/*************************************************************************** * * * LinuxSampler - modular, streaming capable sampler * * * * Copyright (C) 2003 by Benno Senoner and Christian Schoenebeck * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the Free Software * * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * * MA 02111-1307 USA * ***************************************************************************/ #include "voice.h" // FIXME: no support for layers (nor crossfades) yet DiskThread* Voice::pDiskThread = NULL; AudioThread* Voice::pEngine = NULL; Voice::Voice() { Active = false; } Voice::~Voice() { } /** * Initializes and triggers the voice, a disk stream will be launched if * needed. * * @param MIDIKey - MIDI key number of the triggered key * @param Velocity - MIDI velocity value of the triggered key * @param Pitch - MIDI detune factor (-8192 ... +8191) * @param pInstrument - points to the loaded instrument which provides sample wave(s) and articulation data * @param Delay - number of sample points triggering should be delayed * @returns 0 on success, a value < 0 if something failed */ int Voice::Trigger(int MIDIKey, uint8_t Velocity, int Pitch, gig::Instrument* pInstrument, uint Delay) { Active = true; this->MIDIKey = MIDIKey; pRegion = pInstrument->GetRegion(MIDIKey); PlaybackState = playback_state_ram; // we always start playback from RAM cache and switch then to disk if needed Pos = 0; ReleaseVelocity = 127; // default release velocity value this->Delay = Delay; ReleaseSignalReceived = false; if (!pRegion) { std::cerr << "Audio Thread: No Region defined for MIDI key " << MIDIKey << std::endl << std::flush; Kill(); return -1; } //TODO: current MIDI controller values are not taken into account yet gig::DimensionRegion* pDimRgn = NULL; for (int i = pRegion->Dimensions - 1; i >= 0; i--) { // Check if instrument has a velocity split if (pRegion->pDimensionDefinitions[i].dimension == gig::dimension_velocity) { uint DimValues[5] = {0,0,0,0,0}; DimValues[i] = Velocity; pDimRgn = pRegion->GetDimensionRegionByValue(DimValues[4],DimValues[3],DimValues[2],DimValues[1],DimValues[0]); break; } } if (!pDimRgn) { // if there was no velocity split pDimRgn = pRegion->GetDimensionRegionByValue(0,0,0,0,0); } pSample = pDimRgn->pSample; // sample won't change until the voice is finished // Check if the sample needs disk streaming or is too short for that long cachedsamples = pSample->GetCache().Size / pSample->FrameSize; DiskVoice = cachedsamples < pSample->SamplesTotal; if (DiskVoice) { // voice to be streamed from disk MaxRAMPos = cachedsamples - (MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels; //TODO: this calculation is too pessimistic and may better be moved to Render() method, so it calculates MaxRAMPos dependent to the current demand of sample points to be rendered (e.g. in case of JACK) // check if there's a loop defined which completely fits into the cached (RAM) part of the sample if (pSample->Loops && pSample->LoopEnd <= MaxRAMPos) { RAMLoop = true; LoopCyclesLeft = pSample->LoopPlayCount; } else RAMLoop = false; if (pDiskThread->OrderNewStream(&DiskStreamRef, pSample, MaxRAMPos, !RAMLoop) < 0) { dmsg(1,("Disk stream order failed!\n")); Kill(); return -1; } dmsg(4,("Disk voice launched (cached samples: %d, total Samples: %d, MaxRAMPos: %d, RAMLooping: %s)\n", cachedsamples, pSample->SamplesTotal, MaxRAMPos, (RAMLoop) ? "yes" : "no")); } else { // RAM only voice MaxRAMPos = cachedsamples; if (pSample->Loops) { RAMLoop = true; LoopCyclesLeft = pSample->LoopPlayCount; } else RAMLoop = false; dmsg(4,("RAM only voice launched (Looping: %s)\n", (RAMLoop) ? "yes" : "no")); } // Pitch according to keyboard position (if 'PitchTrack' is set) and given detune factor this->Pitch = ((double) Pitch / 8192.0) / 12.0 + (pDimRgn->PitchTrack) ? pow(2, ((double) (MIDIKey - (int) pDimRgn->UnityNote) + (double) pDimRgn->FineTune / 100.0) / 12.0) : pow(2, ((double) pDimRgn->FineTune / 100.0) / 12.0); Volume = pDimRgn->GetVelocityAttenuation(Velocity); EG1.Trigger(pDimRgn->EG1PreAttack, pDimRgn->EG1Attack, pDimRgn->EG1Release, Delay); // ************************************************ // TODO: ARTICULATION DATA HANDLING IS MISSING HERE // ************************************************ return 0; // success } /** * Renders the audio data for this voice for the current audio fragment. * The sample input data can either come from RAM (cached sample or sample * part) or directly from disk. The output signal will be rendered by * resampling / interpolation. If this voice is a disk streaming voice and * the voice completely played back the cached RAM part of the sample, it * will automatically switch to disk playback for the next RenderAudio() * call. * * @param Samples - number of samples to be rendered in this audio fragment cycle */ void Voice::Render(uint Samples) { // Reset the synthesis parameter matrix ModulationSystem::ResetDestinationParameter(ModulationSystem::destination_vca, this->Volume); ModulationSystem::ResetDestinationParameter(ModulationSystem::destination_vco, this->Pitch); // Apply events to the synthesis parameter matrix ProcessEvents(Samples); // Let all modulators throw their parameter changes for the current audio fragment EG1.Process(Samples); switch (this->PlaybackState) { case playback_state_ram: { if (RAMLoop) InterpolateAndLoop(Samples, (sample_t*) pSample->GetCache().pStart, Delay); else Interpolate(Samples, (sample_t*) pSample->GetCache().pStart, Delay); if (DiskVoice) { // check if we reached the allowed limit of the sample RAM cache if (Pos > MaxRAMPos) { dmsg(5,("Voice: switching to disk playback (Pos=%f)\n", Pos)); this->PlaybackState = playback_state_disk; } } else if (Pos >= pSample->GetCache().Size / pSample->FrameSize) { this->PlaybackState = playback_state_end; } } break; case playback_state_disk: { if (!DiskStreamRef.pStream) { // check if the disk thread created our ordered disk stream in the meantime DiskStreamRef.pStream = pDiskThread->AskForCreatedStream(DiskStreamRef.OrderID); if (!DiskStreamRef.pStream) { std::cout << stderr << "Disk stream not available in time!" << std::endl << std::flush; Kill(); return; } DiskStreamRef.pStream->IncrementReadPos(pSample->Channels * (double_to_int(Pos) - MaxRAMPos)); Pos -= double_to_int(Pos); } // add silence sample at the end if we reached the end of the stream (for the interpolator) if (DiskStreamRef.State == Stream::state_end && DiskStreamRef.pStream->GetReadSpace() < (MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels) { DiskStreamRef.pStream->WriteSilence((MaxSamplesPerCycle << MAX_PITCH) / pSample->Channels); this->PlaybackState = playback_state_end; } sample_t* ptr = DiskStreamRef.pStream->GetReadPtr(); // get the current read_ptr within the ringbuffer where we read the samples from Interpolate(Samples, ptr, Delay); DiskStreamRef.pStream->IncrementReadPos(double_to_int(Pos) * pSample->Channels); Pos -= double_to_int(Pos); } break; case playback_state_end: Kill(); // free voice break; } // Reset delay Delay = 0; // If release stage finished, let the voice be killed if (EG1.GetStage() == EG_VCA::stage_end) this->PlaybackState = playback_state_end; } /** * Process the control change event lists of the engine for the current * audio fragment. Event values will be applied to the synthesis parameter * matrix. * * @param Samples - number of samples to be rendered in this audio fragment cycle */ void Voice::ProcessEvents(uint Samples) { // process pitch events RTEList* pEventList = pEngine->pCCEvents[ModulationSystem::destination_vco]; ModulationSystem::Event* pEvent = pEventList->first();; while (pEvent) { ModulationSystem::Event* pNextEvent = pEventList->next(); // calculate the influence length of this event (in sample points) uint duration = (pNextEvent) ? pNextEvent->FragmentPos() - pEvent->FragmentPos() : Samples - pEvent->FragmentPos(); // calculate actual pitch value switch (pEvent->Type) { case ModulationSystem::event_type_pitchbend: this->Pitch += ((double) pEvent->Pitch / 8192.0) / 12.0; // +- one semitone break; } // apply pitch value to the pitch parameter sequence for (uint i = pEvent->FragmentPos(); i < duration; i++) { ModulationSystem::pDestinationParameter[ModulationSystem::destination_vco][i] = this->Pitch; } pEvent = pNextEvent; } } /** * Interpolates the input audio data (no loop). * * @param Samples - number of sample points to be rendered in this audio * fragment cycle * @param pSrc - pointer to input sample data * @param Skip - number of sample points to skip in output buffer */ void Voice::Interpolate(uint Samples, sample_t* pSrc, uint Skip) { int i = Skip; // FIXME: assuming either mono or stereo if (this->pSample->Channels == 2) { // Stereo Sample while (i < Samples) { InterpolateOneStep_Stereo(pSrc, i, ModulationSystem::pDestinationParameter[ModulationSystem::destination_vca][i], ModulationSystem::pDestinationParameter[ModulationSystem::destination_vco][i]); } } else { // Mono Sample while (i < Samples) { InterpolateOneStep_Mono(pSrc, i, ModulationSystem::pDestinationParameter[ModulationSystem::destination_vca][i], ModulationSystem::pDestinationParameter[ModulationSystem::destination_vco][i]); } } } /** * Interpolates the input audio data, this method honors looping. * * @param Samples - number of sample points to be rendered in this audio * fragment cycle * @param pSrc - pointer to input sample data * @param Skip - number of sample points to skip in output buffer */ void Voice::InterpolateAndLoop(uint Samples, sample_t* pSrc, uint Skip) { int i = Skip; // FIXME: assuming either mono or stereo if (pSample->Channels == 2) { // Stereo Sample if (pSample->LoopPlayCount) { // render loop (loop count limited) while (i < Samples && LoopCyclesLeft) { InterpolateOneStep_Stereo(pSrc, i, ModulationSystem::pDestinationParameter[ModulationSystem::destination_vca][i], ModulationSystem::pDestinationParameter[ModulationSystem::destination_vco][i]); if (Pos > pSample->LoopEnd) { Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);; LoopCyclesLeft--; } } // render on without loop while (i < Samples) { InterpolateOneStep_Stereo(pSrc, i, ModulationSystem::pDestinationParameter[ModulationSystem::destination_vca][i], ModulationSystem::pDestinationParameter[ModulationSystem::destination_vco][i]); } } else { // render loop (endless loop) while (i < Samples) { InterpolateOneStep_Stereo(pSrc, i, ModulationSystem::pDestinationParameter[ModulationSystem::destination_vca][i], ModulationSystem::pDestinationParameter[ModulationSystem::destination_vco][i]); if (Pos > pSample->LoopEnd) { Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize); } } } } else { // Mono Sample if (pSample->LoopPlayCount) { // render loop (loop count limited) while (i < Samples && LoopCyclesLeft) { InterpolateOneStep_Mono(pSrc, i, ModulationSystem::pDestinationParameter[ModulationSystem::destination_vca][i], ModulationSystem::pDestinationParameter[ModulationSystem::destination_vco][i]); if (Pos > pSample->LoopEnd) { Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);; LoopCyclesLeft--; } } // render on without loop while (i < Samples) { InterpolateOneStep_Mono(pSrc, i, ModulationSystem::pDestinationParameter[ModulationSystem::destination_vca][i], ModulationSystem::pDestinationParameter[ModulationSystem::destination_vco][i]); } } else { // render loop (endless loop) while (i < Samples) { InterpolateOneStep_Mono(pSrc, i, ModulationSystem::pDestinationParameter[ModulationSystem::destination_vca][i], ModulationSystem::pDestinationParameter[ModulationSystem::destination_vco][i]); if (Pos > pSample->LoopEnd) { Pos = pSample->LoopStart + fmod(Pos - pSample->LoopEnd, pSample->LoopSize);; } } } } } /** * Immediately kill the voice. */ void Voice::Kill() { if (DiskVoice && DiskStreamRef.State != Stream::state_unused) { pDiskThread->OrderDeletionOfStream(&DiskStreamRef); } DiskStreamRef.pStream = NULL; DiskStreamRef.hStream = 0; DiskStreamRef.State = Stream::state_unused; DiskStreamRef.OrderID = 0; Active = false; } /** * Release the voice in an appropriate time range, the voice will go through * it's release stage before it will be killed. * * @param Delay - number of sample points releasing should be delayed (for jitter correction) */ void Voice::Release(uint Delay) { if (!ReleaseSignalReceived) { EG1.Release(Delay); ReleaseSignalReceived = true; } }