/[svn]/libgig/trunk/src/gig.h
ViewVC logotype

Contents of /libgig/trunk/src/gig.h

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3324 - (show annotations) (download) (as text)
Fri Jul 21 13:05:39 2017 UTC (6 years, 8 months ago) by schoenebeck
File MIME type: text/x-c++hdr
File size: 91726 byte(s)
* gig.h/.cpp: Forgot about "decay 2" stage in previous commit.
* Bumped version (4.0.0.svn28).

1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file access library *
4 * *
5 * Copyright (C) 2003-2017 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #ifndef __GIG_H__
25 #define __GIG_H__
26
27 #include "DLS.h"
28 #include <vector>
29
30 #ifndef __has_feature
31 # define __has_feature(x) 0
32 #endif
33 #ifndef HAVE_RTTI
34 # if __GXX_RTTI || __has_feature(cxx_rtti) || _CPPRTTI
35 # define HAVE_RTTI 1
36 # else
37 # define HAVE_RTTI 0
38 # endif
39 #endif
40 #if HAVE_RTTI
41 # include <typeinfo>
42 #else
43 # warning No RTTI available!
44 #endif
45
46 #if WORDS_BIGENDIAN
47 # define LIST_TYPE_3PRG 0x33707267
48 # define LIST_TYPE_3EWL 0x3365776C
49 # define LIST_TYPE_3GRI 0x33677269
50 # define LIST_TYPE_3GNL 0x33676E6C
51 # define LIST_TYPE_3LS 0x334c5320 // own gig format extension
52 # define LIST_TYPE_RTIS 0x52544953 // own gig format extension
53 # define CHUNK_ID_3GIX 0x33676978
54 # define CHUNK_ID_3EWA 0x33657761
55 # define CHUNK_ID_3LNK 0x336C6E6B
56 # define CHUNK_ID_3EWG 0x33657767
57 # define CHUNK_ID_EWAV 0x65776176
58 # define CHUNK_ID_3GNM 0x33676E6D
59 # define CHUNK_ID_EINF 0x65696E66
60 # define CHUNK_ID_3CRC 0x33637263
61 # define CHUNK_ID_SCRI 0x53637269 // own gig format extension
62 # define CHUNK_ID_LSNM 0x4c534e4d // own gig format extension
63 # define CHUNK_ID_SCSL 0x5343534c // own gig format extension
64 # define CHUNK_ID_LSDE 0x4c534445 // own gig format extension
65 #else // little endian
66 # define LIST_TYPE_3PRG 0x67727033
67 # define LIST_TYPE_3EWL 0x6C776533
68 # define LIST_TYPE_3GRI 0x69726733
69 # define LIST_TYPE_3GNL 0x6C6E6733
70 # define LIST_TYPE_3LS 0x20534c33 // own gig format extension
71 # define LIST_TYPE_RTIS 0x53495452 // own gig format extension
72 # define CHUNK_ID_3GIX 0x78696733
73 # define CHUNK_ID_3EWA 0x61776533
74 # define CHUNK_ID_3LNK 0x6B6E6C33
75 # define CHUNK_ID_3EWG 0x67776533
76 # define CHUNK_ID_EWAV 0x76617765
77 # define CHUNK_ID_3GNM 0x6D6E6733
78 # define CHUNK_ID_EINF 0x666E6965
79 # define CHUNK_ID_3CRC 0x63726333
80 # define CHUNK_ID_SCRI 0x69726353 // own gig format extension
81 # define CHUNK_ID_LSNM 0x4d4e534c // own gig format extension
82 # define CHUNK_ID_SCSL 0x4c534353 // own gig format extension
83 # define CHUNK_ID_LSDE 0x4544534c // own gig format extension
84 #endif // WORDS_BIGENDIAN
85
86 #ifndef GIG_DECLARE_ENUM
87 # define GIG_DECLARE_ENUM(type, ...) enum type { __VA_ARGS__ }
88 #endif
89
90 // just symbol prototyping (since Serialization.h not included by default here)
91 namespace Serialization { class Archive; }
92
93 /** Gigasampler/GigaStudio specific classes and definitions */
94 namespace gig {
95
96 typedef std::string String;
97 typedef RIFF::progress_t progress_t;
98 typedef RIFF::file_offset_t file_offset_t;
99
100 /** Lower and upper limit of a range. */
101 struct range_t {
102 uint8_t low; ///< Low value of range.
103 uint8_t high; ///< High value of range.
104 };
105
106 /** Pointer address and size of a buffer. */
107 struct buffer_t {
108 void* pStart; ///< Points to the beginning of the buffer.
109 file_offset_t Size; ///< Size of the actual data in the buffer in bytes.
110 file_offset_t NullExtensionSize; ///< The buffer might be bigger than the actual data, if that's the case that unused space at the end of the buffer is filled with NULLs and NullExtensionSize reflects that unused buffer space in bytes. Those NULL extensions are mandatory for differential algorithms that have to take the following data words into account, thus have to access past the buffer's boundary. If you don't know what I'm talking about, just forget this variable. :)
111 buffer_t() {
112 pStart = NULL;
113 Size = 0;
114 NullExtensionSize = 0;
115 }
116 };
117
118 /** Standard types of sample loops.
119 *
120 * @see enumCount(), enumKey(), enumKeys(), enumValue()
121 */
122 GIG_DECLARE_ENUM(loop_type_t,
123 loop_type_normal = 0x00000000, ///< Loop forward (normal)
124 loop_type_bidirectional = 0x00000001, ///< Alternating loop (forward/backward, also known as Ping Pong)
125 loop_type_backward = 0x00000002 ///< Loop backward (reverse)
126 );
127
128 /** Society of Motion Pictures and Television E time format.
129 *
130 * @see enumCount(), enumKey(), enumKeys(), enumValue()
131 */
132 GIG_DECLARE_ENUM(smpte_format_t,
133 smpte_format_no_offset = 0x00000000, ///< no SMPTE offset
134 smpte_format_24_frames = 0x00000018, ///< 24 frames per second
135 smpte_format_25_frames = 0x00000019, ///< 25 frames per second
136 smpte_format_30_frames_dropping = 0x0000001D, ///< 30 frames per second with frame dropping (30 drop)
137 smpte_format_30_frames = 0x0000001E ///< 30 frames per second
138 );
139
140 /** Defines the shape of a function graph.
141 *
142 * @see enumCount(), enumKey(), enumKeys(), enumValue()
143 */
144 GIG_DECLARE_ENUM(curve_type_t,
145 curve_type_nonlinear = 0,
146 curve_type_linear = 1,
147 curve_type_special = 2,
148 curve_type_unknown = 0xffffffff
149 );
150
151 /** Dimensions allow to bypass one of the following controllers.
152 *
153 * @see enumCount(), enumKey(), enumKeys(), enumValue()
154 */
155 GIG_DECLARE_ENUM(dim_bypass_ctrl_t,
156 dim_bypass_ctrl_none,
157 dim_bypass_ctrl_94, ///< Effect 4 Depth (MIDI Controller 94)
158 dim_bypass_ctrl_95 ///< Effect 5 Depth (MIDI Controller 95)
159 );
160
161 /** Defines how LFO3 is controlled by.
162 *
163 * @see enumCount(), enumKey(), enumKeys(), enumValue()
164 */
165 GIG_DECLARE_ENUM(lfo3_ctrl_t,
166 lfo3_ctrl_internal = 0x00, ///< Only internally controlled.
167 lfo3_ctrl_modwheel = 0x01, ///< Only controlled by external modulation wheel.
168 lfo3_ctrl_aftertouch = 0x02, ///< Only controlled by aftertouch controller.
169 lfo3_ctrl_internal_modwheel = 0x03, ///< Controlled internally and by external modulation wheel.
170 lfo3_ctrl_internal_aftertouch = 0x04 ///< Controlled internally and by aftertouch controller.
171 );
172
173 /** Defines how LFO2 is controlled by.
174 *
175 * @see enumCount(), enumKey(), enumKeys(), enumValue()
176 */
177 GIG_DECLARE_ENUM(lfo2_ctrl_t,
178 lfo2_ctrl_internal = 0x00, ///< Only internally controlled.
179 lfo2_ctrl_modwheel = 0x01, ///< Only controlled by external modulation wheel.
180 lfo2_ctrl_foot = 0x02, ///< Only controlled by external foot controller.
181 lfo2_ctrl_internal_modwheel = 0x03, ///< Controlled internally and by external modulation wheel.
182 lfo2_ctrl_internal_foot = 0x04 ///< Controlled internally and by external foot controller.
183 );
184
185 /** Defines how LFO1 is controlled by.
186 *
187 * @see enumCount(), enumKey(), enumKeys(), enumValue()
188 */
189 GIG_DECLARE_ENUM(lfo1_ctrl_t,
190 lfo1_ctrl_internal = 0x00, ///< Only internally controlled.
191 lfo1_ctrl_modwheel = 0x01, ///< Only controlled by external modulation wheel.
192 lfo1_ctrl_breath = 0x02, ///< Only controlled by external breath controller.
193 lfo1_ctrl_internal_modwheel = 0x03, ///< Controlled internally and by external modulation wheel.
194 lfo1_ctrl_internal_breath = 0x04 ///< Controlled internally and by external breath controller.
195 );
196
197 /** Defines how the filter cutoff frequency is controlled by.
198 *
199 * @see enumCount(), enumKey(), enumKeys(), enumValue()
200 */
201 GIG_DECLARE_ENUM(vcf_cutoff_ctrl_t,
202 vcf_cutoff_ctrl_none = 0x00,
203 vcf_cutoff_ctrl_none2 = 0x01, ///< The difference between none and none2 is unknown
204 vcf_cutoff_ctrl_modwheel = 0x81, ///< Modulation Wheel (MIDI Controller 1)
205 vcf_cutoff_ctrl_effect1 = 0x8c, ///< Effect Controller 1 (Coarse, MIDI Controller 12)
206 vcf_cutoff_ctrl_effect2 = 0x8d, ///< Effect Controller 2 (Coarse, MIDI Controller 13)
207 vcf_cutoff_ctrl_breath = 0x82, ///< Breath Controller (Coarse, MIDI Controller 2)
208 vcf_cutoff_ctrl_foot = 0x84, ///< Foot Pedal (Coarse, MIDI Controller 4)
209 vcf_cutoff_ctrl_sustainpedal = 0xc0, ///< Sustain Pedal (MIDI Controller 64)
210 vcf_cutoff_ctrl_softpedal = 0xc3, ///< Soft Pedal (MIDI Controller 67)
211 vcf_cutoff_ctrl_genpurpose7 = 0xd2, ///< General Purpose Controller 7 (Button, MIDI Controller 82)
212 vcf_cutoff_ctrl_genpurpose8 = 0xd3, ///< General Purpose Controller 8 (Button, MIDI Controller 83)
213 vcf_cutoff_ctrl_aftertouch = 0x80 ///< Key Pressure
214 );
215
216 /** Defines how the filter resonance is controlled by.
217 *
218 * @see enumCount(), enumKey(), enumKeys(), enumValue()
219 */
220 GIG_DECLARE_ENUM(vcf_res_ctrl_t,
221 vcf_res_ctrl_none = 0xffffffff,
222 vcf_res_ctrl_genpurpose3 = 0, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
223 vcf_res_ctrl_genpurpose4 = 1, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
224 vcf_res_ctrl_genpurpose5 = 2, ///< General Purpose Controller 5 (Button, MIDI Controller 80)
225 vcf_res_ctrl_genpurpose6 = 3 ///< General Purpose Controller 6 (Button, MIDI Controller 81)
226 );
227
228 /**
229 * Defines a controller that has a certain contrained influence on a
230 * particular synthesis parameter (used to define attenuation controller,
231 * EG1 controller and EG2 controller).
232 *
233 * You should use the respective <i>typedef</i> (means either
234 * attenuation_ctrl_t, eg1_ctrl_t or eg2_ctrl_t) in your code!
235 */
236 struct leverage_ctrl_t {
237 /** Defines possible controllers.
238 *
239 * @see enumCount(), enumKey(), enumKeys(), enumValue()
240 */
241 GIG_DECLARE_ENUM(type_t,
242 type_none = 0x00, ///< No controller defined
243 type_channelaftertouch = 0x2f, ///< Channel Key Pressure
244 type_velocity = 0xff, ///< Key Velocity
245 type_controlchange = 0xfe ///< Ordinary MIDI control change controller, see field 'controller_number'
246 );
247
248 type_t type; ///< Controller type
249 uint controller_number; ///< MIDI controller number if this controller is a control change controller, 0 otherwise
250
251 void serialize(Serialization::Archive* archive);
252 };
253
254 /**
255 * Defines controller influencing attenuation.
256 *
257 * @see leverage_ctrl_t
258 */
259 typedef leverage_ctrl_t attenuation_ctrl_t;
260
261 /**
262 * Defines controller influencing envelope generator 1.
263 *
264 * @see leverage_ctrl_t
265 */
266 typedef leverage_ctrl_t eg1_ctrl_t;
267
268 /**
269 * Defines controller influencing envelope generator 2.
270 *
271 * @see leverage_ctrl_t
272 */
273 typedef leverage_ctrl_t eg2_ctrl_t;
274
275 /**
276 * Defines the type of dimension, that is how the dimension zones (and
277 * thus how the dimension regions are selected by. The number of
278 * dimension zones is always a power of two. All dimensions can have up
279 * to 32 zones (except the layer dimension with only up to 8 zones and
280 * the samplechannel dimension which currently allows only 2 zones).
281 *
282 * @see enumCount(), enumKey(), enumKeys(), enumValue()
283 */
284 GIG_DECLARE_ENUM(dimension_t,
285 dimension_none = 0x00, ///< Dimension not in use.
286 dimension_samplechannel = 0x80, ///< If used sample has more than one channel (thus is not mono).
287 dimension_layer = 0x81, ///< For layering of up to 8 instruments (and eventually crossfading of 2 or 4 layers).
288 dimension_velocity = 0x82, ///< Key Velocity (this is the only dimension in gig2 where the ranges can exactly be defined).
289 dimension_channelaftertouch = 0x83, ///< Channel Key Pressure
290 dimension_releasetrigger = 0x84, ///< Special dimension for triggering samples on releasing a key.
291 dimension_keyboard = 0x85, ///< Dimension for keyswitching
292 dimension_roundrobin = 0x86, ///< Different samples triggered each time a note is played, dimension regions selected in sequence
293 dimension_random = 0x87, ///< Different samples triggered each time a note is played, random order
294 dimension_smartmidi = 0x88, ///< For MIDI tools like legato and repetition mode
295 dimension_roundrobinkeyboard = 0x89, ///< Different samples triggered each time a note is played, any key advances the counter
296 dimension_modwheel = 0x01, ///< Modulation Wheel (MIDI Controller 1)
297 dimension_breath = 0x02, ///< Breath Controller (Coarse, MIDI Controller 2)
298 dimension_foot = 0x04, ///< Foot Pedal (Coarse, MIDI Controller 4)
299 dimension_portamentotime = 0x05, ///< Portamento Time (Coarse, MIDI Controller 5)
300 dimension_effect1 = 0x0c, ///< Effect Controller 1 (Coarse, MIDI Controller 12)
301 dimension_effect2 = 0x0d, ///< Effect Controller 2 (Coarse, MIDI Controller 13)
302 dimension_genpurpose1 = 0x10, ///< General Purpose Controller 1 (Slider, MIDI Controller 16)
303 dimension_genpurpose2 = 0x11, ///< General Purpose Controller 2 (Slider, MIDI Controller 17)
304 dimension_genpurpose3 = 0x12, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
305 dimension_genpurpose4 = 0x13, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
306 dimension_sustainpedal = 0x40, ///< Sustain Pedal (MIDI Controller 64)
307 dimension_portamento = 0x41, ///< Portamento (MIDI Controller 65)
308 dimension_sostenutopedal = 0x42, ///< Sostenuto Pedal (MIDI Controller 66)
309 dimension_softpedal = 0x43, ///< Soft Pedal (MIDI Controller 67)
310 dimension_genpurpose5 = 0x30, ///< General Purpose Controller 5 (Button, MIDI Controller 80)
311 dimension_genpurpose6 = 0x31, ///< General Purpose Controller 6 (Button, MIDI Controller 81)
312 dimension_genpurpose7 = 0x32, ///< General Purpose Controller 7 (Button, MIDI Controller 82)
313 dimension_genpurpose8 = 0x33, ///< General Purpose Controller 8 (Button, MIDI Controller 83)
314 dimension_effect1depth = 0x5b, ///< Effect 1 Depth (MIDI Controller 91)
315 dimension_effect2depth = 0x5c, ///< Effect 2 Depth (MIDI Controller 92)
316 dimension_effect3depth = 0x5d, ///< Effect 3 Depth (MIDI Controller 93)
317 dimension_effect4depth = 0x5e, ///< Effect 4 Depth (MIDI Controller 94)
318 dimension_effect5depth = 0x5f ///< Effect 5 Depth (MIDI Controller 95)
319 );
320
321 /**
322 * Intended for internal usage: will be used to convert a dimension value
323 * into the corresponding dimension bit number.
324 *
325 * @see enumCount(), enumKey(), enumKeys(), enumValue()
326 */
327 GIG_DECLARE_ENUM(split_type_t,
328 split_type_normal, ///< dimension value between 0-127
329 split_type_bit ///< dimension values are already the sought bit number
330 );
331
332 /** General dimension definition. */
333 struct dimension_def_t {
334 dimension_t dimension; ///< Specifies which source (usually a MIDI controller) is associated with the dimension.
335 uint8_t bits; ///< Number of "bits" (1 bit = 2 splits/zones, 2 bit = 4 splits/zones, 3 bit = 8 splits/zones,...).
336 uint8_t zones; ///< Number of zones the dimension has.
337 split_type_t split_type; ///< Intended for internal usage: will be used to convert a dimension value into the corresponding dimension bit number.
338 float zone_size; ///< Intended for internal usage: reflects the size of each zone (128/zones) for normal split types only, 0 otherwise.
339 };
340
341 /** Defines which frequencies are filtered by the VCF.
342 *
343 * @see enumCount(), enumKey(), enumKeys(), enumValue()
344 */
345 GIG_DECLARE_ENUM(vcf_type_t,
346 vcf_type_lowpass = 0x00,
347 vcf_type_lowpassturbo = 0xff, ///< More poles than normal lowpass
348 vcf_type_bandpass = 0x01,
349 vcf_type_highpass = 0x02,
350 vcf_type_bandreject = 0x03
351 );
352
353 /**
354 * Defines the envelope of a crossfade.
355 *
356 * Note: The default value for crossfade points is 0,0,0,0. Layers with
357 * such a default value should be treated as if they would not have a
358 * crossfade.
359 */
360 struct crossfade_t {
361 #if WORDS_BIGENDIAN
362 uint8_t out_end; ///< End postition of fade out.
363 uint8_t out_start; ///< Start position of fade out.
364 uint8_t in_end; ///< End position of fade in.
365 uint8_t in_start; ///< Start position of fade in.
366 #else // little endian
367 uint8_t in_start; ///< Start position of fade in.
368 uint8_t in_end; ///< End position of fade in.
369 uint8_t out_start; ///< Start position of fade out.
370 uint8_t out_end; ///< End postition of fade out.
371 #endif // WORDS_BIGENDIAN
372
373 void serialize(Serialization::Archive* archive);
374 };
375
376 /** Reflects the current playback state for a sample. */
377 struct playback_state_t {
378 file_offset_t position; ///< Current position within the sample.
379 bool reverse; ///< If playback direction is currently backwards (in case there is a pingpong or reverse loop defined).
380 file_offset_t loop_cycles_left; ///< How many times the loop has still to be passed, this value will be decremented with each loop cycle.
381 };
382
383 /**
384 * Defines behavior options for envelope generators (gig format extension).
385 *
386 * These options allow to override the precise default behavior of the
387 * envelope generators' state machines.
388 *
389 * @b Note: These EG options are an extension to the original gig file
390 * format, so these options are not available with the original
391 * Gigasampler/GigaStudio software! Currently only LinuxSampler and gigedit
392 * support these EG options!
393 *
394 * Adding these options to the original gig file format was necessary,
395 * because the precise state machine behavior of envelope generators of the
396 * gig format (and thus the default EG behavior if not explicitly overridden
397 * here) deviates from common, expected behavior of envelope generators in
398 * general, if i.e. compared with EGs of hardware synthesizers. For example
399 * with the gig format, the attack and decay stages will be aborted as soon
400 * as a note-off is received. Most other EG implementations in the industry
401 * however always run the attack and decay stages to their full duration,
402 * even if an early note-off arrives. The latter behavior is intentionally
403 * implemented in most other products, because it is required to resemble
404 * percussive sounds in a realistic manner.
405 */
406 struct eg_opt_t {
407 bool AttackCancel; ///< Whether the "attack" stage is cancelled when receiving a note-off (default: @c true).
408 bool AttackHoldCancel; ///< Whether the "attack hold" stage is cancelled when receiving a note-off (default: @c true).
409 bool Decay1Cancel; ///< Whether the "decay 1" stage is cancelled when receiving a note-off (default: @c true).
410 bool Decay2Cancel; ///< Whether the "decay 2" stage is cancelled when receiving a note-off (default: @c true).
411 bool ReleaseCancel; ///< Whether the "release" stage is cancelled when receiving a note-on (default: @c true).
412
413 eg_opt_t();
414 void serialize(Serialization::Archive* archive);
415 };
416
417 // just symbol prototyping
418 class File;
419 class Instrument;
420 class Sample;
421 class Region;
422 class Group;
423 class Script;
424 class ScriptGroup;
425
426 /** @brief Encapsulates articulation informations of a dimension region.
427 *
428 * This is the most important data object of the Gigasampler / GigaStudio
429 * format. A DimensionRegion provides the link to the sample to be played
430 * and all required articulation informations to be interpreted for playing
431 * back the sample and processing it appropriately by the sampler software.
432 * Every Region of a Gigasampler Instrument has at least one dimension
433 * region (exactly then when the Region has no dimension defined). Many
434 * Regions though provide more than one DimensionRegion, which reflect
435 * different playing "cases". For example a different sample might be played
436 * if a certain pedal is pressed down, or if the note was triggered with
437 * different velocity.
438 *
439 * One instance of a DimensionRegion reflects exactly one particular case
440 * while playing an instrument (for instance "note between C3 and E3 was
441 * triggered AND note on velocity was between 20 and 42 AND modulation wheel
442 * controller is between 80 and 127). The DimensionRegion defines what to do
443 * under that one particular case, that is which sample to play back and how
444 * to play that sample back exactly and how to process it. So a
445 * DimensionRegion object is always linked to exactly one sample. It may
446 * however also link to no sample at all, for defining a "silence" case
447 * where nothing shall be played (for example when note on velocity was
448 * below 6).
449 *
450 * Note that a DimensionRegion object only defines "what to do", but it does
451 * not define "when to do it". To actually resolve which DimensionRegion to
452 * pick under which situation, you need to refer to the DimensionRegions'
453 * parent Region object. The Region object contains the necessary
454 * "Dimension" definitions, which in turn define which DimensionRegion is
455 * associated with which playing case exactly.
456 *
457 * The Gigasampler/GigaStudio format defines 3 Envelope Generators and 3
458 * Low Frequency Oscillators:
459 *
460 * - EG1 and LFO1, both controlling sample amplitude
461 * - EG2 and LFO2, both controlling filter cutoff frequency
462 * - EG3 and LFO3, both controlling sample pitch
463 *
464 * Since the gig format was designed as extension to the DLS file format,
465 * this class is derived from the DLS::Sampler class. So also refer to
466 * DLS::Sampler for additional informations, class attributes and methods.
467 */
468 class DimensionRegion : protected DLS::Sampler {
469 public:
470 uint8_t VelocityUpperLimit; ///< Defines the upper velocity value limit of a velocity split (only if an user defined limit was set, thus a value not equal to 128/NumberOfSplits, else this value is 0). Only for gig2, for gig3 and above the DimensionUpperLimits are used instead.
471 Sample* pSample; ///< Points to the Sample which is assigned to the dimension region.
472 // Sample Amplitude EG/LFO
473 uint16_t EG1PreAttack; ///< Preattack value of the sample amplitude EG (0 - 1000 permille).
474 double EG1Attack; ///< Attack time of the sample amplitude EG (0.000 - 60.000s).
475 double EG1Decay1; ///< Decay time of the sample amplitude EG (0.000 - 60.000s).
476 double EG1Decay2; ///< Only if <i>EG1InfiniteSustain == false</i>: 2nd decay stage time of the sample amplitude EG (0.000 - 60.000s).
477 bool EG1InfiniteSustain; ///< If <i>true</i>, instead of going into Decay2 phase, Decay1 level will be hold until note will be released.
478 uint16_t EG1Sustain; ///< Sustain value of the sample amplitude EG (0 - 1000 permille).
479 double EG1Release; ///< Release time of the sample amplitude EG (0.000 - 60.000s).
480 bool EG1Hold; ///< If <i>true</i>, Decay1 stage should be postponed until the sample reached the sample loop start.
481 eg1_ctrl_t EG1Controller; ///< MIDI Controller which has influence on sample amplitude EG parameters (attack, decay, release).
482 bool EG1ControllerInvert; ///< Invert values coming from defined EG1 controller.
483 uint8_t EG1ControllerAttackInfluence; ///< Amount EG1 Controller has influence on the EG1 Attack time (0 - 3, where 0 means off).
484 uint8_t EG1ControllerDecayInfluence; ///< Amount EG1 Controller has influence on the EG1 Decay time (0 - 3, where 0 means off).
485 uint8_t EG1ControllerReleaseInfluence; ///< Amount EG1 Controller has influence on the EG1 Release time (0 - 3, where 0 means off).
486 double LFO1Frequency; ///< Frequency of the sample amplitude LFO (0.10 - 10.00 Hz).
487 uint16_t LFO1InternalDepth; ///< Firm pitch of the sample amplitude LFO (0 - 1200 cents).
488 uint16_t LFO1ControlDepth; ///< Controller depth influencing sample amplitude LFO pitch (0 - 1200 cents).
489 lfo1_ctrl_t LFO1Controller; ///< MIDI Controller which controls sample amplitude LFO.
490 bool LFO1FlipPhase; ///< Inverts phase of the sample amplitude LFO wave.
491 bool LFO1Sync; ///< If set to <i>true</i> only one LFO should be used for all voices.
492 // Filter Cutoff Frequency EG/LFO
493 uint16_t EG2PreAttack; ///< Preattack value of the filter cutoff EG (0 - 1000 permille).
494 double EG2Attack; ///< Attack time of the filter cutoff EG (0.000 - 60.000s).
495 double EG2Decay1; ///< Decay time of the filter cutoff EG (0.000 - 60.000s).
496 double EG2Decay2; ///< Only if <i>EG2InfiniteSustain == false</i>: 2nd stage decay time of the filter cutoff EG (0.000 - 60.000s).
497 bool EG2InfiniteSustain; ///< If <i>true</i>, instead of going into Decay2 phase, Decay1 level will be hold until note will be released.
498 uint16_t EG2Sustain; ///< Sustain value of the filter cutoff EG (0 - 1000 permille).
499 double EG2Release; ///< Release time of the filter cutoff EG (0.000 - 60.000s).
500 eg2_ctrl_t EG2Controller; ///< MIDI Controller which has influence on filter cutoff EG parameters (attack, decay, release).
501 bool EG2ControllerInvert; ///< Invert values coming from defined EG2 controller.
502 uint8_t EG2ControllerAttackInfluence; ///< Amount EG2 Controller has influence on the EG2 Attack time (0 - 3, where 0 means off).
503 uint8_t EG2ControllerDecayInfluence; ///< Amount EG2 Controller has influence on the EG2 Decay time (0 - 3, where 0 means off).
504 uint8_t EG2ControllerReleaseInfluence; ///< Amount EG2 Controller has influence on the EG2 Release time (0 - 3, where 0 means off).
505 double LFO2Frequency; ///< Frequency of the filter cutoff LFO (0.10 - 10.00 Hz).
506 uint16_t LFO2InternalDepth; ///< Firm pitch of the filter cutoff LFO (0 - 1200 cents).
507 uint16_t LFO2ControlDepth; ///< Controller depth influencing filter cutoff LFO pitch (0 - 1200).
508 lfo2_ctrl_t LFO2Controller; ///< MIDI Controlle which controls the filter cutoff LFO.
509 bool LFO2FlipPhase; ///< Inverts phase of the filter cutoff LFO wave.
510 bool LFO2Sync; ///< If set to <i>true</i> only one LFO should be used for all voices.
511 // Sample Pitch EG/LFO
512 double EG3Attack; ///< Attack time of the sample pitch EG (0.000 - 10.000s).
513 int16_t EG3Depth; ///< Depth of the sample pitch EG (-1200 - +1200).
514 double LFO3Frequency; ///< Frequency of the sample pitch LFO (0.10 - 10.00 Hz).
515 int16_t LFO3InternalDepth; ///< Firm depth of the sample pitch LFO (-1200 - +1200 cents).
516 int16_t LFO3ControlDepth; ///< Controller depth of the sample pitch LFO (-1200 - +1200 cents).
517 lfo3_ctrl_t LFO3Controller; ///< MIDI Controller which controls the sample pitch LFO.
518 bool LFO3Sync; ///< If set to <i>true</i> only one LFO should be used for all voices.
519 // Filter
520 bool VCFEnabled; ///< If filter should be used.
521 vcf_type_t VCFType; ///< Defines the general filter characteristic (lowpass, highpass, bandpass, etc.).
522 vcf_cutoff_ctrl_t VCFCutoffController; ///< Specifies which external controller has influence on the filter cutoff frequency. @deprecated Don't alter directly, use SetVCFCutoffController() instead!
523 bool VCFCutoffControllerInvert; ///< Inverts values coming from the defined cutoff controller
524 uint8_t VCFCutoff; ///< Max. cutoff frequency.
525 curve_type_t VCFVelocityCurve; ///< Defines a transformation curve for the incoming velocity values, affecting the VCF. @deprecated Don't alter directly, use SetVCFVelocityCurve() instead!
526 uint8_t VCFVelocityScale; ///< (0-127) Amount velocity controls VCF cutoff frequency (only if no other VCF cutoff controller is defined, otherwise this is the minimum cutoff). @deprecated Don't alter directly, use SetVCFVelocityScale() instead!
527 uint8_t VCFVelocityDynamicRange; ///< 0x04 = lowest, 0x00 = highest . @deprecated Don't alter directly, use SetVCFVelocityDynamicRange() instead!
528 uint8_t VCFResonance; ///< Firm internal filter resonance weight.
529 bool VCFResonanceDynamic; ///< If <i>true</i>: Increases the resonance Q according to changes of controllers that actually control the VCF cutoff frequency (EG2, ext. VCF MIDI controller).
530 vcf_res_ctrl_t VCFResonanceController; ///< Specifies which external controller has influence on the filter resonance Q.
531 bool VCFKeyboardTracking; ///< If <i>true</i>: VCF cutoff frequence will be dependend to the note key position relative to the defined breakpoint value.
532 uint8_t VCFKeyboardTrackingBreakpoint; ///< See VCFKeyboardTracking (0 - 127).
533 // Key Velocity Transformations
534 curve_type_t VelocityResponseCurve; ///< Defines a transformation curve to the incoming velocity values affecting amplitude (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseCurve() instead!
535 uint8_t VelocityResponseDepth; ///< Dynamic range of velocity affecting amplitude (0 - 4) (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseDepth() instead!
536 uint8_t VelocityResponseCurveScaling; ///< 0 - 127 (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseCurveScaling() instead!
537 curve_type_t ReleaseVelocityResponseCurve; ///< Defines a transformation curve to the incoming release veloctiy values affecting envelope times. @deprecated Don't alter directly, use SetReleaseVelocityResponseCurve() instead!
538 uint8_t ReleaseVelocityResponseDepth; ///< Dynamic range of release velocity affecting envelope time (0 - 4). @deprecated Don't alter directly, use SetReleaseVelocityResponseDepth() instead!
539 uint8_t ReleaseTriggerDecay; ///< 0 - 8
540 // Mix / Layer
541 crossfade_t Crossfade;
542 bool PitchTrack; ///< If <i>true</i>: sample will be pitched according to the key position (this will be disabled for drums for example).
543 dim_bypass_ctrl_t DimensionBypass; ///< If defined, the MIDI controller can switch on/off the dimension in realtime.
544 int8_t Pan; ///< Panorama / Balance (-64..0..63 <-> left..middle..right)
545 bool SelfMask; ///< If <i>true</i>: high velocity notes will stop low velocity notes at the same note, with that you can save voices that wouldn't be audible anyway.
546 attenuation_ctrl_t AttenuationController; ///< MIDI Controller which has influence on the volume level of the sample (or entire sample group).
547 bool InvertAttenuationController; ///< Inverts the values coming from the defined Attenuation Controller.
548 uint8_t AttenuationControllerThreshold;///< 0-127
549 uint8_t ChannelOffset; ///< Audio output where the audio signal of the dimension region should be routed to (0 - 9).
550 bool SustainDefeat; ///< If <i>true</i>: Sustain pedal will not hold a note.
551 bool MSDecode; ///< Gigastudio flag: defines if Mid Side Recordings should be decoded.
552 uint16_t SampleStartOffset; ///< Number of samples the sample start should be moved (0 - 2000).
553 double SampleAttenuation; ///< Sample volume (calculated from DLS::Sampler::Gain)
554 uint8_t DimensionUpperLimits[8]; ///< gig3: defines the upper limit of the dimension values for this dimension region. In case you wondered why this is defined on DimensionRegion level and not on Region level: the zone sizes (upper limits) of the velocity dimension can indeed differ in the individual dimension regions, depending on which zones of the other dimension types are currently selected. So this is exceptional for the velocity dimension only. All other dimension types have the same dimension zone sizes for every single DimensionRegion (of the sample Region).
555 eg_opt_t EGOptions; ///< [gig extension]: Behavior options which should be used for all 3 envelope generators.
556
557 // derived attributes from DLS::Sampler
558 using DLS::Sampler::UnityNote;
559 using DLS::Sampler::FineTune;
560 using DLS::Sampler::Gain;
561 using DLS::Sampler::SampleLoops;
562 using DLS::Sampler::pSampleLoops;
563
564 // own methods
565 double GetVelocityAttenuation(uint8_t MIDIKeyVelocity);
566 double GetVelocityRelease(uint8_t MIDIKeyVelocity);
567 double GetVelocityCutoff(uint8_t MIDIKeyVelocity);
568 void SetVelocityResponseCurve(curve_type_t curve);
569 void SetVelocityResponseDepth(uint8_t depth);
570 void SetVelocityResponseCurveScaling(uint8_t scaling);
571 void SetReleaseVelocityResponseCurve(curve_type_t curve);
572 void SetReleaseVelocityResponseDepth(uint8_t depth);
573 void SetVCFCutoffController(vcf_cutoff_ctrl_t controller);
574 void SetVCFVelocityCurve(curve_type_t curve);
575 void SetVCFVelocityDynamicRange(uint8_t range);
576 void SetVCFVelocityScale(uint8_t scaling);
577 Region* GetParent() const;
578 // derived methods
579 using DLS::Sampler::AddSampleLoop;
580 using DLS::Sampler::DeleteSampleLoop;
581 // overridden methods
582 virtual void SetGain(int32_t gain);
583 virtual void UpdateChunks(progress_t* pProgress);
584 virtual void CopyAssign(const DimensionRegion* orig);
585 protected:
586 uint8_t* VelocityTable; ///< For velocity dimensions with custom defined zone ranges only: used for fast converting from velocity MIDI value to dimension bit number.
587 DimensionRegion(Region* pParent, RIFF::List* _3ewl);
588 DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src);
589 ~DimensionRegion();
590 void CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples);
591 void serialize(Serialization::Archive* archive);
592 friend class Region;
593 friend class Serialization::Archive;
594 private:
595 typedef enum { ///< Used to decode attenuation, EG1 and EG2 controller
596 // official leverage controllers as they were defined in the original Gigasampler/GigaStudio format:
597 _lev_ctrl_none = 0x00,
598 _lev_ctrl_modwheel = 0x03, ///< Modulation Wheel (MIDI Controller 1)
599 _lev_ctrl_breath = 0x05, ///< Breath Controller (Coarse, MIDI Controller 2)
600 _lev_ctrl_foot = 0x07, ///< Foot Pedal (Coarse, MIDI Controller 4)
601 _lev_ctrl_effect1 = 0x0d, ///< Effect Controller 1 (Coarse, MIDI Controller 12)
602 _lev_ctrl_effect2 = 0x0f, ///< Effect Controller 2 (Coarse, MIDI Controller 13)
603 _lev_ctrl_genpurpose1 = 0x11, ///< General Purpose Controller 1 (Slider, MIDI Controller 16)
604 _lev_ctrl_genpurpose2 = 0x13, ///< General Purpose Controller 2 (Slider, MIDI Controller 17)
605 _lev_ctrl_genpurpose3 = 0x15, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
606 _lev_ctrl_genpurpose4 = 0x17, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
607 _lev_ctrl_portamentotime = 0x0b, ///< Portamento Time (Coarse, MIDI Controller 5)
608 _lev_ctrl_sustainpedal = 0x01, ///< Sustain Pedal (MIDI Controller 64)
609 _lev_ctrl_portamento = 0x19, ///< Portamento (MIDI Controller 65)
610 _lev_ctrl_sostenutopedal = 0x1b, ///< Sostenuto Pedal (MIDI Controller 66)
611 _lev_ctrl_softpedal = 0x09, ///< Soft Pedal (MIDI Controller 67)
612 _lev_ctrl_genpurpose5 = 0x1d, ///< General Purpose Controller 5 (Button, MIDI Controller 80)
613 _lev_ctrl_genpurpose6 = 0x1f, ///< General Purpose Controller 6 (Button, MIDI Controller 81)
614 _lev_ctrl_genpurpose7 = 0x21, ///< General Purpose Controller 7 (Button, MIDI Controller 82)
615 _lev_ctrl_genpurpose8 = 0x23, ///< General Purpose Controller 8 (Button, MIDI Controller 83)
616 _lev_ctrl_effect1depth = 0x25, ///< Effect 1 Depth (MIDI Controller 91)
617 _lev_ctrl_effect2depth = 0x27, ///< Effect 2 Depth (MIDI Controller 92)
618 _lev_ctrl_effect3depth = 0x29, ///< Effect 3 Depth (MIDI Controller 93)
619 _lev_ctrl_effect4depth = 0x2b, ///< Effect 4 Depth (MIDI Controller 94)
620 _lev_ctrl_effect5depth = 0x2d, ///< Effect 5 Depth (MIDI Controller 95)
621 _lev_ctrl_channelaftertouch = 0x2f, ///< Channel Key Pressure
622 _lev_ctrl_velocity = 0xff, ///< Key Velocity
623
624 // format extension (these controllers are so far only supported by LinuxSampler & gigedit) they will *NOT* work with Gigasampler/GigaStudio !
625 // (the assigned values here are their official MIDI CC number plus the highest bit set):
626 _lev_ctrl_CC3_EXT = 0x83, ///< MIDI Controller 3 [gig format extension]
627
628 _lev_ctrl_CC6_EXT = 0x86, ///< Data Entry MSB (MIDI Controller 6) [gig format extension]
629 _lev_ctrl_CC7_EXT = 0x87, ///< Channel Volume (MIDI Controller 7) [gig format extension]
630 _lev_ctrl_CC8_EXT = 0x88, ///< Balance (MIDI Controller 8) [gig format extension]
631 _lev_ctrl_CC9_EXT = 0x89, ///< MIDI Controller 9 [gig format extension]
632 _lev_ctrl_CC10_EXT = 0x8a, ///< Pan (MIDI Controller 10) [gig format extension]
633 _lev_ctrl_CC11_EXT = 0x8b, ///< Expression Controller (MIDI Controller 11) [gig format extension]
634
635 _lev_ctrl_CC14_EXT = 0x8e, ///< MIDI Controller 14 [gig format extension]
636 _lev_ctrl_CC15_EXT = 0x8f, ///< MIDI Controller 15 [gig format extension]
637
638 _lev_ctrl_CC20_EXT = 0x94, ///< MIDI Controller 20 [gig format extension]
639 _lev_ctrl_CC21_EXT = 0x95, ///< MIDI Controller 21 [gig format extension]
640 _lev_ctrl_CC22_EXT = 0x96, ///< MIDI Controller 22 [gig format extension]
641 _lev_ctrl_CC23_EXT = 0x97, ///< MIDI Controller 23 [gig format extension]
642 _lev_ctrl_CC24_EXT = 0x98, ///< MIDI Controller 24 [gig format extension]
643 _lev_ctrl_CC25_EXT = 0x99, ///< MIDI Controller 25 [gig format extension]
644 _lev_ctrl_CC26_EXT = 0x9a, ///< MIDI Controller 26 [gig format extension]
645 _lev_ctrl_CC27_EXT = 0x9b, ///< MIDI Controller 27 [gig format extension]
646 _lev_ctrl_CC28_EXT = 0x9c, ///< MIDI Controller 28 [gig format extension]
647 _lev_ctrl_CC29_EXT = 0x9d, ///< MIDI Controller 29 [gig format extension]
648 _lev_ctrl_CC30_EXT = 0x9e, ///< MIDI Controller 30 [gig format extension]
649 _lev_ctrl_CC31_EXT = 0x9f, ///< MIDI Controller 31 [gig format extension]
650
651 _lev_ctrl_CC68_EXT = 0xc4, ///< Legato Footswitch (MIDI Controller 68) [gig format extension]
652 _lev_ctrl_CC69_EXT = 0xc5, ///< Hold 2 (MIDI Controller 69) [gig format extension]
653 _lev_ctrl_CC70_EXT = 0xc6, ///< Sound Ctrl. 1 - Sound Variation (MIDI Controller 70) [gig format extension]
654 _lev_ctrl_CC71_EXT = 0xc7, ///< Sound Ctrl. 2 - Timbre (MIDI Controller 71) [gig format extension]
655 _lev_ctrl_CC72_EXT = 0xc8, ///< Sound Ctrl. 3 - Release Time (MIDI Controller 72) [gig format extension]
656 _lev_ctrl_CC73_EXT = 0xc9, ///< Sound Ctrl. 4 - Attack Time (MIDI Controller 73) [gig format extension]
657 _lev_ctrl_CC74_EXT = 0xca, ///< Sound Ctrl. 5 - Brightness (MIDI Controller 74) [gig format extension]
658 _lev_ctrl_CC75_EXT = 0xcb, ///< Sound Ctrl. 6 - Decay Time (MIDI Controller 75) [gig format extension]
659 _lev_ctrl_CC76_EXT = 0xcc, ///< Sound Ctrl. 7 - Vibrato Rate (MIDI Controller 76) [gig format extension]
660 _lev_ctrl_CC77_EXT = 0xcd, ///< Sound Ctrl. 8 - Vibrato Depth (MIDI Controller 77) [gig format extension]
661 _lev_ctrl_CC78_EXT = 0xce, ///< Sound Ctrl. 9 - Vibrato Delay (MIDI Controller 78) [gig format extension]
662 _lev_ctrl_CC79_EXT = 0xcf, ///< Sound Ctrl. 10 (MIDI Controller 79) [gig format extension]
663
664 _lev_ctrl_CC84_EXT = 0xd4, ///< Portamento Control (MIDI Controller 84) [gig format extension]
665 _lev_ctrl_CC85_EXT = 0xd5, ///< MIDI Controller 85 [gig format extension]
666 _lev_ctrl_CC86_EXT = 0xd6, ///< MIDI Controller 86 [gig format extension]
667 _lev_ctrl_CC87_EXT = 0xd7, ///< MIDI Controller 87 [gig format extension]
668
669 _lev_ctrl_CC89_EXT = 0xd9, ///< MIDI Controller 89 [gig format extension]
670 _lev_ctrl_CC90_EXT = 0xda, ///< MIDI Controller 90 [gig format extension]
671
672 _lev_ctrl_CC96_EXT = 0xe0, ///< Data Increment (MIDI Controller 96) [gig format extension]
673 _lev_ctrl_CC97_EXT = 0xe1, ///< Data Decrement (MIDI Controller 97) [gig format extension]
674
675 _lev_ctrl_CC102_EXT = 0xe6, ///< MIDI Controller 102 [gig format extension]
676 _lev_ctrl_CC103_EXT = 0xe7, ///< MIDI Controller 103 [gig format extension]
677 _lev_ctrl_CC104_EXT = 0xe8, ///< MIDI Controller 104 [gig format extension]
678 _lev_ctrl_CC105_EXT = 0xe9, ///< MIDI Controller 105 [gig format extension]
679 _lev_ctrl_CC106_EXT = 0xea, ///< MIDI Controller 106 [gig format extension]
680 _lev_ctrl_CC107_EXT = 0xeb, ///< MIDI Controller 107 [gig format extension]
681 _lev_ctrl_CC108_EXT = 0xec, ///< MIDI Controller 108 [gig format extension]
682 _lev_ctrl_CC109_EXT = 0xed, ///< MIDI Controller 109 [gig format extension]
683 _lev_ctrl_CC110_EXT = 0xee, ///< MIDI Controller 110 [gig format extension]
684 _lev_ctrl_CC111_EXT = 0xef, ///< MIDI Controller 111 [gig format extension]
685 _lev_ctrl_CC112_EXT = 0xf0, ///< MIDI Controller 112 [gig format extension]
686 _lev_ctrl_CC113_EXT = 0xf1, ///< MIDI Controller 113 [gig format extension]
687 _lev_ctrl_CC114_EXT = 0xf2, ///< MIDI Controller 114 [gig format extension]
688 _lev_ctrl_CC115_EXT = 0xf3, ///< MIDI Controller 115 [gig format extension]
689 _lev_ctrl_CC116_EXT = 0xf4, ///< MIDI Controller 116 [gig format extension]
690 _lev_ctrl_CC117_EXT = 0xf5, ///< MIDI Controller 117 [gig format extension]
691 _lev_ctrl_CC118_EXT = 0xf6, ///< MIDI Controller 118 [gig format extension]
692 _lev_ctrl_CC119_EXT = 0xf7 ///< MIDI Controller 119 [gig format extension]
693 } _lev_ctrl_t;
694 typedef std::map<uint32_t, double*> VelocityTableMap;
695
696 static size_t Instances; ///< Number of DimensionRegion instances.
697 static VelocityTableMap* pVelocityTables; ///< Contains the tables corresponding to the various velocity parameters (VelocityResponseCurve and VelocityResponseDepth).
698 double* pVelocityAttenuationTable; ///< Points to the velocity table corresponding to the velocity parameters of this DimensionRegion.
699 double* pVelocityReleaseTable; ///< Points to the velocity table corresponding to the release velocity parameters of this DimensionRegion
700 double* pVelocityCutoffTable; ///< Points to the velocity table corresponding to the filter velocity parameters of this DimensionRegion
701 Region* pRegion;
702
703 leverage_ctrl_t DecodeLeverageController(_lev_ctrl_t EncodedController);
704 _lev_ctrl_t EncodeLeverageController(leverage_ctrl_t DecodedController);
705 double* GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth);
706 double* GetCutoffVelocityTable(curve_type_t vcfVelocityCurve, uint8_t vcfVelocityDynamicRange, uint8_t vcfVelocityScale, vcf_cutoff_ctrl_t vcfCutoffController);
707 double* GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);
708 double* CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);
709 };
710
711 /** @brief Encapsulates sample waves of Gigasampler/GigaStudio files used for playback.
712 *
713 * This class provides access to the actual audio sample data of a
714 * Gigasampler/GigaStudio file. Along to the actual sample data, it also
715 * provides access to the sample's meta informations like bit depth,
716 * sample rate, encoding type, but also loop informations. The latter may be
717 * used by instruments for resembling sounds with arbitary note lengths.
718 *
719 * In case you created a new sample with File::AddSample(), you should
720 * first update all attributes with the desired meta informations
721 * (amount of channels, bit depth, sample rate, etc.), then call
722 * Resize() with the desired sample size, followed by File::Save(), this
723 * will create the mandatory RIFF chunk which will hold the sample wave
724 * data and / or resize the file so you will be able to Write() the
725 * sample data directly to disk.
726 *
727 * @e Caution: for gig synthesis, most looping relevant information are
728 * retrieved from the respective DimensionRegon instead from the Sample
729 * itself. This was made for allowing different loop definitions for the
730 * same sample under different conditions.
731 *
732 * Since the gig format was designed as extension to the DLS file format,
733 * this class is derived from the DLS::Sample class. So also refer to
734 * DLS::Sample for additional informations, class attributes and methods.
735 */
736 class Sample : public DLS::Sample {
737 public:
738 uint32_t Manufacturer; ///< Specifies the MIDI Manufacturer's Association (MMA) Manufacturer code for the sampler intended to receive this file's waveform. If no particular manufacturer is to be specified, a value of 0 should be used.
739 uint32_t Product; ///< Specifies the MIDI model ID defined by the manufacturer corresponding to the Manufacturer field. If no particular manufacturer's product is to be specified, a value of 0 should be used.
740 uint32_t SamplePeriod; ///< Specifies the duration of time that passes during the playback of one sample in nanoseconds (normally equal to 1 / Samples Per Second, where Samples Per Second is the value found in the format chunk), don't bother to update this attribute, it won't be saved.
741 uint32_t MIDIUnityNote; ///< Specifies the musical note at which the sample will be played at it's original sample rate.
742 uint32_t FineTune; ///< Specifies the fraction of a semitone up from the specified MIDI unity note field. A value of 0x80000000 means 1/2 semitone (50 cents) and a value of 0x00000000 means no fine tuning between semitones.
743 smpte_format_t SMPTEFormat; ///< Specifies the Society of Motion Pictures and Television E time format used in the following <i>SMPTEOffset</i> field. If a value of 0 is set, <i>SMPTEOffset</i> should also be set to 0.
744 uint32_t SMPTEOffset; ///< The SMPTE Offset value specifies the time offset to be used for the synchronization / calibration to the first sample in the waveform. This value uses a format of 0xhhmmssff where hh is a signed value that specifies the number of hours (-23 to 23), mm is an unsigned value that specifies the number of minutes (0 to 59), ss is an unsigned value that specifies the number of seconds (0 to 59) and ff is an unsigned value that specifies the number of frames (0 to -1).
745 uint32_t Loops; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: Number of defined sample loops. So far only seen single loops in gig files - please report if you encounter more!)
746 uint32_t LoopID; ///< Specifies the unique ID that corresponds to one of the defined cue points in the cue point list (only if Loops > 0), as the Gigasampler format only allows one loop definition at the moment, this attribute isn't really useful for anything.
747 loop_type_t LoopType; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The type field defines how the waveform samples will be looped.)
748 uint32_t LoopStart; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The start value specifies the offset [in sample points] in the waveform data of the first sample to be played in the loop [only if Loops > 0].)
749 uint32_t LoopEnd; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The end value specifies the offset [in sample points] in the waveform data which represents the end of the loop [only if Loops > 0].)
750 uint32_t LoopSize; ///< @e Caution: Use the respective fields in the DimensionRegion instead of this one! (Intended purpose: Length of the looping area [in sample points] which is equivalent to @code LoopEnd - LoopStart @endcode.)
751 uint32_t LoopFraction; ///< The fractional value specifies a fraction of a sample at which to loop. This allows a loop to be fine tuned at a resolution greater than one sample. A value of 0 means no fraction, a value of 0x80000000 means 1/2 of a sample length. 0xFFFFFFFF is the smallest fraction of a sample that can be represented.
752 uint32_t LoopPlayCount; ///< Number of times the loop should be played (a value of 0 = infinite).
753 bool Compressed; ///< If the sample wave is compressed (probably just interesting for instrument and sample editors, as this library already handles the decompression in it's sample access methods anyway).
754 uint32_t TruncatedBits; ///< For 24-bit compressed samples only: number of bits truncated during compression (0, 4 or 6)
755 bool Dithered; ///< For 24-bit compressed samples only: if dithering was used during compression with bit reduction
756
757 // own methods
758 buffer_t LoadSampleData();
759 buffer_t LoadSampleData(file_offset_t SampleCount);
760 buffer_t LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount);
761 buffer_t LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount);
762 buffer_t GetCache();
763 // own static methods
764 static buffer_t CreateDecompressionBuffer(file_offset_t MaxReadSize);
765 static void DestroyDecompressionBuffer(buffer_t& DecompressionBuffer);
766 // overridden methods
767 void ReleaseSampleData();
768 void Resize(file_offset_t NewSize);
769 file_offset_t SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence = RIFF::stream_start);
770 file_offset_t GetPos() const;
771 file_offset_t Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer = NULL);
772 file_offset_t ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState, DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer = NULL);
773 file_offset_t Write(void* pBuffer, file_offset_t SampleCount);
774 Group* GetGroup() const;
775 virtual void UpdateChunks(progress_t* pProgress);
776 void CopyAssignMeta(const Sample* orig);
777 void CopyAssignWave(const Sample* orig);
778 uint32_t GetWaveDataCRC32Checksum();
779 bool VerifyWaveData(uint32_t* pActually = NULL);
780 protected:
781 static size_t Instances; ///< Number of instances of class Sample.
782 static buffer_t InternalDecompressionBuffer; ///< Buffer used for decompression as well as for truncation of 24 Bit -> 16 Bit samples.
783 Group* pGroup; ///< pointer to the Group this sample belongs to (always not-NULL)
784 file_offset_t FrameOffset; ///< Current offset (sample points) in current sample frame (for decompression only).
785 file_offset_t* FrameTable; ///< For positioning within compressed samples only: stores the offset values for each frame.
786 file_offset_t SamplePos; ///< For compressed samples only: stores the current position (in sample points).
787 file_offset_t SamplesInLastFrame; ///< For compressed samples only: length of the last sample frame.
788 file_offset_t WorstCaseFrameSize; ///< For compressed samples only: size (in bytes) of the largest possible sample frame.
789 file_offset_t SamplesPerFrame; ///< For compressed samples only: number of samples in a full sample frame.
790 buffer_t RAMCache; ///< Buffers samples (already uncompressed) in RAM.
791 unsigned long FileNo; ///< File number (> 0 when sample is stored in an extension file, 0 when it's in the gig)
792 RIFF::Chunk* pCk3gix;
793 RIFF::Chunk* pCkSmpl;
794 uint32_t crc; ///< Reflects CRC-32 checksum of the raw sample data at the last time when the sample's raw wave form data has been modified consciously by the user by calling Write().
795
796 Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo = 0, int index = -1);
797 ~Sample();
798 uint32_t CalculateWaveDataChecksum();
799
800 // Guess size (in bytes) of a compressed sample
801 inline file_offset_t GuessSize(file_offset_t samples) {
802 // 16 bit: assume all frames are compressed - 1 byte
803 // per sample and 5 bytes header per 2048 samples
804
805 // 24 bit: assume next best compression rate - 1.5
806 // bytes per sample and 13 bytes header per 256
807 // samples
808 const file_offset_t size =
809 BitDepth == 24 ? samples + (samples >> 1) + (samples >> 8) * 13
810 : samples + (samples >> 10) * 5;
811 // Double for stereo and add one worst case sample
812 // frame
813 return (Channels == 2 ? size << 1 : size) + WorstCaseFrameSize;
814 }
815
816 // Worst case amount of sample points that can be read with the
817 // given decompression buffer.
818 inline file_offset_t WorstCaseMaxSamples(buffer_t* pDecompressionBuffer) {
819 return (file_offset_t) ((float)pDecompressionBuffer->Size / (float)WorstCaseFrameSize * (float)SamplesPerFrame);
820 }
821 private:
822 void ScanCompressedSample();
823 friend class File;
824 friend class Region;
825 friend class Group; // allow to modify protected member pGroup
826 };
827
828 // TODO: <3dnl> list not used yet - not important though (just contains optional descriptions for the dimensions)
829 /** @brief Defines Region information of a Gigasampler/GigaStudio instrument.
830 *
831 * A Region reflects a consecutive area (key range) on the keyboard. The
832 * individual regions in the gig format may not overlap with other regions
833 * (of the same instrument that is). Further, in the gig format a Region is
834 * merely a container for DimensionRegions (a.k.a. "Cases"). The Region
835 * itself does not provide the sample mapping or articulation informations
836 * used, even though the data structures of regions indeed provide such
837 * informations. The latter is however just of historical nature, because
838 * the gig file format was derived from the DLS file format.
839 *
840 * Each Region consists of at least one or more DimensionRegions. The actual
841 * amount of DimensionRegions depends on which kind of "dimensions" are
842 * defined for this region, and on the split / zone amount for each of those
843 * dimensions.
844 *
845 * Since the gig format was designed as extension to the DLS file format,
846 * this class is derived from the DLS::Region class. So also refer to
847 * DLS::Region for additional informations, class attributes and methods.
848 */
849 class Region : public DLS::Region {
850 public:
851 unsigned int Dimensions; ///< Number of defined dimensions, do not alter!
852 dimension_def_t pDimensionDefinitions[8]; ///< Defines the five (gig2) or eight (gig3) possible dimensions (the dimension's controller and number of bits/splits). Use AddDimension() and DeleteDimension() to create a new dimension or delete an existing one.
853 uint32_t DimensionRegions; ///< Total number of DimensionRegions this Region contains, do not alter!
854 DimensionRegion* pDimensionRegions[256]; ///< Pointer array to the 32 (gig2) or 256 (gig3) possible dimension regions (reflects NULL for dimension regions not in use). Avoid to access the array directly and better use GetDimensionRegionByValue() instead, but of course in some cases it makes sense to use the array (e.g. iterating through all DimensionRegions). Use AddDimension() and DeleteDimension() to create a new dimension or delete an existing one (which will create or delete the respective dimension region(s) automatically).
855 unsigned int Layers; ///< Amount of defined layers (1 - 32). A value of 1 actually means no layering, a value > 1 means there is Layer dimension. The same information can of course also be obtained by accessing pDimensionDefinitions. Do not alter this value!
856
857 // own methods
858 DimensionRegion* GetDimensionRegionByValue(const uint DimValues[8]);
859 DimensionRegion* GetDimensionRegionByBit(const uint8_t DimBits[8]);
860 int GetDimensionRegionIndexByValue(const uint DimValues[8]);
861 Sample* GetSample();
862 void AddDimension(dimension_def_t* pDimDef);
863 void DeleteDimension(dimension_def_t* pDimDef);
864 dimension_def_t* GetDimensionDefinition(dimension_t type);
865 void DeleteDimensionZone(dimension_t type, int zone);
866 void SplitDimensionZone(dimension_t type, int zone);
867 void SetDimensionType(dimension_t oldType, dimension_t newType);
868 // overridden methods
869 virtual void SetKeyRange(uint16_t Low, uint16_t High);
870 virtual void UpdateChunks(progress_t* pProgress);
871 virtual void CopyAssign(const Region* orig);
872 protected:
873 Region(Instrument* pInstrument, RIFF::List* rgnList);
874 void LoadDimensionRegions(RIFF::List* rgn);
875 void UpdateVelocityTable();
876 Sample* GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress = NULL);
877 void CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples);
878 DimensionRegion* GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase);
879 ~Region();
880 friend class Instrument;
881 };
882
883 /** @brief Abstract base class for all MIDI rules.
884 *
885 * Note: Instead of using MIDI rules, we recommend you using real-time
886 * instrument scripts instead. Read about the reasons below.
887 *
888 * MIDI Rules (also called "iMIDI rules" or "intelligent MIDI rules") were
889 * introduced with GigaStudio 4 as an attempt to increase the power of
890 * potential user controls over sounds. At that point other samplers already
891 * supported certain powerful user control features, which were not possible
892 * with GigaStudio yet. For example triggering new notes by MIDI CC
893 * controller.
894 *
895 * Such extended features however were usually implemented by other samplers
896 * by requiring the sound designer to write an instrument script which the
897 * designer would then bundle with the respective instrument file. Such
898 * scripts are essentially text files, using a very specific programming
899 * language for the purpose of controlling the sampler in real-time. Since
900 * however musicians are not typically keen to writing such cumbersome
901 * script files, the GigaStudio designers decided to implement such extended
902 * features completely without instrument scripts. Instead they created a
903 * set of rules, which could be defined and altered conveniently by mouse
904 * clicks in GSt's instrument editor application. The downside of this
905 * overall approach however, was that those MIDI rules were very limited in
906 * practice. As sound designer you easily came across the possiblities such
907 * MIDI rules were able to offer.
908 *
909 * Due to such severe use case constraints, support for MIDI rules is quite
910 * limited in libgig. At the moment only the "Control Trigger", "Alternator"
911 * and the "Legato" MIDI rules are supported by libgig. Consequently the
912 * graphical instrument editor application gigedit just supports the
913 * "Control Trigger" and "Legato" MIDI rules, and LinuxSampler even does not
914 * support any MIDI rule type at all and LinuxSampler probably will not
915 * support MIDI rules in future either.
916 *
917 * Instead of using MIDI rules, we introduced real-time instrument scripts
918 * as extension to the original GigaStudio file format. This script based
919 * solution is much more powerful than MIDI rules and is already supported
920 * by libgig, gigedit and LinuxSampler.
921 *
922 * @deprecated Just provided for backward compatiblity, use Script for new
923 * instruments instead.
924 */
925 class MidiRule {
926 public:
927 virtual ~MidiRule() { }
928 protected:
929 virtual void UpdateChunks(uint8_t* pData) const = 0;
930 friend class Instrument;
931 };
932
933 /** @brief MIDI rule for triggering notes by control change events.
934 *
935 * A "Control Trigger MIDI rule" allows to trigger new notes by sending MIDI
936 * control change events to the sampler.
937 *
938 * Note: "Control Trigger" MIDI rules are only supported by gigedit, but not
939 * by LinuxSampler. We recommend you using real-time instrument scripts
940 * instead. Read more about the details and reasons for this in the
941 * description of the MidiRule base class.
942 *
943 * @deprecated Just provided for backward compatiblity, use Script for new
944 * instruments instead. See description of MidiRule for details.
945 */
946 class MidiRuleCtrlTrigger : public MidiRule {
947 public:
948 uint8_t ControllerNumber; ///< MIDI controller number.
949 uint8_t Triggers; ///< Number of triggers.
950 struct trigger_t {
951 uint8_t TriggerPoint; ///< The CC value to pass for the note to be triggered.
952 bool Descending; ///< If the change in CC value should be downwards.
953 uint8_t VelSensitivity; ///< How sensitive the velocity should be to the speed of the controller change.
954 uint8_t Key; ///< Key to trigger.
955 bool NoteOff; ///< If a note off should be triggered instead of a note on.
956 uint8_t Velocity; ///< Velocity of the note to trigger. 255 means that velocity should depend on the speed of the controller change.
957 bool OverridePedal; ///< If a note off should be triggered even if the sustain pedal is down.
958 } pTriggers[32];
959
960 protected:
961 MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg);
962 MidiRuleCtrlTrigger();
963 void UpdateChunks(uint8_t* pData) const;
964 friend class Instrument;
965 };
966
967 /** @brief MIDI rule for instruments with legato samples.
968 *
969 * A "Legato MIDI rule" allows playing instruments resembling the legato
970 * playing technique. In the past such legato articulations were tried to be
971 * simulated by pitching the samples of the instrument. However since
972 * usually a high amount of pitch is needed for legatos, this always sounded
973 * very artificial and unrealistic. The "Legato MIDI rule" thus uses another
974 * approach. Instead of pitching the samples, it allows the sound designer
975 * to bundle separate, additional samples for the individual legato
976 * situations and the legato rules defined which samples to be played in
977 * which situation.
978 *
979 * Note: "Legato MIDI rules" are only supported by gigedit, but not
980 * by LinuxSampler. We recommend you using real-time instrument scripts
981 * instead. Read more about the details and reasons for this in the
982 * description of the MidiRule base class.
983 *
984 * @deprecated Just provided for backward compatiblity, use Script for new
985 * instruments instead. See description of MidiRule for details.
986 */
987 class MidiRuleLegato : public MidiRule {
988 public:
989 uint8_t LegatoSamples; ///< Number of legato samples per key in each direction (always 12)
990 bool BypassUseController; ///< If a controller should be used to bypass the sustain note
991 uint8_t BypassKey; ///< Key to be used to bypass the sustain note
992 uint8_t BypassController; ///< Controller to be used to bypass the sustain note
993 uint16_t ThresholdTime; ///< Maximum time (ms) between two notes that should be played legato
994 uint16_t ReleaseTime; ///< Release time
995 range_t KeyRange; ///< Key range for legato notes
996 uint8_t ReleaseTriggerKey; ///< Key triggering release samples
997 uint8_t AltSustain1Key; ///< Key triggering alternate sustain samples
998 uint8_t AltSustain2Key; ///< Key triggering a second set of alternate sustain samples
999
1000 protected:
1001 MidiRuleLegato(RIFF::Chunk* _3ewg);
1002 MidiRuleLegato();
1003 void UpdateChunks(uint8_t* pData) const;
1004 friend class Instrument;
1005 };
1006
1007 /** @brief MIDI rule to automatically cycle through specified sequences of different articulations.
1008 *
1009 * The instrument must be using the smartmidi dimension.
1010 *
1011 * Note: "Alternator" MIDI rules are neither supported by gigedit nor by
1012 * LinuxSampler. We recommend you using real-time instrument scripts
1013 * instead. Read more about the details and reasons for this in the
1014 * description of the MidiRule base class.
1015 *
1016 * @deprecated Just provided for backward compatiblity, use Script for new
1017 * instruments instead. See description of MidiRule for details.
1018 */
1019 class MidiRuleAlternator : public MidiRule {
1020 public:
1021 uint8_t Articulations; ///< Number of articulations in the instrument
1022 String pArticulations[32]; ///< Names of the articulations
1023
1024 range_t PlayRange; ///< Key range of the playable keys in the instrument
1025
1026 uint8_t Patterns; ///< Number of alternator patterns
1027 struct pattern_t {
1028 String Name; ///< Name of the pattern
1029 int Size; ///< Number of steps in the pattern
1030 const uint8_t& operator[](int i) const { /// Articulation to play
1031 return data[i];
1032 }
1033 uint8_t& operator[](int i) {
1034 return data[i];
1035 }
1036 private:
1037 uint8_t data[32];
1038 } pPatterns[32]; ///< A pattern is a sequence of articulation numbers
1039
1040 typedef enum {
1041 selector_none,
1042 selector_key_switch,
1043 selector_controller
1044 } selector_t;
1045 selector_t Selector; ///< Method by which pattern is chosen
1046 range_t KeySwitchRange; ///< Key range for key switch selector
1047 uint8_t Controller; ///< CC number for controller selector
1048
1049 bool Polyphonic; ///< If alternator should step forward only when all notes are off
1050 bool Chained; ///< If all patterns should be chained together
1051
1052 protected:
1053 MidiRuleAlternator(RIFF::Chunk* _3ewg);
1054 MidiRuleAlternator();
1055 void UpdateChunks(uint8_t* pData) const;
1056 friend class Instrument;
1057 };
1058
1059 /** @brief A MIDI rule not yet implemented by libgig.
1060 *
1061 * This class is currently used as a place holder by libgig for MIDI rule
1062 * types which are not supported by libgig yet.
1063 *
1064 * Note: Support for missing MIDI rule types are probably never added to
1065 * libgig. We recommend you using real-time instrument scripts instead.
1066 * Read more about the details and reasons for this in the description of
1067 * the MidiRule base class.
1068 *
1069 * @deprecated Just provided for backward compatiblity, use Script for new
1070 * instruments instead. See description of MidiRule for details.
1071 */
1072 class MidiRuleUnknown : public MidiRule {
1073 protected:
1074 MidiRuleUnknown() { }
1075 void UpdateChunks(uint8_t* pData) const { }
1076 friend class Instrument;
1077 };
1078
1079 /** @brief Real-time instrument script (gig format extension).
1080 *
1081 * Real-time instrument scripts are user supplied small programs which can
1082 * be used by instrument designers to create custom behaviors and features
1083 * not available in the stock sampler engine. Features which might be very
1084 * exotic or specific for the respective instrument.
1085 *
1086 * This is an extension of the GigaStudio format, thus a feature which was
1087 * not available in the GigaStudio 4 software. It is currently only
1088 * supported by LinuxSampler and gigedit. Scripts will not load with the
1089 * original GigaStudio software.
1090 *
1091 * You find more informations about Instrument Scripts on the LinuxSampler
1092 * documentation site:
1093 *
1094 * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/">About Instrument Scripts in General</a>
1095 * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language">Introduction to the NKSP Script Language</a>
1096 * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language/Reference/">NKSP Reference Manual</a>
1097 * - <a href="http://doc.linuxsampler.org/Gigedit/Managing_Scripts">Using Instrument Scripts with Gigedit</a>
1098 */
1099 class Script {
1100 public:
1101 enum Encoding_t {
1102 ENCODING_ASCII = 0 ///< Standard 8 bit US ASCII character encoding (default).
1103 };
1104 enum Compression_t {
1105 COMPRESSION_NONE = 0 ///< Is not compressed at all (default).
1106 };
1107 enum Language_t {
1108 LANGUAGE_NKSP = 0 ///< NKSP stands for "Is Not KSP" (default). Refer to the <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language/Reference/">NKSP Reference Manual</a> for details about this script language.
1109 };
1110
1111 String Name; ///< Arbitrary name of the script, which may be displayed i.e. in an instrument editor.
1112 Compression_t Compression; ///< Whether the script was/should be compressed, and if so, which compression algorithm shall be used.
1113 Encoding_t Encoding; ///< Format the script's source code text is encoded with.
1114 Language_t Language; ///< Programming language and dialect the script is written in.
1115 bool Bypass; ///< Global bypass: if enabled, this script shall not be executed by the sampler for any instrument.
1116
1117 String GetScriptAsText();
1118 void SetScriptAsText(const String& text);
1119 void SetGroup(ScriptGroup* pGroup);
1120 ScriptGroup* GetGroup() const;
1121 void CopyAssign(const Script* orig);
1122 protected:
1123 Script(ScriptGroup* group, RIFF::Chunk* ckScri);
1124 virtual ~Script();
1125 void UpdateChunks(progress_t* pProgress);
1126 void RemoveAllScriptReferences();
1127 friend class ScriptGroup;
1128 friend class Instrument;
1129 private:
1130 ScriptGroup* pGroup;
1131 RIFF::Chunk* pChunk; ///< 'Scri' chunk
1132 std::vector<uint8_t> data;
1133 uint32_t crc; ///< CRC-32 checksum of the raw script data
1134 };
1135
1136 /** @brief Group of instrument scripts (gig format extension).
1137 *
1138 * This class is simply used to sort a bunch of real-time instrument scripts
1139 * into individual groups. This allows instrument designers and script
1140 * developers to keep scripts in a certain order while working with a larger
1141 * amount of scripts in an instrument editor.
1142 *
1143 * This is an extension of the GigaStudio format, thus a feature which was
1144 * not available in the GigaStudio 4 software. It is currently only
1145 * supported by LinuxSampler and gigedit.
1146 */
1147 class ScriptGroup {
1148 public:
1149 String Name; ///< Name of this script group. For example to be displayed in an instrument editor.
1150
1151 Script* GetScript(uint index);
1152 Script* AddScript();
1153 void DeleteScript(Script* pScript);
1154 protected:
1155 ScriptGroup(File* file, RIFF::List* lstRTIS);
1156 virtual ~ScriptGroup();
1157 void LoadScripts();
1158 void UpdateChunks(progress_t* pProgress);
1159 friend class Script;
1160 friend class File;
1161 private:
1162 File* pFile;
1163 RIFF::List* pList; ///< 'RTIS' list chunk
1164 std::list<Script*>* pScripts;
1165 };
1166
1167 /** @brief Provides access to a Gigasampler/GigaStudio instrument.
1168 *
1169 * This class provides access to Gigasampler/GigaStudio instruments
1170 * contained in .gig files. A gig instrument is merely a set of keyboard
1171 * ranges (called Region), plus some additional global informations about
1172 * the instrument. The major part of the actual instrument definition used
1173 * for the synthesis of the instrument is contained in the respective Region
1174 * object (or actually in the respective DimensionRegion object being, see
1175 * description of Region for details).
1176 *
1177 * Since the gig format was designed as extension to the DLS file format,
1178 * this class is derived from the DLS::Instrument class. So also refer to
1179 * DLS::Instrument for additional informations, class attributes and
1180 * methods.
1181 */
1182 class Instrument : protected DLS::Instrument {
1183 public:
1184 // derived attributes from DLS::Resource
1185 using DLS::Resource::pInfo;
1186 using DLS::Resource::pDLSID;
1187 // derived attributes from DLS::Instrument
1188 using DLS::Instrument::IsDrum;
1189 using DLS::Instrument::MIDIBank;
1190 using DLS::Instrument::MIDIBankCoarse;
1191 using DLS::Instrument::MIDIBankFine;
1192 using DLS::Instrument::MIDIProgram;
1193 using DLS::Instrument::Regions;
1194 // own attributes
1195 int32_t Attenuation; ///< in dB
1196 uint16_t EffectSend;
1197 int16_t FineTune; ///< in cents
1198 uint16_t PitchbendRange; ///< Number of semitones pitchbend controller can pitch (default is 2).
1199 bool PianoReleaseMode;
1200 range_t DimensionKeyRange; ///< 0-127 (where 0 means C1 and 127 means G9)
1201
1202
1203 // derived methods from DLS::Resource
1204 using DLS::Resource::GetParent;
1205 // overridden methods
1206 Region* GetFirstRegion();
1207 Region* GetNextRegion();
1208 Region* AddRegion();
1209 void DeleteRegion(Region* pRegion);
1210 void MoveTo(Instrument* dst);
1211 virtual void UpdateChunks(progress_t* pProgress);
1212 virtual void CopyAssign(const Instrument* orig);
1213 // own methods
1214 Region* GetRegion(unsigned int Key);
1215 MidiRule* GetMidiRule(int i);
1216 MidiRuleCtrlTrigger* AddMidiRuleCtrlTrigger();
1217 MidiRuleLegato* AddMidiRuleLegato();
1218 MidiRuleAlternator* AddMidiRuleAlternator();
1219 void DeleteMidiRule(int i);
1220 // real-time instrument script methods
1221 Script* GetScriptOfSlot(uint index);
1222 void AddScriptSlot(Script* pScript, bool bypass = false);
1223 void SwapScriptSlots(uint index1, uint index2);
1224 void RemoveScriptSlot(uint index);
1225 void RemoveScript(Script* pScript);
1226 uint ScriptSlotCount() const;
1227 bool IsScriptSlotBypassed(uint index);
1228 void SetScriptSlotBypassed(uint index, bool bBypass);
1229 protected:
1230 Region* RegionKeyTable[128]; ///< fast lookup for the corresponding Region of a MIDI key
1231
1232 Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress = NULL);
1233 ~Instrument();
1234 void CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples);
1235 void UpdateRegionKeyTable();
1236 void LoadScripts();
1237 void UpdateScriptFileOffsets();
1238 friend class File;
1239 friend class Region; // so Region can call UpdateRegionKeyTable()
1240 private:
1241 struct _ScriptPooolEntry {
1242 uint32_t fileOffset;
1243 bool bypass;
1244 };
1245 struct _ScriptPooolRef {
1246 Script* script;
1247 bool bypass;
1248 };
1249 MidiRule** pMidiRules;
1250 std::vector<_ScriptPooolEntry> scriptPoolFileOffsets;
1251 std::vector<_ScriptPooolRef>* pScriptRefs;
1252 };
1253
1254 /** @brief Group of Gigasampler samples
1255 *
1256 * Groups help to organize a huge collection of Gigasampler samples.
1257 * Groups are not concerned at all for the synthesis, but they help
1258 * sound library developers when working on complex instruments with an
1259 * instrument editor (as long as that instrument editor supports it ;-).
1260 *
1261 * A sample is always assigned to exactly one Group. This also means
1262 * there is always at least one Group in a .gig file, no matter if you
1263 * created one yet or not.
1264 */
1265 class Group {
1266 public:
1267 String Name; ///< Stores the name of this Group.
1268
1269 Sample* GetFirstSample();
1270 Sample* GetNextSample();
1271 void AddSample(Sample* pSample);
1272 protected:
1273 Group(File* file, RIFF::Chunk* ck3gnm);
1274 virtual ~Group();
1275 virtual void UpdateChunks(progress_t* pProgress);
1276 void MoveAll();
1277 friend class File;
1278 private:
1279 File* pFile;
1280 RIFF::Chunk* pNameChunk; ///< '3gnm' chunk
1281 };
1282
1283 /** @brief Provides convenient access to Gigasampler/GigaStudio .gig files.
1284 *
1285 * This is the entry class for accesing a Gigasampler/GigaStudio (.gig) file
1286 * with libgig. It allows you to open existing .gig files, modifying them
1287 * and saving them persistently either under the same file name or under a
1288 * different location.
1289 *
1290 * A .gig file is merely a monolithic file. That means samples and the
1291 * defintion of the virtual instruments are contained in the same file. A
1292 * .gig file contains an arbitrary amount of samples, and an arbitrary
1293 * amount of instruments which are referencing those samples. It is also
1294 * possible to store samples in .gig files not being referenced by any
1295 * instrument. This is not an error from the file format's point of view and
1296 * it is actually often used in practice during the design phase of new gig
1297 * instruments.
1298 *
1299 * So on toplevel of the gig file format you have:
1300 *
1301 * - A set of samples (see Sample).
1302 * - A set of virtual instruments (see Instrument).
1303 *
1304 * And as extension to the original GigaStudio format, we added:
1305 *
1306 * - Real-time instrument scripts (see Script).
1307 *
1308 * Note that the latter however is only supported by libgig, gigedit and
1309 * LinuxSampler. Scripts are not supported by the original GigaStudio
1310 * software.
1311 *
1312 * All released Gigasampler/GigaStudio file format versions are supported
1313 * (so from first Gigasampler version up to including GigaStudio 4).
1314 *
1315 * Since the gig format was designed as extension to the DLS file format,
1316 * this class is derived from the DLS::File class. So also refer to
1317 * DLS::File for additional informations, class attributes and methods.
1318 */
1319 class File : protected DLS::File {
1320 public:
1321 static const DLS::version_t VERSION_2;
1322 static const DLS::version_t VERSION_3;
1323
1324 // derived attributes from DLS::Resource
1325 using DLS::Resource::pInfo;
1326 using DLS::Resource::pDLSID;
1327 // derived attributes from DLS::File
1328 using DLS::File::pVersion;
1329 using DLS::File::Instruments;
1330
1331 // derived methods from DLS::Resource
1332 using DLS::Resource::GetParent;
1333 // derived methods from DLS::File
1334 using DLS::File::Save;
1335 using DLS::File::GetFileName;
1336 using DLS::File::SetFileName;
1337 // overridden methods
1338 File();
1339 File(RIFF::File* pRIFF);
1340 Sample* GetFirstSample(progress_t* pProgress = NULL); ///< Returns a pointer to the first <i>Sample</i> object of the file, <i>NULL</i> otherwise.
1341 Sample* GetNextSample(); ///< Returns a pointer to the next <i>Sample</i> object of the file, <i>NULL</i> otherwise.
1342 Sample* GetSample(uint index);
1343 Sample* AddSample();
1344 void DeleteSample(Sample* pSample);
1345 Instrument* GetFirstInstrument(); ///< Returns a pointer to the first <i>Instrument</i> object of the file, <i>NULL</i> otherwise.
1346 Instrument* GetNextInstrument(); ///< Returns a pointer to the next <i>Instrument</i> object of the file, <i>NULL</i> otherwise.
1347 Instrument* GetInstrument(uint index, progress_t* pProgress = NULL);
1348 Instrument* AddInstrument();
1349 Instrument* AddDuplicateInstrument(const Instrument* orig);
1350 void DeleteInstrument(Instrument* pInstrument);
1351 Group* GetFirstGroup(); ///< Returns a pointer to the first <i>Group</i> object of the file, <i>NULL</i> otherwise.
1352 Group* GetNextGroup(); ///< Returns a pointer to the next <i>Group</i> object of the file, <i>NULL</i> otherwise.
1353 Group* GetGroup(uint index);
1354 Group* GetGroup(String name);
1355 Group* AddGroup();
1356 void DeleteGroup(Group* pGroup);
1357 void DeleteGroupOnly(Group* pGroup);
1358 void SetAutoLoad(bool b);
1359 bool GetAutoLoad();
1360 void AddContentOf(File* pFile);
1361 ScriptGroup* GetScriptGroup(uint index);
1362 ScriptGroup* GetScriptGroup(const String& name);
1363 ScriptGroup* AddScriptGroup();
1364 void DeleteScriptGroup(ScriptGroup* pGroup);
1365 virtual ~File();
1366 virtual void UpdateChunks(progress_t* pProgress);
1367 protected:
1368 // overridden protected methods from DLS::File
1369 virtual void LoadSamples();
1370 virtual void LoadInstruments();
1371 virtual void LoadGroups();
1372 virtual void UpdateFileOffsets();
1373 // own protected methods
1374 virtual void LoadSamples(progress_t* pProgress);
1375 virtual void LoadInstruments(progress_t* pProgress);
1376 virtual void LoadScriptGroups();
1377 void SetSampleChecksum(Sample* pSample, uint32_t crc);
1378 uint32_t GetSampleChecksum(Sample* pSample);
1379 uint32_t GetSampleChecksumByIndex(int index);
1380 bool VerifySampleChecksumTable();
1381 bool RebuildSampleChecksumTable();
1382 int GetWaveTableIndexOf(gig::Sample* pSample);
1383 friend class Region;
1384 friend class Sample;
1385 friend class Instrument;
1386 friend class Group; // so Group can access protected member pRIFF
1387 friend class ScriptGroup; // so ScriptGroup can access protected member pRIFF
1388 private:
1389 std::list<Group*>* pGroups;
1390 std::list<Group*>::iterator GroupsIterator;
1391 bool bAutoLoad;
1392 std::list<ScriptGroup*>* pScriptGroups;
1393 };
1394
1395 /**
1396 * Will be thrown whenever a gig specific error occurs while trying to
1397 * access a Gigasampler File. Note: In your application you should
1398 * better catch for RIFF::Exception rather than this one, except you
1399 * explicitly want to catch and handle gig::Exception, DLS::Exception
1400 * and RIFF::Exception independently, which usually shouldn't be
1401 * necessary though.
1402 */
1403 class Exception : public DLS::Exception {
1404 public:
1405 Exception(String format, ...);
1406 Exception(String format, va_list arg);
1407 void PrintMessage();
1408 protected:
1409 Exception();
1410 };
1411
1412 #if HAVE_RTTI
1413 size_t enumCount(const std::type_info& type);
1414 const char* enumKey(const std::type_info& type, size_t value);
1415 bool enumKey(const std::type_info& type, String key);
1416 const char** enumKeys(const std::type_info& type);
1417 #endif // HAVE_RTTI
1418 size_t enumCount(String typeName);
1419 const char* enumKey(String typeName, size_t value);
1420 bool enumKey(String typeName, String key);
1421 const char** enumKeys(String typeName);
1422 size_t enumValue(String key);
1423
1424 String libraryName();
1425 String libraryVersion();
1426
1427 } // namespace gig
1428
1429 #endif // __GIG_H__

  ViewVC Help
Powered by ViewVC