/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 285 by schoenebeck, Thu Oct 14 21:31:26 2004 UTC revision 3655 by schoenebeck, Fri Dec 13 17:14:48 2019 UTC
# Line 3  Line 3 
3   *   LinuxSampler - modular, streaming capable sampler                     *   *   LinuxSampler - modular, streaming capable sampler                     *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *
6     *   Copyright (C) 2005 - 2008 Christian Schoenebeck                       *
7     *   Copyright (C) 2009 Christian Schoenebeck and Grigor Iliev             *
8     *   Copyright (C) 2010 - 2017 Christian Schoenebeck and Andreas Persson   *
9   *                                                                         *   *                                                                         *
10   *   This program is free software; you can redistribute it and/or modify  *   *   This program is free software; you can redistribute it and/or modify  *
11   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 20  Line 23 
23   *   MA  02111-1307  USA                                                   *   *   MA  02111-1307  USA                                                   *
24   ***************************************************************************/   ***************************************************************************/
25    
26  #include "EGADSR.h"  #include "../../common/Features.h"
27  #include "Manipulator.h"  #include "Synthesizer.h"
28    #include "Profiler.h"
29    #include "Engine.h"
30    #include "EngineChannel.h"
31    
32  #include "Voice.h"  #include "Voice.h"
33    
34  namespace LinuxSampler { namespace gig {  namespace LinuxSampler { namespace gig {
35    
36      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());      // sanity checks: fromGigLfoWave() assumes equally mapped enums
37        static_assert(int64_t(::gig::lfo_wave_sine) == int64_t(LFO::wave_sine),
38      const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());                    "enum LFO::wave_t not equally value mapped to libgig's enum ::gig::lfo_wave_t");
39        static_assert(int64_t(::gig::lfo_wave_triangle) == int64_t(LFO::wave_triangle),
40      float Voice::CalculateFilterCutoffCoeff() {                    "enum LFO::wave_t not equally value mapped to libgig's enum ::gig::lfo_wave_t");
41          return log(FILTER_CUTOFF_MIN / FILTER_CUTOFF_MAX);      static_assert(int64_t(::gig::lfo_wave_saw) == int64_t(LFO::wave_saw),
42      }                    "enum LFO::wave_t not equally value mapped to libgig's enum ::gig::lfo_wave_t");
43        static_assert(int64_t(::gig::lfo_wave_square) == int64_t(LFO::wave_square),
44      int Voice::CalculateFilterUpdateMask() {                    "enum LFO::wave_t not equally value mapped to libgig's enum ::gig::lfo_wave_t");
45          if (FILTER_UPDATE_PERIOD <= 0) return 0;  
46          int power_of_two;      // converts ::gig::lfo_wave_t (libgig) -> LFO::wave_t (LinuxSampler)
47          for (power_of_two = 0; 1<<power_of_two < FILTER_UPDATE_PERIOD; power_of_two++);      inline LFO::wave_t fromGigLfoWave(::gig::lfo_wave_t wave) {
48          return (1 << power_of_two) - 1;          // simply assuming equally mapped enums on both sides
49            return static_cast<LFO::wave_t>(wave);
50        }
51    
52        // Returns true for GigaStudio's original filter types (which are resembled
53        // by LS very accurately with same frequency response and patch settings
54        // behaviour), false for our own LS specific filter implementation types.
55        constexpr bool isGStFilterType(::gig::vcf_type_t type) {
56            return type == ::gig::vcf_type_lowpass ||
57                   type == ::gig::vcf_type_lowpassturbo ||
58                   type == ::gig::vcf_type_bandpass ||
59                   type == ::gig::vcf_type_highpass ||
60                   type == ::gig::vcf_type_bandreject;
61      }      }
62    
63      Voice::Voice() {      Voice::Voice() {
64          pEngine     = NULL;          pEngine = NULL;
65          pDiskThread = NULL;          pEG1 = &EG1;
66          PlaybackState = playback_state_end;          pEG2 = &EG2;
         pEG1   = NULL;  
         pEG2   = NULL;  
         pEG3   = NULL;  
         pVCAManipulator  = NULL;  
         pVCFCManipulator = NULL;  
         pVCOManipulator  = NULL;  
         pLFO1  = NULL;  
         pLFO2  = NULL;  
         pLFO3  = NULL;  
         KeyGroup = 0;  
67      }      }
68    
69      Voice::~Voice() {      Voice::~Voice() {
         if (pEG1)  delete pEG1;  
         if (pEG2)  delete pEG2;  
         if (pEG3)  delete pEG3;  
         if (pLFO1) delete pLFO1;  
         if (pLFO2) delete pLFO2;  
         if (pLFO3) delete pLFO3;  
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
     }  
   
     void Voice::SetEngine(Engine* pEngine) {  
         this->pEngine = pEngine;  
   
         // delete old objects  
         if (pEG1) delete pEG1;  
         if (pEG2) delete pEG2;  
         if (pEG3) delete pEG3;  
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
         if (pLFO1) delete pLFO1;  
         if (pLFO2) delete pLFO2;  
         if (pLFO3) delete pLFO3;  
   
         // create new ones  
         pEG1   = new EGADSR(pEngine, Event::destination_vca);  
         pEG2   = new EGADSR(pEngine, Event::destination_vcfc);  
         pEG3   = new EGDecay(pEngine, Event::destination_vco);  
         pVCAManipulator  = new VCAManipulator(pEngine);  
         pVCFCManipulator = new VCFCManipulator(pEngine);  
         pVCOManipulator  = new VCOManipulator(pEngine);  
         pLFO1  = new LFO<gig::VCAManipulator>(0.0f, 1.0f, LFO<VCAManipulator>::propagation_top_down, pVCAManipulator, pEngine->pEventPool);  
         pLFO2  = new LFO<gig::VCFCManipulator>(0.0f, 1.0f, LFO<VCFCManipulator>::propagation_top_down, pVCFCManipulator, pEngine->pEventPool);  
         pLFO3  = new LFO<gig::VCOManipulator>(-1200.0f, 1200.0f, LFO<VCOManipulator>::propagation_middle_balanced, pVCOManipulator, pEngine->pEventPool); // +-1 octave (+-1200 cents) max.  
   
         this->pDiskThread = pEngine->pDiskThread;  
         dmsg(6,("Voice::SetEngine()\n"));  
70      }      }
71    
72      /**      EngineChannel* Voice::GetGigEngineChannel() {
73       *  Initializes and triggers the voice, a disk stream will be launched if          return static_cast<EngineChannel*>(pEngineChannel);
74       *  needed.      }
      *  
      *  @param itNoteOnEvent       - event that caused triggering of this voice  
      *  @param PitchBend           - MIDI detune factor (-8192 ... +8191)  
      *  @param pInstrument         - points to the loaded instrument which provides sample wave(s) and articulation data  
      *  @param iLayer              - layer number this voice refers to (only if this is a layered sound of course)  
      *  @param ReleaseTriggerVoice - if this new voice is a release trigger voice (optional, default = false)  
      *  @returns 0 on success, a value < 0 if something failed  
      */  
     int Voice::Trigger(Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::Instrument* pInstrument, int iLayer, bool ReleaseTriggerVoice) {  
         if (!pInstrument) {  
            dmsg(1,("voice::trigger: !pInstrument\n"));  
            exit(EXIT_FAILURE);  
         }  
   
         Type            = type_normal;  
         MIDIKey         = itNoteOnEvent->Param.Note.Key;  
         pRegion         = pInstrument->GetRegion(MIDIKey);  
         PlaybackState   = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed  
         Delay           = itNoteOnEvent->FragmentPos();  
         itTriggerEvent  = itNoteOnEvent;  
         itKillEvent     = Pool<Event>::Iterator();  
         itChildVoice    = Pool<Voice>::Iterator();  
   
         if (!pRegion) {  
             std::cerr << "gig::Voice: No Region defined for MIDI key " << MIDIKey << std::endl << std::flush;  
             KillImmediately();  
             return -1;  
         }  
   
         KeyGroup = pRegion->KeyGroup;  
75    
76          // get current dimension values to select the right dimension region      void Voice::SetEngine(LinuxSampler::Engine* pEngine) {
77          //FIXME: controller values for selecting the dimension region here are currently not sample accurate          Engine* engine = static_cast<Engine*>(pEngine);
78          uint DimValues[5] = {0,0,0,0,0};          this->pEngine     = engine;
79          for (int i = pRegion->Dimensions - 1; i >= 0; i--) {          this->pDiskThread = engine->pDiskThread;
80              switch (pRegion->pDimensionDefinitions[i].dimension) {          dmsg(6,("Voice::SetEngine()\n"));
81                  case ::gig::dimension_samplechannel:      }
                     DimValues[i] = 0; //TODO: we currently ignore this dimension  
                     break;  
                 case ::gig::dimension_layer:  
                     DimValues[i] = iLayer;  
                     // if this is the 1st layer then spawn further voices for all the other layers  
                     if (iLayer == 0)  
                         for (int iNewLayer = 1; iNewLayer < pRegion->pDimensionDefinitions[i].zones; iNewLayer++)  
                             itChildVoice = pEngine->LaunchVoice(itNoteOnEvent, iNewLayer, ReleaseTriggerVoice);  
                     break;  
                 case ::gig::dimension_velocity:  
                     DimValues[i] = itNoteOnEvent->Param.Note.Velocity;  
                     break;  
                 case ::gig::dimension_channelaftertouch:  
                     DimValues[i] = 0; //TODO: we currently ignore this dimension  
                     break;  
                 case ::gig::dimension_releasetrigger:  
                     Type = (ReleaseTriggerVoice) ? type_release_trigger : (!iLayer) ? type_release_trigger_required : type_normal;  
                     DimValues[i] = (uint) ReleaseTriggerVoice;  
                     break;  
                 case ::gig::dimension_keyboard:  
                     DimValues[i] = (uint) itNoteOnEvent->Param.Note.Key;  
                     break;  
                 case ::gig::dimension_modwheel:  
                     DimValues[i] = pEngine->ControllerTable[1];  
                     break;  
                 case ::gig::dimension_breath:  
                     DimValues[i] = pEngine->ControllerTable[2];  
                     break;  
                 case ::gig::dimension_foot:  
                     DimValues[i] = pEngine->ControllerTable[4];  
                     break;  
                 case ::gig::dimension_portamentotime:  
                     DimValues[i] = pEngine->ControllerTable[5];  
                     break;  
                 case ::gig::dimension_effect1:  
                     DimValues[i] = pEngine->ControllerTable[12];  
                     break;  
                 case ::gig::dimension_effect2:  
                     DimValues[i] = pEngine->ControllerTable[13];  
                     break;  
                 case ::gig::dimension_genpurpose1:  
                     DimValues[i] = pEngine->ControllerTable[16];  
                     break;  
                 case ::gig::dimension_genpurpose2:  
                     DimValues[i] = pEngine->ControllerTable[17];  
                     break;  
                 case ::gig::dimension_genpurpose3:  
                     DimValues[i] = pEngine->ControllerTable[18];  
                     break;  
                 case ::gig::dimension_genpurpose4:  
                     DimValues[i] = pEngine->ControllerTable[19];  
                     break;  
                 case ::gig::dimension_sustainpedal:  
                     DimValues[i] = pEngine->ControllerTable[64];  
                     break;  
                 case ::gig::dimension_portamento:  
                     DimValues[i] = pEngine->ControllerTable[65];  
                     break;  
                 case ::gig::dimension_sostenutopedal:  
                     DimValues[i] = pEngine->ControllerTable[66];  
                     break;  
                 case ::gig::dimension_softpedal:  
                     DimValues[i] = pEngine->ControllerTable[67];  
                     break;  
                 case ::gig::dimension_genpurpose5:  
                     DimValues[i] = pEngine->ControllerTable[80];  
                     break;  
                 case ::gig::dimension_genpurpose6:  
                     DimValues[i] = pEngine->ControllerTable[81];  
                     break;  
                 case ::gig::dimension_genpurpose7:  
                     DimValues[i] = pEngine->ControllerTable[82];  
                     break;  
                 case ::gig::dimension_genpurpose8:  
                     DimValues[i] = pEngine->ControllerTable[83];  
                     break;  
                 case ::gig::dimension_effect1depth:  
                     DimValues[i] = pEngine->ControllerTable[91];  
                     break;  
                 case ::gig::dimension_effect2depth:  
                     DimValues[i] = pEngine->ControllerTable[92];  
                     break;  
                 case ::gig::dimension_effect3depth:  
                     DimValues[i] = pEngine->ControllerTable[93];  
                     break;  
                 case ::gig::dimension_effect4depth:  
                     DimValues[i] = pEngine->ControllerTable[94];  
                     break;  
                 case ::gig::dimension_effect5depth:  
                     DimValues[i] = pEngine->ControllerTable[95];  
                     break;  
                 case ::gig::dimension_none:  
                     std::cerr << "gig::Voice::Trigger() Error: dimension=none\n" << std::flush;  
                     break;  
                 default:  
                     std::cerr << "gig::Voice::Trigger() Error: Unknown dimension\n" << std::flush;  
             }  
         }  
         pDimRgn = pRegion->GetDimensionRegionByValue(DimValues[4],DimValues[3],DimValues[2],DimValues[1],DimValues[0]);  
82    
83          // get starting crossfade volume level      Voice::SampleInfo Voice::GetSampleInfo() {
84          switch (pDimRgn->AttenuationController.type) {          SampleInfo si;
85              case ::gig::attenuation_ctrl_t::type_channelaftertouch:          si.SampleRate       = pSample->SamplesPerSecond;
86                  CrossfadeVolume = 1.0f; //TODO: aftertouch not supported yet          si.ChannelCount     = pSample->Channels;
87                  break;          si.FrameSize        = pSample->FrameSize;
88              case ::gig::attenuation_ctrl_t::type_velocity:          si.BitDepth         = pSample->BitDepth;
89                  CrossfadeVolume = CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity);          si.TotalFrameCount  = (uint)pSample->SamplesTotal;
                 break;  
             case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate  
                 CrossfadeVolume = CrossfadeAttenuation(pEngine->ControllerTable[pDimRgn->AttenuationController.controller_number]);  
                 break;  
             case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined  
             default:  
                 CrossfadeVolume = 1.0f;  
         }  
90    
91          PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;          si.HasLoops       = pRegion->SampleLoops;
92          PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;          si.LoopStart      = (si.HasLoops) ? pRegion->pSampleLoops[0].LoopStart  : 0;
93            si.LoopLength     = (si.HasLoops) ? pRegion->pSampleLoops[0].LoopLength : 0;
94            si.LoopPlayCount  = pSample->LoopPlayCount;
95            si.Unpitched      = !pRegion->PitchTrack;
96    
97          pSample = pDimRgn->pSample; // sample won't change until the voice is finished          return si;
98        }
99    
100          Pos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)      Voice::RegionInfo Voice::GetRegionInfo() {
101            RegionInfo ri;
102            ri.UnityNote = pRegion->UnityNote;
103            ri.FineTune  = pRegion->FineTune;
104            ri.Pan       = pRegion->Pan;
105            ri.SampleStartOffset = pRegion->SampleStartOffset;
106    
107          // Check if the sample needs disk streaming or is too short for that          ri.EG2PreAttack        = pRegion->EG2PreAttack;
108          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;          ri.EG2Attack           = pRegion->EG2Attack;
109          DiskVoice          = cachedsamples < pSample->SamplesTotal;          ri.EG2Decay1           = pRegion->EG2Decay1;
110            ri.EG2Decay2           = pRegion->EG2Decay2;
111            ri.EG2Sustain          = pRegion->EG2Sustain;
112            ri.EG2InfiniteSustain  = pRegion->EG2InfiniteSustain;
113            ri.EG2Release          = pRegion->EG2Release;
114    
115          if (DiskVoice) { // voice to be streamed from disk          ri.EG3Attack     = pRegion->EG3Attack;
116              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)          ri.EG3Depth      = pRegion->EG3Depth;
117            ri.VCFEnabled    = pRegion->VCFEnabled;
118            ri.VCFType       = Filter::vcf_type_t(pRegion->VCFType);
119            ri.VCFResonance  = pRegion->VCFResonance;
120    
121              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample          ri.ReleaseTriggerDecay = 0.01053 * (256 >> pRegion->ReleaseTriggerDecay);
             if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {  
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
122    
123              if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {          return ri;
124                  dmsg(1,("Disk stream order failed!\n"));      }
                 KillImmediately();  
                 return -1;  
             }  
             dmsg(4,("Disk voice launched (cached samples: %d, total Samples: %d, MaxRAMPos: %d, RAMLooping: %s)\n", cachedsamples, pSample->SamplesTotal, MaxRAMPos, (RAMLoop) ? "yes" : "no"));  
         }  
         else { // RAM only voice  
             MaxRAMPos = cachedsamples;  
             if (pSample->Loops) {  
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
             dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));  
         }  
125    
126        Voice::InstrumentInfo Voice::GetInstrumentInfo() {
127            InstrumentInfo ii;
128            ii.FineTune = GetGigEngineChannel()->pInstrument->FineTune;
129            ii.PitchbendRange = GetGigEngineChannel()->pInstrument->PitchbendRange;
130    
131          // calculate initial pitch value          return ii;
132          {      }
             double pitchbasecents = pDimRgn->FineTune * 10 + (int) pEngine->ScaleTuning[MIDIKey % 12];  
             if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;  
             this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));  
             this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents  
         }  
133    
134        double Voice::GetSampleAttenuation() {
135            return pRegion->SampleAttenuation;
136        }
137    
138          Volume = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity) / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)      double Voice::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
139            return pRegion->GetVelocityAttenuation(MIDIKeyVelocity);
140        }
141    
142        double Voice::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
143            return pRegion->GetVelocityRelease(MIDIKeyVelocity);
144        }
145    
146          // setup EG 1 (VCA EG)      void Voice::ProcessCCEvent(RTList<Event>::Iterator& itEvent) {
147          {          if (itEvent->Type == Event::type_control_change && itEvent->Param.CC.Controller) { // if (valid) MIDI control change event
148              // get current value of EG1 controller              if (pRegion->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
149              double eg1controllervalue;                  itEvent->Param.CC.Controller == pRegion->AttenuationController.controller_number) {
150              switch (pDimRgn->EG1Controller.type) {                  CrossfadeSmoother.update(AbstractEngine::CrossfadeCurve[CrossfadeAttenuation(itEvent->Param.CC.Value)]);
                 case ::gig::eg1_ctrl_t::type_none: // no controller defined  
                     eg1controllervalue = 0;  
                     break;  
                 case ::gig::eg1_ctrl_t::type_channelaftertouch:  
                     eg1controllervalue = 0; // TODO: aftertouch not yet supported  
                     break;  
                 case ::gig::eg1_ctrl_t::type_velocity:  
                     eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;  
                     break;  
                 case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller  
                     eg1controllervalue = pEngine->ControllerTable[pDimRgn->EG1Controller.controller_number];  
                     break;  
151              }              }
             if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;  
   
             // calculate influence of EG1 controller on EG1's parameters (TODO: needs to be fine tuned)  
             double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerAttackInfluence)  * eg1controllervalue : 0.0;  
             double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 0.0;  
             double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 0.0;  
   
             pEG1->Trigger(pDimRgn->EG1PreAttack,  
                           pDimRgn->EG1Attack + eg1attack,  
                           pDimRgn->EG1Hold,  
                           pSample->LoopStart,  
                           pDimRgn->EG1Decay1 + eg1decay,  
                           pDimRgn->EG1Decay2 + eg1decay,  
                           pDimRgn->EG1InfiniteSustain,  
                           pDimRgn->EG1Sustain,  
                           pDimRgn->EG1Release + eg1release,  
                           Delay);  
152          }          }
153        }
154    
155        void Voice::ProcessChannelPressureEvent(RTList<Event>::Iterator& itEvent) {
156      #if ENABLE_FILTER          if (itEvent->Type == Event::type_channel_pressure) { // if (valid) MIDI channel pressure (aftertouch) event
157          // setup EG 2 (VCF Cutoff EG)              if (pRegion->AttenuationController.type == ::gig::attenuation_ctrl_t::type_channelaftertouch) {
158          {                  CrossfadeSmoother.update(AbstractEngine::CrossfadeCurve[CrossfadeAttenuation(itEvent->Param.ChannelPressure.Value)]);
             // get current value of EG2 controller  
             double eg2controllervalue;  
             switch (pDimRgn->EG2Controller.type) {  
                 case ::gig::eg2_ctrl_t::type_none: // no controller defined  
                     eg2controllervalue = 0;  
                     break;  
                 case ::gig::eg2_ctrl_t::type_channelaftertouch:  
                     eg2controllervalue = 0; // TODO: aftertouch not yet supported  
                     break;  
                 case ::gig::eg2_ctrl_t::type_velocity:  
                     eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;  
                     break;  
                 case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller  
                     eg2controllervalue = pEngine->ControllerTable[pDimRgn->EG2Controller.controller_number];  
                     break;  
159              }              }
             if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;  
   
             // calculate influence of EG2 controller on EG2's parameters (TODO: needs to be fine tuned)  
             double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 0.0;  
             double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 0.0;  
             double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 0.0;  
   
             pEG2->Trigger(pDimRgn->EG2PreAttack,  
                           pDimRgn->EG2Attack + eg2attack,  
                           false,  
                           pSample->LoopStart,  
                           pDimRgn->EG2Decay1 + eg2decay,  
                           pDimRgn->EG2Decay2 + eg2decay,  
                           pDimRgn->EG2InfiniteSustain,  
                           pDimRgn->EG2Sustain,  
                           pDimRgn->EG2Release + eg2release,  
                           Delay);  
160          }          }
161      #endif // ENABLE_FILTER      }
162    
163        void Voice::ProcessPolyphonicKeyPressureEvent(RTList<Event>::Iterator& itEvent) {
164            // Not used so far
165        }
166    
167          // setup EG 3 (VCO EG)      uint8_t Voice::MinCutoff() const {
168          {          // If there's a cutoff controller defined then VCFVelocityScale means
169            double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);          // "minimum cutoff". If there is no MIDI controller defined for cutoff
170            pEG3->Trigger(eg3depth, pDimRgn->EG3Attack, Delay);          // then VCFVelocityScale is already taken into account on libgig side
171          }          // instead by call to pRegion->GetVelocityCutoff(MIDIKeyVelocity).
172            return pRegion->VCFVelocityScale;
173        }
174    
175        // This is called on any cutoff controller changes, however not when the
176        // voice is triggered. So the initial cutoff value is retrieved by a call
177        // to CalculateFinalCutoff() instead.
178        void Voice::ProcessCutoffEvent(RTList<Event>::Iterator& itEvent) {
179            if (VCFCutoffCtrl.value == itEvent->Param.CC.Value) return;
180            float ccvalue = VCFCutoffCtrl.value = itEvent->Param.CC.Value;
181    
182          // setup LFO 1 (VCA LFO)          // if the selected filter type is an official GigaStudio filter type
183          {          // then we preserve the original (no matter how odd) historical GSt
184              uint16_t lfo1_internal_depth;          // behaviour identically; for our own filter types though we deviate to
185              switch (pDimRgn->LFO1Controller) {          // more meaningful behaviours where appropriate
186                  case ::gig::lfo1_ctrl_internal:          const bool isGStFilter = isGStFilterType(pRegion->VCFType);
                     lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;  
                     pLFO1->ExtController = 0; // no external controller  
                     break;  
                 case ::gig::lfo1_ctrl_modwheel:  
                     lfo1_internal_depth  = 0;  
                     pLFO1->ExtController = 1; // MIDI controller 1  
                     break;  
                 case ::gig::lfo1_ctrl_breath:  
                     lfo1_internal_depth  = 0;  
                     pLFO1->ExtController = 2; // MIDI controller 2  
                     break;  
                 case ::gig::lfo1_ctrl_internal_modwheel:  
                     lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;  
                     pLFO1->ExtController = 1; // MIDI controller 1  
                     break;  
                 case ::gig::lfo1_ctrl_internal_breath:  
                     lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;  
                     pLFO1->ExtController = 2; // MIDI controller 2  
                     break;  
                 default:  
                     lfo1_internal_depth  = 0;  
                     pLFO1->ExtController = 0; // no external controller  
             }  
             pLFO1->Trigger(pDimRgn->LFO1Frequency,  
                           lfo1_internal_depth,  
                           pDimRgn->LFO1ControlDepth,  
                           pEngine->ControllerTable[pLFO1->ExtController],  
                           pDimRgn->LFO1FlipPhase,  
                           pEngine->SampleRate,  
                           Delay);  
         }  
187    
188      #if ENABLE_FILTER          if (pRegion->VCFCutoffControllerInvert) ccvalue = 127 - ccvalue;
189          // setup LFO 2 (VCF Cutoff LFO)          if (isGStFilter) {
190          {              // VCFVelocityScale in this case means "minimum cutoff" for GSt
191              uint16_t lfo2_internal_depth;              if (ccvalue < MinCutoff()) ccvalue = MinCutoff();
192              switch (pDimRgn->LFO2Controller) {          } else {
193                  case ::gig::lfo2_ctrl_internal:              // for our own filter types we interpret "minimum cutoff"
194                      lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;              // differently: GSt handles this as a simple hard limit with the
195                      pLFO2->ExtController = 0; // no external controller              // consequence that a certain range of the controller is simply
196                      break;              // dead; so for our filter types we rather remap that to
197                  case ::gig::lfo2_ctrl_modwheel:              // restrain within the min_cutoff..127 range as well, but
198                      lfo2_internal_depth  = 0;              // effectively spanned over the entire controller range (0..127)
199                      pLFO2->ExtController = 1; // MIDI controller 1              // to avoid such a "dead" lower controller zone
200                      break;              ccvalue = MinCutoff() + (ccvalue / 127.f) * float(127 - MinCutoff());
                 case ::gig::lfo2_ctrl_foot:  
                     lfo2_internal_depth  = 0;  
                     pLFO2->ExtController = 4; // MIDI controller 4  
                     break;  
                 case ::gig::lfo2_ctrl_internal_modwheel:  
                     lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;  
                     pLFO2->ExtController = 1; // MIDI controller 1  
                     break;  
                 case ::gig::lfo2_ctrl_internal_foot:  
                     lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;  
                     pLFO2->ExtController = 4; // MIDI controller 4  
                     break;  
                 default:  
                     lfo2_internal_depth  = 0;  
                     pLFO2->ExtController = 0; // no external controller  
             }  
             pLFO2->Trigger(pDimRgn->LFO2Frequency,  
                           lfo2_internal_depth,  
                           pDimRgn->LFO2ControlDepth,  
                           pEngine->ControllerTable[pLFO2->ExtController],  
                           pDimRgn->LFO2FlipPhase,  
                           pEngine->SampleRate,  
                           Delay);  
201          }          }
     #endif // ENABLE_FILTER  
   
         // setup LFO 3 (VCO LFO)  
         {  
             uint16_t lfo3_internal_depth;  
             switch (pDimRgn->LFO3Controller) {  
                 case ::gig::lfo3_ctrl_internal:  
                     lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;  
                     pLFO3->ExtController = 0; // no external controller  
                     break;  
                 case ::gig::lfo3_ctrl_modwheel:  
                     lfo3_internal_depth  = 0;  
                     pLFO3->ExtController = 1; // MIDI controller 1  
                     break;  
                 case ::gig::lfo3_ctrl_aftertouch:  
                     lfo3_internal_depth  = 0;  
                     pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet  
                     break;  
                 case ::gig::lfo3_ctrl_internal_modwheel:  
                     lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;  
                     pLFO3->ExtController = 1; // MIDI controller 1  
                     break;  
                 case ::gig::lfo3_ctrl_internal_aftertouch:  
                     lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;  
                     pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet  
                     break;  
                 default:  
                     lfo3_internal_depth  = 0;  
                     pLFO3->ExtController = 0; // no external controller  
             }  
             pLFO3->Trigger(pDimRgn->LFO3Frequency,  
                           lfo3_internal_depth,  
                           pDimRgn->LFO3ControlDepth,  
                           pEngine->ControllerTable[pLFO3->ExtController],  
                           false,  
                           pEngine->SampleRate,  
                           Delay);  
         }  
   
     #if ENABLE_FILTER  
         #if FORCE_FILTER_USAGE  
         FilterLeft.Enabled = FilterRight.Enabled = true;  
         #else // use filter only if instrument file told so  
         FilterLeft.Enabled = FilterRight.Enabled = pDimRgn->VCFEnabled;  
         #endif // FORCE_FILTER_USAGE  
         if (pDimRgn->VCFEnabled) {  
             #ifdef OVERRIDE_FILTER_CUTOFF_CTRL  
             VCFCutoffCtrl.controller = OVERRIDE_FILTER_CUTOFF_CTRL;  
             #else // use the one defined in the instrument file  
             switch (pDimRgn->VCFCutoffController) {  
                 case ::gig::vcf_cutoff_ctrl_modwheel:  
                     VCFCutoffCtrl.controller = 1;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_effect1:  
                     VCFCutoffCtrl.controller = 12;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_effect2:  
                     VCFCutoffCtrl.controller = 13;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_breath:  
                     VCFCutoffCtrl.controller = 2;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_foot:  
                     VCFCutoffCtrl.controller = 4;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_sustainpedal:  
                     VCFCutoffCtrl.controller = 64;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_softpedal:  
                     VCFCutoffCtrl.controller = 67;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_genpurpose7:  
                     VCFCutoffCtrl.controller = 82;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_genpurpose8:  
                     VCFCutoffCtrl.controller = 83;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_aftertouch: //TODO: not implemented yet  
                 case ::gig::vcf_cutoff_ctrl_none:  
                 default:  
                     VCFCutoffCtrl.controller = 0;  
                     break;  
             }  
             #endif // OVERRIDE_FILTER_CUTOFF_CTRL  
   
             #ifdef OVERRIDE_FILTER_RES_CTRL  
             VCFResonanceCtrl.controller = OVERRIDE_FILTER_RES_CTRL;  
             #else // use the one defined in the instrument file  
             switch (pDimRgn->VCFResonanceController) {  
                 case ::gig::vcf_res_ctrl_genpurpose3:  
                     VCFResonanceCtrl.controller = 18;  
                     break;  
                 case ::gig::vcf_res_ctrl_genpurpose4:  
                     VCFResonanceCtrl.controller = 19;  
                     break;  
                 case ::gig::vcf_res_ctrl_genpurpose5:  
                     VCFResonanceCtrl.controller = 80;  
                     break;  
                 case ::gig::vcf_res_ctrl_genpurpose6:  
                     VCFResonanceCtrl.controller = 81;  
                     break;  
                 case ::gig::vcf_res_ctrl_none:  
                 default:  
                     VCFResonanceCtrl.controller = 0;  
             }  
             #endif // OVERRIDE_FILTER_RES_CTRL  
   
             #ifndef OVERRIDE_FILTER_TYPE  
             FilterLeft.SetType(pDimRgn->VCFType);  
             FilterRight.SetType(pDimRgn->VCFType);  
             #else // override filter type  
             FilterLeft.SetType(OVERRIDE_FILTER_TYPE);  
             FilterRight.SetType(OVERRIDE_FILTER_TYPE);  
             #endif // OVERRIDE_FILTER_TYPE  
   
             VCFCutoffCtrl.value    = pEngine->ControllerTable[VCFCutoffCtrl.controller];  
             VCFResonanceCtrl.value = pEngine->ControllerTable[VCFResonanceCtrl.controller];  
   
             // calculate cutoff frequency  
             float cutoff = (!VCFCutoffCtrl.controller)  
                 ? exp((float) (127 - itNoteOnEvent->Param.Note.Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX  
                 : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX;  
   
             // calculate resonance  
             float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0  
             if (pDimRgn->VCFKeyboardTracking) {  
                 resonance += (float) (itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;  
             }  
             Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)  
   
             VCFCutoffCtrl.fvalue    = cutoff - FILTER_CUTOFF_MIN;  
             VCFResonanceCtrl.fvalue = resonance;  
202    
203              FilterLeft.SetParameters(cutoff,  resonance, pEngine->SampleRate);          float cutoff = CutoffBase * ccvalue;
204              FilterRight.SetParameters(cutoff, resonance, pEngine->SampleRate);          if (cutoff > 127.0f) cutoff = 127.0f;
205    
206              FilterUpdateCounter = -1;          // the filter implementations of the original GSt filter types take an
207            // abstract cutoff parameter range of 0..127, whereas our own filter
208            // types take a cutoff parameter in Hz, so remap here:
209            // 0 .. 127 [lin] -> 21 Hz .. 18 kHz [x^4] (center @2.2 kHz)
210            if (!isGStFilter) {
211                cutoff = (cutoff + 29.f) / (127.f + 29.f);
212                cutoff = cutoff * cutoff * cutoff * cutoff * 18000.f;
213                if (cutoff > 0.49f * pEngine->SampleRate)
214                    cutoff = 0.49f * pEngine->SampleRate;
215          }          }
         else {  
             VCFCutoffCtrl.controller    = 0;  
             VCFResonanceCtrl.controller = 0;  
         }  
     #endif // ENABLE_FILTER  
216    
217          return 0; // success          fFinalCutoff = VCFCutoffCtrl.fvalue = cutoff;
218      }      }
219    
220      /**      double Voice::CalculateCrossfadeVolume(uint8_t MIDIKeyVelocity) {
221       *  Renders the audio data for this voice for the current audio fragment.          float crossfadeVolume;
222       *  The sample input data can either come from RAM (cached sample or sample          switch (pRegion->AttenuationController.type) {
223       *  part) or directly from disk. The output signal will be rendered by              case ::gig::attenuation_ctrl_t::type_channelaftertouch:
224       *  resampling / interpolation. If this voice is a disk streaming voice and                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(GetGigEngineChannel()->ControllerTable[128])];
      *  the voice completely played back the cached RAM part of the sample, it  
      *  will automatically switch to disk playback for the next RenderAudio()  
      *  call.  
      *  
      *  @param Samples - number of samples to be rendered in this audio fragment cycle  
      */  
     void Voice::Render(uint Samples) {  
   
         // Reset the synthesis parameter matrix  
         pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * pEngine->GlobalVolume);  
         pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);  
     #if ENABLE_FILTER  
         pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);  
     #endif // ENABLE_FILTER  
   
   
         // Apply events to the synthesis parameter matrix  
         ProcessEvents(Samples);  
   
   
         // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment  
         pEG1->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend, itKillEvent);  
     #if ENABLE_FILTER  
         pEG2->Process(Samples, pEngine->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);  
     #endif // ENABLE_FILTER  
         pEG3->Process(Samples);  
         pLFO1->Process(Samples);  
     #if ENABLE_FILTER  
         pLFO2->Process(Samples);  
     #endif // ENABLE_FILTER  
         pLFO3->Process(Samples);  
   
   
     #if ENABLE_FILTER  
         CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters  
     #endif // ENABLE_FILTER  
   
   
         switch (this->PlaybackState) {  
   
             case playback_state_ram: {  
                     if (RAMLoop) InterpolateAndLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);  
                     else         InterpolateNoLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay);  
                     if (DiskVoice) {  
                         // check if we reached the allowed limit of the sample RAM cache  
                         if (Pos > MaxRAMPos) {  
                             dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", Pos));  
                             this->PlaybackState = playback_state_disk;  
                         }  
                     }  
                     else if (Pos >= pSample->GetCache().Size / pSample->FrameSize) {  
                         this->PlaybackState = playback_state_end;  
                     }  
                 }  
                 break;  
   
             case playback_state_disk: {  
                     if (!DiskStreamRef.pStream) {  
                         // check if the disk thread created our ordered disk stream in the meantime  
                         DiskStreamRef.pStream = pDiskThread->AskForCreatedStream(DiskStreamRef.OrderID);  
                         if (!DiskStreamRef.pStream) {  
                             std::cout << stderr << "Disk stream not available in time!" << std::endl << std::flush;  
                             KillImmediately();  
                             return;  
                         }  
                         DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (RTMath::DoubleToInt(Pos) - MaxRAMPos));  
                         Pos -= RTMath::DoubleToInt(Pos);  
                     }  
   
                     // add silence sample at the end if we reached the end of the stream (for the interpolator)  
                     if (DiskStreamRef.State == Stream::state_end && DiskStreamRef.pStream->GetReadSpace() < (pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels) {  
                         DiskStreamRef.pStream->WriteSilence((pEngine->MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels);  
                         this->PlaybackState = playback_state_end;  
                     }  
   
                     sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from  
                     InterpolateNoLoop(Samples, ptr, Delay);  
                     DiskStreamRef.pStream->IncrementReadPos(RTMath::DoubleToInt(Pos) * pSample->Channels);  
                     Pos -= RTMath::DoubleToInt(Pos);  
                 }  
225                  break;                  break;
226                case ::gig::attenuation_ctrl_t::type_velocity:
227              case playback_state_end:                  crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(MIDIKeyVelocity)];
                 std::cerr << "gig::Voice::Render(): entered with playback_state_end, this is a bug!\n" << std::flush;  
228                  break;                  break;
229                case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate
230                    crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(GetGigEngineChannel()->ControllerTable[pRegion->AttenuationController.controller_number])];
231                    break;
232                case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined
233                default:
234                    crossfadeVolume = 1.0f;
235          }          }
236    
237            return crossfadeVolume;
238        }
239    
240          // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)      double Voice::GetEG1ControllerValue(uint8_t MIDIKeyVelocity) {
241          pEngine->pSynthesisEvents[Event::destination_vca]->clear();          double eg1controllervalue = 0;
242      #if ENABLE_FILTER          switch (pRegion->EG1Controller.type) {
243          pEngine->pSynthesisEvents[Event::destination_vcfc]->clear();              case ::gig::eg1_ctrl_t::type_none: // no controller defined
244          pEngine->pSynthesisEvents[Event::destination_vcfr]->clear();                  eg1controllervalue = 0;
245      #endif // ENABLE_FILTER                  break;
246                case ::gig::eg1_ctrl_t::type_channelaftertouch:
247          // Reset delay                  eg1controllervalue = GetGigEngineChannel()->ControllerTable[128];
248          Delay = 0;                  break;
249                case ::gig::eg1_ctrl_t::type_velocity:
250          itTriggerEvent = Pool<Event>::Iterator();                  eg1controllervalue = MIDIKeyVelocity;
251                    break;
252          // If sample stream or release stage finished, kill the voice              case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller
253          if (PlaybackState == playback_state_end || pEG1->GetStage() == EGADSR::stage_end) KillImmediately();                  eg1controllervalue = GetGigEngineChannel()->ControllerTable[pRegion->EG1Controller.controller_number];
254      }                  break;
   
     /**  
      *  Resets voice variables. Should only be called if rendering process is  
      *  suspended / not running.  
      */  
     void Voice::Reset() {  
         pLFO1->Reset();  
         pLFO2->Reset();  
         pLFO3->Reset();  
         DiskStreamRef.pStream = NULL;  
         DiskStreamRef.hStream = 0;  
         DiskStreamRef.State   = Stream::state_unused;  
         DiskStreamRef.OrderID = 0;  
         PlaybackState = playback_state_end;  
         itTriggerEvent = Pool<Event>::Iterator();  
         itKillEvent    = Pool<Event>::Iterator();  
     }  
   
     /**  
      *  Process the control change event lists of the engine for the current  
      *  audio fragment. Event values will be applied to the synthesis parameter  
      *  matrix.  
      *  
      *  @param Samples - number of samples to be rendered in this audio fragment cycle  
      */  
     void Voice::ProcessEvents(uint Samples) {  
   
         // dispatch control change events  
         RTList<Event>::Iterator itCCEvent = pEngine->pCCEvents->first();  
         if (Delay) { // skip events that happened before this voice was triggered  
             while (itCCEvent && itCCEvent->FragmentPos() <= Delay) ++itCCEvent;  
         }  
         while (itCCEvent) {  
             if (itCCEvent->Param.CC.Controller) { // if valid MIDI controller  
                 #if ENABLE_FILTER  
                 if (itCCEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {  
                     *pEngine->pSynthesisEvents[Event::destination_vcfc]->allocAppend() = *itCCEvent;  
                 }  
                 if (itCCEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {  
                     *pEngine->pSynthesisEvents[Event::destination_vcfr]->allocAppend() = *itCCEvent;  
                 }  
                 #endif // ENABLE_FILTER  
                 if (itCCEvent->Param.CC.Controller == pLFO1->ExtController) {  
                     pLFO1->SendEvent(itCCEvent);  
                 }  
                 #if ENABLE_FILTER  
                 if (itCCEvent->Param.CC.Controller == pLFO2->ExtController) {  
                     pLFO2->SendEvent(itCCEvent);  
                 }  
                 #endif // ENABLE_FILTER  
                 if (itCCEvent->Param.CC.Controller == pLFO3->ExtController) {  
                     pLFO3->SendEvent(itCCEvent);  
                 }  
                 if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&  
                     itCCEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) { // if crossfade event  
                     *pEngine->pSynthesisEvents[Event::destination_vca]->allocAppend() = *itCCEvent;  
                 }  
             }  
   
             ++itCCEvent;  
         }  
   
   
         // process pitch events  
         {  
             RTList<Event>* pVCOEventList = pEngine->pSynthesisEvents[Event::destination_vco];  
             RTList<Event>::Iterator itVCOEvent = pVCOEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itVCOEvent && itVCOEvent->FragmentPos() <= Delay) ++itVCOEvent;  
             }  
             // apply old pitchbend value until first pitch event occurs  
             if (this->PitchBend != 1.0) {  
                 uint end = (itVCOEvent) ? itVCOEvent->FragmentPos() : Samples;  
                 for (uint i = Delay; i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;  
                 }  
             }  
             float pitch;  
             while (itVCOEvent) {  
                 RTList<Event>::Iterator itNextVCOEvent = itVCOEvent;  
                 ++itNextVCOEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextVCOEvent) ? itNextVCOEvent->FragmentPos() : Samples;  
   
                 pitch = RTMath::CentsToFreqRatio(((double) itVCOEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents  
   
                 // apply pitch value to the pitch parameter sequence  
                 for (uint i = itVCOEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;  
                 }  
   
                 itVCOEvent = itNextVCOEvent;  
             }  
             if (!pVCOEventList->isEmpty()) this->PitchBend = pitch;  
         }  
   
         // process volume / attenuation events (TODO: we only handle and _expect_ crossfade events here ATM !)  
         {  
             RTList<Event>* pVCAEventList = pEngine->pSynthesisEvents[Event::destination_vca];  
             RTList<Event>::Iterator itVCAEvent = pVCAEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itVCAEvent && itVCAEvent->FragmentPos() <= Delay) ++itVCAEvent;  
             }  
             float crossfadevolume;  
             while (itVCAEvent) {  
                 RTList<Event>::Iterator itNextVCAEvent = itVCAEvent;  
                 ++itNextVCAEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextVCAEvent) ? itNextVCAEvent->FragmentPos() : Samples;  
   
                 crossfadevolume = CrossfadeAttenuation(itVCAEvent->Param.CC.Value);  
   
                 float effective_volume = crossfadevolume * this->Volume * pEngine->GlobalVolume;  
   
                 // apply volume value to the volume parameter sequence  
                 for (uint i = itVCAEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vca][i] = effective_volume;  
                 }  
   
                 itVCAEvent = itNextVCAEvent;  
             }  
             if (!pVCAEventList->isEmpty()) this->CrossfadeVolume = crossfadevolume;  
255          }          }
256            if (pRegion->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;
257    
258      #if ENABLE_FILTER          return eg1controllervalue;
259          // process filter cutoff events      }
         {  
             RTList<Event>* pCutoffEventList = pEngine->pSynthesisEvents[Event::destination_vcfc];  
             RTList<Event>::Iterator itCutoffEvent = pCutoffEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itCutoffEvent && itCutoffEvent->FragmentPos() <= Delay) ++itCutoffEvent;  
             }  
             float cutoff;  
             while (itCutoffEvent) {  
                 RTList<Event>::Iterator itNextCutoffEvent = itCutoffEvent;  
                 ++itNextCutoffEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextCutoffEvent) ? itNextCutoffEvent->FragmentPos() : Samples;  
   
                 cutoff = exp((float) itCutoffEvent->Param.CC.Value * 0.00787402f * FILTER_CUTOFF_COEFF) * FILTER_CUTOFF_MAX - FILTER_CUTOFF_MIN;  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = itCutoffEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;  
                 }  
260    
261                  itCutoffEvent = itNextCutoffEvent;      Voice::EGInfo Voice::CalculateEG1ControllerInfluence(double eg1ControllerValue) {
262              }          EGInfo eg;
263              if (!pCutoffEventList->isEmpty()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time          // (eg1attack is different from the others)
264            if (pRegion->EG1Attack < 1e-8 && // attack in gig == 0
265                (pRegion->EG1ControllerAttackInfluence == 0 ||
266                 eg1ControllerValue <= 10)) { // strange GSt special case
267                eg.Attack = 0; // this will force the attack to be 0 in the call to EG1.trigger
268            } else {
269                eg.Attack  = (pRegion->EG1ControllerAttackInfluence)  ?
270                    1 + 0.031 * (double) (pRegion->EG1ControllerAttackInfluence == 1 ?
271                                          1 : 1 << pRegion->EG1ControllerAttackInfluence) * eg1ControllerValue : 1.0;
272            }
273            eg.Decay   = (pRegion->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pRegion->EG1ControllerDecayInfluence)   * eg1ControllerValue : 1.0;
274            eg.Release = (pRegion->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pRegion->EG1ControllerReleaseInfluence) * eg1ControllerValue : 1.0;
275    
276            return eg;
277        }
278    
279        double Voice::GetEG2ControllerValue(uint8_t MIDIKeyVelocity) {
280            double eg2controllervalue = 0;
281            switch (pRegion->EG2Controller.type) {
282                case ::gig::eg2_ctrl_t::type_none: // no controller defined
283                    eg2controllervalue = 0;
284                    break;
285                case ::gig::eg2_ctrl_t::type_channelaftertouch:
286                    eg2controllervalue = GetGigEngineChannel()->ControllerTable[128];
287                    break;
288                case ::gig::eg2_ctrl_t::type_velocity:
289                    eg2controllervalue = MIDIKeyVelocity;
290                    break;
291                case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller
292                    eg2controllervalue = GetGigEngineChannel()->ControllerTable[pRegion->EG2Controller.controller_number];
293                    break;
294          }          }
295            if (pRegion->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;
296    
297          // process filter resonance events          return eg2controllervalue;
298          {      }
             RTList<Event>* pResonanceEventList = pEngine->pSynthesisEvents[Event::destination_vcfr];  
             RTList<Event>::Iterator itResonanceEvent = pResonanceEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itResonanceEvent && itResonanceEvent->FragmentPos() <= Delay) ++itResonanceEvent;  
             }  
             while (itResonanceEvent) {  
                 RTList<Event>::Iterator itNextResonanceEvent = itResonanceEvent;  
                 ++itNextResonanceEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextResonanceEvent) ? itNextResonanceEvent->FragmentPos() : Samples;  
   
                 // convert absolute controller value to differential  
                 int ctrldelta = itResonanceEvent->Param.CC.Value - VCFResonanceCtrl.value;  
                 VCFResonanceCtrl.value = itResonanceEvent->Param.CC.Value;  
   
                 float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0  
299    
300                  // apply cutoff frequency to the cutoff parameter sequence      Voice::EGInfo Voice::CalculateEG2ControllerInfluence(double eg2ControllerValue) {
301                  for (uint i = itResonanceEvent->FragmentPos(); i < end; i++) {          EGInfo eg;
302                      pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;          eg.Attack  = (pRegion->EG2ControllerAttackInfluence)  ? 1 + 0.00775 * (double) (1 << pRegion->EG2ControllerAttackInfluence)  * eg2ControllerValue : 1.0;
303                  }          eg.Decay   = (pRegion->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pRegion->EG2ControllerDecayInfluence)   * eg2ControllerValue : 1.0;
304            eg.Release = (pRegion->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pRegion->EG2ControllerReleaseInfluence) * eg2ControllerValue : 1.0;
305    
306                  itResonanceEvent = itNextResonanceEvent;          return eg;
             }  
             if (!pResonanceEventList->isEmpty()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Param.CC.Value * 0.00787f; // needed for initialization of parameter matrix next time  
         }  
     #endif // ENABLE_FILTER  
307      }      }
308    
309      #if ENABLE_FILTER      void Voice::InitLFO1() {
310      /**          uint16_t lfo1_internal_depth;
311       * Calculate all necessary, final biquad filter parameters.          switch (pRegion->LFO1Controller) {
312       *              case ::gig::lfo1_ctrl_internal:
313       * @param Samples - number of samples to be rendered in this audio fragment cycle                  lfo1_internal_depth  = pRegion->LFO1InternalDepth;
314       */                  pLFO1->ExtController = 0; // no external controller
315      void Voice::CalculateBiquadParameters(uint Samples) {                  bLFO1Enabled         = (lfo1_internal_depth > 0);
316          if (!FilterLeft.Enabled) return;                  break;
317                case ::gig::lfo1_ctrl_modwheel:
318          biquad_param_t bqbase;                  lfo1_internal_depth  = 0;
319          biquad_param_t bqmain;                  pLFO1->ExtController = 1; // MIDI controller 1
320          float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];                  bLFO1Enabled         = (pRegion->LFO1ControlDepth > 0);
321          float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];                  break;
322          FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);              case ::gig::lfo1_ctrl_breath:
323          pEngine->pBasicFilterParameters[0] = bqbase;                  lfo1_internal_depth  = 0;
324          pEngine->pMainFilterParameters[0]  = bqmain;                  pLFO1->ExtController = 2; // MIDI controller 2
325                    bLFO1Enabled         = (pRegion->LFO1ControlDepth > 0);
326          float* bq;                  break;
327          for (int i = 1; i < Samples; i++) {              case ::gig::lfo1_ctrl_internal_modwheel:
328              // recalculate biquad parameters if cutoff or resonance differ from previous sample point                  lfo1_internal_depth  = pRegion->LFO1InternalDepth;
329              if (!(i & FILTER_UPDATE_MASK)) if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||                  pLFO1->ExtController = 1; // MIDI controller 1
330                                                 pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff) {                  bLFO1Enabled         = (lfo1_internal_depth > 0 || pRegion->LFO1ControlDepth > 0);
331                  prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];                  break;
332                  prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];              case ::gig::lfo1_ctrl_internal_breath:
333                  FilterLeft.SetParameters(&bqbase, &bqmain, prev_cutoff, prev_res, pEngine->SampleRate);                  lfo1_internal_depth  = pRegion->LFO1InternalDepth;
334              }                  pLFO1->ExtController = 2; // MIDI controller 2
335                    bLFO1Enabled         = (lfo1_internal_depth > 0 || pRegion->LFO1ControlDepth > 0);
336              //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'                  break;
337              bq    = (float*) &pEngine->pBasicFilterParameters[i];              default:
338              bq[0] = bqbase.a1;                  lfo1_internal_depth  = 0;
339              bq[1] = bqbase.a2;                  pLFO1->ExtController = 0; // no external controller
340              bq[2] = bqbase.b0;                  bLFO1Enabled         = false;
341              bq[3] = bqbase.b1;          }
342              bq[4] = bqbase.b2;          if (bLFO1Enabled) {
343                pLFO1->trigger(fromGigLfoWave(pRegion->LFO1WaveForm),
344              // same as 'pEngine->pMainFilterParameters[i] = bqmain;'                             pRegion->LFO1Frequency,
345              bq    = (float*) &pEngine->pMainFilterParameters[i];                             pRegion->LFO1Phase,
346              bq[0] = bqmain.a1;                             LFO::start_level_mid, // see https://sourceforge.net/p/linuxsampler/mailman/linuxsampler-devel/thread/2189307.cNP0Xbctxq%40silver/#msg36774029
347              bq[1] = bqmain.a2;                             lfo1_internal_depth,
348              bq[2] = bqmain.b0;                             pRegion->LFO1ControlDepth,
349              bq[3] = bqmain.b1;                             pRegion->LFO1FlipPhase,
350              bq[4] = bqmain.b2;                             pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
351                pLFO1->updateByMIDICtrlValue(pLFO1->ExtController ? GetGigEngineChannel()->ControllerTable[pLFO1->ExtController] : 0);
352                pLFO1->setScriptDepthFactor(
353                    pNote->Override.AmpLFODepth.Value,
354                    pNote->Override.AmpLFODepth.Final
355                );
356                if (pNote->Override.AmpLFOFreq.isFinal())
357                    pLFO1->setScriptFrequencyFinal(
358                        pNote->Override.AmpLFOFreq.Value, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE
359                    );
360                else
361                    pLFO1->setScriptFrequencyFactor(
362                        pNote->Override.AmpLFOFreq.Value, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE
363                    );
364          }          }
365      }      }
     #endif // ENABLE_FILTER  
366    
367      /**      void Voice::InitLFO2() {
368       *  Interpolates the input audio data (without looping).          uint16_t lfo2_internal_depth;
369       *          switch (pRegion->LFO2Controller) {
370       *  @param Samples - number of sample points to be rendered in this audio              case ::gig::lfo2_ctrl_internal:
371       *                   fragment cycle                  lfo2_internal_depth  = pRegion->LFO2InternalDepth;
372       *  @param pSrc    - pointer to input sample data                  pLFO2->ExtController = 0; // no external controller
373       *  @param Skip    - number of sample points to skip in output buffer                  bLFO2Enabled         = (lfo2_internal_depth > 0);
374       */                  break;
375      void Voice::InterpolateNoLoop(uint Samples, sample_t* pSrc, uint Skip) {              case ::gig::lfo2_ctrl_modwheel:
376          int i = Skip;                  lfo2_internal_depth  = 0;
377                    pLFO2->ExtController = 1; // MIDI controller 1
378          // FIXME: assuming either mono or stereo                  bLFO2Enabled         = (pRegion->LFO2ControlDepth > 0);
379          if (this->pSample->Channels == 2) { // Stereo Sample                  break;
380              while (i < Samples) InterpolateStereo(pSrc, i);              case ::gig::lfo2_ctrl_foot:
381          }                  lfo2_internal_depth  = 0;
382          else { // Mono Sample                  pLFO2->ExtController = 4; // MIDI controller 4
383              while (i < Samples) InterpolateMono(pSrc, i);                  bLFO2Enabled         = (pRegion->LFO2ControlDepth > 0);
384                    break;
385                case ::gig::lfo2_ctrl_internal_modwheel:
386                    lfo2_internal_depth  = pRegion->LFO2InternalDepth;
387                    pLFO2->ExtController = 1; // MIDI controller 1
388                    bLFO2Enabled         = (lfo2_internal_depth > 0 || pRegion->LFO2ControlDepth > 0);
389                    break;
390                case ::gig::lfo2_ctrl_internal_foot:
391                    lfo2_internal_depth  = pRegion->LFO2InternalDepth;
392                    pLFO2->ExtController = 4; // MIDI controller 4
393                    bLFO2Enabled         = (lfo2_internal_depth > 0 || pRegion->LFO2ControlDepth > 0);
394                    break;
395                default:
396                    lfo2_internal_depth  = 0;
397                    pLFO2->ExtController = 0; // no external controller
398                    bLFO2Enabled         = false;
399            }
400            if (bLFO2Enabled) {
401                pLFO2->trigger(fromGigLfoWave(pRegion->LFO2WaveForm),
402                               pRegion->LFO2Frequency,
403                               pRegion->LFO2Phase,
404                               LFO::start_level_mid, // see https://sourceforge.net/p/linuxsampler/mailman/linuxsampler-devel/thread/2189307.cNP0Xbctxq%40silver/#msg36774029
405                               lfo2_internal_depth,
406                               pRegion->LFO2ControlDepth,
407                               pRegion->LFO2FlipPhase,
408                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
409                pLFO2->updateByMIDICtrlValue(pLFO2->ExtController ? GetGigEngineChannel()->ControllerTable[pLFO2->ExtController] : 0);
410                pLFO2->setScriptDepthFactor(
411                    pNote->Override.CutoffLFODepth.Value,
412                    pNote->Override.CutoffLFODepth.Final
413                );
414                if (pNote->Override.CutoffLFOFreq.isFinal())
415                    pLFO2->setScriptFrequencyFinal(pNote->Override.CutoffLFOFreq.Value, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
416                else
417                    pLFO2->setScriptFrequencyFactor(pNote->Override.CutoffLFOFreq.Value, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
418          }          }
419      }      }
420    
421      /**      void Voice::InitLFO3() {
422       *  Interpolates the input audio data, this method honors looping.          uint16_t lfo3_internal_depth;
423       *          switch (pRegion->LFO3Controller) {
424       *  @param Samples - number of sample points to be rendered in this audio              case ::gig::lfo3_ctrl_internal:
425       *                   fragment cycle                  lfo3_internal_depth  = pRegion->LFO3InternalDepth;
426       *  @param pSrc    - pointer to input sample data                  pLFO3->ExtController = 0; // no external controller
427       *  @param Skip    - number of sample points to skip in output buffer                  bLFO3Enabled         = (lfo3_internal_depth > 0);
428       */                  break;
429      void Voice::InterpolateAndLoop(uint Samples, sample_t* pSrc, uint Skip) {              case ::gig::lfo3_ctrl_modwheel:
430          int i = Skip;                  lfo3_internal_depth  = 0;
431                    pLFO3->ExtController = 1; // MIDI controller 1
432          // FIXME: assuming either mono or stereo                  bLFO3Enabled         = (pRegion->LFO3ControlDepth > 0);
433          if (pSample->Channels == 2) { // Stereo Sample                  break;
434              if (pSample->LoopPlayCount) {              case ::gig::lfo3_ctrl_aftertouch:
435                  // render loop (loop count limited)                  lfo3_internal_depth  = 0;
436                  while (i < Samples && LoopCyclesLeft) {                  pLFO3->ExtController = CTRL_TABLE_IDX_AFTERTOUCH;
437                      InterpolateStereo(pSrc, i);                  bLFO3Enabled         = true;
438                      if (Pos > pSample->LoopEnd) {                  break;
439                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;              case ::gig::lfo3_ctrl_internal_modwheel:
440                          LoopCyclesLeft--;                  lfo3_internal_depth  = pRegion->LFO3InternalDepth;
441                      }                  pLFO3->ExtController = 1; // MIDI controller 1
442                  }                  bLFO3Enabled         = (lfo3_internal_depth > 0 || pRegion->LFO3ControlDepth > 0);
443                  // render on without loop                  break;
444                  while (i < Samples) InterpolateStereo(pSrc, i);              case ::gig::lfo3_ctrl_internal_aftertouch:
445              }                  lfo3_internal_depth  = pRegion->LFO3InternalDepth;
446              else { // render loop (endless loop)                  pLFO3->ExtController = CTRL_TABLE_IDX_AFTERTOUCH;
447                  while (i < Samples) {                  bLFO3Enabled         = (lfo3_internal_depth > 0 || pRegion->LFO3ControlDepth > 0);
448                      InterpolateStereo(pSrc, i);                  break;
449                      if (Pos > pSample->LoopEnd) {              default:
450                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);                  lfo3_internal_depth  = 0;
451                      }                  pLFO3->ExtController = 0; // no external controller
452                  }                  bLFO3Enabled         = false;
453              }          }
454          }          if (bLFO3Enabled) {
455          else { // Mono Sample              pLFO3->trigger(fromGigLfoWave(pRegion->LFO3WaveForm),
456              if (pSample->LoopPlayCount) {                             pRegion->LFO3Frequency,
457                  // render loop (loop count limited)                             pRegion->LFO3Phase,
458                  while (i < Samples && LoopCyclesLeft) {                             LFO::start_level_max, // see https://sourceforge.net/p/linuxsampler/mailman/linuxsampler-devel/thread/2189307.cNP0Xbctxq%40silver/#msg36774029
459                      InterpolateMono(pSrc, i);                             lfo3_internal_depth,
460                      if (Pos > pSample->LoopEnd) {                             pRegion->LFO3ControlDepth,
461                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;                             pRegion->LFO3FlipPhase,
462                          LoopCyclesLeft--;                             pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
463                      }              pLFO3->updateByMIDICtrlValue(pLFO3->ExtController ? GetGigEngineChannel()->ControllerTable[pLFO3->ExtController] : 0);
464                  }              pLFO3->setScriptDepthFactor(
465                  // render on without loop                  pNote->Override.PitchLFODepth.Value,
466                  while (i < Samples) InterpolateMono(pSrc, i);                  pNote->Override.PitchLFODepth.Final
467              }              );
468              else { // render loop (endless loop)              if (pNote->Override.PitchLFOFreq.isFinal())
469                  while (i < Samples) {                  pLFO3->setScriptFrequencyFinal(pNote->Override.PitchLFOFreq.Value, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
470                      InterpolateMono(pSrc, i);              else
471                      if (Pos > pSample->LoopEnd) {                  pLFO3->setScriptFrequencyFactor(pNote->Override.PitchLFOFreq.Value, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
472                          Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);;          }
473                      }      }
474                  }  
475              }      float Voice::CalculateCutoffBase(uint8_t MIDIKeyVelocity) {
476            float cutoff = pRegion->GetVelocityCutoff(MIDIKeyVelocity);
477            if (pRegion->VCFKeyboardTracking) {
478                cutoff *= RTMath::CentsToFreqRatioUnlimited((MIDIKey() - pRegion->VCFKeyboardTrackingBreakpoint) * 100);
479            }
480            return cutoff;
481        }
482    
483        // This is just called when the voice is triggered. On any subsequent cutoff
484        // controller changes ProcessCutoffEvent() is called instead.
485        float Voice::CalculateFinalCutoff(float cutoffBase) {
486            // if the selected filter type is an official GigaStudio filter type
487            // then we preserve the original (no matter how odd) historical GSt
488            // behaviour identically; for our own filter types though we deviate to
489            // more meaningful behaviours where appropriate
490            const bool isGStFilter = isGStFilterType(pRegion->VCFType);
491    
492            // get current cutoff CC or velocity value (always 0..127)
493            float cvalue;
494            if (VCFCutoffCtrl.controller) {
495                cvalue = GetGigEngineChannel()->ControllerTable[VCFCutoffCtrl.controller];
496                if (pRegion->VCFCutoffControllerInvert) cvalue = 127 - cvalue;
497                if (isGStFilter) {
498                    // VCFVelocityScale in this case means "minimum cutoff" for GSt
499                    if (cvalue < MinCutoff()) cvalue = MinCutoff();
500                } else {
501                    // for our own filter types we interpret "minimum cutoff"
502                    // differently: GSt handles this as a simple hard limit with the
503                    // consequence that a certain range of the controller is simply
504                    // dead; so for our filter types we rather remap that to
505                    // restrain within the min_cutoff..127 range as well, but
506                    // effectively spanned over the entire controller range (0..127)
507                    // to avoid such a "dead" lower controller zone
508                    cvalue = MinCutoff() + (cvalue / 127.f) * float(127 - MinCutoff());
509                }
510            } else {
511                // in case of velocity, VCFVelocityScale parameter is already
512                // handled on libgig side (so by calling
513                // pRegion->GetVelocityCutoff(velo) in CalculateCutoffBase() above)
514                cvalue = pRegion->VCFCutoff;
515            }
516    
517            float fco = cutoffBase * cvalue;
518            if (fco > 127.0f) fco = 127.0f;
519    
520            // the filter implementations of the original GSt filter types take an
521            // abstract cutoff parameter range of 0..127, ...
522            if (isGStFilter)
523                return fco;
524    
525            // ... whereas our own filter types take a cutoff parameter in Hz, so
526            // remap here 0 .. 127 [lin] -> 21 Hz .. 18 kHz [x^4] (center @2.2 kHz)
527            fco = (fco + 29.f) / (127.f + 29.f);
528            fco = fco * fco * fco * fco * 18000.f;
529            if (fco > 0.49f * pEngine->SampleRate)
530                fco = 0.49f * pEngine->SampleRate;
531            return fco;
532        }
533    
534        uint8_t Voice::GetVCFCutoffCtrl() {
535            uint8_t ctrl;
536            switch (pRegion->VCFCutoffController) {
537                case ::gig::vcf_cutoff_ctrl_modwheel:
538                    ctrl = 1;
539                    break;
540                case ::gig::vcf_cutoff_ctrl_effect1:
541                    ctrl = 12;
542                    break;
543                case ::gig::vcf_cutoff_ctrl_effect2:
544                    ctrl = 13;
545                    break;
546                case ::gig::vcf_cutoff_ctrl_breath:
547                    ctrl = 2;
548                    break;
549                case ::gig::vcf_cutoff_ctrl_foot:
550                    ctrl = 4;
551                    break;
552                case ::gig::vcf_cutoff_ctrl_sustainpedal:
553                    ctrl = 64;
554                    break;
555                case ::gig::vcf_cutoff_ctrl_softpedal:
556                    ctrl = 67;
557                    break;
558                case ::gig::vcf_cutoff_ctrl_genpurpose7:
559                    ctrl = 82;
560                    break;
561                case ::gig::vcf_cutoff_ctrl_genpurpose8:
562                    ctrl = 83;
563                    break;
564                case ::gig::vcf_cutoff_ctrl_aftertouch:
565                    ctrl = CTRL_TABLE_IDX_AFTERTOUCH;
566                    break;
567                case ::gig::vcf_cutoff_ctrl_none:
568                default:
569                    ctrl = 0;
570                    break;
571          }          }
572    
573            return ctrl;
574      }      }
575    
576      /**      uint8_t Voice::GetVCFResonanceCtrl() {
577       *  Immediately kill the voice. This method should not be used to kill          uint8_t ctrl;
578       *  a normal, active voice, because it doesn't take care of things like          switch (pRegion->VCFResonanceController) {
579       *  fading down the volume level to avoid clicks and regular processing              case ::gig::vcf_res_ctrl_genpurpose3:
580       *  until the kill event actually occured!                  ctrl = 18;
581       *                  break;
582       *  @see Kill()              case ::gig::vcf_res_ctrl_genpurpose4:
583       */                  ctrl = 19;
584      void Voice::KillImmediately() {                  break;
585          if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {              case ::gig::vcf_res_ctrl_genpurpose5:
586              pDiskThread->OrderDeletionOfStream(&DiskStreamRef);                  ctrl = 80;
587                    break;
588                case ::gig::vcf_res_ctrl_genpurpose6:
589                    ctrl = 81;
590                    break;
591                case ::gig::vcf_res_ctrl_none:
592                default:
593                    ctrl = 0;
594          }          }
595          Reset();  
596            return ctrl;
597      }      }
598    
599      /**      void Voice::TriggerEG1(const EGInfo& egInfo, double velrelease, double velocityAttenuation, uint sampleRate, uint8_t velocity) {
600       *  Kill the voice in regular sense. Let the voice render audio until          EG1.setStateOptions(
601       *  the kill event actually occured and then fade down the volume level              pRegion->EG1Options.AttackCancel,
602       *  very quickly and let the voice die finally. Unlike a normal release              pRegion->EG1Options.AttackHoldCancel,
603       *  of a voice, a kill process cannot be cancalled and is therefore              pRegion->EG1Options.Decay1Cancel,
604       *  usually used for voice stealing and key group conflicts.              pRegion->EG1Options.Decay2Cancel,
605       *              pRegion->EG1Options.ReleaseCancel
606       *  @param itKillEvent - event which caused the voice to be killed          );
607       */          EG1.trigger(pRegion->EG1PreAttack,
608      void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {                      (pNote && pNote->Override.Attack.isFinal()) ?
609          if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;                          pNote->Override.Attack.Value :
610          this->itKillEvent = itKillEvent;                          RTMath::Max(pRegion->EG1Attack, 0.0316) * egInfo.Attack,
611                        pRegion->EG1Hold,
612                        (pNote && pNote->Override.Decay.isFinal()) ?
613                            pNote->Override.Decay.Value :
614                            pRegion->EG1Decay1 * egInfo.Decay * velrelease,
615                        (pNote && pNote->Override.Decay.isFinal()) ?
616                            pNote->Override.Decay.Value :
617                            pRegion->EG1Decay2 * egInfo.Decay * velrelease,
618                        pRegion->EG1InfiniteSustain,
619                        (pNote && pNote->Override.Sustain.Final) ?
620                            uint(pNote->Override.Sustain.Value * 1000.f) :
621                            pRegion->EG1Sustain * (pNote ? pNote->Override.Sustain.Value : 1.f),
622                        (pNote && pNote->Override.Release.isFinal()) ?
623                            pNote->Override.Release.Value :
624                            RTMath::Max(pRegion->EG1Release * velrelease, 0.014) * egInfo.Release,
625                        velocityAttenuation,
626                        sampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
627        }
628    
629        void Voice::TriggerEG2(const EGInfo& egInfo, double velrelease, double velocityAttenuation, uint sampleRate, uint8_t velocity) {
630            EG2.setStateOptions(
631                pRegion->EG2Options.AttackCancel,
632                pRegion->EG2Options.AttackHoldCancel,
633                pRegion->EG2Options.Decay1Cancel,
634                pRegion->EG2Options.Decay2Cancel,
635                pRegion->EG2Options.ReleaseCancel
636            );
637            EG2.trigger(uint(RgnInfo.EG2PreAttack),
638                        (pNote && pNote->Override.CutoffAttack.isFinal()) ?
639                            pNote->Override.CutoffAttack.Value :
640                            RgnInfo.EG2Attack * egInfo.Attack,
641                        false,
642                        (pNote && pNote->Override.CutoffDecay.isFinal()) ?
643                            pNote->Override.CutoffDecay.Value :
644                            RgnInfo.EG2Decay1 * egInfo.Decay * velrelease,
645                        (pNote && pNote->Override.CutoffDecay.isFinal()) ?
646                            pNote->Override.CutoffDecay.Value :
647                            RgnInfo.EG2Decay2 * egInfo.Decay * velrelease,
648                        RgnInfo.EG2InfiniteSustain,
649                        (pNote && pNote->Override.CutoffSustain.Final) ?
650                            uint(pNote->Override.CutoffSustain.Value * 1000.f) :
651                            uint(RgnInfo.EG2Sustain),
652                        (pNote && pNote->Override.CutoffRelease.isFinal()) ?
653                            pNote->Override.CutoffRelease.Value :
654                            RgnInfo.EG2Release * egInfo.Release * velrelease,
655                        velocityAttenuation,
656                        sampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
657        }
658    
659        void Voice::ProcessGroupEvent(RTList<Event>::Iterator& itEvent) {
660            dmsg(4,("Voice %p processGroupEvents event type=%d", (void*)this, itEvent->Type));
661    
662            // TODO: The SustainPedal condition could be wrong, maybe the
663            // check should be if this Voice is in release stage or is a
664            // release sample instead. Need to test this in GSt.
665            // -- Andreas
666            //
667            // Commented sustain pedal check out. I don't think voices of the same
668            // note should be stopped at all, because it doesn't sound naturally
669            // with a drumkit.
670            // -- Christian, 2013-01-08
671            if (itEvent->Param.Note.Key != HostKey() /*||
672                !GetGigEngineChannel()->SustainPedal*/) {
673                dmsg(4,("Voice %p - kill", (void*)this));
674    
675                // kill the voice fast
676                pEG1->enterFadeOutStage();
677            }
678        }
679    
680        void Voice::CalculateFadeOutCoeff(float FadeOutTime, float SampleRate) {
681            EG1.CalculateFadeOutCoeff(FadeOutTime, SampleRate);
682        }
683    
684        int Voice::CalculatePan(uint8_t pan) {
685            int p;
686            // Gst behaviour: -64 and 63 are special cases
687            if (RgnInfo.Pan == -64)     p = pan * 2 - 127;
688            else if (RgnInfo.Pan == 63) p = pan * 2;
689            else                        p = pan + RgnInfo.Pan;
690    
691            if (p < 0) return 0;
692            if (p > 127) return 127;
693            return p;
694        }
695    
696        release_trigger_t Voice::GetReleaseTriggerFlags() {
697            release_trigger_t flags =
698                (pRegion->NoNoteOffReleaseTrigger) ?
699                    release_trigger_none : release_trigger_noteoff; //HACK: currently this method is actually only called by EngineBase if it already knows that this voice requires release trigger, so I took the short way instead of checking (again) the existence of a ::gig::dimension_releasetrigger
700            switch (pRegion->SustainReleaseTrigger) {
701                case ::gig::sust_rel_trg_none:
702                    break;
703                case ::gig::sust_rel_trg_maxvelocity:
704                    flags |= release_trigger_sustain_maxvelocity;
705                    break;
706                case ::gig::sust_rel_trg_keyvelocity:
707                    flags |= release_trigger_sustain_keyvelocity;
708                    break;
709            }
710            return flags;
711      }      }
712    
713  }} // namespace LinuxSampler::gig  }} // namespace LinuxSampler::gig

Legend:
Removed from v.285  
changed lines
  Added in v.3655

  ViewVC Help
Powered by ViewVC