/[svn]/libgig/trunk/src/gig.h
ViewVC logotype

Contents of /libgig/trunk/src/gig.h

Parent Directory Parent Directory | Revision Log Revision Log


Revision 2639 - (show annotations) (download) (as text)
Mon Jun 16 13:22:50 2014 UTC (9 years, 9 months ago) by schoenebeck
File MIME type: text/x-c++hdr
File size: 75894 byte(s)
* gig.h/.cpp: Added new method Region::SetDimensionType().
* Bumped version (3.3.0.svn18).

1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file access library *
4 * *
5 * Copyright (C) 2003-2014 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #ifndef __GIG_H__
25 #define __GIG_H__
26
27 #include "DLS.h"
28 #include <vector>
29
30 #if WORDS_BIGENDIAN
31 # define LIST_TYPE_3PRG 0x33707267
32 # define LIST_TYPE_3EWL 0x3365776C
33 # define LIST_TYPE_3GRI 0x33677269
34 # define LIST_TYPE_3GNL 0x33676E6C
35 # define LIST_TYPE_3LS 0x334c5320 // own gig format extension
36 # define LIST_TYPE_RTIS 0x52544953 // own gig format extension
37 # define CHUNK_ID_3GIX 0x33676978
38 # define CHUNK_ID_3EWA 0x33657761
39 # define CHUNK_ID_3LNK 0x336C6E6B
40 # define CHUNK_ID_3EWG 0x33657767
41 # define CHUNK_ID_EWAV 0x65776176
42 # define CHUNK_ID_3GNM 0x33676E6D
43 # define CHUNK_ID_EINF 0x65696E66
44 # define CHUNK_ID_3CRC 0x33637263
45 # define CHUNK_ID_SCRI 0x53637269 // own gig format extension
46 # define CHUNK_ID_LSNM 0x4c534e4d // own gig format extension
47 # define CHUNK_ID_SCSL 0x5343534c // own gig format extension
48 #else // little endian
49 # define LIST_TYPE_3PRG 0x67727033
50 # define LIST_TYPE_3EWL 0x6C776533
51 # define LIST_TYPE_3GRI 0x69726733
52 # define LIST_TYPE_3GNL 0x6C6E6733
53 # define LIST_TYPE_3LS 0x20534c33 // own gig format extension
54 # define LIST_TYPE_RTIS 0x53495452 // own gig format extension
55 # define CHUNK_ID_3GIX 0x78696733
56 # define CHUNK_ID_3EWA 0x61776533
57 # define CHUNK_ID_3LNK 0x6B6E6C33
58 # define CHUNK_ID_3EWG 0x67776533
59 # define CHUNK_ID_EWAV 0x76617765
60 # define CHUNK_ID_3GNM 0x6D6E6733
61 # define CHUNK_ID_EINF 0x666E6965
62 # define CHUNK_ID_3CRC 0x63726333
63 # define CHUNK_ID_SCRI 0x69726353 // own gig format extension
64 # define CHUNK_ID_LSNM 0x4d4e534c // own gig format extension
65 # define CHUNK_ID_SCSL 0x4c534353 // own gig format extension
66 #endif // WORDS_BIGENDIAN
67
68 /** Gigasampler specific classes and definitions */
69 namespace gig {
70
71 typedef std::string String;
72
73 /** Lower and upper limit of a range. */
74 struct range_t {
75 uint8_t low; ///< Low value of range.
76 uint8_t high; ///< High value of range.
77 };
78
79 /** Pointer address and size of a buffer. */
80 struct buffer_t {
81 void* pStart; ///< Points to the beginning of the buffer.
82 unsigned long Size; ///< Size of the actual data in the buffer in bytes.
83 unsigned long NullExtensionSize; ///< The buffer might be bigger than the actual data, if that's the case that unused space at the end of the buffer is filled with NULLs and NullExtensionSize reflects that unused buffer space in bytes. Those NULL extensions are mandatory for differential algorithms that have to take the following data words into account, thus have to access past the buffer's boundary. If you don't know what I'm talking about, just forget this variable. :)
84 buffer_t() {
85 pStart = NULL;
86 Size = 0;
87 NullExtensionSize = 0;
88 }
89 };
90
91 /** Standard types of sample loops. */
92 typedef enum {
93 loop_type_normal = 0x00000000, ///< Loop forward (normal)
94 loop_type_bidirectional = 0x00000001, ///< Alternating loop (forward/backward, also known as Ping Pong)
95 loop_type_backward = 0x00000002 ///< Loop backward (reverse)
96 } loop_type_t;
97
98 /** Society of Motion Pictures and Television E time format. */
99 typedef enum {
100 smpte_format_no_offset = 0x00000000, ///< no SMPTE offset
101 smpte_format_24_frames = 0x00000018, ///< 24 frames per second
102 smpte_format_25_frames = 0x00000019, ///< 25 frames per second
103 smpte_format_30_frames_dropping = 0x0000001D, ///< 30 frames per second with frame dropping (30 drop)
104 smpte_format_30_frames = 0x0000001E ///< 30 frames per second
105 } smpte_format_t;
106
107 /** Defines the shape of a function graph. */
108 typedef enum {
109 curve_type_nonlinear = 0,
110 curve_type_linear = 1,
111 curve_type_special = 2,
112 curve_type_unknown = 0xffffffff
113 } curve_type_t;
114
115 /** Dimensions allow to bypass one of the following controllers. */
116 typedef enum {
117 dim_bypass_ctrl_none,
118 dim_bypass_ctrl_94, ///< Effect 4 Depth (MIDI Controller 94)
119 dim_bypass_ctrl_95 ///< Effect 5 Depth (MIDI Controller 95)
120 } dim_bypass_ctrl_t;
121
122 /** Defines how LFO3 is controlled by. */
123 typedef enum {
124 lfo3_ctrl_internal = 0x00, ///< Only internally controlled.
125 lfo3_ctrl_modwheel = 0x01, ///< Only controlled by external modulation wheel.
126 lfo3_ctrl_aftertouch = 0x02, ///< Only controlled by aftertouch controller.
127 lfo3_ctrl_internal_modwheel = 0x03, ///< Controlled internally and by external modulation wheel.
128 lfo3_ctrl_internal_aftertouch = 0x04 ///< Controlled internally and by aftertouch controller.
129 } lfo3_ctrl_t;
130
131 /** Defines how LFO2 is controlled by. */
132 typedef enum {
133 lfo2_ctrl_internal = 0x00, ///< Only internally controlled.
134 lfo2_ctrl_modwheel = 0x01, ///< Only controlled by external modulation wheel.
135 lfo2_ctrl_foot = 0x02, ///< Only controlled by external foot controller.
136 lfo2_ctrl_internal_modwheel = 0x03, ///< Controlled internally and by external modulation wheel.
137 lfo2_ctrl_internal_foot = 0x04 ///< Controlled internally and by external foot controller.
138 } lfo2_ctrl_t;
139
140 /** Defines how LFO1 is controlled by. */
141 typedef enum {
142 lfo1_ctrl_internal = 0x00, ///< Only internally controlled.
143 lfo1_ctrl_modwheel = 0x01, ///< Only controlled by external modulation wheel.
144 lfo1_ctrl_breath = 0x02, ///< Only controlled by external breath controller.
145 lfo1_ctrl_internal_modwheel = 0x03, ///< Controlled internally and by external modulation wheel.
146 lfo1_ctrl_internal_breath = 0x04 ///< Controlled internally and by external breath controller.
147 } lfo1_ctrl_t;
148
149 /** Defines how the filter cutoff frequency is controlled by. */
150 typedef enum {
151 vcf_cutoff_ctrl_none = 0x00,
152 vcf_cutoff_ctrl_none2 = 0x01, ///< The difference between none and none2 is unknown
153 vcf_cutoff_ctrl_modwheel = 0x81, ///< Modulation Wheel (MIDI Controller 1)
154 vcf_cutoff_ctrl_effect1 = 0x8c, ///< Effect Controller 1 (Coarse, MIDI Controller 12)
155 vcf_cutoff_ctrl_effect2 = 0x8d, ///< Effect Controller 2 (Coarse, MIDI Controller 13)
156 vcf_cutoff_ctrl_breath = 0x82, ///< Breath Controller (Coarse, MIDI Controller 2)
157 vcf_cutoff_ctrl_foot = 0x84, ///< Foot Pedal (Coarse, MIDI Controller 4)
158 vcf_cutoff_ctrl_sustainpedal = 0xc0, ///< Sustain Pedal (MIDI Controller 64)
159 vcf_cutoff_ctrl_softpedal = 0xc3, ///< Soft Pedal (MIDI Controller 67)
160 vcf_cutoff_ctrl_genpurpose7 = 0xd2, ///< General Purpose Controller 7 (Button, MIDI Controller 82)
161 vcf_cutoff_ctrl_genpurpose8 = 0xd3, ///< General Purpose Controller 8 (Button, MIDI Controller 83)
162 vcf_cutoff_ctrl_aftertouch = 0x80 ///< Key Pressure
163 } vcf_cutoff_ctrl_t;
164
165 /** Defines how the filter resonance is controlled by. */
166 typedef enum {
167 vcf_res_ctrl_none = 0xffffffff,
168 vcf_res_ctrl_genpurpose3 = 0, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
169 vcf_res_ctrl_genpurpose4 = 1, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
170 vcf_res_ctrl_genpurpose5 = 2, ///< General Purpose Controller 5 (Button, MIDI Controller 80)
171 vcf_res_ctrl_genpurpose6 = 3 ///< General Purpose Controller 6 (Button, MIDI Controller 81)
172 } vcf_res_ctrl_t;
173
174 /**
175 * Defines a controller that has a certain contrained influence on a
176 * particular synthesis parameter (used to define attenuation controller,
177 * EG1 controller and EG2 controller).
178 *
179 * You should use the respective <i>typedef</i> (means either
180 * attenuation_ctrl_t, eg1_ctrl_t or eg2_ctrl_t) in your code!
181 */
182 struct leverage_ctrl_t {
183 typedef enum {
184 type_none = 0x00, ///< No controller defined
185 type_channelaftertouch = 0x2f, ///< Channel Key Pressure
186 type_velocity = 0xff, ///< Key Velocity
187 type_controlchange = 0xfe ///< Ordinary MIDI control change controller, see field 'controller_number'
188 } type_t;
189
190 type_t type; ///< Controller type
191 uint controller_number; ///< MIDI controller number if this controller is a control change controller, 0 otherwise
192 };
193
194 /**
195 * Defines controller influencing attenuation.
196 *
197 * @see leverage_ctrl_t
198 */
199 typedef leverage_ctrl_t attenuation_ctrl_t;
200
201 /**
202 * Defines controller influencing envelope generator 1.
203 *
204 * @see leverage_ctrl_t
205 */
206 typedef leverage_ctrl_t eg1_ctrl_t;
207
208 /**
209 * Defines controller influencing envelope generator 2.
210 *
211 * @see leverage_ctrl_t
212 */
213 typedef leverage_ctrl_t eg2_ctrl_t;
214
215 /**
216 * Defines the type of dimension, that is how the dimension zones (and
217 * thus how the dimension regions are selected by. The number of
218 * dimension zones is always a power of two. All dimensions can have up
219 * to 32 zones (except the layer dimension with only up to 8 zones and
220 * the samplechannel dimension which currently allows only 2 zones).
221 */
222 typedef enum {
223 dimension_none = 0x00, ///< Dimension not in use.
224 dimension_samplechannel = 0x80, ///< If used sample has more than one channel (thus is not mono).
225 dimension_layer = 0x81, ///< For layering of up to 8 instruments (and eventually crossfading of 2 or 4 layers).
226 dimension_velocity = 0x82, ///< Key Velocity (this is the only dimension in gig2 where the ranges can exactly be defined).
227 dimension_channelaftertouch = 0x83, ///< Channel Key Pressure
228 dimension_releasetrigger = 0x84, ///< Special dimension for triggering samples on releasing a key.
229 dimension_keyboard = 0x85, ///< Dimension for keyswitching
230 dimension_roundrobin = 0x86, ///< Different samples triggered each time a note is played, dimension regions selected in sequence
231 dimension_random = 0x87, ///< Different samples triggered each time a note is played, random order
232 dimension_smartmidi = 0x88, ///< For MIDI tools like legato and repetition mode
233 dimension_roundrobinkeyboard = 0x89, ///< Different samples triggered each time a note is played, any key advances the counter
234 dimension_modwheel = 0x01, ///< Modulation Wheel (MIDI Controller 1)
235 dimension_breath = 0x02, ///< Breath Controller (Coarse, MIDI Controller 2)
236 dimension_foot = 0x04, ///< Foot Pedal (Coarse, MIDI Controller 4)
237 dimension_portamentotime = 0x05, ///< Portamento Time (Coarse, MIDI Controller 5)
238 dimension_effect1 = 0x0c, ///< Effect Controller 1 (Coarse, MIDI Controller 12)
239 dimension_effect2 = 0x0d, ///< Effect Controller 2 (Coarse, MIDI Controller 13)
240 dimension_genpurpose1 = 0x10, ///< General Purpose Controller 1 (Slider, MIDI Controller 16)
241 dimension_genpurpose2 = 0x11, ///< General Purpose Controller 2 (Slider, MIDI Controller 17)
242 dimension_genpurpose3 = 0x12, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
243 dimension_genpurpose4 = 0x13, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
244 dimension_sustainpedal = 0x40, ///< Sustain Pedal (MIDI Controller 64)
245 dimension_portamento = 0x41, ///< Portamento (MIDI Controller 65)
246 dimension_sostenutopedal = 0x42, ///< Sostenuto Pedal (MIDI Controller 66)
247 dimension_softpedal = 0x43, ///< Soft Pedal (MIDI Controller 67)
248 dimension_genpurpose5 = 0x30, ///< General Purpose Controller 5 (Button, MIDI Controller 80)
249 dimension_genpurpose6 = 0x31, ///< General Purpose Controller 6 (Button, MIDI Controller 81)
250 dimension_genpurpose7 = 0x32, ///< General Purpose Controller 7 (Button, MIDI Controller 82)
251 dimension_genpurpose8 = 0x33, ///< General Purpose Controller 8 (Button, MIDI Controller 83)
252 dimension_effect1depth = 0x5b, ///< Effect 1 Depth (MIDI Controller 91)
253 dimension_effect2depth = 0x5c, ///< Effect 2 Depth (MIDI Controller 92)
254 dimension_effect3depth = 0x5d, ///< Effect 3 Depth (MIDI Controller 93)
255 dimension_effect4depth = 0x5e, ///< Effect 4 Depth (MIDI Controller 94)
256 dimension_effect5depth = 0x5f ///< Effect 5 Depth (MIDI Controller 95)
257 } dimension_t;
258
259 /**
260 * Intended for internal usage: will be used to convert a dimension value
261 * into the corresponding dimension bit number.
262 */
263 typedef enum {
264 split_type_normal, ///< dimension value between 0-127
265 split_type_bit ///< dimension values are already the sought bit number
266 } split_type_t;
267
268 /** General dimension definition. */
269 struct dimension_def_t {
270 dimension_t dimension; ///< Specifies which source (usually a MIDI controller) is associated with the dimension.
271 uint8_t bits; ///< Number of "bits" (1 bit = 2 splits/zones, 2 bit = 4 splits/zones, 3 bit = 8 splits/zones,...).
272 uint8_t zones; ///< Number of zones the dimension has.
273 split_type_t split_type; ///< Intended for internal usage: will be used to convert a dimension value into the corresponding dimension bit number.
274 float zone_size; ///< Intended for internal usage: reflects the size of each zone (128/zones) for normal split types only, 0 otherwise.
275 };
276
277 /** Defines which frequencies are filtered by the VCF. */
278 typedef enum {
279 vcf_type_lowpass = 0x00,
280 vcf_type_lowpassturbo = 0xff, ///< More poles than normal lowpass
281 vcf_type_bandpass = 0x01,
282 vcf_type_highpass = 0x02,
283 vcf_type_bandreject = 0x03
284 } vcf_type_t;
285
286 /**
287 * Defines the envelope of a crossfade.
288 *
289 * Note: The default value for crossfade points is 0,0,0,0. Layers with
290 * such a default value should be treated as if they would not have a
291 * crossfade.
292 */
293 struct crossfade_t {
294 #if WORDS_BIGENDIAN
295 uint8_t out_end; ///< End postition of fade out.
296 uint8_t out_start; ///< Start position of fade out.
297 uint8_t in_end; ///< End position of fade in.
298 uint8_t in_start; ///< Start position of fade in.
299 #else // little endian
300 uint8_t in_start; ///< Start position of fade in.
301 uint8_t in_end; ///< End position of fade in.
302 uint8_t out_start; ///< Start position of fade out.
303 uint8_t out_end; ///< End postition of fade out.
304 #endif // WORDS_BIGENDIAN
305 };
306
307 /** Reflects the current playback state for a sample. */
308 struct playback_state_t {
309 unsigned long position; ///< Current position within the sample.
310 bool reverse; ///< If playback direction is currently backwards (in case there is a pingpong or reverse loop defined).
311 unsigned long loop_cycles_left; ///< How many times the loop has still to be passed, this value will be decremented with each loop cycle.
312 };
313
314 /**
315 * @brief Used for indicating the progress of a certain task.
316 *
317 * The function pointer argument has to be supplied with a valid
318 * function of the given signature which will then be called on
319 * progress changes. An equivalent progress_t structure will be passed
320 * back as argument to the callback function on each progress change.
321 * The factor field of the supplied progress_t structure will then
322 * reflect the current progress as value between 0.0 and 1.0. You might
323 * want to use the custom field for data needed in your callback
324 * function.
325 */
326 struct progress_t {
327 void (*callback)(progress_t*); ///< Callback function pointer which has to be assigned to a function for progress notification.
328 float factor; ///< Reflects current progress as value between 0.0 and 1.0.
329 void* custom; ///< This pointer can be used for arbitrary data.
330 float __range_min; ///< Only for internal usage, do not modify!
331 float __range_max; ///< Only for internal usage, do not modify!
332 progress_t();
333 };
334
335 // just symbol prototyping
336 class File;
337 class Instrument;
338 class Sample;
339 class Region;
340 class Group;
341 class Script;
342 class ScriptGroup;
343
344 /** @brief Encapsulates articulation information of a dimension region.
345 *
346 * Every Gigasampler Instrument has at least one dimension region
347 * (exactly then when it has no dimension defined).
348 *
349 * Gigasampler provides three Envelope Generators and Low Frequency
350 * Oscillators:
351 *
352 * - EG1 and LFO1, both controlling sample amplitude
353 * - EG2 and LFO2, both controlling filter cutoff frequency
354 * - EG3 and LFO3, both controlling sample pitch
355 */
356 class DimensionRegion : protected DLS::Sampler {
357 public:
358 uint8_t VelocityUpperLimit; ///< Defines the upper velocity value limit of a velocity split (only if an user defined limit was set, thus a value not equal to 128/NumberOfSplits, else this value is 0). Only for gig2, for gig3 and above the DimensionUpperLimits are used instead.
359 Sample* pSample; ///< Points to the Sample which is assigned to the dimension region.
360 // Sample Amplitude EG/LFO
361 uint16_t EG1PreAttack; ///< Preattack value of the sample amplitude EG (0 - 1000 permille).
362 double EG1Attack; ///< Attack time of the sample amplitude EG (0.000 - 60.000s).
363 double EG1Decay1; ///< Decay time of the sample amplitude EG (0.000 - 60.000s).
364 double EG1Decay2; ///< Only if <i>EG1InfiniteSustain == false</i>: 2nd decay stage time of the sample amplitude EG (0.000 - 60.000s).
365 bool EG1InfiniteSustain; ///< If <i>true</i>, instead of going into Decay2 phase, Decay1 level will be hold until note will be released.
366 uint16_t EG1Sustain; ///< Sustain value of the sample amplitude EG (0 - 1000 permille).
367 double EG1Release; ///< Release time of the sample amplitude EG (0.000 - 60.000s).
368 bool EG1Hold; ///< If <i>true</i>, Decay1 stage should be postponed until the sample reached the sample loop start.
369 eg1_ctrl_t EG1Controller; ///< MIDI Controller which has influence on sample amplitude EG parameters (attack, decay, release).
370 bool EG1ControllerInvert; ///< Invert values coming from defined EG1 controller.
371 uint8_t EG1ControllerAttackInfluence; ///< Amount EG1 Controller has influence on the EG1 Attack time (0 - 3, where 0 means off).
372 uint8_t EG1ControllerDecayInfluence; ///< Amount EG1 Controller has influence on the EG1 Decay time (0 - 3, where 0 means off).
373 uint8_t EG1ControllerReleaseInfluence; ///< Amount EG1 Controller has influence on the EG1 Release time (0 - 3, where 0 means off).
374 double LFO1Frequency; ///< Frequency of the sample amplitude LFO (0.10 - 10.00 Hz).
375 uint16_t LFO1InternalDepth; ///< Firm pitch of the sample amplitude LFO (0 - 1200 cents).
376 uint16_t LFO1ControlDepth; ///< Controller depth influencing sample amplitude LFO pitch (0 - 1200 cents).
377 lfo1_ctrl_t LFO1Controller; ///< MIDI Controller which controls sample amplitude LFO.
378 bool LFO1FlipPhase; ///< Inverts phase of the sample amplitude LFO wave.
379 bool LFO1Sync; ///< If set to <i>true</i> only one LFO should be used for all voices.
380 // Filter Cutoff Frequency EG/LFO
381 uint16_t EG2PreAttack; ///< Preattack value of the filter cutoff EG (0 - 1000 permille).
382 double EG2Attack; ///< Attack time of the filter cutoff EG (0.000 - 60.000s).
383 double EG2Decay1; ///< Decay time of the filter cutoff EG (0.000 - 60.000s).
384 double EG2Decay2; ///< Only if <i>EG2InfiniteSustain == false</i>: 2nd stage decay time of the filter cutoff EG (0.000 - 60.000s).
385 bool EG2InfiniteSustain; ///< If <i>true</i>, instead of going into Decay2 phase, Decay1 level will be hold until note will be released.
386 uint16_t EG2Sustain; ///< Sustain value of the filter cutoff EG (0 - 1000 permille).
387 double EG2Release; ///< Release time of the filter cutoff EG (0.000 - 60.000s).
388 eg2_ctrl_t EG2Controller; ///< MIDI Controller which has influence on filter cutoff EG parameters (attack, decay, release).
389 bool EG2ControllerInvert; ///< Invert values coming from defined EG2 controller.
390 uint8_t EG2ControllerAttackInfluence; ///< Amount EG2 Controller has influence on the EG2 Attack time (0 - 3, where 0 means off).
391 uint8_t EG2ControllerDecayInfluence; ///< Amount EG2 Controller has influence on the EG2 Decay time (0 - 3, where 0 means off).
392 uint8_t EG2ControllerReleaseInfluence; ///< Amount EG2 Controller has influence on the EG2 Release time (0 - 3, where 0 means off).
393 double LFO2Frequency; ///< Frequency of the filter cutoff LFO (0.10 - 10.00 Hz).
394 uint16_t LFO2InternalDepth; ///< Firm pitch of the filter cutoff LFO (0 - 1200 cents).
395 uint16_t LFO2ControlDepth; ///< Controller depth influencing filter cutoff LFO pitch (0 - 1200).
396 lfo2_ctrl_t LFO2Controller; ///< MIDI Controlle which controls the filter cutoff LFO.
397 bool LFO2FlipPhase; ///< Inverts phase of the filter cutoff LFO wave.
398 bool LFO2Sync; ///< If set to <i>true</i> only one LFO should be used for all voices.
399 // Sample Pitch EG/LFO
400 double EG3Attack; ///< Attack time of the sample pitch EG (0.000 - 10.000s).
401 int16_t EG3Depth; ///< Depth of the sample pitch EG (-1200 - +1200).
402 double LFO3Frequency; ///< Frequency of the sample pitch LFO (0.10 - 10.00 Hz).
403 int16_t LFO3InternalDepth; ///< Firm depth of the sample pitch LFO (-1200 - +1200 cents).
404 int16_t LFO3ControlDepth; ///< Controller depth of the sample pitch LFO (-1200 - +1200 cents).
405 lfo3_ctrl_t LFO3Controller; ///< MIDI Controller which controls the sample pitch LFO.
406 bool LFO3Sync; ///< If set to <i>true</i> only one LFO should be used for all voices.
407 // Filter
408 bool VCFEnabled; ///< If filter should be used.
409 vcf_type_t VCFType; ///< Defines the general filter characteristic (lowpass, highpass, bandpass, etc.).
410 vcf_cutoff_ctrl_t VCFCutoffController; ///< Specifies which external controller has influence on the filter cutoff frequency. @deprecated Don't alter directly, use SetVCFCutoffController() instead!
411 bool VCFCutoffControllerInvert; ///< Inverts values coming from the defined cutoff controller
412 uint8_t VCFCutoff; ///< Max. cutoff frequency.
413 curve_type_t VCFVelocityCurve; ///< Defines a transformation curve for the incoming velocity values, affecting the VCF. @deprecated Don't alter directly, use SetVCFVelocityCurve() instead!
414 uint8_t VCFVelocityScale; ///< (0-127) Amount velocity controls VCF cutoff frequency (only if no other VCF cutoff controller is defined, otherwise this is the minimum cutoff). @deprecated Don't alter directly, use SetVCFVelocityScale() instead!
415 uint8_t VCFVelocityDynamicRange; ///< 0x04 = lowest, 0x00 = highest . @deprecated Don't alter directly, use SetVCFVelocityDynamicRange() instead!
416 uint8_t VCFResonance; ///< Firm internal filter resonance weight.
417 bool VCFResonanceDynamic; ///< If <i>true</i>: Increases the resonance Q according to changes of controllers that actually control the VCF cutoff frequency (EG2, ext. VCF MIDI controller).
418 vcf_res_ctrl_t VCFResonanceController; ///< Specifies which external controller has influence on the filter resonance Q.
419 bool VCFKeyboardTracking; ///< If <i>true</i>: VCF cutoff frequence will be dependend to the note key position relative to the defined breakpoint value.
420 uint8_t VCFKeyboardTrackingBreakpoint; ///< See VCFKeyboardTracking (0 - 127).
421 // Key Velocity Transformations
422 curve_type_t VelocityResponseCurve; ///< Defines a transformation curve to the incoming velocity values affecting amplitude (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseCurve() instead!
423 uint8_t VelocityResponseDepth; ///< Dynamic range of velocity affecting amplitude (0 - 4) (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseDepth() instead!
424 uint8_t VelocityResponseCurveScaling; ///< 0 - 127 (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseCurveScaling() instead!
425 curve_type_t ReleaseVelocityResponseCurve; ///< Defines a transformation curve to the incoming release veloctiy values affecting envelope times. @deprecated Don't alter directly, use SetReleaseVelocityResponseCurve() instead!
426 uint8_t ReleaseVelocityResponseDepth; ///< Dynamic range of release velocity affecting envelope time (0 - 4). @deprecated Don't alter directly, use SetReleaseVelocityResponseDepth() instead!
427 uint8_t ReleaseTriggerDecay; ///< 0 - 8
428 // Mix / Layer
429 crossfade_t Crossfade;
430 bool PitchTrack; ///< If <i>true</i>: sample will be pitched according to the key position (this will be disabled for drums for example).
431 dim_bypass_ctrl_t DimensionBypass; ///< If defined, the MIDI controller can switch on/off the dimension in realtime.
432 int8_t Pan; ///< Panorama / Balance (-64..0..63 <-> left..middle..right)
433 bool SelfMask; ///< If <i>true</i>: high velocity notes will stop low velocity notes at the same note, with that you can save voices that wouldn't be audible anyway.
434 attenuation_ctrl_t AttenuationController; ///< MIDI Controller which has influence on the volume level of the sample (or entire sample group).
435 bool InvertAttenuationController; ///< Inverts the values coming from the defined Attenuation Controller.
436 uint8_t AttenuationControllerThreshold;///< 0-127
437 uint8_t ChannelOffset; ///< Audio output where the audio signal of the dimension region should be routed to (0 - 9).
438 bool SustainDefeat; ///< If <i>true</i>: Sustain pedal will not hold a note.
439 bool MSDecode; ///< Gigastudio flag: defines if Mid Side Recordings should be decoded.
440 uint16_t SampleStartOffset; ///< Number of samples the sample start should be moved (0 - 2000).
441 double SampleAttenuation; ///< Sample volume (calculated from DLS::Sampler::Gain)
442 uint8_t DimensionUpperLimits[8]; ///< gig3: defines the upper limit of the dimension values for this dimension region. In case you wondered why this is defined on DimensionRegion level and not on Region level: the zone sizes (upper limits) of the velocity dimension can indeed differ in the individual dimension regions, depending on which zones of the other dimension types are currently selected. So this is exceptional for the velocity dimension only. All other dimension types have the same dimension zone sizes for every single DimensionRegion (of the sample Region).
443
444 // derived attributes from DLS::Sampler
445 using DLS::Sampler::UnityNote;
446 using DLS::Sampler::FineTune;
447 using DLS::Sampler::Gain;
448 using DLS::Sampler::SampleLoops;
449 using DLS::Sampler::pSampleLoops;
450
451 // own methods
452 double GetVelocityAttenuation(uint8_t MIDIKeyVelocity);
453 double GetVelocityRelease(uint8_t MIDIKeyVelocity);
454 double GetVelocityCutoff(uint8_t MIDIKeyVelocity);
455 void SetVelocityResponseCurve(curve_type_t curve);
456 void SetVelocityResponseDepth(uint8_t depth);
457 void SetVelocityResponseCurveScaling(uint8_t scaling);
458 void SetReleaseVelocityResponseCurve(curve_type_t curve);
459 void SetReleaseVelocityResponseDepth(uint8_t depth);
460 void SetVCFCutoffController(vcf_cutoff_ctrl_t controller);
461 void SetVCFVelocityCurve(curve_type_t curve);
462 void SetVCFVelocityDynamicRange(uint8_t range);
463 void SetVCFVelocityScale(uint8_t scaling);
464 Region* GetParent() const;
465 // derived methods
466 using DLS::Sampler::AddSampleLoop;
467 using DLS::Sampler::DeleteSampleLoop;
468 // overridden methods
469 virtual void SetGain(int32_t gain);
470 virtual void UpdateChunks();
471 virtual void CopyAssign(const DimensionRegion* orig);
472 protected:
473 uint8_t* VelocityTable; ///< For velocity dimensions with custom defined zone ranges only: used for fast converting from velocity MIDI value to dimension bit number.
474 DimensionRegion(Region* pParent, RIFF::List* _3ewl);
475 DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src);
476 ~DimensionRegion();
477 void CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples);
478 friend class Region;
479 private:
480 typedef enum { ///< Used to decode attenuation, EG1 and EG2 controller
481 // official leverage controllers as they were defined in the original Gigasampler/GigaStudio format:
482 _lev_ctrl_none = 0x00,
483 _lev_ctrl_modwheel = 0x03, ///< Modulation Wheel (MIDI Controller 1)
484 _lev_ctrl_breath = 0x05, ///< Breath Controller (Coarse, MIDI Controller 2)
485 _lev_ctrl_foot = 0x07, ///< Foot Pedal (Coarse, MIDI Controller 4)
486 _lev_ctrl_effect1 = 0x0d, ///< Effect Controller 1 (Coarse, MIDI Controller 12)
487 _lev_ctrl_effect2 = 0x0f, ///< Effect Controller 2 (Coarse, MIDI Controller 13)
488 _lev_ctrl_genpurpose1 = 0x11, ///< General Purpose Controller 1 (Slider, MIDI Controller 16)
489 _lev_ctrl_genpurpose2 = 0x13, ///< General Purpose Controller 2 (Slider, MIDI Controller 17)
490 _lev_ctrl_genpurpose3 = 0x15, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
491 _lev_ctrl_genpurpose4 = 0x17, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
492 _lev_ctrl_portamentotime = 0x0b, ///< Portamento Time (Coarse, MIDI Controller 5)
493 _lev_ctrl_sustainpedal = 0x01, ///< Sustain Pedal (MIDI Controller 64)
494 _lev_ctrl_portamento = 0x19, ///< Portamento (MIDI Controller 65)
495 _lev_ctrl_sostenutopedal = 0x1b, ///< Sostenuto Pedal (MIDI Controller 66)
496 _lev_ctrl_softpedal = 0x09, ///< Soft Pedal (MIDI Controller 67)
497 _lev_ctrl_genpurpose5 = 0x1d, ///< General Purpose Controller 5 (Button, MIDI Controller 80)
498 _lev_ctrl_genpurpose6 = 0x1f, ///< General Purpose Controller 6 (Button, MIDI Controller 81)
499 _lev_ctrl_genpurpose7 = 0x21, ///< General Purpose Controller 7 (Button, MIDI Controller 82)
500 _lev_ctrl_genpurpose8 = 0x23, ///< General Purpose Controller 8 (Button, MIDI Controller 83)
501 _lev_ctrl_effect1depth = 0x25, ///< Effect 1 Depth (MIDI Controller 91)
502 _lev_ctrl_effect2depth = 0x27, ///< Effect 2 Depth (MIDI Controller 92)
503 _lev_ctrl_effect3depth = 0x29, ///< Effect 3 Depth (MIDI Controller 93)
504 _lev_ctrl_effect4depth = 0x2b, ///< Effect 4 Depth (MIDI Controller 94)
505 _lev_ctrl_effect5depth = 0x2d, ///< Effect 5 Depth (MIDI Controller 95)
506 _lev_ctrl_channelaftertouch = 0x2f, ///< Channel Key Pressure
507 _lev_ctrl_velocity = 0xff, ///< Key Velocity
508
509 // format extension (these controllers are so far only supported by LinuxSampler & gigedit) they will *NOT* work with Gigasampler/GigaStudio !
510 // (the assigned values here are their official MIDI CC number plus the highest bit set):
511 _lev_ctrl_CC3_EXT = 0x83, ///< MIDI Controller 3 [gig format extension]
512
513 _lev_ctrl_CC6_EXT = 0x86, ///< Data Entry MSB (MIDI Controller 6) [gig format extension]
514 _lev_ctrl_CC7_EXT = 0x87, ///< Channel Volume (MIDI Controller 7) [gig format extension]
515 _lev_ctrl_CC8_EXT = 0x88, ///< Balance (MIDI Controller 8) [gig format extension]
516 _lev_ctrl_CC9_EXT = 0x89, ///< MIDI Controller 9 [gig format extension]
517 _lev_ctrl_CC10_EXT = 0x8a, ///< Pan (MIDI Controller 10) [gig format extension]
518 _lev_ctrl_CC11_EXT = 0x8b, ///< Expression Controller (MIDI Controller 11) [gig format extension]
519
520 _lev_ctrl_CC14_EXT = 0x8e, ///< MIDI Controller 14 [gig format extension]
521 _lev_ctrl_CC15_EXT = 0x8f, ///< MIDI Controller 15 [gig format extension]
522
523 _lev_ctrl_CC20_EXT = 0x94, ///< MIDI Controller 20 [gig format extension]
524 _lev_ctrl_CC21_EXT = 0x95, ///< MIDI Controller 21 [gig format extension]
525 _lev_ctrl_CC22_EXT = 0x96, ///< MIDI Controller 22 [gig format extension]
526 _lev_ctrl_CC23_EXT = 0x97, ///< MIDI Controller 23 [gig format extension]
527 _lev_ctrl_CC24_EXT = 0x98, ///< MIDI Controller 24 [gig format extension]
528 _lev_ctrl_CC25_EXT = 0x99, ///< MIDI Controller 25 [gig format extension]
529 _lev_ctrl_CC26_EXT = 0x9a, ///< MIDI Controller 26 [gig format extension]
530 _lev_ctrl_CC27_EXT = 0x9b, ///< MIDI Controller 27 [gig format extension]
531 _lev_ctrl_CC28_EXT = 0x9c, ///< MIDI Controller 28 [gig format extension]
532 _lev_ctrl_CC29_EXT = 0x9d, ///< MIDI Controller 29 [gig format extension]
533 _lev_ctrl_CC30_EXT = 0x9e, ///< MIDI Controller 30 [gig format extension]
534 _lev_ctrl_CC31_EXT = 0x9f, ///< MIDI Controller 31 [gig format extension]
535
536 _lev_ctrl_CC68_EXT = 0xc4, ///< Legato Footswitch (MIDI Controller 68) [gig format extension]
537 _lev_ctrl_CC69_EXT = 0xc5, ///< Hold 2 (MIDI Controller 69) [gig format extension]
538 _lev_ctrl_CC70_EXT = 0xc6, ///< Sound Ctrl. 1 - Sound Variation (MIDI Controller 70) [gig format extension]
539 _lev_ctrl_CC71_EXT = 0xc7, ///< Sound Ctrl. 2 - Timbre (MIDI Controller 71) [gig format extension]
540 _lev_ctrl_CC72_EXT = 0xc8, ///< Sound Ctrl. 3 - Release Time (MIDI Controller 72) [gig format extension]
541 _lev_ctrl_CC73_EXT = 0xc9, ///< Sound Ctrl. 4 - Attack Time (MIDI Controller 73) [gig format extension]
542 _lev_ctrl_CC74_EXT = 0xca, ///< Sound Ctrl. 5 - Brightness (MIDI Controller 74) [gig format extension]
543 _lev_ctrl_CC75_EXT = 0xcb, ///< Sound Ctrl. 6 - Decay Time (MIDI Controller 75) [gig format extension]
544 _lev_ctrl_CC76_EXT = 0xcc, ///< Sound Ctrl. 7 - Vibrato Rate (MIDI Controller 76) [gig format extension]
545 _lev_ctrl_CC77_EXT = 0xcd, ///< Sound Ctrl. 8 - Vibrato Depth (MIDI Controller 77) [gig format extension]
546 _lev_ctrl_CC78_EXT = 0xce, ///< Sound Ctrl. 9 - Vibrato Delay (MIDI Controller 78) [gig format extension]
547 _lev_ctrl_CC79_EXT = 0xcf, ///< Sound Ctrl. 10 (MIDI Controller 79) [gig format extension]
548
549 _lev_ctrl_CC84_EXT = 0xd4, ///< Portamento Control (MIDI Controller 84) [gig format extension]
550 _lev_ctrl_CC85_EXT = 0xd5, ///< MIDI Controller 85 [gig format extension]
551 _lev_ctrl_CC86_EXT = 0xd6, ///< MIDI Controller 86 [gig format extension]
552 _lev_ctrl_CC87_EXT = 0xd7, ///< MIDI Controller 87 [gig format extension]
553
554 _lev_ctrl_CC89_EXT = 0xd9, ///< MIDI Controller 89 [gig format extension]
555 _lev_ctrl_CC90_EXT = 0xda, ///< MIDI Controller 90 [gig format extension]
556
557 _lev_ctrl_CC96_EXT = 0xe0, ///< Data Increment (MIDI Controller 96) [gig format extension]
558 _lev_ctrl_CC97_EXT = 0xe1, ///< Data Decrement (MIDI Controller 97) [gig format extension]
559
560 _lev_ctrl_CC102_EXT = 0xe6, ///< MIDI Controller 102 [gig format extension]
561 _lev_ctrl_CC103_EXT = 0xe7, ///< MIDI Controller 103 [gig format extension]
562 _lev_ctrl_CC104_EXT = 0xe8, ///< MIDI Controller 104 [gig format extension]
563 _lev_ctrl_CC105_EXT = 0xe9, ///< MIDI Controller 105 [gig format extension]
564 _lev_ctrl_CC106_EXT = 0xea, ///< MIDI Controller 106 [gig format extension]
565 _lev_ctrl_CC107_EXT = 0xeb, ///< MIDI Controller 107 [gig format extension]
566 _lev_ctrl_CC108_EXT = 0xec, ///< MIDI Controller 108 [gig format extension]
567 _lev_ctrl_CC109_EXT = 0xed, ///< MIDI Controller 109 [gig format extension]
568 _lev_ctrl_CC110_EXT = 0xee, ///< MIDI Controller 110 [gig format extension]
569 _lev_ctrl_CC111_EXT = 0xef, ///< MIDI Controller 111 [gig format extension]
570 _lev_ctrl_CC112_EXT = 0xf0, ///< MIDI Controller 112 [gig format extension]
571 _lev_ctrl_CC113_EXT = 0xf1, ///< MIDI Controller 113 [gig format extension]
572 _lev_ctrl_CC114_EXT = 0xf2, ///< MIDI Controller 114 [gig format extension]
573 _lev_ctrl_CC115_EXT = 0xf3, ///< MIDI Controller 115 [gig format extension]
574 _lev_ctrl_CC116_EXT = 0xf4, ///< MIDI Controller 116 [gig format extension]
575 _lev_ctrl_CC117_EXT = 0xf5, ///< MIDI Controller 117 [gig format extension]
576 _lev_ctrl_CC118_EXT = 0xf6, ///< MIDI Controller 118 [gig format extension]
577 _lev_ctrl_CC119_EXT = 0xf7 ///< MIDI Controller 119 [gig format extension]
578 } _lev_ctrl_t;
579 typedef std::map<uint32_t, double*> VelocityTableMap;
580
581 static uint Instances; ///< Number of DimensionRegion instances.
582 static VelocityTableMap* pVelocityTables; ///< Contains the tables corresponding to the various velocity parameters (VelocityResponseCurve and VelocityResponseDepth).
583 double* pVelocityAttenuationTable; ///< Points to the velocity table corresponding to the velocity parameters of this DimensionRegion.
584 double* pVelocityReleaseTable; ///< Points to the velocity table corresponding to the release velocity parameters of this DimensionRegion
585 double* pVelocityCutoffTable; ///< Points to the velocity table corresponding to the filter velocity parameters of this DimensionRegion
586 Region* pRegion;
587
588 leverage_ctrl_t DecodeLeverageController(_lev_ctrl_t EncodedController);
589 _lev_ctrl_t EncodeLeverageController(leverage_ctrl_t DecodedController);
590 double* GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth);
591 double* GetCutoffVelocityTable(curve_type_t vcfVelocityCurve, uint8_t vcfVelocityDynamicRange, uint8_t vcfVelocityScale, vcf_cutoff_ctrl_t vcfCutoffController);
592 double* GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);
593 double* CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);
594 };
595
596 /** @brief Encapsulates sample waves used for playback.
597 *
598 * In case you created a new sample with File::AddSample(), you should
599 * first update all attributes with the desired meta informations
600 * (amount of channels, bit depth, sample rate, etc.), then call
601 * Resize() with the desired sample size, followed by File::Save(), this
602 * will create the mandatory RIFF chunk which will hold the sample wave
603 * data and / or resize the file so you will be able to Write() the
604 * sample data directly to disk.
605 *
606 * @e Caution: for gig synthesis, most looping relevant information are
607 * retrieved from the respective DimensionRegon instead from the Sample
608 * itself. This was made for allowing different loop definitions for the
609 * same sample under different conditions.
610 */
611 class Sample : public DLS::Sample {
612 public:
613 uint32_t Manufacturer; ///< Specifies the MIDI Manufacturer's Association (MMA) Manufacturer code for the sampler intended to receive this file's waveform. If no particular manufacturer is to be specified, a value of 0 should be used.
614 uint32_t Product; ///< Specifies the MIDI model ID defined by the manufacturer corresponding to the Manufacturer field. If no particular manufacturer's product is to be specified, a value of 0 should be used.
615 uint32_t SamplePeriod; ///< Specifies the duration of time that passes during the playback of one sample in nanoseconds (normally equal to 1 / Samples Per Second, where Samples Per Second is the value found in the format chunk), don't bother to update this attribute, it won't be saved.
616 uint32_t MIDIUnityNote; ///< Specifies the musical note at which the sample will be played at it's original sample rate.
617 uint32_t FineTune; ///< Specifies the fraction of a semitone up from the specified MIDI unity note field. A value of 0x80000000 means 1/2 semitone (50 cents) and a value of 0x00000000 means no fine tuning between semitones.
618 smpte_format_t SMPTEFormat; ///< Specifies the Society of Motion Pictures and Television E time format used in the following <i>SMPTEOffset</i> field. If a value of 0 is set, <i>SMPTEOffset</i> should also be set to 0.
619 uint32_t SMPTEOffset; ///< The SMPTE Offset value specifies the time offset to be used for the synchronization / calibration to the first sample in the waveform. This value uses a format of 0xhhmmssff where hh is a signed value that specifies the number of hours (-23 to 23), mm is an unsigned value that specifies the number of minutes (0 to 59), ss is an unsigned value that specifies the number of seconds (0 to 59) and ff is an unsigned value that specifies the number of frames (0 to -1).
620 uint32_t Loops; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: Number of defined sample loops. So far only seen single loops in gig files - please report if you encounter more!)
621 uint32_t LoopID; ///< Specifies the unique ID that corresponds to one of the defined cue points in the cue point list (only if Loops > 0), as the Gigasampler format only allows one loop definition at the moment, this attribute isn't really useful for anything.
622 loop_type_t LoopType; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The type field defines how the waveform samples will be looped.)
623 uint32_t LoopStart; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The start value specifies the offset [in sample points] in the waveform data of the first sample to be played in the loop [only if Loops > 0].)
624 uint32_t LoopEnd; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The end value specifies the offset [in sample points] in the waveform data which represents the end of the loop [only if Loops > 0].)
625 uint32_t LoopSize; ///< @e Caution: Use the respective fields in the DimensionRegion instead of this one! (Intended purpose: Length of the looping area [in sample points] which is equivalent to @code LoopEnd - LoopStart @endcode.)
626 uint32_t LoopFraction; ///< The fractional value specifies a fraction of a sample at which to loop. This allows a loop to be fine tuned at a resolution greater than one sample. A value of 0 means no fraction, a value of 0x80000000 means 1/2 of a sample length. 0xFFFFFFFF is the smallest fraction of a sample that can be represented.
627 uint32_t LoopPlayCount; ///< Number of times the loop should be played (a value of 0 = infinite).
628 bool Compressed; ///< If the sample wave is compressed (probably just interesting for instrument and sample editors, as this library already handles the decompression in it's sample access methods anyway).
629 uint32_t TruncatedBits; ///< For 24-bit compressed samples only: number of bits truncated during compression (0, 4 or 6)
630 bool Dithered; ///< For 24-bit compressed samples only: if dithering was used during compression with bit reduction
631
632 // own methods
633 buffer_t LoadSampleData();
634 buffer_t LoadSampleData(unsigned long SampleCount);
635 buffer_t LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount);
636 buffer_t LoadSampleDataWithNullSamplesExtension(unsigned long SampleCount, uint NullSamplesCount);
637 buffer_t GetCache();
638 // own static methods
639 static buffer_t CreateDecompressionBuffer(unsigned long MaxReadSize);
640 static void DestroyDecompressionBuffer(buffer_t& DecompressionBuffer);
641 // overridden methods
642 void ReleaseSampleData();
643 void Resize(int iNewSize);
644 unsigned long SetPos(unsigned long SampleCount, RIFF::stream_whence_t Whence = RIFF::stream_start);
645 unsigned long GetPos() const;
646 unsigned long Read(void* pBuffer, unsigned long SampleCount, buffer_t* pExternalDecompressionBuffer = NULL);
647 unsigned long ReadAndLoop(void* pBuffer, unsigned long SampleCount, playback_state_t* pPlaybackState, DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer = NULL);
648 unsigned long Write(void* pBuffer, unsigned long SampleCount);
649 Group* GetGroup() const;
650 virtual void UpdateChunks();
651 void CopyAssignMeta(const Sample* orig);
652 void CopyAssignWave(const Sample* orig);
653 protected:
654 static unsigned int Instances; ///< Number of instances of class Sample.
655 static buffer_t InternalDecompressionBuffer; ///< Buffer used for decompression as well as for truncation of 24 Bit -> 16 Bit samples.
656 Group* pGroup; ///< pointer to the Group this sample belongs to (always not-NULL)
657 unsigned long FrameOffset; ///< Current offset (sample points) in current sample frame (for decompression only).
658 unsigned long* FrameTable; ///< For positioning within compressed samples only: stores the offset values for each frame.
659 unsigned long SamplePos; ///< For compressed samples only: stores the current position (in sample points).
660 unsigned long SamplesInLastFrame; ///< For compressed samples only: length of the last sample frame.
661 unsigned long WorstCaseFrameSize; ///< For compressed samples only: size (in bytes) of the largest possible sample frame.
662 unsigned long SamplesPerFrame; ///< For compressed samples only: number of samples in a full sample frame.
663 buffer_t RAMCache; ///< Buffers samples (already uncompressed) in RAM.
664 unsigned long FileNo; ///< File number (> 0 when sample is stored in an extension file, 0 when it's in the gig)
665 RIFF::Chunk* pCk3gix;
666 RIFF::Chunk* pCkSmpl;
667 uint32_t crc; ///< CRC-32 checksum of the raw sample data
668
669 Sample(File* pFile, RIFF::List* waveList, unsigned long WavePoolOffset, unsigned long fileNo = 0);
670 ~Sample();
671
672 // Guess size (in bytes) of a compressed sample
673 inline unsigned long GuessSize(unsigned long samples) {
674 // 16 bit: assume all frames are compressed - 1 byte
675 // per sample and 5 bytes header per 2048 samples
676
677 // 24 bit: assume next best compression rate - 1.5
678 // bytes per sample and 13 bytes header per 256
679 // samples
680 const unsigned long size =
681 BitDepth == 24 ? samples + (samples >> 1) + (samples >> 8) * 13
682 : samples + (samples >> 10) * 5;
683 // Double for stereo and add one worst case sample
684 // frame
685 return (Channels == 2 ? size << 1 : size) + WorstCaseFrameSize;
686 }
687
688 // Worst case amount of sample points that can be read with the
689 // given decompression buffer.
690 inline unsigned long WorstCaseMaxSamples(buffer_t* pDecompressionBuffer) {
691 return (unsigned long) ((float)pDecompressionBuffer->Size / (float)WorstCaseFrameSize * (float)SamplesPerFrame);
692 }
693 private:
694 void ScanCompressedSample();
695 friend class File;
696 friend class Region;
697 friend class Group; // allow to modify protected member pGroup
698 };
699
700 // TODO: <3dnl> list not used yet - not important though (just contains optional descriptions for the dimensions)
701 /** @brief Defines Region information of an Instrument.
702 *
703 * A Region reflects a consecutive area on the keyboard. The individual
704 * regions in the gig format may not overlap with other regions (of the same
705 * instrument). Further, in the gig format a Region is merely a container
706 * for DimensionRegions (a.k.a. "Cases"). The Region itself does not provide
707 * the sample mapping or articulation informations used, even though the
708 * data structures indeed provide such informations. The latter is however
709 * just of historical nature, because the gig format was derived from the
710 * DLS format.
711 *
712 * Each Region consists of at least one or more DimensionRegions. The actual
713 * amount of DimensionRegions depends on which kind of "dimensions" are
714 * defined for this region, and on the split / zone amount for each of those
715 * dimensions.
716 */
717 class Region : public DLS::Region {
718 public:
719 unsigned int Dimensions; ///< Number of defined dimensions, do not alter!
720 dimension_def_t pDimensionDefinitions[8]; ///< Defines the five (gig2) or eight (gig3) possible dimensions (the dimension's controller and number of bits/splits). Use AddDimension() and DeleteDimension() to create a new dimension or delete an existing one.
721 uint32_t DimensionRegions; ///< Total number of DimensionRegions this Region contains, do not alter!
722 DimensionRegion* pDimensionRegions[256]; ///< Pointer array to the 32 (gig2) or 256 (gig3) possible dimension regions (reflects NULL for dimension regions not in use). Avoid to access the array directly and better use GetDimensionRegionByValue() instead, but of course in some cases it makes sense to use the array (e.g. iterating through all DimensionRegions). Use AddDimension() and DeleteDimension() to create a new dimension or delete an existing one (which will create or delete the respective dimension region(s) automatically).
723 unsigned int Layers; ///< Amount of defined layers (1 - 32). A value of 1 actually means no layering, a value > 1 means there is Layer dimension. The same information can of course also be obtained by accessing pDimensionDefinitions. Do not alter this value!
724
725 // own methods
726 DimensionRegion* GetDimensionRegionByValue(const uint DimValues[8]);
727 DimensionRegion* GetDimensionRegionByBit(const uint8_t DimBits[8]);
728 int GetDimensionRegionIndexByValue(const uint DimValues[8]);
729 Sample* GetSample();
730 void AddDimension(dimension_def_t* pDimDef);
731 void DeleteDimension(dimension_def_t* pDimDef);
732 dimension_def_t* GetDimensionDefinition(dimension_t type);
733 void DeleteDimensionZone(dimension_t type, int zone);
734 void SplitDimensionZone(dimension_t type, int zone);
735 void SetDimensionType(dimension_t oldType, dimension_t newType);
736 // overridden methods
737 virtual void SetKeyRange(uint16_t Low, uint16_t High);
738 virtual void UpdateChunks();
739 virtual void CopyAssign(const Region* orig);
740 protected:
741 Region(Instrument* pInstrument, RIFF::List* rgnList);
742 void LoadDimensionRegions(RIFF::List* rgn);
743 void UpdateVelocityTable();
744 Sample* GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress = NULL);
745 void CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples);
746 DimensionRegion* GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase);
747 ~Region();
748 friend class Instrument;
749 };
750
751 /** Abstract base class for all MIDI rules. */
752 class MidiRule {
753 public:
754 virtual ~MidiRule() { }
755 protected:
756 virtual void UpdateChunks(uint8_t* pData) const = 0;
757 friend class Instrument;
758 };
759
760 /** MIDI rule for triggering notes by control change events. */
761 class MidiRuleCtrlTrigger : public MidiRule {
762 public:
763 uint8_t ControllerNumber; ///< MIDI controller number.
764 uint8_t Triggers; ///< Number of triggers.
765 struct trigger_t {
766 uint8_t TriggerPoint; ///< The CC value to pass for the note to be triggered.
767 bool Descending; ///< If the change in CC value should be downwards.
768 uint8_t VelSensitivity; ///< How sensitive the velocity should be to the speed of the controller change.
769 uint8_t Key; ///< Key to trigger.
770 bool NoteOff; ///< If a note off should be triggered instead of a note on.
771 uint8_t Velocity; ///< Velocity of the note to trigger. 255 means that velocity should depend on the speed of the controller change.
772 bool OverridePedal; ///< If a note off should be triggered even if the sustain pedal is down.
773 } pTriggers[32];
774
775 protected:
776 MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg);
777 MidiRuleCtrlTrigger();
778 void UpdateChunks(uint8_t* pData) const;
779 friend class Instrument;
780 };
781
782 /** MIDI rule for instruments with legato samples. */
783 class MidiRuleLegato : public MidiRule {
784 public:
785 uint8_t LegatoSamples; ///< Number of legato samples per key in each direction (always 12)
786 bool BypassUseController; ///< If a controller should be used to bypass the sustain note
787 uint8_t BypassKey; ///< Key to be used to bypass the sustain note
788 uint8_t BypassController; ///< Controller to be used to bypass the sustain note
789 uint16_t ThresholdTime; ///< Maximum time (ms) between two notes that should be played legato
790 uint16_t ReleaseTime; ///< Release time
791 range_t KeyRange; ///< Key range for legato notes
792 uint8_t ReleaseTriggerKey; ///< Key triggering release samples
793 uint8_t AltSustain1Key; ///< Key triggering alternate sustain samples
794 uint8_t AltSustain2Key; ///< Key triggering a second set of alternate sustain samples
795
796 protected:
797 MidiRuleLegato(RIFF::Chunk* _3ewg);
798 MidiRuleLegato();
799 void UpdateChunks(uint8_t* pData) const;
800 friend class Instrument;
801 };
802
803 /** MIDI rule to automatically cycle through specified sequences of different articulations. The instrument must be using the smartmidi dimension. */
804 class MidiRuleAlternator : public MidiRule {
805 public:
806 uint8_t Articulations; ///< Number of articulations in the instrument
807 String pArticulations[32]; ///< Names of the articulations
808
809 range_t PlayRange; ///< Key range of the playable keys in the instrument
810
811 uint8_t Patterns; ///< Number of alternator patterns
812 struct pattern_t {
813 String Name; ///< Name of the pattern
814 int Size; ///< Number of steps in the pattern
815 const uint8_t& operator[](int i) const { /// Articulation to play
816 return data[i];
817 }
818 uint8_t& operator[](int i) {
819 return data[i];
820 }
821 private:
822 uint8_t data[32];
823 } pPatterns[32]; ///< A pattern is a sequence of articulation numbers
824
825 typedef enum {
826 selector_none,
827 selector_key_switch,
828 selector_controller
829 } selector_t;
830 selector_t Selector; ///< Method by which pattern is chosen
831 range_t KeySwitchRange; ///< Key range for key switch selector
832 uint8_t Controller; ///< CC number for controller selector
833
834 bool Polyphonic; ///< If alternator should step forward only when all notes are off
835 bool Chained; ///< If all patterns should be chained together
836
837 protected:
838 MidiRuleAlternator(RIFF::Chunk* _3ewg);
839 MidiRuleAlternator();
840 void UpdateChunks(uint8_t* pData) const;
841 friend class Instrument;
842 };
843
844 /** A MIDI rule not yet implemented by libgig. */
845 class MidiRuleUnknown : public MidiRule {
846 protected:
847 MidiRuleUnknown() { }
848 void UpdateChunks(uint8_t* pData) const { }
849 friend class Instrument;
850 };
851
852 /** @brief Real-time instrument script (gig format extension).
853 *
854 * Real-time instrument scripts are user supplied small programs which can
855 * be used by instrument designers to create custom behaviors and features
856 * not available in the stock sampler engine. Features which might be very
857 * exotic or specific for the respective instrument.
858 *
859 * This is an extension of the GigaStudio format, thus a feature which was
860 * not available in the GigaStudio 4 software. It is currently only
861 * supported by LinuxSampler and gigedit.
862 */
863 class Script {
864 public:
865 enum Encoding_t {
866 ENCODING_ASCII = 0 ///< Standard 8 bit US ASCII character encoding (default).
867 };
868 enum Compression_t {
869 COMPRESSION_NONE = 0 ///< Is not compressed at all (default).
870 };
871 enum Language_t {
872 LANGUAGE_NKSP = 0 ///< NKSP stands for "Is Not KSP" (default).
873 };
874
875 String Name; ///< Arbitrary name of the script, which may be displayed i.e. in an instrument editor.
876 Compression_t Compression; ///< Whether the script was/should be compressed, and if so, which compression algorithm shall be used.
877 Encoding_t Encoding; ///< Format the script's source code text is encoded with.
878 Language_t Language; ///< Programming language and dialect the script is written in.
879 bool Bypass; ///< Global bypass: if enabled, this script shall not be executed by the sampler for any instrument.
880
881 String GetScriptAsText();
882 void SetScriptAsText(const String& text);
883 void SetGroup(ScriptGroup* pGroup);
884 ScriptGroup* GetGroup() const;
885 protected:
886 Script(ScriptGroup* group, RIFF::Chunk* ckScri);
887 virtual ~Script();
888 void UpdateChunks();
889 void RemoveAllScriptReferences();
890 friend class ScriptGroup;
891 friend class Instrument;
892 private:
893 ScriptGroup* pGroup;
894 RIFF::Chunk* pChunk; ///< 'Scri' chunk
895 std::vector<uint8_t> data;
896 uint32_t crc; ///< CRC-32 checksum of the raw script data
897 };
898
899 /** @brief Group of instrument scripts (gig format extension).
900 *
901 * This class is simply used to sort a bunch of real-time instrument scripts
902 * into individual groups. This allows instrument designers and script
903 * developers to keep scripts in a certain order while working with a larger
904 * amount of scripts in an instrument editor.
905 *
906 * This is an extension of the GigaStudio format, thus a feature which was
907 * not available in the GigaStudio 4 software. It is currently only
908 * supported by LinuxSampler and gigedit.
909 */
910 class ScriptGroup {
911 public:
912 String Name; ///< Name of this script group. For example to be displayed in an instrument editor.
913
914 Script* GetScript(uint index);
915 Script* AddScript();
916 void DeleteScript(Script* pScript);
917 protected:
918 ScriptGroup(File* file, RIFF::List* lstRTIS);
919 virtual ~ScriptGroup();
920 void LoadScripts();
921 void UpdateChunks();
922 friend class Script;
923 friend class File;
924 private:
925 File* pFile;
926 RIFF::List* pList; ///< 'RTIS' list chunk
927 std::list<Script*>* pScripts;
928 };
929
930 /** Provides all neccessary information for the synthesis of an <i>Instrument</i>. */
931 class Instrument : protected DLS::Instrument {
932 public:
933 // derived attributes from DLS::Resource
934 using DLS::Resource::pInfo;
935 using DLS::Resource::pDLSID;
936 // derived attributes from DLS::Instrument
937 using DLS::Instrument::IsDrum;
938 using DLS::Instrument::MIDIBank;
939 using DLS::Instrument::MIDIBankCoarse;
940 using DLS::Instrument::MIDIBankFine;
941 using DLS::Instrument::MIDIProgram;
942 using DLS::Instrument::Regions;
943 // own attributes
944 int32_t Attenuation; ///< in dB
945 uint16_t EffectSend;
946 int16_t FineTune; ///< in cents
947 uint16_t PitchbendRange; ///< Number of semitones pitchbend controller can pitch (default is 2).
948 bool PianoReleaseMode;
949 range_t DimensionKeyRange; ///< 0-127 (where 0 means C1 and 127 means G9)
950
951
952 // derived methods from DLS::Resource
953 using DLS::Resource::GetParent;
954 // overridden methods
955 Region* GetFirstRegion();
956 Region* GetNextRegion();
957 Region* AddRegion();
958 void DeleteRegion(Region* pRegion);
959 virtual void UpdateChunks();
960 virtual void CopyAssign(const Instrument* orig);
961 // own methods
962 Region* GetRegion(unsigned int Key);
963 MidiRule* GetMidiRule(int i);
964 MidiRuleCtrlTrigger* AddMidiRuleCtrlTrigger();
965 MidiRuleLegato* AddMidiRuleLegato();
966 MidiRuleAlternator* AddMidiRuleAlternator();
967 void DeleteMidiRule(int i);
968 // real-time instrument script methods
969 Script* GetScriptOfSlot(uint index);
970 void AddScriptSlot(Script* pScript, bool bypass = false);
971 void SwapScriptSlots(uint index1, uint index2);
972 void RemoveScriptSlot(uint index);
973 void RemoveScript(Script* pScript);
974 uint ScriptSlotCount() const;
975 bool IsScriptSlotBypassed(uint index);
976 void SetScriptSlotBypassed(uint index, bool bBypass);
977 protected:
978 Region* RegionKeyTable[128]; ///< fast lookup for the corresponding Region of a MIDI key
979
980 Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress = NULL);
981 ~Instrument();
982 void CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples);
983 void UpdateRegionKeyTable();
984 void LoadScripts();
985 void UpdateScriptFileOffsets();
986 friend class File;
987 friend class Region; // so Region can call UpdateRegionKeyTable()
988 private:
989 struct _ScriptPooolEntry {
990 uint32_t fileOffset;
991 bool bypass;
992 };
993 struct _ScriptPooolRef {
994 Script* script;
995 bool bypass;
996 };
997 MidiRule** pMidiRules;
998 std::vector<_ScriptPooolEntry> scriptPoolFileOffsets;
999 std::vector<_ScriptPooolRef>* pScriptRefs;
1000 };
1001
1002 /** @brief Group of Gigasampler objects
1003 *
1004 * Groups help to organize a huge collection of Gigasampler objects.
1005 * Groups are not concerned at all for the synthesis, but they help
1006 * sound library developers when working on complex instruments with an
1007 * instrument editor (as long as that instrument editor supports it ;-).
1008 *
1009 * At the moment, it seems as only samples can be grouped together in
1010 * the Gigasampler format yet. If this is false in the meantime, please
1011 * tell us !
1012 *
1013 * A sample is always assigned to exactly one Group. This also means
1014 * there is always at least one Group in a .gig file, no matter if you
1015 * created one yet or not.
1016 */
1017 class Group {
1018 public:
1019 String Name; ///< Stores the name of this Group.
1020
1021 Sample* GetFirstSample();
1022 Sample* GetNextSample();
1023 void AddSample(Sample* pSample);
1024 protected:
1025 Group(File* file, RIFF::Chunk* ck3gnm);
1026 virtual ~Group();
1027 virtual void UpdateChunks();
1028 void MoveAll();
1029 friend class File;
1030 private:
1031 File* pFile;
1032 RIFF::Chunk* pNameChunk; ///< '3gnm' chunk
1033 };
1034
1035 /** Parses Gigasampler files and provides abstract access to the data. */
1036 class File : protected DLS::File {
1037 public:
1038 static const DLS::version_t VERSION_2;
1039 static const DLS::version_t VERSION_3;
1040
1041 // derived attributes from DLS::Resource
1042 using DLS::Resource::pInfo;
1043 using DLS::Resource::pDLSID;
1044 // derived attributes from DLS::File
1045 using DLS::File::pVersion;
1046 using DLS::File::Instruments;
1047
1048 // derived methods from DLS::Resource
1049 using DLS::Resource::GetParent;
1050 // derived methods from DLS::File
1051 using DLS::File::Save;
1052 using DLS::File::GetFileName;
1053 using DLS::File::SetFileName;
1054 // overridden methods
1055 File();
1056 File(RIFF::File* pRIFF);
1057 Sample* GetFirstSample(progress_t* pProgress = NULL); ///< Returns a pointer to the first <i>Sample</i> object of the file, <i>NULL</i> otherwise.
1058 Sample* GetNextSample(); ///< Returns a pointer to the next <i>Sample</i> object of the file, <i>NULL</i> otherwise.
1059 Sample* GetSample(uint index);
1060 Sample* AddSample();
1061 void DeleteSample(Sample* pSample);
1062 Instrument* GetFirstInstrument(); ///< Returns a pointer to the first <i>Instrument</i> object of the file, <i>NULL</i> otherwise.
1063 Instrument* GetNextInstrument(); ///< Returns a pointer to the next <i>Instrument</i> object of the file, <i>NULL</i> otherwise.
1064 Instrument* GetInstrument(uint index, progress_t* pProgress = NULL);
1065 Instrument* AddInstrument();
1066 Instrument* AddDuplicateInstrument(const Instrument* orig);
1067 void DeleteInstrument(Instrument* pInstrument);
1068 Group* GetFirstGroup(); ///< Returns a pointer to the first <i>Group</i> object of the file, <i>NULL</i> otherwise.
1069 Group* GetNextGroup(); ///< Returns a pointer to the next <i>Group</i> object of the file, <i>NULL</i> otherwise.
1070 Group* GetGroup(uint index);
1071 Group* GetGroup(String name);
1072 Group* AddGroup();
1073 void DeleteGroup(Group* pGroup);
1074 void DeleteGroupOnly(Group* pGroup);
1075 void SetAutoLoad(bool b);
1076 bool GetAutoLoad();
1077 void AddContentOf(File* pFile);
1078 ScriptGroup* GetScriptGroup(uint index);
1079 ScriptGroup* GetScriptGroup(const String& name);
1080 ScriptGroup* AddScriptGroup();
1081 void DeleteScriptGroup(ScriptGroup* pGroup);
1082 virtual ~File();
1083 virtual void UpdateChunks();
1084 protected:
1085 // overridden protected methods from DLS::File
1086 virtual void LoadSamples();
1087 virtual void LoadInstruments();
1088 virtual void LoadGroups();
1089 virtual void UpdateFileOffsets();
1090 // own protected methods
1091 virtual void LoadSamples(progress_t* pProgress);
1092 virtual void LoadInstruments(progress_t* pProgress);
1093 virtual void LoadScriptGroups();
1094 void SetSampleChecksum(Sample* pSample, uint32_t crc);
1095 friend class Region;
1096 friend class Sample;
1097 friend class Group; // so Group can access protected member pRIFF
1098 friend class ScriptGroup; // so ScriptGroup can access protected member pRIFF
1099 private:
1100 std::list<Group*>* pGroups;
1101 std::list<Group*>::iterator GroupsIterator;
1102 bool bAutoLoad;
1103 std::list<ScriptGroup*>* pScriptGroups;
1104 };
1105
1106 /**
1107 * Will be thrown whenever a gig specific error occurs while trying to
1108 * access a Gigasampler File. Note: In your application you should
1109 * better catch for RIFF::Exception rather than this one, except you
1110 * explicitly want to catch and handle gig::Exception, DLS::Exception
1111 * and RIFF::Exception independently, which usually shouldn't be
1112 * necessary though.
1113 */
1114 class Exception : public DLS::Exception {
1115 public:
1116 Exception(String Message);
1117 void PrintMessage();
1118 };
1119
1120 String libraryName();
1121 String libraryVersion();
1122
1123 } // namespace gig
1124
1125 #endif // __GIG_H__

  ViewVC Help
Powered by ViewVC