/[svn]/linuxsampler/trunk/src/common/RTMath.h
ViewVC logotype

Contents of /linuxsampler/trunk/src/common/RTMath.h

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3054 - (show annotations) (download) (as text)
Thu Dec 15 12:47:45 2016 UTC (7 years, 4 months ago) by schoenebeck
File MIME type: text/x-c++hdr
File size: 16130 byte(s)
* Fixed numerous compiler warnings.
* Bumped version (2.0.0.svn32).

1 /***************************************************************************
2 * *
3 * LinuxSampler - modular, streaming capable sampler *
4 * *
5 * Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck *
6 * Copyright (C) 2005 - 2016 Christian Schoenebeck *
7 * *
8 * This program is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This program is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this program; if not, write to the Free Software *
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, *
21 * MA 02111-1307 USA *
22 ***************************************************************************/
23
24 #ifndef __RT_MATH_H__
25 #define __RT_MATH_H__
26
27 #include <math.h>
28 #include <stdint.h>
29 #include "global_private.h"
30
31 /// Needed for calculating frequency ratio used to pitch a sample
32 #define TWELVEHUNDREDTH_ROOT_OF_TWO 1.000577789506555
33
34 enum implementation_t {
35 CPP,
36 ASM_X86_MMX_SSE
37 };
38
39 /** @brief Real Time Math Base Class
40 *
41 * Math functions for real time operation. This base class contains all
42 * non-template methods.
43 */
44 class RTMathBase {
45 public:
46 /**
47 * High resolution time stamp.
48 */
49 typedef uint32_t time_stamp_t;
50
51 typedef uint64_t usecs_t;
52
53 /**
54 * We read the processor's cycle count register as a reference
55 * for the real time. These are of course only abstract values
56 * with arbitrary time entity, but that's not a problem as long
57 * as we calculate relatively.
58 *
59 * @see unsafeMicroSeconds()
60 */
61 static time_stamp_t CreateTimeStamp();
62
63 /**
64 * Calculates the frequency ratio for a pitch value given in cents
65 * (assuming equal tempered scale of course, divided into 12
66 * semitones per octave and 100 cents per semitone).
67 *
68 * Note: CONFIG_MAX_PITCH (defined in config.h) has to be defined to an
69 * appropriate value, otherwise the behavior of this function is
70 * undefined, but most probably if CONFIG_MAX_PITCH is too small, the
71 * application will crash due to segmentation fault here.
72 *
73 * @param cents - pitch value in cents (+1200 cents means +1 octave)
74 * @returns frequency ratio (e.g. +2.0 for +1 octave)
75 */
76 inline static double CentsToFreqRatio(double Cents) {
77 int index_int = (int) (Cents); // integer index
78 float index_fract = Cents - index_int; // fractional part of index
79 return pCentsToFreqTable[index_int] + index_fract * (pCentsToFreqTable[index_int+1] - pCentsToFreqTable[index_int]);
80 }
81
82 /**
83 * Slower version of CentsToFreqRatio, for big values.
84 *
85 * @param cents - pitch value in cents (+1200 cents means +1 octave)
86 * @returns frequency ratio (e.g. +2.0 for +1 octave)
87 */
88 static double CentsToFreqRatioUnlimited(double Cents) {
89 int octaves = int(Cents / 1200);
90 double x = CentsToFreqRatio(Cents - octaves * 1200);
91 return octaves < 0 ? x / (1 << -octaves) : x * (1 << octaves);
92 }
93
94 /**
95 * Inverse function to CentsToFreqRatio(). This function is a bit
96 * slow, so it should not be called too frequently.
97 */
98 static double FreqRatioToCents(double FreqRatio) {
99 return log(FreqRatio) / log(TWELVEHUNDREDTH_ROOT_OF_TWO);
100 }
101
102 /**
103 * Calculates the line ratio value representation (linear scale)
104 * of the @a decibel value provided (exponential scale).
105 *
106 * The context of audio acoustic sound pressure levels is assumed, and
107 * hence the field version of the dB unit is used here (which uses a
108 * linear factor of 20). This function is a bit slow, so it should
109 * not be called too frequently.
110 *
111 * @param decibel - sound pressure level in dB
112 * @returns linear ratio of the supplied dB value
113 */
114 static float DecibelToLinRatio(float decibel) {
115 return powf(10.f, decibel / 20.f);
116 }
117
118 /**
119 * Calculates the relatively summed average of a set of values.
120 *
121 * @param current - the current avaerage value of all previously summed values
122 * @param sample - new value to be applied as summed average to the existing values
123 * @param n - amount of sample values applied so far
124 * @returns new average value of all summed values (including the new @a sample)
125 */
126 template<typename T_int>
127 inline static float RelativeSummedAvg(float current, float sample, T_int n) {
128 return current + (sample - current) / float(n);
129 }
130
131 /**
132 * Clock source to use for getting the current time.
133 */
134 enum clock_source_t {
135 real_clock, ///< Use this to measure time that passed in reality (no matter if process got suspended).
136 process_clock, ///< Use this to measure only the CPU execution time of the current process (if the process got suspended, the clock is paused as well).
137 thread_clock, ///< Use this to measure only the CPU execution time of the current thread (if the process got suspended or another thread is executed, the clock is paused as well).
138 };
139
140 /**
141 * Returns a time stamp of the current time in microseconds (in
142 * probably real-time @b unsafe way). There is no guarantee about
143 * what the returned amount of microseconds relates to (i.e.
144 * microseconds since epoch, microseconds since system uptime, ...).
145 * So you should only use it to calculate time differences between
146 * values taken with this method.
147 *
148 * @b CAUTION: This method may not @b NOT be real-time safe! On some
149 * systems it could be RT safe, but there is no guarantee whatsoever!
150 * So this method should only be used for debugging, benchmarking and
151 * other developing purposes !
152 *
153 * For creating time stamps in real-time context, use
154 * CreateTimeStamp() instead.
155 *
156 * @param source - the actual clock to use for getting the current
157 * time, note that the various clock sources may not
158 * be implemented on all systems
159 * @returns time stamp in microseconds
160 *
161 * @see CreateTimeStamp()
162 */
163 static usecs_t unsafeMicroSeconds(clock_source_t source);
164
165 private:
166 static float* pCentsToFreqTable;
167
168 static float* InitCentsToFreqTable();
169 };
170
171 /** @brief Real Time Math
172 *
173 * This is a template which provides customized methods for the desired low
174 * level implementation. The ASM_X86_MMX_SSE implementation of each method
175 * for example doesn't use 387 FPU instruction. This is needed for MMX
176 * algorithms which do not allow mixed MMX and 387 instructions.
177 */
178 template<implementation_t IMPL = CPP>
179 class __RTMath : public RTMathBase {
180 public:
181 // conversion using truncate
182 inline static int Int(const float a) {
183 switch (IMPL) {
184 #if CONFIG_ASM && ARCH_X86
185 case ASM_X86_MMX_SSE: {
186 int ret;
187 asm (
188 "cvttss2si %1, %0 # convert to int\n\t"
189 : "=r" (ret)
190 : "m" (a)
191 );
192 return ret;
193 }
194 #endif // CONFIG_ASM && ARCH_X86
195 default: {
196 return (int) a;
197 }
198 }
199 }
200
201 //for doubles and everything else except floats
202 template<class T_a> inline static int Int(const T_a a) {
203 return (int) a;
204 }
205
206 inline static float Float(const int a) {
207 switch (IMPL) {
208 #if CONFIG_ASM && ARCH_X86
209 case ASM_X86_MMX_SSE: {
210 float ret;
211 asm (
212 "cvtsi2ss %1, %%xmm0 # convert to float\n\t"
213 "movss %%xmm0,%0 # output\n\t"
214 : "=m" (ret)
215 : "r" (a)
216 );
217 return ret;
218 }
219 #endif // CONFIG_ASM && ARCH_X86
220 default: {
221 return (float) a;
222 }
223 }
224 }
225
226 #if 0
227 //for everything except ints
228 template<class T_a> inline static float Float(T_a a) {
229 return (float) a;
230 }
231 #endif
232
233 inline static float Sum(const float& a, const float& b) {
234 switch (IMPL) {
235 #if CONFIG_ASM && ARCH_X86
236 case ASM_X86_MMX_SSE: {
237 float ret;
238 asm (
239 "movss %1, %%xmm0 # load a\n\t"
240 "addss %2, %%xmm0 # a + b\n\t"
241 "movss %%xmm0, %0 # output\n\t"
242 : "=m" (ret)
243 : "m" (a), "m" (b)
244 );
245 return ret;
246 }
247 #endif // CONFIG_ASM && ARCH_X86
248 default: {
249 return (a + b);
250 }
251 }
252 }
253
254 template<class T_a, class T_b> inline static T_a Sum(const T_a a, const T_b b) {
255 return (a + b);
256 }
257
258 inline static float Sub(const float& a, const float& b) {
259 switch (IMPL) {
260 #if CONFIG_ASM && ARCH_X86
261 case ASM_X86_MMX_SSE: {
262 float ret;
263 asm (
264 "movss %1, %%xmm0 # load a\n\t"
265 "subss %2, %%xmm0 # a - b\n\t"
266 "movss %%xmm0, %0 # output\n\t"
267 : "=m" (ret)
268 : "m" (a), "m" (b)
269 );
270 return ret;
271 }
272 #endif // CONFIG_ASM && ARCH_X86
273 default: {
274 return (a - b);
275 }
276 }
277 }
278
279 template<class T_a, class T_b> inline static T_a Sub(const T_a a, const T_b b) {
280 return (a - b);
281 }
282
283 inline static float Mul(const float a, const float b) {
284 switch (IMPL) {
285 #if CONFIG_ASM && ARCH_X86
286 case ASM_X86_MMX_SSE: {
287 float ret;
288 asm (
289 "movss %1, %%xmm0 # load a\n\t"
290 "mulss %2, %%xmm0 # a * b\n\t"
291 "movss %%xmm0, %0 # output\n\t"
292 : "=m" (ret)
293 : "m" (a), "m" (b)
294 );
295 return ret;
296 }
297 #endif // CONFIG_ASM && ARCH_X86
298 default: {
299 return (a * b);
300 }
301 }
302 }
303
304 template<class T_a, class T_b> inline static T_a Mul(const T_a a, const T_b b) {
305 return (a * b);
306 }
307
308 inline static float Div(const float a, const float b) {
309 switch (IMPL) {
310 #if CONFIG_ASM && ARCH_X86
311 case ASM_X86_MMX_SSE: {
312 float ret;
313 asm (
314 "movss %1, %%xmm0 # load a\n\t"
315 "divss %2, %%xmm0 # a / b\n\t"
316 "movss %%xmm0, %0 # output\n\t"
317 : "=m" (ret)
318 : "m" (a), "m" (b)
319 );
320 return ret;
321 }
322 #endif // CONFIG_ASM && ARCH_X86
323 default: {
324 return (a / b);
325 }
326 }
327 }
328
329 template<class T_a, class T_b> inline static T_a Div(const T_a a, const T_b b) {
330 return (a / b);
331 }
332
333 inline static float Min(const float a, const float b) {
334 switch (IMPL) {
335 #if CONFIG_ASM && ARCH_X86
336 case ASM_X86_MMX_SSE: {
337 float ret;
338 asm (
339 "movss %1, %%xmm0 # load a\n\t"
340 "minss %2, %%xmm0 # Minimum(a, b)\n\t"
341 "movss %%xmm0, %0 # output\n\t"
342 : "=m" (ret)
343 : "m" (a), "m" (b)
344 );
345 return ret;
346 }
347 #endif // CONFIG_ASM && ARCH_X86
348 default: {
349 return std::min(a, b);
350 }
351 }
352 }
353
354 template<class T_a, class T_b> inline static T_a Min(const T_a a, const T_b b) {
355 return (b < a) ? b : a;
356 }
357
358 inline static float Max(const float a, const float b) {
359 switch (IMPL) {
360 #if CONFIG_ASM && ARCH_X86
361 case ASM_X86_MMX_SSE: {
362 float ret;
363 asm (
364 "movss %1, %%xmm0 # load a\n\t"
365 "maxss %2, %%xmm0 # Maximum(a, b)\n\t"
366 "movss %%xmm0, %0 # output\n\t"
367 : "=m" (ret)
368 : "m" (a), "m" (b)
369 );
370 return ret;
371 }
372 #endif // CONFIG_ASM && ARCH_X86
373 default: {
374 return std::max(a, b);
375 }
376 }
377 }
378
379 template<class T_a, class T_b> inline static T_a Max(const T_a a, const T_b b) {
380 return (b > a) ? b : a;
381 }
382
383 inline static float Fmodf(const float &a, const float &b) {
384 switch (IMPL) {
385 #if CONFIG_ASM && ARCH_X86
386 case ASM_X86_MMX_SSE: {
387 float ret;
388 asm (
389 "movss %1, %%xmm0 # load a\n\t"
390 "movss %2, %%xmm1 # load b\n\t"
391 "movss %%xmm0,%%xmm2\n\t"
392 "divss %%xmm1, %%xmm2 # xmm2 = a / b\n\t"
393 "cvttss2si %%xmm2, %%ecx #convert to int\n\t"
394 "cvtsi2ss %%ecx, %%xmm2 #convert back to float\n\t"
395 "mulss %%xmm1, %%xmm2 # xmm2 = b * int(a/b)\n\t"
396 "subss %%xmm2, %%xmm0 #sub a\n\t"
397 "movss %%xmm0, %0 # output\n\t"
398 : "=m" (ret)
399 : "m" (a), "m" (b)
400 : "%ecx"
401 );
402 return ret;
403 }
404 #endif // CONFIG_ASM && ARCH_X86
405 default: {
406 return fmodf(a, b);
407 }
408 }
409 }
410 };
411
412 /// convenience typedef for using the default implementation (which is CPP)
413 typedef __RTMath<> RTMath;
414
415 #endif // __RT_MATH_H__

  ViewVC Help
Powered by ViewVC