/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 687 by schoenebeck, Tue Jul 12 22:37:21 2005 UTC revision 1923 by persson, Sat Jun 27 16:55:41 2009 UTC
# Line 3  Line 3 
3   *   LinuxSampler - modular, streaming capable sampler                     *   *   LinuxSampler - modular, streaming capable sampler                     *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *
6   *   Copyright (C) 2005 Christian Schoenebeck                              *   *   Copyright (C) 2005 - 2009 Christian Schoenebeck                       *
7   *                                                                         *   *                                                                         *
8   *   This program is free software; you can redistribute it and/or modify  *   *   This program is free software; you can redistribute it and/or modify  *
9   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 21  Line 21 
21   *   MA  02111-1307  USA                                                   *   *   MA  02111-1307  USA                                                   *
22   ***************************************************************************/   ***************************************************************************/
23    
 #include "EGADSR.h"  
 #include "Manipulator.h"  
24  #include "../../common/Features.h"  #include "../../common/Features.h"
25  #include "Synthesizer.h"  #include "Synthesizer.h"
26    #include "Profiler.h"
27    
28  #include "Voice.h"  #include "Voice.h"
29    
30  namespace LinuxSampler { namespace gig {  namespace LinuxSampler { namespace gig {
31    
     const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());  
   
     const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());  
   
     float Voice::CalculateFilterCutoffCoeff() {  
         return log(CONFIG_FILTER_CUTOFF_MIN / CONFIG_FILTER_CUTOFF_MAX);  
     }  
   
     int Voice::CalculateFilterUpdateMask() {  
         if (CONFIG_FILTER_UPDATE_STEPS <= 0) return 0;  
         int power_of_two;  
         for (power_of_two = 0; 1<<power_of_two < CONFIG_FILTER_UPDATE_STEPS; power_of_two++);  
         return (1 << power_of_two) - 1;  
     }  
   
32      Voice::Voice() {      Voice::Voice() {
33          pEngine     = NULL;          pEngine     = NULL;
34          pDiskThread = NULL;          pDiskThread = NULL;
35          PlaybackState = playback_state_end;          PlaybackState = playback_state_end;
36          pEG1   = NULL;          pLFO1 = new LFOUnsigned(1.0f);  // amplitude EG (0..1 range)
37          pEG2   = NULL;          pLFO2 = new LFOUnsigned(1.0f);  // filter EG (0..1 range)
38          pEG3   = NULL;          pLFO3 = new LFOSigned(1200.0f); // pitch EG (-1200..+1200 range)
         pVCAManipulator  = NULL;  
         pVCFCManipulator = NULL;  
         pVCOManipulator  = NULL;  
         pLFO1  = NULL;  
         pLFO2  = NULL;  
         pLFO3  = NULL;  
39          KeyGroup = 0;          KeyGroup = 0;
40          SynthesisMode = 0; // set all mode bits to 0 first          SynthesisMode = 0; // set all mode bits to 0 first
41          // select synthesis implementation (currently either pure C++ or MMX+SSE(1))          // select synthesis implementation (asm core is not supported ATM)
42          #if CONFIG_ASM && ARCH_X86          #if 0 // CONFIG_ASM && ARCH_X86
43          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());
44          #else          #else
45          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);          SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);
46          #endif          #endif
47          SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, true);          SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, Profiler::isEnabled());
48    
49          FilterLeft.Reset();          finalSynthesisParameters.filterLeft.Reset();
50          FilterRight.Reset();          finalSynthesisParameters.filterRight.Reset();
51      }      }
52    
53      Voice::~Voice() {      Voice::~Voice() {
         if (pEG1)  delete pEG1;  
         if (pEG2)  delete pEG2;  
         if (pEG3)  delete pEG3;  
54          if (pLFO1) delete pLFO1;          if (pLFO1) delete pLFO1;
55          if (pLFO2) delete pLFO2;          if (pLFO2) delete pLFO2;
56          if (pLFO3) delete pLFO3;          if (pLFO3) delete pLFO3;
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
57      }      }
58    
59      void Voice::SetEngine(Engine* pEngine) {      void Voice::SetEngine(Engine* pEngine) {
60          this->pEngine = pEngine;          this->pEngine     = pEngine;
   
         // delete old objects  
         if (pEG1) delete pEG1;  
         if (pEG2) delete pEG2;  
         if (pEG3) delete pEG3;  
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
         if (pLFO1) delete pLFO1;  
         if (pLFO2) delete pLFO2;  
         if (pLFO3) delete pLFO3;  
   
         // create new ones  
         pEG1   = new EGADSR(pEngine, Event::destination_vca);  
         pEG2   = new EGADSR(pEngine, Event::destination_vcfc);  
         pEG3   = new EGDecay(pEngine, Event::destination_vco);  
         pVCAManipulator  = new VCAManipulator(pEngine);  
         pVCFCManipulator = new VCFCManipulator(pEngine);  
         pVCOManipulator  = new VCOManipulator(pEngine);  
         pLFO1  = new LFO<gig::VCAManipulator>(0.0f, 1.0f, LFO<VCAManipulator>::propagation_top_down, pVCAManipulator, pEngine->pEventPool);  
         pLFO2  = new LFO<gig::VCFCManipulator>(0.0f, 1.0f, LFO<VCFCManipulator>::propagation_top_down, pVCFCManipulator, pEngine->pEventPool);  
         pLFO3  = new LFO<gig::VCOManipulator>(-1200.0f, 1200.0f, LFO<VCOManipulator>::propagation_middle_balanced, pVCOManipulator, pEngine->pEventPool); // +-1 octave (+-1200 cents) max.  
   
61          this->pDiskThread = pEngine->pDiskThread;          this->pDiskThread = pEngine->pDiskThread;
62          dmsg(6,("Voice::SetEngine()\n"));          dmsg(6,("Voice::SetEngine()\n"));
63      }      }
# Line 130  namespace LinuxSampler { namespace gig { Line 79  namespace LinuxSampler { namespace gig {
79      int Voice::Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::DimensionRegion* pDimRgn, type_t VoiceType, int iKeyGroup) {      int Voice::Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::DimensionRegion* pDimRgn, type_t VoiceType, int iKeyGroup) {
80          this->pEngineChannel = pEngineChannel;          this->pEngineChannel = pEngineChannel;
81          this->pDimRgn        = pDimRgn;          this->pDimRgn        = pDimRgn;
82            Orphan = false;
83    
84          #if CONFIG_DEVMODE          #if CONFIG_DEVMODE
85          if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // just a sanity check for debugging          if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // just a sanity check for debugging
# Line 149  namespace LinuxSampler { namespace gig { Line 99  namespace LinuxSampler { namespace gig {
99          // calculate volume          // calculate volume
100          const double velocityAttenuation = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);          const double velocityAttenuation = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);
101    
102          Volume = velocityAttenuation / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)          // For 16 bit samples, we downscale by 32768 to convert from
103            // int16 value range to DSP value range (which is
104            // -1.0..1.0). For 24 bit, we downscale from int32.
105            float volume = velocityAttenuation / (pSample->BitDepth == 16 ? 32768.0f : 32768.0f * 65536.0f);
106    
107          Volume *= pDimRgn->SampleAttenuation;          volume *= pDimRgn->SampleAttenuation * pEngineChannel->GlobalVolume * GLOBAL_VOLUME;
108    
109          // the volume of release triggered samples depends on note length          // the volume of release triggered samples depends on note length
110          if (Type == type_release_trigger) {          if (Type == type_release_trigger) {
# Line 159  namespace LinuxSampler { namespace gig { Line 112  namespace LinuxSampler { namespace gig {
112                                       pEngineChannel->pMIDIKeyInfo[MIDIKey].NoteOnTime) / pEngine->SampleRate;                                       pEngineChannel->pMIDIKeyInfo[MIDIKey].NoteOnTime) / pEngine->SampleRate;
113              float attenuation = 1 - 0.01053 * (256 >> pDimRgn->ReleaseTriggerDecay) * noteLength;              float attenuation = 1 - 0.01053 * (256 >> pDimRgn->ReleaseTriggerDecay) * noteLength;
114              if (attenuation <= 0) return -1;              if (attenuation <= 0) return -1;
115              Volume *= attenuation;              volume *= attenuation;
116          }          }
117    
118          // select channel mode (mono or stereo)          // select channel mode (mono or stereo)
119          SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);          SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);
120            // select bit depth (16 or 24)
121            SYNTHESIS_MODE_SET_BITDEPTH24(SynthesisMode, pSample->BitDepth == 24);
122    
123          // get starting crossfade volume level          // get starting crossfade volume level
124            float crossfadeVolume;
125          switch (pDimRgn->AttenuationController.type) {          switch (pDimRgn->AttenuationController.type) {
126              case ::gig::attenuation_ctrl_t::type_channelaftertouch:              case ::gig::attenuation_ctrl_t::type_channelaftertouch:
127                  CrossfadeVolume = 1.0f; //TODO: aftertouch not supported yet                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(pEngineChannel->ControllerTable[128])];
128                  break;                  break;
129              case ::gig::attenuation_ctrl_t::type_velocity:              case ::gig::attenuation_ctrl_t::type_velocity:
130                  CrossfadeVolume = CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity);                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity)];
131                  break;                  break;
132              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate              case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate
133                  CrossfadeVolume = CrossfadeAttenuation(pEngineChannel->ControllerTable[pDimRgn->AttenuationController.controller_number]);                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(pEngineChannel->ControllerTable[pDimRgn->AttenuationController.controller_number])];
134                  break;                  break;
135              case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined              case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined
136              default:              default:
137                  CrossfadeVolume = 1.0f;                  crossfadeVolume = 1.0f;
138          }          }
139    
140          PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;          VolumeLeft  = volume * Engine::PanCurve[64 - pDimRgn->Pan];
141          PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;          VolumeRight = volume * Engine::PanCurve[64 + pDimRgn->Pan];
142    
143            float subfragmentRate = pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE;
144            CrossfadeSmoother.trigger(crossfadeVolume, subfragmentRate);
145            VolumeSmoother.trigger(pEngineChannel->MidiVolume, subfragmentRate);
146            PanLeftSmoother.trigger(pEngineChannel->GlobalPanLeft, subfragmentRate);
147            PanRightSmoother.trigger(pEngineChannel->GlobalPanRight, subfragmentRate);
148    
149          Pos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)          finalSynthesisParameters.dPos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)
150            Pos = pDimRgn->SampleStartOffset;
151    
152          // Check if the sample needs disk streaming or is too short for that          // Check if the sample needs disk streaming or is too short for that
153          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;
154          DiskVoice          = cachedsamples < pSample->SamplesTotal;          DiskVoice          = cachedsamples < pSample->SamplesTotal;
155    
156            const DLS::sample_loop_t& loopinfo = pDimRgn->pSampleLoops[0];
157    
158          if (DiskVoice) { // voice to be streamed from disk          if (DiskVoice) { // voice to be streamed from disk
159              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)              if (cachedsamples > (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH)) {
160                    MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)
161                } else {
162                    // The cache is too small to fit a max sample buffer.
163                    // Setting MaxRAMPos to 0 will probably cause a click
164                    // in the audio, but it's better than not handling
165                    // this case at all, which would have caused the
166                    // unsigned MaxRAMPos to be set to a negative number.
167                    MaxRAMPos = 0;
168                }
169    
170              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample
171              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {              RAMLoop = (pDimRgn->SampleLoops && (loopinfo.LoopStart + loopinfo.LoopLength) <= MaxRAMPos);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
172    
173              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {              if (pDiskThread->OrderNewStream(&DiskStreamRef, pDimRgn, MaxRAMPos, !RAMLoop) < 0) {
174                  dmsg(1,("Disk stream order failed!\n"));                  dmsg(1,("Disk stream order failed!\n"));
175                  KillImmediately();                  KillImmediately();
176                  return -1;                  return -1;
# Line 209  namespace LinuxSampler { namespace gig { Line 179  namespace LinuxSampler { namespace gig {
179          }          }
180          else { // RAM only voice          else { // RAM only voice
181              MaxRAMPos = cachedsamples;              MaxRAMPos = cachedsamples;
182              if (pSample->Loops) {              RAMLoop = (pDimRgn->SampleLoops != 0);
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
183              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));              dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));
184          }          }
185            if (RAMLoop) {
186                loop.uiTotalCycles = pSample->LoopPlayCount;
187                loop.uiCyclesLeft  = pSample->LoopPlayCount;
188                loop.uiStart       = loopinfo.LoopStart;
189                loop.uiEnd         = loopinfo.LoopStart + loopinfo.LoopLength;
190                loop.uiSize        = loopinfo.LoopLength;
191            }
192    
193          // calculate initial pitch value          // calculate initial pitch value
194          {          {
195              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];              double pitchbasecents = pEngineChannel->pInstrument->FineTune + pDimRgn->FineTune + pEngine->ScaleTuning[MIDIKey % 12];
196              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;  
197              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));              // GSt behaviour: maximum transpose up is 40 semitones. If
198              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents              // MIDI key is more than 40 semitones above unity note,
199                // the transpose is not done.
200                if (pDimRgn->PitchTrack && (MIDIKey - (int) pDimRgn->UnityNote) < 40) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;
201    
202                this->PitchBase = RTMath::CentsToFreqRatioUnlimited(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->SampleRate));
203                this->PitchBendRange = 1.0 / 8192.0 * 100.0 * pEngineChannel->pInstrument->PitchbendRange;
204                this->PitchBend = RTMath::CentsToFreqRatio(PitchBend * PitchBendRange);
205          }          }
206    
207          // the length of the decay and release curves are dependent on the velocity          // the length of the decay and release curves are dependent on the velocity
# Line 238  namespace LinuxSampler { namespace gig { Line 216  namespace LinuxSampler { namespace gig {
216                      eg1controllervalue = 0;                      eg1controllervalue = 0;
217                      break;                      break;
218                  case ::gig::eg1_ctrl_t::type_channelaftertouch:                  case ::gig::eg1_ctrl_t::type_channelaftertouch:
219                      eg1controllervalue = 0; // TODO: aftertouch not yet supported                      eg1controllervalue = pEngineChannel->ControllerTable[128];
220                      break;                      break;
221                  case ::gig::eg1_ctrl_t::type_velocity:                  case ::gig::eg1_ctrl_t::type_velocity:
222                      eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;                      eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;
# Line 249  namespace LinuxSampler { namespace gig { Line 227  namespace LinuxSampler { namespace gig {
227              }              }
228              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;              if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;
229    
230              // calculate influence of EG1 controller on EG1's parameters (TODO: needs to be fine tuned)              // calculate influence of EG1 controller on EG1's parameters
231              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerAttackInfluence)  * eg1controllervalue : 0.0;              // (eg1attack is different from the others)
232              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 0.0;              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ?
233              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 0.0;                  1 + 0.031 * (double) (pDimRgn->EG1ControllerAttackInfluence == 1 ?
234                                          1 : 1 << pDimRgn->EG1ControllerAttackInfluence) * eg1controllervalue : 1.0;
235              pEG1->Trigger(pDimRgn->EG1PreAttack,              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 1.0;
236                            pDimRgn->EG1Attack + eg1attack,              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 1.0;
237                            pDimRgn->EG1Hold,  
238                            pSample->LoopStart,              EG1.trigger(pDimRgn->EG1PreAttack,
239                            (pDimRgn->EG1Decay1 + eg1decay) * velrelease,                          pDimRgn->EG1Attack * eg1attack,
240                            (pDimRgn->EG1Decay2 + eg1decay) * velrelease,                          pDimRgn->EG1Hold,
241                            pDimRgn->EG1InfiniteSustain,                          pDimRgn->EG1Decay1 * eg1decay * velrelease,
242                            pDimRgn->EG1Sustain,                          pDimRgn->EG1Decay2 * eg1decay * velrelease,
243                            (pDimRgn->EG1Release + eg1release) * velrelease,                          pDimRgn->EG1InfiniteSustain,
244                            // the SSE synthesis implementation requires                          pDimRgn->EG1Sustain,
245                            // the vca start to be 16 byte aligned                          pDimRgn->EG1Release * eg1release * velrelease,
246                            SYNTHESIS_MODE_GET_IMPLEMENTATION(SynthesisMode) ?                          velocityAttenuation,
247                            Delay & 0xfffffffc : Delay,                          pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
248                            velocityAttenuation);          }
249          }  
250    #ifdef CONFIG_INTERPOLATE_VOLUME
251            // setup initial volume in synthesis parameters
252    #ifdef CONFIG_PROCESS_MUTED_CHANNELS
253            if (pEngineChannel->GetMute()) {
254                finalSynthesisParameters.fFinalVolumeLeft  = 0;
255                finalSynthesisParameters.fFinalVolumeRight = 0;
256            }
257            else
258    #else
259            {
260                float finalVolume = pEngineChannel->MidiVolume * crossfadeVolume * EG1.getLevel();
261    
262                finalSynthesisParameters.fFinalVolumeLeft  = finalVolume * VolumeLeft  * pEngineChannel->GlobalPanLeft;
263                finalSynthesisParameters.fFinalVolumeRight = finalVolume * VolumeRight * pEngineChannel->GlobalPanRight;
264            }
265    #endif
266    #endif
267    
268          // setup EG 2 (VCF Cutoff EG)          // setup EG 2 (VCF Cutoff EG)
269          {          {
# Line 280  namespace LinuxSampler { namespace gig { Line 274  namespace LinuxSampler { namespace gig {
274                      eg2controllervalue = 0;                      eg2controllervalue = 0;
275                      break;                      break;
276                  case ::gig::eg2_ctrl_t::type_channelaftertouch:                  case ::gig::eg2_ctrl_t::type_channelaftertouch:
277                      eg2controllervalue = 0; // TODO: aftertouch not yet supported                      eg2controllervalue = pEngineChannel->ControllerTable[128];
278                      break;                      break;
279                  case ::gig::eg2_ctrl_t::type_velocity:                  case ::gig::eg2_ctrl_t::type_velocity:
280                      eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;                      eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;
# Line 291  namespace LinuxSampler { namespace gig { Line 285  namespace LinuxSampler { namespace gig {
285              }              }
286              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;              if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;
287    
288              // calculate influence of EG2 controller on EG2's parameters (TODO: needs to be fine tuned)              // calculate influence of EG2 controller on EG2's parameters
289              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 0.0;              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 1.0;
290              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 0.0;              double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 1.0;
291              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 0.0;              double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 1.0;
292    
293              pEG2->Trigger(pDimRgn->EG2PreAttack,              EG2.trigger(pDimRgn->EG2PreAttack,
294                            pDimRgn->EG2Attack + eg2attack,                          pDimRgn->EG2Attack * eg2attack,
295                            false,                          false,
296                            pSample->LoopStart,                          pDimRgn->EG2Decay1 * eg2decay * velrelease,
297                            (pDimRgn->EG2Decay1 + eg2decay) * velrelease,                          pDimRgn->EG2Decay2 * eg2decay * velrelease,
298                            (pDimRgn->EG2Decay2 + eg2decay) * velrelease,                          pDimRgn->EG2InfiniteSustain,
299                            pDimRgn->EG2InfiniteSustain,                          pDimRgn->EG2Sustain,
300                            pDimRgn->EG2Sustain,                          pDimRgn->EG2Release * eg2release * velrelease,
301                            (pDimRgn->EG2Release + eg2release) * velrelease,                          velocityAttenuation,
302                            Delay,                          pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
                           velocityAttenuation);  
303          }          }
304    
305    
306          // setup EG 3 (VCO EG)          // setup EG 3 (VCO EG)
307          {          {
308            double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);              // if portamento mode is on, we dedicate EG3 purely for portamento, otherwise if portamento is off we do as told by the patch
309            pEG3->Trigger(eg3depth, pDimRgn->EG3Attack, Delay);              bool  bPortamento = pEngineChannel->PortamentoMode && pEngineChannel->PortamentoPos >= 0.0f;
310                float eg3depth = (bPortamento)
311                                     ? RTMath::CentsToFreqRatio((pEngineChannel->PortamentoPos - (float) MIDIKey) * 100)
312                                     : RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);
313                float eg3time = (bPortamento)
314                                    ? pEngineChannel->PortamentoTime
315                                    : pDimRgn->EG3Attack;
316                EG3.trigger(eg3depth, eg3time, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
317                dmsg(5,("PortamentoPos=%f, depth=%f, time=%f\n", pEngineChannel->PortamentoPos, eg3depth, eg3time));
318          }          }
319    
320    
# Line 351  namespace LinuxSampler { namespace gig { Line 352  namespace LinuxSampler { namespace gig {
352                      pLFO1->ExtController = 0; // no external controller                      pLFO1->ExtController = 0; // no external controller
353                      bLFO1Enabled         = false;                      bLFO1Enabled         = false;
354              }              }
355              if (bLFO1Enabled) pLFO1->Trigger(pDimRgn->LFO1Frequency,              if (bLFO1Enabled) {
356                                               lfo1_internal_depth,                  pLFO1->trigger(pDimRgn->LFO1Frequency,
357                                               pDimRgn->LFO1ControlDepth,                                 start_level_min,
358                                               pEngineChannel->ControllerTable[pLFO1->ExtController],                                 lfo1_internal_depth,
359                                               pDimRgn->LFO1FlipPhase,                                 pDimRgn->LFO1ControlDepth,
360                                               pEngine->SampleRate,                                 pDimRgn->LFO1FlipPhase,
361                                               Delay);                                 pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
362                    pLFO1->update(pLFO1->ExtController ? pEngineChannel->ControllerTable[pLFO1->ExtController] : 0);
363                }
364          }          }
365    
366    
# Line 395  namespace LinuxSampler { namespace gig { Line 398  namespace LinuxSampler { namespace gig {
398                      pLFO2->ExtController = 0; // no external controller                      pLFO2->ExtController = 0; // no external controller
399                      bLFO2Enabled         = false;                      bLFO2Enabled         = false;
400              }              }
401              if (bLFO2Enabled) pLFO2->Trigger(pDimRgn->LFO2Frequency,              if (bLFO2Enabled) {
402                                               lfo2_internal_depth,                  pLFO2->trigger(pDimRgn->LFO2Frequency,
403                                               pDimRgn->LFO2ControlDepth,                                 start_level_max,
404                                               pEngineChannel->ControllerTable[pLFO2->ExtController],                                 lfo2_internal_depth,
405                                               pDimRgn->LFO2FlipPhase,                                 pDimRgn->LFO2ControlDepth,
406                                               pEngine->SampleRate,                                 pDimRgn->LFO2FlipPhase,
407                                               Delay);                                 pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
408                    pLFO2->update(pLFO2->ExtController ? pEngineChannel->ControllerTable[pLFO2->ExtController] : 0);
409                }
410          }          }
411    
412    
# Line 421  namespace LinuxSampler { namespace gig { Line 426  namespace LinuxSampler { namespace gig {
426                      break;                      break;
427                  case ::gig::lfo3_ctrl_aftertouch:                  case ::gig::lfo3_ctrl_aftertouch:
428                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
429                      pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO3->ExtController = 128;
430                      bLFO3Enabled         = false; // see TODO comment in line above                      bLFO3Enabled         = true;
431                      break;                      break;
432                  case ::gig::lfo3_ctrl_internal_modwheel:                  case ::gig::lfo3_ctrl_internal_modwheel:
433                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
# Line 431  namespace LinuxSampler { namespace gig { Line 436  namespace LinuxSampler { namespace gig {
436                      break;                      break;
437                  case ::gig::lfo3_ctrl_internal_aftertouch:                  case ::gig::lfo3_ctrl_internal_aftertouch:
438                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;                      lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;
439                      pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet                      pLFO1->ExtController = 128;
440                      bLFO3Enabled         = (lfo3_internal_depth > 0 /*|| pDimRgn->LFO3ControlDepth > 0*/); // see TODO comment in line above                      bLFO3Enabled         = (lfo3_internal_depth > 0 || pDimRgn->LFO3ControlDepth > 0);
441                      break;                      break;
442                  default:                  default:
443                      lfo3_internal_depth  = 0;                      lfo3_internal_depth  = 0;
444                      pLFO3->ExtController = 0; // no external controller                      pLFO3->ExtController = 0; // no external controller
445                      bLFO3Enabled         = false;                      bLFO3Enabled         = false;
446              }              }
447              if (bLFO3Enabled) pLFO3->Trigger(pDimRgn->LFO3Frequency,              if (bLFO3Enabled) {
448                                               lfo3_internal_depth,                  pLFO3->trigger(pDimRgn->LFO3Frequency,
449                                               pDimRgn->LFO3ControlDepth,                                 start_level_mid,
450                                               pEngineChannel->ControllerTable[pLFO3->ExtController],                                 lfo3_internal_depth,
451                                               false,                                 pDimRgn->LFO3ControlDepth,
452                                               pEngine->SampleRate,                                 false,
453                                               Delay);                                 pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
454                    pLFO3->update(pLFO3->ExtController ? pEngineChannel->ControllerTable[pLFO3->ExtController] : 0);
455                }
456          }          }
457    
458    
# Line 487  namespace LinuxSampler { namespace gig { Line 494  namespace LinuxSampler { namespace gig {
494                  case ::gig::vcf_cutoff_ctrl_genpurpose8:                  case ::gig::vcf_cutoff_ctrl_genpurpose8:
495                      VCFCutoffCtrl.controller = 83;                      VCFCutoffCtrl.controller = 83;
496                      break;                      break;
497                  case ::gig::vcf_cutoff_ctrl_aftertouch: //TODO: not implemented yet                  case ::gig::vcf_cutoff_ctrl_aftertouch:
498                        VCFCutoffCtrl.controller = 128;
499                        break;
500                  case ::gig::vcf_cutoff_ctrl_none:                  case ::gig::vcf_cutoff_ctrl_none:
501                  default:                  default:
502                      VCFCutoffCtrl.controller = 0;                      VCFCutoffCtrl.controller = 0;
# Line 518  namespace LinuxSampler { namespace gig { Line 527  namespace LinuxSampler { namespace gig {
527              #endif // CONFIG_OVERRIDE_RESONANCE_CTRL              #endif // CONFIG_OVERRIDE_RESONANCE_CTRL
528    
529              #ifndef CONFIG_OVERRIDE_FILTER_TYPE              #ifndef CONFIG_OVERRIDE_FILTER_TYPE
530              FilterLeft.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterLeft.SetType(pDimRgn->VCFType);
531              FilterRight.SetType(pDimRgn->VCFType);              finalSynthesisParameters.filterRight.SetType(pDimRgn->VCFType);
532              #else // override filter type              #else // override filter type
533              FilterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);              finalSynthesisParameters.filterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
534              FilterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);              finalSynthesisParameters.filterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);
535              #endif // CONFIG_OVERRIDE_FILTER_TYPE              #endif // CONFIG_OVERRIDE_FILTER_TYPE
536    
537              VCFCutoffCtrl.value    = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];              VCFCutoffCtrl.value    = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
538              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];              VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];
539    
540              // calculate cutoff frequency              // calculate cutoff frequency
541              float cutoff = (!VCFCutoffCtrl.controller)              float cutoff = pDimRgn->GetVelocityCutoff(itNoteOnEvent->Param.Note.Velocity);
                 ? exp((float) (127 - itNoteOnEvent->Param.Note.Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MAX  
                 : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MAX;  
   
             // calculate resonance  
             float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0  
542              if (pDimRgn->VCFKeyboardTracking) {              if (pDimRgn->VCFKeyboardTracking) {
543                  resonance += (float) (itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;                  cutoff *= exp((itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.057762265f); // (ln(2) / 12)
544              }              }
545              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)              CutoffBase = cutoff;
546    
547              VCFCutoffCtrl.fvalue    = cutoff - CONFIG_FILTER_CUTOFF_MIN;              int cvalue;
548              VCFResonanceCtrl.fvalue = resonance;              if (VCFCutoffCtrl.controller) {
549                    cvalue = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];
550                    if (pDimRgn->VCFCutoffControllerInvert) cvalue = 127 - cvalue;
551                    // VCFVelocityScale in this case means Minimum cutoff
552                    if (cvalue < pDimRgn->VCFVelocityScale) cvalue = pDimRgn->VCFVelocityScale;
553                }
554                else {
555                    cvalue = pDimRgn->VCFCutoff;
556                }
557                cutoff *= float(cvalue);
558                if (cutoff > 127.0f) cutoff = 127.0f;
559    
560                // calculate resonance
561                float resonance = (float) (VCFResonanceCtrl.controller ? VCFResonanceCtrl.value : pDimRgn->VCFResonance);
562    
563              FilterUpdateCounter = -1;              VCFCutoffCtrl.fvalue    = cutoff;
564                VCFResonanceCtrl.fvalue = resonance;
565          }          }
566          else {          else {
567              VCFCutoffCtrl.controller    = 0;              VCFCutoffCtrl.controller    = 0;
# Line 567  namespace LinuxSampler { namespace gig { Line 585  namespace LinuxSampler { namespace gig {
585      void Voice::Render(uint Samples) {      void Voice::Render(uint Samples) {
586    
587          // select default values for synthesis mode bits          // select default values for synthesis mode bits
         SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, (PitchBase * PitchBend) != 1.0f);  
         SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, true);  
588          SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);          SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);
589    
         // Reset the synthesis parameter matrix  
   
         pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * pEngineChannel->GlobalVolume);  
         pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);  
   
         // Apply events to the synthesis parameter matrix  
         ProcessEvents(Samples);  
   
         // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment  
         pEG1->Process(Samples, pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend, itKillEvent);  
         pEG2->Process(Samples, pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);  
         if (pEG3->Process(Samples)) { // if pitch EG is active  
             SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);  
             SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);  
         }  
         if (bLFO1Enabled) pLFO1->Process(Samples);  
         if (bLFO2Enabled) pLFO2->Process(Samples);  
         if (bLFO3Enabled) {  
             if (pLFO3->Process(Samples)) { // if pitch LFO modulation is active  
                 SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);  
                 SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);  
             }  
         }  
   
         if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode))  
             CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters  
   
590          switch (this->PlaybackState) {          switch (this->PlaybackState) {
591    
592              case playback_state_init:              case playback_state_init:
# Line 614  namespace LinuxSampler { namespace gig { Line 601  namespace LinuxSampler { namespace gig {
601    
602                      if (DiskVoice) {                      if (DiskVoice) {
603                          // check if we reached the allowed limit of the sample RAM cache                          // check if we reached the allowed limit of the sample RAM cache
604                          if (Pos > MaxRAMPos) {                          if (finalSynthesisParameters.dPos > MaxRAMPos) {
605                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", Pos));                              dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", finalSynthesisParameters.dPos));
606                              this->PlaybackState = playback_state_disk;                              this->PlaybackState = playback_state_disk;
607                          }                          }
608                      }                      } else if (finalSynthesisParameters.dPos >= pSample->GetCache().Size / pSample->FrameSize) {
                     else if (Pos >= pSample->GetCache().Size / pSample->FrameSize) {  
609                          this->PlaybackState = playback_state_end;                          this->PlaybackState = playback_state_end;
610                      }                      }
611                  }                  }
# Line 634  namespace LinuxSampler { namespace gig { Line 620  namespace LinuxSampler { namespace gig {
620                              KillImmediately();                              KillImmediately();
621                              return;                              return;
622                          }                          }
623                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(Pos) - MaxRAMPos));                          DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(finalSynthesisParameters.dPos) - MaxRAMPos));
624                          Pos -= int(Pos);                          finalSynthesisParameters.dPos -= int(finalSynthesisParameters.dPos);
625                          RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet                          RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet
626                      }                      }
627    
# Line 651  namespace LinuxSampler { namespace gig { Line 637  namespace LinuxSampler { namespace gig {
637                          }                          }
638                      }                      }
639    
640                      sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from                      sample_t* ptr = (sample_t*)DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from
641    
642                      // render current audio fragment                      // render current audio fragment
643                      Synthesize(Samples, ptr, Delay);                      Synthesize(Samples, ptr, Delay);
644    
645                      const int iPos = (int) Pos;                      const int iPos = (int) finalSynthesisParameters.dPos;
646                      const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read                      const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read
647                      DiskStreamRef.pStream->IncrementReadPos(readSampleWords);                      DiskStreamRef.pStream->IncrementReadPos(readSampleWords);
648                      Pos -= iPos; // just keep fractional part of Pos                      finalSynthesisParameters.dPos -= iPos; // just keep fractional part of playback position
649    
650                      // change state of voice to 'end' if we really reached the end of the sample data                      // change state of voice to 'end' if we really reached the end of the sample data
651                      if (RealSampleWordsLeftToRead >= 0) {                      if (RealSampleWordsLeftToRead >= 0) {
# Line 674  namespace LinuxSampler { namespace gig { Line 660  namespace LinuxSampler { namespace gig {
660                  break;                  break;
661          }          }
662    
         // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)  
         pEngineChannel->pSynthesisEvents[Event::destination_vca]->clear();  
         pEngineChannel->pSynthesisEvents[Event::destination_vcfc]->clear();  
         pEngineChannel->pSynthesisEvents[Event::destination_vcfr]->clear();  
   
663          // Reset delay          // Reset delay
664          Delay = 0;          Delay = 0;
665    
666          itTriggerEvent = Pool<Event>::Iterator();          itTriggerEvent = Pool<Event>::Iterator();
667    
668          // If sample stream or release stage finished, kill the voice          // If sample stream or release stage finished, kill the voice
669          if (PlaybackState == playback_state_end || pEG1->GetStage() == EGADSR::stage_end) KillImmediately();          if (PlaybackState == playback_state_end || EG1.getSegmentType() == EGADSR::segment_end) KillImmediately();
670      }      }
671    
672      /**      /**
# Line 693  namespace LinuxSampler { namespace gig { Line 674  namespace LinuxSampler { namespace gig {
674       *  suspended / not running.       *  suspended / not running.
675       */       */
676      void Voice::Reset() {      void Voice::Reset() {
677          pLFO1->Reset();          finalSynthesisParameters.filterLeft.Reset();
678          pLFO2->Reset();          finalSynthesisParameters.filterRight.Reset();
         pLFO3->Reset();  
         FilterLeft.Reset();  
         FilterRight.Reset();  
679          DiskStreamRef.pStream = NULL;          DiskStreamRef.pStream = NULL;
680          DiskStreamRef.hStream = 0;          DiskStreamRef.hStream = 0;
681          DiskStreamRef.State   = Stream::state_unused;          DiskStreamRef.State   = Stream::state_unused;
# Line 708  namespace LinuxSampler { namespace gig { Line 686  namespace LinuxSampler { namespace gig {
686      }      }
687    
688      /**      /**
689       *  Process the control change event lists of the engine for the current       * Process given list of MIDI note on, note off and sustain pedal events
690       *  audio fragment. Event values will be applied to the synthesis parameter       * for the given time.
      *  matrix.  
691       *       *
692       *  @param Samples - number of samples to be rendered in this audio fragment cycle       * @param itEvent - iterator pointing to the next event to be processed
693         * @param End     - youngest time stamp where processing should be stopped
694       */       */
695      void Voice::ProcessEvents(uint Samples) {      void Voice::processTransitionEvents(RTList<Event>::Iterator& itEvent, uint End) {
696            for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
697          // dispatch control change events              if (itEvent->Type == Event::type_release) {
698          RTList<Event>::Iterator itCCEvent = pEngineChannel->pCCEvents->first();                  EG1.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
699          if (Delay) { // skip events that happened before this voice was triggered                  EG2.update(EGADSR::event_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
700              while (itCCEvent && itCCEvent->FragmentPos() <= Delay) ++itCCEvent;              } else if (itEvent->Type == Event::type_cancel_release) {
701                    EG1.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
702                    EG2.update(EGADSR::event_cancel_release, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
703                }
704          }          }
705          while (itCCEvent) {      }
706              if (itCCEvent->Param.CC.Controller) { // if valid MIDI controller  
707                  if (itCCEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {      /**
708                      *pEngineChannel->pSynthesisEvents[Event::destination_vcfc]->allocAppend() = *itCCEvent;       * Process given list of MIDI control change and pitch bend events for
709                  }       * the given time.
710                  if (itCCEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {       *
711                      *pEngineChannel->pSynthesisEvents[Event::destination_vcfr]->allocAppend() = *itCCEvent;       * @param itEvent - iterator pointing to the next event to be processed
712         * @param End     - youngest time stamp where processing should be stopped
713         */
714        void Voice::processCCEvents(RTList<Event>::Iterator& itEvent, uint End) {
715            for (; itEvent && itEvent->FragmentPos() <= End; ++itEvent) {
716                if (itEvent->Type == Event::type_control_change &&
717                    itEvent->Param.CC.Controller) { // if (valid) MIDI control change event
718                    if (itEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {
719                        processCutoffEvent(itEvent);
720                    }
721                    if (itEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {
722                        processResonanceEvent(itEvent);
723                  }                  }
724                  if (itCCEvent->Param.CC.Controller == pLFO1->ExtController) {                  if (itEvent->Param.CC.Controller == pLFO1->ExtController) {
725                      pLFO1->SendEvent(itCCEvent);                      pLFO1->update(itEvent->Param.CC.Value);
726                  }                  }
727                  if (itCCEvent->Param.CC.Controller == pLFO2->ExtController) {                  if (itEvent->Param.CC.Controller == pLFO2->ExtController) {
728                      pLFO2->SendEvent(itCCEvent);                      pLFO2->update(itEvent->Param.CC.Value);
729                  }                  }
730                  if (itCCEvent->Param.CC.Controller == pLFO3->ExtController) {                  if (itEvent->Param.CC.Controller == pLFO3->ExtController) {
731                      pLFO3->SendEvent(itCCEvent);                      pLFO3->update(itEvent->Param.CC.Value);
732                  }                  }
733                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&                  if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
734                      itCCEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) { // if crossfade event                      itEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) {
735                      *pEngineChannel->pSynthesisEvents[Event::destination_vca]->allocAppend() = *itCCEvent;                      CrossfadeSmoother.update(Engine::CrossfadeCurve[CrossfadeAttenuation(itEvent->Param.CC.Value)]);
736                  }                  }
737                    if (itEvent->Param.CC.Controller == 7) { // volume
738                        VolumeSmoother.update(Engine::VolumeCurve[itEvent->Param.CC.Value]);
739                    } else if (itEvent->Param.CC.Controller == 10) { // panpot
740                        PanLeftSmoother.update(Engine::PanCurve[128 - itEvent->Param.CC.Value]);
741                        PanRightSmoother.update(Engine::PanCurve[itEvent->Param.CC.Value]);
742                    }
743                } else if (itEvent->Type == Event::type_pitchbend) { // if pitch bend event
744                    processPitchEvent(itEvent);
745              }              }
   
             ++itCCEvent;  
746          }          }
747        }
748    
749        void Voice::processPitchEvent(RTList<Event>::Iterator& itEvent) {
750            PitchBend = RTMath::CentsToFreqRatio(itEvent->Param.Pitch.Pitch * PitchBendRange);
751        }
752    
753          // process pitch events      void Voice::processCutoffEvent(RTList<Event>::Iterator& itEvent) {
754          {          int ccvalue = itEvent->Param.CC.Value;
755              RTList<Event>* pVCOEventList = pEngineChannel->pSynthesisEvents[Event::destination_vco];          if (VCFCutoffCtrl.value == ccvalue) return;
756              RTList<Event>::Iterator itVCOEvent = pVCOEventList->first();          VCFCutoffCtrl.value == ccvalue;
757              if (Delay) { // skip events that happened before this voice was triggered          if (pDimRgn->VCFCutoffControllerInvert)  ccvalue = 127 - ccvalue;
758                  while (itVCOEvent && itVCOEvent->FragmentPos() <= Delay) ++itVCOEvent;          if (ccvalue < pDimRgn->VCFVelocityScale) ccvalue = pDimRgn->VCFVelocityScale;
759              }          float cutoff = CutoffBase * float(ccvalue);
760              // apply old pitchbend value until first pitch event occurs          if (cutoff > 127.0f) cutoff = 127.0f;
             if (this->PitchBend != 1.0) {  
                 uint end = (itVCOEvent) ? itVCOEvent->FragmentPos() : Samples;  
                 for (uint i = Delay; i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;  
                 }  
             }  
             float pitch;  
             while (itVCOEvent) {  
                 RTList<Event>::Iterator itNextVCOEvent = itVCOEvent;  
                 ++itNextVCOEvent;  
761    
762                  // calculate the influence length of this event (in sample points)          VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of fFinalCutoff next time
763                  uint end = (itNextVCOEvent) ? itNextVCOEvent->FragmentPos() : Samples;          fFinalCutoff = cutoff;
764        }
765    
766                  pitch = RTMath::CentsToFreqRatio(((double) itVCOEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents      void Voice::processResonanceEvent(RTList<Event>::Iterator& itEvent) {
767            // convert absolute controller value to differential
768            const int ctrldelta = itEvent->Param.CC.Value - VCFResonanceCtrl.value;
769            VCFResonanceCtrl.value = itEvent->Param.CC.Value;
770            const float resonancedelta = (float) ctrldelta;
771            fFinalResonance += resonancedelta;
772            // needed for initialization of parameter
773            VCFResonanceCtrl.fvalue = itEvent->Param.CC.Value;
774        }
775    
776                  // apply pitch value to the pitch parameter sequence      /**
777                  for (uint i = itVCOEvent->FragmentPos(); i < end; i++) {       *  Synthesizes the current audio fragment for this voice.
778                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;       *
779                  }       *  @param Samples - number of sample points to be rendered in this audio
780         *                   fragment cycle
781         *  @param pSrc    - pointer to input sample data
782         *  @param Skip    - number of sample points to skip in output buffer
783         */
784        void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {
785            finalSynthesisParameters.pOutLeft  = &pEngineChannel->pChannelLeft->Buffer()[Skip];
786            finalSynthesisParameters.pOutRight = &pEngineChannel->pChannelRight->Buffer()[Skip];
787            finalSynthesisParameters.pSrc      = pSrc;
788    
789                  itVCOEvent = itNextVCOEvent;          RTList<Event>::Iterator itCCEvent = pEngineChannel->pEvents->first();
790              }          RTList<Event>::Iterator itNoteEvent = pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents->first();
791              if (!pVCOEventList->isEmpty()) {  
792                  this->PitchBend = pitch;          if (itTriggerEvent) { // skip events that happened before this voice was triggered
793                  SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);              while (itCCEvent && itCCEvent->FragmentPos() <= Skip) ++itCCEvent;
794                  SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);              // we can't simply compare the timestamp here, because note events
795                // might happen on the same time stamp, so we have to deal on the
796                // actual sequence the note events arrived instead (see bug #112)
797                for (; itNoteEvent; ++itNoteEvent) {
798                    if (itTriggerEvent == itNoteEvent) {
799                        ++itNoteEvent;
800                        break;
801                    }
802              }              }
803          }          }
804    
805          // process volume / attenuation events (TODO: we only handle and _expect_ crossfade events here ATM !)          uint killPos;
806          {          if (itKillEvent) {
807              RTList<Event>* pVCAEventList = pEngineChannel->pSynthesisEvents[Event::destination_vca];              int maxFadeOutPos = Samples - pEngine->MinFadeOutSamples;
808              RTList<Event>::Iterator itVCAEvent = pVCAEventList->first();              if (maxFadeOutPos < 0) {
809              if (Delay) { // skip events that happened before this voice was triggered                  // There's not enough space in buffer to do a fade out
810                  while (itVCAEvent && itVCAEvent->FragmentPos() <= Delay) ++itVCAEvent;                  // from max volume (this can only happen for audio
811                    // drivers that use Samples < MaxSamplesPerCycle).
812                    // End the EG1 here, at pos 0, with a shorter max fade
813                    // out time.
814                    EG1.enterFadeOutStage(Samples / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
815                    itKillEvent = Pool<Event>::Iterator();
816                } else {
817                    killPos = RTMath::Min(itKillEvent->FragmentPos(), maxFadeOutPos);
818              }              }
819              float crossfadevolume;          }
             while (itVCAEvent) {  
                 RTList<Event>::Iterator itNextVCAEvent = itVCAEvent;  
                 ++itNextVCAEvent;  
820    
821                  // calculate the influence length of this event (in sample points)          uint i = Skip;
822                  uint end = (itNextVCAEvent) ? itNextVCAEvent->FragmentPos() : Samples;          while (i < Samples) {
823                int iSubFragmentEnd = RTMath::Min(i + CONFIG_DEFAULT_SUBFRAGMENT_SIZE, Samples);
824    
825                  crossfadevolume = CrossfadeAttenuation(itVCAEvent->Param.CC.Value);              // initialize all final synthesis parameters
826                fFinalCutoff    = VCFCutoffCtrl.fvalue;
827                fFinalResonance = VCFResonanceCtrl.fvalue;
828    
829                  float effective_volume = crossfadevolume * this->Volume * pEngineChannel->GlobalVolume;              // process MIDI control change and pitchbend events for this subfragment
830                processCCEvents(itCCEvent, iSubFragmentEnd);
831    
832                  // apply volume value to the volume parameter sequence              finalSynthesisParameters.fFinalPitch = PitchBase * PitchBend;
833                  for (uint i = itVCAEvent->FragmentPos(); i < end; i++) {              float fFinalVolume = VolumeSmoother.render() * CrossfadeSmoother.render();
834                      pEngine->pSynthesisParameters[Event::destination_vca][i] = effective_volume;  #ifdef CONFIG_PROCESS_MUTED_CHANNELS
835                  }              if (pEngineChannel->GetMute()) fFinalVolume = 0;
836    #endif
837    
838                  itVCAEvent = itNextVCAEvent;              // process transition events (note on, note off & sustain pedal)
839              }              processTransitionEvents(itNoteEvent, iSubFragmentEnd);
             if (!pVCAEventList->isEmpty()) this->CrossfadeVolume = crossfadevolume;  
         }  
840    
841          // process filter cutoff events              // if the voice was killed in this subfragment, or if the
842          {              // filter EG is finished, switch EG1 to fade out stage
843              RTList<Event>* pCutoffEventList = pEngineChannel->pSynthesisEvents[Event::destination_vcfc];              if ((itKillEvent && killPos <= iSubFragmentEnd) ||
844              RTList<Event>::Iterator itCutoffEvent = pCutoffEventList->first();                  (SYNTHESIS_MODE_GET_FILTER(SynthesisMode) &&
845              if (Delay) { // skip events that happened before this voice was triggered                   EG2.getSegmentType() == EGADSR::segment_end)) {
846                  while (itCutoffEvent && itCutoffEvent->FragmentPos() <= Delay) ++itCutoffEvent;                  EG1.enterFadeOutStage();
847                    itKillEvent = Pool<Event>::Iterator();
848              }              }
             float cutoff;  
             while (itCutoffEvent) {  
                 RTList<Event>::Iterator itNextCutoffEvent = itCutoffEvent;  
                 ++itNextCutoffEvent;  
849    
850                  // calculate the influence length of this event (in sample points)              // process envelope generators
851                  uint end = (itNextCutoffEvent) ? itNextCutoffEvent->FragmentPos() : Samples;              switch (EG1.getSegmentType()) {
852                    case EGADSR::segment_lin:
853                        fFinalVolume *= EG1.processLin();
854                        break;
855                    case EGADSR::segment_exp:
856                        fFinalVolume *= EG1.processExp();
857                        break;
858                    case EGADSR::segment_end:
859                        fFinalVolume *= EG1.getLevel();
860                        break; // noop
861                }
862                switch (EG2.getSegmentType()) {
863                    case EGADSR::segment_lin:
864                        fFinalCutoff *= EG2.processLin();
865                        break;
866                    case EGADSR::segment_exp:
867                        fFinalCutoff *= EG2.processExp();
868                        break;
869                    case EGADSR::segment_end:
870                        fFinalCutoff *= EG2.getLevel();
871                        break; // noop
872                }
873                if (EG3.active()) finalSynthesisParameters.fFinalPitch *= EG3.render();
874    
875                  cutoff = exp((float) itCutoffEvent->Param.CC.Value * 0.00787402f * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MAX - CONFIG_FILTER_CUTOFF_MIN;              // process low frequency oscillators
876                if (bLFO1Enabled) fFinalVolume *= (1.0f - pLFO1->render());
877                if (bLFO2Enabled) fFinalCutoff *= pLFO2->render();
878                if (bLFO3Enabled) finalSynthesisParameters.fFinalPitch *= RTMath::CentsToFreqRatio(pLFO3->render());
879    
880                  // apply cutoff frequency to the cutoff parameter sequence              // limit the pitch so we don't read outside the buffer
881                  for (uint i = itCutoffEvent->FragmentPos(); i < end; i++) {              finalSynthesisParameters.fFinalPitch = RTMath::Min(finalSynthesisParameters.fFinalPitch, float(1 << CONFIG_MAX_PITCH));
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;  
                 }  
882    
883                  itCutoffEvent = itNextCutoffEvent;              // if filter enabled then update filter coefficients
884                if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode)) {
885                    finalSynthesisParameters.filterLeft.SetParameters(fFinalCutoff, fFinalResonance, pEngine->SampleRate);
886                    finalSynthesisParameters.filterRight.SetParameters(fFinalCutoff, fFinalResonance, pEngine->SampleRate);
887              }              }
             if (!pCutoffEventList->isEmpty()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time  
         }  
888    
889          // process filter resonance events              // do we need resampling?
890          {              const float __PLUS_ONE_CENT  = 1.000577789506554859250142541782224725466f;
891              RTList<Event>* pResonanceEventList = pEngineChannel->pSynthesisEvents[Event::destination_vcfr];              const float __MINUS_ONE_CENT = 0.9994225441413807496009516495583113737666f;
892              RTList<Event>::Iterator itResonanceEvent = pResonanceEventList->first();              const bool bResamplingRequired = !(finalSynthesisParameters.fFinalPitch <= __PLUS_ONE_CENT &&
893              if (Delay) { // skip events that happened before this voice was triggered                                                 finalSynthesisParameters.fFinalPitch >= __MINUS_ONE_CENT);
894                  while (itResonanceEvent && itResonanceEvent->FragmentPos() <= Delay) ++itResonanceEvent;              SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, bResamplingRequired);
895              }  
896              while (itResonanceEvent) {              // prepare final synthesis parameters structure
897                  RTList<Event>::Iterator itNextResonanceEvent = itResonanceEvent;              finalSynthesisParameters.uiToGo            = iSubFragmentEnd - i;
898                  ++itNextResonanceEvent;  #ifdef CONFIG_INTERPOLATE_VOLUME
899                finalSynthesisParameters.fFinalVolumeDeltaLeft  =
900                    (fFinalVolume * VolumeLeft  * PanLeftSmoother.render() -
901                     finalSynthesisParameters.fFinalVolumeLeft) / finalSynthesisParameters.uiToGo;
902                finalSynthesisParameters.fFinalVolumeDeltaRight =
903                    (fFinalVolume * VolumeRight * PanRightSmoother.render() -
904                     finalSynthesisParameters.fFinalVolumeRight) / finalSynthesisParameters.uiToGo;
905    #else
906                finalSynthesisParameters.fFinalVolumeLeft  =
907                    fFinalVolume * VolumeLeft  * PanLeftSmoother.render();
908                finalSynthesisParameters.fFinalVolumeRight =
909                    fFinalVolume * VolumeRight * PanRightSmoother.render();
910    #endif
911                // render audio for one subfragment
912                RunSynthesisFunction(SynthesisMode, &finalSynthesisParameters, &loop);
913    
914                  // calculate the influence length of this event (in sample points)              // stop the rendering if volume EG is finished
915                  uint end = (itNextResonanceEvent) ? itNextResonanceEvent->FragmentPos() : Samples;              if (EG1.getSegmentType() == EGADSR::segment_end) break;
916    
917                  // convert absolute controller value to differential              const double newPos = Pos + (iSubFragmentEnd - i) * finalSynthesisParameters.fFinalPitch;
                 int ctrldelta = itResonanceEvent->Param.CC.Value - VCFResonanceCtrl.value;  
                 VCFResonanceCtrl.value = itResonanceEvent->Param.CC.Value;  
918    
919                  float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0              // increment envelopes' positions
920                if (EG1.active()) {
921    
922                  // apply cutoff frequency to the cutoff parameter sequence                  // if sample has a loop and loop start has been reached in this subfragment, send a special event to EG1 to let it finish the attack hold stage
923                  for (uint i = itResonanceEvent->FragmentPos(); i < end; i++) {                  if (pDimRgn->SampleLoops && Pos <= pDimRgn->pSampleLoops[0].LoopStart && pDimRgn->pSampleLoops[0].LoopStart < newPos) {
924                      pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;                      EG1.update(EGADSR::event_hold_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
925                  }                  }
926    
927                  itResonanceEvent = itNextResonanceEvent;                  EG1.increment(1);
928                    if (!EG1.toStageEndLeft()) EG1.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
929              }              }
930              if (!pResonanceEventList->isEmpty()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Param.CC.Value * 0.00787f; // needed for initialization of parameter matrix next time              if (EG2.active()) {
931          }                  EG2.increment(1);
932      }                  if (!EG2.toStageEndLeft()) EG2.update(EGADSR::event_stage_end, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
   
     /**  
      * Calculate all necessary, final biquad filter parameters.  
      *  
      * @param Samples - number of samples to be rendered in this audio fragment cycle  
      */  
     void Voice::CalculateBiquadParameters(uint Samples) {  
         biquad_param_t bqbase;  
         biquad_param_t bqmain;  
         float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];  
         float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];  
         FilterLeft.SetParameters( &bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
         FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
         pEngine->pBasicFilterParameters[0] = bqbase;  
         pEngine->pMainFilterParameters[0]  = bqmain;  
   
         float* bq;  
         for (int i = 1; i < Samples; i++) {  
             // recalculate biquad parameters if cutoff or resonance differ from previous sample point  
             if (!(i & FILTER_UPDATE_MASK)) {  
                 if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||  
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff)  
                 {  
                     prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];  
                     prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];  
                     FilterLeft.SetParameters( &bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
                     FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);  
                 }  
933              }              }
934                EG3.increment(1);
935                if (!EG3.toEndLeft()) EG3.update(); // neutralize envelope coefficient if end reached
936    
937              //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'              Pos = newPos;
938              bq    = (float*) &pEngine->pBasicFilterParameters[i];              i = iSubFragmentEnd;
             bq[0] = bqbase.b0;  
             bq[1] = bqbase.b1;  
             bq[2] = bqbase.b2;  
             bq[3] = bqbase.a1;  
             bq[4] = bqbase.a2;  
   
             // same as 'pEngine->pMainFilterParameters[i] = bqmain;'  
             bq    = (float*) &pEngine->pMainFilterParameters[i];  
             bq[0] = bqmain.b0;  
             bq[1] = bqmain.b1;  
             bq[2] = bqmain.b2;  
             bq[3] = bqmain.a1;  
             bq[4] = bqmain.a2;  
939          }          }
940      }      }
941    
942      /**      /** @brief Update current portamento position.
      *  Synthesizes the current audio fragment for this voice.  
943       *       *
944       *  @param Samples - number of sample points to be rendered in this audio       * Will be called when portamento mode is enabled to get the final
945       *                   fragment cycle       * portamento position of this active voice from where the next voice(s)
946       *  @param pSrc    - pointer to input sample data       * might continue to slide on.
947       *  @param Skip    - number of sample points to skip in output buffer       *
948         * @param itNoteOffEvent - event which causes this voice to die soon
949       */       */
950      void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {      void Voice::UpdatePortamentoPos(Pool<Event>::Iterator& itNoteOffEvent) {
951          RunSynthesisFunction(SynthesisMode, *this, Samples, pSrc, Skip);          const float fFinalEG3Level = EG3.level(itNoteOffEvent->FragmentPos());
952            pEngineChannel->PortamentoPos = (float) MIDIKey + RTMath::FreqRatioToCents(fFinalEG3Level) * 0.01f;
953      }      }
954    
955      /**      /**
# Line 938  namespace LinuxSampler { namespace gig { Line 958  namespace LinuxSampler { namespace gig {
958       *  fading down the volume level to avoid clicks and regular processing       *  fading down the volume level to avoid clicks and regular processing
959       *  until the kill event actually occured!       *  until the kill event actually occured!
960       *       *
961       *  @see Kill()       * If it's necessary to know when the voice's disk stream was actually
962         * deleted, then one can set the optional @a bRequestNotification
963         * parameter and this method will then return the handle of the disk
964         * stream (unique identifier) and one can use this handle to poll the
965         * disk thread if this stream has been deleted. In any case this method
966         * will return immediately and will not block until the stream actually
967         * was deleted.
968         *
969         * @param bRequestNotification - (optional) whether the disk thread shall
970         *                                provide a notification once it deleted
971         *                               the respective disk stream
972         *                               (default=false)
973         * @returns handle to the voice's disk stream or @c Stream::INVALID_HANDLE
974         *          if the voice did not use a disk stream at all
975         * @see Kill()
976       */       */
977      void Voice::KillImmediately() {      Stream::Handle Voice::KillImmediately(bool bRequestNotification) {
978            Stream::Handle hStream = Stream::INVALID_HANDLE;
979          if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {          if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {
980              pDiskThread->OrderDeletionOfStream(&DiskStreamRef);              pDiskThread->OrderDeletionOfStream(&DiskStreamRef, bRequestNotification);
981                hStream = DiskStreamRef.hStream;
982          }          }
983          Reset();          Reset();
984            return hStream;
985      }      }
986    
987      /**      /**

Legend:
Removed from v.687  
changed lines
  Added in v.1923

  ViewVC Help
Powered by ViewVC