/[svn]/libgig/trunk/src/gig.h
ViewVC logotype

Contents of /libgig/trunk/src/gig.h

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3723 - (show annotations) (download) (as text)
Wed Jan 22 15:48:32 2020 UTC (4 years, 2 months ago) by schoenebeck
File MIME type: text/x-c++hdr
File size: 99411 byte(s)
* Require some UUID generating function by underlying system.

* gig.h/.cpp: Script class: Generate a persistent UUID for each script.

* Bumped version (4.2.0.svn7).

1 /***************************************************************************
2 * *
3 * libgig - C++ cross-platform Gigasampler format file access library *
4 * *
5 * Copyright (C) 2003-2020 by Christian Schoenebeck *
6 * <cuse@users.sourceforge.net> *
7 * *
8 * This library is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This library is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this library; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #ifndef __GIG_H__
25 #define __GIG_H__
26
27 #include "DLS.h"
28 #include <vector>
29
30 #ifndef __has_feature
31 # define __has_feature(x) 0
32 #endif
33 #ifndef HAVE_RTTI
34 # if __GXX_RTTI || __has_feature(cxx_rtti) || _CPPRTTI
35 # define HAVE_RTTI 1
36 # else
37 # define HAVE_RTTI 0
38 # endif
39 #endif
40 #if HAVE_RTTI
41 # include <typeinfo>
42 #else
43 # warning No RTTI available!
44 #endif
45
46 #if WORDS_BIGENDIAN
47 # define LIST_TYPE_3PRG 0x33707267
48 # define LIST_TYPE_3EWL 0x3365776C
49 # define LIST_TYPE_3GRI 0x33677269
50 # define LIST_TYPE_3GNL 0x33676E6C
51 # define LIST_TYPE_3LS 0x334c5320 // own gig format extension
52 # define LIST_TYPE_RTIS 0x52544953 // own gig format extension
53 # define LIST_TYPE_3DNM 0x33646e6d
54 # define CHUNK_ID_3GIX 0x33676978
55 # define CHUNK_ID_3EWA 0x33657761
56 # define CHUNK_ID_3LNK 0x336C6E6B
57 # define CHUNK_ID_3EWG 0x33657767
58 # define CHUNK_ID_EWAV 0x65776176
59 # define CHUNK_ID_3GNM 0x33676E6D
60 # define CHUNK_ID_EINF 0x65696E66
61 # define CHUNK_ID_3CRC 0x33637263
62 # define CHUNK_ID_SCRI 0x53637269 // own gig format extension
63 # define CHUNK_ID_LSNM 0x4c534e4d // own gig format extension
64 # define CHUNK_ID_SCSL 0x5343534c // own gig format extension
65 # define CHUNK_ID_LSDE 0x4c534445 // own gig format extension
66 # define CHUNK_ID_3DDP 0x33646470
67 #else // little endian
68 # define LIST_TYPE_3PRG 0x67727033
69 # define LIST_TYPE_3EWL 0x6C776533
70 # define LIST_TYPE_3GRI 0x69726733
71 # define LIST_TYPE_3GNL 0x6C6E6733
72 # define LIST_TYPE_3LS 0x20534c33 // own gig format extension
73 # define LIST_TYPE_RTIS 0x53495452 // own gig format extension
74 # define LIST_TYPE_3DNM 0x6d6e6433
75 # define CHUNK_ID_3GIX 0x78696733
76 # define CHUNK_ID_3EWA 0x61776533
77 # define CHUNK_ID_3LNK 0x6B6E6C33
78 # define CHUNK_ID_3EWG 0x67776533
79 # define CHUNK_ID_EWAV 0x76617765
80 # define CHUNK_ID_3GNM 0x6D6E6733
81 # define CHUNK_ID_EINF 0x666E6965
82 # define CHUNK_ID_3CRC 0x63726333
83 # define CHUNK_ID_SCRI 0x69726353 // own gig format extension
84 # define CHUNK_ID_LSNM 0x4d4e534c // own gig format extension
85 # define CHUNK_ID_SCSL 0x4c534353 // own gig format extension
86 # define CHUNK_ID_LSDE 0x4544534c // own gig format extension
87 # define CHUNK_ID_3DDP 0x70646433
88 #endif // WORDS_BIGENDIAN
89
90 #ifndef GIG_DECLARE_ENUM
91 # define GIG_DECLARE_ENUM(type, ...) enum type { __VA_ARGS__ }
92 #endif
93
94 // just symbol prototyping (since Serialization.h not included by default here)
95 namespace Serialization { class Archive; }
96
97 /** Gigasampler/GigaStudio specific classes and definitions */
98 namespace gig {
99
100 typedef std::string String;
101 typedef RIFF::progress_t progress_t;
102 typedef RIFF::file_offset_t file_offset_t;
103
104 /** Lower and upper limit of a range. */
105 struct range_t {
106 uint8_t low; ///< Low value of range.
107 uint8_t high; ///< High value of range.
108 };
109
110 /** Pointer address and size of a buffer. */
111 struct buffer_t {
112 void* pStart; ///< Points to the beginning of the buffer.
113 file_offset_t Size; ///< Size of the actual data in the buffer in bytes.
114 file_offset_t NullExtensionSize; ///< The buffer might be bigger than the actual data, if that's the case that unused space at the end of the buffer is filled with NULLs and NullExtensionSize reflects that unused buffer space in bytes. Those NULL extensions are mandatory for differential algorithms that have to take the following data words into account, thus have to access past the buffer's boundary. If you don't know what I'm talking about, just forget this variable. :)
115 buffer_t() {
116 pStart = NULL;
117 Size = 0;
118 NullExtensionSize = 0;
119 }
120 };
121
122 /** Standard types of sample loops.
123 *
124 * @see enumCount(), enumKey(), enumKeys(), enumValue()
125 */
126 GIG_DECLARE_ENUM(loop_type_t,
127 loop_type_normal = 0x00000000, /**< Loop forward (normal) */
128 loop_type_bidirectional = 0x00000001, /**< Alternating loop (forward/backward, also known as Ping Pong) */
129 loop_type_backward = 0x00000002 /**< Loop backward (reverse) */
130 );
131
132 /** Society of Motion Pictures and Television E time format.
133 *
134 * @see enumCount(), enumKey(), enumKeys(), enumValue()
135 */
136 GIG_DECLARE_ENUM(smpte_format_t,
137 smpte_format_no_offset = 0x00000000, /**< no SMPTE offset */
138 smpte_format_24_frames = 0x00000018, /**< 24 frames per second */
139 smpte_format_25_frames = 0x00000019, /**< 25 frames per second */
140 smpte_format_30_frames_dropping = 0x0000001D, /**< 30 frames per second with frame dropping (30 drop) */
141 smpte_format_30_frames = 0x0000001E /**< 30 frames per second */
142 );
143
144 /** Defines the shape of a function graph.
145 *
146 * @see enumCount(), enumKey(), enumKeys(), enumValue()
147 */
148 GIG_DECLARE_ENUM(curve_type_t,
149 curve_type_nonlinear = 0, /**< Non-linear curve type. */
150 curve_type_linear = 1, /**< Linear curve type. */
151 curve_type_special = 2, /**< Special curve type. */
152 curve_type_unknown = 0xffffffff /**< Unknown curve type. */
153 );
154
155 /** Defines the wave form type used by an LFO (gig format extension).
156 *
157 * This is a gig format extension. The original Gigasampler/GigaStudio
158 * software always used a sine (sinus) wave form for all its 3 LFOs, so this
159 * was not configurable in the original gig format. Accordingly setting any
160 * other wave form than sine (sinus) will be ignored by the original
161 * Gigasampler/GigaStudio software.
162 *
163 * @see enumCount(), enumKey(), enumKeys(), enumValue()
164 */
165 GIG_DECLARE_ENUM(lfo_wave_t,
166 lfo_wave_sine = 0, /**< Sine (sinus) wave form (this is the default wave form). */
167 lfo_wave_triangle = 1, /**< Triangle wave form. */
168 lfo_wave_saw = 2, /**< Saw (up) wave form (saw down wave form can be achieved by flipping the phase). */
169 lfo_wave_square = 3, /**< Square wave form. */
170 );
171
172 /** Dimensions allow to bypass one of the following controllers.
173 *
174 * @see enumCount(), enumKey(), enumKeys(), enumValue()
175 */
176 GIG_DECLARE_ENUM(dim_bypass_ctrl_t,
177 dim_bypass_ctrl_none, /**< No controller bypass. */
178 dim_bypass_ctrl_94, /**< Effect 4 Depth (MIDI Controller 94) */
179 dim_bypass_ctrl_95 /**< Effect 5 Depth (MIDI Controller 95) */
180 );
181
182 /** Defines how LFO3 is controlled by.
183 *
184 * @see enumCount(), enumKey(), enumKeys(), enumValue()
185 */
186 GIG_DECLARE_ENUM(lfo3_ctrl_t,
187 lfo3_ctrl_internal = 0x00, /**< Only internally controlled. */
188 lfo3_ctrl_modwheel = 0x01, /**< Only controlled by external modulation wheel. */
189 lfo3_ctrl_aftertouch = 0x02, /**< Only controlled by aftertouch controller. */
190 lfo3_ctrl_internal_modwheel = 0x03, /**< Controlled internally and by external modulation wheel. */
191 lfo3_ctrl_internal_aftertouch = 0x04 /**< Controlled internally and by aftertouch controller. */
192 );
193
194 /** Defines how LFO2 is controlled by.
195 *
196 * @see enumCount(), enumKey(), enumKeys(), enumValue()
197 */
198 GIG_DECLARE_ENUM(lfo2_ctrl_t,
199 lfo2_ctrl_internal = 0x00, /**< Only internally controlled. */
200 lfo2_ctrl_modwheel = 0x01, /**< Only controlled by external modulation wheel. */
201 lfo2_ctrl_foot = 0x02, /**< Only controlled by external foot controller. */
202 lfo2_ctrl_internal_modwheel = 0x03, /**< Controlled internally and by external modulation wheel. */
203 lfo2_ctrl_internal_foot = 0x04 /**< Controlled internally and by external foot controller. */
204 );
205
206 /** Defines how LFO1 is controlled by.
207 *
208 * @see enumCount(), enumKey(), enumKeys(), enumValue()
209 */
210 GIG_DECLARE_ENUM(lfo1_ctrl_t,
211 lfo1_ctrl_internal = 0x00, /**< Only internally controlled. */
212 lfo1_ctrl_modwheel = 0x01, /**< Only controlled by external modulation wheel. */
213 lfo1_ctrl_breath = 0x02, /**< Only controlled by external breath controller. */
214 lfo1_ctrl_internal_modwheel = 0x03, /**< Controlled internally and by external modulation wheel. */
215 lfo1_ctrl_internal_breath = 0x04 /**< Controlled internally and by external breath controller. */
216 );
217
218 /** Defines how the filter cutoff frequency is controlled by.
219 *
220 * @see enumCount(), enumKey(), enumKeys(), enumValue()
221 */
222 GIG_DECLARE_ENUM(vcf_cutoff_ctrl_t,
223 vcf_cutoff_ctrl_none = 0x00, /**< No MIDI controller assigned for filter cutoff frequency. */
224 vcf_cutoff_ctrl_none2 = 0x01, /**< The difference between none and none2 is unknown */
225 vcf_cutoff_ctrl_modwheel = 0x81, /**< Modulation Wheel (MIDI Controller 1) */
226 vcf_cutoff_ctrl_effect1 = 0x8c, /**< Effect Controller 1 (Coarse, MIDI Controller 12) */
227 vcf_cutoff_ctrl_effect2 = 0x8d, /**< Effect Controller 2 (Coarse, MIDI Controller 13) */
228 vcf_cutoff_ctrl_breath = 0x82, /**< Breath Controller (Coarse, MIDI Controller 2) */
229 vcf_cutoff_ctrl_foot = 0x84, /**< Foot Pedal (Coarse, MIDI Controller 4) */
230 vcf_cutoff_ctrl_sustainpedal = 0xc0, /**< Sustain Pedal (MIDI Controller 64) */
231 vcf_cutoff_ctrl_softpedal = 0xc3, /**< Soft Pedal (MIDI Controller 67) */
232 vcf_cutoff_ctrl_genpurpose7 = 0xd2, /**< General Purpose Controller 7 (Button, MIDI Controller 82) */
233 vcf_cutoff_ctrl_genpurpose8 = 0xd3, /**< General Purpose Controller 8 (Button, MIDI Controller 83) */
234 vcf_cutoff_ctrl_aftertouch = 0x80 /**< Key Pressure */
235 );
236
237 /** Defines how the filter resonance is controlled by.
238 *
239 * @see enumCount(), enumKey(), enumKeys(), enumValue()
240 */
241 GIG_DECLARE_ENUM(vcf_res_ctrl_t,
242 vcf_res_ctrl_none = 0xffffffff, /**< No MIDI controller assigned for filter resonance. */
243 vcf_res_ctrl_genpurpose3 = 0, /**< General Purpose Controller 3 (Slider, MIDI Controller 18) */
244 vcf_res_ctrl_genpurpose4 = 1, /**< General Purpose Controller 4 (Slider, MIDI Controller 19) */
245 vcf_res_ctrl_genpurpose5 = 2, /**< General Purpose Controller 5 (Button, MIDI Controller 80) */
246 vcf_res_ctrl_genpurpose6 = 3 /**< General Purpose Controller 6 (Button, MIDI Controller 81) */
247 );
248
249 /**
250 * Defines a controller that has a certain contrained influence on a
251 * particular synthesis parameter (used to define attenuation controller,
252 * EG1 controller and EG2 controller).
253 *
254 * You should use the respective <i>typedef</i> (means either
255 * attenuation_ctrl_t, eg1_ctrl_t or eg2_ctrl_t) in your code!
256 */
257 struct leverage_ctrl_t {
258 /** Defines possible controllers.
259 *
260 * @see enumCount(), enumKey(), enumKeys(), enumValue()
261 */
262 GIG_DECLARE_ENUM(type_t,
263 type_none = 0x00, /**< No controller defined */
264 type_channelaftertouch = 0x2f, /**< Channel Key Pressure */
265 type_velocity = 0xff, /**< Key Velocity */
266 type_controlchange = 0xfe /**< Ordinary MIDI control change controller, see field 'controller_number' */
267 );
268
269 type_t type; ///< Controller type
270 uint controller_number; ///< MIDI controller number if this controller is a control change controller, 0 otherwise
271
272 void serialize(Serialization::Archive* archive);
273 };
274
275 /**
276 * Defines controller influencing attenuation.
277 *
278 * @see leverage_ctrl_t
279 */
280 typedef leverage_ctrl_t attenuation_ctrl_t;
281
282 /**
283 * Defines controller influencing envelope generator 1.
284 *
285 * @see leverage_ctrl_t
286 */
287 typedef leverage_ctrl_t eg1_ctrl_t;
288
289 /**
290 * Defines controller influencing envelope generator 2.
291 *
292 * @see leverage_ctrl_t
293 */
294 typedef leverage_ctrl_t eg2_ctrl_t;
295
296 /**
297 * Defines the type of dimension, that is how the dimension zones (and
298 * thus how the dimension regions are selected by. The number of
299 * dimension zones is always a power of two. All dimensions can have up
300 * to 32 zones (except the layer dimension with only up to 8 zones and
301 * the samplechannel dimension which currently allows only 2 zones).
302 *
303 * @see enumCount(), enumKey(), enumKeys(), enumValue()
304 */
305 GIG_DECLARE_ENUM(dimension_t,
306 dimension_none = 0x00, /**< Dimension not in use. */
307 dimension_samplechannel = 0x80, /**< If used sample has more than one channel (thus is not mono). */
308 dimension_layer = 0x81, /**< For layering of up to 8 instruments (and eventually crossfading of 2 or 4 layers). */
309 dimension_velocity = 0x82, /**< Key Velocity (this is the only dimension in gig2 where the ranges can exactly be defined). */
310 dimension_channelaftertouch = 0x83, /**< Channel Key Pressure */
311 dimension_releasetrigger = 0x84, /**< Special dimension for triggering samples on releasing a key. */
312 dimension_keyboard = 0x85, /**< Dimension for keyswitching */
313 dimension_roundrobin = 0x86, /**< Different samples triggered each time a note is played, dimension regions selected in sequence */
314 dimension_random = 0x87, /**< Different samples triggered each time a note is played, random order */
315 dimension_smartmidi = 0x88, /**< For MIDI tools like legato and repetition mode */
316 dimension_roundrobinkeyboard = 0x89, /**< Different samples triggered each time a note is played, any key advances the counter */
317 dimension_modwheel = 0x01, /**< Modulation Wheel (MIDI Controller 1) */
318 dimension_breath = 0x02, /**< Breath Controller (Coarse, MIDI Controller 2) */
319 dimension_foot = 0x04, /**< Foot Pedal (Coarse, MIDI Controller 4) */
320 dimension_portamentotime = 0x05, /**< Portamento Time (Coarse, MIDI Controller 5) */
321 dimension_effect1 = 0x0c, /**< Effect Controller 1 (Coarse, MIDI Controller 12) */
322 dimension_effect2 = 0x0d, /**< Effect Controller 2 (Coarse, MIDI Controller 13) */
323 dimension_genpurpose1 = 0x10, /**< General Purpose Controller 1 (Slider, MIDI Controller 16) */
324 dimension_genpurpose2 = 0x11, /**< General Purpose Controller 2 (Slider, MIDI Controller 17) */
325 dimension_genpurpose3 = 0x12, /**< General Purpose Controller 3 (Slider, MIDI Controller 18) */
326 dimension_genpurpose4 = 0x13, /**< General Purpose Controller 4 (Slider, MIDI Controller 19) */
327 dimension_sustainpedal = 0x40, /**< Sustain Pedal (MIDI Controller 64) */
328 dimension_portamento = 0x41, /**< Portamento (MIDI Controller 65) */
329 dimension_sostenutopedal = 0x42, /**< Sostenuto Pedal (MIDI Controller 66) */
330 dimension_softpedal = 0x43, /**< Soft Pedal (MIDI Controller 67) */
331 dimension_genpurpose5 = 0x30, /**< General Purpose Controller 5 (Button, MIDI Controller 80) */
332 dimension_genpurpose6 = 0x31, /**< General Purpose Controller 6 (Button, MIDI Controller 81) */
333 dimension_genpurpose7 = 0x32, /**< General Purpose Controller 7 (Button, MIDI Controller 82) */
334 dimension_genpurpose8 = 0x33, /**< General Purpose Controller 8 (Button, MIDI Controller 83) */
335 dimension_effect1depth = 0x5b, /**< Effect 1 Depth (MIDI Controller 91) */
336 dimension_effect2depth = 0x5c, /**< Effect 2 Depth (MIDI Controller 92) */
337 dimension_effect3depth = 0x5d, /**< Effect 3 Depth (MIDI Controller 93) */
338 dimension_effect4depth = 0x5e, /**< Effect 4 Depth (MIDI Controller 94) */
339 dimension_effect5depth = 0x5f /**< Effect 5 Depth (MIDI Controller 95) */
340 );
341
342 /**
343 * Intended for internal usage: will be used to convert a dimension value
344 * into the corresponding dimension bit number.
345 *
346 * @see enumCount(), enumKey(), enumKeys(), enumValue()
347 */
348 GIG_DECLARE_ENUM(split_type_t,
349 split_type_normal, /**< dimension value between 0-127 */
350 split_type_bit /**< dimension values are already the sought bit number */
351 );
352
353 /** General dimension definition. */
354 struct dimension_def_t {
355 dimension_t dimension; ///< Specifies which source (usually a MIDI controller) is associated with the dimension.
356 uint8_t bits; ///< Number of "bits" (1 bit = 2 splits/zones, 2 bit = 4 splits/zones, 3 bit = 8 splits/zones,...).
357 uint8_t zones; ///< Number of zones the dimension has.
358 split_type_t split_type; ///< Intended for internal usage: will be used to convert a dimension value into the corresponding dimension bit number.
359 float zone_size; ///< Intended for internal usage: reflects the size of each zone (128/zones) for normal split types only, 0 otherwise.
360 };
361
362 /** Audio filter types.
363 *
364 * The first 5 filter types are the ones which exist in GigaStudio, and
365 * which are very accurately modeled on LinuxSampler side such that they
366 * would sound with LinuxSampler exactly as with GigaStudio.
367 *
368 * The other filter types listed here are extensions to the gig format and
369 * are LinuxSampler specific filter type implementations. Note that none of
370 * these are duplicates of the GigaStudio filter types. For instance
371 * @c vcf_type_lowpass (GigaStudio) and @c vcf_type_lowpass_2p
372 * (LinuxSampler) are both lowpass filters with 2 poles, however they do
373 * sound differently.
374 *
375 * @see enumCount(), enumKey(), enumKeys(), enumValue()
376 */
377 GIG_DECLARE_ENUM(vcf_type_t,
378 vcf_type_lowpass = 0x00, /**< Standard lowpass filter type (GigaStudio). */
379 vcf_type_lowpassturbo = 0xff, /**< More poles than normal lowpass (GigaStudio). */
380 vcf_type_bandpass = 0x01, /**< Bandpass filter type (GigaStudio). */
381 vcf_type_highpass = 0x02, /**< Highpass filter type (GigaStudio). */
382 vcf_type_bandreject = 0x03, /**< Band reject filter type (GigaStudio). */
383 vcf_type_lowpass_1p = 0x11, /**< [gig extension]: 1-pole lowpass filter type (LinuxSampler). */
384 vcf_type_lowpass_2p = 0x12, /**< [gig extension]: 2-pole lowpass filter type (LinuxSampler). */
385 vcf_type_lowpass_4p = 0x14, /**< [gig extension]: 4-pole lowpass filter type (LinuxSampler). */
386 vcf_type_lowpass_6p = 0x16, /**< [gig extension]: 6-pole lowpass filter type (LinuxSampler). */
387 vcf_type_highpass_1p = 0x21, /**< [gig extension]: 1-pole highpass filter type (LinuxSampler). */
388 vcf_type_highpass_2p = 0x22, /**< [gig extension]: 2-pole highpass filter type (LinuxSampler). */
389 vcf_type_highpass_4p = 0x24, /**< [gig extension]: 4-pole highpass filter type (LinuxSampler). */
390 vcf_type_highpass_6p = 0x26, /**< [gig extension]: 6-pole highpass filter type (LinuxSampler). */
391 vcf_type_bandpass_2p = 0x32, /**< [gig extension]: 2-pole bandpass filter type (LinuxSampler). */
392 vcf_type_bandreject_2p = 0x42 /**< [gig extension]: 2-pole bandreject filter type (LinuxSampler). */
393 );
394
395 /**
396 * Defines the envelope of a crossfade.
397 *
398 * Note: The default value for crossfade points is 0,0,0,0. Layers with
399 * such a default value should be treated as if they would not have a
400 * crossfade.
401 */
402 struct crossfade_t {
403 #if WORDS_BIGENDIAN
404 uint8_t out_end; ///< End postition of fade out.
405 uint8_t out_start; ///< Start position of fade out.
406 uint8_t in_end; ///< End position of fade in.
407 uint8_t in_start; ///< Start position of fade in.
408 #else // little endian
409 uint8_t in_start; ///< Start position of fade in.
410 uint8_t in_end; ///< End position of fade in.
411 uint8_t out_start; ///< Start position of fade out.
412 uint8_t out_end; ///< End postition of fade out.
413 #endif // WORDS_BIGENDIAN
414
415 void serialize(Serialization::Archive* archive);
416 };
417
418 /** Reflects the current playback state for a sample. */
419 struct playback_state_t {
420 file_offset_t position; ///< Current position within the sample.
421 bool reverse; ///< If playback direction is currently backwards (in case there is a pingpong or reverse loop defined).
422 file_offset_t loop_cycles_left; ///< How many times the loop has still to be passed, this value will be decremented with each loop cycle.
423 };
424
425 /**
426 * Defines behavior options for envelope generators (gig format extension).
427 *
428 * These options allow to override the precise default behavior of the
429 * envelope generators' state machines.
430 *
431 * @b Note: These EG options are an extension to the original gig file
432 * format, so these options are not available with the original
433 * Gigasampler/GigaStudio software! Currently only LinuxSampler and gigedit
434 * support these EG options!
435 *
436 * Adding these options to the original gig file format was necessary,
437 * because the precise state machine behavior of envelope generators of the
438 * gig format (and thus the default EG behavior if not explicitly overridden
439 * here) deviates from common, expected behavior of envelope generators in
440 * general, if i.e. compared with EGs of hardware synthesizers. For example
441 * with the gig format, the attack and decay stages will be aborted as soon
442 * as a note-off is received. Most other EG implementations in the industry
443 * however always run the attack and decay stages to their full duration,
444 * even if an early note-off arrives. The latter behavior is intentionally
445 * implemented in most other products, because it is required to resemble
446 * percussive sounds in a realistic manner.
447 */
448 struct eg_opt_t {
449 bool AttackCancel; ///< Whether the "attack" stage is cancelled when receiving a note-off (default: @c true).
450 bool AttackHoldCancel; ///< Whether the "attack hold" stage is cancelled when receiving a note-off (default: @c true).
451 bool Decay1Cancel; ///< Whether the "decay 1" stage is cancelled when receiving a note-off (default: @c true).
452 bool Decay2Cancel; ///< Whether the "decay 2" stage is cancelled when receiving a note-off (default: @c true).
453 bool ReleaseCancel; ///< Whether the "release" stage is cancelled when receiving a note-on (default: @c true).
454
455 eg_opt_t();
456 void serialize(Serialization::Archive* archive);
457 };
458
459 /** @brief Defines behaviour of release triggered sample(s) on sustain pedal up event.
460 *
461 * This option defines whether a sustain pedal up event (CC#64) would cause
462 * release triggered samples to be played (if any).
463 *
464 * @b Note: This option is an extension to the original gig file format,
465 * so this option is not available with the original Gigasampler/GigaStudio
466 * software! Currently only LinuxSampler and gigedit support this option!
467 *
468 * By default (which equals the original Gigasampler/GigaStudio behaviour)
469 * no release triggered samples are played if the sustain pedal is released.
470 * So usually in the gig format release triggered samples are only played
471 * on MIDI note-off events.
472 *
473 * @see enumCount(), enumKey(), enumKeys(), enumValue()
474 */
475 GIG_DECLARE_ENUM(sust_rel_trg_t,
476 sust_rel_trg_none = 0x00, /**< No release triggered sample(s) are played on sustain pedal up (default). */
477 sust_rel_trg_maxvelocity = 0x01, /**< Play release trigger sample(s) on sustain pedal up, and simply use 127 as MIDI velocity for playback. */
478 sust_rel_trg_keyvelocity = 0x02 /**< Play release trigger sample(s) on sustain pedal up, and use the key`s last MIDI note-on velocity for playback. */
479 );
480
481 // just symbol prototyping
482 class File;
483 class Instrument;
484 class Sample;
485 class Region;
486 class Group;
487 class Script;
488 class ScriptGroup;
489
490 /** @brief Encapsulates articulation informations of a dimension region.
491 *
492 * This is the most important data object of the Gigasampler / GigaStudio
493 * format. A DimensionRegion provides the link to the sample to be played
494 * and all required articulation informations to be interpreted for playing
495 * back the sample and processing it appropriately by the sampler software.
496 * Every Region of a Gigasampler Instrument has at least one dimension
497 * region (exactly then when the Region has no dimension defined). Many
498 * Regions though provide more than one DimensionRegion, which reflect
499 * different playing "cases". For example a different sample might be played
500 * if a certain pedal is pressed down, or if the note was triggered with
501 * different velocity.
502 *
503 * One instance of a DimensionRegion reflects exactly one particular case
504 * while playing an instrument (for instance "note between C3 and E3 was
505 * triggered AND note on velocity was between 20 and 42 AND modulation wheel
506 * controller is between 80 and 127). The DimensionRegion defines what to do
507 * under that one particular case, that is which sample to play back and how
508 * to play that sample back exactly and how to process it. So a
509 * DimensionRegion object is always linked to exactly one sample. It may
510 * however also link to no sample at all, for defining a "silence" case
511 * where nothing shall be played (for example when note on velocity was
512 * below 6).
513 *
514 * Note that a DimensionRegion object only defines "what to do", but it does
515 * not define "when to do it". To actually resolve which DimensionRegion to
516 * pick under which situation, you need to refer to the DimensionRegions'
517 * parent Region object. The Region object contains the necessary
518 * "Dimension" definitions, which in turn define which DimensionRegion is
519 * associated with which playing case exactly.
520 *
521 * The Gigasampler/GigaStudio format defines 3 Envelope Generators and 3
522 * Low Frequency Oscillators:
523 *
524 * - EG1 and LFO1, both controlling sample amplitude
525 * - EG2 and LFO2, both controlling filter cutoff frequency
526 * - EG3 and LFO3, both controlling sample pitch
527 *
528 * Since the gig format was designed as extension to the DLS file format,
529 * this class is derived from the DLS::Sampler class. So also refer to
530 * DLS::Sampler for additional informations, class attributes and methods.
531 */
532 class DimensionRegion : protected DLS::Sampler {
533 public:
534 uint8_t VelocityUpperLimit; ///< Defines the upper velocity value limit of a velocity split (only if an user defined limit was set, thus a value not equal to 128/NumberOfSplits, else this value is 0). Only for gig2, for gig3 and above the DimensionUpperLimits are used instead.
535 Sample* pSample; ///< Points to the Sample which is assigned to the dimension region.
536 // Sample Amplitude EG/LFO
537 uint16_t EG1PreAttack; ///< Preattack value of the sample amplitude EG (0 - 1000 permille).
538 double EG1Attack; ///< Attack time of the sample amplitude EG (0.000 - 60.000s).
539 double EG1Decay1; ///< Decay time of the sample amplitude EG (0.000 - 60.000s).
540 double EG1Decay2; ///< Only if <i>EG1InfiniteSustain == false</i>: 2nd decay stage time of the sample amplitude EG (0.000 - 60.000s).
541 bool EG1InfiniteSustain; ///< If <i>true</i>, instead of going into Decay2 phase, Decay1 level will be hold until note will be released.
542 uint16_t EG1Sustain; ///< Sustain value of the sample amplitude EG (0 - 1000 permille).
543 double EG1Release; ///< Release time of the sample amplitude EG (0.000 - 60.000s).
544 bool EG1Hold; ///< If <i>true</i>, Decay1 stage should be postponed until the sample reached the sample loop start.
545 eg1_ctrl_t EG1Controller; ///< MIDI Controller which has influence on sample amplitude EG parameters (attack, decay, release).
546 bool EG1ControllerInvert; ///< Invert values coming from defined EG1 controller.
547 uint8_t EG1ControllerAttackInfluence; ///< Amount EG1 Controller has influence on the EG1 Attack time (0 - 3, where 0 means off).
548 uint8_t EG1ControllerDecayInfluence; ///< Amount EG1 Controller has influence on the EG1 Decay time (0 - 3, where 0 means off).
549 uint8_t EG1ControllerReleaseInfluence; ///< Amount EG1 Controller has influence on the EG1 Release time (0 - 3, where 0 means off).
550 lfo_wave_t LFO1WaveForm; ///< [gig extension]: The fundamental wave form to be used by the amplitude LFO, e.g. sine, triangle, saw, square (default: sine).
551 double LFO1Frequency; ///< Frequency of the sample amplitude LFO (0.10 - 10.00 Hz).
552 double LFO1Phase; ///< [gig extension]: Phase displacement of the amplitude LFO's wave form (0.0�� - 360.0��).
553 uint16_t LFO1InternalDepth; ///< Firm pitch of the sample amplitude LFO (0 - 1200 cents).
554 uint16_t LFO1ControlDepth; ///< Controller depth influencing sample amplitude LFO pitch (0 - 1200 cents).
555 lfo1_ctrl_t LFO1Controller; ///< MIDI Controller which controls sample amplitude LFO.
556 bool LFO1FlipPhase; ///< Inverts the polarity of the sample amplitude LFO wave, so it flips the wave form vertically.
557 bool LFO1Sync; ///< If set to <i>true</i> only one LFO should be used for all voices.
558 // Filter Cutoff Frequency EG/LFO
559 uint16_t EG2PreAttack; ///< Preattack value of the filter cutoff EG (0 - 1000 permille).
560 double EG2Attack; ///< Attack time of the filter cutoff EG (0.000 - 60.000s).
561 double EG2Decay1; ///< Decay time of the filter cutoff EG (0.000 - 60.000s).
562 double EG2Decay2; ///< Only if <i>EG2InfiniteSustain == false</i>: 2nd stage decay time of the filter cutoff EG (0.000 - 60.000s).
563 bool EG2InfiniteSustain; ///< If <i>true</i>, instead of going into Decay2 phase, Decay1 level will be hold until note will be released.
564 uint16_t EG2Sustain; ///< Sustain value of the filter cutoff EG (0 - 1000 permille).
565 double EG2Release; ///< Release time of the filter cutoff EG (0.000 - 60.000s).
566 eg2_ctrl_t EG2Controller; ///< MIDI Controller which has influence on filter cutoff EG parameters (attack, decay, release).
567 bool EG2ControllerInvert; ///< Invert values coming from defined EG2 controller.
568 uint8_t EG2ControllerAttackInfluence; ///< Amount EG2 Controller has influence on the EG2 Attack time (0 - 3, where 0 means off).
569 uint8_t EG2ControllerDecayInfluence; ///< Amount EG2 Controller has influence on the EG2 Decay time (0 - 3, where 0 means off).
570 uint8_t EG2ControllerReleaseInfluence; ///< Amount EG2 Controller has influence on the EG2 Release time (0 - 3, where 0 means off).
571 lfo_wave_t LFO2WaveForm; ///< [gig extension]: The fundamental wave form to be used by the filter cutoff LFO, e.g. sine, triangle, saw, square (default: sine).
572 double LFO2Frequency; ///< Frequency of the filter cutoff LFO (0.10 - 10.00 Hz).
573 double LFO2Phase; ///< [gig extension]: Phase displacement of the filter cutoff LFO's wave form (0.0�� - 360.0��).
574 uint16_t LFO2InternalDepth; ///< Firm pitch of the filter cutoff LFO (0 - 1200 cents).
575 uint16_t LFO2ControlDepth; ///< Controller depth influencing filter cutoff LFO pitch (0 - 1200).
576 lfo2_ctrl_t LFO2Controller; ///< MIDI Controlle which controls the filter cutoff LFO.
577 bool LFO2FlipPhase; ///< Inverts the polarity of the filter cutoff LFO wave, so it flips the wave form vertically.
578 bool LFO2Sync; ///< If set to <i>true</i> only one LFO should be used for all voices.
579 // Sample Pitch EG/LFO
580 double EG3Attack; ///< Attack time of the sample pitch EG (0.000 - 10.000s).
581 int16_t EG3Depth; ///< Depth of the sample pitch EG (-1200 - +1200).
582 lfo_wave_t LFO3WaveForm; ///< [gig extension]: The fundamental wave form to be used by the pitch LFO, e.g. sine, triangle, saw, square (default: sine).
583 double LFO3Frequency; ///< Frequency of the sample pitch LFO (0.10 - 10.00 Hz).
584 double LFO3Phase; ///< [gig extension]: Phase displacement of the pitch LFO's wave form (0.0�� - 360.0��).
585 int16_t LFO3InternalDepth; ///< Firm depth of the sample pitch LFO (-1200 - +1200 cents).
586 int16_t LFO3ControlDepth; ///< Controller depth of the sample pitch LFO (-1200 - +1200 cents).
587 lfo3_ctrl_t LFO3Controller; ///< MIDI Controller which controls the sample pitch LFO.
588 bool LFO3FlipPhase; ///< [gig extension]: Inverts the polarity of the pitch LFO wave, so it flips the wave form vertically (@b NOTE: this setting for LFO3 is a gig format extension; flipping the polarity was only available for LFO1 and LFO2 in the original Gigasampler/GigaStudio software).
589 bool LFO3Sync; ///< If set to <i>true</i> only one LFO should be used for all voices.
590 // Filter
591 bool VCFEnabled; ///< If filter should be used.
592 vcf_type_t VCFType; ///< Defines the general filter characteristic (lowpass, highpass, bandpass, etc.).
593 vcf_cutoff_ctrl_t VCFCutoffController; ///< Specifies which external controller has influence on the filter cutoff frequency. @deprecated Don't alter directly, use SetVCFCutoffController() instead!
594 bool VCFCutoffControllerInvert; ///< Inverts values coming from the defined cutoff controller
595 uint8_t VCFCutoff; ///< Max. cutoff frequency.
596 curve_type_t VCFVelocityCurve; ///< Defines a transformation curve for the incoming velocity values, affecting the VCF. @deprecated Don't alter directly, use SetVCFVelocityCurve() instead!
597 uint8_t VCFVelocityScale; ///< (0-127) Amount velocity controls VCF cutoff frequency (only if no other VCF cutoff controller is defined, otherwise this is the minimum cutoff). @deprecated Don't alter directly, use SetVCFVelocityScale() instead!
598 uint8_t VCFVelocityDynamicRange; ///< 0x04 = lowest, 0x00 = highest . @deprecated Don't alter directly, use SetVCFVelocityDynamicRange() instead!
599 uint8_t VCFResonance; ///< Firm internal filter resonance weight.
600 bool VCFResonanceDynamic; ///< If <i>true</i>: Increases the resonance Q according to changes of controllers that actually control the VCF cutoff frequency (EG2, ext. VCF MIDI controller).
601 vcf_res_ctrl_t VCFResonanceController; ///< Specifies which external controller has influence on the filter resonance Q.
602 bool VCFKeyboardTracking; ///< If <i>true</i>: VCF cutoff frequence will be dependend to the note key position relative to the defined breakpoint value.
603 uint8_t VCFKeyboardTrackingBreakpoint; ///< See VCFKeyboardTracking (0 - 127).
604 // Key Velocity Transformations
605 curve_type_t VelocityResponseCurve; ///< Defines a transformation curve to the incoming velocity values affecting amplitude (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseCurve() instead!
606 uint8_t VelocityResponseDepth; ///< Dynamic range of velocity affecting amplitude (0 - 4) (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseDepth() instead!
607 uint8_t VelocityResponseCurveScaling; ///< 0 - 127 (usually you don't have to interpret this parameter, use GetVelocityAttenuation() instead). @deprecated Don't alter directly, use SetVelocityResponseCurveScaling() instead!
608 curve_type_t ReleaseVelocityResponseCurve; ///< Defines a transformation curve to the incoming release veloctiy values affecting envelope times. @deprecated Don't alter directly, use SetReleaseVelocityResponseCurve() instead!
609 uint8_t ReleaseVelocityResponseDepth; ///< Dynamic range of release velocity affecting envelope time (0 - 4). @deprecated Don't alter directly, use SetReleaseVelocityResponseDepth() instead!
610 uint8_t ReleaseTriggerDecay; ///< 0 - 8
611 // Mix / Layer
612 crossfade_t Crossfade;
613 bool PitchTrack; ///< If <i>true</i>: sample will be pitched according to the key position (this will be disabled for drums for example).
614 dim_bypass_ctrl_t DimensionBypass; ///< If defined, the MIDI controller can switch on/off the dimension in realtime.
615 int8_t Pan; ///< Panorama / Balance (-64..0..63 <-> left..middle..right)
616 bool SelfMask; ///< If <i>true</i>: high velocity notes will stop low velocity notes at the same note, with that you can save voices that wouldn't be audible anyway.
617 attenuation_ctrl_t AttenuationController; ///< MIDI Controller which has influence on the volume level of the sample (or entire sample group).
618 bool InvertAttenuationController; ///< Inverts the values coming from the defined Attenuation Controller.
619 uint8_t AttenuationControllerThreshold;///< 0-127
620 uint8_t ChannelOffset; ///< Audio output where the audio signal of the dimension region should be routed to (0 - 9).
621 bool SustainDefeat; ///< If <i>true</i>: Sustain pedal will not hold a note.
622 bool MSDecode; ///< Gigastudio flag: defines if Mid Side Recordings should be decoded.
623 uint16_t SampleStartOffset; ///< Number of samples the sample start should be moved (0 - 2000).
624 double SampleAttenuation; ///< Sample volume (calculated from DLS::Sampler::Gain)
625 uint8_t DimensionUpperLimits[8]; ///< gig3: defines the upper limit of the dimension values for this dimension region. In case you wondered why this is defined on DimensionRegion level and not on Region level: the zone sizes (upper limits) of the velocity dimension can indeed differ in the individual dimension regions, depending on which zones of the other dimension types are currently selected. So this is exceptional for the velocity dimension only. All other dimension types have the same dimension zone sizes for every single DimensionRegion (of the sample Region).
626 eg_opt_t EG1Options; ///< [gig extension]: Behavior options which should be used for envelope generator 1 (volume amplitude EG).
627 eg_opt_t EG2Options; ///< [gig extension]: Behavior options which should be used for envelope generator 2 (filter cutoff EG).
628 sust_rel_trg_t SustainReleaseTrigger; ///< [gig extension]: Whether a sustain pedal up event shall play release trigger sample.
629 bool NoNoteOffReleaseTrigger; ///< [gig extension]: If @c true then don't play a release trigger sample on MIDI note-off events.
630
631 // derived attributes from DLS::Sampler
632 using DLS::Sampler::UnityNote;
633 using DLS::Sampler::FineTune;
634 using DLS::Sampler::Gain;
635 using DLS::Sampler::SampleLoops;
636 using DLS::Sampler::pSampleLoops;
637
638 // own methods
639 double GetVelocityAttenuation(uint8_t MIDIKeyVelocity);
640 double GetVelocityRelease(uint8_t MIDIKeyVelocity);
641 double GetVelocityCutoff(uint8_t MIDIKeyVelocity);
642 void SetVelocityResponseCurve(curve_type_t curve);
643 void SetVelocityResponseDepth(uint8_t depth);
644 void SetVelocityResponseCurveScaling(uint8_t scaling);
645 void SetReleaseVelocityResponseCurve(curve_type_t curve);
646 void SetReleaseVelocityResponseDepth(uint8_t depth);
647 void SetVCFCutoffController(vcf_cutoff_ctrl_t controller);
648 void SetVCFVelocityCurve(curve_type_t curve);
649 void SetVCFVelocityDynamicRange(uint8_t range);
650 void SetVCFVelocityScale(uint8_t scaling);
651 Region* GetParent() const;
652 // derived methods
653 using DLS::Sampler::AddSampleLoop;
654 using DLS::Sampler::DeleteSampleLoop;
655 // overridden methods
656 virtual void SetGain(int32_t gain) OVERRIDE;
657 virtual void UpdateChunks(progress_t* pProgress) OVERRIDE;
658 virtual void CopyAssign(const DimensionRegion* orig);
659 protected:
660 uint8_t* VelocityTable; ///< For velocity dimensions with custom defined zone ranges only: used for fast converting from velocity MIDI value to dimension bit number.
661 DimensionRegion(Region* pParent, RIFF::List* _3ewl);
662 DimensionRegion(RIFF::List* _3ewl, const DimensionRegion& src);
663 ~DimensionRegion();
664 void CopyAssign(const DimensionRegion* orig, const std::map<Sample*,Sample*>* mSamples);
665 void serialize(Serialization::Archive* archive);
666 friend class Region;
667 friend class Serialization::Archive;
668 private:
669 typedef enum { ///< Used to decode attenuation, EG1 and EG2 controller
670 // official leverage controllers as they were defined in the original Gigasampler/GigaStudio format:
671 _lev_ctrl_none = 0x00,
672 _lev_ctrl_modwheel = 0x03, ///< Modulation Wheel (MIDI Controller 1)
673 _lev_ctrl_breath = 0x05, ///< Breath Controller (Coarse, MIDI Controller 2)
674 _lev_ctrl_foot = 0x07, ///< Foot Pedal (Coarse, MIDI Controller 4)
675 _lev_ctrl_effect1 = 0x0d, ///< Effect Controller 1 (Coarse, MIDI Controller 12)
676 _lev_ctrl_effect2 = 0x0f, ///< Effect Controller 2 (Coarse, MIDI Controller 13)
677 _lev_ctrl_genpurpose1 = 0x11, ///< General Purpose Controller 1 (Slider, MIDI Controller 16)
678 _lev_ctrl_genpurpose2 = 0x13, ///< General Purpose Controller 2 (Slider, MIDI Controller 17)
679 _lev_ctrl_genpurpose3 = 0x15, ///< General Purpose Controller 3 (Slider, MIDI Controller 18)
680 _lev_ctrl_genpurpose4 = 0x17, ///< General Purpose Controller 4 (Slider, MIDI Controller 19)
681 _lev_ctrl_portamentotime = 0x0b, ///< Portamento Time (Coarse, MIDI Controller 5)
682 _lev_ctrl_sustainpedal = 0x01, ///< Sustain Pedal (MIDI Controller 64)
683 _lev_ctrl_portamento = 0x19, ///< Portamento (MIDI Controller 65)
684 _lev_ctrl_sostenutopedal = 0x1b, ///< Sostenuto Pedal (MIDI Controller 66)
685 _lev_ctrl_softpedal = 0x09, ///< Soft Pedal (MIDI Controller 67)
686 _lev_ctrl_genpurpose5 = 0x1d, ///< General Purpose Controller 5 (Button, MIDI Controller 80)
687 _lev_ctrl_genpurpose6 = 0x1f, ///< General Purpose Controller 6 (Button, MIDI Controller 81)
688 _lev_ctrl_genpurpose7 = 0x21, ///< General Purpose Controller 7 (Button, MIDI Controller 82)
689 _lev_ctrl_genpurpose8 = 0x23, ///< General Purpose Controller 8 (Button, MIDI Controller 83)
690 _lev_ctrl_effect1depth = 0x25, ///< Effect 1 Depth (MIDI Controller 91)
691 _lev_ctrl_effect2depth = 0x27, ///< Effect 2 Depth (MIDI Controller 92)
692 _lev_ctrl_effect3depth = 0x29, ///< Effect 3 Depth (MIDI Controller 93)
693 _lev_ctrl_effect4depth = 0x2b, ///< Effect 4 Depth (MIDI Controller 94)
694 _lev_ctrl_effect5depth = 0x2d, ///< Effect 5 Depth (MIDI Controller 95)
695 _lev_ctrl_channelaftertouch = 0x2f, ///< Channel Key Pressure
696 _lev_ctrl_velocity = 0xff, ///< Key Velocity
697
698 // format extension (these controllers are so far only supported by LinuxSampler & gigedit) they will *NOT* work with Gigasampler/GigaStudio !
699 // (the assigned values here are their official MIDI CC number plus the highest bit set):
700 _lev_ctrl_CC3_EXT = 0x83, ///< MIDI Controller 3 [gig format extension]
701
702 _lev_ctrl_CC6_EXT = 0x86, ///< Data Entry MSB (MIDI Controller 6) [gig format extension]
703 _lev_ctrl_CC7_EXT = 0x87, ///< Channel Volume (MIDI Controller 7) [gig format extension]
704 _lev_ctrl_CC8_EXT = 0x88, ///< Balance (MIDI Controller 8) [gig format extension]
705 _lev_ctrl_CC9_EXT = 0x89, ///< MIDI Controller 9 [gig format extension]
706 _lev_ctrl_CC10_EXT = 0x8a, ///< Pan (MIDI Controller 10) [gig format extension]
707 _lev_ctrl_CC11_EXT = 0x8b, ///< Expression Controller (MIDI Controller 11) [gig format extension]
708
709 _lev_ctrl_CC14_EXT = 0x8e, ///< MIDI Controller 14 [gig format extension]
710 _lev_ctrl_CC15_EXT = 0x8f, ///< MIDI Controller 15 [gig format extension]
711
712 _lev_ctrl_CC20_EXT = 0x94, ///< MIDI Controller 20 [gig format extension]
713 _lev_ctrl_CC21_EXT = 0x95, ///< MIDI Controller 21 [gig format extension]
714 _lev_ctrl_CC22_EXT = 0x96, ///< MIDI Controller 22 [gig format extension]
715 _lev_ctrl_CC23_EXT = 0x97, ///< MIDI Controller 23 [gig format extension]
716 _lev_ctrl_CC24_EXT = 0x98, ///< MIDI Controller 24 [gig format extension]
717 _lev_ctrl_CC25_EXT = 0x99, ///< MIDI Controller 25 [gig format extension]
718 _lev_ctrl_CC26_EXT = 0x9a, ///< MIDI Controller 26 [gig format extension]
719 _lev_ctrl_CC27_EXT = 0x9b, ///< MIDI Controller 27 [gig format extension]
720 _lev_ctrl_CC28_EXT = 0x9c, ///< MIDI Controller 28 [gig format extension]
721 _lev_ctrl_CC29_EXT = 0x9d, ///< MIDI Controller 29 [gig format extension]
722 _lev_ctrl_CC30_EXT = 0x9e, ///< MIDI Controller 30 [gig format extension]
723 _lev_ctrl_CC31_EXT = 0x9f, ///< MIDI Controller 31 [gig format extension]
724
725 _lev_ctrl_CC68_EXT = 0xc4, ///< Legato Footswitch (MIDI Controller 68) [gig format extension]
726 _lev_ctrl_CC69_EXT = 0xc5, ///< Hold 2 (MIDI Controller 69) [gig format extension]
727 _lev_ctrl_CC70_EXT = 0xc6, ///< Sound Ctrl. 1 - Sound Variation (MIDI Controller 70) [gig format extension]
728 _lev_ctrl_CC71_EXT = 0xc7, ///< Sound Ctrl. 2 - Timbre (MIDI Controller 71) [gig format extension]
729 _lev_ctrl_CC72_EXT = 0xc8, ///< Sound Ctrl. 3 - Release Time (MIDI Controller 72) [gig format extension]
730 _lev_ctrl_CC73_EXT = 0xc9, ///< Sound Ctrl. 4 - Attack Time (MIDI Controller 73) [gig format extension]
731 _lev_ctrl_CC74_EXT = 0xca, ///< Sound Ctrl. 5 - Brightness (MIDI Controller 74) [gig format extension]
732 _lev_ctrl_CC75_EXT = 0xcb, ///< Sound Ctrl. 6 - Decay Time (MIDI Controller 75) [gig format extension]
733 _lev_ctrl_CC76_EXT = 0xcc, ///< Sound Ctrl. 7 - Vibrato Rate (MIDI Controller 76) [gig format extension]
734 _lev_ctrl_CC77_EXT = 0xcd, ///< Sound Ctrl. 8 - Vibrato Depth (MIDI Controller 77) [gig format extension]
735 _lev_ctrl_CC78_EXT = 0xce, ///< Sound Ctrl. 9 - Vibrato Delay (MIDI Controller 78) [gig format extension]
736 _lev_ctrl_CC79_EXT = 0xcf, ///< Sound Ctrl. 10 (MIDI Controller 79) [gig format extension]
737
738 _lev_ctrl_CC84_EXT = 0xd4, ///< Portamento Control (MIDI Controller 84) [gig format extension]
739 _lev_ctrl_CC85_EXT = 0xd5, ///< MIDI Controller 85 [gig format extension]
740 _lev_ctrl_CC86_EXT = 0xd6, ///< MIDI Controller 86 [gig format extension]
741 _lev_ctrl_CC87_EXT = 0xd7, ///< MIDI Controller 87 [gig format extension]
742
743 _lev_ctrl_CC89_EXT = 0xd9, ///< MIDI Controller 89 [gig format extension]
744 _lev_ctrl_CC90_EXT = 0xda, ///< MIDI Controller 90 [gig format extension]
745
746 _lev_ctrl_CC96_EXT = 0xe0, ///< Data Increment (MIDI Controller 96) [gig format extension]
747 _lev_ctrl_CC97_EXT = 0xe1, ///< Data Decrement (MIDI Controller 97) [gig format extension]
748
749 _lev_ctrl_CC102_EXT = 0xe6, ///< MIDI Controller 102 [gig format extension]
750 _lev_ctrl_CC103_EXT = 0xe7, ///< MIDI Controller 103 [gig format extension]
751 _lev_ctrl_CC104_EXT = 0xe8, ///< MIDI Controller 104 [gig format extension]
752 _lev_ctrl_CC105_EXT = 0xe9, ///< MIDI Controller 105 [gig format extension]
753 _lev_ctrl_CC106_EXT = 0xea, ///< MIDI Controller 106 [gig format extension]
754 _lev_ctrl_CC107_EXT = 0xeb, ///< MIDI Controller 107 [gig format extension]
755 _lev_ctrl_CC108_EXT = 0xec, ///< MIDI Controller 108 [gig format extension]
756 _lev_ctrl_CC109_EXT = 0xed, ///< MIDI Controller 109 [gig format extension]
757 _lev_ctrl_CC110_EXT = 0xee, ///< MIDI Controller 110 [gig format extension]
758 _lev_ctrl_CC111_EXT = 0xef, ///< MIDI Controller 111 [gig format extension]
759 _lev_ctrl_CC112_EXT = 0xf0, ///< MIDI Controller 112 [gig format extension]
760 _lev_ctrl_CC113_EXT = 0xf1, ///< MIDI Controller 113 [gig format extension]
761 _lev_ctrl_CC114_EXT = 0xf2, ///< MIDI Controller 114 [gig format extension]
762 _lev_ctrl_CC115_EXT = 0xf3, ///< MIDI Controller 115 [gig format extension]
763 _lev_ctrl_CC116_EXT = 0xf4, ///< MIDI Controller 116 [gig format extension]
764 _lev_ctrl_CC117_EXT = 0xf5, ///< MIDI Controller 117 [gig format extension]
765 _lev_ctrl_CC118_EXT = 0xf6, ///< MIDI Controller 118 [gig format extension]
766 _lev_ctrl_CC119_EXT = 0xf7 ///< MIDI Controller 119 [gig format extension]
767 } _lev_ctrl_t;
768 typedef std::map<uint32_t, double*> VelocityTableMap;
769
770 static size_t Instances; ///< Number of DimensionRegion instances.
771 static VelocityTableMap* pVelocityTables; ///< Contains the tables corresponding to the various velocity parameters (VelocityResponseCurve and VelocityResponseDepth).
772 double* pVelocityAttenuationTable; ///< Points to the velocity table corresponding to the velocity parameters of this DimensionRegion.
773 double* pVelocityReleaseTable; ///< Points to the velocity table corresponding to the release velocity parameters of this DimensionRegion
774 double* pVelocityCutoffTable; ///< Points to the velocity table corresponding to the filter velocity parameters of this DimensionRegion
775 Region* pRegion;
776
777 leverage_ctrl_t DecodeLeverageController(_lev_ctrl_t EncodedController);
778 _lev_ctrl_t EncodeLeverageController(leverage_ctrl_t DecodedController);
779 double* GetReleaseVelocityTable(curve_type_t releaseVelocityResponseCurve, uint8_t releaseVelocityResponseDepth);
780 double* GetCutoffVelocityTable(curve_type_t vcfVelocityCurve, uint8_t vcfVelocityDynamicRange, uint8_t vcfVelocityScale, vcf_cutoff_ctrl_t vcfCutoffController);
781 double* GetVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);
782 double* CreateVelocityTable(curve_type_t curveType, uint8_t depth, uint8_t scaling);
783 bool UsesAnyGigFormatExtension() const;
784 };
785
786 /** @brief Encapsulates sample waves of Gigasampler/GigaStudio files used for playback.
787 *
788 * This class provides access to the actual audio sample data of a
789 * Gigasampler/GigaStudio file. Along to the actual sample data, it also
790 * provides access to the sample's meta informations like bit depth,
791 * sample rate, encoding type, but also loop informations. The latter may be
792 * used by instruments for resembling sounds with arbitary note lengths.
793 *
794 * In case you created a new sample with File::AddSample(), you should
795 * first update all attributes with the desired meta informations
796 * (amount of channels, bit depth, sample rate, etc.), then call
797 * Resize() with the desired sample size, followed by File::Save(), this
798 * will create the mandatory RIFF chunk which will hold the sample wave
799 * data and / or resize the file so you will be able to Write() the
800 * sample data directly to disk.
801 *
802 * @e Caution: for gig synthesis, most looping relevant information are
803 * retrieved from the respective DimensionRegon instead from the Sample
804 * itself. This was made for allowing different loop definitions for the
805 * same sample under different conditions.
806 *
807 * Since the gig format was designed as extension to the DLS file format,
808 * this class is derived from the DLS::Sample class. So also refer to
809 * DLS::Sample for additional informations, class attributes and methods.
810 */
811 class Sample : public DLS::Sample {
812 public:
813 uint32_t Manufacturer; ///< Specifies the MIDI Manufacturer's Association (MMA) Manufacturer code for the sampler intended to receive this file's waveform. If no particular manufacturer is to be specified, a value of 0 should be used.
814 uint32_t Product; ///< Specifies the MIDI model ID defined by the manufacturer corresponding to the Manufacturer field. If no particular manufacturer's product is to be specified, a value of 0 should be used.
815 uint32_t SamplePeriod; ///< Specifies the duration of time that passes during the playback of one sample in nanoseconds (normally equal to 1 / Samples Per Second, where Samples Per Second is the value found in the format chunk), don't bother to update this attribute, it won't be saved.
816 uint32_t MIDIUnityNote; ///< Specifies the musical note at which the sample will be played at it's original sample rate.
817 uint32_t FineTune; ///< Specifies the fraction of a semitone up from the specified MIDI unity note field. A value of 0x80000000 means 1/2 semitone (50 cents) and a value of 0x00000000 means no fine tuning between semitones.
818 smpte_format_t SMPTEFormat; ///< Specifies the Society of Motion Pictures and Television E time format used in the following <i>SMPTEOffset</i> field. If a value of 0 is set, <i>SMPTEOffset</i> should also be set to 0.
819 uint32_t SMPTEOffset; ///< The SMPTE Offset value specifies the time offset to be used for the synchronization / calibration to the first sample in the waveform. This value uses a format of 0xhhmmssff where hh is a signed value that specifies the number of hours (-23 to 23), mm is an unsigned value that specifies the number of minutes (0 to 59), ss is an unsigned value that specifies the number of seconds (0 to 59) and ff is an unsigned value that specifies the number of frames (0 to -1).
820 uint32_t Loops; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: Number of defined sample loops. So far only seen single loops in gig files - please report if you encounter more!)
821 uint32_t LoopID; ///< Specifies the unique ID that corresponds to one of the defined cue points in the cue point list (only if Loops > 0), as the Gigasampler format only allows one loop definition at the moment, this attribute isn't really useful for anything.
822 loop_type_t LoopType; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The type field defines how the waveform samples will be looped.)
823 uint32_t LoopStart; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The start value specifies the offset [in sample points] in the waveform data of the first sample to be played in the loop [only if Loops > 0].)
824 uint32_t LoopEnd; ///< @e Caution: Use the respective field in the DimensionRegion instead of this one! (Intended purpose: The end value specifies the offset [in sample points] in the waveform data which represents the end of the loop [only if Loops > 0].)
825 uint32_t LoopSize; ///< @e Caution: Use the respective fields in the DimensionRegion instead of this one! (Intended purpose: Length of the looping area [in sample points] which is equivalent to @code LoopEnd - LoopStart @endcode.)
826 uint32_t LoopFraction; ///< The fractional value specifies a fraction of a sample at which to loop. This allows a loop to be fine tuned at a resolution greater than one sample. A value of 0 means no fraction, a value of 0x80000000 means 1/2 of a sample length. 0xFFFFFFFF is the smallest fraction of a sample that can be represented.
827 uint32_t LoopPlayCount; ///< Number of times the loop should be played (a value of 0 = infinite).
828 bool Compressed; ///< If the sample wave is compressed (probably just interesting for instrument and sample editors, as this library already handles the decompression in it's sample access methods anyway).
829 uint32_t TruncatedBits; ///< For 24-bit compressed samples only: number of bits truncated during compression (0, 4 or 6)
830 bool Dithered; ///< For 24-bit compressed samples only: if dithering was used during compression with bit reduction
831
832 // own methods
833 buffer_t LoadSampleData();
834 buffer_t LoadSampleData(file_offset_t SampleCount);
835 buffer_t LoadSampleDataWithNullSamplesExtension(uint NullSamplesCount);
836 buffer_t LoadSampleDataWithNullSamplesExtension(file_offset_t SampleCount, uint NullSamplesCount);
837 buffer_t GetCache();
838 // own static methods
839 static buffer_t CreateDecompressionBuffer(file_offset_t MaxReadSize);
840 static void DestroyDecompressionBuffer(buffer_t& DecompressionBuffer);
841 // overridden methods
842 void ReleaseSampleData();
843 void Resize(file_offset_t NewSize);
844 file_offset_t SetPos(file_offset_t SampleCount, RIFF::stream_whence_t Whence = RIFF::stream_start);
845 file_offset_t GetPos() const;
846 file_offset_t Read(void* pBuffer, file_offset_t SampleCount, buffer_t* pExternalDecompressionBuffer = NULL);
847 file_offset_t ReadAndLoop(void* pBuffer, file_offset_t SampleCount, playback_state_t* pPlaybackState, DimensionRegion* pDimRgn, buffer_t* pExternalDecompressionBuffer = NULL);
848 file_offset_t Write(void* pBuffer, file_offset_t SampleCount);
849 Group* GetGroup() const;
850 virtual void UpdateChunks(progress_t* pProgress) OVERRIDE;
851 void CopyAssignMeta(const Sample* orig);
852 void CopyAssignWave(const Sample* orig);
853 uint32_t GetWaveDataCRC32Checksum();
854 bool VerifyWaveData(uint32_t* pActually = NULL);
855 protected:
856 static size_t Instances; ///< Number of instances of class Sample.
857 static buffer_t InternalDecompressionBuffer; ///< Buffer used for decompression as well as for truncation of 24 Bit -> 16 Bit samples.
858 Group* pGroup; ///< pointer to the Group this sample belongs to (always not-NULL)
859 file_offset_t FrameOffset; ///< Current offset (sample points) in current sample frame (for decompression only).
860 file_offset_t* FrameTable; ///< For positioning within compressed samples only: stores the offset values for each frame.
861 file_offset_t SamplePos; ///< For compressed samples only: stores the current position (in sample points).
862 file_offset_t SamplesInLastFrame; ///< For compressed samples only: length of the last sample frame.
863 file_offset_t WorstCaseFrameSize; ///< For compressed samples only: size (in bytes) of the largest possible sample frame.
864 file_offset_t SamplesPerFrame; ///< For compressed samples only: number of samples in a full sample frame.
865 buffer_t RAMCache; ///< Buffers samples (already uncompressed) in RAM.
866 unsigned long FileNo; ///< File number (> 0 when sample is stored in an extension file, 0 when it's in the gig)
867 RIFF::Chunk* pCk3gix;
868 RIFF::Chunk* pCkSmpl;
869 uint32_t crc; ///< Reflects CRC-32 checksum of the raw sample data at the last time when the sample's raw wave form data has been modified consciously by the user by calling Write().
870
871 Sample(File* pFile, RIFF::List* waveList, file_offset_t WavePoolOffset, unsigned long fileNo = 0, int index = -1);
872 ~Sample();
873 uint32_t CalculateWaveDataChecksum();
874
875 // Guess size (in bytes) of a compressed sample
876 inline file_offset_t GuessSize(file_offset_t samples) {
877 // 16 bit: assume all frames are compressed - 1 byte
878 // per sample and 5 bytes header per 2048 samples
879
880 // 24 bit: assume next best compression rate - 1.5
881 // bytes per sample and 13 bytes header per 256
882 // samples
883 const file_offset_t size =
884 BitDepth == 24 ? samples + (samples >> 1) + (samples >> 8) * 13
885 : samples + (samples >> 10) * 5;
886 // Double for stereo and add one worst case sample
887 // frame
888 return (Channels == 2 ? size << 1 : size) + WorstCaseFrameSize;
889 }
890
891 // Worst case amount of sample points that can be read with the
892 // given decompression buffer.
893 inline file_offset_t WorstCaseMaxSamples(buffer_t* pDecompressionBuffer) {
894 return (file_offset_t) ((float)pDecompressionBuffer->Size / (float)WorstCaseFrameSize * (float)SamplesPerFrame);
895 }
896 private:
897 void ScanCompressedSample();
898 friend class File;
899 friend class Region;
900 friend class Group; // allow to modify protected member pGroup
901 };
902
903 // TODO: <3dnl> list not used yet - not important though (just contains optional descriptions for the dimensions)
904 /** @brief Defines Region information of a Gigasampler/GigaStudio instrument.
905 *
906 * A Region reflects a consecutive area (key range) on the keyboard. The
907 * individual regions in the gig format may not overlap with other regions
908 * (of the same instrument that is). Further, in the gig format a Region is
909 * merely a container for DimensionRegions (a.k.a. "Cases"). The Region
910 * itself does not provide the sample mapping or articulation informations
911 * used, even though the data structures of regions indeed provide such
912 * informations. The latter is however just of historical nature, because
913 * the gig file format was derived from the DLS file format.
914 *
915 * Each Region consists of at least one or more DimensionRegions. The actual
916 * amount of DimensionRegions depends on which kind of "dimensions" are
917 * defined for this region, and on the split / zone amount for each of those
918 * dimensions.
919 *
920 * Since the gig format was designed as extension to the DLS file format,
921 * this class is derived from the DLS::Region class. So also refer to
922 * DLS::Region for additional informations, class attributes and methods.
923 */
924 class Region : public DLS::Region {
925 public:
926 unsigned int Dimensions; ///< Number of defined dimensions, do not alter!
927 dimension_def_t pDimensionDefinitions[8]; ///< Defines the five (gig2) or eight (gig3) possible dimensions (the dimension's controller and number of bits/splits). Use AddDimension() and DeleteDimension() to create a new dimension or delete an existing one.
928 uint32_t DimensionRegions; ///< Total number of DimensionRegions this Region contains, do not alter!
929 DimensionRegion* pDimensionRegions[256]; ///< Pointer array to the 32 (gig2) or 256 (gig3) possible dimension regions (reflects NULL for dimension regions not in use). Avoid to access the array directly and better use GetDimensionRegionByValue() instead, but of course in some cases it makes sense to use the array (e.g. iterating through all DimensionRegions). Use AddDimension() and DeleteDimension() to create a new dimension or delete an existing one (which will create or delete the respective dimension region(s) automatically).
930 unsigned int Layers; ///< Amount of defined layers (1 - 32). A value of 1 actually means no layering, a value > 1 means there is Layer dimension. The same information can of course also be obtained by accessing pDimensionDefinitions. Do not alter this value!
931
932 // own methods
933 DimensionRegion* GetDimensionRegionByValue(const uint DimValues[8]);
934 DimensionRegion* GetDimensionRegionByBit(const uint8_t DimBits[8]);
935 int GetDimensionRegionIndexByValue(const uint DimValues[8]);
936 Sample* GetSample();
937 void AddDimension(dimension_def_t* pDimDef);
938 void DeleteDimension(dimension_def_t* pDimDef);
939 dimension_def_t* GetDimensionDefinition(dimension_t type);
940 void DeleteDimensionZone(dimension_t type, int zone);
941 void SplitDimensionZone(dimension_t type, int zone);
942 void SetDimensionType(dimension_t oldType, dimension_t newType);
943 // overridden methods
944 virtual void SetKeyRange(uint16_t Low, uint16_t High) OVERRIDE;
945 virtual void UpdateChunks(progress_t* pProgress) OVERRIDE;
946 virtual void CopyAssign(const Region* orig);
947 protected:
948 Region(Instrument* pInstrument, RIFF::List* rgnList);
949 void LoadDimensionRegions(RIFF::List* rgn);
950 void UpdateVelocityTable();
951 Sample* GetSampleFromWavePool(unsigned int WavePoolTableIndex, progress_t* pProgress = NULL);
952 void CopyAssign(const Region* orig, const std::map<Sample*,Sample*>* mSamples);
953 DimensionRegion* GetDimensionRegionByBit(const std::map<dimension_t,int>& DimCase);
954 ~Region();
955 friend class Instrument;
956 private:
957 bool UsesAnyGigFormatExtension() const;
958 };
959
960 /** @brief Abstract base class for all MIDI rules.
961 *
962 * Note: Instead of using MIDI rules, we recommend you using real-time
963 * instrument scripts instead. Read about the reasons below.
964 *
965 * MIDI Rules (also called "iMIDI rules" or "intelligent MIDI rules") were
966 * introduced with GigaStudio 4 as an attempt to increase the power of
967 * potential user controls over sounds. At that point other samplers already
968 * supported certain powerful user control features, which were not possible
969 * with GigaStudio yet. For example triggering new notes by MIDI CC
970 * controller.
971 *
972 * Such extended features however were usually implemented by other samplers
973 * by requiring the sound designer to write an instrument script which the
974 * designer would then bundle with the respective instrument file. Such
975 * scripts are essentially text files, using a very specific programming
976 * language for the purpose of controlling the sampler in real-time. Since
977 * however musicians are not typically keen to writing such cumbersome
978 * script files, the GigaStudio designers decided to implement such extended
979 * features completely without instrument scripts. Instead they created a
980 * set of rules, which could be defined and altered conveniently by mouse
981 * clicks in GSt's instrument editor application. The downside of this
982 * overall approach however, was that those MIDI rules were very limited in
983 * practice. As sound designer you easily came across the possiblities such
984 * MIDI rules were able to offer.
985 *
986 * Due to such severe use case constraints, support for MIDI rules is quite
987 * limited in libgig. At the moment only the "Control Trigger", "Alternator"
988 * and the "Legato" MIDI rules are supported by libgig. Consequently the
989 * graphical instrument editor application gigedit just supports the
990 * "Control Trigger" and "Legato" MIDI rules, and LinuxSampler even does not
991 * support any MIDI rule type at all and LinuxSampler probably will not
992 * support MIDI rules in future either.
993 *
994 * Instead of using MIDI rules, we introduced real-time instrument scripts
995 * as extension to the original GigaStudio file format. This script based
996 * solution is much more powerful than MIDI rules and is already supported
997 * by libgig, gigedit and LinuxSampler.
998 *
999 * @deprecated Just provided for backward compatiblity, use Script for new
1000 * instruments instead.
1001 */
1002 class MidiRule {
1003 public:
1004 virtual ~MidiRule() { }
1005 protected:
1006 virtual void UpdateChunks(uint8_t* pData) const = 0;
1007 friend class Instrument;
1008 };
1009
1010 /** @brief MIDI rule for triggering notes by control change events.
1011 *
1012 * A "Control Trigger MIDI rule" allows to trigger new notes by sending MIDI
1013 * control change events to the sampler.
1014 *
1015 * Note: "Control Trigger" MIDI rules are only supported by gigedit, but not
1016 * by LinuxSampler. We recommend you using real-time instrument scripts
1017 * instead. Read more about the details and reasons for this in the
1018 * description of the MidiRule base class.
1019 *
1020 * @deprecated Just provided for backward compatiblity, use Script for new
1021 * instruments instead. See description of MidiRule for details.
1022 */
1023 class MidiRuleCtrlTrigger : public MidiRule {
1024 public:
1025 uint8_t ControllerNumber; ///< MIDI controller number.
1026 uint8_t Triggers; ///< Number of triggers.
1027 struct trigger_t {
1028 uint8_t TriggerPoint; ///< The CC value to pass for the note to be triggered.
1029 bool Descending; ///< If the change in CC value should be downwards.
1030 uint8_t VelSensitivity; ///< How sensitive the velocity should be to the speed of the controller change.
1031 uint8_t Key; ///< Key to trigger.
1032 bool NoteOff; ///< If a note off should be triggered instead of a note on.
1033 uint8_t Velocity; ///< Velocity of the note to trigger. 255 means that velocity should depend on the speed of the controller change.
1034 bool OverridePedal; ///< If a note off should be triggered even if the sustain pedal is down.
1035 } pTriggers[32];
1036
1037 protected:
1038 MidiRuleCtrlTrigger(RIFF::Chunk* _3ewg);
1039 MidiRuleCtrlTrigger();
1040 void UpdateChunks(uint8_t* pData) const OVERRIDE;
1041 friend class Instrument;
1042 };
1043
1044 /** @brief MIDI rule for instruments with legato samples.
1045 *
1046 * A "Legato MIDI rule" allows playing instruments resembling the legato
1047 * playing technique. In the past such legato articulations were tried to be
1048 * simulated by pitching the samples of the instrument. However since
1049 * usually a high amount of pitch is needed for legatos, this always sounded
1050 * very artificial and unrealistic. The "Legato MIDI rule" thus uses another
1051 * approach. Instead of pitching the samples, it allows the sound designer
1052 * to bundle separate, additional samples for the individual legato
1053 * situations and the legato rules defined which samples to be played in
1054 * which situation.
1055 *
1056 * Note: "Legato MIDI rules" are only supported by gigedit, but not
1057 * by LinuxSampler. We recommend you using real-time instrument scripts
1058 * instead. Read more about the details and reasons for this in the
1059 * description of the MidiRule base class.
1060 *
1061 * @deprecated Just provided for backward compatiblity, use Script for new
1062 * instruments instead. See description of MidiRule for details.
1063 */
1064 class MidiRuleLegato : public MidiRule {
1065 public:
1066 uint8_t LegatoSamples; ///< Number of legato samples per key in each direction (always 12)
1067 bool BypassUseController; ///< If a controller should be used to bypass the sustain note
1068 uint8_t BypassKey; ///< Key to be used to bypass the sustain note
1069 uint8_t BypassController; ///< Controller to be used to bypass the sustain note
1070 uint16_t ThresholdTime; ///< Maximum time (ms) between two notes that should be played legato
1071 uint16_t ReleaseTime; ///< Release time
1072 range_t KeyRange; ///< Key range for legato notes
1073 uint8_t ReleaseTriggerKey; ///< Key triggering release samples
1074 uint8_t AltSustain1Key; ///< Key triggering alternate sustain samples
1075 uint8_t AltSustain2Key; ///< Key triggering a second set of alternate sustain samples
1076
1077 protected:
1078 MidiRuleLegato(RIFF::Chunk* _3ewg);
1079 MidiRuleLegato();
1080 void UpdateChunks(uint8_t* pData) const OVERRIDE;
1081 friend class Instrument;
1082 };
1083
1084 /** @brief MIDI rule to automatically cycle through specified sequences of different articulations.
1085 *
1086 * The instrument must be using the smartmidi dimension.
1087 *
1088 * Note: "Alternator" MIDI rules are neither supported by gigedit nor by
1089 * LinuxSampler. We recommend you using real-time instrument scripts
1090 * instead. Read more about the details and reasons for this in the
1091 * description of the MidiRule base class.
1092 *
1093 * @deprecated Just provided for backward compatiblity, use Script for new
1094 * instruments instead. See description of MidiRule for details.
1095 */
1096 class MidiRuleAlternator : public MidiRule {
1097 public:
1098 uint8_t Articulations; ///< Number of articulations in the instrument
1099 String pArticulations[32]; ///< Names of the articulations
1100
1101 range_t PlayRange; ///< Key range of the playable keys in the instrument
1102
1103 uint8_t Patterns; ///< Number of alternator patterns
1104 struct pattern_t {
1105 String Name; ///< Name of the pattern
1106 int Size; ///< Number of steps in the pattern
1107 const uint8_t& operator[](int i) const { /// Articulation to play
1108 return data[i];
1109 }
1110 uint8_t& operator[](int i) {
1111 return data[i];
1112 }
1113 private:
1114 uint8_t data[32];
1115 } pPatterns[32]; ///< A pattern is a sequence of articulation numbers
1116
1117 typedef enum {
1118 selector_none,
1119 selector_key_switch,
1120 selector_controller
1121 } selector_t;
1122 selector_t Selector; ///< Method by which pattern is chosen
1123 range_t KeySwitchRange; ///< Key range for key switch selector
1124 uint8_t Controller; ///< CC number for controller selector
1125
1126 bool Polyphonic; ///< If alternator should step forward only when all notes are off
1127 bool Chained; ///< If all patterns should be chained together
1128
1129 protected:
1130 MidiRuleAlternator(RIFF::Chunk* _3ewg);
1131 MidiRuleAlternator();
1132 void UpdateChunks(uint8_t* pData) const OVERRIDE;
1133 friend class Instrument;
1134 };
1135
1136 /** @brief A MIDI rule not yet implemented by libgig.
1137 *
1138 * This class is currently used as a place holder by libgig for MIDI rule
1139 * types which are not supported by libgig yet.
1140 *
1141 * Note: Support for missing MIDI rule types are probably never added to
1142 * libgig. We recommend you using real-time instrument scripts instead.
1143 * Read more about the details and reasons for this in the description of
1144 * the MidiRule base class.
1145 *
1146 * @deprecated Just provided for backward compatiblity, use Script for new
1147 * instruments instead. See description of MidiRule for details.
1148 */
1149 class MidiRuleUnknown : public MidiRule {
1150 protected:
1151 MidiRuleUnknown() { }
1152 void UpdateChunks(uint8_t* pData) const OVERRIDE { }
1153 friend class Instrument;
1154 };
1155
1156 /** @brief Real-time instrument script (gig format extension).
1157 *
1158 * Real-time instrument scripts are user supplied small programs which can
1159 * be used by instrument designers to create custom behaviors and features
1160 * not available in the stock sampler engine. Features which might be very
1161 * exotic or specific for the respective instrument.
1162 *
1163 * This is an extension of the GigaStudio format, thus a feature which was
1164 * not available in the GigaStudio 4 software. It is currently only
1165 * supported by LinuxSampler and gigedit. Scripts will not load with the
1166 * original GigaStudio software.
1167 *
1168 * You find more informations about Instrument Scripts on the LinuxSampler
1169 * documentation site:
1170 *
1171 * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/">About Instrument Scripts in General</a>
1172 * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language">Introduction to the NKSP Script Language</a>
1173 * - <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language/Reference/">NKSP Reference Manual</a>
1174 * - <a href="http://doc.linuxsampler.org/Gigedit/Managing_Scripts">Using Instrument Scripts with Gigedit</a>
1175 */
1176 class Script : protected DLS::Storage {
1177 public:
1178 enum Encoding_t {
1179 ENCODING_ASCII = 0 ///< Standard 8 bit US ASCII character encoding (default).
1180 };
1181 enum Compression_t {
1182 COMPRESSION_NONE = 0 ///< Is not compressed at all (default).
1183 };
1184 enum Language_t {
1185 LANGUAGE_NKSP = 0 ///< NKSP stands for "Is Not KSP" (default). Refer to the <a href="http://doc.linuxsampler.org/Instrument_Scripts/NKSP_Language/Reference/">NKSP Reference Manual</a> for details about this script language.
1186 };
1187
1188 String Name; ///< Arbitrary name of the script, which may be displayed i.e. in an instrument editor.
1189 Compression_t Compression; ///< Whether the script was/should be compressed, and if so, which compression algorithm shall be used.
1190 Encoding_t Encoding; ///< Format the script's source code text is encoded with.
1191 Language_t Language; ///< Programming language and dialect the script is written in.
1192 bool Bypass; ///< Global bypass: if enabled, this script shall not be executed by the sampler for any instrument.
1193 uint8_t Uuid[16]; ///< Persistent Universally Unique Identifier of this script, which remains identical after any changes to this script.
1194
1195 String GetScriptAsText();
1196 void SetScriptAsText(const String& text);
1197 void SetGroup(ScriptGroup* pGroup);
1198 ScriptGroup* GetGroup() const;
1199 void CopyAssign(const Script* orig);
1200 protected:
1201 Script(ScriptGroup* group, RIFF::Chunk* ckScri);
1202 virtual ~Script();
1203 void UpdateChunks(progress_t* pProgress) OVERRIDE;
1204 void DeleteChunks() OVERRIDE;
1205 void RemoveAllScriptReferences();
1206 void GenerateUuid();
1207 friend class ScriptGroup;
1208 friend class Instrument;
1209 private:
1210 ScriptGroup* pGroup;
1211 RIFF::Chunk* pChunk; ///< 'Scri' chunk
1212 std::vector<uint8_t> data;
1213 uint32_t crc; ///< CRC-32 checksum of the raw script data
1214 };
1215
1216 /** @brief Group of instrument scripts (gig format extension).
1217 *
1218 * This class is simply used to sort a bunch of real-time instrument scripts
1219 * into individual groups. This allows instrument designers and script
1220 * developers to keep scripts in a certain order while working with a larger
1221 * amount of scripts in an instrument editor.
1222 *
1223 * This is an extension of the GigaStudio format, thus a feature which was
1224 * not available in the GigaStudio 4 software. It is currently only
1225 * supported by LinuxSampler and gigedit.
1226 */
1227 class ScriptGroup : protected DLS::Storage {
1228 public:
1229 String Name; ///< Name of this script group. For example to be displayed in an instrument editor.
1230
1231 Script* GetScript(uint index);
1232 Script* AddScript();
1233 void DeleteScript(Script* pScript);
1234 protected:
1235 ScriptGroup(File* file, RIFF::List* lstRTIS);
1236 virtual ~ScriptGroup();
1237 void LoadScripts();
1238 virtual void UpdateChunks(progress_t* pProgress) OVERRIDE;
1239 virtual void DeleteChunks() OVERRIDE;
1240 friend class Script;
1241 friend class File;
1242 private:
1243 File* pFile;
1244 RIFF::List* pList; ///< 'RTIS' list chunk
1245 std::list<Script*>* pScripts;
1246 };
1247
1248 /** @brief Provides access to a Gigasampler/GigaStudio instrument.
1249 *
1250 * This class provides access to Gigasampler/GigaStudio instruments
1251 * contained in .gig files. A gig instrument is merely a set of keyboard
1252 * ranges (called Region), plus some additional global informations about
1253 * the instrument. The major part of the actual instrument definition used
1254 * for the synthesis of the instrument is contained in the respective Region
1255 * object (or actually in the respective DimensionRegion object being, see
1256 * description of Region for details).
1257 *
1258 * Since the gig format was designed as extension to the DLS file format,
1259 * this class is derived from the DLS::Instrument class. So also refer to
1260 * DLS::Instrument for additional informations, class attributes and
1261 * methods.
1262 */
1263 class Instrument : protected DLS::Instrument {
1264 public:
1265 // derived attributes from DLS::Resource
1266 using DLS::Resource::pInfo;
1267 using DLS::Resource::pDLSID;
1268 // derived attributes from DLS::Instrument
1269 using DLS::Instrument::IsDrum;
1270 using DLS::Instrument::MIDIBank;
1271 using DLS::Instrument::MIDIBankCoarse;
1272 using DLS::Instrument::MIDIBankFine;
1273 using DLS::Instrument::MIDIProgram;
1274 using DLS::Instrument::Regions;
1275 // own attributes
1276 int32_t Attenuation; ///< in dB
1277 uint16_t EffectSend;
1278 int16_t FineTune; ///< in cents
1279 uint16_t PitchbendRange; ///< Number of semitones pitchbend controller can pitch (default is 2).
1280 bool PianoReleaseMode;
1281 range_t DimensionKeyRange; ///< 0-127 (where 0 means C1 and 127 means G9)
1282
1283
1284 // derived methods from DLS::Resource
1285 using DLS::Resource::GetParent;
1286 // overridden methods
1287 Region* GetFirstRegion();
1288 Region* GetNextRegion();
1289 Region* AddRegion();
1290 void DeleteRegion(Region* pRegion);
1291 void MoveTo(Instrument* dst);
1292 virtual void UpdateChunks(progress_t* pProgress) OVERRIDE;
1293 virtual void CopyAssign(const Instrument* orig);
1294 // own methods
1295 Region* GetRegion(unsigned int Key);
1296 MidiRule* GetMidiRule(int i);
1297 MidiRuleCtrlTrigger* AddMidiRuleCtrlTrigger();
1298 MidiRuleLegato* AddMidiRuleLegato();
1299 MidiRuleAlternator* AddMidiRuleAlternator();
1300 void DeleteMidiRule(int i);
1301 // real-time instrument script methods
1302 Script* GetScriptOfSlot(uint index);
1303 void AddScriptSlot(Script* pScript, bool bypass = false);
1304 void SwapScriptSlots(uint index1, uint index2);
1305 void RemoveScriptSlot(uint index);
1306 void RemoveScript(Script* pScript);
1307 uint ScriptSlotCount() const;
1308 bool IsScriptSlotBypassed(uint index);
1309 void SetScriptSlotBypassed(uint index, bool bBypass);
1310 protected:
1311 Region* RegionKeyTable[128]; ///< fast lookup for the corresponding Region of a MIDI key
1312
1313 Instrument(File* pFile, RIFF::List* insList, progress_t* pProgress = NULL);
1314 ~Instrument();
1315 void CopyAssign(const Instrument* orig, const std::map<Sample*,Sample*>* mSamples);
1316 void UpdateRegionKeyTable();
1317 void LoadScripts();
1318 void UpdateScriptFileOffsets();
1319 friend class File;
1320 friend class Region; // so Region can call UpdateRegionKeyTable()
1321 private:
1322 struct _ScriptPooolEntry {
1323 uint32_t fileOffset;
1324 bool bypass;
1325 };
1326 struct _ScriptPooolRef {
1327 Script* script;
1328 bool bypass;
1329 };
1330 MidiRule** pMidiRules;
1331 std::vector<_ScriptPooolEntry> scriptPoolFileOffsets;
1332 std::vector<_ScriptPooolRef>* pScriptRefs;
1333
1334 bool UsesAnyGigFormatExtension() const;
1335 };
1336
1337 /** @brief Group of Gigasampler samples
1338 *
1339 * Groups help to organize a huge collection of Gigasampler samples.
1340 * Groups are not concerned at all for the synthesis, but they help
1341 * sound library developers when working on complex instruments with an
1342 * instrument editor (as long as that instrument editor supports it ;-).
1343 *
1344 * A sample is always assigned to exactly one Group. This also means
1345 * there is always at least one Group in a .gig file, no matter if you
1346 * created one yet or not.
1347 */
1348 class Group : public DLS::Storage {
1349 public:
1350 String Name; ///< Stores the name of this Group.
1351
1352 Sample* GetFirstSample();
1353 Sample* GetNextSample();
1354 void AddSample(Sample* pSample);
1355 protected:
1356 Group(File* file, RIFF::Chunk* ck3gnm);
1357 virtual ~Group();
1358 virtual void UpdateChunks(progress_t* pProgress) OVERRIDE;
1359 virtual void DeleteChunks() OVERRIDE;
1360 void MoveAll();
1361 friend class File;
1362 private:
1363 File* pFile;
1364 RIFF::Chunk* pNameChunk; ///< '3gnm' chunk
1365 };
1366
1367 /** @brief Provides convenient access to Gigasampler/GigaStudio .gig files.
1368 *
1369 * This is the entry class for accesing a Gigasampler/GigaStudio (.gig) file
1370 * with libgig. It allows you to open existing .gig files, modifying them
1371 * and saving them persistently either under the same file name or under a
1372 * different location.
1373 *
1374 * A .gig file is merely a monolithic file. That means samples and the
1375 * defintion of the virtual instruments are contained in the same file. A
1376 * .gig file contains an arbitrary amount of samples, and an arbitrary
1377 * amount of instruments which are referencing those samples. It is also
1378 * possible to store samples in .gig files not being referenced by any
1379 * instrument. This is not an error from the file format's point of view and
1380 * it is actually often used in practice during the design phase of new gig
1381 * instruments.
1382 *
1383 * So on toplevel of the gig file format you have:
1384 *
1385 * - A set of samples (see Sample).
1386 * - A set of virtual instruments (see Instrument).
1387 *
1388 * And as extension to the original GigaStudio format, we added:
1389 *
1390 * - Real-time instrument scripts (see Script).
1391 *
1392 * Note that the latter however is only supported by libgig, gigedit and
1393 * LinuxSampler. Scripts are not supported by the original GigaStudio
1394 * software.
1395 *
1396 * All released Gigasampler/GigaStudio file format versions are supported
1397 * (so from first Gigasampler version up to including GigaStudio 4).
1398 *
1399 * Since the gig format was designed as extension to the DLS file format,
1400 * this class is derived from the DLS::File class. So also refer to
1401 * DLS::File for additional informations, class attributes and methods.
1402 */
1403 class File : protected DLS::File {
1404 public:
1405 static const DLS::version_t VERSION_2;
1406 static const DLS::version_t VERSION_3;
1407 static const DLS::version_t VERSION_4;
1408
1409 // derived attributes from DLS::Resource
1410 using DLS::Resource::pInfo;
1411 using DLS::Resource::pDLSID;
1412 // derived attributes from DLS::File
1413 using DLS::File::pVersion;
1414 using DLS::File::Instruments;
1415
1416 // derived methods from DLS::Resource
1417 using DLS::Resource::GetParent;
1418 // derived methods from DLS::File
1419 using DLS::File::Save;
1420 using DLS::File::GetFileName;
1421 using DLS::File::SetFileName;
1422 using DLS::File::GetRiffFile;
1423 // overridden methods
1424 File();
1425 File(RIFF::File* pRIFF);
1426 Sample* GetFirstSample(progress_t* pProgress = NULL); ///< Returns a pointer to the first <i>Sample</i> object of the file, <i>NULL</i> otherwise.
1427 Sample* GetNextSample(); ///< Returns a pointer to the next <i>Sample</i> object of the file, <i>NULL</i> otherwise.
1428 Sample* GetSample(uint index);
1429 Sample* AddSample();
1430 size_t CountSamples();
1431 void DeleteSample(Sample* pSample);
1432 Instrument* GetFirstInstrument(); ///< Returns a pointer to the first <i>Instrument</i> object of the file, <i>NULL</i> otherwise.
1433 Instrument* GetNextInstrument(); ///< Returns a pointer to the next <i>Instrument</i> object of the file, <i>NULL</i> otherwise.
1434 Instrument* GetInstrument(uint index, progress_t* pProgress = NULL);
1435 Instrument* AddInstrument();
1436 Instrument* AddDuplicateInstrument(const Instrument* orig);
1437 size_t CountInstruments();
1438 void DeleteInstrument(Instrument* pInstrument);
1439 Group* GetFirstGroup(); ///< Returns a pointer to the first <i>Group</i> object of the file, <i>NULL</i> otherwise.
1440 Group* GetNextGroup(); ///< Returns a pointer to the next <i>Group</i> object of the file, <i>NULL</i> otherwise.
1441 Group* GetGroup(uint index);
1442 Group* GetGroup(String name);
1443 Group* AddGroup();
1444 void DeleteGroup(Group* pGroup);
1445 void DeleteGroupOnly(Group* pGroup);
1446 void SetAutoLoad(bool b);
1447 bool GetAutoLoad();
1448 void AddContentOf(File* pFile);
1449 ScriptGroup* GetScriptGroup(uint index);
1450 ScriptGroup* GetScriptGroup(const String& name);
1451 ScriptGroup* AddScriptGroup();
1452 void DeleteScriptGroup(ScriptGroup* pGroup);
1453 virtual ~File();
1454 virtual void UpdateChunks(progress_t* pProgress) OVERRIDE;
1455 protected:
1456 // overridden protected methods from DLS::File
1457 virtual void LoadSamples() OVERRIDE;
1458 virtual void LoadInstruments() OVERRIDE;
1459 virtual void LoadGroups();
1460 virtual void UpdateFileOffsets() OVERRIDE;
1461 // own protected methods
1462 virtual void LoadSamples(progress_t* pProgress);
1463 virtual void LoadInstruments(progress_t* pProgress);
1464 virtual void LoadScriptGroups();
1465 void SetSampleChecksum(Sample* pSample, uint32_t crc);
1466 uint32_t GetSampleChecksum(Sample* pSample);
1467 uint32_t GetSampleChecksumByIndex(int index);
1468 bool VerifySampleChecksumTable();
1469 bool RebuildSampleChecksumTable();
1470 int GetWaveTableIndexOf(gig::Sample* pSample);
1471 friend class Region;
1472 friend class Sample;
1473 friend class Instrument;
1474 friend class Group; // so Group can access protected member pRIFF
1475 friend class ScriptGroup; // so ScriptGroup can access protected member pRIFF
1476 private:
1477 std::list<Group*>* pGroups;
1478 std::list<Group*>::iterator GroupsIterator;
1479 bool bAutoLoad;
1480 std::list<ScriptGroup*>* pScriptGroups;
1481
1482 bool UsesAnyGigFormatExtension() const;
1483 };
1484
1485 /**
1486 * Will be thrown whenever a gig specific error occurs while trying to
1487 * access a Gigasampler File. Note: In your application you should
1488 * better catch for RIFF::Exception rather than this one, except you
1489 * explicitly want to catch and handle gig::Exception, DLS::Exception
1490 * and RIFF::Exception independently, which usually shouldn't be
1491 * necessary though.
1492 */
1493 class Exception : public DLS::Exception {
1494 public:
1495 Exception(String format, ...);
1496 Exception(String format, va_list arg);
1497 void PrintMessage();
1498 protected:
1499 Exception();
1500 };
1501
1502 #if HAVE_RTTI
1503 size_t enumCount(const std::type_info& type);
1504 const char* enumKey(const std::type_info& type, size_t value);
1505 bool enumKey(const std::type_info& type, String key);
1506 const char** enumKeys(const std::type_info& type);
1507 #endif // HAVE_RTTI
1508 size_t enumCount(String typeName);
1509 const char* enumKey(String typeName, size_t value);
1510 bool enumKey(String typeName, String key);
1511 const char** enumKeys(String typeName);
1512 size_t enumValue(String key);
1513
1514 String libraryName();
1515 String libraryVersion();
1516
1517 } // namespace gig
1518
1519 #endif // __GIG_H__

  ViewVC Help
Powered by ViewVC