/[svn]/linuxsampler/trunk/src/engines/gig/Voice.cpp
ViewVC logotype

Diff of /linuxsampler/trunk/src/engines/gig/Voice.cpp

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 669 by schoenebeck, Tue Jun 21 13:33:19 2005 UTC revision 3655 by schoenebeck, Fri Dec 13 17:14:48 2019 UTC
# Line 3  Line 3 
3   *   LinuxSampler - modular, streaming capable sampler                     *   *   LinuxSampler - modular, streaming capable sampler                     *
4   *                                                                         *   *                                                                         *
5   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *   *   Copyright (C) 2003, 2004 by Benno Senoner and Christian Schoenebeck   *
6   *   Copyright (C) 2005 Christian Schoenebeck                              *   *   Copyright (C) 2005 - 2008 Christian Schoenebeck                       *
7     *   Copyright (C) 2009 Christian Schoenebeck and Grigor Iliev             *
8     *   Copyright (C) 2010 - 2017 Christian Schoenebeck and Andreas Persson   *
9   *                                                                         *   *                                                                         *
10   *   This program is free software; you can redistribute it and/or modify  *   *   This program is free software; you can redistribute it and/or modify  *
11   *   it under the terms of the GNU General Public License as published by  *   *   it under the terms of the GNU General Public License as published by  *
# Line 21  Line 23 
23   *   MA  02111-1307  USA                                                   *   *   MA  02111-1307  USA                                                   *
24   ***************************************************************************/   ***************************************************************************/
25    
 #include "EGADSR.h"  
 #include "Manipulator.h"  
26  #include "../../common/Features.h"  #include "../../common/Features.h"
27  #include "Synthesizer.h"  #include "Synthesizer.h"
28    #include "Profiler.h"
29    #include "Engine.h"
30    #include "EngineChannel.h"
31    
32  #include "Voice.h"  #include "Voice.h"
33    
34  namespace LinuxSampler { namespace gig {  namespace LinuxSampler { namespace gig {
35    
36      const float Voice::FILTER_CUTOFF_COEFF(CalculateFilterCutoffCoeff());      // sanity checks: fromGigLfoWave() assumes equally mapped enums
37        static_assert(int64_t(::gig::lfo_wave_sine) == int64_t(LFO::wave_sine),
38      const int Voice::FILTER_UPDATE_MASK(CalculateFilterUpdateMask());                    "enum LFO::wave_t not equally value mapped to libgig's enum ::gig::lfo_wave_t");
39        static_assert(int64_t(::gig::lfo_wave_triangle) == int64_t(LFO::wave_triangle),
40      float Voice::CalculateFilterCutoffCoeff() {                    "enum LFO::wave_t not equally value mapped to libgig's enum ::gig::lfo_wave_t");
41          return log(CONFIG_FILTER_CUTOFF_MIN / CONFIG_FILTER_CUTOFF_MAX);      static_assert(int64_t(::gig::lfo_wave_saw) == int64_t(LFO::wave_saw),
42      }                    "enum LFO::wave_t not equally value mapped to libgig's enum ::gig::lfo_wave_t");
43        static_assert(int64_t(::gig::lfo_wave_square) == int64_t(LFO::wave_square),
44      int Voice::CalculateFilterUpdateMask() {                    "enum LFO::wave_t not equally value mapped to libgig's enum ::gig::lfo_wave_t");
45          if (CONFIG_FILTER_UPDATE_STEPS <= 0) return 0;  
46          int power_of_two;      // converts ::gig::lfo_wave_t (libgig) -> LFO::wave_t (LinuxSampler)
47          for (power_of_two = 0; 1<<power_of_two < CONFIG_FILTER_UPDATE_STEPS; power_of_two++);      inline LFO::wave_t fromGigLfoWave(::gig::lfo_wave_t wave) {
48          return (1 << power_of_two) - 1;          // simply assuming equally mapped enums on both sides
49            return static_cast<LFO::wave_t>(wave);
50        }
51    
52        // Returns true for GigaStudio's original filter types (which are resembled
53        // by LS very accurately with same frequency response and patch settings
54        // behaviour), false for our own LS specific filter implementation types.
55        constexpr bool isGStFilterType(::gig::vcf_type_t type) {
56            return type == ::gig::vcf_type_lowpass ||
57                   type == ::gig::vcf_type_lowpassturbo ||
58                   type == ::gig::vcf_type_bandpass ||
59                   type == ::gig::vcf_type_highpass ||
60                   type == ::gig::vcf_type_bandreject;
61      }      }
62    
63      Voice::Voice() {      Voice::Voice() {
64          pEngine     = NULL;          pEngine = NULL;
65          pDiskThread = NULL;          pEG1 = &EG1;
66          PlaybackState = playback_state_end;          pEG2 = &EG2;
         pEG1   = NULL;  
         pEG2   = NULL;  
         pEG3   = NULL;  
         pVCAManipulator  = NULL;  
         pVCFCManipulator = NULL;  
         pVCOManipulator  = NULL;  
         pLFO1  = NULL;  
         pLFO2  = NULL;  
         pLFO3  = NULL;  
         KeyGroup = 0;  
         SynthesisMode = 0; // set all mode bits to 0 first  
         // select synthesis implementation (currently either pure C++ or MMX+SSE(1))  
         #if CONFIG_ASM && ARCH_X86  
         SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, Features::supportsMMX() && Features::supportsSSE());  
         #else  
         SYNTHESIS_MODE_SET_IMPLEMENTATION(SynthesisMode, false);  
         #endif  
         SYNTHESIS_MODE_SET_PROFILING(SynthesisMode, true);  
   
         FilterLeft.Reset();  
         FilterRight.Reset();  
67      }      }
68    
69      Voice::~Voice() {      Voice::~Voice() {
         if (pEG1)  delete pEG1;  
         if (pEG2)  delete pEG2;  
         if (pEG3)  delete pEG3;  
         if (pLFO1) delete pLFO1;  
         if (pLFO2) delete pLFO2;  
         if (pLFO3) delete pLFO3;  
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
     }  
   
     void Voice::SetEngine(Engine* pEngine) {  
         this->pEngine = pEngine;  
   
         // delete old objects  
         if (pEG1) delete pEG1;  
         if (pEG2) delete pEG2;  
         if (pEG3) delete pEG3;  
         if (pVCAManipulator)  delete pVCAManipulator;  
         if (pVCFCManipulator) delete pVCFCManipulator;  
         if (pVCOManipulator)  delete pVCOManipulator;  
         if (pLFO1) delete pLFO1;  
         if (pLFO2) delete pLFO2;  
         if (pLFO3) delete pLFO3;  
   
         // create new ones  
         pEG1   = new EGADSR(pEngine, Event::destination_vca);  
         pEG2   = new EGADSR(pEngine, Event::destination_vcfc);  
         pEG3   = new EGDecay(pEngine, Event::destination_vco);  
         pVCAManipulator  = new VCAManipulator(pEngine);  
         pVCFCManipulator = new VCFCManipulator(pEngine);  
         pVCOManipulator  = new VCOManipulator(pEngine);  
         pLFO1  = new LFO<gig::VCAManipulator>(0.0f, 1.0f, LFO<VCAManipulator>::propagation_top_down, pVCAManipulator, pEngine->pEventPool);  
         pLFO2  = new LFO<gig::VCFCManipulator>(0.0f, 1.0f, LFO<VCFCManipulator>::propagation_top_down, pVCFCManipulator, pEngine->pEventPool);  
         pLFO3  = new LFO<gig::VCOManipulator>(-1200.0f, 1200.0f, LFO<VCOManipulator>::propagation_middle_balanced, pVCOManipulator, pEngine->pEventPool); // +-1 octave (+-1200 cents) max.  
   
         this->pDiskThread = pEngine->pDiskThread;  
         dmsg(6,("Voice::SetEngine()\n"));  
70      }      }
71    
72      /**      EngineChannel* Voice::GetGigEngineChannel() {
73       *  Initializes and triggers the voice, a disk stream will be launched if          return static_cast<EngineChannel*>(pEngineChannel);
74       *  needed.      }
      *  
      *  @param pEngineChannel - engine channel on which this voice was ordered  
      *  @param itNoteOnEvent  - event that caused triggering of this voice  
      *  @param PitchBend      - MIDI detune factor (-8192 ... +8191)  
      *  @param pDimRgn        - points to the dimension region which provides sample wave(s) and articulation data  
      *  @param VoiceType      - type of this voice  
      *  @param iKeyGroup      - a value > 0 defines a key group in which this voice is member of  
      *  @returns 0 on success, a value < 0 if the voice wasn't triggered  
      *           (either due to an error or e.g. because no region is  
      *           defined for the given key)  
      */  
     int Voice::Trigger(EngineChannel* pEngineChannel, Pool<Event>::Iterator& itNoteOnEvent, int PitchBend, ::gig::DimensionRegion* pDimRgn, type_t VoiceType, int iKeyGroup) {  
         this->pEngineChannel = pEngineChannel;  
         this->pDimRgn        = pDimRgn;  
   
         #if CONFIG_DEVMODE  
         if (itNoteOnEvent->FragmentPos() > pEngine->MaxSamplesPerCycle) { // just a sanity check for debugging  
             dmsg(1,("Voice::Trigger(): ERROR, TriggerDelay > Totalsamples\n"));  
         }  
         #endif // CONFIG_DEVMODE  
   
         Type            = VoiceType;  
         MIDIKey         = itNoteOnEvent->Param.Note.Key;  
         PlaybackState   = playback_state_init; // mark voice as triggered, but no audio rendered yet  
         Delay           = itNoteOnEvent->FragmentPos();  
         itTriggerEvent  = itNoteOnEvent;  
         itKillEvent     = Pool<Event>::Iterator();  
         KeyGroup        = iKeyGroup;  
         pSample         = pDimRgn->pSample; // sample won't change until the voice is finished  
   
         // calculate volume  
         const double velocityAttenuation = pDimRgn->GetVelocityAttenuation(itNoteOnEvent->Param.Note.Velocity);  
   
         Volume = velocityAttenuation / 32768.0f; // we downscale by 32768 to convert from int16 value range to DSP value range (which is -1.0..1.0)  
   
         Volume *= pDimRgn->SampleAttenuation;  
   
         // the volume of release triggered samples depends on note length  
         if (Type == type_release_trigger) {  
             float noteLength = float(pEngine->FrameTime + Delay -  
                                      pEngineChannel->pMIDIKeyInfo[MIDIKey].NoteOnTime) / pEngine->SampleRate;  
             float attenuation = 1 - 0.01053 * (256 >> pDimRgn->ReleaseTriggerDecay) * noteLength;  
             if (attenuation <= 0) return -1;  
             Volume *= attenuation;  
         }  
   
         // select channel mode (mono or stereo)  
         SYNTHESIS_MODE_SET_CHANNELS(SynthesisMode, pSample->Channels == 2);  
   
         // get starting crossfade volume level  
         switch (pDimRgn->AttenuationController.type) {  
             case ::gig::attenuation_ctrl_t::type_channelaftertouch:  
                 CrossfadeVolume = 1.0f; //TODO: aftertouch not supported yet  
                 break;  
             case ::gig::attenuation_ctrl_t::type_velocity:  
                 CrossfadeVolume = CrossfadeAttenuation(itNoteOnEvent->Param.Note.Velocity);  
                 break;  
             case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate  
                 CrossfadeVolume = CrossfadeAttenuation(pEngineChannel->ControllerTable[pDimRgn->AttenuationController.controller_number]);  
                 break;  
             case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined  
             default:  
                 CrossfadeVolume = 1.0f;  
         }  
   
         PanLeft  = 1.0f - float(RTMath::Max(pDimRgn->Pan, 0)) /  63.0f;  
         PanRight = 1.0f - float(RTMath::Min(pDimRgn->Pan, 0)) / -64.0f;  
   
         Pos = pDimRgn->SampleStartOffset; // offset where we should start playback of sample (0 - 2000 sample points)  
75    
76          // Check if the sample needs disk streaming or is too short for that      void Voice::SetEngine(LinuxSampler::Engine* pEngine) {
77          long cachedsamples = pSample->GetCache().Size / pSample->FrameSize;          Engine* engine = static_cast<Engine*>(pEngine);
78          DiskVoice          = cachedsamples < pSample->SamplesTotal;          this->pEngine     = engine;
79            this->pDiskThread = engine->pDiskThread;
80            dmsg(6,("Voice::SetEngine()\n"));
81        }
82    
83          if (DiskVoice) { // voice to be streamed from disk      Voice::SampleInfo Voice::GetSampleInfo() {
84              MaxRAMPos = cachedsamples - (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK)          SampleInfo si;
85            si.SampleRate       = pSample->SamplesPerSecond;
86            si.ChannelCount     = pSample->Channels;
87            si.FrameSize        = pSample->FrameSize;
88            si.BitDepth         = pSample->BitDepth;
89            si.TotalFrameCount  = (uint)pSample->SamplesTotal;
90    
91              // check if there's a loop defined which completely fits into the cached (RAM) part of the sample          si.HasLoops       = pRegion->SampleLoops;
92              if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) {          si.LoopStart      = (si.HasLoops) ? pRegion->pSampleLoops[0].LoopStart  : 0;
93                  RAMLoop        = true;          si.LoopLength     = (si.HasLoops) ? pRegion->pSampleLoops[0].LoopLength : 0;
94                  LoopCyclesLeft = pSample->LoopPlayCount;          si.LoopPlayCount  = pSample->LoopPlayCount;
95              }          si.Unpitched      = !pRegion->PitchTrack;
             else RAMLoop = false;  
   
             if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) {  
                 dmsg(1,("Disk stream order failed!\n"));  
                 KillImmediately();  
                 return -1;  
             }  
             dmsg(4,("Disk voice launched (cached samples: %d, total Samples: %d, MaxRAMPos: %d, RAMLooping: %s)\n", cachedsamples, pSample->SamplesTotal, MaxRAMPos, (RAMLoop) ? "yes" : "no"));  
         }  
         else { // RAM only voice  
             MaxRAMPos = cachedsamples;  
             if (pSample->Loops) {  
                 RAMLoop        = true;  
                 LoopCyclesLeft = pSample->LoopPlayCount;  
             }  
             else RAMLoop = false;  
             dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no"));  
         }  
96    
97            return si;
98        }
99    
100          // calculate initial pitch value      Voice::RegionInfo Voice::GetRegionInfo() {
101          {          RegionInfo ri;
102              double pitchbasecents = pDimRgn->FineTune + (int) pEngine->ScaleTuning[MIDIKey % 12];          ri.UnityNote = pRegion->UnityNote;
103              if (pDimRgn->PitchTrack) pitchbasecents += (MIDIKey - (int) pDimRgn->UnityNote) * 100;          ri.FineTune  = pRegion->FineTune;
104              this->PitchBase = RTMath::CentsToFreqRatio(pitchbasecents) * (double(pSample->SamplesPerSecond) / double(pEngine->pAudioOutputDevice->SampleRate()));          ri.Pan       = pRegion->Pan;
105              this->PitchBend = RTMath::CentsToFreqRatio(((double) PitchBend / 8192.0) * 200.0); // pitchbend wheel +-2 semitones = 200 cents          ri.SampleStartOffset = pRegion->SampleStartOffset;
         }  
   
         // the length of the decay and release curves are dependent on the velocity  
         const double velrelease = 1 / pDimRgn->GetVelocityRelease(itNoteOnEvent->Param.Note.Velocity);  
   
         // setup EG 1 (VCA EG)  
         {  
             // get current value of EG1 controller  
             double eg1controllervalue;  
             switch (pDimRgn->EG1Controller.type) {  
                 case ::gig::eg1_ctrl_t::type_none: // no controller defined  
                     eg1controllervalue = 0;  
                     break;  
                 case ::gig::eg1_ctrl_t::type_channelaftertouch:  
                     eg1controllervalue = 0; // TODO: aftertouch not yet supported  
                     break;  
                 case ::gig::eg1_ctrl_t::type_velocity:  
                     eg1controllervalue = itNoteOnEvent->Param.Note.Velocity;  
                     break;  
                 case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller  
                     eg1controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG1Controller.controller_number];  
                     break;  
             }  
             if (pDimRgn->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;  
106    
107              // calculate influence of EG1 controller on EG1's parameters (TODO: needs to be fine tuned)          ri.EG2PreAttack        = pRegion->EG2PreAttack;
108              double eg1attack  = (pDimRgn->EG1ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerAttackInfluence)  * eg1controllervalue : 0.0;          ri.EG2Attack           = pRegion->EG2Attack;
109              double eg1decay   = (pDimRgn->EG1ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerDecayInfluence)   * eg1controllervalue : 0.0;          ri.EG2Decay1           = pRegion->EG2Decay1;
110              double eg1release = (pDimRgn->EG1ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG1ControllerReleaseInfluence) * eg1controllervalue : 0.0;          ri.EG2Decay2           = pRegion->EG2Decay2;
111            ri.EG2Sustain          = pRegion->EG2Sustain;
112              pEG1->Trigger(pDimRgn->EG1PreAttack,          ri.EG2InfiniteSustain  = pRegion->EG2InfiniteSustain;
113                            pDimRgn->EG1Attack + eg1attack,          ri.EG2Release          = pRegion->EG2Release;
                           pDimRgn->EG1Hold,  
                           pSample->LoopStart,  
                           (pDimRgn->EG1Decay1 + eg1decay) * velrelease,  
                           (pDimRgn->EG1Decay2 + eg1decay) * velrelease,  
                           pDimRgn->EG1InfiniteSustain,  
                           pDimRgn->EG1Sustain,  
                           (pDimRgn->EG1Release + eg1release) * velrelease,  
                           // the SSE synthesis implementation requires  
                           // the vca start to be 16 byte aligned  
                           SYNTHESIS_MODE_GET_IMPLEMENTATION(SynthesisMode) ?  
                           Delay & 0xfffffffc : Delay,  
                           velocityAttenuation);  
         }  
114    
115            ri.EG3Attack     = pRegion->EG3Attack;
116            ri.EG3Depth      = pRegion->EG3Depth;
117            ri.VCFEnabled    = pRegion->VCFEnabled;
118            ri.VCFType       = Filter::vcf_type_t(pRegion->VCFType);
119            ri.VCFResonance  = pRegion->VCFResonance;
120    
121          // setup EG 2 (VCF Cutoff EG)          ri.ReleaseTriggerDecay = 0.01053 * (256 >> pRegion->ReleaseTriggerDecay);
         {  
             // get current value of EG2 controller  
             double eg2controllervalue;  
             switch (pDimRgn->EG2Controller.type) {  
                 case ::gig::eg2_ctrl_t::type_none: // no controller defined  
                     eg2controllervalue = 0;  
                     break;  
                 case ::gig::eg2_ctrl_t::type_channelaftertouch:  
                     eg2controllervalue = 0; // TODO: aftertouch not yet supported  
                     break;  
                 case ::gig::eg2_ctrl_t::type_velocity:  
                     eg2controllervalue = itNoteOnEvent->Param.Note.Velocity;  
                     break;  
                 case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller  
                     eg2controllervalue = pEngineChannel->ControllerTable[pDimRgn->EG2Controller.controller_number];  
                     break;  
             }  
             if (pDimRgn->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;  
122    
123              // calculate influence of EG2 controller on EG2's parameters (TODO: needs to be fine tuned)          return ri;
124              double eg2attack  = (pDimRgn->EG2ControllerAttackInfluence)  ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerAttackInfluence)  * eg2controllervalue : 0.0;      }
             double eg2decay   = (pDimRgn->EG2ControllerDecayInfluence)   ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerDecayInfluence)   * eg2controllervalue : 0.0;  
             double eg2release = (pDimRgn->EG2ControllerReleaseInfluence) ? 0.0001 * (double) (1 << pDimRgn->EG2ControllerReleaseInfluence) * eg2controllervalue : 0.0;  
   
             pEG2->Trigger(pDimRgn->EG2PreAttack,  
                           pDimRgn->EG2Attack + eg2attack,  
                           false,  
                           pSample->LoopStart,  
                           (pDimRgn->EG2Decay1 + eg2decay) * velrelease,  
                           (pDimRgn->EG2Decay2 + eg2decay) * velrelease,  
                           pDimRgn->EG2InfiniteSustain,  
                           pDimRgn->EG2Sustain,  
                           (pDimRgn->EG2Release + eg2release) * velrelease,  
                           Delay,  
                           velocityAttenuation);  
         }  
125    
126        Voice::InstrumentInfo Voice::GetInstrumentInfo() {
127            InstrumentInfo ii;
128            ii.FineTune = GetGigEngineChannel()->pInstrument->FineTune;
129            ii.PitchbendRange = GetGigEngineChannel()->pInstrument->PitchbendRange;
130    
131          // setup EG 3 (VCO EG)          return ii;
132          {      }
           double eg3depth = RTMath::CentsToFreqRatio(pDimRgn->EG3Depth);  
           pEG3->Trigger(eg3depth, pDimRgn->EG3Attack, Delay);  
         }  
133    
134        double Voice::GetSampleAttenuation() {
135            return pRegion->SampleAttenuation;
136        }
137    
138          // setup LFO 1 (VCA LFO)      double Voice::GetVelocityAttenuation(uint8_t MIDIKeyVelocity) {
139          {          return pRegion->GetVelocityAttenuation(MIDIKeyVelocity);
140              uint16_t lfo1_internal_depth;      }
             switch (pDimRgn->LFO1Controller) {  
                 case ::gig::lfo1_ctrl_internal:  
                     lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;  
                     pLFO1->ExtController = 0; // no external controller  
                     break;  
                 case ::gig::lfo1_ctrl_modwheel:  
                     lfo1_internal_depth  = 0;  
                     pLFO1->ExtController = 1; // MIDI controller 1  
                     break;  
                 case ::gig::lfo1_ctrl_breath:  
                     lfo1_internal_depth  = 0;  
                     pLFO1->ExtController = 2; // MIDI controller 2  
                     break;  
                 case ::gig::lfo1_ctrl_internal_modwheel:  
                     lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;  
                     pLFO1->ExtController = 1; // MIDI controller 1  
                     break;  
                 case ::gig::lfo1_ctrl_internal_breath:  
                     lfo1_internal_depth  = pDimRgn->LFO1InternalDepth;  
                     pLFO1->ExtController = 2; // MIDI controller 2  
                     break;  
                 default:  
                     lfo1_internal_depth  = 0;  
                     pLFO1->ExtController = 0; // no external controller  
             }  
             pLFO1->Trigger(pDimRgn->LFO1Frequency,  
                           lfo1_internal_depth,  
                           pDimRgn->LFO1ControlDepth,  
                           pEngineChannel->ControllerTable[pLFO1->ExtController],  
                           pDimRgn->LFO1FlipPhase,  
                           pEngine->SampleRate,  
                           Delay);  
         }  
141    
142        double Voice::GetVelocityRelease(uint8_t MIDIKeyVelocity) {
143            return pRegion->GetVelocityRelease(MIDIKeyVelocity);
144        }
145    
146          // setup LFO 2 (VCF Cutoff LFO)      void Voice::ProcessCCEvent(RTList<Event>::Iterator& itEvent) {
147          {          if (itEvent->Type == Event::type_control_change && itEvent->Param.CC.Controller) { // if (valid) MIDI control change event
148              uint16_t lfo2_internal_depth;              if (pRegion->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&
149              switch (pDimRgn->LFO2Controller) {                  itEvent->Param.CC.Controller == pRegion->AttenuationController.controller_number) {
150                  case ::gig::lfo2_ctrl_internal:                  CrossfadeSmoother.update(AbstractEngine::CrossfadeCurve[CrossfadeAttenuation(itEvent->Param.CC.Value)]);
                     lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;  
                     pLFO2->ExtController = 0; // no external controller  
                     break;  
                 case ::gig::lfo2_ctrl_modwheel:  
                     lfo2_internal_depth  = 0;  
                     pLFO2->ExtController = 1; // MIDI controller 1  
                     break;  
                 case ::gig::lfo2_ctrl_foot:  
                     lfo2_internal_depth  = 0;  
                     pLFO2->ExtController = 4; // MIDI controller 4  
                     break;  
                 case ::gig::lfo2_ctrl_internal_modwheel:  
                     lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;  
                     pLFO2->ExtController = 1; // MIDI controller 1  
                     break;  
                 case ::gig::lfo2_ctrl_internal_foot:  
                     lfo2_internal_depth  = pDimRgn->LFO2InternalDepth;  
                     pLFO2->ExtController = 4; // MIDI controller 4  
                     break;  
                 default:  
                     lfo2_internal_depth  = 0;  
                     pLFO2->ExtController = 0; // no external controller  
151              }              }
             pLFO2->Trigger(pDimRgn->LFO2Frequency,  
                           lfo2_internal_depth,  
                           pDimRgn->LFO2ControlDepth,  
                           pEngineChannel->ControllerTable[pLFO2->ExtController],  
                           pDimRgn->LFO2FlipPhase,  
                           pEngine->SampleRate,  
                           Delay);  
152          }          }
153        }
154    
155        void Voice::ProcessChannelPressureEvent(RTList<Event>::Iterator& itEvent) {
156          // setup LFO 3 (VCO LFO)          if (itEvent->Type == Event::type_channel_pressure) { // if (valid) MIDI channel pressure (aftertouch) event
157          {              if (pRegion->AttenuationController.type == ::gig::attenuation_ctrl_t::type_channelaftertouch) {
158              uint16_t lfo3_internal_depth;                  CrossfadeSmoother.update(AbstractEngine::CrossfadeCurve[CrossfadeAttenuation(itEvent->Param.ChannelPressure.Value)]);
             switch (pDimRgn->LFO3Controller) {  
                 case ::gig::lfo3_ctrl_internal:  
                     lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;  
                     pLFO3->ExtController = 0; // no external controller  
                     break;  
                 case ::gig::lfo3_ctrl_modwheel:  
                     lfo3_internal_depth  = 0;  
                     pLFO3->ExtController = 1; // MIDI controller 1  
                     break;  
                 case ::gig::lfo3_ctrl_aftertouch:  
                     lfo3_internal_depth  = 0;  
                     pLFO3->ExtController = 0; // TODO: aftertouch not implemented yet  
                     break;  
                 case ::gig::lfo3_ctrl_internal_modwheel:  
                     lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;  
                     pLFO3->ExtController = 1; // MIDI controller 1  
                     break;  
                 case ::gig::lfo3_ctrl_internal_aftertouch:  
                     lfo3_internal_depth  = pDimRgn->LFO3InternalDepth;  
                     pLFO1->ExtController = 0; // TODO: aftertouch not implemented yet  
                     break;  
                 default:  
                     lfo3_internal_depth  = 0;  
                     pLFO3->ExtController = 0; // no external controller  
159              }              }
             pLFO3->Trigger(pDimRgn->LFO3Frequency,  
                           lfo3_internal_depth,  
                           pDimRgn->LFO3ControlDepth,  
                           pEngineChannel->ControllerTable[pLFO3->ExtController],  
                           false,  
                           pEngine->SampleRate,  
                           Delay);  
160          }          }
161        }
162    
163        void Voice::ProcessPolyphonicKeyPressureEvent(RTList<Event>::Iterator& itEvent) {
164            // Not used so far
165        }
166    
167          #if CONFIG_FORCE_FILTER      uint8_t Voice::MinCutoff() const {
168          const bool bUseFilter = true;          // If there's a cutoff controller defined then VCFVelocityScale means
169          #else // use filter only if instrument file told so          // "minimum cutoff". If there is no MIDI controller defined for cutoff
170          const bool bUseFilter = pDimRgn->VCFEnabled;          // then VCFVelocityScale is already taken into account on libgig side
171          #endif // CONFIG_FORCE_FILTER          // instead by call to pRegion->GetVelocityCutoff(MIDIKeyVelocity).
172          SYNTHESIS_MODE_SET_FILTER(SynthesisMode, bUseFilter);          return pRegion->VCFVelocityScale;
173          if (bUseFilter) {      }
             #ifdef CONFIG_OVERRIDE_CUTOFF_CTRL  
             VCFCutoffCtrl.controller = CONFIG_OVERRIDE_CUTOFF_CTRL;  
             #else // use the one defined in the instrument file  
             switch (pDimRgn->VCFCutoffController) {  
                 case ::gig::vcf_cutoff_ctrl_modwheel:  
                     VCFCutoffCtrl.controller = 1;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_effect1:  
                     VCFCutoffCtrl.controller = 12;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_effect2:  
                     VCFCutoffCtrl.controller = 13;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_breath:  
                     VCFCutoffCtrl.controller = 2;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_foot:  
                     VCFCutoffCtrl.controller = 4;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_sustainpedal:  
                     VCFCutoffCtrl.controller = 64;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_softpedal:  
                     VCFCutoffCtrl.controller = 67;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_genpurpose7:  
                     VCFCutoffCtrl.controller = 82;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_genpurpose8:  
                     VCFCutoffCtrl.controller = 83;  
                     break;  
                 case ::gig::vcf_cutoff_ctrl_aftertouch: //TODO: not implemented yet  
                 case ::gig::vcf_cutoff_ctrl_none:  
                 default:  
                     VCFCutoffCtrl.controller = 0;  
                     break;  
             }  
             #endif // CONFIG_OVERRIDE_CUTOFF_CTRL  
   
             #ifdef CONFIG_OVERRIDE_RESONANCE_CTRL  
             VCFResonanceCtrl.controller = CONFIG_OVERRIDE_RESONANCE_CTRL;  
             #else // use the one defined in the instrument file  
             switch (pDimRgn->VCFResonanceController) {  
                 case ::gig::vcf_res_ctrl_genpurpose3:  
                     VCFResonanceCtrl.controller = 18;  
                     break;  
                 case ::gig::vcf_res_ctrl_genpurpose4:  
                     VCFResonanceCtrl.controller = 19;  
                     break;  
                 case ::gig::vcf_res_ctrl_genpurpose5:  
                     VCFResonanceCtrl.controller = 80;  
                     break;  
                 case ::gig::vcf_res_ctrl_genpurpose6:  
                     VCFResonanceCtrl.controller = 81;  
                     break;  
                 case ::gig::vcf_res_ctrl_none:  
                 default:  
                     VCFResonanceCtrl.controller = 0;  
             }  
             #endif // CONFIG_OVERRIDE_RESONANCE_CTRL  
   
             #ifndef CONFIG_OVERRIDE_FILTER_TYPE  
             FilterLeft.SetType(pDimRgn->VCFType);  
             FilterRight.SetType(pDimRgn->VCFType);  
             #else // override filter type  
             FilterLeft.SetType(CONFIG_OVERRIDE_FILTER_TYPE);  
             FilterRight.SetType(CONFIG_OVERRIDE_FILTER_TYPE);  
             #endif // CONFIG_OVERRIDE_FILTER_TYPE  
   
             VCFCutoffCtrl.value    = pEngineChannel->ControllerTable[VCFCutoffCtrl.controller];  
             VCFResonanceCtrl.value = pEngineChannel->ControllerTable[VCFResonanceCtrl.controller];  
   
             // calculate cutoff frequency  
             float cutoff = (!VCFCutoffCtrl.controller)  
                 ? exp((float) (127 - itNoteOnEvent->Param.Note.Velocity) * (float) pDimRgn->VCFVelocityScale * 6.2E-5f * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MAX  
                 : exp((float) VCFCutoffCtrl.value * 0.00787402f * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MAX;  
   
             // calculate resonance  
             float resonance = (float) VCFResonanceCtrl.value * 0.00787f;   // 0.0..1.0  
             if (pDimRgn->VCFKeyboardTracking) {  
                 resonance += (float) (itNoteOnEvent->Param.Note.Key - pDimRgn->VCFKeyboardTrackingBreakpoint) * 0.00787f;  
             }  
             Constrain(resonance, 0.0, 1.0); // correct resonance if outside allowed value range (0.0..1.0)  
174    
175              VCFCutoffCtrl.fvalue    = cutoff - CONFIG_FILTER_CUTOFF_MIN;      // This is called on any cutoff controller changes, however not when the
176              VCFResonanceCtrl.fvalue = resonance;      // voice is triggered. So the initial cutoff value is retrieved by a call
177        // to CalculateFinalCutoff() instead.
178        void Voice::ProcessCutoffEvent(RTList<Event>::Iterator& itEvent) {
179            if (VCFCutoffCtrl.value == itEvent->Param.CC.Value) return;
180            float ccvalue = VCFCutoffCtrl.value = itEvent->Param.CC.Value;
181    
182              FilterUpdateCounter = -1;          // if the selected filter type is an official GigaStudio filter type
183          }          // then we preserve the original (no matter how odd) historical GSt
184          else {          // behaviour identically; for our own filter types though we deviate to
185              VCFCutoffCtrl.controller    = 0;          // more meaningful behaviours where appropriate
186              VCFResonanceCtrl.controller = 0;          const bool isGStFilter = isGStFilterType(pRegion->VCFType);
         }  
   
         return 0; // success  
     }  
   
     /**  
      *  Renders the audio data for this voice for the current audio fragment.  
      *  The sample input data can either come from RAM (cached sample or sample  
      *  part) or directly from disk. The output signal will be rendered by  
      *  resampling / interpolation. If this voice is a disk streaming voice and  
      *  the voice completely played back the cached RAM part of the sample, it  
      *  will automatically switch to disk playback for the next RenderAudio()  
      *  call.  
      *  
      *  @param Samples - number of samples to be rendered in this audio fragment cycle  
      */  
     void Voice::Render(uint Samples) {  
   
         // select default values for synthesis mode bits  
         SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, (PitchBase * PitchBend) != 1.0f);  
         SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, true);  
         SYNTHESIS_MODE_SET_LOOP(SynthesisMode, false);  
   
         // Reset the synthesis parameter matrix  
   
         pEngine->ResetSynthesisParameters(Event::destination_vca, this->Volume * this->CrossfadeVolume * pEngineChannel->GlobalVolume);  
         pEngine->ResetSynthesisParameters(Event::destination_vco, this->PitchBase);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfc, VCFCutoffCtrl.fvalue);  
         pEngine->ResetSynthesisParameters(Event::destination_vcfr, VCFResonanceCtrl.fvalue);  
   
         // Apply events to the synthesis parameter matrix  
         ProcessEvents(Samples);  
   
         // Let all modulators write their parameter changes to the synthesis parameter matrix for the current audio fragment  
         pEG1->Process(Samples, pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend, itKillEvent);  
         pEG2->Process(Samples, pEngineChannel->pMIDIKeyInfo[MIDIKey].pEvents, itTriggerEvent, this->Pos, this->PitchBase * this->PitchBend);  
         if (pEG3->Process(Samples)) { // if pitch EG is active  
             SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);  
             SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);  
         }  
         pLFO1->Process(Samples);  
         pLFO2->Process(Samples);  
         if (pLFO3->Process(Samples)) { // if pitch LFO modulation is active  
             SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);  
             SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);  
         }  
   
         if (SYNTHESIS_MODE_GET_FILTER(SynthesisMode))  
             CalculateBiquadParameters(Samples); // calculate the final biquad filter parameters  
   
         switch (this->PlaybackState) {  
   
             case playback_state_init:  
                 this->PlaybackState = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed  
                 // no break - continue with playback_state_ram  
   
             case playback_state_ram: {  
                     if (RAMLoop) SYNTHESIS_MODE_SET_LOOP(SynthesisMode, true); // enable looping  
   
                     // render current fragment  
                     Synthesize(Samples, (sample_t*) pSample->GetCache().pStart, Delay);  
   
                     if (DiskVoice) {  
                         // check if we reached the allowed limit of the sample RAM cache  
                         if (Pos > MaxRAMPos) {  
                             dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", Pos));  
                             this->PlaybackState = playback_state_disk;  
                         }  
                     }  
                     else if (Pos >= pSample->GetCache().Size / pSample->FrameSize) {  
                         this->PlaybackState = playback_state_end;  
                     }  
                 }  
                 break;  
   
             case playback_state_disk: {  
                     if (!DiskStreamRef.pStream) {  
                         // check if the disk thread created our ordered disk stream in the meantime  
                         DiskStreamRef.pStream = pDiskThread->AskForCreatedStream(DiskStreamRef.OrderID);  
                         if (!DiskStreamRef.pStream) {  
                             std::cout << stderr << "Disk stream not available in time!" << std::endl << std::flush;  
                             KillImmediately();  
                             return;  
                         }  
                         DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (int(Pos) - MaxRAMPos));  
                         Pos -= int(Pos);  
                         RealSampleWordsLeftToRead = -1; // -1 means no silence has been added yet  
                     }  
   
                     const int sampleWordsLeftToRead = DiskStreamRef.pStream->GetReadSpace();  
   
                     // add silence sample at the end if we reached the end of the stream (for the interpolator)  
                     if (DiskStreamRef.State == Stream::state_end) {  
                         const int maxSampleWordsPerCycle = (pEngine->MaxSamplesPerCycle << CONFIG_MAX_PITCH) * pSample->Channels + 6; // +6 for the interpolator algorithm  
                         if (sampleWordsLeftToRead <= maxSampleWordsPerCycle) {  
                             // remember how many sample words there are before any silence has been added  
                             if (RealSampleWordsLeftToRead < 0) RealSampleWordsLeftToRead = sampleWordsLeftToRead;  
                             DiskStreamRef.pStream->WriteSilence(maxSampleWordsPerCycle - sampleWordsLeftToRead);  
                         }  
                     }  
   
                     sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from  
   
                     // render current audio fragment  
                     Synthesize(Samples, ptr, Delay);  
   
                     const int iPos = (int) Pos;  
                     const int readSampleWords = iPos * pSample->Channels; // amount of sample words actually been read  
                     DiskStreamRef.pStream->IncrementReadPos(readSampleWords);  
                     Pos -= iPos; // just keep fractional part of Pos  
   
                     // change state of voice to 'end' if we really reached the end of the sample data  
                     if (RealSampleWordsLeftToRead >= 0) {  
                         RealSampleWordsLeftToRead -= readSampleWords;  
                         if (RealSampleWordsLeftToRead <= 0) this->PlaybackState = playback_state_end;  
                     }  
                 }  
                 break;  
   
             case playback_state_end:  
                 std::cerr << "gig::Voice::Render(): entered with playback_state_end, this is a bug!\n" << std::flush;  
                 break;  
         }  
   
         // Reset synthesis event lists (except VCO, as VCO events apply channel wide currently)  
         pEngineChannel->pSynthesisEvents[Event::destination_vca]->clear();  
         pEngineChannel->pSynthesisEvents[Event::destination_vcfc]->clear();  
         pEngineChannel->pSynthesisEvents[Event::destination_vcfr]->clear();  
   
         // Reset delay  
         Delay = 0;  
   
         itTriggerEvent = Pool<Event>::Iterator();  
   
         // If sample stream or release stage finished, kill the voice  
         if (PlaybackState == playback_state_end || pEG1->GetStage() == EGADSR::stage_end) KillImmediately();  
     }  
   
     /**  
      *  Resets voice variables. Should only be called if rendering process is  
      *  suspended / not running.  
      */  
     void Voice::Reset() {  
         pLFO1->Reset();  
         pLFO2->Reset();  
         pLFO3->Reset();  
         FilterLeft.Reset();  
         FilterRight.Reset();  
         DiskStreamRef.pStream = NULL;  
         DiskStreamRef.hStream = 0;  
         DiskStreamRef.State   = Stream::state_unused;  
         DiskStreamRef.OrderID = 0;  
         PlaybackState = playback_state_end;  
         itTriggerEvent = Pool<Event>::Iterator();  
         itKillEvent    = Pool<Event>::Iterator();  
     }  
   
     /**  
      *  Process the control change event lists of the engine for the current  
      *  audio fragment. Event values will be applied to the synthesis parameter  
      *  matrix.  
      *  
      *  @param Samples - number of samples to be rendered in this audio fragment cycle  
      */  
     void Voice::ProcessEvents(uint Samples) {  
   
         // dispatch control change events  
         RTList<Event>::Iterator itCCEvent = pEngineChannel->pCCEvents->first();  
         if (Delay) { // skip events that happened before this voice was triggered  
             while (itCCEvent && itCCEvent->FragmentPos() <= Delay) ++itCCEvent;  
         }  
         while (itCCEvent) {  
             if (itCCEvent->Param.CC.Controller) { // if valid MIDI controller  
                 if (itCCEvent->Param.CC.Controller == VCFCutoffCtrl.controller) {  
                     *pEngineChannel->pSynthesisEvents[Event::destination_vcfc]->allocAppend() = *itCCEvent;  
                 }  
                 if (itCCEvent->Param.CC.Controller == VCFResonanceCtrl.controller) {  
                     *pEngineChannel->pSynthesisEvents[Event::destination_vcfr]->allocAppend() = *itCCEvent;  
                 }  
                 if (itCCEvent->Param.CC.Controller == pLFO1->ExtController) {  
                     pLFO1->SendEvent(itCCEvent);  
                 }  
                 if (itCCEvent->Param.CC.Controller == pLFO2->ExtController) {  
                     pLFO2->SendEvent(itCCEvent);  
                 }  
                 if (itCCEvent->Param.CC.Controller == pLFO3->ExtController) {  
                     pLFO3->SendEvent(itCCEvent);  
                 }  
                 if (pDimRgn->AttenuationController.type == ::gig::attenuation_ctrl_t::type_controlchange &&  
                     itCCEvent->Param.CC.Controller == pDimRgn->AttenuationController.controller_number) { // if crossfade event  
                     *pEngineChannel->pSynthesisEvents[Event::destination_vca]->allocAppend() = *itCCEvent;  
                 }  
             }  
187    
188              ++itCCEvent;          if (pRegion->VCFCutoffControllerInvert) ccvalue = 127 - ccvalue;
189            if (isGStFilter) {
190                // VCFVelocityScale in this case means "minimum cutoff" for GSt
191                if (ccvalue < MinCutoff()) ccvalue = MinCutoff();
192            } else {
193                // for our own filter types we interpret "minimum cutoff"
194                // differently: GSt handles this as a simple hard limit with the
195                // consequence that a certain range of the controller is simply
196                // dead; so for our filter types we rather remap that to
197                // restrain within the min_cutoff..127 range as well, but
198                // effectively spanned over the entire controller range (0..127)
199                // to avoid such a "dead" lower controller zone
200                ccvalue = MinCutoff() + (ccvalue / 127.f) * float(127 - MinCutoff());
201          }          }
202    
203            float cutoff = CutoffBase * ccvalue;
204            if (cutoff > 127.0f) cutoff = 127.0f;
205    
206          // process pitch events          // the filter implementations of the original GSt filter types take an
207          {          // abstract cutoff parameter range of 0..127, whereas our own filter
208              RTList<Event>* pVCOEventList = pEngineChannel->pSynthesisEvents[Event::destination_vco];          // types take a cutoff parameter in Hz, so remap here:
209              RTList<Event>::Iterator itVCOEvent = pVCOEventList->first();          // 0 .. 127 [lin] -> 21 Hz .. 18 kHz [x^4] (center @2.2 kHz)
210              if (Delay) { // skip events that happened before this voice was triggered          if (!isGStFilter) {
211                  while (itVCOEvent && itVCOEvent->FragmentPos() <= Delay) ++itVCOEvent;              cutoff = (cutoff + 29.f) / (127.f + 29.f);
212              }              cutoff = cutoff * cutoff * cutoff * cutoff * 18000.f;
213              // apply old pitchbend value until first pitch event occurs              if (cutoff > 0.49f * pEngine->SampleRate)
214              if (this->PitchBend != 1.0) {                  cutoff = 0.49f * pEngine->SampleRate;
                 uint end = (itVCOEvent) ? itVCOEvent->FragmentPos() : Samples;  
                 for (uint i = Delay; i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= this->PitchBend;  
                 }  
             }  
             float pitch;  
             while (itVCOEvent) {  
                 RTList<Event>::Iterator itNextVCOEvent = itVCOEvent;  
                 ++itNextVCOEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextVCOEvent) ? itNextVCOEvent->FragmentPos() : Samples;  
   
                 pitch = RTMath::CentsToFreqRatio(((double) itVCOEvent->Param.Pitch.Pitch / 8192.0) * 200.0); // +-two semitones = +-200 cents  
   
                 // apply pitch value to the pitch parameter sequence  
                 for (uint i = itVCOEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vco][i] *= pitch;  
                 }  
   
                 itVCOEvent = itNextVCOEvent;  
             }  
             if (!pVCOEventList->isEmpty()) {  
                 this->PitchBend = pitch;  
                 SYNTHESIS_MODE_SET_INTERPOLATE(SynthesisMode, true);  
                 SYNTHESIS_MODE_SET_CONSTPITCH(SynthesisMode, false);  
             }  
215          }          }
216    
217          // process volume / attenuation events (TODO: we only handle and _expect_ crossfade events here ATM !)          fFinalCutoff = VCFCutoffCtrl.fvalue = cutoff;
218          {      }
             RTList<Event>* pVCAEventList = pEngineChannel->pSynthesisEvents[Event::destination_vca];  
             RTList<Event>::Iterator itVCAEvent = pVCAEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itVCAEvent && itVCAEvent->FragmentPos() <= Delay) ++itVCAEvent;  
             }  
             float crossfadevolume;  
             while (itVCAEvent) {  
                 RTList<Event>::Iterator itNextVCAEvent = itVCAEvent;  
                 ++itNextVCAEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextVCAEvent) ? itNextVCAEvent->FragmentPos() : Samples;  
   
                 crossfadevolume = CrossfadeAttenuation(itVCAEvent->Param.CC.Value);  
   
                 float effective_volume = crossfadevolume * this->Volume * pEngineChannel->GlobalVolume;  
   
                 // apply volume value to the volume parameter sequence  
                 for (uint i = itVCAEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vca][i] = effective_volume;  
                 }  
219    
220                  itVCAEvent = itNextVCAEvent;      double Voice::CalculateCrossfadeVolume(uint8_t MIDIKeyVelocity) {
221              }          float crossfadeVolume;
222              if (!pVCAEventList->isEmpty()) this->CrossfadeVolume = crossfadevolume;          switch (pRegion->AttenuationController.type) {
223                case ::gig::attenuation_ctrl_t::type_channelaftertouch:
224                    crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(GetGigEngineChannel()->ControllerTable[128])];
225                    break;
226                case ::gig::attenuation_ctrl_t::type_velocity:
227                    crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(MIDIKeyVelocity)];
228                    break;
229                case ::gig::attenuation_ctrl_t::type_controlchange: //FIXME: currently not sample accurate
230                    crossfadeVolume = Engine::CrossfadeCurve[CrossfadeAttenuation(GetGigEngineChannel()->ControllerTable[pRegion->AttenuationController.controller_number])];
231                    break;
232                case ::gig::attenuation_ctrl_t::type_none: // no crossfade defined
233                default:
234                    crossfadeVolume = 1.0f;
235          }          }
236    
237          // process filter cutoff events          return crossfadeVolume;
238          {      }
             RTList<Event>* pCutoffEventList = pEngineChannel->pSynthesisEvents[Event::destination_vcfc];  
             RTList<Event>::Iterator itCutoffEvent = pCutoffEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itCutoffEvent && itCutoffEvent->FragmentPos() <= Delay) ++itCutoffEvent;  
             }  
             float cutoff;  
             while (itCutoffEvent) {  
                 RTList<Event>::Iterator itNextCutoffEvent = itCutoffEvent;  
                 ++itNextCutoffEvent;  
   
                 // calculate the influence length of this event (in sample points)  
                 uint end = (itNextCutoffEvent) ? itNextCutoffEvent->FragmentPos() : Samples;  
   
                 cutoff = exp((float) itCutoffEvent->Param.CC.Value * 0.00787402f * FILTER_CUTOFF_COEFF) * CONFIG_FILTER_CUTOFF_MAX - CONFIG_FILTER_CUTOFF_MIN;  
   
                 // apply cutoff frequency to the cutoff parameter sequence  
                 for (uint i = itCutoffEvent->FragmentPos(); i < end; i++) {  
                     pEngine->pSynthesisParameters[Event::destination_vcfc][i] = cutoff;  
                 }  
239    
240                  itCutoffEvent = itNextCutoffEvent;      double Voice::GetEG1ControllerValue(uint8_t MIDIKeyVelocity) {
241              }          double eg1controllervalue = 0;
242              if (!pCutoffEventList->isEmpty()) VCFCutoffCtrl.fvalue = cutoff; // needed for initialization of parameter matrix next time          switch (pRegion->EG1Controller.type) {
243                case ::gig::eg1_ctrl_t::type_none: // no controller defined
244                    eg1controllervalue = 0;
245                    break;
246                case ::gig::eg1_ctrl_t::type_channelaftertouch:
247                    eg1controllervalue = GetGigEngineChannel()->ControllerTable[128];
248                    break;
249                case ::gig::eg1_ctrl_t::type_velocity:
250                    eg1controllervalue = MIDIKeyVelocity;
251                    break;
252                case ::gig::eg1_ctrl_t::type_controlchange: // MIDI control change controller
253                    eg1controllervalue = GetGigEngineChannel()->ControllerTable[pRegion->EG1Controller.controller_number];
254                    break;
255          }          }
256            if (pRegion->EG1ControllerInvert) eg1controllervalue = 127 - eg1controllervalue;
257    
258          // process filter resonance events          return eg1controllervalue;
259          {      }
             RTList<Event>* pResonanceEventList = pEngineChannel->pSynthesisEvents[Event::destination_vcfr];  
             RTList<Event>::Iterator itResonanceEvent = pResonanceEventList->first();  
             if (Delay) { // skip events that happened before this voice was triggered  
                 while (itResonanceEvent && itResonanceEvent->FragmentPos() <= Delay) ++itResonanceEvent;  
             }  
             while (itResonanceEvent) {  
                 RTList<Event>::Iterator itNextResonanceEvent = itResonanceEvent;  
                 ++itNextResonanceEvent;  
260    
261                  // calculate the influence length of this event (in sample points)      Voice::EGInfo Voice::CalculateEG1ControllerInfluence(double eg1ControllerValue) {
262                  uint end = (itNextResonanceEvent) ? itNextResonanceEvent->FragmentPos() : Samples;          EGInfo eg;
263            // (eg1attack is different from the others)
264            if (pRegion->EG1Attack < 1e-8 && // attack in gig == 0
265                (pRegion->EG1ControllerAttackInfluence == 0 ||
266                 eg1ControllerValue <= 10)) { // strange GSt special case
267                eg.Attack = 0; // this will force the attack to be 0 in the call to EG1.trigger
268            } else {
269                eg.Attack  = (pRegion->EG1ControllerAttackInfluence)  ?
270                    1 + 0.031 * (double) (pRegion->EG1ControllerAttackInfluence == 1 ?
271                                          1 : 1 << pRegion->EG1ControllerAttackInfluence) * eg1ControllerValue : 1.0;
272            }
273            eg.Decay   = (pRegion->EG1ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pRegion->EG1ControllerDecayInfluence)   * eg1ControllerValue : 1.0;
274            eg.Release = (pRegion->EG1ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pRegion->EG1ControllerReleaseInfluence) * eg1ControllerValue : 1.0;
275    
276            return eg;
277        }
278    
279        double Voice::GetEG2ControllerValue(uint8_t MIDIKeyVelocity) {
280            double eg2controllervalue = 0;
281            switch (pRegion->EG2Controller.type) {
282                case ::gig::eg2_ctrl_t::type_none: // no controller defined
283                    eg2controllervalue = 0;
284                    break;
285                case ::gig::eg2_ctrl_t::type_channelaftertouch:
286                    eg2controllervalue = GetGigEngineChannel()->ControllerTable[128];
287                    break;
288                case ::gig::eg2_ctrl_t::type_velocity:
289                    eg2controllervalue = MIDIKeyVelocity;
290                    break;
291                case ::gig::eg2_ctrl_t::type_controlchange: // MIDI control change controller
292                    eg2controllervalue = GetGigEngineChannel()->ControllerTable[pRegion->EG2Controller.controller_number];
293                    break;
294            }
295            if (pRegion->EG2ControllerInvert) eg2controllervalue = 127 - eg2controllervalue;
296    
297                  // convert absolute controller value to differential          return eg2controllervalue;
298                  int ctrldelta = itResonanceEvent->Param.CC.Value - VCFResonanceCtrl.value;      }
                 VCFResonanceCtrl.value = itResonanceEvent->Param.CC.Value;  
299    
300                  float resonancedelta = (float) ctrldelta * 0.00787f; // 0.0..1.0      Voice::EGInfo Voice::CalculateEG2ControllerInfluence(double eg2ControllerValue) {
301            EGInfo eg;
302            eg.Attack  = (pRegion->EG2ControllerAttackInfluence)  ? 1 + 0.00775 * (double) (1 << pRegion->EG2ControllerAttackInfluence)  * eg2ControllerValue : 1.0;
303            eg.Decay   = (pRegion->EG2ControllerDecayInfluence)   ? 1 + 0.00775 * (double) (1 << pRegion->EG2ControllerDecayInfluence)   * eg2ControllerValue : 1.0;
304            eg.Release = (pRegion->EG2ControllerReleaseInfluence) ? 1 + 0.00775 * (double) (1 << pRegion->EG2ControllerReleaseInfluence) * eg2ControllerValue : 1.0;
305    
306                  // apply cutoff frequency to the cutoff parameter sequence          return eg;
307                  for (uint i = itResonanceEvent->FragmentPos(); i < end; i++) {      }
                     pEngine->pSynthesisParameters[Event::destination_vcfr][i] += resonancedelta;  
                 }  
308    
309                  itResonanceEvent = itNextResonanceEvent;      void Voice::InitLFO1() {
310              }          uint16_t lfo1_internal_depth;
311              if (!pResonanceEventList->isEmpty()) VCFResonanceCtrl.fvalue = pResonanceEventList->last()->Param.CC.Value * 0.00787f; // needed for initialization of parameter matrix next time          switch (pRegion->LFO1Controller) {
312                case ::gig::lfo1_ctrl_internal:
313                    lfo1_internal_depth  = pRegion->LFO1InternalDepth;
314                    pLFO1->ExtController = 0; // no external controller
315                    bLFO1Enabled         = (lfo1_internal_depth > 0);
316                    break;
317                case ::gig::lfo1_ctrl_modwheel:
318                    lfo1_internal_depth  = 0;
319                    pLFO1->ExtController = 1; // MIDI controller 1
320                    bLFO1Enabled         = (pRegion->LFO1ControlDepth > 0);
321                    break;
322                case ::gig::lfo1_ctrl_breath:
323                    lfo1_internal_depth  = 0;
324                    pLFO1->ExtController = 2; // MIDI controller 2
325                    bLFO1Enabled         = (pRegion->LFO1ControlDepth > 0);
326                    break;
327                case ::gig::lfo1_ctrl_internal_modwheel:
328                    lfo1_internal_depth  = pRegion->LFO1InternalDepth;
329                    pLFO1->ExtController = 1; // MIDI controller 1
330                    bLFO1Enabled         = (lfo1_internal_depth > 0 || pRegion->LFO1ControlDepth > 0);
331                    break;
332                case ::gig::lfo1_ctrl_internal_breath:
333                    lfo1_internal_depth  = pRegion->LFO1InternalDepth;
334                    pLFO1->ExtController = 2; // MIDI controller 2
335                    bLFO1Enabled         = (lfo1_internal_depth > 0 || pRegion->LFO1ControlDepth > 0);
336                    break;
337                default:
338                    lfo1_internal_depth  = 0;
339                    pLFO1->ExtController = 0; // no external controller
340                    bLFO1Enabled         = false;
341            }
342            if (bLFO1Enabled) {
343                pLFO1->trigger(fromGigLfoWave(pRegion->LFO1WaveForm),
344                               pRegion->LFO1Frequency,
345                               pRegion->LFO1Phase,
346                               LFO::start_level_mid, // see https://sourceforge.net/p/linuxsampler/mailman/linuxsampler-devel/thread/2189307.cNP0Xbctxq%40silver/#msg36774029
347                               lfo1_internal_depth,
348                               pRegion->LFO1ControlDepth,
349                               pRegion->LFO1FlipPhase,
350                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
351                pLFO1->updateByMIDICtrlValue(pLFO1->ExtController ? GetGigEngineChannel()->ControllerTable[pLFO1->ExtController] : 0);
352                pLFO1->setScriptDepthFactor(
353                    pNote->Override.AmpLFODepth.Value,
354                    pNote->Override.AmpLFODepth.Final
355                );
356                if (pNote->Override.AmpLFOFreq.isFinal())
357                    pLFO1->setScriptFrequencyFinal(
358                        pNote->Override.AmpLFOFreq.Value, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE
359                    );
360                else
361                    pLFO1->setScriptFrequencyFactor(
362                        pNote->Override.AmpLFOFreq.Value, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE
363                    );
364          }          }
365      }      }
366    
367      /**      void Voice::InitLFO2() {
368       * Calculate all necessary, final biquad filter parameters.          uint16_t lfo2_internal_depth;
369       *          switch (pRegion->LFO2Controller) {
370       * @param Samples - number of samples to be rendered in this audio fragment cycle              case ::gig::lfo2_ctrl_internal:
371       */                  lfo2_internal_depth  = pRegion->LFO2InternalDepth;
372      void Voice::CalculateBiquadParameters(uint Samples) {                  pLFO2->ExtController = 0; // no external controller
373          biquad_param_t bqbase;                  bLFO2Enabled         = (lfo2_internal_depth > 0);
374          biquad_param_t bqmain;                  break;
375          float prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][0];              case ::gig::lfo2_ctrl_modwheel:
376          float prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][0];                  lfo2_internal_depth  = 0;
377          FilterLeft.SetParameters( &bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);                  pLFO2->ExtController = 1; // MIDI controller 1
378          FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);                  bLFO2Enabled         = (pRegion->LFO2ControlDepth > 0);
379          pEngine->pBasicFilterParameters[0] = bqbase;                  break;
380          pEngine->pMainFilterParameters[0]  = bqmain;              case ::gig::lfo2_ctrl_foot:
381                    lfo2_internal_depth  = 0;
382          float* bq;                  pLFO2->ExtController = 4; // MIDI controller 4
383          for (int i = 1; i < Samples; i++) {                  bLFO2Enabled         = (pRegion->LFO2ControlDepth > 0);
384              // recalculate biquad parameters if cutoff or resonance differ from previous sample point                  break;
385              if (!(i & FILTER_UPDATE_MASK)) {              case ::gig::lfo2_ctrl_internal_modwheel:
386                  if (pEngine->pSynthesisParameters[Event::destination_vcfr][i] != prev_res ||                  lfo2_internal_depth  = pRegion->LFO2InternalDepth;
387                      pEngine->pSynthesisParameters[Event::destination_vcfc][i] != prev_cutoff)                  pLFO2->ExtController = 1; // MIDI controller 1
388                  {                  bLFO2Enabled         = (lfo2_internal_depth > 0 || pRegion->LFO2ControlDepth > 0);
389                      prev_cutoff = pEngine->pSynthesisParameters[Event::destination_vcfc][i];                  break;
390                      prev_res    = pEngine->pSynthesisParameters[Event::destination_vcfr][i];              case ::gig::lfo2_ctrl_internal_foot:
391                      FilterLeft.SetParameters( &bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);                  lfo2_internal_depth  = pRegion->LFO2InternalDepth;
392                      FilterRight.SetParameters(&bqbase, &bqmain, prev_cutoff + CONFIG_FILTER_CUTOFF_MIN, prev_res, pEngine->SampleRate);                  pLFO2->ExtController = 4; // MIDI controller 4
393                  }                  bLFO2Enabled         = (lfo2_internal_depth > 0 || pRegion->LFO2ControlDepth > 0);
394              }                  break;
395                default:
396                    lfo2_internal_depth  = 0;
397                    pLFO2->ExtController = 0; // no external controller
398                    bLFO2Enabled         = false;
399            }
400            if (bLFO2Enabled) {
401                pLFO2->trigger(fromGigLfoWave(pRegion->LFO2WaveForm),
402                               pRegion->LFO2Frequency,
403                               pRegion->LFO2Phase,
404                               LFO::start_level_mid, // see https://sourceforge.net/p/linuxsampler/mailman/linuxsampler-devel/thread/2189307.cNP0Xbctxq%40silver/#msg36774029
405                               lfo2_internal_depth,
406                               pRegion->LFO2ControlDepth,
407                               pRegion->LFO2FlipPhase,
408                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
409                pLFO2->updateByMIDICtrlValue(pLFO2->ExtController ? GetGigEngineChannel()->ControllerTable[pLFO2->ExtController] : 0);
410                pLFO2->setScriptDepthFactor(
411                    pNote->Override.CutoffLFODepth.Value,
412                    pNote->Override.CutoffLFODepth.Final
413                );
414                if (pNote->Override.CutoffLFOFreq.isFinal())
415                    pLFO2->setScriptFrequencyFinal(pNote->Override.CutoffLFOFreq.Value, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
416                else
417                    pLFO2->setScriptFrequencyFactor(pNote->Override.CutoffLFOFreq.Value, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
418            }
419        }
420    
421              //same as 'pEngine->pBasicFilterParameters[i] = bqbase;'      void Voice::InitLFO3() {
422              bq    = (float*) &pEngine->pBasicFilterParameters[i];          uint16_t lfo3_internal_depth;
423              bq[0] = bqbase.b0;          switch (pRegion->LFO3Controller) {
424              bq[1] = bqbase.b1;              case ::gig::lfo3_ctrl_internal:
425              bq[2] = bqbase.b2;                  lfo3_internal_depth  = pRegion->LFO3InternalDepth;
426              bq[3] = bqbase.a1;                  pLFO3->ExtController = 0; // no external controller
427              bq[4] = bqbase.a2;                  bLFO3Enabled         = (lfo3_internal_depth > 0);
428                    break;
429              // same as 'pEngine->pMainFilterParameters[i] = bqmain;'              case ::gig::lfo3_ctrl_modwheel:
430              bq    = (float*) &pEngine->pMainFilterParameters[i];                  lfo3_internal_depth  = 0;
431              bq[0] = bqmain.b0;                  pLFO3->ExtController = 1; // MIDI controller 1
432              bq[1] = bqmain.b1;                  bLFO3Enabled         = (pRegion->LFO3ControlDepth > 0);
433              bq[2] = bqmain.b2;                  break;
434              bq[3] = bqmain.a1;              case ::gig::lfo3_ctrl_aftertouch:
435              bq[4] = bqmain.a2;                  lfo3_internal_depth  = 0;
436                    pLFO3->ExtController = CTRL_TABLE_IDX_AFTERTOUCH;
437                    bLFO3Enabled         = true;
438                    break;
439                case ::gig::lfo3_ctrl_internal_modwheel:
440                    lfo3_internal_depth  = pRegion->LFO3InternalDepth;
441                    pLFO3->ExtController = 1; // MIDI controller 1
442                    bLFO3Enabled         = (lfo3_internal_depth > 0 || pRegion->LFO3ControlDepth > 0);
443                    break;
444                case ::gig::lfo3_ctrl_internal_aftertouch:
445                    lfo3_internal_depth  = pRegion->LFO3InternalDepth;
446                    pLFO3->ExtController = CTRL_TABLE_IDX_AFTERTOUCH;
447                    bLFO3Enabled         = (lfo3_internal_depth > 0 || pRegion->LFO3ControlDepth > 0);
448                    break;
449                default:
450                    lfo3_internal_depth  = 0;
451                    pLFO3->ExtController = 0; // no external controller
452                    bLFO3Enabled         = false;
453            }
454            if (bLFO3Enabled) {
455                pLFO3->trigger(fromGigLfoWave(pRegion->LFO3WaveForm),
456                               pRegion->LFO3Frequency,
457                               pRegion->LFO3Phase,
458                               LFO::start_level_max, // see https://sourceforge.net/p/linuxsampler/mailman/linuxsampler-devel/thread/2189307.cNP0Xbctxq%40silver/#msg36774029
459                               lfo3_internal_depth,
460                               pRegion->LFO3ControlDepth,
461                               pRegion->LFO3FlipPhase,
462                               pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
463                pLFO3->updateByMIDICtrlValue(pLFO3->ExtController ? GetGigEngineChannel()->ControllerTable[pLFO3->ExtController] : 0);
464                pLFO3->setScriptDepthFactor(
465                    pNote->Override.PitchLFODepth.Value,
466                    pNote->Override.PitchLFODepth.Final
467                );
468                if (pNote->Override.PitchLFOFreq.isFinal())
469                    pLFO3->setScriptFrequencyFinal(pNote->Override.PitchLFOFreq.Value, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
470                else
471                    pLFO3->setScriptFrequencyFactor(pNote->Override.PitchLFOFreq.Value, pEngine->SampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
472            }
473        }
474    
475        float Voice::CalculateCutoffBase(uint8_t MIDIKeyVelocity) {
476            float cutoff = pRegion->GetVelocityCutoff(MIDIKeyVelocity);
477            if (pRegion->VCFKeyboardTracking) {
478                cutoff *= RTMath::CentsToFreqRatioUnlimited((MIDIKey() - pRegion->VCFKeyboardTrackingBreakpoint) * 100);
479            }
480            return cutoff;
481        }
482    
483        // This is just called when the voice is triggered. On any subsequent cutoff
484        // controller changes ProcessCutoffEvent() is called instead.
485        float Voice::CalculateFinalCutoff(float cutoffBase) {
486            // if the selected filter type is an official GigaStudio filter type
487            // then we preserve the original (no matter how odd) historical GSt
488            // behaviour identically; for our own filter types though we deviate to
489            // more meaningful behaviours where appropriate
490            const bool isGStFilter = isGStFilterType(pRegion->VCFType);
491    
492            // get current cutoff CC or velocity value (always 0..127)
493            float cvalue;
494            if (VCFCutoffCtrl.controller) {
495                cvalue = GetGigEngineChannel()->ControllerTable[VCFCutoffCtrl.controller];
496                if (pRegion->VCFCutoffControllerInvert) cvalue = 127 - cvalue;
497                if (isGStFilter) {
498                    // VCFVelocityScale in this case means "minimum cutoff" for GSt
499                    if (cvalue < MinCutoff()) cvalue = MinCutoff();
500                } else {
501                    // for our own filter types we interpret "minimum cutoff"
502                    // differently: GSt handles this as a simple hard limit with the
503                    // consequence that a certain range of the controller is simply
504                    // dead; so for our filter types we rather remap that to
505                    // restrain within the min_cutoff..127 range as well, but
506                    // effectively spanned over the entire controller range (0..127)
507                    // to avoid such a "dead" lower controller zone
508                    cvalue = MinCutoff() + (cvalue / 127.f) * float(127 - MinCutoff());
509                }
510            } else {
511                // in case of velocity, VCFVelocityScale parameter is already
512                // handled on libgig side (so by calling
513                // pRegion->GetVelocityCutoff(velo) in CalculateCutoffBase() above)
514                cvalue = pRegion->VCFCutoff;
515            }
516    
517            float fco = cutoffBase * cvalue;
518            if (fco > 127.0f) fco = 127.0f;
519    
520            // the filter implementations of the original GSt filter types take an
521            // abstract cutoff parameter range of 0..127, ...
522            if (isGStFilter)
523                return fco;
524    
525            // ... whereas our own filter types take a cutoff parameter in Hz, so
526            // remap here 0 .. 127 [lin] -> 21 Hz .. 18 kHz [x^4] (center @2.2 kHz)
527            fco = (fco + 29.f) / (127.f + 29.f);
528            fco = fco * fco * fco * fco * 18000.f;
529            if (fco > 0.49f * pEngine->SampleRate)
530                fco = 0.49f * pEngine->SampleRate;
531            return fco;
532        }
533    
534        uint8_t Voice::GetVCFCutoffCtrl() {
535            uint8_t ctrl;
536            switch (pRegion->VCFCutoffController) {
537                case ::gig::vcf_cutoff_ctrl_modwheel:
538                    ctrl = 1;
539                    break;
540                case ::gig::vcf_cutoff_ctrl_effect1:
541                    ctrl = 12;
542                    break;
543                case ::gig::vcf_cutoff_ctrl_effect2:
544                    ctrl = 13;
545                    break;
546                case ::gig::vcf_cutoff_ctrl_breath:
547                    ctrl = 2;
548                    break;
549                case ::gig::vcf_cutoff_ctrl_foot:
550                    ctrl = 4;
551                    break;
552                case ::gig::vcf_cutoff_ctrl_sustainpedal:
553                    ctrl = 64;
554                    break;
555                case ::gig::vcf_cutoff_ctrl_softpedal:
556                    ctrl = 67;
557                    break;
558                case ::gig::vcf_cutoff_ctrl_genpurpose7:
559                    ctrl = 82;
560                    break;
561                case ::gig::vcf_cutoff_ctrl_genpurpose8:
562                    ctrl = 83;
563                    break;
564                case ::gig::vcf_cutoff_ctrl_aftertouch:
565                    ctrl = CTRL_TABLE_IDX_AFTERTOUCH;
566                    break;
567                case ::gig::vcf_cutoff_ctrl_none:
568                default:
569                    ctrl = 0;
570                    break;
571          }          }
572    
573            return ctrl;
574      }      }
575    
576      /**      uint8_t Voice::GetVCFResonanceCtrl() {
577       *  Synthesizes the current audio fragment for this voice.          uint8_t ctrl;
578       *          switch (pRegion->VCFResonanceController) {
579       *  @param Samples - number of sample points to be rendered in this audio              case ::gig::vcf_res_ctrl_genpurpose3:
580       *                   fragment cycle                  ctrl = 18;
581       *  @param pSrc    - pointer to input sample data                  break;
582       *  @param Skip    - number of sample points to skip in output buffer              case ::gig::vcf_res_ctrl_genpurpose4:
583       */                  ctrl = 19;
584      void Voice::Synthesize(uint Samples, sample_t* pSrc, uint Skip) {                  break;
585          RunSynthesisFunction(SynthesisMode, *this, Samples, pSrc, Skip);              case ::gig::vcf_res_ctrl_genpurpose5:
586      }                  ctrl = 80;
587                    break;
588      /**              case ::gig::vcf_res_ctrl_genpurpose6:
589       *  Immediately kill the voice. This method should not be used to kill                  ctrl = 81;
590       *  a normal, active voice, because it doesn't take care of things like                  break;
591       *  fading down the volume level to avoid clicks and regular processing              case ::gig::vcf_res_ctrl_none:
592       *  until the kill event actually occured!              default:
593       *                  ctrl = 0;
594       *  @see Kill()          }
595       */  
596      void Voice::KillImmediately() {          return ctrl;
597          if (DiskVoice && DiskStreamRef.State != Stream::state_unused) {      }
             pDiskThread->OrderDeletionOfStream(&DiskStreamRef);  
         }  
         Reset();  
     }  
   
     /**  
      *  Kill the voice in regular sense. Let the voice render audio until  
      *  the kill event actually occured and then fade down the volume level  
      *  very quickly and let the voice die finally. Unlike a normal release  
      *  of a voice, a kill process cannot be cancalled and is therefore  
      *  usually used for voice stealing and key group conflicts.  
      *  
      *  @param itKillEvent - event which caused the voice to be killed  
      */  
     void Voice::Kill(Pool<Event>::Iterator& itKillEvent) {  
         #if CONFIG_DEVMODE  
         if (!itKillEvent) dmsg(1,("gig::Voice::Kill(): ERROR, !itKillEvent !!!\n"));  
         if (itKillEvent && !itKillEvent.isValid()) dmsg(1,("gig::Voice::Kill(): ERROR, itKillEvent invalid !!!\n"));  
         #endif // CONFIG_DEVMODE  
598    
599          if (itTriggerEvent && itKillEvent->FragmentPos() <= itTriggerEvent->FragmentPos()) return;      void Voice::TriggerEG1(const EGInfo& egInfo, double velrelease, double velocityAttenuation, uint sampleRate, uint8_t velocity) {
600          this->itKillEvent = itKillEvent;          EG1.setStateOptions(
601                pRegion->EG1Options.AttackCancel,
602                pRegion->EG1Options.AttackHoldCancel,
603                pRegion->EG1Options.Decay1Cancel,
604                pRegion->EG1Options.Decay2Cancel,
605                pRegion->EG1Options.ReleaseCancel
606            );
607            EG1.trigger(pRegion->EG1PreAttack,
608                        (pNote && pNote->Override.Attack.isFinal()) ?
609                            pNote->Override.Attack.Value :
610                            RTMath::Max(pRegion->EG1Attack, 0.0316) * egInfo.Attack,
611                        pRegion->EG1Hold,
612                        (pNote && pNote->Override.Decay.isFinal()) ?
613                            pNote->Override.Decay.Value :
614                            pRegion->EG1Decay1 * egInfo.Decay * velrelease,
615                        (pNote && pNote->Override.Decay.isFinal()) ?
616                            pNote->Override.Decay.Value :
617                            pRegion->EG1Decay2 * egInfo.Decay * velrelease,
618                        pRegion->EG1InfiniteSustain,
619                        (pNote && pNote->Override.Sustain.Final) ?
620                            uint(pNote->Override.Sustain.Value * 1000.f) :
621                            pRegion->EG1Sustain * (pNote ? pNote->Override.Sustain.Value : 1.f),
622                        (pNote && pNote->Override.Release.isFinal()) ?
623                            pNote->Override.Release.Value :
624                            RTMath::Max(pRegion->EG1Release * velrelease, 0.014) * egInfo.Release,
625                        velocityAttenuation,
626                        sampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
627        }
628    
629        void Voice::TriggerEG2(const EGInfo& egInfo, double velrelease, double velocityAttenuation, uint sampleRate, uint8_t velocity) {
630            EG2.setStateOptions(
631                pRegion->EG2Options.AttackCancel,
632                pRegion->EG2Options.AttackHoldCancel,
633                pRegion->EG2Options.Decay1Cancel,
634                pRegion->EG2Options.Decay2Cancel,
635                pRegion->EG2Options.ReleaseCancel
636            );
637            EG2.trigger(uint(RgnInfo.EG2PreAttack),
638                        (pNote && pNote->Override.CutoffAttack.isFinal()) ?
639                            pNote->Override.CutoffAttack.Value :
640                            RgnInfo.EG2Attack * egInfo.Attack,
641                        false,
642                        (pNote && pNote->Override.CutoffDecay.isFinal()) ?
643                            pNote->Override.CutoffDecay.Value :
644                            RgnInfo.EG2Decay1 * egInfo.Decay * velrelease,
645                        (pNote && pNote->Override.CutoffDecay.isFinal()) ?
646                            pNote->Override.CutoffDecay.Value :
647                            RgnInfo.EG2Decay2 * egInfo.Decay * velrelease,
648                        RgnInfo.EG2InfiniteSustain,
649                        (pNote && pNote->Override.CutoffSustain.Final) ?
650                            uint(pNote->Override.CutoffSustain.Value * 1000.f) :
651                            uint(RgnInfo.EG2Sustain),
652                        (pNote && pNote->Override.CutoffRelease.isFinal()) ?
653                            pNote->Override.CutoffRelease.Value :
654                            RgnInfo.EG2Release * egInfo.Release * velrelease,
655                        velocityAttenuation,
656                        sampleRate / CONFIG_DEFAULT_SUBFRAGMENT_SIZE);
657        }
658    
659        void Voice::ProcessGroupEvent(RTList<Event>::Iterator& itEvent) {
660            dmsg(4,("Voice %p processGroupEvents event type=%d", (void*)this, itEvent->Type));
661    
662            // TODO: The SustainPedal condition could be wrong, maybe the
663            // check should be if this Voice is in release stage or is a
664            // release sample instead. Need to test this in GSt.
665            // -- Andreas
666            //
667            // Commented sustain pedal check out. I don't think voices of the same
668            // note should be stopped at all, because it doesn't sound naturally
669            // with a drumkit.
670            // -- Christian, 2013-01-08
671            if (itEvent->Param.Note.Key != HostKey() /*||
672                !GetGigEngineChannel()->SustainPedal*/) {
673                dmsg(4,("Voice %p - kill", (void*)this));
674    
675                // kill the voice fast
676                pEG1->enterFadeOutStage();
677            }
678        }
679    
680        void Voice::CalculateFadeOutCoeff(float FadeOutTime, float SampleRate) {
681            EG1.CalculateFadeOutCoeff(FadeOutTime, SampleRate);
682        }
683    
684        int Voice::CalculatePan(uint8_t pan) {
685            int p;
686            // Gst behaviour: -64 and 63 are special cases
687            if (RgnInfo.Pan == -64)     p = pan * 2 - 127;
688            else if (RgnInfo.Pan == 63) p = pan * 2;
689            else                        p = pan + RgnInfo.Pan;
690    
691            if (p < 0) return 0;
692            if (p > 127) return 127;
693            return p;
694        }
695    
696        release_trigger_t Voice::GetReleaseTriggerFlags() {
697            release_trigger_t flags =
698                (pRegion->NoNoteOffReleaseTrigger) ?
699                    release_trigger_none : release_trigger_noteoff; //HACK: currently this method is actually only called by EngineBase if it already knows that this voice requires release trigger, so I took the short way instead of checking (again) the existence of a ::gig::dimension_releasetrigger
700            switch (pRegion->SustainReleaseTrigger) {
701                case ::gig::sust_rel_trg_none:
702                    break;
703                case ::gig::sust_rel_trg_maxvelocity:
704                    flags |= release_trigger_sustain_maxvelocity;
705                    break;
706                case ::gig::sust_rel_trg_keyvelocity:
707                    flags |= release_trigger_sustain_keyvelocity;
708                    break;
709            }
710            return flags;
711      }      }
712    
713  }} // namespace LinuxSampler::gig  }} // namespace LinuxSampler::gig

Legend:
Removed from v.669  
changed lines
  Added in v.3655

  ViewVC Help
Powered by ViewVC