file, <i>NULL</i> otherwise.
1346              Instrument* GetNextInstrument();  ///< Returns a pointer to the next <i>Instrument</i> object of the file, <i>NULL</i> otherwise.              Instrument* GetNextInstrument();  ///< Returns a pointer to the next <i>Instrument</i> object of the file, <i>NULL</i> otherwise.
1347              Instrument* GetInstrument(uint index);              Instrument* GetInstrument(uint index, progress_t* pProgress = NULL);
1348             ~File();              Instrument* AddInstrument();
1349                Instrument* AddDuplicateInstrument(const Instrument* orig);
1350                void        DeleteInstrument(Instrument* pInstrument);
1351                Group*      GetFirstGroup(); ///< Returns a pointer to the first <i>Group</i> object of the file, <i>NULL</i> otherwise.
1352                Group*      GetNextGroup();  ///< Returns a pointer to the next <i>Group</i> object of the file, <i>NULL</i> otherwise.
1353                Group*      GetGroup(uint index);
1354                Group*      GetGroup(String name);
1355                Group*      AddGroup();
1356                void        DeleteGroup(Group* pGroup);
1357                void        DeleteGroupOnly(Group* pGroup);
1358                void        SetAutoLoad(bool b);
1359                bool        GetAutoLoad();
1360                void        AddContentOf(File* pFile);
1361                ScriptGroup* GetScriptGroup(uint index);
1362                ScriptGroup* GetScriptGroup(const String& name);
1363                ScriptGroup* AddScriptGroup();
1364                void        DeleteScriptGroup(ScriptGroup* pGroup);
1365                virtual    ~File();
1366                virtual void UpdateChunks(progress_t* pProgress);
1367          protected:          protected:
1368              typedef std::list<Sample*>     SampleList;              // overridden protected methods from DLS::File
1369              typedef std::list<Instrument*> InstrumentList;              virtual void LoadSamples();
1370                virtual void LoadInstruments();
1371              SampleList*              pSamples;              virtual void LoadGroups();
1372              SampleList::iterator     SamplesIterator;              virtual void UpdateFileOffsets();
1373              InstrumentList*          pInstruments;              // own protected methods
1374              InstrumentList::iterator InstrumentsIterator;              virtual void LoadSamples(progress_t* pProgress);
1375                virtual void LoadInstruments(progress_t* pProgress);
1376              void LoadSamples();              virtual void LoadScriptGroups();
1377              void LoadInstruments();              void SetSampleChecksum(Sample* pSample, uint32_t crc);
1378                uint32_t GetSampleChecksum(Sample* pSample);
1379                uint32_t GetSampleChecksumByIndex(int index);
1380                bool VerifySampleChecksumTable();
1381                bool RebuildSampleChecksumTable();
1382                int  GetWaveTableIndexOf(gig::Sample* pSample);
1383              friend class Region;              friend class Region;
1384                friend class Sample;
1385                friend class Instrument;
1386                friend class Group; // so Group can access protected member pRIFF
1387                friend class ScriptGroup; // so ScriptGroup can access protected member pRIFF
1388            private:
1389                std::list<Group*>*          pGroups;
1390                std::list<Group*>::iterator GroupsIterator;
1391                bool                        bAutoLoad;
1392                std::list<ScriptGroup*>*    pScriptGroups;
1393      };      };
1394    
1395      /** Will be thrown whenever a gig specific error occurs while trying to access a Gigasampler File. */      /**
1396         * Will be thrown whenever a gig specific error occurs while trying to
1397         * access a Gigasampler File. Note: In your application you should
1398         * better catch for RIFF::Exception rather than this one, except you
1399         * explicitly want to catch and handle gig::Exception, DLS::Exception
1400         * and RIFF::Exception independently, which usually shouldn't be
1401         * necessary though.
1402         */
1403      class Exception : public DLS::Exception {      class Exception : public DLS::Exception {
1404          public:          public:
1405              Exception(String Message);              Exception(String format, ...);
1406                Exception(String format, va_list arg);
1407              void PrintMessage();              void PrintMessage();
1408            protected:
1409                Exception();
1410      };      };
1411    
1412    #if HAVE_RTTI
1413        size_t enumCount(const std::type_info& type);
1414        const char* enumKey(const std::type_info& type, size_t value);
1415        bool        enumKey(const std::type_info& type, String key);
1416        const char** enumKeys(const std::type_info& type);
1417    #endif // HAVE_RTTI
1418        size_t enumCount(String typeName);
1419        const char* enumKey(String typeName, size_t value);
1420        bool        enumKey(String typeName, String key);
1421        const char** enumKeys(String typeName);
1422        size_t enumValue(String key);
1423    
1424        String libraryName();
1425        String libraryVersion();
1426    
1427  } // namespace gig  } // namespace gig
1428    
1429  #endif // __GIG_H__  #endif // __GIG_H__

Legend:
Removed from v.353  
changed lines
  Added in v.3324

  ViewVC Help
Powered by ViewVC