/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 233 by schoenebeck, Tue Sep 7 09:32:21 2004 UTC revision 3655 by schoenebeck, Fri Dec 13 17:14:48 2019 UTC
# Line 3  Line 3 
3   *   LinuxSampler - modular, streaming capable sampler                     *   *   LinuxSampler - modular, streaming capable sampler                     *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *
6     *   Copyright (C) 2005 - 2008 Christian Schoenebeck                       *
7     *   Copyright (C) 2009 Christian Schoenebeck and Grigor Iliev             *
8     *   Copyright (C) 2010 - 2017 Christian Schoenebeck and Andreas Persson   *
9   *                                                                         *   *                                                                         *
10   *   This program is free software; you can redistribute it and/or modify  *   *   This program is free software; you can redistribute it and/or modify  *
11   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 20  Line 23 
23   *   MA  02111-1307  USA                                                   *   *   MA  02111-1307  USA                                                   *
24   ***************************************************************************/   ***************************************************************************/
25    
26  #include "EGADSR.h"  #include "../../common/Features.h"
27  #include "Manipulator.h"  #include "Synthesizer.h"
28    #include "Profiler.h"
29    #include "Engine.h"
30    #include "EngineChannel.h"
31    
32  #include "Voice.h"  #include "Voice.h"
33    
34  namespace LinuxSampler { namespace gig {  namespace LinuxSampler { namespace gig {
35    
36      // TODO: no support for crossfades yet      // sanity checks: fromGigLfoWave() assumes equally mapped enums
37        static_assert(int64_t(::gig::lfo_wave_sine) == int64_t(LFO::wave_sine),
38      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());                    "enum LFO::wave_t not equally value mapped to libgig's enum ::gig::lfo_wave_t");
39        static_assert(int64_t(::gig::lfo_wave_triangle) == int64_t(LFO::wave_triangle),
40      const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());                    "enum LFO::wave_t not equally value mapped to libgig's enum ::gig::lfo_wave_t");
41        static_assert(int64_t(::gig::lfo_wave_saw) == int64_t(LFO::wave_saw),
42      float Voice::CalculateFilterCutoffCoeff() {                    "enum LFO::wave_t not equally value mapped to libgig's enum ::gig::lfo_wave_t");
43          return log(FILTER_CUTOFF_MIN / FILTER_CUTOFF_MAX);      static_assert(int64_t(::gig::lfo_wave_square) == int64_t(LFO::wave_square),
44      }                    "enum LFO::wave_t not equally value mapped to libgig's enum ::gig::lfo_wave_t");
45    
46      int Voice::CalculateFilterUpdateMask() {      // converts ::gig::lfo_wave_t (libgig) -> LFO::wave_t (LinuxSampler)
47          if (FILTER_UPDATE_PERIOD <= 0) return 0;      inline LFO::wave_t fromGigLfoWave(::gig::lfo_wave_t wave) {
48          int power_of_two;          // simply assuming equally mapped enums on both sides
49          for (power_of_two = 0; 1<<power_of_two < FILTER_UPDATE_PERIOD; power_of_two++);          return static_cast<LFO::wave_t>(wave);
50          return (1 << power_of_two) - 1;      }
51    
52        // Returns true for GigaStudio's original filter types (which are resembled
53        // by LS very accurately with same frequency response and patch settings
54        // behaviour), false for our own LS specific filter implementation types.
55        constexpr bool isGStFilterType(::gig::vcf_type_t type) {
56            return type == ::gig::vcf_type_lowpass ||
57                   type == ::gig::vcf_type_lowpassturbo ||
58                   type == ::gig::vcf_type_bandpass ||
59                   type == ::gig::vcf_type_highpass ||
60                   type == ::gig::vcf_type_bandreject;
61      }      }
62    
63      Voice::Voice() {      Voice::Voice() {
64          pEngine     = NULL;          pEngine = NULL;
65          pDiskThread = NULL;          pEG1 = &EG1;
66          Active = false;          pEG2 = &EG2;
         pEG1   = NULL;  
         pEG2   = NULL;  
         pEG3   = NULL;  
         pVCAManipulator  = NULL;  
         pVCFCManipulator = NULL;  
         pVCOManipulator  = NULL;  
         pLFO1  = NULL;  
         pLFO2  = NULL;  
         pLFO3  = NULL;  
67      }      }
68    
69      Voice::~Voice() {      Voice::~Voice() {
         if (pEG1)  delete pEG1;  
         if (pEG2)  delete pEG2;  
         if (pEG3)  delete pEG3;  
         if (pLFO1) delete pLFO1;  
         if (pLFO2) delete pLFO2;  
         if (pLFO3) delete pLFO3;  
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
     }  
   
     void Voice::SetEngine(Engine* pEngine) {  
         this->pEngine = pEngine;  
   
         // delete old objects  
         if (pEG1) delete pEG1;  
         if (pEG2) delete pEG2;  
         if (pEG3) delete pEG3;  
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
         if (pLFO1) delete pLFO1;  
         if (pLFO2) delete pLFO2;  
         if (pLFO3) delete pLFO3;  
   
         // create new ones  
         pEG1   = new EGADSR(pEngine, Event::destination_vca);  
         pEG2   = new EGADSR(pEngine, Event::destination_vcfc);  
         pEG3   = new EGDecay(pEngine, Event::destination_vco);  
         pVCAManipulator  = new VCAManipulator(pEngine);  
         pVCFCManipulator = new VCFCManipulator(pEngine);  
         pVCOManipulator  = new VCOManipulator(pEngine);  
         pLFO1  = new LFO<gig::VCAManipulator>(0.0f, 1.0f, LFO<VCAManipulator>::propagation_top_down, pVCAManipulator, pEngine->pEventPool);  
         pLFO2  = new LFO<gig::VCFCManipulator>(0.0f, 1.0f, LFO<VCFCManipulator>::propagation_top_down, pVCFCManipulator, pEngine->pEventPool);  
         pLFO3  = new LFO<gig::VCOManipulator>(-1200.0f, 1200.0f, LFO<VCOManipulator>::propagation_middle_balanced, pVCOManipulator, pEngine->pEventPool); // +-1 octave (+-1200 cents) max.  
   
         this->pDiskThread = pEngine->pDiskThread;  
         dmsg(6,("Voice::SetEngine()\n"));  
70      }      }
71    
72      /**      EngineChannel* Voice::GetGigEngineChannel() {
73       *  Initializes and triggers the voice, a disk stream will be launched if          return static_cast<EngineChannel*>(pEngineChannel);
74       *  needed.      }
      *  
      *  @param pNoteOnEvent - event that caused triggering of this voice  
      *  @param PitchBend    - MIDI detune factor (-8192 ... +8191)  
      *  @param pInstrument  - points to the loaded instrument which provides sample wave(s) and articulation data  
      *  @param iLayer       - layer number this voice refers to (only if this is a layered sound of course)  
      *  @returns            0 on success, a value < 0 if something failed  
      */  
     int Voice::Trigger(Event* pNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument, int iLayer) {  
         if (!pInstrument) {  
            dmsg(1,("voice::trigger: !pInstrument\n"));  
            exit(EXIT_FAILURE);  
         }  
   
         Active          = true;  
         MIDIKey         = pNoteOnEvent->Key;  
         pRegion         = pInstrument->GetRegion(MIDIKey);  
         PlaybackState   = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed  
         Pos             = 0;  
         Delay           = pNoteOnEvent->FragmentPos();  
         pTriggerEvent   = pNoteOnEvent;  
   
         if (!pRegion) {  
             std::cerr << "gig::Voice: No Region defined for MIDI key " << MIDIKey << std::endl << std::flush;  
             Kill();  
             return -1;  
         }  
   
         // get current dimension values to select the right dimension region  
         //FIXME: controller values for selecting the dimension region here are currently not sample accurate  
         uint DimValues[5] = {0,0,0,0,0};  
         for (int i = pRegion->Dimensions - 1; i >= 0; i--) {  
             switch (pRegion->pDimensionDefinitions[i].dimension) {  
                 case ::gig::dimension_samplechannel:  
                     DimValues[i] = 0; //TODO: we currently ignore this dimension  
                     break;  
                 case ::gig::dimension_layer:  
                     DimValues[i] = iLayer;  
                     // if this is the 1st layer then spawn further voices for all the other layers  
                     if (iLayer == 0)  
                         for (int iNewLayer = 1; iNewLayer < pRegion->pDimensionDefinitions[i].zones; iNewLayer++)  
                             pEngine->LaunchVoice(pNoteOnEvent, iNewLayer);  
                     break;  
                 case ::gig::dimension_velocity:  
                     DimValues[i] = pNoteOnEvent->Velocity;  
                     break;  
                 case ::gig::dimension_channelaftertouch:  
                     DimValues[i] = 0; //TODO: we currently ignore this dimension  
                     break;  
                 case ::gig::dimension_releasetrigger:  
                     DimValues[i] = 0; //TODO: we currently ignore this dimension  
                     break;  
                 case ::gig::dimension_keyboard:  
                     DimValues[i] = (uint) pNoteOnEvent->Key;  
                     break;  
                 case ::gig::dimension_modwheel:  
                     DimValues[i] = pEngine->ControllerTable[1];  
                     break;  
                 case ::gig::dimension_breath:  
                     DimValues[i] = pEngine->ControllerTable[2];  
                     break;  
                 case ::gig::dimension_foot:  
                     DimValues[i] = pEngine->ControllerTable[4];  
                     break;  
                 case ::gig::dimension_portamentotime:  
                     DimValues[i] = pEngine->ControllerTable[5];  
                     break;  
                 case ::gig::dimension_effect1:  
                     DimValues[i] = pEngine->ControllerTable[12];  
                     break;  
                 case ::gig::dimension_effect2:  
                     DimValues[i] = pEngine->ControllerTable[13];  
                     break;  
                 case ::gig::dimension_genpurpose1:  
                     DimValues[i] = pEngine->ControllerTable[16];  
                     break;  
                 case ::gig::dimension_genpurpose2:  
                     DimValues[i] = pEngine->ControllerTable[17];  
                     break;  
                 case ::gig::dimension_genpurpose3:  
                     DimValues[i] = pEngine->ControllerTable[18];  
                     break;  
                 case ::gig::dimension_genpurpose4:  
                     DimValues[i] = pEngine->ControllerTable[19];  
                     break;  
                 case ::gig::dimension_sustainpedal:  
                     DimValues[i] = pEngine->ControllerTable[64];  
                     break;  
                 case ::gig::dimension_portamento:  
                     DimValues[i] = pEngine->ControllerTable[65];  
                     break;  
                 case ::gig::dimension_sostenutopedal:  
                     DimValues[i] = pEngine->ControllerTable[66];  
                     break;  
                 case ::gig::dimension_softpedal:  
                     DimValues[i] = pEngine->ControllerTable[67];  
                     break;  
                 case ::gig::dimension_genpurpose5:  
                     DimValues[i] = pEngine->ControllerTable[80];  
                     break;  
                 case ::gig::dimension_genpurpose6:  
                     DimValues[i] = pEngine->ControllerTable[81];  
                     break;  
                 case ::gig::dimension_genpurpose7:  
                     DimValues[i] = pEngine->ControllerTable[82];  
                     break;  
                 case ::gig::dimension_genpurpose8:  
                     DimValues[i] = pEngine->ControllerTable[83];  
                     break;  
                 case ::gig::dimension_effect1depth:  
                     DimValues[i] = pEngine->ControllerTable[91];  
                     break;  
                 case ::gig::dimension_effect2depth:  
                     DimValues[i] = pEngine->ControllerTable[92];  
                     break;  
                 case ::gig::dimension_effect3depth:  
                     DimValues[i] = pEngine->ControllerTable[93];  
                     break;  
                 case ::gig::dimension_effect4depth:  
                     DimValues[i] = pEngine->ControllerTable[94];  
                     break;  
                 case ::gig::dimension_effect5depth:  
                     DimValues[i] = pEngine->ControllerTable[95];  
                     break;  
                 case ::gig::dimension_none:  
                     std::cerr << "gig::Voice::Trigger() Error: dimension=none\n" << std::flush;  
                     break;  
                 default:  
                     std::cerr << "gig::Voice::Trigger() Error: Unknown dimension\n" << std::flush;  
             }  
         }  
         ::gig::DimensionRegion* pDimRgn = pRegion->GetDimensionRegionByValue(DimValues[4],DimValues[3],DimValues[2],DimValues[1],DimValues[0]);  
   
         pSample = pDimRgn->pSample; // sample won't change until the voice is finished  
75    
76          // Check if the sample needs disk streaming or is too short for that      void Voice::SetEngine(LinuxSampler::Engine* pEngine) {
77          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;          Engine* engine = static_cast<Engine*>(pEngine);
78          DiskVoice          = cachedsamples < pSample->SamplesTotal;          this->pEngine     = engine;
79            this->pDiskThread = engine->pDiskThread;
80            dmsg(6,("Voice::SetEngine()\n"));
81        }
82    
83          if (DiskVoice) { // voice to be streamed from disk      Voice::SampleInfo Voice::GetSampleInfo() {
84              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)          SampleInfo si;
85            si.SampleRate       = pSample->SamplesPerSecond;
86            si.ChannelCount     = pSample->Channels;
87            si.FrameSize        = pSample->FrameSize;
88            si.BitDepth         = pSample->BitDepth;
89            si.TotalFrameCount  = (uint)pSample->SamplesTotal;
90    
91              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample          si.HasLoops       = pRegion->SampleLoops;
92              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {          si.LoopStart      = (si.HasLoops) ? pRegion->pSampleLoops[0].LoopStart  : 0;
93                  RAMLoop        = true;          si.LoopLength     = (si.HasLoops) ? pRegion->pSampleLoops[0].LoopLength : 0;
94                  LoopCyclesLeft = pSample->LoopPlayCount;          si.LoopPlayCount  = pSample->LoopPlayCount;
95              }          si.Unpitched      = !pRegion->PitchTrack;
             else RAMLoop = false;  
   
             if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {  
                 dmsg(1,("Disk stream order failed!\n"));  
                 Kill();  
                 return -1;  
             }  
             dmsg(4,("Disk voice launched (cached samples: %d, total Samples: %d, MaxRAMPos: %d, RAMLooping: %s)\n", cachedsamples, pSample->SamplesTotal, MaxRAMPos, (RAMLoop) ? "yes" : "no"));  
         }  
         else { // RAM only voice  
             MaxRAMPos = cachedsamples;  
             if (pSample->Loops) {  
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
             dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));  
         }  
96    
97            return si;
98        }
99    
100          // calculate initial pitch value      Voice::RegionInfo Voice::GetRegionInfo() {
101          {          RegionInfo ri;
102              double pitchbasecents = pDimRgn->FineTune * 10;          ri.UnityNote = pRegion->UnityNote;
103              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;          ri.FineTune  = pRegion->FineTune;
104              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));          ri.Pan       = pRegion->Pan;
105              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents          ri.SampleStartOffset = pRegion->SampleStartOffset;
         }  
106    
107            ri.EG2PreAttack        = pRegion->EG2PreAttack;
108            ri.EG2Attack           = pRegion->EG2Attack;
109            ri.EG2Decay1           = pRegion->EG2Decay1;
110            ri.EG2Decay2           = pRegion->EG2Decay2;
111            ri.EG2Sustain          = pRegion->EG2Sustain;
112            ri.EG2InfiniteSustain  = pRegion->EG2InfiniteSustain;
113            ri.EG2Release          = pRegion->EG2Release;
114    
115          Volume = pDimRgn->GetVelocityAttenuation(pNoteOnEvent->Velocity) / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)          ri.EG3Attack     = pRegion->EG3Attack;
116            ri.EG3Depth      = pRegion->EG3Depth;
117            ri.VCFEnabled    = pRegion->VCFEnabled;
118          // setup EG 1 (VCA EG)          ri.VCFType       = Filter::vcf_type_t(pRegion->VCFType);
119          {          ri.VCFResonance  = pRegion->VCFResonance;
             // get current value of EG1 controller  
             double eg1controllervalue;  
             switch (pDimRgn->EG1Controller.type) {  
                 case ::gig::eg1_ctrl_t::type_none: // no controller defined  
                     eg1controllervalue = 0;  
                     break;  
                 case ::gig::eg1_ctrl_t::type_channelaftertouch:  
                     eg1controllervalue = 0; // TODO: aftertouch not yet supported  
                     break;  
                 case ::gig::eg1_ctrl_t::type_velocity:  
                     eg1controllervalue = pNoteOnEvent->Velocity;  
                     break;  
                 case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller  
                     eg1controllervalue = pEngine->ControllerTable[pDimRgn->EG1Controller.controller_number];  
                     break;  
             }  
             if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;  
120    
121              // calculate influence of EG1 controller on EG1's parameters (TODO: needs to be fine tuned)          ri.ReleaseTriggerDecay = 0.01053 * (256 >> pRegion->ReleaseTriggerDecay);
             double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerAttackInfluence)  * eg1controllervalue : 0.0;  
             double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 0.0;  
             double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 0.0;  
   
             pEG1->Trigger(pDimRgn->EG1PreAttack,  
                           pDimRgn->EG1Attack + eg1attack,  
                           pDimRgn->EG1Hold,  
                           pSample->LoopStart,  
                           pDimRgn->EG1Decay1 + eg1decay,  
                           pDimRgn->EG1Decay2 + eg1decay,  
                           pDimRgn->EG1InfiniteSustain,  
                           pDimRgn->EG1Sustain,  
                           pDimRgn->EG1Release + eg1release,  
                           Delay);  
         }  
122    
123            return ri;
124        }
125    
126      #if ENABLE_FILTER      Voice::InstrumentInfo Voice::GetInstrumentInfo() {
127          // setup EG 2 (VCF Cutoff EG)          InstrumentInfo ii;
128          {          ii.FineTune = GetGigEngineChannel()->pInstrument->FineTune;
129              // get current value of EG2 controller          ii.PitchbendRange = GetGigEngineChannel()->pInstrument->PitchbendRange;
             double eg2controllervalue;  
             switch (pDimRgn->EG2Controller.type) {  
                 case ::gig::eg2_ctrl_t::type_none: // no controller defined  
                     eg2controllervalue = 0;  
                     break;  
                 case ::gig::eg2_ctrl_t::type_channelaftertouch:  
                     eg2controllervalue = 0; // TODO: aftertouch not yet supported  
                     break;  
                 case ::gig::eg2_ctrl_t::type_velocity:  
                     eg2controllervalue = pNoteOnEvent->Velocity;  
                     break;  
                 case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller  
                     eg2controllervalue = pEngine->ControllerTable[pDimRgn->EG2Controller.controller_number];  
                     break;  
             }  
             if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;  
130    
131              // calculate influence of EG2 controller on EG2's parameters (TODO: needs to be fine tuned)          return ii;
132              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 0.0;      }
             double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 0.0;  
             double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 0.0;  
   
             pEG2->Trigger(pDimRgn->EG2PreAttack,  
                           pDimRgn->EG2Attack + eg2attack,  
                           false,  
                           pSample->LoopStart,  
                           pDimRgn->EG2Decay1 + eg2decay,  
                           pDimRgn->EG2Decay2 + eg2decay,  
                           pDimRgn->EG2InfiniteSustain,  
                           pDimRgn->EG2Sustain,  
                           pDimRgn->EG2Release + eg2release,  
                           Delay);  
         }  
     #endif // ENABLE_FILTER  
   
   
         // setup EG 3 (VCO EG)  
         {  
           double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);  
           pEG3->Trigger(eg3depth, pDimRgn->EG3Attack, Delay);  
         }  
133    
134        double Voice::GetSampleAttenuation() {
135            return pRegion->SampleAttenuation;
136        }
137    
138          // setup LFO 1 (VCA LFO)      double Voice::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
139          {          return pRegion->GetVelocityAttenuation(MIDIKeyVelocity);
140              uint16_t lfo1_internal_depth;      }
             switch (pDimRgn->LFO1Controller) {  
                 case ::gig::lfo1_ctrl_internal:  
                     lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;  
                     pLFO1->ExtController = 0; // no external controller  
                     break;  
                 case ::gig::lfo1_ctrl_modwheel:  
                     lfo1_internal_depth  = 0;  
                     pLFO1->ExtController = 1; // MIDI controller 1  
                     break;  
                 case ::gig::lfo1_ctrl_breath:  
                     lfo1_internal_depth  = 0;  
                     pLFO1->ExtController = 2; // MIDI controller 2  
                     break;  
                 case ::gig::lfo1_ctrl_internal_modwheel:  
                     lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;  
                     pLFO1->ExtController = 1; // MIDI controller 1  
                     break;  
                 case ::gig::lfo1_ctrl_internal_breath:  
                     lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;  
                     pLFO1->ExtController = 2; // MIDI controller 2  
                     break;  
                 default:  
                     lfo1_internal_depth  = 0;  
                     pLFO1->ExtController = 0; // no external controller  
             }  
             pLFO1->Trigger(pDimRgn->LFO1Frequency,  
                           lfo1_internal_depth,  
                           pDimRgn->LFO1ControlDepth,  
                           pEngine->ControllerTable[pLFO1->ExtController],  
                           pDimRgn->LFO1FlipPhase,  
                           pEngine->SampleRate,  
                           Delay);  
         }  
   
     #if ENABLE_FILTER  
         // setup LFO 2 (VCF Cutoff LFO)  
         {  
             uint16_t lfo2_internal_depth;  
             switch (pDimRgn->LFO2Controller) {  
                 case ::gig::lfo2_ctrl_internal:  
                     lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;  
                     pLFO2->ExtController = 0; // no external controller  
                     break;  
                 case ::gig::lfo2_ctrl_modwheel:  
                     lfo2_internal_depth  = 0;  
                     pLFO2->ExtController = 1; // MIDI controller 1  
                     break;  
                 case ::gig::lfo2_ctrl_foot:  
                     lfo2_internal_depth  = 0;  
                     pLFO2->ExtController = 4; // MIDI controller 4  
                     break;  
                 case ::gig::lfo2_ctrl_internal_modwheel:  
                     lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;  
                     pLFO2->ExtController = 1; // MIDI controller 1  
                     break;  
                 case ::gig::lfo2_ctrl_internal_foot:  
                     lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;  
                     pLFO2->ExtController = 4; // MIDI controller 4  
                     break;  
                 default:  
                     lfo2_internal_depth  = 0;  
                     pLFO2->ExtController = 0; // no external controller  
             }  
             pLFO2->Trigger(pDimRgn->LFO2Frequency,  
                           lfo2_internal_depth,  
                           pDimRgn->LFO2ControlDepth,  
                           pEngine->ControllerTable[pLFO2->ExtController],  
                           pDimRgn->LFO2FlipPhase,  
                           pEngine->SampleRate,  
                           Delay);  
         }  
     #endif // ENABLE_FILTER  
   
         // setup LFO 3 (VCO LFO)  
         {  
             uint16_t lfo3_internal_depth;  
             switch (pDimRgn->LFO3Controller) {  
                 case ::gig::lfo3_ctrl_internal:  
                     lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;  
                     pLFO3->ExtController = 0; // no external controller  
                     break;  
                 case ::gig::lfo3_ctrl_modwheel:  
                     lfo3_internal_depth  = 0;  
                     pLFO3->ExtController = 1; // MIDI controller 1  
                     break;  
                 case ::gig::lfo3_ctrl_aftertouch:  
                     lfo3_internal_depth  = 0;  
                     pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet  
                     break;  
                 case ::gig::lfo3_ctrl_internal_modwheel:  
                     lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;  
                     pLFO3->ExtController = 1; // MIDI controller 1  
                     break;  
                 case ::gig::lfo3_ctrl_internal_aftertouch:  
                     lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;  
                     pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet  
                     break;  
                 default:  
                     lfo3_internal_depth  = 0;  
                     pLFO3->ExtController = 0; // no external controller  
             }  
             pLFO3->Trigger(pDimRgn->LFO3Frequency,  
                           lfo3_internal_depth,  
                           pDimRgn->LFO3ControlDepth,  
                           pEngine->ControllerTable[pLFO3->ExtController],  
                           false,  
                           pEngine->SampleRate,  
                           Delay);  
         }  
   
     #if ENABLE_FILTER  
         #if FORCE_FILTER_USAGE  
         FilterLeft.Enabled = FilterRight.Enabled = true;  
         #else // use filter only if instrument file told so  
         FilterLeft.Enabled = FilterRight.Enabled = pDimRgn->VCFEnabled;  
         #endif // FORCE_FILTER_USAGE  
         if (pDimRgn->VCFEnabled) {  
             #ifdef OVERRIDE_FILTER_CUTOFF_CTRL  
             VCFCutoffCtrl.controller = OVERRIDE_FILTER_CUTOFF_CTRL;  
             #else // use the one defined in the instrument file  
             switch (pDimRgn->VCFCutoffController) {  
                 case ::gig::vcf_cutoff_ctrl_modwheel:  
                     VCFCutoffCtrl.controller = 1;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_effect1:  
                     VCFCutoffCtrl.controller = 12;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_effect2:  
                     VCFCutoffCtrl.controller = 13;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_breath:  
                     VCFCutoffCtrl.controller = 2;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_foot:  
                     VCFCutoffCtrl.controller = 4;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_sustainpedal:  
                     VCFCutoffCtrl.controller = 64;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_softpedal:  
                     VCFCutoffCtrl.controller = 67;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_genpurpose7:  
                     VCFCutoffCtrl.controller = 82;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_genpurpose8:  
                     VCFCutoffCtrl.controller = 83;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_aftertouch: //TODO: not implemented yet  
                 case ::gig::vcf_cutoff_ctrl_none:  
                 default:  
                     VCFCutoffCtrl.controller = 0;  
                     break;  
             }  
             #endif // OVERRIDE_FILTER_CUTOFF_CTRL  
141    
142              #ifdef OVERRIDE_FILTER_RES_CTRL      double Voice::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
143              VCFResonanceCtrl.controller = OVERRIDE_FILTER_RES_CTRL;          return pRegion->GetVelocityRelease(MIDIKeyVelocity);
144              #else // use the one defined in the instrument file      }
             switch (pDimRgn->VCFResonanceController) {  
                 case ::gig::vcf_res_ctrl_genpurpose3:  
                     VCFResonanceCtrl.controller = 18;  
                     break;  
                 case ::gig::vcf_res_ctrl_genpurpose4:  
                     VCFResonanceCtrl.controller = 19;  
                     break;  
                 case ::gig::vcf_res_ctrl_genpurpose5:  
                     VCFResonanceCtrl.controller = 80;  
                     break;  
                 case ::gig::vcf_res_ctrl_genpurpose6:  
                     VCFResonanceCtrl.controller = 81;  
                     break;  
                 case ::gig::vcf_res_ctrl_none:  
                 default:  
                     VCFResonanceCtrl.controller = 0;  
             }  
             #endif // OVERRIDE_FILTER_RES_CTRL  
145    
146              #ifndef OVERRIDE_FILTER_TYPE      void Voice::ProcessCCEvent(RTList<Event>::Iterator& itEvent) {
147              FilterLeft.SetType(pDimRgn->VCFType);          if (itEvent->Type == Event::type_control_change && itEvent->Param.CC.Controller) { // if (valid) MIDI control change event
148              FilterRight.SetType(pDimRgn->VCFType);              if (pRegion->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
149              #else // override filter type                  itEvent->Param.CC.Controller == pRegion->AttenuationController.controller_number) {
150              FilterLeft.SetType(OVERRIDE_FILTER_TYPE);                  CrossfadeSmoother.update(AbstractEngine::CrossfadeCurve[CrossfadeAttenuation(itEvent->Param.CC.Value)]);
             FilterRight.SetType(OVERRIDE_FILTER_TYPE);  
             #endif // OVERRIDE_FILTER_TYPE  
   
             VCFCutoffCtrl.value    = pEngine->ControllerTable[VCFCutoffCtrl.controller];  
             VCFResonanceCtrl.value = pEngine->ControllerTable[VCFResonanceCtrl.controller];  
   
             // calculate cutoff frequency  
             float cutoff = (!VCFCutoffCtrl.controller)  
                 ? exp((float) (127 - pNoteOnEvent->Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX  
                 : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX;  
   
             // calculate resonance  
             float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0  
             if (pDimRgn->VCFKeyboardTracking) {  
                 resonance += (float) (pNoteOnEvent->Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;  
151              }              }
152              Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)          }
153        }
             VCFCutoffCtrl.fvalue    = cutoff - FILTER_CUTOFF_MIN;  
             VCFResonanceCtrl.fvalue = resonance;  
   
             FilterLeft.SetParameters(cutoff,  resonance, pEngine->SampleRate);  
             FilterRight.SetParameters(cutoff, resonance, pEngine->SampleRate);  
154    
155              FilterUpdateCounter = -1;      void Voice::ProcessChannelPressureEvent(RTList<Event>::Iterator& itEvent) {
156          }          if (itEvent->Type == Event::type_channel_pressure) { // if (valid) MIDI channel pressure (aftertouch) event
157          else {              if (pRegion->AttenuationController.type == ::gig::attenuation_ctrl_t::type_channelaftertouch) {
158              VCFCutoffCtrl.controller    = 0;                  CrossfadeSmoother.update(AbstractEngine::CrossfadeCurve[CrossfadeAttenuation(itEvent->Param.ChannelPressure.Value)]);
             VCFResonanceCtrl.controller = 0;  
         }  
     #endif // ENABLE_FILTER  
   
         // ************************************************  
         // TODO: ARTICULATION DATA HANDLING IS MISSING HERE  
         // ************************************************  
   
         return 0; // success  
     }  
   
     /**  
      *  Renders the audio data for this voice for the current audio fragment.  
      *  The sample input data can either come from RAM (cached sample or sample  
      *  part) or directly from disk. The output signal will be rendered by  
      *  resampling / interpolation. If this voice is a disk streaming voice and  
      *  the voice completely played back the cached RAM part of the sample, it  
      *  will automatically switch to disk playback for the next RenderAudio()  
      *  call.  
      *  
      *  @param Samples - number of samples to be rendered in this audio fragment cycle  
      */  
     void Voice::Render(uint Samples) {  
   
         // Reset the synthesis parameter matrix  
         pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * pEngine->GlobalVolume);  
         pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);  
     #if ENABLE_FILTER  
         pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);  
     #endif // ENABLE_FILTER  
   
   
         // Apply events to the synthesis parameter matrix  
         ProcessEvents(Samples);  
   
   
         // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment  
         pEG1->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);  
     #if ENABLE_FILTER  
         pEG2->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, pTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);  
     #endif // ENABLE_FILTER  
         pEG3->Process(Samples);  
         pLFO1->Process(Samples);  
     #if ENABLE_FILTER  
         pLFO2->Process(Samples);  
     #endif // ENABLE_FILTER  
         pLFO3->Process(Samples);  
   
   
     #if ENABLE_FILTER  
         CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters  
     #endif // ENABLE_FILTER  
   
   
         switch (this->PlaybackState) {  
   
             case playback_state_ram: {  
                     if (RAMLoop) InterpolateAndLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);  
                     else         Interpolate(Samples, (sample_t*) pSample->GetCache().pStart, Delay);  
                     if (DiskVoice) {  
                         // check if we reached the allowed limit of the sample RAM cache  
                         if (Pos > MaxRAMPos) {  
                             dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", Pos));  
                             this->PlaybackState = playback_state_disk;  
                         }  
                     }  
                     else if (Pos >= pSample->GetCache().Size / pSample->FrameSize) {  
                         this->PlaybackState = playback_state_end;  
                     }  
                 }  
                 break;  
   
             case playback_state_disk: {  
                     if (!DiskStreamRef.pStream) {  
                         // check if the disk thread created our ordered disk stream in the meantime  
                         DiskStreamRef.pStream = pDiskThread->AskForCreatedStream(DiskStreamRef.OrderID);  
                         if (!DiskStreamRef.pStream) {  
                             std::cout << stderr << "Disk stream not available in time!" << std::endl << std::flush;  
                             Kill();  
                             return;  
                         }  
                         DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (RTMath::DoubleToInt(Pos) - MaxRAMPos));  
                         Pos -= RTMath::DoubleToInt(Pos);  
                     }  
   
                     // add silence sample at the end if we reached the end of the stream (for the interpolator)  
                     if (DiskStreamRef.State == Stream::state_end && DiskStreamRef.pStream->GetReadSpace() < (pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels) {  
                         DiskStreamRef.pStream->WriteSilence((pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels);  
                         this->PlaybackState = playback_state_end;  
                     }  
   
                     sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from  
                     Interpolate(Samples, ptr, Delay);  
                     DiskStreamRef.pStream->IncrementReadPos(RTMath::DoubleToInt(Pos) * pSample->Channels);  
                     Pos -= RTMath::DoubleToInt(Pos);  
                 }  
                 break;  
   
             case playback_state_end:  
                 Kill(); // free voice  
                 break;  
         }  
   
   
     #if ENABLE_FILTER  
         // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)  
         pEngine->pSynthesisEvents[Event::destination_vcfc]->clear();  
         pEngine->pSynthesisEvents[Event::destination_vcfr]->clear();  
     #endif // ENABLE_FILTER  
   
         // Reset delay  
         Delay = 0;  
   
         pTriggerEvent = NULL;  
   
         // If release stage finished, let the voice be killed  
         if (pEG1->GetStage() == EGADSR::stage_end) this->PlaybackState = playback_state_end;  
     }  
   
     /**  
      *  Resets voice variables. Should only be called if rendering process is  
      *  suspended / not running.  
      */  
     void Voice::Reset() {  
         pLFO1->Reset();  
         pLFO2->Reset();  
         pLFO3->Reset();  
         DiskStreamRef.pStream = NULL;  
         DiskStreamRef.hStream = 0;  
         DiskStreamRef.State   = Stream::state_unused;  
         DiskStreamRef.OrderID = 0;  
         Active = false;  
     }  
   
     /**  
      *  Process the control change event lists of the engine for the current  
      *  audio fragment. Event values will be applied to the synthesis parameter  
      *  matrix.  
      *  
      *  @param Samples - number of samples to be rendered in this audio fragment cycle  
      */  
     void Voice::ProcessEvents(uint Samples) {  
   
         // dispatch control change events  
         Event* pCCEvent = pEngine->pCCEvents->first();  
         if (Delay) { // skip events that happened before this voice was triggered  
             while (pCCEvent && pCCEvent->FragmentPos() <= Delay) pCCEvent = pEngine->pCCEvents->next();  
         }  
         while (pCCEvent) {  
             if (pCCEvent->Controller) { // if valid MIDI controller  
                 #if ENABLE_FILTER  
                 if (pCCEvent->Controller == VCFCutoffCtrl.controller) {  
                     pEngine->pSynthesisEvents[Event::destination_vcfc]->alloc_assign(*pCCEvent);  
                 }  
                 if (pCCEvent->Controller == VCFResonanceCtrl.controller) {  
                     pEngine->pSynthesisEvents[Event::destination_vcfr]->alloc_assign(*pCCEvent);  
                 }  
                 #endif // ENABLE_FILTER  
                 if (pCCEvent->Controller == pLFO1->ExtController) {  
                     pLFO1->SendEvent(pCCEvent);  
                 }  
                 #if ENABLE_FILTER  
                 if (pCCEvent->Controller == pLFO2->ExtController) {  
                     pLFO2->SendEvent(pCCEvent);  
                 }  
                 #endif // ENABLE_FILTER  
                 if (pCCEvent->Controller == pLFO3->ExtController) {  
                     pLFO3->SendEvent(pCCEvent);  
                 }  
159              }              }
   
             pCCEvent = pEngine->pCCEvents->next();  
160          }          }
161        }
162    
163        void Voice::ProcessPolyphonicKeyPressureEvent(RTList<Event>::Iterator& itEvent) {
164            // Not used so far
165        }
166    
167          // process pitch events      uint8_t Voice::MinCutoff() const {
168          {          // If there's a cutoff controller defined then VCFVelocityScale means
169              RTEList<Event>* pVCOEventList = pEngine->pSynthesisEvents[Event::destination_vco];          // "minimum cutoff". If there is no MIDI controller defined for cutoff
170              Event* pVCOEvent = pVCOEventList->first();          // then VCFVelocityScale is already taken into account on libgig side
171              if (Delay) { // skip events that happened before this voice was triggered          // instead by call to pRegion->GetVelocityCutoff(MIDIKeyVelocity).
172                  while (pVCOEvent && pVCOEvent->FragmentPos() <= Delay) pVCOEvent = pVCOEventList->next();          return pRegion->VCFVelocityScale;
173              }      }
             // apply old pitchbend value until first pitch event occurs  
             if (this->PitchBend != 1.0) {  
                 uint end = (pVCOEvent) ? pVCOEvent->FragmentPos() : Samples;  
                 for (uint i = Delay; i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;  
                 }  
             }  
             float pitch;  
             while (pVCOEvent) {  
                 Event* pNextVCOEvent = pVCOEventList->next();  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (pNextVCOEvent) ? pNextVCOEvent->FragmentPos() : Samples;  
174    
175                  pitch = RTMath::CentsToFreqRatio(((double) pVCOEvent->Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents      // This is called on any cutoff controller changes, however not when the
176        // voice is triggered. So the initial cutoff value is retrieved by a call
177        // to CalculateFinalCutoff() instead.
178        void Voice::ProcessCutoffEvent(RTList<Event>::Iterator& itEvent) {
179            if (VCFCutoffCtrl.value == itEvent->Param.CC.Value) return;
180            float ccvalue = VCFCutoffCtrl.value = itEvent->Param.CC.Value;
181    
182                  // apply pitch value to the pitch parameter sequence          // if the selected filter type is an official GigaStudio filter type
183                  for (uint i = pVCOEvent->FragmentPos(); i < end; i++) {          // then we preserve the original (no matter how odd) historical GSt
184                      pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;          // behaviour identically; for our own filter types though we deviate to
185                  }          // more meaningful behaviours where appropriate
186            const bool isGStFilter = isGStFilterType(pRegion->VCFType);
187    
188                  pVCOEvent = pNextVCOEvent;          if (pRegion->VCFCutoffControllerInvert) ccvalue = 127 - ccvalue;
189              }          if (isGStFilter) {
190              if (pVCOEventList->last()) this->PitchBend = pitch;              // VCFVelocityScale in this case means "minimum cutoff" for GSt
191                if (ccvalue < MinCutoff()) ccvalue = MinCutoff();
192            } else {
193                // for our own filter types we interpret "minimum cutoff"
194                // differently: GSt handles this as a simple hard limit with the
195                // consequence that a certain range of the controller is simply
196                // dead; so for our filter types we rather remap that to
197                // restrain within the min_cutoff..127 range as well, but
198                // effectively spanned over the entire controller range (0..127)
199                // to avoid such a "dead" lower controller zone
200                ccvalue = MinCutoff() + (ccvalue / 127.f) * float(127 - MinCutoff());
201          }          }
202    
203            float cutoff = CutoffBase * ccvalue;
204            if (cutoff > 127.0f) cutoff = 127.0f;
205    
206      #if ENABLE_FILTER          // the filter implementations of the original GSt filter types take an
207          // process filter cutoff events          // abstract cutoff parameter range of 0..127, whereas our own filter
208          {          // types take a cutoff parameter in Hz, so remap here:
209              RTEList<Event>* pCutoffEventList = pEngine->pSynthesisEvents[Event::destination_vcfc];          // 0 .. 127 [lin] -> 21 Hz .. 18 kHz [x^4] (center @2.2 kHz)
210              Event* pCutoffEvent = pCutoffEventList->first();          if (!isGStFilter) {
211              if (Delay) { // skip events that happened before this voice was triggered              cutoff = (cutoff + 29.f) / (127.f + 29.f);
212                  while (pCutoffEvent && pCutoffEvent->FragmentPos() <= Delay) pCutoffEvent = pCutoffEventList->next();              cutoff = cutoff * cutoff * cutoff * cutoff * 18000.f;
213              }              if (cutoff > 0.49f * pEngine->SampleRate)
214              float cutoff;                  cutoff = 0.49f * pEngine->SampleRate;
215              while (pCutoffEvent) {          }
                 Event* pNextCutoffEvent = pCutoffEventList->next();  
216    
217                  // calculate the influence length of this event (in sample points)          fFinalCutoff = VCFCutoffCtrl.fvalue = cutoff;
218                  uint end = (pNextCutoffEvent) ? pNextCutoffEvent->FragmentPos() : Samples;      }
219    
220                  cutoff = exp((float) pCutoffEvent->Value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX - FILTER_CUTOFF_MIN;      double Voice::CalculateCrossfadeVolume(uint8_t MIDIKeyVelocity) {
221            float crossfadeVolume;
222            switch (pRegion->AttenuationController.type) {
223                case ::gig::attenuation_ctrl_t::type_channelaftertouch:
224                    crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(GetGigEngineChannel()->ControllerTable[128])];
225                    break;
226                case ::gig::attenuation_ctrl_t::type_velocity:
227                    crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(MIDIKeyVelocity)];
228                    break;
229                case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate
230                    crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(GetGigEngineChannel()->ControllerTable[pRegion->AttenuationController.controller_number])];
231                    break;
232                case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined
233                default:
234                    crossfadeVolume = 1.0f;
235            }
236    
237                  // apply cutoff frequency to the cutoff parameter sequence          return crossfadeVolume;
238                  for (uint i = pCutoffEvent->FragmentPos(); i < end; i++) {      }
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;  
                 }  
239    
240                  pCutoffEvent = pNextCutoffEvent;      double Voice::GetEG1ControllerValue(uint8_t MIDIKeyVelocity) {
241              }          double eg1controllervalue = 0;
242              if (pCutoffEventList->last()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time          switch (pRegion->EG1Controller.type) {
243                case ::gig::eg1_ctrl_t::type_none: // no controller defined
244                    eg1controllervalue = 0;
245                    break;
246                case ::gig::eg1_ctrl_t::type_channelaftertouch:
247                    eg1controllervalue = GetGigEngineChannel()->ControllerTable[128];
248                    break;
249                case ::gig::eg1_ctrl_t::type_velocity:
250                    eg1controllervalue = MIDIKeyVelocity;
251                    break;
252                case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller
253                    eg1controllervalue = GetGigEngineChannel()->ControllerTable[pRegion->EG1Controller.controller_number];
254                    break;
255          }          }
256            if (pRegion->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;
257    
258          // process filter resonance events          return eg1controllervalue;
259          {      }
             RTEList<Event>* pResonanceEventList = pEngine->pSynthesisEvents[Event::destination_vcfr];  
             Event* pResonanceEvent = pResonanceEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (pResonanceEvent && pResonanceEvent->FragmentPos() <= Delay) pResonanceEvent = pResonanceEventList->next();  
             }  
             while (pResonanceEvent) {  
                 Event* pNextResonanceEvent = pResonanceEventList->next();  
260    
261                  // calculate the influence length of this event (in sample points)      Voice::EGInfo Voice::CalculateEG1ControllerInfluence(double eg1ControllerValue) {
262                  uint end = (pNextResonanceEvent) ? pNextResonanceEvent->FragmentPos() : Samples;          EGInfo eg;
263            // (eg1attack is different from the others)
264            if (pRegion->EG1Attack < 1e-8 && // attack in gig == 0
265                (pRegion->EG1ControllerAttackInfluence == 0 ||
266                 eg1ControllerValue <= 10)) { // strange GSt special case
267                eg.Attack = 0; // this will force the attack to be 0 in the call to EG1.trigger
268            } else {
269                eg.Attack  = (pRegion->EG1ControllerAttackInfluence)  ?
270                    1 + 0.031 * (double) (pRegion->EG1ControllerAttackInfluence == 1 ?
271                                          1 : 1 << pRegion->EG1ControllerAttackInfluence) * eg1ControllerValue : 1.0;
272            }
273            eg.Decay   = (pRegion->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pRegion->EG1ControllerDecayInfluence)   * eg1ControllerValue : 1.0;
274            eg.Release = (pRegion->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pRegion->EG1ControllerReleaseInfluence) * eg1ControllerValue : 1.0;
275    
276            return eg;
277        }
278    
279        double Voice::GetEG2ControllerValue(uint8_t MIDIKeyVelocity) {
280            double eg2controllervalue = 0;
281            switch (pRegion->EG2Controller.type) {
282                case ::gig::eg2_ctrl_t::type_none: // no controller defined
283                    eg2controllervalue = 0;
284                    break;
285                case ::gig::eg2_ctrl_t::type_channelaftertouch:
286                    eg2controllervalue = GetGigEngineChannel()->ControllerTable[128];
287                    break;
288                case ::gig::eg2_ctrl_t::type_velocity:
289                    eg2controllervalue = MIDIKeyVelocity;
290                    break;
291                case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller
292                    eg2controllervalue = GetGigEngineChannel()->ControllerTable[pRegion->EG2Controller.controller_number];
293                    break;
294            }
295            if (pRegion->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;
296    
297                  // convert absolute controller value to differential          return eg2controllervalue;
298                  int ctrldelta = pResonanceEvent->Value - VCFResonanceCtrl.value;      }
                 VCFResonanceCtrl.value = pResonanceEvent->Value;  
299    
300                  float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0      Voice::EGInfo Voice::CalculateEG2ControllerInfluence(double eg2ControllerValue) {
301            EGInfo eg;
302            eg.Attack  = (pRegion->EG2ControllerAttackInfluence)  ? 1 + 0.00775 * (double) (1 << pRegion->EG2ControllerAttackInfluence)  * eg2ControllerValue : 1.0;
303            eg.Decay   = (pRegion->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pRegion->EG2ControllerDecayInfluence)   * eg2ControllerValue : 1.0;
304            eg.Release = (pRegion->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pRegion->EG2ControllerReleaseInfluence) * eg2ControllerValue : 1.0;
305    
306                  // apply cutoff frequency to the cutoff parameter sequence          return eg;
307                  for (uint i = pResonanceEvent->FragmentPos(); i < end; i++) {      }
                     pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;  
                 }  
308    
309                  pResonanceEvent = pNextResonanceEvent;      void Voice::InitLFO1() {
310              }          uint16_t lfo1_internal_depth;
311              if (pResonanceEventList->last()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Value * 0.00787f; // needed for initialization of parameter matrix next time          switch (pRegion->LFO1Controller) {
312                case ::gig::lfo1_ctrl_internal:
313                    lfo1_internal_depth  = pRegion->LFO1InternalDepth;
314                    pLFO1->ExtController = 0; // no external controller
315                    bLFO1Enabled         = (lfo1_internal_depth > 0);
316                    break;
317                case ::gig::lfo1_ctrl_modwheel:
318                    lfo1_internal_depth  = 0;
319                    pLFO1->ExtController = 1; // MIDI controller 1
320                    bLFO1Enabled         = (pRegion->LFO1ControlDepth > 0);
321                    break;
322                case ::gig::lfo1_ctrl_breath:
323                    lfo1_internal_depth  = 0;
324                    pLFO1->ExtController = 2; // MIDI controller 2
325                    bLFO1Enabled         = (pRegion->LFO1ControlDepth > 0);
326                    break;
327                case ::gig::lfo1_ctrl_internal_modwheel:
328                    lfo1_internal_depth  = pRegion->LFO1InternalDepth;
329                    pLFO1->ExtController = 1; // MIDI controller 1
330                    bLFO1Enabled         = (lfo1_internal_depth > 0 || pRegion->LFO1ControlDepth > 0);
331                    break;
332                case ::gig::lfo1_ctrl_internal_breath:
333                    lfo1_internal_depth  = pRegion->LFO1InternalDepth;
334                    pLFO1->ExtController = 2; // MIDI controller 2
335                    bLFO1Enabled         = (lfo1_internal_depth > 0 || pRegion->LFO1ControlDepth > 0);
336                    break;
337                default:
338                    lfo1_internal_depth  = 0;
339                    pLFO1->ExtController = 0; // no external controller
340                    bLFO1Enabled         = false;
341            }
342            if (bLFO1Enabled) {
343                pLFO1->trigger(fromGigLfoWave(pRegion->LFO1WaveForm),
344                               pRegion->LFO1Frequency,
345                               pRegion->LFO1Phase,
346                               LFO::start_level_mid, // see https://sourceforge.net/p/linuxsampler/mailman/linuxsampler-devel/thread/2189307.cNP0Xbctxq%40silver/#msg36774029
347                               lfo1_internal_depth,
348                               pRegion->LFO1ControlDepth,
349                               pRegion->LFO1FlipPhase,
350                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
351                pLFO1->updateByMIDICtrlValue(pLFO1->ExtController ? GetGigEngineChannel()->ControllerTable[pLFO1->ExtController] : 0);
352                pLFO1->setScriptDepthFactor(
353                    pNote->Override.AmpLFODepth.Value,
354                    pNote->Override.AmpLFODepth.Final
355                );
356                if (pNote->Override.AmpLFOFreq.isFinal())
357                    pLFO1->setScriptFrequencyFinal(
358                        pNote->Override.AmpLFOFreq.Value, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE
359                    );
360                else
361                    pLFO1->setScriptFrequencyFactor(
362                        pNote->Override.AmpLFOFreq.Value, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE
363                    );
364          }          }
     #endif // ENABLE_FILTER  
365      }      }
366    
367      #if ENABLE_FILTER      void Voice::InitLFO2() {
368      /**          uint16_t lfo2_internal_depth;
369       * Calculate all necessary, final biquad filter parameters.          switch (pRegion->LFO2Controller) {
370       *              case ::gig::lfo2_ctrl_internal:
371       * @param Samples - number of samples to be rendered in this audio fragment cycle                  lfo2_internal_depth  = pRegion->LFO2InternalDepth;
372       */                  pLFO2->ExtController = 0; // no external controller
373      void Voice::CalculateBiquadParameters(uint Samples) {                  bLFO2Enabled         = (lfo2_internal_depth > 0);
374          if (!FilterLeft.Enabled) return;                  break;
375                case ::gig::lfo2_ctrl_modwheel:
376          biquad_param_t bqbase;                  lfo2_internal_depth  = 0;
377          biquad_param_t bqmain;                  pLFO2->ExtController = 1; // MIDI controller 1
378          float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];                  bLFO2Enabled         = (pRegion->LFO2ControlDepth > 0);
379          float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];                  break;
380          FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);              case ::gig::lfo2_ctrl_foot:
381          pEngine->pBasicFilterParameters[0] = bqbase;                  lfo2_internal_depth  = 0;
382          pEngine->pMainFilterParameters[0]  = bqmain;                  pLFO2->ExtController = 4; // MIDI controller 4
383                    bLFO2Enabled         = (pRegion->LFO2ControlDepth > 0);
384          float* bq;                  break;
385          for (int i = 1; i < Samples; i++) {              case ::gig::lfo2_ctrl_internal_modwheel:
386              // recalculate biquad parameters if cutoff or resonance differ from previous sample point                  lfo2_internal_depth  = pRegion->LFO2InternalDepth;
387              if (!(i & FILTER_UPDATE_MASK)) if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||                  pLFO2->ExtController = 1; // MIDI controller 1
388                                                 pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff) {                  bLFO2Enabled         = (lfo2_internal_depth > 0 || pRegion->LFO2ControlDepth > 0);
389                  prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];                  break;
390                  prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];              case ::gig::lfo2_ctrl_internal_foot:
391                  FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);                  lfo2_internal_depth  = pRegion->LFO2InternalDepth;
392              }                  pLFO2->ExtController = 4; // MIDI controller 4
393                    bLFO2Enabled         = (lfo2_internal_depth > 0 || pRegion->LFO2ControlDepth > 0);
394              //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'                  break;
395              bq    = (float*) &pEngine->pBasicFilterParameters[i];              default:
396              bq[0] = bqbase.a1;                  lfo2_internal_depth  = 0;
397              bq[1] = bqbase.a2;                  pLFO2->ExtController = 0; // no external controller
398              bq[2] = bqbase.b0;                  bLFO2Enabled         = false;
399              bq[3] = bqbase.b1;          }
400              bq[4] = bqbase.b2;          if (bLFO2Enabled) {
401                pLFO2->trigger(fromGigLfoWave(pRegion->LFO2WaveForm),
402              // same as 'pEngine->pMainFilterParameters[i] = bqmain;'                             pRegion->LFO2Frequency,
403              bq    = (float*) &pEngine->pMainFilterParameters[i];                             pRegion->LFO2Phase,
404              bq[0] = bqmain.a1;                             LFO::start_level_mid, // see https://sourceforge.net/p/linuxsampler/mailman/linuxsampler-devel/thread/2189307.cNP0Xbctxq%40silver/#msg36774029
405              bq[1] = bqmain.a2;                             lfo2_internal_depth,
406              bq[2] = bqmain.b0;                             pRegion->LFO2ControlDepth,
407              bq[3] = bqmain.b1;                             pRegion->LFO2FlipPhase,
408              bq[4] = bqmain.b2;                             pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
409          }              pLFO2->updateByMIDICtrlValue(pLFO2->ExtController ? GetGigEngineChannel()->ControllerTable[pLFO2->ExtController] : 0);
410      }              pLFO2->setScriptDepthFactor(
411      #endif // ENABLE_FILTER                  pNote->Override.CutoffLFODepth.Value,
412                    pNote->Override.CutoffLFODepth.Final
413      /**              );
414       *  Interpolates the input audio data (no loop).              if (pNote->Override.CutoffLFOFreq.isFinal())
415       *                  pLFO2->setScriptFrequencyFinal(pNote->Override.CutoffLFOFreq.Value, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
416       *  @param Samples - number of sample points to be rendered in this audio              else
417       *                   fragment cycle                  pLFO2->setScriptFrequencyFactor(pNote->Override.CutoffLFOFreq.Value, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
      *  @param pSrc    - pointer to input sample data  
      *  @param Skip    - number of sample points to skip in output buffer  
      */  
     void Voice::Interpolate(uint Samples, sample_t* pSrc, uint Skip) {  
         int i = Skip;  
   
         // FIXME: assuming either mono or stereo  
         if (this->pSample->Channels == 2) { // Stereo Sample  
             while (i < Samples) {  
                 InterpolateOneStep_Stereo(pSrc, i,  
                                           pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                           pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                           pEngine->pBasicFilterParameters[i],  
                                           pEngine->pMainFilterParameters[i]);  
             }  
         }  
         else { // Mono Sample  
             while (i < Samples) {  
                 InterpolateOneStep_Mono(pSrc, i,  
                                         pEngine->pSynthesisParameters[Event::destination_vca][i],  
                                         pEngine->pSynthesisParameters[Event::destination_vco][i],  
                                         pEngine->pBasicFilterParameters[i],  
                                         pEngine->pMainFilterParameters[i]);  
             }  
418          }          }
419      }      }
420    
421      /**      void Voice::InitLFO3() {
422       *  Interpolates the input audio data, this method honors looping.          uint16_t lfo3_internal_depth;
423       *          switch (pRegion->LFO3Controller) {
424       *  @param Samples - number of sample points to be rendered in this audio              case ::gig::lfo3_ctrl_internal:
425       *                   fragment cycle                  lfo3_internal_depth  = pRegion->LFO3InternalDepth;
426       *  @param pSrc    - pointer to input sample data                  pLFO3->ExtController = 0; // no external controller
427       *  @param Skip    - number of sample points to skip in output buffer                  bLFO3Enabled         = (lfo3_internal_depth > 0);
428       */                  break;
429      void Voice::InterpolateAndLoop(uint Samples, sample_t* pSrc, uint Skip) {              case ::gig::lfo3_ctrl_modwheel:
430          int i = Skip;                  lfo3_internal_depth  = 0;
431                    pLFO3->ExtController = 1; // MIDI controller 1
432          // FIXME: assuming either mono or stereo                  bLFO3Enabled         = (pRegion->LFO3ControlDepth > 0);
433          if (pSample->Channels == 2) { // Stereo Sample                  break;
434              if (pSample->LoopPlayCount) {              case ::gig::lfo3_ctrl_aftertouch:
435                  // render loop (loop count limited)                  lfo3_internal_depth  = 0;
436                  while (i < Samples && LoopCyclesLeft) {                  pLFO3->ExtController = CTRL_TABLE_IDX_AFTERTOUCH;
437                      InterpolateOneStep_Stereo(pSrc, i,                  bLFO3Enabled         = true;
438                                                pEngine->pSynthesisParameters[Event::destination_vca][i],                  break;
439                                                pEngine->pSynthesisParameters[Event::destination_vco][i],              case ::gig::lfo3_ctrl_internal_modwheel:
440                                                pEngine->pBasicFilterParameters[i],                  lfo3_internal_depth  = pRegion->LFO3InternalDepth;
441                                                pEngine->pMainFilterParameters[i]);                  pLFO3->ExtController = 1; // MIDI controller 1
442                      if (Pos > pSample->LoopEnd) {                  bLFO3Enabled         = (lfo3_internal_depth > 0 || pRegion->LFO3ControlDepth > 0);
443                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;                  break;
444                          LoopCyclesLeft--;              case ::gig::lfo3_ctrl_internal_aftertouch:
445                      }                  lfo3_internal_depth  = pRegion->LFO3InternalDepth;
446                  }                  pLFO3->ExtController = CTRL_TABLE_IDX_AFTERTOUCH;
447                  // render on without loop                  bLFO3Enabled         = (lfo3_internal_depth > 0 || pRegion->LFO3ControlDepth > 0);
448                  while (i < Samples) {                  break;
449                      InterpolateOneStep_Stereo(pSrc, i,              default:
450                                                pEngine->pSynthesisParameters[Event::destination_vca][i],                  lfo3_internal_depth  = 0;
451                                                pEngine->pSynthesisParameters[Event::destination_vco][i],                  pLFO3->ExtController = 0; // no external controller
452                                                pEngine->pBasicFilterParameters[i],                  bLFO3Enabled         = false;
453                                                pEngine->pMainFilterParameters[i]);          }
454                  }          if (bLFO3Enabled) {
455              }              pLFO3->trigger(fromGigLfoWave(pRegion->LFO3WaveForm),
456              else { // render loop (endless loop)                             pRegion->LFO3Frequency,
457                  while (i < Samples) {                             pRegion->LFO3Phase,
458                      InterpolateOneStep_Stereo(pSrc, i,                             LFO::start_level_max, // see https://sourceforge.net/p/linuxsampler/mailman/linuxsampler-devel/thread/2189307.cNP0Xbctxq%40silver/#msg36774029
459                                                pEngine->pSynthesisParameters[Event::destination_vca][i],                             lfo3_internal_depth,
460                                                pEngine->pSynthesisParameters[Event::destination_vco][i],                             pRegion->LFO3ControlDepth,
461                                                pEngine->pBasicFilterParameters[i],                             pRegion->LFO3FlipPhase,
462                                                pEngine->pMainFilterParameters[i]);                             pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
463                      if (Pos > pSample->LoopEnd) {              pLFO3->updateByMIDICtrlValue(pLFO3->ExtController ? GetGigEngineChannel()->ControllerTable[pLFO3->ExtController] : 0);
464                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);              pLFO3->setScriptDepthFactor(
465                      }                  pNote->Override.PitchLFODepth.Value,
466                  }                  pNote->Override.PitchLFODepth.Final
467              }              );
468          }              if (pNote->Override.PitchLFOFreq.isFinal())
469          else { // Mono Sample                  pLFO3->setScriptFrequencyFinal(pNote->Override.PitchLFOFreq.Value, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
470              if (pSample->LoopPlayCount) {              else
471                  // render loop (loop count limited)                  pLFO3->setScriptFrequencyFactor(pNote->Override.PitchLFOFreq.Value, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
472                  while (i < Samples && LoopCyclesLeft) {          }
473                      InterpolateOneStep_Mono(pSrc, i,      }
474                                              pEngine->pSynthesisParameters[Event::destination_vca][i],  
475                                              pEngine->pSynthesisParameters[Event::destination_vco][i],      float Voice::CalculateCutoffBase(uint8_t MIDIKeyVelocity) {
476                                              pEngine->pBasicFilterParameters[i],          float cutoff = pRegion->GetVelocityCutoff(MIDIKeyVelocity);
477                                              pEngine->pMainFilterParameters[i]);          if (pRegion->VCFKeyboardTracking) {
478                      if (Pos > pSample->LoopEnd) {              cutoff *= RTMath::CentsToFreqRatioUnlimited((MIDIKey() - pRegion->VCFKeyboardTrackingBreakpoint) * 100);
479                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;          }
480                          LoopCyclesLeft--;          return cutoff;
481                      }      }
482                  }  
483                  // render on without loop      // This is just called when the voice is triggered. On any subsequent cutoff
484                  while (i < Samples) {      // controller changes ProcessCutoffEvent() is called instead.
485                      InterpolateOneStep_Mono(pSrc, i,      float Voice::CalculateFinalCutoff(float cutoffBase) {
486                                              pEngine->pSynthesisParameters[Event::destination_vca][i],          // if the selected filter type is an official GigaStudio filter type
487                                              pEngine->pSynthesisParameters[Event::destination_vco][i],          // then we preserve the original (no matter how odd) historical GSt
488                                              pEngine->pBasicFilterParameters[i],          // behaviour identically; for our own filter types though we deviate to
489                                              pEngine->pMainFilterParameters[i]);          // more meaningful behaviours where appropriate
490                  }          const bool isGStFilter = isGStFilterType(pRegion->VCFType);
491              }  
492              else { // render loop (endless loop)          // get current cutoff CC or velocity value (always 0..127)
493                  while (i < Samples) {          float cvalue;
494                      InterpolateOneStep_Mono(pSrc, i,          if (VCFCutoffCtrl.controller) {
495                                              pEngine->pSynthesisParameters[Event::destination_vca][i],              cvalue = GetGigEngineChannel()->ControllerTable[VCFCutoffCtrl.controller];
496                                              pEngine->pSynthesisParameters[Event::destination_vco][i],              if (pRegion->VCFCutoffControllerInvert) cvalue = 127 - cvalue;
497                                              pEngine->pBasicFilterParameters[i],              if (isGStFilter) {
498                                              pEngine->pMainFilterParameters[i]);                  // VCFVelocityScale in this case means "minimum cutoff" for GSt
499                      if (Pos > pSample->LoopEnd) {                  if (cvalue < MinCutoff()) cvalue = MinCutoff();
500                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;              } else {
501                      }                  // for our own filter types we interpret "minimum cutoff"
502                  }                  // differently: GSt handles this as a simple hard limit with the
503              }                  // consequence that a certain range of the controller is simply
504                    // dead; so for our filter types we rather remap that to
505                    // restrain within the min_cutoff..127 range as well, but
506                    // effectively spanned over the entire controller range (0..127)
507                    // to avoid such a "dead" lower controller zone
508                    cvalue = MinCutoff() + (cvalue / 127.f) * float(127 - MinCutoff());
509                }
510            } else {
511                // in case of velocity, VCFVelocityScale parameter is already
512                // handled on libgig side (so by calling
513                // pRegion->GetVelocityCutoff(velo) in CalculateCutoffBase() above)
514                cvalue = pRegion->VCFCutoff;
515            }
516    
517            float fco = cutoffBase * cvalue;
518            if (fco > 127.0f) fco = 127.0f;
519    
520            // the filter implementations of the original GSt filter types take an
521            // abstract cutoff parameter range of 0..127, ...
522            if (isGStFilter)
523                return fco;
524    
525            // ... whereas our own filter types take a cutoff parameter in Hz, so
526            // remap here 0 .. 127 [lin] -> 21 Hz .. 18 kHz [x^4] (center @2.2 kHz)
527            fco = (fco + 29.f) / (127.f + 29.f);
528            fco = fco * fco * fco * fco * 18000.f;
529            if (fco > 0.49f * pEngine->SampleRate)
530                fco = 0.49f * pEngine->SampleRate;
531            return fco;
532        }
533    
534        uint8_t Voice::GetVCFCutoffCtrl() {
535            uint8_t ctrl;
536            switch (pRegion->VCFCutoffController) {
537                case ::gig::vcf_cutoff_ctrl_modwheel:
538                    ctrl = 1;
539                    break;
540                case ::gig::vcf_cutoff_ctrl_effect1:
541                    ctrl = 12;
542                    break;
543                case ::gig::vcf_cutoff_ctrl_effect2:
544                    ctrl = 13;
545                    break;
546                case ::gig::vcf_cutoff_ctrl_breath:
547                    ctrl = 2;
548                    break;
549                case ::gig::vcf_cutoff_ctrl_foot:
550                    ctrl = 4;
551                    break;
552                case ::gig::vcf_cutoff_ctrl_sustainpedal:
553                    ctrl = 64;
554                    break;
555                case ::gig::vcf_cutoff_ctrl_softpedal:
556                    ctrl = 67;
557                    break;
558                case ::gig::vcf_cutoff_ctrl_genpurpose7:
559                    ctrl = 82;
560                    break;
561                case ::gig::vcf_cutoff_ctrl_genpurpose8:
562                    ctrl = 83;
563                    break;
564                case ::gig::vcf_cutoff_ctrl_aftertouch:
565                    ctrl = CTRL_TABLE_IDX_AFTERTOUCH;
566                    break;
567                case ::gig::vcf_cutoff_ctrl_none:
568                default:
569                    ctrl = 0;
570                    break;
571          }          }
572    
573            return ctrl;
574      }      }
575    
576      /**      uint8_t Voice::GetVCFResonanceCtrl() {
577       *  Immediately kill the voice.          uint8_t ctrl;
578       */          switch (pRegion->VCFResonanceController) {
579      void Voice::Kill() {              case ::gig::vcf_res_ctrl_genpurpose3:
580          if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {                  ctrl = 18;
581              pDiskThread->OrderDeletionOfStream(&DiskStreamRef);                  break;
582                case ::gig::vcf_res_ctrl_genpurpose4:
583                    ctrl = 19;
584                    break;
585                case ::gig::vcf_res_ctrl_genpurpose5:
586                    ctrl = 80;
587                    break;
588                case ::gig::vcf_res_ctrl_genpurpose6:
589                    ctrl = 81;
590                    break;
591                case ::gig::vcf_res_ctrl_none:
592                default:
593                    ctrl = 0;
594            }
595    
596            return ctrl;
597        }
598    
599        void Voice::TriggerEG1(const EGInfo& egInfo, double velrelease, double velocityAttenuation, uint sampleRate, uint8_t velocity) {
600            EG1.setStateOptions(
601                pRegion->EG1Options.AttackCancel,
602                pRegion->EG1Options.AttackHoldCancel,
603                pRegion->EG1Options.Decay1Cancel,
604                pRegion->EG1Options.Decay2Cancel,
605                pRegion->EG1Options.ReleaseCancel
606            );
607            EG1.trigger(pRegion->EG1PreAttack,
608                        (pNote && pNote->Override.Attack.isFinal()) ?
609                            pNote->Override.Attack.Value :
610                            RTMath::Max(pRegion->EG1Attack, 0.0316) * egInfo.Attack,
611                        pRegion->EG1Hold,
612                        (pNote && pNote->Override.Decay.isFinal()) ?
613                            pNote->Override.Decay.Value :
614                            pRegion->EG1Decay1 * egInfo.Decay * velrelease,
615                        (pNote && pNote->Override.Decay.isFinal()) ?
616                            pNote->Override.Decay.Value :
617                            pRegion->EG1Decay2 * egInfo.Decay * velrelease,
618                        pRegion->EG1InfiniteSustain,
619                        (pNote && pNote->Override.Sustain.Final) ?
620                            uint(pNote->Override.Sustain.Value * 1000.f) :
621                            pRegion->EG1Sustain * (pNote ? pNote->Override.Sustain.Value : 1.f),
622                        (pNote && pNote->Override.Release.isFinal()) ?
623                            pNote->Override.Release.Value :
624                            RTMath::Max(pRegion->EG1Release * velrelease, 0.014) * egInfo.Release,
625                        velocityAttenuation,
626                        sampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
627        }
628    
629        void Voice::TriggerEG2(const EGInfo& egInfo, double velrelease, double velocityAttenuation, uint sampleRate, uint8_t velocity) {
630            EG2.setStateOptions(
631                pRegion->EG2Options.AttackCancel,
632                pRegion->EG2Options.AttackHoldCancel,
633                pRegion->EG2Options.Decay1Cancel,
634                pRegion->EG2Options.Decay2Cancel,
635                pRegion->EG2Options.ReleaseCancel
636            );
637            EG2.trigger(uint(RgnInfo.EG2PreAttack),
638                        (pNote && pNote->Override.CutoffAttack.isFinal()) ?
639                            pNote->Override.CutoffAttack.Value :
640                            RgnInfo.EG2Attack * egInfo.Attack,
641                        false,
642                        (pNote && pNote->Override.CutoffDecay.isFinal()) ?
643                            pNote->Override.CutoffDecay.Value :
644                            RgnInfo.EG2Decay1 * egInfo.Decay * velrelease,
645                        (pNote && pNote->Override.CutoffDecay.isFinal()) ?
646                            pNote->Override.CutoffDecay.Value :
647                            RgnInfo.EG2Decay2 * egInfo.Decay * velrelease,
648                        RgnInfo.EG2InfiniteSustain,
649                        (pNote && pNote->Override.CutoffSustain.Final) ?
650                            uint(pNote->Override.CutoffSustain.Value * 1000.f) :
651                            uint(RgnInfo.EG2Sustain),
652                        (pNote && pNote->Override.CutoffRelease.isFinal()) ?
653                            pNote->Override.CutoffRelease.Value :
654                            RgnInfo.EG2Release * egInfo.Release * velrelease,
655                        velocityAttenuation,
656                        sampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
657        }
658    
659        void Voice::ProcessGroupEvent(RTList<Event>::Iterator& itEvent) {
660            dmsg(4,("Voice %p processGroupEvents event type=%d", (void*)this, itEvent->Type));
661    
662            // TODO: The SustainPedal condition could be wrong, maybe the
663            // check should be if this Voice is in release stage or is a
664            // release sample instead. Need to test this in GSt.
665            // -- Andreas
666            //
667            // Commented sustain pedal check out. I don't think voices of the same
668            // note should be stopped at all, because it doesn't sound naturally
669            // with a drumkit.
670            // -- Christian, 2013-01-08
671            if (itEvent->Param.Note.Key != HostKey() /*||
672                !GetGigEngineChannel()->SustainPedal*/) {
673                dmsg(4,("Voice %p - kill", (void*)this));
674    
675                // kill the voice fast
676                pEG1->enterFadeOutStage();
677            }
678        }
679    
680        void Voice::CalculateFadeOutCoeff(float FadeOutTime, float SampleRate) {
681            EG1.CalculateFadeOutCoeff(FadeOutTime, SampleRate);
682        }
683    
684        int Voice::CalculatePan(uint8_t pan) {
685            int p;
686            // Gst behaviour: -64 and 63 are special cases
687            if (RgnInfo.Pan == -64)     p = pan * 2 - 127;
688            else if (RgnInfo.Pan == 63) p = pan * 2;
689            else                        p = pan + RgnInfo.Pan;
690    
691            if (p < 0) return 0;
692            if (p > 127) return 127;
693            return p;
694        }
695    
696        release_trigger_t Voice::GetReleaseTriggerFlags() {
697            release_trigger_t flags =
698                (pRegion->NoNoteOffReleaseTrigger) ?
699                    release_trigger_none : release_trigger_noteoff; //HACK: currently this method is actually only called by EngineBase if it already knows that this voice requires release trigger, so I took the short way instead of checking (again) the existence of a ::gig::dimension_releasetrigger
700            switch (pRegion->SustainReleaseTrigger) {
701                case ::gig::sust_rel_trg_none:
702                    break;
703                case ::gig::sust_rel_trg_maxvelocity:
704                    flags |= release_trigger_sustain_maxvelocity;
705                    break;
706                case ::gig::sust_rel_trg_keyvelocity:
707                    flags |= release_trigger_sustain_keyvelocity;
708                    break;
709          }          }
710          Reset();          return flags;
711      }      }
712    
713  }} // namespace LinuxSampler::gig  }} // namespace LinuxSampler::gig

Legend:
Removed from v.233  
changed lines
  Added in v.3655

  ViewVC Help
Powered by ViewVC