/[svn]/linuxsampler/trunk/src/engines/common/AbstractVoice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/common/AbstractVoice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 2114 by persson, Tue Aug 10 12:05:19 2010 UTC revision 2963 by schoenebeck, Sun Jul 17 18:41:21 2016 UTC
# Line 4  Line 4 
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003,2004 by Benno Senoner and Christian Schoenebeck    *   *   Copyright (C) 2003,2004 by Benno Senoner and Christian Schoenebeck    *
6   *   Copyright (C) 2005-2008 Christian Schoenebeck                         *   *   Copyright (C) 2005-2008 Christian Schoenebeck                         *
7   *   Copyright (C) 2009-2010 Christian Schoenebeck and Grigor Iliev        *   *   Copyright (C) 2009-2015 Christian Schoenebeck and Grigor Iliev        *
8   *                                                                         *   *                                                                         *
9   *   This program is free software; you can redistribute it and/or modify  *   *   This program is free software; you can redistribute it and/or modify  *
10   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 26  Line 26 
26    
27  namespace LinuxSampler {  namespace LinuxSampler {
28    
29      AbstractVoice::AbstractVoice() {      AbstractVoice::AbstractVoice(SignalUnitRack* pRack): pSignalUnitRack(pRack) {
30          pEngineChannel = NULL;          pEngineChannel = NULL;
31          pLFO1 = new LFOUnsigned(1.0f);  // amplitude EG (0..1 range)          pLFO1 = new LFOUnsigned(1.0f);  // amplitude LFO (0..1 range)
32          pLFO2 = new LFOUnsigned(1.0f);  // filter EG (0..1 range)          pLFO2 = new LFOUnsigned(1.0f);  // filter LFO (0..1 range)
33          pLFO3 = new LFOSigned(1200.0f); // pitch EG (-1200..+1200 range)          pLFO3 = new LFOSigned(1200.0f); // pitch LFO (-1200..+1200 range)
34          PlaybackState = playback_state_end;          PlaybackState = playback_state_end;
35          SynthesisMode = 0; // set all mode bits to 0 first          SynthesisMode = 0; // set all mode bits to 0 first
36          // select synthesis implementation (asm core is not supported ATM)          // select synthesis implementation (asm core is not supported ATM)
# Line 43  namespace LinuxSampler { Line 43  namespace LinuxSampler {
43    
44          finalSynthesisParameters.filterLeft.Reset();          finalSynthesisParameters.filterLeft.Reset();
45          finalSynthesisParameters.filterRight.Reset();          finalSynthesisParameters.filterRight.Reset();
46            
47            pEq          = NULL;
48            bEqSupport   = false;
49      }      }
50    
51      AbstractVoice::~AbstractVoice() {      AbstractVoice::~AbstractVoice() {
52          if (pLFO1) delete pLFO1;          if (pLFO1) delete pLFO1;
53          if (pLFO2) delete pLFO2;          if (pLFO2) delete pLFO2;
54          if (pLFO3) delete pLFO3;          if (pLFO3) delete pLFO3;
55            
56            if(pEq != NULL) delete pEq;
57        }
58                
59        void AbstractVoice::CreateEq() {
60            if(!bEqSupport) return;
61            if(pEq != NULL) delete pEq;
62            pEq = new EqSupport;
63            pEq->InitEffect(GetEngine()->pAudioOutputDevice);
64      }      }
65    
66      /**      /**
# Line 98  namespace LinuxSampler { Line 110  namespace LinuxSampler {
110          #endif // CONFIG_DEVMODE          #endif // CONFIG_DEVMODE
111    
112          Type            = VoiceType;          Type            = VoiceType;
113          MIDIKey         = itNoteOnEvent->Param.Note.Key;          pNote           = pEngineChannel->pEngine->NoteByID( itNoteOnEvent->Param.Note.ID );
114          PlaybackState   = playback_state_init; // mark voice as triggered, but no audio rendered yet          PlaybackState   = playback_state_init; // mark voice as triggered, but no audio rendered yet
115          Delay           = itNoteOnEvent->FragmentPos();          Delay           = itNoteOnEvent->FragmentPos();
116          itTriggerEvent  = itNoteOnEvent;          itTriggerEvent  = itNoteOnEvent;
117          itKillEvent     = Pool<Event>::Iterator();          itKillEvent     = Pool<Event>::Iterator();
118            MidiKeyBase* pKeyInfo = GetMidiKeyInfo(MIDIKey());
119    
120          pGroupEvents = iKeyGroup ? pEngineChannel->ActiveKeyGroups[iKeyGroup] : 0;          pGroupEvents = iKeyGroup ? pEngineChannel->ActiveKeyGroups[iKeyGroup] : 0;
121    
122          SmplInfo   = GetSampleInfo();          SmplInfo   = GetSampleInfo();
123          RgnInfo    = GetRegionInfo();          RgnInfo    = GetRegionInfo();
124          InstrInfo  = GetInstrumentInfo();          InstrInfo  = GetInstrumentInfo();
125            
126            MIDIPan    = CalculatePan(pEngineChannel->iLastPanRequest);
127    
128            AboutToTrigger();
129    
130          // calculate volume          // calculate volume
131          const double velocityAttenuation = GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);          const double velocityAttenuation = GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);
132          float volume = CalculateVolume(velocityAttenuation);          float volume = CalculateVolume(velocityAttenuation) * pKeyInfo->Volume;
133          if (volume <= 0) return -1;          if (volume <= 0) return -1;
134    
135          // select channel mode (mono or stereo)          // select channel mode (mono or stereo)
# Line 123  namespace LinuxSampler { Line 140  namespace LinuxSampler {
140          // get starting crossfade volume level          // get starting crossfade volume level
141          float crossfadeVolume = CalculateCrossfadeVolume(itNoteOnEvent->Param.Note.Velocity);          float crossfadeVolume = CalculateCrossfadeVolume(itNoteOnEvent->Param.Note.Velocity);
142    
143          VolumeLeft  = volume * AbstractEngine::PanCurve[64 - RgnInfo.Pan];          VolumeLeft  = volume * pKeyInfo->PanLeft;
144          VolumeRight = volume * AbstractEngine::PanCurve[64 + RgnInfo.Pan];          VolumeRight = volume * pKeyInfo->PanRight;
145    
146          float subfragmentRate = GetEngine()->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE;          // this rate is used for rather mellow volume fades
147            const float subfragmentRate = GetEngine()->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE;
148            // this rate is used for very fast volume fades
149            const float quickRampRate = RTMath::Min(subfragmentRate, GetEngine()->SampleRate * 0.001f /* 1ms */);
150          CrossfadeSmoother.trigger(crossfadeVolume, subfragmentRate);          CrossfadeSmoother.trigger(crossfadeVolume, subfragmentRate);
         VolumeSmoother.trigger(pEngineChannel->MidiVolume, subfragmentRate);  
         PanLeftSmoother.trigger(pEngineChannel->GlobalPanLeft, subfragmentRate);  
         PanRightSmoother.trigger(pEngineChannel->GlobalPanRight, subfragmentRate);  
151    
152          finalSynthesisParameters.dPos = RgnInfo.SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)          VolumeSmoother.trigger(pEngineChannel->MidiVolume, subfragmentRate);
153          Pos = RgnInfo.SampleStartOffset;          NoteVolumeSmoother.trigger(pNote ? pNote->Override.Volume : 1.f, quickRampRate);
154    
155          // Check if the sample needs disk streaming or is too short for that          // Check if the sample needs disk streaming or is too short for that
156          long cachedsamples = GetSampleCacheSize() / SmplInfo.FrameSize;          long cachedsamples = GetSampleCacheSize() / SmplInfo.FrameSize;
157          DiskVoice          = cachedsamples < SmplInfo.TotalFrameCount;          DiskVoice          = cachedsamples < SmplInfo.TotalFrameCount;
158    
159            SetSampleStartOffset();
160    
161          if (DiskVoice) { // voice to be streamed from disk          if (DiskVoice) { // voice to be streamed from disk
162              if (cachedsamples > (GetEngine()->MaxSamplesPerCycle << CONFIG_MAX_PITCH)) {              if (cachedsamples > (GetEngine()->MaxSamplesPerCycle << CONFIG_MAX_PITCH)) {
163                  MaxRAMPos = cachedsamples - (GetEngine()->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / SmplInfo.ChannelCount; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)                  MaxRAMPos = cachedsamples - (GetEngine()->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / SmplInfo.ChannelCount; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)
# Line 155  namespace LinuxSampler { Line 174  namespace LinuxSampler {
174              RAMLoop = (SmplInfo.HasLoops && (SmplInfo.LoopStart + SmplInfo.LoopLength) <= MaxRAMPos);              RAMLoop = (SmplInfo.HasLoops && (SmplInfo.LoopStart + SmplInfo.LoopLength) <= MaxRAMPos);
175    
176              if (OrderNewStream()) return -1;              if (OrderNewStream()) return -1;
177              dmsg(4,("Disk voice launched (cached samples: %d, total Samples: %d, MaxRAMPos: %d, RAMLooping: %s)\n", cachedsamples, SmplInfo.TotalFrameCount, MaxRAMPos, (RAMLoop) ? "yes" : "no"));              dmsg(4,("Disk voice launched (cached samples: %ld, total Samples: %d, MaxRAMPos: %lu, RAMLooping: %s)\n", cachedsamples, SmplInfo.TotalFrameCount, MaxRAMPos, (RAMLoop) ? "yes" : "no"));
178          }          }
179          else { // RAM only voice          else { // RAM only voice
180              MaxRAMPos = cachedsamples;              MaxRAMPos = cachedsamples;
# Line 171  namespace LinuxSampler { Line 190  namespace LinuxSampler {
190          }          }
191    
192          Pitch = CalculatePitchInfo(PitchBend);          Pitch = CalculatePitchInfo(PitchBend);
193            NotePitch = (pNote) ? pNote->Override.Pitch : 1.0f;
194            NoteCutoff = (pNote) ? pNote->Override.Cutoff : 1.0f;
195            NoteResonance = (pNote) ? pNote->Override.Resonance : 1.0f;
196    
197          // the length of the decay and release curves are dependent on the velocity          // the length of the decay and release curves are dependent on the velocity
198          const double velrelease = 1 / GetVelocityRelease(itNoteOnEvent->Param.Note.Velocity);          const double velrelease = 1 / GetVelocityRelease(itNoteOnEvent->Param.Note.Velocity);
199    
200          // setup EG 1 (VCA EG)          if (pSignalUnitRack == NULL) { // setup EG 1 (VCA EG)
         {  
201              // get current value of EG1 controller              // get current value of EG1 controller
202              double eg1controllervalue = GetEG1ControllerValue(itNoteOnEvent->Param.Note.Velocity);              double eg1controllervalue = GetEG1ControllerValue(itNoteOnEvent->Param.Note.Velocity);
203    
204              // calculate influence of EG1 controller on EG1's parameters              // calculate influence of EG1 controller on EG1's parameters
205              EGInfo egInfo = CalculateEG1ControllerInfluence(eg1controllervalue);              EGInfo egInfo = CalculateEG1ControllerInfluence(eg1controllervalue);
206    
207                if (pNote) {
208                    egInfo.Attack  *= pNote->Override.Attack;
209                    egInfo.Decay   *= pNote->Override.Decay;
210                    egInfo.Release *= pNote->Override.Release;
211                }
212    
213              TriggerEG1(egInfo, velrelease, velocityAttenuation, GetEngine()->SampleRate, itNoteOnEvent->Param.Note.Velocity);              TriggerEG1(egInfo, velrelease, velocityAttenuation, GetEngine()->SampleRate, itNoteOnEvent->Param.Note.Velocity);
214            } else {
215                pSignalUnitRack->Trigger();
216          }          }
217    
218            const uint8_t pan = (pSignalUnitRack) ? pSignalUnitRack->GetEndpointUnit()->CalculatePan(MIDIPan) : MIDIPan;
219            NotePanLeft  = (pNote) ? AbstractEngine::PanCurveValueNorm(pNote->Override.Pan, 0 /*left*/ ) : 1.f;
220            NotePanRight = (pNote) ? AbstractEngine::PanCurveValueNorm(pNote->Override.Pan, 1 /*right*/) : 1.f;
221            PanLeftSmoother.trigger(
222                AbstractEngine::PanCurve[128 - pan] * NotePanLeft,
223                quickRampRate //NOTE: maybe we should have 2 separate pan smoothers, one for MIDI CC10 (with slow rate) and one for instrument script change_pan() calls (with fast rate)
224            );
225            PanRightSmoother.trigger(
226                AbstractEngine::PanCurve[pan] * NotePanRight,
227                quickRampRate //NOTE: maybe we should have 2 separate pan smoothers, one for MIDI CC10 (with slow rate) and one for instrument script change_pan() calls (with fast rate)
228            );
229    
230  #ifdef CONFIG_INTERPOLATE_VOLUME  #ifdef CONFIG_INTERPOLATE_VOLUME
231          // setup initial volume in synthesis parameters          // setup initial volume in synthesis parameters
232      #ifdef CONFIG_PROCESS_MUTED_CHANNELS      #ifdef CONFIG_PROCESS_MUTED_CHANNELS
# Line 196  namespace LinuxSampler { Line 237  namespace LinuxSampler {
237          else          else
238      #else      #else
239          {          {
240              float finalVolume = pEngineChannel->MidiVolume * crossfadeVolume * pEG1->getLevel();              float finalVolume;
241                if (pSignalUnitRack == NULL) {
242                    finalVolume = pEngineChannel->MidiVolume * crossfadeVolume * pEG1->getLevel();
243                } else {
244                    finalVolume = pEngineChannel->MidiVolume * crossfadeVolume * pSignalUnitRack->GetEndpointUnit()->GetVolume();
245                }
246    
247              finalSynthesisParameters.fFinalVolumeLeft  = finalVolume * VolumeLeft  * pEngineChannel->GlobalPanLeft;              finalSynthesisParameters.fFinalVolumeLeft  = finalVolume * VolumeLeft  * PanLeftSmoother.render();
248              finalSynthesisParameters.fFinalVolumeRight = finalVolume * VolumeRight * pEngineChannel->GlobalPanRight;              finalSynthesisParameters.fFinalVolumeRight = finalVolume * VolumeRight * PanRightSmoother.render();
249          }          }
250      #endif      #endif
251  #endif  #endif
252    
253          // setup EG 2 (VCF Cutoff EG)          if (pSignalUnitRack == NULL) {
254          {              // setup EG 2 (VCF Cutoff EG)
255              // get current value of EG2 controller              {
256              double eg2controllervalue = GetEG2ControllerValue(itNoteOnEvent->Param.Note.Velocity);                  // get current value of EG2 controller
257                    double eg2controllervalue = GetEG2ControllerValue(itNoteOnEvent->Param.Note.Velocity);
258    
259                    // calculate influence of EG2 controller on EG2's parameters
260                    EGInfo egInfo = CalculateEG2ControllerInfluence(eg2controllervalue);
261    
262                    TriggerEG2(egInfo, velrelease, velocityAttenuation, GetEngine()->SampleRate, itNoteOnEvent->Param.Note.Velocity);
263                }
264    
             // calculate influence of EG2 controller on EG2's parameters  
             EGInfo egInfo = CalculateEG2ControllerInfluence(eg2controllervalue);  
265    
266              EG2.trigger (              // setup EG 3 (VCO EG)
267                  uint(RgnInfo.EG2PreAttack),              {
268                  RgnInfo.EG2Attack * egInfo.Attack,                  // if portamento mode is on, we dedicate EG3 purely for portamento, otherwise if portamento is off we do as told by the patch
269                  false,                  bool  bPortamento = pEngineChannel->PortamentoMode && pEngineChannel->PortamentoPos >= 0.0f;
270                  RgnInfo.EG2Decay1 * egInfo.Decay * velrelease,                  float eg3depth = (bPortamento)
271                  RgnInfo.EG2Decay2 * egInfo.Decay * velrelease,                               ? RTMath::CentsToFreqRatio((pEngineChannel->PortamentoPos - (float) MIDIKey()) * 100)
272                  RgnInfo.EG2InfiniteSustain,                               : RTMath::CentsToFreqRatio(RgnInfo.EG3Depth);
273                  uint(RgnInfo.EG2Sustain),                  float eg3time = (bPortamento)
274                  RgnInfo.EG2Release * egInfo.Release * velrelease,                              ? pEngineChannel->PortamentoTime
275                  velocityAttenuation,                              : RgnInfo.EG3Attack;
276                  GetEngine()->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE                  EG3.trigger(eg3depth, eg3time, GetEngine()->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
277              );                  dmsg(5,("PortamentoPos=%f, depth=%f, time=%f\n", pEngineChannel->PortamentoPos, eg3depth, eg3time));
278          }              }
279    
280    
281          // setup EG 3 (VCO EG)              // setup LFO 1 (VCA LFO)
282          {              InitLFO1();
283              // if portamento mode is on, we dedicate EG3 purely for portamento, otherwise if portamento is off we do as told by the patch              // setup LFO 2 (VCF Cutoff LFO)
284              bool  bPortamento = pEngineChannel->PortamentoMode && pEngineChannel->PortamentoPos >= 0.0f;              InitLFO2();
285              float eg3depth = (bPortamento)              // setup LFO 3 (VCO LFO)
286                           ? RTMath::CentsToFreqRatio((pEngineChannel->PortamentoPos - (float) MIDIKey) * 100)              InitLFO3();
                          : RTMath::CentsToFreqRatio(RgnInfo.EG3Depth);  
             float eg3time = (bPortamento)  
                         ? pEngineChannel->PortamentoTime  
                         : RgnInfo.EG3Attack;  
             EG3.trigger(eg3depth, eg3time, GetEngine()->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);  
             dmsg(5,("PortamentoPos=%f, depth=%f, time=%f\n", pEngineChannel->PortamentoPos, eg3depth, eg3time));  
287          }          }
288    
289    
         // setup LFO 1 (VCA LFO)  
         InitLFO1();  
         // setup LFO 2 (VCF Cutoff LFO)  
         InitLFO2();  
         // setup LFO 3 (VCO LFO)  
         InitLFO3();  
   
   
290          #if CONFIG_FORCE_FILTER          #if CONFIG_FORCE_FILTER
291          const bool bUseFilter = true;          const bool bUseFilter = true;
292          #else // use filter only if instrument file told so          #else // use filter only if instrument file told so
# Line 292  namespace LinuxSampler { Line 329  namespace LinuxSampler {
329              VCFCutoffCtrl.controller    = 0;              VCFCutoffCtrl.controller    = 0;
330              VCFResonanceCtrl.controller = 0;              VCFResonanceCtrl.controller = 0;
331          }          }
332            
333            const bool bEq =
334                pSignalUnitRack != NULL && pSignalUnitRack->HasEq() && pEq->HasSupport();
335    
336            if (bEq) {
337                pEq->GetInChannelLeft()->Clear();
338                pEq->GetInChannelRight()->Clear();
339                pEq->RenderAudio(GetEngine()->pAudioOutputDevice->MaxSamplesPerCycle());
340            }
341    
342          return 0; // success          return 0; // success
343      }      }
344        
345        void AbstractVoice::SetSampleStartOffset() {
346            finalSynthesisParameters.dPos = RgnInfo.SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)
347            Pos = RgnInfo.SampleStartOffset;
348        }
349    
350      /**      /**
351       *  Synthesizes the current audio fragment for this voice.       *  Synthesizes the current audio fragment for this voice.
# Line 305  namespace LinuxSampler { Line 356  namespace LinuxSampler {
356       *  @param Skip    - number of sample points to skip in output buffer       *  @param Skip    - number of sample points to skip in output buffer
357       */       */
358      void AbstractVoice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {      void AbstractVoice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {
359            bool delay = false; // Whether the voice playback should be delayed for this call
360            
361            if (pSignalUnitRack != NULL) {
362                uint delaySteps = pSignalUnitRack->GetEndpointUnit()->DelayTrigger();
363                if (delaySteps > 0) { // delay on the endpoint unit means delay of the voice playback
364                    if (delaySteps >= Samples) {
365                        pSignalUnitRack->GetEndpointUnit()->DecreaseDelay(Samples);
366                        delay = true;
367                    } else {
368                        pSignalUnitRack->GetEndpointUnit()->DecreaseDelay(delaySteps);
369                        Samples -= delaySteps;
370                        Skip += delaySteps;
371                    }
372                }
373            }
374            
375          AbstractEngineChannel* pChannel = pEngineChannel;          AbstractEngineChannel* pChannel = pEngineChannel;
376          finalSynthesisParameters.pOutLeft  = &pChannel->pChannelLeft->Buffer()[Skip];          MidiKeyBase* pMidiKeyInfo = GetMidiKeyInfo(MIDIKey());
377          finalSynthesisParameters.pOutRight = &pChannel->pChannelRight->Buffer()[Skip];  
378          finalSynthesisParameters.pSrc      = pSrc;          const bool bVoiceRequiresDedicatedRouting =
379                pEngineChannel->GetFxSendCount() > 0 &&
380                (pMidiKeyInfo->ReverbSend || pMidiKeyInfo->ChorusSend);
381            
382            const bool bEq =
383                pSignalUnitRack != NULL && pSignalUnitRack->HasEq() && pEq->HasSupport();
384    
385            if (bEq) {
386                pEq->GetInChannelLeft()->Clear();
387                pEq->GetInChannelRight()->Clear();
388                finalSynthesisParameters.pOutLeft  = &pEq->GetInChannelLeft()->Buffer()[Skip];
389                finalSynthesisParameters.pOutRight = &pEq->GetInChannelRight()->Buffer()[Skip];
390                pSignalUnitRack->UpdateEqSettings(pEq);
391            } else if (bVoiceRequiresDedicatedRouting) {
392                finalSynthesisParameters.pOutLeft  = &GetEngine()->pDedicatedVoiceChannelLeft->Buffer()[Skip];
393                finalSynthesisParameters.pOutRight = &GetEngine()->pDedicatedVoiceChannelRight->Buffer()[Skip];
394            } else {
395                finalSynthesisParameters.pOutLeft  = &pChannel->pChannelLeft->Buffer()[Skip];
396                finalSynthesisParameters.pOutRight = &pChannel->pChannelRight->Buffer()[Skip];
397            }
398            finalSynthesisParameters.pSrc = pSrc;
399    
400          RTList<Event>::Iterator itCCEvent = pChannel->pEvents->first();          RTList<Event>::Iterator itCCEvent = pChannel->pEvents->first();
401          RTList<Event>::Iterator itNoteEvent;          RTList<Event>::Iterator itNoteEvent;
402          GetFirstEventOnKey(MIDIKey, itNoteEvent);          GetFirstEventOnKey(HostKey(), itNoteEvent);
403    
404          RTList<Event>::Iterator itGroupEvent;          RTList<Event>::Iterator itGroupEvent;
405          if (pGroupEvents) itGroupEvent = pGroupEvents->first();          if (pGroupEvents && !Orphan) itGroupEvent = pGroupEvents->first();
406    
407          if (itTriggerEvent) { // skip events that happened before this voice was triggered          if (itTriggerEvent) { // skip events that happened before this voice was triggered
408              while (itCCEvent && itCCEvent->FragmentPos() <= Skip) ++itCCEvent;              while (itCCEvent && itCCEvent->FragmentPos() <= Skip) ++itCCEvent;
# Line 341  namespace LinuxSampler { Line 428  namespace LinuxSampler {
428                  // drivers that use Samples < MaxSamplesPerCycle).                  // drivers that use Samples < MaxSamplesPerCycle).
429                  // End the EG1 here, at pos 0, with a shorter max fade                  // End the EG1 here, at pos 0, with a shorter max fade
430                  // out time.                  // out time.
431                  pEG1->enterFadeOutStage(Samples / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);                  if (pSignalUnitRack == NULL) {
432                        pEG1->enterFadeOutStage(Samples / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
433                    } else {
434                        pSignalUnitRack->EnterFadeOutStage(Samples / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
435                    }
436                  itKillEvent = Pool<Event>::Iterator();                  itKillEvent = Pool<Event>::Iterator();
437              } else {              } else {
438                  killPos = RTMath::Min(itKillEvent->FragmentPos(), maxFadeOutPos);                  killPos = RTMath::Min(itKillEvent->FragmentPos(), maxFadeOutPos);
# Line 356  namespace LinuxSampler { Line 447  namespace LinuxSampler {
447              fFinalCutoff    = VCFCutoffCtrl.fvalue;              fFinalCutoff    = VCFCutoffCtrl.fvalue;
448              fFinalResonance = VCFResonanceCtrl.fvalue;              fFinalResonance = VCFResonanceCtrl.fvalue;
449    
450              // process MIDI control change and pitchbend events for this subfragment              // process MIDI control change, aftertouch and pitchbend events for this subfragment
451              processCCEvents(itCCEvent, iSubFragmentEnd);              processCCEvents(itCCEvent, iSubFragmentEnd);
452                uint8_t pan = MIDIPan;
453                if (pSignalUnitRack != NULL) pan = pSignalUnitRack->GetEndpointUnit()->CalculatePan(MIDIPan);
454    
455                PanLeftSmoother.update(AbstractEngine::PanCurve[128 - pan] * NotePanLeft);
456                PanRightSmoother.update(AbstractEngine::PanCurve[pan]      * NotePanRight);
457    
458              finalSynthesisParameters.fFinalPitch = Pitch.PitchBase * Pitch.PitchBend;              finalSynthesisParameters.fFinalPitch = Pitch.PitchBase * Pitch.PitchBend * NotePitch;
459              float fFinalVolume = VolumeSmoother.render() * CrossfadeSmoother.render();  
460                float fFinalVolume = VolumeSmoother.render() * CrossfadeSmoother.render() * NoteVolumeSmoother.render();
461  #ifdef CONFIG_PROCESS_MUTED_CHANNELS  #ifdef CONFIG_PROCESS_MUTED_CHANNELS
462              if (pChannel->GetMute()) fFinalVolume = 0;              if (pChannel->GetMute()) fFinalVolume = 0;
463  #endif  #endif
# Line 368  namespace LinuxSampler { Line 465  namespace LinuxSampler {
465              // process transition events (note on, note off & sustain pedal)              // process transition events (note on, note off & sustain pedal)
466              processTransitionEvents(itNoteEvent, iSubFragmentEnd);              processTransitionEvents(itNoteEvent, iSubFragmentEnd);
467              processGroupEvents(itGroupEvent, iSubFragmentEnd);              processGroupEvents(itGroupEvent, iSubFragmentEnd);
468                
469                if (pSignalUnitRack == NULL) {
470                    // if the voice was killed in this subfragment, or if the
471                    // filter EG is finished, switch EG1 to fade out stage
472                    if ((itKillEvent && killPos <= iSubFragmentEnd) ||
473                        (SYNTHESIS_MODE_GET_FILTER(SynthesisMode) &&
474                        pEG2->getSegmentType() == EG::segment_end)) {
475                        pEG1->enterFadeOutStage();
476                        itKillEvent = Pool<Event>::Iterator();
477                    }
478    
479              // if the voice was killed in this subfragment, or if the                  // process envelope generators
480              // filter EG is finished, switch EG1 to fade out stage                  switch (pEG1->getSegmentType()) {
481              if ((itKillEvent && killPos <= iSubFragmentEnd) ||                      case EG::segment_lin:
482                  (SYNTHESIS_MODE_GET_FILTER(SynthesisMode) &&                          fFinalVolume *= pEG1->processLin();
483                   EG2.getSegmentType() == gig::EGADSR::segment_end)) {                          break;
484                  pEG1->enterFadeOutStage();                      case EG::segment_exp:
485                  itKillEvent = Pool<Event>::Iterator();                          fFinalVolume *= pEG1->processExp();
486              }                          break;
487                        case EG::segment_end:
488                            fFinalVolume *= pEG1->getLevel();
489                            break; // noop
490                        case EG::segment_pow:
491                            fFinalVolume *= pEG1->processPow();
492                            break;
493                    }
494                    switch (pEG2->getSegmentType()) {
495                        case EG::segment_lin:
496                            fFinalCutoff *= pEG2->processLin();
497                            break;
498                        case EG::segment_exp:
499                            fFinalCutoff *= pEG2->processExp();
500                            break;
501                        case EG::segment_end:
502                            fFinalCutoff *= pEG2->getLevel();
503                            break; // noop
504                        case EG::segment_pow:
505                            fFinalCutoff *= pEG2->processPow();
506                            break;
507                    }
508                    if (EG3.active()) finalSynthesisParameters.fFinalPitch *= EG3.render();
509    
510              // process envelope generators                  // process low frequency oscillators
511              switch (pEG1->getSegmentType()) {                  if (bLFO1Enabled) fFinalVolume *= (1.0f - pLFO1->render());
512                  case EG::segment_lin:                  if (bLFO2Enabled) fFinalCutoff *= (1.0f - pLFO2->render());
513                      fFinalVolume *= pEG1->processLin();                  if (bLFO3Enabled) finalSynthesisParameters.fFinalPitch *= RTMath::CentsToFreqRatio(pLFO3->render());
514                      break;              } else {
515                  case EG::segment_exp:                  // if the voice was killed in this subfragment, enter fade out stage
516                      fFinalVolume *= pEG1->processExp();                  if (itKillEvent && killPos <= iSubFragmentEnd) {
517                      break;                      pSignalUnitRack->EnterFadeOutStage();
518                  case EG::segment_end:                      itKillEvent = Pool<Event>::Iterator();
519                      fFinalVolume *= pEG1->getLevel();                  }
520                      break; // noop                  
521                  case EG::segment_pow:                  // if the filter EG is finished, switch EG1 to fade out stage
522                      fFinalVolume *= pEG1->processPow();                  /*if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode) &&
523                      break;                      pEG2->getSegmentType() == EG::segment_end) {
524                        pEG1->enterFadeOutStage();
525                        itKillEvent = Pool<Event>::Iterator();
526                    }*/
527                    // TODO: ^^^
528    
529                    fFinalVolume   *= pSignalUnitRack->GetEndpointUnit()->GetVolume();
530                    fFinalCutoff    = pSignalUnitRack->GetEndpointUnit()->CalculateFilterCutoff(fFinalCutoff);
531                    fFinalResonance = pSignalUnitRack->GetEndpointUnit()->CalculateResonance(fFinalResonance);
532                    
533                    finalSynthesisParameters.fFinalPitch =
534                        pSignalUnitRack->GetEndpointUnit()->CalculatePitch(finalSynthesisParameters.fFinalPitch);
535                        
536              }              }
537              switch (EG2.getSegmentType()) {  
538                  case gig::EGADSR::segment_lin:              fFinalCutoff    *= NoteCutoff;
539                      fFinalCutoff *= EG2.processLin();              fFinalResonance *= NoteResonance;
                     break;  
                 case gig::EGADSR::segment_exp:  
                     fFinalCutoff *= EG2.processExp();  
                     break;  
                 case gig::EGADSR::segment_end:  
                     fFinalCutoff *= EG2.getLevel();  
                     break; // noop  
             }  
             if (EG3.active()) finalSynthesisParameters.fFinalPitch *= EG3.render();  
   
             // process low frequency oscillators  
             if (bLFO1Enabled) fFinalVolume *= (1.0f - pLFO1->render());  
             if (bLFO2Enabled) fFinalCutoff *= pLFO2->render();  
             if (bLFO3Enabled) finalSynthesisParameters.fFinalPitch *= RTMath::CentsToFreqRatio(pLFO3->render());  
540    
541              // limit the pitch so we don't read outside the buffer              // limit the pitch so we don't read outside the buffer
542              finalSynthesisParameters.fFinalPitch = RTMath::Min(finalSynthesisParameters.fFinalPitch, float(1 << CONFIG_MAX_PITCH));              finalSynthesisParameters.fFinalPitch = RTMath::Min(finalSynthesisParameters.fFinalPitch, float(1 << CONFIG_MAX_PITCH));
# Line 443  namespace LinuxSampler { Line 570  namespace LinuxSampler {
570                  fFinalVolume * VolumeRight * PanRightSmoother.render();                  fFinalVolume * VolumeRight * PanRightSmoother.render();
571  #endif  #endif
572              // render audio for one subfragment              // render audio for one subfragment
573              RunSynthesisFunction(SynthesisMode, &finalSynthesisParameters, &loop);              if (!delay) RunSynthesisFunction(SynthesisMode, &finalSynthesisParameters, &loop);
574    
575              // stop the rendering if volume EG is finished              if (pSignalUnitRack == NULL) {
576              if (pEG1->getSegmentType() == EG::segment_end) break;                  // stop the rendering if volume EG is finished
577                    if (pEG1->getSegmentType() == EG::segment_end) break;
578                } else {
579                    // stop the rendering if the endpoint unit is not active
580                    if (!pSignalUnitRack->GetEndpointUnit()->Active()) break;
581                }
582    
583              const double newPos = Pos + (iSubFragmentEnd - i) * finalSynthesisParameters.fFinalPitch;              const double newPos = Pos + (iSubFragmentEnd - i) * finalSynthesisParameters.fFinalPitch;
584    
585              // increment envelopes' positions              if (pSignalUnitRack == NULL) {
586              if (pEG1->active()) {                  // increment envelopes' positions
587                    if (pEG1->active()) {
588    
589                        // if sample has a loop and loop start has been reached in this subfragment, send a special event to EG1 to let it finish the attack hold stage
590                        if (SmplInfo.HasLoops && Pos <= SmplInfo.LoopStart && SmplInfo.LoopStart < newPos) {
591                            pEG1->update(EG::event_hold_end, GetEngine()->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
592                        }
593    
594                  // if sample has a loop and loop start has been reached in this subfragment, send a special event to EG1 to let it finish the attack hold stage                      pEG1->increment(1);
595                  if (SmplInfo.HasLoops && Pos <= SmplInfo.LoopStart && SmplInfo.LoopStart < newPos) {                      if (!pEG1->toStageEndLeft()) pEG1->update(EG::event_stage_end, GetEngine()->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                     pEG1->update(EG::event_hold_end, GetEngine()->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);  
596                  }                  }
597                    if (pEG2->active()) {
598                  pEG1->increment(1);                      pEG2->increment(1);
599                  if (!pEG1->toStageEndLeft()) pEG1->update(EG::event_stage_end, GetEngine()->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);                      if (!pEG2->toStageEndLeft()) pEG2->update(EG::event_stage_end, GetEngine()->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
600              }                  }
601              if (EG2.active()) {                  EG3.increment(1);
602                  EG2.increment(1);                  if (!EG3.toEndLeft()) EG3.update(); // neutralize envelope coefficient if end reached
603                  if (!EG2.toStageEndLeft()) EG2.update(gig::EGADSR::event_stage_end, GetEngine()->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);              } else {
604                        // if sample has a loop and loop start has been reached in this subfragment, send a special event to EG1 to let it finish the attack hold stage
605                        /*if (SmplInfo.HasLoops && Pos <= SmplInfo.LoopStart && SmplInfo.LoopStart < newPos) {
606                            pEG1->update(EG::event_hold_end, GetEngine()->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
607                        }*/
608                    // TODO: ^^^
609                    
610                    if (!delay) pSignalUnitRack->Increment();
611              }              }
             EG3.increment(1);  
             if (!EG3.toEndLeft()) EG3.update(); // neutralize envelope coefficient if end reached  
612    
613              Pos = newPos;              Pos = newPos;
614              i = iSubFragmentEnd;              i = iSubFragmentEnd;
615          }          }
616            
617            if (delay) return;
618    
619            if (bVoiceRequiresDedicatedRouting) {
620                if (bEq) {
621                    pEq->RenderAudio(Samples);
622                    pEq->GetOutChannelLeft()->CopyTo(GetEngine()->pDedicatedVoiceChannelLeft, Samples);
623                    pEq->GetOutChannelRight()->CopyTo(GetEngine()->pDedicatedVoiceChannelRight, Samples);
624                }
625                optional<float> effectSendLevels[2] = {
626                    pMidiKeyInfo->ReverbSend,
627                    pMidiKeyInfo->ChorusSend
628                };
629                GetEngine()->RouteDedicatedVoiceChannels(pEngineChannel, effectSendLevels, Samples);
630            } else if (bEq) {
631                pEq->RenderAudio(Samples);
632                pEq->GetOutChannelLeft()->MixTo(pChannel->pChannelLeft, Samples);
633                pEq->GetOutChannelRight()->MixTo(pChannel->pChannelRight, Samples);
634            }
635      }      }
636    
637      /**      /**
638       * Process given list of MIDI control change and pitch bend events for       * Process given list of MIDI control change, aftertouch and pitch bend
639       * the given time.       * events for the given time.
640       *       *
641       * @param itEvent - iterator pointing to the next event to be processed       * @param itEvent - iterator pointing to the next event to be processed
642       * @param End     - youngest time stamp where processing should be stopped       * @param End     - youngest time stamp where processing should be stopped
# Line 489  namespace LinuxSampler { Line 650  namespace LinuxSampler {
650                  if (itEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {                  if (itEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {
651                      processResonanceEvent(itEvent);                      processResonanceEvent(itEvent);
652                  }                  }
653                  if (itEvent->Param.CC.Controller == pLFO1->ExtController) {                  if (pSignalUnitRack == NULL) {
654                      pLFO1->update(itEvent->Param.CC.Value);                      if (itEvent->Param.CC.Controller == pLFO1->ExtController) {
655                  }                          pLFO1->update(itEvent->Param.CC.Value);
656                  if (itEvent->Param.CC.Controller == pLFO2->ExtController) {                      }
657                      pLFO2->update(itEvent->Param.CC.Value);                      if (itEvent->Param.CC.Controller == pLFO2->ExtController) {
658                  }                          pLFO2->update(itEvent->Param.CC.Value);
659                  if (itEvent->Param.CC.Controller == pLFO3->ExtController) {                      }
660                      pLFO3->update(itEvent->Param.CC.Value);                      if (itEvent->Param.CC.Controller == pLFO3->ExtController) {
661                            pLFO3->update(itEvent->Param.CC.Value);
662                        }
663                  }                  }
664                  if (itEvent->Param.CC.Controller == 7) { // volume                  if (itEvent->Param.CC.Controller == 7) { // volume
665                      VolumeSmoother.update(AbstractEngine::VolumeCurve[itEvent->Param.CC.Value]);                      VolumeSmoother.update(AbstractEngine::VolumeCurve[itEvent->Param.CC.Value]);
666                  } else if (itEvent->Param.CC.Controller == 10) { // panpot                  } else if (itEvent->Param.CC.Controller == 10) { // panpot
667                      PanLeftSmoother.update(AbstractEngine::PanCurve[128 - itEvent->Param.CC.Value]);                      MIDIPan = CalculatePan(itEvent->Param.CC.Value);
                     PanRightSmoother.update(AbstractEngine::PanCurve[itEvent->Param.CC.Value]);  
668                  }                  }
669              } else if (itEvent->Type == Event::type_pitchbend) { // if pitch bend event              } else if (itEvent->Type == Event::type_pitchbend) { // if pitch bend event
670                  processPitchEvent(itEvent);                  processPitchEvent(itEvent);
671                } else if (itEvent->Type == Event::type_channel_pressure) {
672                    ProcessChannelPressureEvent(itEvent);
673                } else if (itEvent->Type == Event::type_note_pressure) {
674                    ProcessPolyphonicKeyPressureEvent(itEvent);
675              }              }
676    
677              ProcessCCEvent(itEvent);              ProcessCCEvent(itEvent);
678                if (pSignalUnitRack != NULL) {
679                    pSignalUnitRack->ProcessCCEvent(itEvent);
680                }
681          }          }
682      }      }
683    
# Line 527  namespace LinuxSampler { Line 696  namespace LinuxSampler {
696      }      }
697    
698      /**      /**
699       * Process given list of MIDI note on, note off and sustain pedal events       * Process given list of MIDI note on, note off, sustain pedal events and
700       * for the given time.       * note synthesis parameter events for the given time.
701       *       *
702       * @param itEvent - iterator pointing to the next event to be processed       * @param itEvent - iterator pointing to the next event to be processed
703       * @param End     - youngest time stamp where processing should be stopped       * @param End     - youngest time stamp where processing should be stopped
704       */       */
705      void AbstractVoice::processTransitionEvents(RTList<Event>::Iterator& itEvent, uint End) {      void AbstractVoice::processTransitionEvents(RTList<Event>::Iterator& itEvent, uint End) {
706          for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {          for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
707              if (Type != Voice::type_release_trigger) {              // some voice types ignore note off
708                if (!(Type & (Voice::type_one_shot | Voice::type_release_trigger | Voice::type_controller_triggered))) {
709                  if (itEvent->Type == Event::type_release) {                  if (itEvent->Type == Event::type_release_key) {
710                      EnterReleaseStage();                      EnterReleaseStage();
711                  } else if (itEvent->Type == Event::type_cancel_release) {                  } else if (itEvent->Type == Event::type_cancel_release_key) {
712                      pEG1->update(EG::event_cancel_release, GetEngine()->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);                      if (pSignalUnitRack == NULL) {
713                      EG2.update(gig::EGADSR::event_cancel_release, GetEngine()->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);                          pEG1->update(EG::event_cancel_release, GetEngine()->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
714                            pEG2->update(EG::event_cancel_release, GetEngine()->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
715                        } else {
716                            pSignalUnitRack->CancelRelease();
717                        }
718                    }
719                }
720                // process stop-note events (caused by built-in instrument script function note_off())
721                if (itEvent->Type == Event::type_release_note && pNote &&
722                    pEngineChannel->pEngine->NoteByID( itEvent->Param.Note.ID ) == pNote)
723                {
724                    EnterReleaseStage();
725                }
726                // process synthesis parameter events (caused by built-in realt-time instrument script functions)
727                if (itEvent->Type == Event::type_note_synth_param && pNote &&
728                    pEngineChannel->pEngine->NoteByID( itEvent->Param.NoteSynthParam.NoteID ) == pNote)
729                {
730                    switch (itEvent->Param.NoteSynthParam.Type) {
731                        case Event::synth_param_volume:
732                            NoteVolumeSmoother.update(itEvent->Param.NoteSynthParam.AbsValue);
733                            break;
734                        case Event::synth_param_pitch:
735                            NotePitch = itEvent->Param.NoteSynthParam.AbsValue;
736                            break;
737                        case Event::synth_param_pan:
738                            NotePanLeft  = AbstractEngine::PanCurveValueNorm(itEvent->Param.NoteSynthParam.AbsValue, 0 /*left*/);
739                            NotePanRight = AbstractEngine::PanCurveValueNorm(itEvent->Param.NoteSynthParam.AbsValue, 1 /*right*/);
740                            break;
741                        case Event::synth_param_cutoff:
742                            NoteCutoff = itEvent->Param.NoteSynthParam.AbsValue;
743                            break;
744                        case Event::synth_param_resonance:
745                            NoteResonance = itEvent->Param.NoteSynthParam.AbsValue;
746                            break;
747                  }                  }
748              }              }
749          }          }
# Line 568  namespace LinuxSampler { Line 770  namespace LinuxSampler {
770       * @param itNoteOffEvent - event which causes this voice to die soon       * @param itNoteOffEvent - event which causes this voice to die soon
771       */       */
772      void AbstractVoice::UpdatePortamentoPos(Pool<Event>::Iterator& itNoteOffEvent) {      void AbstractVoice::UpdatePortamentoPos(Pool<Event>::Iterator& itNoteOffEvent) {
773          const float fFinalEG3Level = EG3.level(itNoteOffEvent->FragmentPos());          if (pSignalUnitRack == NULL) {
774          pEngineChannel->PortamentoPos = (float) MIDIKey + RTMath::FreqRatioToCents(fFinalEG3Level) * 0.01f;              const float fFinalEG3Level = EG3.level(itNoteOffEvent->FragmentPos());
775                pEngineChannel->PortamentoPos = (float) MIDIKey() + RTMath::FreqRatioToCents(fFinalEG3Level) * 0.01f;
776            } else {
777                // TODO:
778            }
779      }      }
780    
781      /**      /**
# Line 593  namespace LinuxSampler { Line 799  namespace LinuxSampler {
799    
800      Voice::PitchInfo AbstractVoice::CalculatePitchInfo(int PitchBend) {      Voice::PitchInfo AbstractVoice::CalculatePitchInfo(int PitchBend) {
801          PitchInfo pitch;          PitchInfo pitch;
802          double pitchbasecents = InstrInfo.FineTune + RgnInfo.FineTune + GetEngine()->ScaleTuning[MIDIKey % 12];          double pitchbasecents = InstrInfo.FineTune + RgnInfo.FineTune + GetEngine()->ScaleTuning[MIDIKey() % 12];
803    
804          // GSt behaviour: maximum transpose up is 40 semitones. If          // GSt behaviour: maximum transpose up is 40 semitones. If
805          // MIDI key is more than 40 semitones above unity note,          // MIDI key is more than 40 semitones above unity note,
806          // the transpose is not done.          // the transpose is not done.
807          if (!SmplInfo.Unpitched && (MIDIKey - (int) RgnInfo.UnityNote) < 40) pitchbasecents += (MIDIKey - (int) RgnInfo.UnityNote) * 100;          if (!SmplInfo.Unpitched && (MIDIKey() - (int) RgnInfo.UnityNote) < 40) pitchbasecents += (MIDIKey() - (int) RgnInfo.UnityNote) * 100;
808    
809          pitch.PitchBase = RTMath::CentsToFreqRatioUnlimited(pitchbasecents) * (double(SmplInfo.SampleRate) / double(GetEngine()->SampleRate));          pitch.PitchBase = RTMath::CentsToFreqRatioUnlimited(pitchbasecents) * (double(SmplInfo.SampleRate) / double(GetEngine()->SampleRate));
810          pitch.PitchBendRange = 1.0 / 8192.0 * 100.0 * InstrInfo.PitchbendRange;          pitch.PitchBendRange = 1.0 / 8192.0 * 100.0 * InstrInfo.PitchbendRange;
# Line 606  namespace LinuxSampler { Line 812  namespace LinuxSampler {
812    
813          return pitch;          return pitch;
814      }      }
815        
816        void AbstractVoice::onScaleTuningChanged() {
817            PitchInfo pitch = this->Pitch;
818            double pitchbasecents = InstrInfo.FineTune + RgnInfo.FineTune + GetEngine()->ScaleTuning[MIDIKey() % 12];
819            
820            // GSt behaviour: maximum transpose up is 40 semitones. If
821            // MIDI key is more than 40 semitones above unity note,
822            // the transpose is not done.
823            if (!SmplInfo.Unpitched && (MIDIKey() - (int) RgnInfo.UnityNote) < 40) pitchbasecents += (MIDIKey() - (int) RgnInfo.UnityNote) * 100;
824            
825            pitch.PitchBase = RTMath::CentsToFreqRatioUnlimited(pitchbasecents) * (double(SmplInfo.SampleRate) / double(GetEngine()->SampleRate));
826            this->Pitch = pitch;
827        }
828    
829      double AbstractVoice::CalculateVolume(double velocityAttenuation) {      double AbstractVoice::CalculateVolume(double velocityAttenuation) {
830          // For 16 bit samples, we downscale by 32768 to convert from          // For 16 bit samples, we downscale by 32768 to convert from
# Line 616  namespace LinuxSampler { Line 835  namespace LinuxSampler {
835          volume *= GetSampleAttenuation() * pEngineChannel->GlobalVolume * GLOBAL_VOLUME;          volume *= GetSampleAttenuation() * pEngineChannel->GlobalVolume * GLOBAL_VOLUME;
836    
837          // the volume of release triggered samples depends on note length          // the volume of release triggered samples depends on note length
838          if (Type == Voice::type_release_trigger) {          if (Type & Voice::type_release_trigger) {
839              float noteLength = float(GetEngine()->FrameTime + Delay -              float noteLength = float(GetEngine()->FrameTime + Delay -
840                  GetNoteOnTime(MIDIKey) ) / GetEngine()->SampleRate;                  GetNoteOnTime(MIDIKey()) ) / GetEngine()->SampleRate;
841    
842              volume *= GetReleaseTriggerAttenuation(noteLength);              volume *= GetReleaseTriggerAttenuation(noteLength);
843          }          }
# Line 631  namespace LinuxSampler { Line 850  namespace LinuxSampler {
850      }      }
851    
852      void AbstractVoice::EnterReleaseStage() {      void AbstractVoice::EnterReleaseStage() {
853          pEG1->update(EG::event_release, GetEngine()->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);          if (pSignalUnitRack == NULL) {
854          EG2.update(gig::EGADSR::event_release, GetEngine()->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);              pEG1->update(EG::event_release, GetEngine()->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
855                pEG2->update(EG::event_release, GetEngine()->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
856            } else {
857                pSignalUnitRack->EnterReleaseStage();
858            }
859        }
860    
861        bool AbstractVoice::EG1Finished() {
862            if (pSignalUnitRack == NULL) {
863                return pEG1->getSegmentType() == EG::segment_end;
864            } else {
865                return !pSignalUnitRack->GetEndpointUnit()->Active();
866            }
867      }      }
868    
869  } // namespace LinuxSampler  } // namespace LinuxSampler

Legend:
Removed from v.2114  
changed lines
  Added in v.2963

  ViewVC Help
Powered by ViewVC